Visualizing Solutions with Viewers

Ulrich Neumerkel, Christoph Rettig, Christian Schallhart

Institut fiir Computersprachen
Technische Universitat Wien
A-1040 Wien, Austria
ulrich@mips.complang.tuwien.ac.at

Abstract

Visualization can be a powerful aid for learning a programming language. It may be
used to reinforce central language concepts. In the context of Prolog and CLP-languages,
however, most approaches to visualization aim at procedural aspects. Instead of explaining
what a relation describes, visualization is used to animate procedural machinery. In this
paper we present approaches to visualizing aspects of Prolog programs that try to avoid
unnecessary and irritating procedural details. Answer substitutions are visualized with
the help of so called viewers. Some procedural aspects are explained with animations.
The viewers have been integrated into a side-effect free programming environment and
are used in introductory Prolog and CLP courses. The didactical impact of our approaches
is discussed.

1 Introduction

Common approaches to program visualization focus on visualizing a program’s state and ani-
mating its execution mechanism. While program animation is very compelling, this approach
may cover the essential declarative and procedural aspects of a program because of the rather
complex representations of Prolog’s state. In an introductory Prolog programming course at
TU-Wien a different path has been chosen for teaching and visualizing Prolog focusing on
the declarative side of the language. Two new elements facilitate teaching declarative pro-
gramming with Prolog. First, a new programming methodology has been developed whose
main part consists of several reading techniques that explain specific properties of a Pro-
log program. In this manner both declarative and procedural aspects are covered without
using the commonly used notions of proof trees and execution traces. Second, a side-effect
free programming environment helps to avoid many frequently encountered errors, facilitates
a specification oriented style of programming and eases communication with the lecturer.
In this paper we discuss the integration of visualization devices into the programming en-
vironment. Our approach tries to separate the declarative and procedural concerns during
visualization. We therefore focus on visualizing particular answer substitutions in a side-effect
free manner.

Contents. After presenting the programming environment GUPU in Section 2, the notion
of viewers is discussed in Sect. 3. Some problem specific viewers are shown in Sect. 4. The

problem of visualizing Prolog’s chronological backtracking is addressed in Section 5. Finally
animations of labeling strategies for CLP(FD) programs are discussed.

2 The programming environment GUPU

The programming environment GUPU (Gesprachsunterstiitzende Programmieriibungsum-
gebung, conversation supporting programming course environment) has been developed to
realize Prolog programming courses. GUPU has been used since Spring 1992 for Prolog pro-
gramming courses at TU-Wien. It has been continually developed since then. The major
objective of GUPU was to provide a side-effect free programming environment.

#4 2. Beispiel RERPERRRREREHREREARRBREZRERRERRRERRRBDRGRR
Schreiben Sie eine kleine Datenbasis (mit zumindest 10 itte lesen Sie zuerst die Beschreibung dieser
Personen), die familifre Beziehungen beschreibt: ™ rogrammierumgebung in Anhang A und B! Eine
Kind_von(Kind, Elternteil), mdnnlich{Mann), etaillierte Fihrung sehen Sie, indem Sie sich
weiblich{Frau), gatte_gattin(Mann, Frau). nter ™info™ (Kein Pafuort) einloggen
:= kind_von(Kind, maria_theresia). fllgeneines: .
00 7 Kind = joseph_II. ++Tastatue, ttReservierung, ttUbungsmodus,
00 Z Kind = leopold_II. ++0ffungszeiten, **Sichern_von_Beispielen,
00 7 Kind = marie_antoinette. +*Externes_Einloggen, TTAbgabelernmine,
00 £ 3 Losungen gefunden TtAutomat isches_Ausloggen
Kind_von{ joseph_I, leopold_I). ## Tutoren Konnen auf hermi ausdrucken #%
kind_von(karl_VI, leopold_ID.
kind_von{maria_theresia, karl_VYI). t18 9 Bitte verwenden Sie sprechende
kind_von{ joseph_II, maria_theresia). r+10 *Prédikatsnamen? und
kind_von{ joseph_II, franz_I). vermeiden Sie Tt Imperative_Namen!
kind_von{leopold_II, maria_theresia). 10 1t1Gemeinsane_Ortel! Testbeispiele
kind_von{leopold_II, franz_I). 17 TtHege, TTHege2
kind_von{marie_antoinette, maria_theresia). 123 ttFrag_niemals_Hie
kind_von{franz_II, leopold_II). 127

128 ttTermination
sekindsvantkind - Pepson): ttEigenschaften_einer_Anfrage
00 Z Kind = joseph_I, Person = leopold_I. t144: 1ttmatrix_transposed!! Testbeispiele
00 Z Kind = karl_YI, Person = leopold_I. r154: +alpha_beta_alpha
80 7 Kind = maria_theresia, Person = karl_VI. 154, 56: ttTimeouts
00 Z Kind = joseph_II, Person = maria_theresia. Tt Instanzierungsmuster
00 Z Kind = joseph_II, Person = franz_I. r156: TtiRNA_richtig
B0 ? Weitere Losungen mit SPACE (t158: t15tern Bild

t162: ttDiagonalen
:= kind_von(Kind, joseph_II). 73z ttfaktoriel le
1 Zusicherung gescheitert 792 TGrundterne
< Hieso? +tAufbauendel ¥iis
> Im Pradikat kind_von/2 kommi Joseph II nur als Kind vor. +*Tutoreninformationen

T1tAbgabeternine$$1996
mannlich{franz_I). r182: Tfunctoruniv TTKonstanten
mannlich{franz_II). ttunivspezial
mannlich{ joseph_I). ttmetalogisch ttvarnonvar
mannlich{ joseph_II). 182 ttvordef inierte_Pradikate ftftmetamiss
mannlich(karl_V¥I). L. t*97 ttmetafehler ttmetalinear
mwannlich{leopold_I). t0peratorassoziativitat
mannlich{leopold_II). +tHetaprogrammsyntax
t1tPrologsyntax

weiblich{maria_theresia). r183: Trdefaulty
weiblich{marie_antoinette). (t184: ttMengenausdricke

(t186: ttdegni, ttdcgniBUG
gatte_gattin(franz_I, maria_theresia). t195: TAST

[t198: +*E inschrankungen
Schreiben Sie die folgenden Satze als negative r199: TKoniginnen
Zusicherungen: wassrres tIndexicalbug TTTIRRRRE
Man ist nicht sein eigenes Kind. r*+103: ttMagische_Ouadrate
:/= kind_von{Kind, Kind). allg. ttFehlersuche, Ttsetofgrenzen
Man ist nicht mit seinem eigenen Kind verheiratet. Ttappendnachsuf f ix

nd99 a3 ! O£ 05:06 % Tutor # ncdl8 i /i --##-Emacs: Hauptverzeichnis.h

Figure 1: GUPU’s screen

GUPU’s screen consists of two EMACS-windows (Fig. 1). The left contains examples
to be solved. The right contains help (read-only) texts containing links to further texts.
All interaction is performed through these two windows. State oriented notions like files or
top-level shells are absent. The whole state (i.e. the text) is visible in the left window.

Simple interaction. GUPU’s metaphor is very simple: The left window is like a paper
sheet containing at first only example statements. The student adds more text and saves it

from time to time. Comments from the system or lecturer are written back into the text.

When saving an example the following actions are performed. The example is saved,
checked w.r.t. syntactic restrictions, compiled, loaded, and assertions are tested. It is not
possible to save an example without seeing the comments from the system on it. In particular
all assertions (test goals) are tested. “Last minute changes” that are no more tested cannot
happen. Inconsistency between the visible text and the Prolog system is kept to the minimum.
At any time only a single example might be modified.

Error messages are inserted into the program text as lines beginning with an exclamation
mark. These lines are regular text. As long as they starts with an exclamation mark, they
are deleted upon the next saving and are generated anew.

«— child_of(joseph_II Parent).
!' child_of(joseph_II<<*>>Parent).
! Argument list incomplete: A | is missing.

Assertions. Lines beginning with an arrow are called assertions. They serve as test cases
for a program and allow to write down test cases with ease prior to implementing the actual
program. It is therefore possible to specify a relation before its actual implementation. Simple
assertions (like «— true.) should succeed within a limited amount of time. Goals that take
longer, but still succeed, are annotated with & Those that do not succeed because of an
infinite loop are marked with &. Goals that should fail are annotated with «, -, and &
respectively. Every time an example is saved assertions are tested. In case an assertion does
not behave as specified, an error message is issued.

Interactive queries. The only means to interact with the system beyond the automatic
testing upon saving is to ask queries. All assertions can also be used as queries. By clicking
on the arrow of the assertion, answer substitutions are displayed. Redundant solutions are
labeled separately. The comment [TRedundant below is a link to a help text about redundant
solutions.

— child_of(joseph_II, Parent).

@@ % Parent = maria_theresia.

@@ % Parent = maria_theresia. % 7TRedundant

@@ % Parent = franz_I.

@@ %% 3 solutions found, 1 thereof redundant.
Solutions are displayed in chunks of at most five at a time. Also very large sequences —in par-
ticular infinite sequences— can be displayed with ease. The traditional Prolog top-level shell
requires one to type the two keys for each solution which is somewhat tedious and
causes most students to stick with the first solution. But many errors in predicates show up
only “on backtracking”. These errors are much more difficult to find. Seeing several solutions
helps to detect these errors. Similar to error messages the inserted answer substitutions are
regular text lines beginning with the @-sign. Upon the next saving they are deleted.

3 Elementary viewers

Answer substitutions are the only way to get some response from pure Prolog. Often this
is taken as a pretext to introduce impure features and side-effects. There are however ap-
proaches similar to pure functional languages to provide side-effects in a pure logic language.
Current state of the art in providing I/O in a pure logic language (like Mercury [1]) restricts
nondeterminism in I/O-related predicates. Modes and other procedural notions have to be
taken into account. This approach is not desirable within the focus of our course. Some
less universal primitives have been implemented. There is no direct output, but (the terms
of) answer substitutions can be viewed with some viewers. There is no input except for the
program text. While this is a serious restriction, our limited interaction allows to integrate
complex programs like the partial evaluator Mixtus[4].

To use a viewer for answer substitutions a Goal is annotated

with < as follows: < Viewer << Goal. The most elemen-
 text(Cs) << Query. tary viewers display ASCII-text, Postscript, and html. All
of them expect a string (a ground list of characters codes) as
argument. An additional text window, Postscript viewer, or
— html(Cs) << Query. Web-Browser displays the string accordingly.

«— postscript(Cs) << Query.

With the help of viewers the error prone printing procedures of Prolog are replaced by gram-
mars, reinforcing the notion that grammars can also be used to describe the actual output as
indented text or simple “ASCII-graphics”.

— hpuzzle(Xs). Predicate hpuzzle/1 describes the solutions to a simple puzzle
& hpuzzle(Xs), false. problem. In front of each predicate several assertions are
hpuzzle(Zs) «— given which are tested each time the program is saved. With

hpuzzlerel(Zs), assertions of the form ¢ Query, false. it is stated that the

labeling zs([], Zs).

5).

 hpuzzler elE[Q 7,3.4,5,1,6]). converted with an additional predicate into the string repre-
4 hpuzzlerel([1,3,7 6,2:475}). sentation. Seeing the string as an answer substitution (and
(X
)

particular Query terminates universally.

In most cases the actual solution of a predicate must be
«— hpuzzlerel

- hpuzzlerel(Xs), false. therefore a list of integers) is not very useful. If the predicate
hpuzzlerel(Zs) «— responsible for text representation is determinate (describing
Zs = [A,B,CD.EF,G], a single string for a particular solution) it can be wrapped
domz.iin,zs(l..’?,Zs), into the viewer as follows.
Zli;%lieée;fﬁzil)? — text(CsTsolution_text(S, Cs)) << pred(S).
BADAF #— H: In this manner only the answer substitutions for S are dis-
E+F+G #= H. played.

«— text(Cs) << hpuzzle(Zs), phrase(hpuzzletext(Zs),Cs).
Q@ % Cs = [49,32, ... ,10], Zs = [1,3,7,6,4,2,5]. 1 4
— text(CsTphrase(hpuzzletext(Zs),Cs)) << hpuzzle(Zs). | |
@@ % Zs = [1,3,7,6,4,2,5]. % No answer substitution for Cs 3-—6--2
| |
7 5

hpuzzletext([A,B,C,D E F ,G]) —
(digit(A), " Looon” digit(E), nl),
(1, T |7, nl),
(digit(B), 7— =7 digit(D), 7 — =", digit(F), nl),
(”|) " Louou” K |”7 nl),
(digit(C), Lol digit(G), nl).

4 Problem specific viewers

Based on the elementary viewers more complex viewers are predefined for specific problems.
The major advantage of problem specific viewers is the immediate visual feedback they provide
about the accurateness of a solution. Each solution displays a corresponding picture.

The viewer « europa(Path) << Query. shows the list of cities in a path through the
European railway network (left picture). By inspecting the actual railway map it is easy to
see whether a path leads directly from one city to another. Queens on a checkerboard are
displayed by marking all threatened fields (middle picture). It is therefore obvious whether or
not the queens threaten each other. As long as the field of a queen remains white, the queen
is not threatened. A sequence of left and right turns of a line is described by a list of Is and
rs. E.g., a simple square is thus < Irs(LRs) <« LRs = ”1lI”. The folding of a paper strip can
be described with a grammar, resulting in the well known dragon curve.

Fertig

5 Visualizing backtracking

Backtracking is one of the more sensible areas of Prolog. Prolog’s actual control mechanism
is divided into two orthogonal controls, AND- and OR- control, which are tightly interlaced
during execution. Visualizing the actual control mechanism as done by procedural debuggers
seems to lead to more confusion than insight. In particular, we have the impression from
earlier courses that debuggers increase the unnecessary and incorrect usage of cuts. Instead
of avoiding the alternate clause form the beginning (either by shallow cuts or better means)
cuts are placed at the point where the failure occurs that leads to the undesirable alternative.
It seems that procedural tracers suggest doing this error because right before displaying the
undesirable alternative the place where failure occurs is displayed. Such deep cuts often lead
to programs lacking steadfastness.

On the other hand understanding the réle of goal ordering is essential to understanding
efficiency considerations. An appropriate metaphor was therefore required which is able
to express the idea of chronological backtracking without going into the details of Prolog’s
execution. In a first attempt clocks and odometers were considered, because they seem to be
an obvious metaphor for “chrono-logical” backtracking. However, their visualization did not
lead to satisfactory results. On the one hand the examples were difficult to motivate, on the
other hand the uniformity of the data (digits) makes places of digits difficult to distinguish.

Georg Phillip Harsdorffer realized
a Lullian machine to describe Ger-
man words [2]. His device con-
sists of five concentric rings with
word constituents like prefixes, cen-
tral letters, and suffixes. By turn-
ing the rings all word combinations
can be seen; many of which be-
ing only remotely related to Ger-
man words. The constellation on
the right shows the inexistent word
“verkrillbar”. Harsdorffer’s device
shows in an obvious manner the to-
tality of all possible combinations
of word constituents. In contrast to
the usual visualizations of alternate
solutions via proof trees the com-

i ma?&a:éim
I\"dw 120, Em foafere,

plete mechanism is visible. This

representation can now be used to ﬁnm%mﬁmﬁ;m inge e/ nd R
explain the systematic enumeration ” ﬁﬁg‘}f%%‘%nﬁgm:%?ﬁ%ﬁ:;&mmetmrbmfi?ailgaﬂicbm

of solutions via Prolog’s chronolog- Eing abfordestich umbb ﬂfﬁ“’”ﬂ““f“ms‘ﬂmmm’fﬂ“;::gsxﬂggwmw
ical backtracking. (ot b e pAVPET Lua

The possible words of the five rings can be described with the predicate wordconstituents/1.
Prolog enumerates solutions to this predicate in chronological order. For every solution the
corresponding constellation of the rings is displayed in the viewer. The viewer itself is com-
pletely side-effect free. It simply displays a particular solution. However, by inspecting the
sequence of solutions, we get the intended coincidental impression that the rings are rotating.

wordconstituents([) —
ring1(C1),
ring2(C2),
ring3(C3),
ring4(C4),
ring5(C5).

C1,C2,C3,C4,Ch

C
C
C

e Bucbbiaber- nbes Budbinber. iben Buucpbinber-
X finf Mm.mmammummmmmwm B
iz

b
Dl et esans gef e s ik Ninge D Dtein
e don e ariefir e Afee QiR s i
R ot 5 e wa o s o e wi
Rt oy R, Rrms v,

T

— harsdorffer(Xs) << Xs = [ver,’Kr’,i,11|_], wordconstituents(Xs).
Q@ % Xs = [ver,Kr’ ill,thum].

Q@ % Xs = [ver,Kr’ ill,bar].

@@ % Xs = [ver,’Kr’ i,lLet].

@@ ? Further solutions with SPACE

L(ro_

The order of the goals in wordconstituents/1 directly affects the way how the rings are
tating”. The ring of the last goal rotates fastest. Whereas the first ring is the slowest one.
In this manner it is possible to explain the essential properties of chronological backtracking

(and its weaknesses) without going into the details of Prolog’s machinery.

6 Visualizing labeling strategies

The viewers presented so far have visualized a particular answer substitution. For understand-
ing some procedural aspects of constraint programs viewers for animating labeling strategies
have been realized.

Most CLP(FD)-programs are divided mainly
into two separate parts. In the first part vari-
ables, their ranges, and their specific rela-
tions are stated with the help of constraints.
The second part is used to obtain specific so-
lutions in a nondeterminate manner by us-
ing labeling predicates. This structure sepa-
rated the declarative and procedural aspects.
While the first part is responsible for the
correctness of solutions, the second part is
concerned with effectively finding them by
using a particular labeling strategy. The
major concern for labeling is therefore to
understand the effectiveness of a particular
strategy. Details of the actual labeling pro-
cess are mainly independent from correctness
concerns. The simple generic viewer on the
right displays the number of variables bound
during labeling. “senrite s " “agh7, eie variablo = 11/ 28 oo

Generic viewers do not represent the actual labeling process very well. Therefore problem
specific viewers are provided. For magic squares the process of labeling is illustrated as
follows. The darker a field the fewer values are possible for a variable. A black field contains
an actual number. The font size of the number represents the time when that variable was
bound. Newer (more volatile) bindings are thus represented by smaller numbers. A naive
left-to-right labeling produces the following steps':

1 2132425

1 2132425

32219 6 15
Bed 23 16 10 11 5
217 9 20 8

17 18 1 4 12

Implementation. Labeling animations

are realized similar to the approach proposed .=
in [5]. Blocking implication is realized with o
SICStus Prolog’s[3] blocked goals. The E 4= NO #= B,

number of possible values for a variable is show.element. i j-n(B, E, LJ, N),

obtained with reified constraints, that are
connected to a side-effect producing blocked
predicate. For each possible value of a
variable a separate reified constraint is used.

Yhttp://www.complang.tuwien.ac.at /ulrich /gupu/io-magic.html contains runnable Postscript animations

Our implementation of animated constraint solving is independent both of the internal
representations of the constraint system as well as the actual labeling predicates. However, the
disadvantages of our approach are very high memory requirements and imprecise visualization.
The number of auxiliary constraints required is proportional to the sum of all variable ranges.
In the case of magic squares each variable on the n xn square has n? possible values. Therefore
at least n? reified constraints and blocked goals are required. Further, our animations are
only an approximation of the actual constraint solving process, because actual constraints
and our auxiliary constraints for animation are scheduled in an implementation dependent
manner. Some unsuccessful propagations may therefore not be displayed at all.

7 Conclusion

In this paper we have presented approaches to visualize aspects of Prolog and CLP(FD) pro-
grams avoiding unnecessary detail of the actual procedural machinery. With the help of a new
methodology and programming environment GUPU many of the distractions and perplex-
ions beginners face when exposed to Prolog are avoided but the deeper task — understanding
declarative programming — still remains a challenge. In fact, most students suffer from ex-
pectation failure. The usual approach to programming simply does not work with Prolog.
Understanding all the details of Prolog’s execution mechanism is not helpful at all. Unlearing
these common habits, appreciating a more specification driven approach to programming is
still a difficult task that can be supported with the help of appropriate visual metaphors.

Acknowledgements. The contribution of the tutors Markus Schordan, Wolfgang Faber,
Niko Neufeld, Walter Binder, and others has been very valuable. The picture of Harsdorffer’s
machine is from text machines http://berlin.icf.de/ inscape/.

References

[1] Z. Somogyi, F. Henderson, Th. Conway, The Execution Algorithm of Mercury, an Effi-
cient Purely Declarative Logic Programming Language. JLP 29(1-3): 17-64 (1996).

[2] G. Ph. Harsdorffer, Philosophische und Mathematische Erquickungsstunden, Niirnberg
(1651), reprinted Frankfurt/Main (1990). See http://berlin.icf.de/ inscape/.

[3] Intelligent Systems Laboratory, SICStus Prolog User’s Manual, Swedish Institute of Com-
puter Science (1997).

[4] D. Sahlin, The Mixtus Approach to Automatic Partial Evaluation of Full Prolog, NACLP
(1990).

[5] P. Van Hentenryck, V. Saraswat, Y. Deville, Design, Implementation, and Evaluations of
the Constraint Language cc(FD), in A. Podelski, Constraint Programming: Basics and
Trends, LNCS 910, (1994).

