
Generierung von Assemblern und

Linkern in OpenVADL

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Benjamin Kasper

Matrikelnummer 12122530

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Wien, 27. September 2025
Benjamin Kasper Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Generation of Assemblers and

Linkers in OpenVADL

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Benjamin Kasper

Registration Number 12122530

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

Vienna, September 27, 2025
Benjamin Kasper Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der

Arbeit

Benjamin Kasper

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 27. September 2025
Benjamin Kasper

v

Kurzfassung

OpenVADL ist die Open-Source-Implementierung der Vienna Architecture Description
Language. Dabei handelt es sich um eine Prozessorbeschreibungssprache, die eine schnelle
Erkundung von Designvarianten in der Prozessorentwicklung ermöglichen soll, indem sie
automatisch Artefakte wie Compiler, Simulatoren oder sogar Hardwarepläne erzeugt. Um
Architekturen vollständig bewerten zu können, braucht man jedoch zusätzliche Werkzeuge
wie Assembler und Linker. Zwar könnten diese auch manuell entwickelt werden, das würde
jedoch der Anforderung schneller Iterationen nicht gerecht. In dieser Arbeit erweitern
wir OpenVADL daher um die Möglichkeit, auch Assembler und Linker zu generieren.
Dafür haben wir eine Assemblerspezifikation mit gut lesbarer Syntax entworfen und
Assembler- und Linkergeneratoren auf Basis von LLVM implementiert. Die Ergebnisse
unserer Auswertung zeigen, dass die Generierung der Werkzeuge leistungsfähig genug für
Design-Space-Exploration ist und die erzeugten Assembler und Linker ähnlich performant
wie ihre o�ziellen Pendants im LLVM-Projekt sind.

vii

Abstract

OpenVADL is the open-source implementation of the Vienna Architecture Description
Language. The Vienna Architecture Description Language is a processor description
language that aims to provide rapid design space exploration in processor development
by generating artifacts such as compilers, simulators and even hardware schematics. To
fully evaluate specified architectures, additional developer tools such as assemblers and
linkers are needed. While manually crafting these tools is possible, it is not feasible when
rapid iteration on designs is desired. In this work, we extend OpenVADL to support
generation of assemblers and linkers. We designed an assembler specification grammar
with an emphasis on syntax readability and implemented assembler and linker generators
based on LLVM. Evaluation results show that the tool generation performance is suitable
for design space exploration and that generated assemblers and linkers perform similarly
to their LLVM upstream equivalents.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 3

2.1 Vienna Architecture Description Language - VADL 3
2.2 Assembler and Linker . 6
2.3 LLVM . 8
2.4 LL(1) and predicated-LL(1) Parsing 8

3 Related Work 11

4 Implementation 13

4.1 Assembler Definition - Assembly Description in VADL 13
4.2 Assembler and Linker Generation . 23

5 Evaluation 29

5.1 Tool Generation Performance . 29
5.2 Assembling and Linking Performance 30

6 Future Work 33

7 Conclusion 35

Overview of Generative AI Tools Used 37

List of Figures 39

List of Tables 41

Acronyms 43

xi

Listings 44

Bibliography 45

CHAPTER 1
Introduction

The Vienna Architecture Description Language (VADL) is a processor description lan-
guage (PDL) aiming to enable fast design space exploration (DSE) in processor develop-
ment [FHH+25b]. The core idea of VADL is to achieve this by automatically deriving
the necessary tools from a concise specification. These include compilers, simulators,
hardware, and also assemblers and linkers.

OpenVADL is an open-source1 implementation of VADL improving on shortcomings of
the original non-public implementation [FHH+25a]. Tobias Schwarzingers master’s thesis
’Flexible generation of low-level developer tools with VADL’ [Sch22] details the imple-
mentation of the assembler and linker generation in this original VADL implementation.
Schwarzinger employs an LL(1) parsing algorithm in his assembler generator prototype.
His evaluation shows that such an algorithm is in general su�cient to parse common
assembly language constructs. While LL(1) algorithms are generally easier to implement
than more involved parsing algorithms, this approach o�oads complexity to the user
specifying an assembly language and does therefore not capture VADLs spirit of concise
specifications and fast DSE.

Therefore, in this work we aim to implement an improved assembler generator in the
context of OpenVADL. By deploying a predicated-LL(1) algorithm the burden is moved
from the user to the assembler generator. Additional improvements regarding specification
readability should be made by improving the syntax of assembler specification constructs.
Lastly, we plan to implement a linker generator in OpenVADL to enable the creation of
executables for specified architectures.

In chapter 2 we give an overview of VADL, assemblers and linkers, recursive descent
parsing and the LLVM project in the context of this work. Chapter 3 lists related
work in the space of automatic assembler generation. In chapter 4 we present the

1
OpenVADL is available at https://github.com/OpenVADL/openvadl

1

https://github.com/OpenVADL/openvadl

1. Introduction

implementation details of automatic assembler and linker generation in OpenVADL.
Chapter 5 discusses the performance of our implementation. Finally, chapter 6 lists
possible future improvements and chapter 7 summarizes this work.

2

CHAPTER 2
Background

In this chapter we discuss the necessary preliminaries for this work. First, we introduce
the relevant parts of VADL. Then we give an overview of assembling and linking. Lastly,
we briefly explain the key technologies used to implement the assembler and linker
generator in OpenVADL.

2.1 Vienna Architecture Description Language - VADL

A detailed introduction to VADL can be found in [FHH+25b]. For the purpose of
assembler and linker generation we limit our overview of VADL to the instruction set
architecture (ISA) and application binary interface (ABI) sections. Based on these two
sections we will then expand on the assembly description (AD) section in chapter 4. The
combination of these three sections defines the behavior of the generated assembler and
linker.

The ISA section is the central part of a VADL specification. It defines behavior, encoding
and di�erent representations of instructions of an architecture. Listing 2.1 gives an
example defining the ADDI instruction of the RISC-V architecture.

First, type aliases are defined to add semantic information to types (see lines 3 to 8).
Next, a register file X is defined as a mapping from the Index type to the Regs type.
As Index refers to the type Bits<5> and Regs to Bits<32>, this definition specifies
that there are 32 registers of size 32 bits in the X register file (see line 11). Additionally,
the annotation zero : X(0) declares the first register in the file as zero register (see
line 10). A zero register always returns zero on read and ignores any writes to it.

Lines 13 to 20 define the Itype instruction format. A format defines the binary
representation of an instruction. The Itype format can be used to define the so called
”immediate instructions” of RISC-V. These take 3 operands, namely a destination register
(rd), a source register (rs1) and an immediate value (imm). The remaining fields

3

2. Background

funct3 and opcode di�erentiate the type of immediate instruction (e.g. ADDI, ANDI,
...). Additionally, the format contains the access function immS (line 19). It transforms
the imm field to a 32 bit signed integer. As in this case for immediate instructions, fields
often need to be transformed before their usage. Access functions provide a convenient
use of transformed fields (as opposed to transforming the field at the site of usage).

1 i n s t r u c t i o n set a rch i tec tu re RV32I = {

2
3 constant S i z e = 32

4
5 using Byte = Bi t s < 8 >

6 using I n s t = Bi t s < 32 >

7 using Regs = Bi t s <Size >

8 using I ndex = Bi t s < 5 >

9
10 [z e r o : X(0)]

11 r e g i s t e r X : Index ≠> Regs

12
13 format I t y p e : I n s t =

14 { imm : B i t s <12>

15 , r s 1 : I ndex

16 , f un c t3 : B i t s <3>

17 , rd : I ndex

18 , opcode : B i t s <7>

19 , immS = imm as SInt <Size >

20 }

21
22 i n s t r u c t i o n ADDI : I t y p e =

23 X(rd) := X(r s 1) + immS

24 encoding ADDI = { opcode = 0b001 ’0011 , f unc t 3 = 0b000}

25 assembly ADDI = (mnemonic , " " , r e g i s t e r (rd) , " , " ,

26 r e g i s t e r (r s 1) , " , " , sdec (imm))

27
28 pseudo i n s t r u c t i o n NOP =

29 {

30 ADDI{ rd = 0 as Index , r s 1 = 0 as Index , imm = 0 as Bi t s <12>}

31 }

32 assembly NOP = mnemonic
33 }

Listing 2.1: ISA specification of RISC-V ADDI and NOP instructions

Then the ADDI instruction is defined by three statements (see lines 22 to 26). The
instruction keyword allows specifying the behavior of an instruction. Declaring the
instruction to adhere to the Itype format allows defining the instructions behavior in
terms of the format fields. Specifically, the ADDI instruction uses the access function

4

2.1. Vienna Architecture Description Language - VADL

immS to add the value of field imm to the value of register file X at index rs1 and stores
the result in X at index rd.

The encoding keyword allows setting fields of an instruction to constant values. In
line 24 the opcode and funct3 fields are set to binary values 001 0011 and 000
respectively. As mentioned above, these values uniquely identify the ADDI instruction.

Finally, an assembly statement (see lines 25 and 26) is required to finish the instruction
definition. It defines the textual representation of instructions in terms of its formats fields
by a sequence of strings. Builtin functions help formatting the format fields as strings.
The mnemonic function is replaced by the instructions name. register transforms the
index into a register file to a string (eg. X(1) to ”x1”). sdec transforms the immediate
value imm into a signed decimal number representation.

VADL also allows the definition of pseudo instructions. Pseudo instructions are defined
in terms of ”normal” (or machine) instructions. As such the behavior and binary
representation of pseudo instructions is implicitly defined by their machine instructions.
Solely the string representation of pseudo instructions needs to be specified explicitly.

Lines 28 to 32 of Listing 2.1 show the definition of the ”no operation” - NOP pseudo
instruction. It is defined in terms of the ADDI machine instructions, where all parameters
are 0 (= ADDI x0, x0, 0 in string representation). As NOP takes no operands, its
string representation is just its name (see line 32).

1 i n s t r u c t i o n set a rch i tec tu re RV32I = { . . . }

2
3 app l i ca t i on binary i n t e r f a c e ABI f o r RV32I = {

4 . . .

5 a l i a s r e g i s t e r z e r o = X(0)

6 . . .

7 a l i a s r e g i s t e r f p = X(8)

8 a l i a s r e g i s t e r s0 = X(8)

9 . . .

10 a l i a s r e g i s t e r t6 = X(31)

11 . . .

12 }

Listing 2.2: Register aliases in ABI specification of RISC-V

In the ABI of a VADL specification constructs needed for automatic compiler generation
are defined. Among them are also alias register definitions. These introduce
a name for an index into a register file. Listing 2.2 shows a few alias register
definitions for the ISA of Listing 2.1. Lines 7 and 8 show that there can be multiple
names for a register.

5

2. Background

2.2 Assembler and Linker

2.2.1 Assembler

An assembler is a program that translates the textual representation of an architecture’s
instructions, its assembly language, to their binary representation - the machine code.
To accomplish this, an assembler has two main tasks: parsing the assembly language
and emitting the corresponding binary encoding. Statements in an assembly language
can typically be categorized into the following constructs: labels, directives, machine
instructions and pseudo instructions. A label marks a position in an assembly program.
It is used to allow instructions to refer to segments of the assembly program.

Directives are commands that specify the behavior of an assembler. They either enable
or disable options of the assembler or directly alter the produced binary stream. An
example is the .align <Byte> directive which aligns the binary encoding of the instruction
following the directive to an address that is a multiple of the specified byte number.

Machine instructions in an assembly language consist of a mnemonic followed by register-
and / or immediate operands. Architectures define their registers and value ranges for
immediate operands. After identifying an instruction by its mnemonic and operands,
an assembler needs to verify that operands are valid. Register operands are expressions
which need to match the registers defined by the architecture and immediate operands
need to be within the valid value range. The final step is to emit the binary encoding
corresponding to the validated instruction. Figure 2.1 shows the mapping of the RISC-V
ADDI instructions operands to its binary format.

addi x1, x2, 10

opcode rd funct3 rs1 imm
0 7 11 14 19 20 31

Figure 2.1: Mapping of RISC-V ADDI instruction to its binary format.

Pseudo instructions in an assembly program are indistinguishable from machine instruc-
tions. They also consist of a mnemonic followed by operands. The di�erence is that
pseudo instructions do not have a binary encoding themselves, but rather are defined in
terms of machine instructions (see definition in Listing 2.1). Therefore, an assembler needs
to expand pseudo instructions to machine instructions and then emit their corresponding
binary encoding. Figure 2.2 exemplifies this procedure with the RISC-V NOP pseudo
instruction.

6

2.2. Assembler and Linker

nop

addi x0, x0, 0

opcode rd funct3 rs1 imm
0 7 11 14 19 20 31

Figure 2.2: Expansion and mapping of RISC-V NOP pseudo instruction.

2.2.2 Linker

Source code of programs is usually split between multiple files to keep software maintain-
able. An assembler operates on a per file basis, so a process to combine all assembled
sources of a program into an executable program is needed. A linker is a tool doing
exactly this. It takes the binary representation of multiple source files and produces a
single executable program.

An important concept for both assemblers and linkers are relocations. Relocations allow
the splitting code of a single program into multiple files. Assemblers emit relocations
to signal to the linker that an instruction refers to a label which address is unknown
while assembling and needs to be determined in the linking process. This is the case
whenever a code segment references a construct defined in another source file (e.g. calling
a function defined in another file).

Once the linker combines all sources it needs to resolve all relocations. At this point
addresses of labels can be determined and the instruction encodings referenced by the
relocations get updated with the determined addresses. Some relocations require that
addresses need to be further transformed before being written to the instruction encoding.
In such cases the linker has to apply the transformation required by the relocation type.

Further, linkers also apply optimization techniques such as relaxation. Generally, the term
relaxation describes a linker’s ability to replace one instruction in the machine code with
another instruction. The idea is to leverage architecture-specific information to improve
either code size (e.g. choosing shorter instructions in a variable-length architecture) or
runtime. A typical example for runtime improvement is branch relaxation. Take an
architecture with two jump instructions as example. One is an absolute jump that allows
jumps to any address, but takes two cycles to complete. The other is relative jump and
only allows jumps to addresses within an 8 bit range relative to the current program
counter, but takes just one cycle to complete. Now assume a program with a jump to
an external symbol. As the assembler does not know whether the symbol’s address is
going to be within an 8 bit range, it emits the absolute jump instruction. In the linking

7

2. Background

step, the linker resolves the symbols address and determines that the symbol is actually
within an 8 bit range. Therefore, it can replace the absolute jump with the relative jump
and reduce runtime by one cycle.

2.3 LLVM

The LLVM Compiler Infrastructure project was first released in 2004 as a tool to ease
compiler creation [LA04]. Since then LLVM has developed into an umbrella project
gathering a wide range of subprojects [llv25a]. Among them are the LLVM Machine
Code Playground (LLVM-MC) and LLVM Linker (LLD) projects, which are the LLVMs
assembler and linker respectively.

One of LLVMs core ideas is to provide as much functionality of a compiler toolchain as
possible, while allowing comparatively easy specifications of new target architectures. For
this reason OpenVADL utilizes LLVM in its compiler generator called LLVM Compiler
Backend (LCB). As means of specification of new architectures serves LLVMs human
readable file format TableGen [llv25b]. Therefore, one task of the LCB is to lower
architectural information of a VADL specification to a TableGen specification.

In LLVM’s spirit its assembler LLVM-MC also provides as much target independent
functionality as possible. Recall from section 2.2.1 that an assembler has two main
tasks: parsing an assembly language and producing its binary representation. For the
former LLVM-MC provides utilities for parsing some constructs such as labels, directives
and comments, while instructions are obviously architecture dependent and need to
be implemented explicitly in the MCAsmParser component. For the latter LLVM-MC
utililizes a TableGen specification and the instruction encoding information therein to
create the MCCodeEmitter component.

As interface between these two components serves the internal data structure MCInst.
The MCAsmParser creates one MCInst object per parsed instruction, containing the
instruction type and the parsed operands. Operand values are wrapped in the MCExpr
class, which provides utilities for dealing with the di�erent types of operands. The
MCInst objects are passed on to the MCCodeEmitter which calculates the binary
encoding for an instruction and its operands according to the architectures TableGen
specification.

LLVMs linker LLD handles the resolving of relocated symbols to addresses out-of-the-box.
Any further architecture dependent transformations to resolved addresses and the routines
to alter instruction encodings need to be implemented per target architecture.

2.4 LL(1) and predicated-LL(1) Parsing

As stated in chapter 1, the assembler generator in the original VADL implementation
is limited to specifying assembly languages that can be parsed with an LL(1) parsing
algorithm [Sch22]. LL parsers process their input from left to right while calculating

8

2.4. LL(1) and predicated-LL(1) Parsing

leftmost derivations. The number in parentheses refers to the number of tokens a parser
considers when calculating derivations. So an LL(1) parser only ever considers one token
at a time. This is su�cient for parsing common assembly languages, but can require
complex specifications [Sch22].

The advantage of LL(1) parsers is that they are easy to implement, in particular as
recursive descent parsers. An enhancement to LL(1) parsers are predicated-LL(1) parsers
[PQD93]. Predicated refers to the addition of semantic predicates to a specification. This
concept is used in popular parser generators such as ANTLR [PQ95] and Coco/R (called
resolvers) [MLW18] [WLM03].

Semantic predicates are expressions evaluating to either true or false, inserted in a
specification at decision points where multiple derivations are valid. An LL(1) algorithm
would fail at this point, since it cannot determine which derivation to make. A predicated-
LL(1) parser determines the derivation by evaluating the semantic predicate expressions
in the order of their specification. The parser then simply chooses the first derivation
where its semantic predicate evaluates to true.

Within semantic predicates, expressions evaluating more than the current token can be
defined. This resolves the fundamental limitation of LL(1) parsers. In the application
of parsing assembly languages this approach enables the parsing of abbreviated syntax
variants. [Sch22] gives the example of the RISC-V JALR instruction. Listing 2.3 shows
two forms of the same JALR instruction. The instruction in line 1 is a pseudo instruction
where operand rd is always x1 and imm is always 0. In line 2 all operands are specified
explicitly.

1 j a l r x2

2 j a l r x1 , x2 , 0

Listing 2.3: Forms of the RISC-V JALR instruction

An assembler with the ability to parse both forms cannot be specified in the original
VADL implementation. The reason for this is that the parser assigns parsed values to
operands immediately. So at the point of parsing the first register operand, the LL(1)
parser is not able to decide whether to assign the value to operand rd or operand rs.
Whereas a predicated-LL(1) parser can check the next token in a semantic predicate. If
there follows a ”,” after the register operand, the parser knows that JALR is in the form
of line 2 and the register value needs to be assigned to rd. In the other case the parser
knows that rd and imm are fixed and can assign the parsed register value to rs.

9

CHAPTER 3
Related Work

Automatic assembler and linker generation are most relevant in the context of architecture
description language (ADL)s like VADL. [Sch22] describes the generation of assemblers
and linkers in the original VADL implementation. Assembly syntax of instructions can
be specified via a formal grammar within a VADL specification. For simple instruction
syntaxes, grammar rules can also be inferred from instructions assembly printing defini-
tions. From this formal grammar an assembler and linker based on LLVM are generated.
A limitation of the generated assembler is its LL(1) parsing algorithm. One goal of this
work is to eliminate this limitation in the new assembler generator of OpenVADL.

ArchC [RABA04] is an ADL that has been extended to support automatic generation
of assemblers [BCR05] and linkers [CVDS06]. Both tools use information from an
ArchC specification to generate target dependent libraries for the GNU Binutils software
package. Compiling GNU Binutils with these libraries produces assemblers and linkers
for architectures specified in ArchC.

[SWZR14] takes a similar approach utilizing GNU Binutils to automatically generate
assemblers and disassemblers. It introduces GADL (GNU tool chain based ADL) as
its specification language. As this project focuses solely on assembler and disassembler
generation, its usage in DSE depends on other ADLs to generate simulators and further
artifacts. This leads to redundant specifications in two ADLs or the need for a tool to
generate one ADL from the other.

[BCR+08] generates assemblers, disassemblers and linkers also utilizing GNU Binutils.
Specifications are given in an abstract model not tied to any ADL. Therefore, it faces
the same issues regarding redundancies as [SWZR14]. To deal with this the authors give
a formal definition of the abstract model in BNF to synthesize models from other ADLs.

LISA is an ADL aimed at modeling digital signal processors (DSP) [PHZM99]. It supports
generation of artifacts like simulators, assemblers and linkers for such architectures
[HNP+01]. Assembly syntax of instructions is specified via sequences of string constants

11

3. Related Work

and operands in SYNTAX sections. Similarly, binary encoding is specified in CODING
sections via binary constants and operands.

TIE (Tensilica Instruction Extension) is an ADL to configure extensions to the Xtensa
processor [Gon00]. It is capable of automatically generating assemblers and linkers for
new extensions to Xtensa. Like previously mentioned works it bases its tools on the GNU
Binutils. Xtensa instructions follow one of six fixed formats. Therefore, binary encoding
definitions for new instructions boil down to declaring the fixed opcode. Assembly syntax
for new instructions is specified as sequence of operands.

UPFAST (University of Pittsburgh Flexible Architecture Simulation Tool) is a system
focusing on generating simulators for microarchitectures [OG98]. Besides simulators
UPFAST also generates assemblers and linkers. Because of the focus on microarchitecture,
its ADL operates on a lower abstraction level. In the ADLs ISA section fields of
instructions are specified with the declare keyword. Assembly syntax of instructions is
specified by listing declared fields after the mnemonic within an Instruction block.
Also within an Instruction block is the binary encoding specification with the emit
keyword. There, a sequence of referenced fields and constants defines the instructions
encoding.

The ADL NoGap (Novel Generator for ASIP) prioritizes generation of hardware descrip-
tions, while also generating matching simulators and assemblers [KL09]. Its assembler
generator is presented in [KLAL10]. The NoGap tool generates instruction definition
files from a NoGap specification. The definition files are then loaded at runtime from the
NoGap assembler to adjust it to specified architectures. Limitations of NoGap are that
directives in assembly languages are not supported and that there is no automatic linker
generation.

ISDL (Instruction Set Description Language) is an ADL aiming to aid DSE, particular in
the space of VLIW architectures [HHD00]. To achieve this ISDL generates various tools
such as simulators, compilers, assemblers and disassemblers. It is, however, not capable
of generating linkers for specified architectures.

A recent ADL also focusing on VLIW architectures is ISADL [XL23]. Its main contribution
is to automatically derive instruction encodings given a set of constraints regarding formats
and number of instructions. Assemblers can be generated by specifying assembly syntax
as regular expressions. To specify binary encoding a mapping from matched regular
expressions to binary constants needs to be defined. Linker generation is not possible
with ISADL.

12

CHAPTER 4
Implementation

4.1 Assembler Definition - Assembly Description in VADL

In this section we discuss the assembly description definition of a VADL specifica-
tion. It specifies the behavior of the generated assembler. An assembly description
depends on an ABI definition which in turn depends on an ISA definition (see lines 10
and 12 in Listing 4.1). This is because the assembler needs to be able to parse register
aliases as defined in the ABI section (see Listing 2.2) and needs the instruction definitions
of the ISA (see Listing 2.1) to emit correct binary encoding.

An assembly description consists of the mandatory subsection grammar as well
as the optional subsections modifiers and directives. Additionally, the assembly
description can be annotated to adjust the generated assemblers behavior in more
detail and allows definition of common definitions to be used within the grammar
subsection. The following subsections explain all of these components in detail.

4.1.1 Modifiers

Modifiers are transformation functions in an assembly language. When applied to constant
operands the transformation can be done by the assembler. If such a transformation is
applied to a symbol operand, the assembler emits a relocation to signal to the linker
that it needs to apply the transformation after determining the symbols address. As the
assembler needs to know which relocation to emit when encountering a certain modifier,
this information needs to be specified in the modifiers subsection. It allows defining a
mapping between strings to be used in the assembly language and relocations defined in
the ISA section.

The example in Listing 4.1 shows an ISA definition and an assembly description refering
to this ISA (via the ABI section). The relocations in the ISA define the transformations
functions to be applied by the assembler or linker. The hi and lo relocations both take

13

4. Implementation

1 i n s t r u c t i o n set a rch i tec tu re RV32I = {

2 . . .

3 r e l oca t i on h i (symbol : B i t s <32>) ≠> UInt <20>

4 = ((symbol + 0x800 as Bi t s <32>) >> 12) as UInt <20>

5
6 r e l oca t i on l o (symbol : B i t s <32>) ≠> SInt <12>

7 = symbol as SInt <12>

8 }

9
10 app l i ca t i on binary i n t e r f a c e ABI f o r RV32I = { . . . }

11
12 assembly desc r i p t i on ASM f o r ABI = {

13 . . .

14 modi f i e r s = {

15 " h i " ≠> ISA : : h i ,

16 " l o " ≠> ISA : : l o

17 }

18 . . .

19 }

Listing 4.1: Example of modifier definition

a Bits<32> value as input and transform them to an UInt<20> and SInt<12> value
respectively. 1

The modifiers subsection then defines the mapping from strings in the assembly
language to user defined relocations. So should the assembler encounter the modifier ”hi”
applied to a constant operand, it applies the transformation function hi before emitting
the binary encoding for the operand. To further illustrate take the two instructions in
Listing 4.2 as example. As %hi(0x1234) is equal to 0x1 the assembler produces the
same binary encoding for both instructions.

1 ADDI x1 , x2 , %h i (0 x1234)

2 ADDI x1 , x2 , 0x1

Listing 4.2: Modifier in assembly language

In case a modifier is applied to a symbol operand, the assembler emits a relocation.
This signals to the linker that the transformation needs to be applied after resolving the
symbols address.

1
More precisely: Applying hi returns the ”upper” 20 bit of the 32 bit input value and applying lo

returns the lower 12 bit of the 32 bit input value.

14

4.1. Assembler Definition - Assembly Description in VADL

4.1.2 Directives

Directives are commands within assembly programs that specify an assemblers behavior.
OpenVADL o�ers a set of about 170 pre-defined directives available in common assemblers.
2 The directives subsection allows the definition of custom directive names by defining
a mapping from a new name to an OpenVADL directive.

In Listing 4.3 three directives are renamed. First, .align is mapped to ALIGN_POW2.
This defines the .align directive to align instructions at addresses that are multiples of
two to the power of the parameter of the directive (e.g. .align 3 aligns instructions at
addresses which are multiple of 8). Further, the two directives .quad and .4byte are
renamed to .dword and .word respectively.

1 assembly desc r i p t i on ASM f o r ABI = {

2 . . .

3 d i r e c t i v e s = {

4 " . a l i g n " ≠> ALIGN_POW2,

5 " . dword " ≠> QUAD,

6 " . word " ≠> BYTE4

7 }

8 . . .

9 }

Listing 4.3: Example of directive renaming

4.1.3 Grammar

The grammar subsection is the core of the assembler specification. It defines the assembly
language for the specified architecture in terms of a formal language. More precisely, a
grammar section consists of a set of grammar rules which define the syntax of the textual
representation of instructions. An observant reader may notice that this leads to a certain
degree of redundancy with the assembly definitions of instructions in the ISA section
(see 2.1). This slightly violates the VADL principle of concise specifications. Nevertheless,
this compromise was made to allow greater flexibility when defining the assembly language.
An example where the advantage of flexibility applies are architectures like RISC-V where
instructions can have multiple valid textual representations. In this case the assembly
definition of the ISA is limited to defining one syntax, while the grammar section allows
defining constructs such that the assembler can parse all valid textual representations.

As already mentioned the grammar is made up of grammar rules in an EBNF like syntax.
A rule has a name, an optional AsmType and a rule body, made up of grammar elements.

2
A list of all supported directives can be found in the OpenVADL reference manual at https:

//openvadl.github.io/openvadl/refmanual.html

15

https://openvadl.github.io/openvadl/refmanual.html
https://openvadl.github.io/openvadl/refmanual.html

4. Implementation

Listing 4.4 shows rules with basic grammar elements in their bodies. The rules in the
example expect the following input:

• LiteralA: Expects ”a”.

• Sequence: Expects ”a” followed by ”b”.

• Alternative: Expects one of ”a”, ”b” or ”c”.

• RuleReference: Expects ”a” (as this is the body of LiteralA).

• Optional: Expects ”a” followed by zero or one ”b”.

• Repetition: Expects ”a” followed by zero or more ”b”.

1 grammar = {

2 L i t e r a l A : " a " ;

3 Sequence : (" a " "b") ; // p a r e n t h e s e s a r e o p t i o n a l

4 A l t e r n a t i v e : " a " | "b" | " c " ;

5 Ru l eRe f e r en c e : L i t e r a l A < > ; // ang l e b r a c k e t s a r e o p t i o n a l

6 Opt i ona l : " a " ["b"] ;

7 R e p e t i t i o n : " a " { "b" } ;

8 }

Listing 4.4: Basic grammar elements

Out of these grammar elements Alternatives, Optionals and Repetitions can lead to LL(1)
conflicts as shown in Listing 4.5. Line 2 shows a rule body where both alternatives expect
the token ”a” as first element. This constitutes an LL(1) conflict because upon reading
input ”a” an LL(1) parser cannot decide which of the two is the desired alternative
to derive. Often such a conflict can be solved by rewriting the grammar rule. In the
example the ”a” could be extracted to be outside of the alternatives to solve the conflict.
But in many cases rewriting grammar rules to be LL(1) conform decreases the overall
readability of a specification. Therefore, OpenVADL introduces semantic predicates to
deal with LL(1) conflicts. Semantic predicates are expressions of the OpenVADL type
system specified exactly at the first location of the conflict.

The grammar rule definition in Line 4 to 8 of Listing 4.5 shows the application of a
semantic predicate to solve the conflict between alternatives starting with ”a”. The
?(...) syntax specifies a semantic predicate at the beginning of the first alternative.
Within the semantic predicate the special builtin function LaIdEq is called. LaIdEq
is short for Lookahead Identifier Equals and allows to consider input tokens ahead of
the current input token. It takes two arguments, where the first is a natural number n
specifying the token to consider is n tokens ahead of the current token. LaIdEq returns

16

4.1. Assembler Definition - Assembly Description in VADL

1 I n v a l i d A l t e r n a t i v e :

2 " a " "b" | " a " " c " ; // LL (1) c o n f l i c t

3
4 V a l i d A l t e r n a t i v e :

5 ?(LaIdEq (1 , "b")) // check f o r "b" i n semant i c p r e d i c a t e

6 " a " "b"

7 | " a " " c "

8 ;

9
10 V a l i d O p t i o n a l :

11 [? (LaIdEq (1 , "b")) " a " "b"] " a " " c " ;

12
13 V a l i d R e p e t i t i o n :

14 {?(L a I d I n (1 , "b" , "d")) " a " "b"} " a " " c " ;

Listing 4.5: LL(1) conflicts and semantic predicates

true if its second argument is equal to this specified token and false otherwise. So the
semantic predicate in Line 5 checks whether the next token is equal to ”b”. If this is
the case the expression evaluates to true and the first alternative is derived. If the next
token is not equal to ”b” then the second alternative is derived.

Listing 4.5 also shows the cases where LL(1) conflicts arise with Optional and Repetition
grammar elements. Similarly to the case with alternatives the conflicts are resolved with
semantic predicates at the location of the first conflicting construct. In line 14 the second
special builtin function LaIdIn is used. Like LaIdEq it considers the lookahead token
at location of its first argument. But unlike LaIdEq, LaIdIn takes an arbitrary amount
of string arguments after the first argument. If any of these strings are equal to the
considered token, LaIdIn returns true.

Lastly, the burden of identifying LL(1) conflicts is not o�oaded to the specifier. Open-
VADL checks each grammar rule for LL(1) conflicts using First- and Follow-Sets. In
case there are any conflicts, a detailed error message with exact error locations in the
specifications is printed. The specifier can then decide to either rewrite the conflicting
grammar rules or apply semantic predicates at the reported locations.

Before discussing the remaining grammar elements, it is necessary to consider AsmTypes,
the special type system for grammar elements. AsmTypes are introduced as a means to
give semantic meaning to parsed input. For example the assembler needs to di�erentiate
whether a parsed instruction operand is supposed to be a register or a symbol operand.

Listing 4.6 shows a simple example of using AsmTypes in grammar rules. In the rule
RegisterStrings the usage of @string explicitly marks the alternatives element
and the rule itself to be of AsmType @string. As declaring this each and every time
would be quite tedious, OpenVADL infers AsmTypes where possible. In the example

17

4. Implementation

1 grammar = {

2 R e g i s t e r S t r i n g s @str ing : " x1 " @str ing | " x2 " @str ing ;

3
4 R e g i s t e r R u l e : R e g i s t e r S t r i n g s @reg i s te r ;

5 }

Listing 4.6: Basic AsmType usage

of rule RegisterStrings, actually none of the @string declarations are needed
as they can be inferred automatically. String literals like ”x1” and ”x2” are always
of AsmType @string, therefore the whole alternatives grammar element also is of
AsmType @string. As then the rule body is of AsmType @string the rule itself is
inferred to be of AsmType @string.

AsmType Description
@constant Represents an integer value.
@expression Represents a complex expression for an immediate operand. The

Expression default rule is of this type.
@instruction Represents an entire machine or pseudo instruction. It needs to

consist of at least the mnemonic operand.
@modifier Represents a modifier defined in the modifiers mappings of the

assembly description.
@operand Represents an instruction operand, which is used to build an in-

struction in the parser.
@operands Represents a sequence of @operand.
@register Represents a register of the ISA or register alias of the ABI.
@statements Represents a sequence of @instruction, where each instruction

is followed by an EOL.
@string Represents a sequence of characters. Most terminal rules are of

this type.
@symbol Represents a reference to a symbol, such as an assembly label.
@void Represents the empty type. For rules like EOL.

Table 4.1: Overview of AsmTypes

Table 4.1 lists an overview of all AsmTypes and their semantics. In order to create
grammar elements of AsmTypes like @register or @instruction AsmType casting
needs to be applied. Line 4 in Listing 4.1 shows an example of such an operation. In
the body of RegisterRule the rule RegisterStrings is invoked. As previously
described, RegisterStrings is of AsmType @string. By adding @register after
the rule invocation it is cast to this AsmType. Not all AsmTypes can be arbitrarily
cast from one to another, a list of valid casts is given in Table 4.2. Note that valid in

18

4.1. Assembler Definition - Assembly Description in VADL

this context refers to assembler build time. For example it is generally possible to cast
@string to @register. But this cast will lead to an assembler runtime error, should
the parsed string not be an actual register specified in the ISA or an register alias of the
ABI.

Source AsmType Target AsmType Semantics
@instruction @statements Create a sequence of statements containing a

single instruction.
@operands @instruction Create an instruction from a sequence of

operands.
@operand @instruction Create an instruction from a single operand.
@register @operand Wraps register in an operand.
@constant @operand Wraps constant in an operand.
@string @operand Wraps string in an operand.
@expression @operand Wraps expression in an operand.
@symbol @operand Wraps symbol in an operand.
@modifier with
@expression

@operand Create a new expression from a modified ex-
pression and wrap in an operand.

@constant @register Interpret integer as register index.
@string @register Interpret string as register name.
@string @modifier Create modifier from a string. The modifier

must be defined in the modifiers section.
@string @symbol Interpret string as symbol name.
any @void Drops all data.

Table 4.2: Valid AsmType casts

So far, examples only contained fixed string literals (e.g. ”a”) as basic building blocks
of grammar rules. Since an assembler certainly needs to parse arbitrary immediate
values (which include both symbols and numeric values), further primitives that allow
specifying such values in grammar rules are needed. To solve this issue, OpenVADL
contains a set of terminal default grammar rules. 3 Most notable of these builtin rules are
INTEGER and IDENTIFIER. The INTEGER terminal rule is of AsmType @constant
and allows parsing of numbers in decimal, binary (prefixed with 0b) and hexadecimal
format (prefixed with 0x). The IDENTIFIER terminal rule is of AsmType @string
and allows parsing of strings starting with a letter followed by alphanumeric characters.

In addition to terminal default grammar rules, OpenVADL also defines a set of non-
terminal default grammar rules. An overview of these is given in table 4.3. Of the
non-terminal default rules Instruction and Statement have a special status. After parsing
all grammar rules defined in the grammar subsection OpenVADL defines the Instruction
rule as alternative over all defined rules with the AsmType @instruction. The

3
The full set of terminal default grammar rules is specified in the OpenVADL reference manual at

https://openvadl.github.io/openvadl/refmanual.html

19

https://openvadl.github.io/openvadl/refmanual.html

4. Implementation

Statement rule is then defined as the Instruction rule followed by an End-of-Line token.
As such Statement serves as the entry point for the assemblers parser. All other non-
terminal default rules in 4.3 expand on the terminal default rules to capture common
assembly language constructs. They have no special implementation and could easily be
explicitly specified in the grammar section, but are pre-defined for convenience. Lastly,
non-terminal default grammar rules can be overwritten by specifying a rule with the
exact same name in the grammar section.

Rule AsmType Description
Expression @expression An expression can be a signed integer, a complex

expression (e.g., 2 + 3) or a symbol reference (e.g.,
.foo).

Identifier @string Identifier allows parsing of any string.
Immediate-

Operand @operand ImmediateOperand is a convenience rule consisting
of an expression with a cast to @operand.

Instruction @instruction The instruction default rule is an alternative over all
grammar rules with the type @instruction.

Label @symbol Label is a symbol reference (e.g., .foo).
Natural @constant Natural is an unsigned integer number.
Integer @constant Integer is a signed integer number.
Register @register Register is any of the registers defined in the ISA or

an register alias of the ABI.
Statement @instruction Statement is the Instruction default rule followed by

an End-Of-Line token.

Table 4.3: Non-terminal default grammar rules

The final grammar elements to be discussed are Attributes and Local Variables. Attributes
constitute the connection between the assembly grammar and instructions of the ISA
section. To specify an instruction in the grammar, grammar elements of type @operand
are assigned to attributes which correspond to the instructions format fields or field access
functions. Whether to use a format field or its field access function as attribute depends
on the ”view” in which a value is expected in the assembly language. As explained
in section 2.1 a field access function transforms the fields value. We call the original
value ”field view” and the transformed value its ”field access view”. If the field view is
expected in the assembly language, a parsed operand can be emitted as binary without
further adjustment. But in the case an instruction in the assembly language expects the
field access view as operand, the value needs to be adjusted to fit the field view before
emitting its binary encoding. For this the inverse field access function has to be applied.
For simple field access functions this inversion is automatically derived by OpenVADL.
For complex cases it needs to be explicitly specified as encoding function in the format
definition.

Listing 4.7 exemplifies how attributes and local variables are used to define a grammar

20

4.1. Assembler Definition - Assembly Description in VADL

1 grammar = {

2 A d d i I n s t r u c t i o n @inst ruct ion :

3 var tmp = n u l l @operand
4 mnemonic = "ADDI" @operand
5 tmp = R e g i s t e r @operand " , "

6 r s 1 = R e g i s t e r @operand " , "

7 immS = ImmediateOperand

8 rd = tmp

9 ;

10 }

Listing 4.7: Attributes and local variables

rule for the ADDI instruction defined in Listing 2.1. In line 3 the local variable tmp
of type @operand is declared. Local variables are used to hold results of grammar
elements which should be parsed at this point, but assigned to attributes at a later
point in the grammar rule. Like in line 4, any instruction definition must first assign
the special mnemonic attribute. This is a limitation given by the instruction matching
implementation, which is responsible for determining the instruction definition of the ISA
section corresponding to the mnemonic. After the mnemonic attribute the definitions for
the instructions operands follow. In line 5 the result of parsing the first register operand
is stored in local variable tmp. By adding ”,” at the end of line 5 the expectation of a
comma character after the first register operand is defined. Similarly, line 6 defines the
second operand to be a register operand followed by a comma character. The operand
result is directly stored to the rs1 format field attribute. For the third operand the
non-terminal default grammar rule ImmediateOperand is used. Di�erently from the
first two register operands its result is not assigned to a format field attribute, but to the
field access function attribute immS. Finally, the result for the first operand, held in the
tmp local variable, is assigned to the format field attribute rd.

For the repetition grammar element a special syntax allows cumulative assignments to
attributes. As elements within a repetition block can be parsed multiple times all of
the results can be collected in lists of parsed values. This mechanism is limited to the
attributes for sequence AsmTypes, namely @operands and @statements. Listing 4.8
shows an example with the @statements AsmType.

4.1.4 Annotations and Common Definitions

The assembly description definition allows two annotations to configure the generated
assembler. Listing 4.9 shows them in lines 1 and 2. First, the comment string
annotation allows defining a custom string to be used as token to signal comments in
an assembly program. When encountering this token the assembler ignores the rest of
the current program line and continues with the statement in the next line. Second, the

21

4. Implementation

1 grammar = {

2 Statements :

3 s tmts = Statement @statements
4 {

5 s tmts += Statement

6 }

7 ;

8 }

Listing 4.8: Cumulative assignment in repetition

case sensitive annotation configures whether the assembler should consider the case
of letters when comparing strings. Listing 4.9 show the default values ”#” and false,
which are applied if an annotation is not explicitly specified.

1 [comment s t r i n g : "#"]

2 [c a s e s e n s i t i v e : f a l s e]

3 assembly desc r i p t i on ASM f o r ABI = {

4
5 funct ion x 1 _ s t r i n g ≠> S t r i n g = " x1 "

6
7 using AsmInt = SInt <64>

8 constant one = 1

9 funct ion plus_one (x : AsmInt) ≠> AsmInt = x + one

10
11 grammar = {

12 So m e In s t r u c t i o n @inst ruct ion :

13 rd = (x 1 _ s t r i n g @reg i s te r) @operand
14 r s = R e g i s t e r @operand " , "

15 imm = plus_one<I n t e g e r > @operand
16 ;

17 }

18 }

Listing 4.9: Annotations and common definitions

To allow arbitrary transformations of parsed values in the assembler the assembly
description permits the definition of functions, constants and using statements. While
constants and using statements can only be used to define other common definitions,
functions can be used in the body of grammar rules. The syntax for function calls within
grammar rules is the functions name followed by its parameters separated by commas
within angle brackets. In case a function takes no parameters, the angle brackets are
optional and can be omitted for brevity.

22

4.2. Assembler and Linker Generation

Listing 4.9 shows such common definitions within an assembly description. Line 5 defines
a parameterless function always returning the string ”x1”. Line 7 introduces the new
name AsmInt for the type SInt<64>. Line 9 declares the function plus_one which
takes one parameter and adds the constant defined in Line 8 to it.

The defined functions are used to specify grammar rule SomeInstruction (see Line 13
to 17). In Line 14 the call to function x1_string and subsequent casts to @register
and @operand set the operand rd to register x1. Line 16 shows the passing of a
parameter to a function using the angle brackets syntax. The builtin grammar rule
Integer is called as argument for the function plus_one. This leads to the assembler
expecting to parse an integer value and then calling the function with the parsed value
as argument.

To use functions in grammar rules the VADL type of functions and AsmTypes at the
site function usage need to match. This applies when passing parsing results as function
arguments and when using function return values in grammar rules. To check the
matching, supported AsmTypes are converted to their VADL type equivalent. A mapping
of supported AsmTypes to their equivalent VADL types is given in Table 4.4.

Take function plus_one in Listing 4.9 as example. Its parameter and return type is
AsmInt, which refers to the SInt<64> type. When called in Line 15, its argument
is the Integer builtin grammar rule. This rule is of AsmType @constant and its
equivalent VADL type SInt<64>. Therefore, the grammar rule can be used as argument
for the function. The same applies for the return type. plus_one returns an SInt<64>
which equals the @constant AsmType and can therefore be casted to an @operand
AsmType.

However, an exact type match like in the example is not necessary. For function
parameters it is su�cient if the VADL type of the passed argument can be implicitly
cast to the VADL type of the parameter. 4

AsmType VADL type
@constant SInt<64>

@string String
@void Void

Table 4.4: Mapping of AsmType to matching VADL type

4.2 Assembler and Linker Generation

The previous section detailed how assemblers can be specified in OpenVADL. In this
section we discuss the components in OpenVADLs architecture responsible for generating
assemblers and linkers from such specifications.

4
For details on VADLs type system and implicit casting refer to the OpenVADL reference manual at

https://openvadl.github.io/openvadl/refmanual.html

23

https://openvadl.github.io/openvadl/refmanual.html

4. Implementation

VADL
Specification

OpenVADL
Frontend VIAM GCB LCB LLVM

...

...

Figure 4.1: Coarse-grained overview of OpenVADLs architecture

Figure 4.1 shows a coarse-grained overview of OpenVADLs architecture. A specification
first passes through the Frontend component. The Frontend performs lexical and syntactic
analysis with its parser based on the parser generator Coco/R [MLW18]. Semantic
analysis is implemented in the Typechecker module. As part of semantic analysis the
AsmLL1Checker checks for LL(1) conflicts within the grammar subsection of an assembly
description. Once the validity of a specification is verified by the Frontend, it is lowered
to OpenVADLs intermediate representation - the VADL Intermediate Architecture Model
(VIAM). Based on the VIAM, various generator components create artifacts like compilers
and simulators. Two of these components are the Generic Compiler Backend (GCB)
and the LCB, which was already mentioned in section 2.3. Together they constitute the
OpenVADL compiler generator. At the time of writing both are being actively developed
as part of a masters thesis and first results have been published [FHH+25a].

The GCB operates on the VIAM and contains analysis passes that create data structures
in preparation for the subsequently following LCB. Based on the results of the GCB
the LCB creates C++ source code files containing callbacks with target architecture
dependent implementations to be compiled with LLVM in order to create an compiler
for the specified architecture. Since LLVM also includes projects for assemblers (LLVM-
MC) and linkers (LLD) following the same modular approach, we decided to implement
OpenVADLs assembler and linker generator in the context of its LCB component. This
takes advantage of the close relationship between compilers and assemblers in LLVM, as
certain target dependent artifacts can be used by both developer tools.

24

4.2. Assembler and Linker Generation

4.2.1 Assembler

LLVM-MCs assemblers architecture reflects the two main tasks of assemblers, parsing
instructions and emitting machine code. Figure 4.2 shows the architecture in the context
of OpenVADL. Components in blue contain target architecture specific implementations.
Arrows represent the calling structure between components when issuing an assembly
command to the generated assembler. In the following paragraphs we will discuss how
OpenVADL generates the depicted components.

LLVM-MC MCStreamer

MCAsmParser

Recursive
DescentParser

MCCodeEmitter

GenMCCodeEmitter

InstrInfo.td

RegisterInfo.td

uses

uses

Figure 4.2: OpenVADL LLVM-MC assembler architecture

MCAsmParser

Parsing of common assembly language constructs like labels and directives is handled
by target independent implementations given by the LLVM-MC framework. The pars-
ing of instructions is split into two methods - ParseInstruction and MatchAnd
EmitInstruction - that need to be overwritten with target dependent implementa-
tions. Upon encountering an instruction in the assembly language input, LLVM-MC calls
ParseInstruction, expects it to parse a single instruction statement and return a list
of parsed instruction operands as result. OpenVADL redirects this call to the generated
RecursiveDescentParser, which is described below. Once the operands are obtained, they
are passed on to the MatchAndEmitInstruction method. Based on the first operand,
the instructions mnemonic, this method constructs an instance of the MCInst class,
which is the internal datastructure for machine instructions in LLVM-MC. For each of
the remaining operands, it is checked whether their corresponding @operand grammar
elements in the instructions grammar rule where assigned to a format field attribute
or a field access function attribute. In the former case, the parsed value is adjusted by
applying the field access function to transform the value to its field access view, in order
for the assembler to have a consistent internal view of operands for all instructions. After
this step the operand is added to the MCInst instance of the instruction. Additionally,

25

4. Implementation

immediate operands are also checked to be within their valid value range as given by the
available bits in the instruction format.

RecursiveDescentParser

As stated previously the RecursiveDescentParsers task is to parse instructions
and create a list of the parsed operands. For this purpose OpenVADL generates a
parser from the specifications in the assembly description grammar based on the lexical
analysis provided by LLVM-MC. As recursive descent is used as parsing algorithm,
the parsers internal structure closely reflects the structure of the specified grammar.
For each non-terminal grammar rule a function of the same name is created. The
functions body is determined by the grammar elements in the body of the rule. Grammar
elements such as alternatives or optionals are modeled by if-constructs, repetition elements
are translated to while loops and usage of terminal rules equal a call to the lexer
expecting the terminal rules token. Usages of non-terminal rules are translated to calls
to the functions generated for these rules. From the MCAsmParsers perspective the
method generated for the Statement default grammar rule is the entry point into
the RecursiveDescentParser. As it is an alternative over all grammar rules of
AsmType @instruction, it allows parsing of all specified instructions. This cast
to @instruction in the alternatives also alerts the RecursiveDescentParser to
collect the attributes of the rule as operands and emit them to the MCAsmParser.

MCCodeEmitter

The MCCodeEmitter receives the instance of MCInst created by the MCAsmParser as
input. First, it checks whether the passed instruction is a machine instruction or a pseudo
instruction. As pseudo instructions have no direct binary representation, they need to
be expanded to their equivalent machine instruction form. For each of the one or more
resulting machine instructions the method getBinaryCodeForInstr is called. LLVM
automatically creates its implementation in GenMCCodeEmitter from the definitions
in the InstrInfo.td TableGen file. Listing 4.10 shows an example of the TableGen
definition of the RISC-V ADDI instruction. It can be seen that it contains necessary
information regarding the instructions format fields and their placement in the binary
instruction word as defined in the VADL specification it is generated from (see 2.1).

The derived implementation of getBinaryCodeForInstr has di�erent strategies for
dealing with di�erent types of format fields. For fields with constant values (e.g. opcode
of Listing 4.10), values can simply be hardcoded into the implementation. For fields
that encode register operands (e.g. rd of Listing 4.10) the implementation extracts
the concrete operand value from the passed MCInst and calls into an implementation
derived from the RegisterInfo.td TableGen file, which encodes registers to their
binary representation.

Fields that hold immediate operands need more careful handling. Their corresponding
operands can either be a numerical value or a symbol reference which needs to be resolved

26

4.2. Assembler and Linker Generation

1 def ADDI : I n s t r u c t i o n

2 {

3 . . .

4 f i e l d b i t s <32> I n s t ;

5 . . .

6
7 b i t s <7> opcode = 0b0010011 ;

8 b i t s <3> func t3 = 0b000 ;

9 b i t s <64> immS ;

10 b i t s <64> r s 1 ;

11 b i t s <64> rd ;

12
13 l e t I n s t {31≠20} = immS{11 ≠0};

14 l e t I n s t {19≠15} = r s 1 {4≠0};

15 l e t I n s t {14≠12} = func t3 {2≠0};

16 l e t I n s t {11≠7} = rd {4≠0};

17 l e t I n s t {6≠0} = opcode {6≠0};

18
19 . . .

20 }

Listing 4.10: TableGen definition of the RISC-V ADDI instruction

to an address at link time. In the first case it is to note that the operands passed in the
MCInst instance are in the state of the field access view, but in machine code the field
view is needed. To transform these operands, OpenVADL generates callback functions
that apply the encoding function to an operands value. By naming the callback function
in InstrInfo.td, the derived implementation of getBinaryCodeForInstr knows
which callback function to call for a certain operand. In the case where an immediate
operand is a symbol reference, the assembler needs to signal to the linker that this
operand of this instruction needs to be replaced by the resolved address. This is achieved
by using zero as placeholder value in the instruction word and emitting a relocation,
which identifies the instructions location and operand. OpenVADL supports absolute and
relative relocations. Absolute relocations need to be resolved to be the address of the
referenced symbol. Relative relocations signal to the linker that it needs to determine
the symbols address relative to the program counter of the instruction in question. The
type of relocation to emit for a certain operand is chosen heuristically by analyzing the
instructions behavior. In case the instruction is defined as adding the operand to the
value of the program counter register, it is inferred that relocations for this operand are
relative. For operands that do not meet this condition, an absolute relocation is emitted.

27

4. Implementation

4.2.2 Linker

Similarly to LLVM-MC, the LLVM linker project LLD provides a large amount of target
independent functionality. To create a linker for a new architecture, two key concerns
need to be implemented. First, which relocations does the assembler produce? Second,
how are resolved addresses integrated into the instruction word? OpenVADL generates
these implementations based on definitions of the ISA section of a VADL specification.
Both automatically generated relocations as discussed above and user defined relocations
(see 4.1.1) are registered in the linker. Specifically, a mapping from each relocation to its
kind (absolute or relative) is defined. This allows the target independent algorithm of
LLD to resolve addresses in the expected fashion.

User defined relocations in the ISA are defined as functions that further transform resolved
addresses. For each user defined relocation OpenVADL generates the corresponding
transformation function to be applied by the linker. Resolved values of automatically
generated relocations remain unchanged.

The final step in the linking process consists of adjusting the instruction word with the
relocated value. For this OpenVADL generates the necessary encoding functions. An
encoding function takes the unmodified instruction word and relocated operand value as
input and writes the value into the operands bits in the instruction word.

28

CHAPTER 5
Evaluation

In this chapter we give measurements on the assembler and linker generation time, as well
as a performance evaluation comparing assembler and linker generated by OpenVADL to
LLVMs upstream implementation of the RISC-V 32 bit architecture.

All tests have been executed on a system with a Ryzen 9 7945 HX processor (16 cores),
using 64 GB of DDR5 memory at 5600 MHz. Operating system on this machine is Ubuntu
24.04.2 LTS. Assemblers and linkers were generated based on LLVM version 19.1.7 and
compared to the upstream implementations of the same LLVM version. Benchmarking
measurements were taken with the Hyperfine1 tool.

5.1 Tool Generation Performance

As discussed before in section 4.2, generating an assembler and linker with OpenVADL
takes two distinct steps. First, parsing a VADL specification and generating sources to
be used by the respective LLVM projects and second the compilation of these LLVM
projects with the generated sources. Table 5.1 shows the average time of ten runs when
generating an assembler and a linker for the RISC-V 32 architecture2.

Assembler Linker
OpenVADL 195 ms

LLVM Compilation 33.5 s 243.8 s

Table 5.1: Assembler and linker generation time taken for RISC-V 32 specification

The total time of about five minutes might seem to contradict OpenVADLs principle of
rapid DSE, but it should be noted that these measurements are for the case of initial

1https://github.com/sharkdp/hyperfine
2
VADL specification available in the OpenVADL repository https://github.com/OpenVADL/

openvadl

29

https://github.com/sharkdp/hyperfine
https://github.com/OpenVADL/openvadl
https://github.com/OpenVADL/openvadl

5. Evaluation

compilation of the generated tools. In the case of repeated assembler and linker generation
of an architecture, smart build tools and compilation caches used in LLVM greatly reduce
the overall time it takes to generate executable artifacts. The reason for this is that the
OpenVADL generated callbacks are concentrated in only a few source files, so on repeated
execution only a small percentage of the total project sources have to be re-compiled.

For the same reason we expect similar overall results for other architectures / VADL
specifications. Combined with the fact that the compilation step greatly outweighs the
OpenVADL execution time, even large specifications should only marginally impact the
overall execution time.

5.2 Assembling and Linking Performance

To evaluate the performance of the generated artifacts we again used the RISC-V 32
architecture VADL specification and compared it to the LLVM upstream implementation.
As tests a subset of the RISC-V compliance suite RISC-V Architecture Test SIG3 was
used. This test suite focuses on architectural compliance, so test cases are not ”real world”
programs, but rather focus on possible variations of a single instruction (e.g. test case
addi contains thousands of addi instructions). Because of this the following results
may not perfectly apply to ”real world” programs, but should still give a strong indication
of the general assembler and linker performance.

Figure 5.1 shows the average performance of the OpenVADL generated assembler com-
pared to the upstream LLVM implementation. While there are outliers, in most cases
the generated assembler performs similar to the handwritten LLVM implementation as
highlighted by the mean performance of 0.97 across all tests.

ad
di

an
d

an
di

bg
eu

bl
tu

lb
-a

lig
n lu
i

or
i

sb
-a

lig
n sll slt
i

slt
iu

slt
u sr
l

su
b

xo
r

xo
ri

0.8

0.9

11

Figure 5.1: Performance of assembler relative to LLVM upstream (higher is better)

3https://github.com/riscv-non-isa/riscv-arch-test

30

https://github.com/riscv-non-isa/riscv-arch-test

5.2. Assembling and Linking Performance

To measure linker performance the files resulting of the assembling benchmark are linked
with the respective OpenVADL and upstream LLD linkers. Figure 5.2 shows that like
the assembler, the generated linker is similar in performance to the upstream LLVM
version. There are again cases where the OpenVADL linker lacks behind, but the mean
performance of 1.0003 across all tests suggests that the generated linker is on par with
the upstream implementation.

ad
di

an
d

an
di

bg
eu

bl
tu

lb
-a

lig
n lu
i

or
i

sb
-a

lig
n sll slt
i

slt
iu

slt
u sr
l

su
b

xo
r

xo
ri

0.8

0.9

11

Figure 5.2: Performance of linker relative to LLVM upstream (higher is better)

31

CHAPTER 6
Future Work

Future work on the OpenVADL assembler and linker generators could focus on multiple
dimensions. One aspect is the performance of the generated recursive descent parser in
the assembler. The original VADL implementation employs an optimization that reduces
comparisons when parsing alternatives over string grammar elements [Sch22]. A similar
technique could be used in OpenVADL to increase the assembler’s runtime performance.

Other e�orts could focus on reducing the memory footprint of the recursive descent parser.
As the parsing results of grammar elements are needed to build the instruction operand
vector, the parsing result of each grammar element is held in a temporary variable. But
since not each and every grammar element is relevant to the operand vector (e.g., purely
syntactic characters like ”,”), some of these temporary variables are never read and are
e�ectively unnecessary. Deeper analysis of the grammar could reduce the amount of (or
even eliminate) unnecessary variables in the recursive descent parser.

Further work could also be done to expand the feature set of the assembly grammar.
VLIW architectures feature the concept of instruction bundles. Support in the assembler
generator would most likely require new grammar elements. Another idea is to extend the
assembly grammar with the concept of inherited attributes. Currently, both attributes
and local variables can only be synthesized. Being able to pass attributes as arguments
to non-terminal rules would increase the expressiveness of the assembly grammar.

Finally, the most apparent extension to this work is the automatic derivation of grammar
rules from the assembly printing definitions of the ISA section. This feature was available
in the original VADL implementation and greatly reduces the specification e�ort. It
also neatly aligns with VADL’s aim of concise and non-redundant specifications. Due
to several reasons, among other things the option to use arbitrary string functions in
assembly printing definitions, this feature is highly non-trivial and did therefore not fit
into the scope of this work. However, plans for its implementation as a follow-up to this
work are underway.

33

CHAPTER 7
Conclusion

In this work, we extended OpenVADL to support the generation of assemblers and linkers.
Using a similar approach to the original VADL implementation, we added an assembly
description section to the OpenVADL frontend. Its grammar subsection was redesigned to
feature EBNF-like syntax in an e�ort to increase the specification readability. A further
improvement lies in the addition of semantic predicates to the set of available grammar
elements. The resulting predicated-LL(1) grammar solves operand parsing issues rooted
in the LL(1) limitation of the original VADL implementation.

To utilize synergies within LLVM the artifact generators were implemented in the context
of OpenVADL’s LCB. Based on the assembly description in its VIAM representation,
a recursive descent instruction parser is generated. Parsed instructions are compared
to instruction definitions of the ISA section and on successful matching passed on to
the code emitter component. As the final step in the assembler, the code emitter is
responsible for emitting the passed instruction’s binary word.

The generated linker needs to apply user defined relocation functions and adjust in-
struction words with relocated operand values. To achieve this it derives the necessary
information from instruction format and relocation definitions of the ISA section.

In our evaluation we observed that OpenVADL’s assembler and linker generators are
suitable for DSE in terms of artifact generation performance. In terms of execution
performance, both generated assembler and linker for the RISC-V 32-bit architecture
proved to be on par with their upstream LLVM equivalent.

35

Overview of Generative AI Tools

Used

No AI tools were used during the creation of this work.

37

List of Figures

2.1 Mapping of RISC-V ADDI instruction to its binary format. 6
2.2 Expansion and mapping of RISC-V NOP pseudo instruction. 7

4.1 Coarse-grained overview of OpenVADLs architecture 24
4.2 OpenVADL LLVM-MC assembler architecture 25

5.1 Performance of assembler relative to LLVM upstream (higher is better) . 30
5.2 Performance of linker relative to LLVM upstream (higher is better) 31

39

List of Tables

4.1 Overview of AsmTypes . 18
4.2 Valid AsmType casts . 19
4.3 Non-terminal default grammar rules . 20
4.4 Mapping of AsmType to matching VADL type 23

5.1 Assembler and linker generation time taken for RISC-V 32 specification . 29

41

Acronyms

ABI application binary interface. 3, 5, 13, 18, 19

AD assembly description. 3

ADL architecture description language. 11, 12

DSE design space exploration. 1, 11, 12, 29, 35

EOL End-Of-Line. 18

GCB Generic Compiler Backend. 24

ISA instruction set architecture. 3, 5, 13, 15, 18–21, 28, 33, 35

LCB LLVM Compiler Backend. 8, 24, 35

LLD LLVM Linker. 8, 24, 28, 31

LLVM-MC LLVM Machine Code Playground. 8, 24–26, 28

PDL processor description language. 1

VADL Vienna Architecture Description Language. 1, 3, 5, 8, 9, 11, 13, 15, 23, 26, 28–30,
33, 35, 41

VIAM VADL Intermediate Architecture Model. 24, 35

43

Listings

2.1 ISA specification of RISC-V ADDI and NOP instructions 4
2.2 Register aliases in ABI specification of RISC-V 5
2.3 Forms of the RISC-V JALR instruction 9
4.1 Example of modifier definition . 14
4.2 Modifier in assembly language . 14
4.3 Example of directive renaming . 15
4.4 Basic grammar elements . 16
4.5 LL(1) conflicts and semantic predicates 17
4.6 Basic AsmType usage . 18
4.7 Attributes and local variables . 21
4.8 Cumulative assignment in repetition 22
4.9 Annotations and common definitions 22
4.10 TableGen definition of the RISC-V ADDI instruction 27

44

Bibliography

[BCR05] A. Baldassin, P.C. Centoducatte, and S. Rigo. Extending the ArchC language
for automatic generation of assemblers. In 17th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD’05),
pages 60–67, 2005. doi:10.1109/CAHPC.2005.25.

[BCR+08] Alexandro Baldassin, Paulo Centoducatte, Sandro Rigo, Daniel Casarotto,
Luiz C. V. Santos, Max Schultz, and Olinto Furtado. An open-source binary
utility generator. ACM Trans. Des. Autom. Electron. Syst., 13(2), April
2008. doi:10.1145/1344418.1344423.

[CVDS06] Daniel C. Casarotto and Luiz C. V. Dos Santos. Automatic Link Editor
Generation for Embedded CPU Cores. In 2006 IEEE North-East Workshop
on Circuits and Systems, pages 121–124, 2006. doi:10.1109/NEWCAS.
2006.250893.

[FHH+25a] F. Freitag, L. Halder, B. Huber, B. Kasper, M. Nestler, K. Per, M. Raschhofer,
A. Ripar, J. Zottele, and A. Krall. OpenVADL: An Open Source Implemen-
tation of the Vienna Architecture Description Language. In S. Tomforde,
C. Krupitzer, S. Vialle, E. Suarez, and T. Pionteck, editors, Architecture of
Computing Systems: 38th International Conference, ARCS 2025, Kiel, Ger-
many, April 22–24, 2025, Proceedings, Lecture Notes in Computer Science.
Springer Cham, 2025.

[FHH+25b] Florian Freitag, Linus Halder, Simon Himmelbauer, Christoph Hochrainer,
Benedikt Huber, Benjamin Kasper, Niklas Mischkulnig, Michael Nestler,
Philipp Paulweber, Kevin Per, Matthias Raschhofer, Alexander Ripar, Tobias
Schwarzinger, Johannes Zottele, and Andreas Krall. The Vienna Architecture
Description Language, 2025. arXiv:2402.09087.

[Gon00] R.E. Gonzalez. Xtensa: a configurable and extensible processor. IEEE Micro,
20(2):60–70, 2000. doi:10.1109/40.848473.

[HHD00] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An
Instruction Set Description Language for Retargetability and Architecture
Exploration. Design Automation for Embedded Systems, 6(1):39–69, Septem-
ber 2000. doi:10.1023/A:1008937425064.

45

https://doi.org/10.1109/CAHPC.2005.25
https://doi.org/10.1145/1344418.1344423
https://doi.org/10.1109/NEWCAS.2006.250893
https://doi.org/10.1109/NEWCAS.2006.250893
https://arxiv.org/abs/2402.09087
https://doi.org/10.1109/40.848473
https://doi.org/10.1023/A:1008937425064

[HNP+01] A. Ho�mann, A. Nohl, S. Pees, G. Braun, and H. Meyr. Generating produc-
tion quality software development tools using a machine description language.
In Proceedings Design, Automation and Test in Europe. Conference and Ex-
hibition 2001, pages 674–678, 2001. doi:10.1109/DATE.2001.915097.

[KL09] Per Karlström and Dake Liu. NoGAP: A Micro Architecture Construction
Framework. In Koen Bertels, Nikitas Dimopoulos, Cristina Silvano, and
Stephan Wong, editors, Embedded Computer Systems: Architectures, Mod-
eling, and Simulation, pages 171–180, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-03138-0_18.

[KLAL10] Per Karlström, Sumathi Loganathan, Faisal Akhlaq, and Dake Liu. Auto-
matic assembler generator for NoGap. In 6th Conference on Ph.D. Research
in Microelectronics & Electronics, pages 1–4, 2010.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[llv25a] LLVM Project. https://llvm.org, 2025. Accessed: 2025-07-25.

[llv25b] LLVM TableGen. https://llvm.org/docs/TableGen/, 2025. Ac-
cessed: 2025-07-25.

[MLW18] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. The Com-
piler Generator Coco/R, 2018. URL: https://ssw.jku.at/Research/
Projects/Coco/.

[OG98] S. Onder and R. Gupta. Automatic generation of microarchitecture simu-
lators. In Proceedings of the 1998 International Conference on Computer
Languages (Cat. No.98CB36225), pages 80–89, 1998. doi:10.1109/ICCL.
1998.674159.

[PHZM99] S. Pees, A. Ho�mann, V. Zivojnovic, and H. Meyr. LISA-machine description
language for cycle-accurate models of programmable DSP architectures. In
Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361),
pages 933–938, 1999. doi:10.1109/DAC.1999.782231.

[PQ95] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995. doi:10.1002/
spe.4380250705.

[PQD93] Terence Parr, R. Quong, and Henry Dietz. The Use of Predicates In LL(k)
And LR(k) Parser Generators (Technical Summary). ECE Technical Reports,
01 1993.

46

https://doi.org/10.1109/DATE.2001.915097
https://doi.org/10.1007/978-3-642-03138-0_18
https://llvm.org
https://llvm.org/docs/TableGen/
https://ssw.jku.at/Research/Projects/Coco/
https://ssw.jku.at/Research/Projects/Coco/
https://doi.org/10.1109/ICCL.1998.674159
https://doi.org/10.1109/ICCL.1998.674159
https://doi.org/10.1109/DAC.1999.782231
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705

[RABA04] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. ArchC: a systemC-
based architecture description language. In 16th Symposium on Computer
Architecture and High Performance Computing, pages 66–73, 2004. doi:
10.1109/SBAC-PAD.2004.8.

[Sch22] Tobias Schwarzinger. Flexible generation of low-level developer tools with
VADL. Master’s thesis, Technische Universität Wien, 2022. doi:10.34726/
hss.2023.103246.

[SWZR14] Jia Qi Shen, Jun Wu, Zhi Feng Zhang, and Hao Qi Ren. Design and
Implementation of Binary Utilities Generator. In Machine Tool Technology,
Mechatronics and Information Engineering, volume 644 of Applied Mechanics
and Materials, pages 3260–3265. Trans Tech Publications Ltd, 11 2014.
doi:10.4028/www.scientific.net/AMM.644-650.3260.

[WLM03] Albrecht Wöß, Markus Löberbauer, and Hanspeter Mössenböck. LL(1) Con-
flict Resolution in a Recursive Descent Compiler Generator. In László Böször-
ményi and Peter Schojer, editors, Modular Programming Languages, pages
192–201, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. URL: https:
//ssw.jku.at/Research/Papers/Woe03/WoeLoeMoe03.pdf.

[XL23] Xin Xiao and Zhong Liu. ISADL: An Instruction Set Architecture Description
Language for VLIW. In 2023 IEEE 29th International Conference on Parallel
and Distributed Systems (ICPADS), pages 92–99, 2023. doi:10.1109/
ICPADS60453.2023.00022.

47

https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.34726/hss.2023.103246
https://doi.org/10.34726/hss.2023.103246
https://doi.org/10.4028/www.scientific.net/AMM.644-650.3260
https://ssw.jku.at/Research/Papers/Woe03/WoeLoeMoe03.pdf
https://ssw.jku.at/Research/Papers/Woe03/WoeLoeMoe03.pdf
https://doi.org/10.1109/ICPADS60453.2023.00022
https://doi.org/10.1109/ICPADS60453.2023.00022

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Vienna Architecture Description Language - VADL
	Assembler and Linker
	LLVM
	LL(1) and predicated-LL(1) Parsing

	Related Work
	Implementation
	Assembler Definition - Assembly Description in VADL
	Assembler and Linker Generation

	Evaluation
	Tool Generation Performance
	Assembling and Linking Performance

	Future Work
	Conclusion
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Acronyms
	Listings
	Bibliography

