
Termination slicing in logic programs

Ulrich Neumerkel1

Technische Universität Wien
Institut für Computersprachen

A-1040 Wien, Austria
ulrich@mips.complang.tuwien.ac.at

Abstract. In this paper we present a slicing approach for termination
analysis of logic programs. The notion of a failure-slice is introduced
which is an executable reduced part of the program. Each failure-slice
represents a necessary termination condition for the program. The mini-
mal subset of failure-slices that constitutes a sufficient termination condi-
tion is approximated by a combination of static and dynamic techniques.
A global analysis using finite domain constraints is combined with the
actual execution of some failure-slices. In this manner accurate explana-
tions are derived automatically.

1 Introduction

Slicing [14] is an analysis technique to extract parts of a program related to a
particular computation. Recently, slicing has been adopted to logic programming
languages [2, 12, 17]. The major uses of slicing are debugging and program under-
standing. While the current approaches focus on explaining (possibly erroneous)
solutions of a query, we will present a slicing technique for characterizing and
explaining termination properties. It is an implementation of a previously devel-
oped informal reading technique used in Prolog-courses [9, 10] and is currently
integrated into a programming environment for beginners [11].

Our approach to termination differs from current research in termination
analysis of logic programs that focuses on the construction of termination proofs.
Either a class of given queries is verified to guarantee termination, or —more
generally— this class is inferred [7]. In both cases that class of queries is a
sufficient termination condition and often smaller than the class of actually ter-
minating queries. Further this class is described in a separate formalism different
from logic programs. Explanations why a particular query does not terminate
are not directly evident. With the help of failure-slices we describe the precise
class of terminating queries. Failure-slices expose those parts of the program that
may cause nontermination.

We will consider primarily the property of universal left termination. In con-
trast to existential termination [6], the property of universal termination has
several advantages for program development and understanding. Roughly, uni-
versal termination is more robust to typical program changes that happen during
program development. Universal termination is sensitive only to the computation
rule but insensitive to clause selection. As has been pointed out by Plümer [5]

2

the conjunction of two universally terminating goals always terminates. Further,
reordering and duplicating clauses has no influence.

Example. The following example slightly adopted from [16] contains an erro-
neous data base causing universal nontermination of the given query. Its non-
termination cannot be easily observed by inspecting the sequence of produced
solutions. Looking at the first solutions suggests a correct implementation. But
in fact, an infinite sequence of redundant solutions is produced for a query like
ancestor(terach,D). On the other hand, the query ancestor(terach,moses) neither
produces a solution nor terminates.

The automatically generated failure-slice on the right locates the reason for
nontermination by hiding irrelevant parts. The remaining failure-slice is a nec-
essary and in this case even sufficient termination condition for the original
program.

% original program
parent(terach, abraham).
parent(terach, nachor).
parent(abraham, isaac).
parent(nachor, lot).
parent(isaac, terach). % error

ancestor(Ancestor, Descendant) ←
parent(Ancestor, Descendant).

ancestor(Ancestor, Descendant) ←
parent(Ancestor, Person),
ancestor(Person, Descendant).

← ancestor(Ancestor, Descendant).

% failure slice
parent(terach, abraham).
parent(terach, nachor) ← fail.
parent(abraham, isaac).
parent(nachor, lot) ← fail.
parent(isaac, terach).

ancestor(Ancestor, Descendant) ← fail,
parent(Ancestor, Descendant).

ancestor(Ancestor, Descendant) ←
parent(Ancestor, Person),
ancestor(Person, Descendant), fail.

← ancestor(Ancestor, Descendant), fail.

The failure-slice helps significantly in understanding the program’s termina-
tion property. It shows for example that clause reordering does not help and that
the first rule in ancestor/2 is not responsible for termination. Often beginners
have this incorrect belief confusing universal and existential termination.

This example shows also some requirements for effectively producing failure-
slices. On the one hand we need an analysis to identify the parts of a program
responsible for nontermination, on the other hand, since such an analysis can
only approximate the minimal slices we need an efficient way to generate all
interesting slices which then are tested for termination by mere execution. With
the help of this combination of analysis and execution we obtain explanations
also when classical termination analysis cannot produce satisfying results.

Contents. The notion of a failure-slice and its refinements are defined in Sect. 2.
Sect. 3 discusses how our approach is adapted to handle many aspects of full
Prolog. The actual implementation of the global analysis using finite domain
constraints is presented in 4, a complete example is found in the appendix. We
conclude by outlining further paths of development.

3

2 Failure-slices

In the framework of the leftmost computation rule, the query “← G” terminates
universally iff the query “← G, fail” fails finitely. Transforming a program with
respect to this query may result in a more explicit characterization of univer-
sal termination. However, the current program transformation frameworks like
fold/unfold are not able to reduce the responsible program size in a significant
manner. We will therefore focus our attention towards approximations in the
form of failure-slices.

Definition 1 Program point. The clause h ← g1, ..., gn, has a program point
pi on the leftmost side of the body and after each goal. A clause with n goals
has therefore the following n + 1 points: h ← p0g1, p1..., gnpn

Definition 2 Failure-slice. A failure-slice of a single clause is obtained by in-
serting the goal “fail” at some program points. The trivial failure-slice is therefore
the clause itself. A program S is called a failure-slice of a program P if S contains
failure-slices of all clauses of P .

A failure slice is therefore obtained by inserting the goal “fail” at some pro-
gram points.

Theorem 3. Let P be a definite program, Q a query and S a failure slice of P :
If Q does not terminate in S then Q does not terminate in P .

To see this, consider the SLD-tree for the query Q in S. Since Q does not
terminate, the SLD-tree is infinite. The SLD-tree for P contains all branches of
S and therefore will also be infinite.

Failure-slices can be used as an explanation for the actual termination be-
havior. For a program with n program points there are 2n possible failure-slices
and explanations. Many of these slices are not interesting because they either
terminate or are a simple variant of other slices possessing the same operational
behavior. In the following we will define interesting failure-slices.

Throughout the following rules we use the following names for program
points: An entry point of a predicate is the program point before a goal of that
predicate. The exit point is the program point after that goal. The beginning
point is the first program point in a clause. The ending point is the last program
point of a clause.

Definition 4 Always-terminating goal. A goal is always-terminating if its
call graph does not contain a loop.

Definition 5 Interesting failure-slice. The set of program points of an in-
teresting failure-slice must satisfy the following conditions. According to their
propagation direction we have the following rules.

Right-propagating rules

4

R1: Clausewise right-propagation of failure. A failing program point pi im-
plies pi+1 to fail. This rule encodes the left most computation rule†. If a ←↩
failing goal is encountered all subsequent goals are not considered.

R2: Right-propagation of failing entry points. If all entry points of a predicate
fail, the beginning program point of all clauses fail.

R3: Right-propagation of failing definition. If in all clauses of a predicate the
ending program points fail, then all exit points of the program fail.

R4: Right-propagation of failure into end-recursive clauses. If in all clauses
that do not contain an end-recursion the ending points fail, then all
ending points fail.

Left-propagating rules
L1: Left-propagation of failing definition. If all beginning program points of

a predicate fail then all entry points fail.
L2: Clausewise left-propagation of failure over always-terminating goals. A

failing program point pi+1 implies pi to fail if gi is always-terminating.
L3: Left-propagation of failing exit points. If all exits points of a predicate

except those after an end-recursion fail, then all ending points fail.

3 Full Prolog

In this section we will extend the notion of failure-slices to full Prolog. To some
extent this will reduce the usefulness of failure-slices for programs using impure
features heavily.

3.1 DCGs

Definite clause grammars can be sliced in the same way as regular Prolog pred-
icates. Instead of the goal fail, the escape {fail} is inserted.

rnaloop −→
{Bs = [, , |]},
complseq(Bs), {fail},
list([, , |]),
list(Bs).

list([]) −→ {fail},
[].

list([E|Es]) −→ {fail},
[E],
list(Es).

← phrase(rnaloop, Bases).

complseq([]) −→ {fail},
[].

complseq([B|Bs]) −→
complseq(Bs), {fail},
[C],
{base compl(C,B)}.

base compl(0’A,0’T) ← fail.
base compl(0’T,0’A) ← fail.
base compl(0’C,0’G) ← fail.
base compl(0’G,0’C) ← fail.

3.2 Finite domain constraints

Failure-slices are often very effective for CLP(FD) programs. Accidental loops
often occur in parts that set up the constraints. For the programmer it is difficult

5

to see whether the program loops or simply spends its time in labeling. Since
labeling is usually guaranteed to terminate, removing the labeling from the pro-
gram will uncover the actual error. No special treatment is currently performed
for finite domain constraints. However, we remark that certain non-recursive
queries effectively do not terminate in SICStus Prolog (or require a very large
amount of time) like ← S #>0, S #> T, T #> S. Examples like this cannot
be detected with our current approach. If such goals appear in an non-recursive
part of the program, they will not show up in a failure-slice.

3.3 Moded built-ins

Built-ins that can only be used in a certain mode like is/2 restrict the applicabil-
ity of our approach. Whereas in pure Prolog the most general query will outline
also the termination condition for more special queries, general executable failure
slices cannot be produced for moded built-ins.

3.4 Cut

The cut operator is a heritage of the early years of logic programming. Its se-
mantics prevents an effective analysis because cuts in general require to reason
about existential termination. Existential termination may be expressed in terms
of universal termination with the help of the cut operator. A goal G terminates
existentially if the conjunction G, ! terminates universally. For this reason, goals
in the scope of cuts and all the predicates the goal depends on must not be sliced
at all. A simple cut at the level of the query therefore prevents slicing completely.

C1: Goals in front of cuts and all its depending predicates must not contain
failure points.

C2: In the last clause of a predicate, failure points can be inserted anywhere. By
successively applying this rule, the slice of the program may be still reduced.

C3: In all other clauses failures may only be inserted after all cuts.

Notice that these restrictions primarily hinder analysis when using deep cuts.
Using recommended shallow cuts [4] does not have such a negative impact. In
the deriv-benchmark for example, there are only shallow cuts right after the
head. Therefore, only program points after the cuts can be made to fail besides
from† clauses at the end. ←↩ !

d(U+V,X,DU+DV) ←
!,
d(U,X,DU), fail,
d(V,X,DV).

d(U-V,X,DU-DV) ← fail,
!,
d(U,X,DU),
d(V,X,DV).

... .

6

3.5 Negation

Similar to cuts Prolog’s unsound negation built-in \+/1 “not” is handled. The
goal occurring in the not and all the predicates it depends on must not contain
any injected failures. Similarly if-then-else and if/3 are treated. The second order
predicates setof/3 and findall/3 permit a more elaborate treatment. The program
point directly after such goals is the same as the one within findall/3 and setof/3.
Therefore, failure may be propagated from right to left.

3.6 Side effects

Side effects must not be present in a failure-slice. However, this does not exclude
the analysis of predicates with side effects completely. When built-ins only pro-
duce side effects that cannot affect Prolog’s control (e.g. a simple write onto a
log file provided that Prolog does not read that file, or reading something once
from a constant file) still some failure-slice may be produced. Before such side
effecting goals a failure is injected, therefore ensuring that the side effect is not
part of the failure-slice. We note that the classification into harmless and harmful
side effects relies on the operating system environment and is therefore beyond
the scope of a programming language.

4 Implementation

Our implementation is using finite domain constraints to encode the relation
between the program points. Every program point is represented by a boolean
0/1-variable. 0 meaning that the program point fails. In addition every predicate
has a variable that says, whether that predicate is always terminating or not.
We refer to the appendix for a complete example.

4.1 Encoding the always-terminating property

While it is possible to express cycles in finite domains directly, they are not
efficiently reified in the current CLP(FD) implementation of SICStus-Prolog [1].
For this reason we use a separate pass for detecting goals that are part of a cycle.
To each predicate a level is associated. The level of a predicate is smaller or equal
to the levels of the predicates it depends on. The assignment with the minimal
number of predicates at the same level is searched. If two predicates are on the
same level they are part of a cycle. In this manner we identify all goals that are
part of cycles. These goals are (as an approximation) not always-terminating.

A predicate is now always-terminating if it contains only goals that are
always-terminating. The encoding in finite domain constraints is straight for-
ward. Each predicate gets a variable AllTerm. In the following example we as-
sume that the predicates r/0 and s/0 do not form a cycle with q/0. So only q/0
forms a cycle with itself.

7

q ← (P0) r, (P1) s, (P2) q (P3).

AllTermQ ⇔ (¬P0 ∨ AllTermR) ∧ (¬P1 ∨ AllTermS) ∧ (¬P2 ∨ 0)

4.2 Interesting failure-slices

The rules for interesting failure-slices can be encoded in a straight forward man-
ner. For example rule R1 is encoded for predicate q/1 as follows:

¬P0 ⇒ ¬P1, ¬P1 ⇒ ¬P2, ¬P2 ⇒ ¬P3.

4.3 Weighting

Since we use failure-slices for explanations we are interested in minimal slices.
The most straight-forward approach simply tries to maximize the number of
failing program points. Often these slices are not very easy to read because they
still contain many different clauses and predicates. For these reasons we use three
weights in the following order.

1. minimal number of predicates
2. minimal number of clauses
3. minimal number of succeeding program points

These weights lead naturally to an implementation in finite domain con-
straints. By labeling these weights in the above order, we obtain minimal solu-
tions first.

4.4 Execution of failure-slices

With the analysis so far we are already able to reduce the number of potentially
non terminating failure-slices. However, our analysis is only an approximation
to the actual program behavior. Since failure-slices are executable we execute
the remaining slices to detect potentially nonterminating slices. With the help
of the built-in time out/3 in SICStus Prolog a goal can be executed for a limited
amount of time. In most situations the failure-slices will detect termination very
quickly because the search space of the failure is significantly smaller than the
original program.

Instead of compiling every failure-slice for execution we use a single enhanced
program —a generic failure-slice— which is able to emulate all failure-slices in
an efficient manner.

8

Generic failure-slice. All clauses of the program are mapped to clauses with a
further auxiliary argument that holds a failure-vector, a structure with sufficient
arity to hold all program points. At every program point n a goal arg(n,FVect,1)
is inserted. This goal will succeed only if the corresponding argument of the
failure-vector is equal to 1.

p(...) ←

q(...),

...,

r(...).

slicep(...,FVect) ←
arg(n1,FVect,1),
sliceq(...,FVect),
arg(n2,FVect,1),
...,
arg(ni,FVect,1),
slicer(...,FVect),
arg(ni+1,FVect,1).

4.5 Summary

To summarize, our approach to termination slicing proceeds in the following
manner:

1. The call graph is analyzed to detect goals that are part of a cycle.
2. A predicate fvectPQ weights(FVect,Weights) is generated and compiled that

describes the relation between the program points in P with respect to the
query Q with the help of finite domain constraints. All program points are
represented as variables in the failure-vector FVect. FVect therefore rep-
resents the failure-slice. Weights is a list of values that are functions of the
program points. Currently three weights are used: The number of predicates,
the number of clauses and the number of succeeding program points.

3. The generic failure-slice is generated and compiled.
4. Now the following query is executed to find interesting failure slices.

← fvectPQ weights(FVect, Weights),
FVect =.. [|Fs],
labeling([], Weights),
labeling([], Fs),
time out(slicePQ(...,FVect), t, time out).

Procedurally the following happens:
(a) fvectPQ weights/2 imposes the constraints within FVect and Weights.
(b) The first assignment for the Weights is searched, starting from minimal

values. Therefore, failure-slices with the minimal number of predicates
etc. are generated first.

(c) An assignment for the program points in the failure vector is searched.
A potential failure-slice is thus generated.

(d) The failure-slice is actually run for a limited amount of time. If the
failure-slice does not terminate within that period the failure-slice is
discarded.

9

The control flow analysis is therefore executed on the fly while searching for
failure-slices.

5 Conclusion and future work

We presented a slicing approach for termination that combines both static and
dynamic techniques. For the static analysis we used finite domain constraints
which turned out to be an effective tool for our task. Usual static analysis con-
siders a single given program. By using constraints we were able to consider a
large set of programs at the same time, thereby reducing the inherent search
space considerably. Since failure-slices are executable their execution helps to
discard terminating slices.

Integrating termination proofs. Our approach might be refined by integrating
termination proofs into our system. In this manner failure-slices that are guar-
anteed to terminate could be discarded. The most promising candidate seems to
be Mesnard’s approach [3] which uses constraints in a similar manner. It could
probably be used to further constrain the failure vector of the program points.
Another possible direction would be to try to fold different failure slices with
the help of fold/unfold-transformations.

Redundant slices. Many different failure-slices have the same termination prop-
erty. For example, in the case of the predicate perm/2 in the appendix there are
four different interesting failure-slices. All four represent the very same termi-
nation class. Trying to remove some of them seems to be an interesting future
direction.

Argument slicing. The existing slicing approaches all perform argument slicing.
We have currently no implementation of argument slicing. While it improves
program understanding, argument slicing does not seem to be helpful for further
reducing the number of clauses or program points. It appears therefore preferably
to perform argument slicing after a failure-slice has been found.

References

1. M. Carlsson, G. Ottosson, B. Carlson, An Open-Ended Finite Domain Constraint
Solver. PLILP, 1997.

2. T. Gyimóthy and J. Paakki. Static slicing of logic programs. AADEBUG 95.
3. S. Hoarau, F. Mesnard, Inferring and Compiling Termination for Constraint Logic

Programs, Technical Report 1998 (to appear).
4. R. A. O’Keefe, The Craft of Prolog. 1990, MIT-Press.
5. L. Plümer, Termination Proofs for Logic Programs, LNAI 446, Springer-Verlag,

1990.
6. T. Vasak, J. Potter, Characterization of Termination Logic Programs, IEEE SLP,

1986.

10

7. F. Mesnard, Inferring Left-terminating Classes of Queries for Constraint Logic
Programs: JICSLP’96 7–21, 1996, MIT-Press.

8. L. Naish, Types and the Intended Meaning of Logic. in F. Pfenning (ed.) Types
in Logic Programming, 1992, MIT-Press.

9. U. Neumerkel. Mathematische Logik und logikorientierte Programmierung, Skrip-
tum zur Laborübung, 1993-1997.

10. U. Neumerkel Teaching Prolog and CLP. Tutorial. PAP’95 Paris, 1995 and ICLP’97
Leuven, 1997.

11. U. Neumerkel. GUPU: A Prolog course environment and its programming method-
ology. Proc. of the Poster Session at JICSLP’96 (Fuchs, Geske Eds.), GMD-Studien
Nr. 296, 1996 Bonn.

12. St. Schoenig, M. Ducassé: A Backward Slicing Algorithm for Prolog. SAS 1996:
317-331

13. Ch. Speirs, Z. Somogyi, H. Søndergaard: Termination Analysis for Mercury. SAS
1997: 160-171

14. M. Weiser: Programmers Use Slices When Debugging. CACM 25(7): 446-452
(1982)

15. M. Weiser: Program Slicing. IEEE TSE 10(4): 352-357 (1984).
16. L. Sterling, E. Shapiro: The Art of Prolog, MIT-Press 1986.
17. J. Zhao, J. Cheng, and K. Ushijima: Literal Dependence Net and Its Use in Con-

current Logic Programming Environment: Proc. Workshop on Parallel Logic Pro-
gramming FGCS’94, pp.127-141, Tokyo, Japan, December 1994

18. J. Zhao, J. Cheng, K. Ushijima: Program Dependence Analysis of Concurrent
Logic Programs and Its Applications, Proc. 1996 International Conference on Par-
allel and Distributed Systems (ICPADS’96) , 282-291, IEEE Computer Society
Press, 1996.

11

A Failure-slices for perm/2

% Original program
perm([], []). % P1
perm(Xs, [X|Ys]) ← % P2

del(X, Xs, Zs), % P3
perm(Zs, Ys). % P4

del(X, [X|Xs], Xs). % P5
del(X, [Y|Ys], [Y|Xs]) ← % P6

del(X, Ys, Xs). % P7

← perm(Xs, Ys). % P0, P8

% Minimal failure-slice
perm([], []) ← fail.
perm(Xs, [X|Ys]) ←

del(X, Xs, Zs), fail,
perm(Zs, Ys).

del(X, [X|Xs], Xs) ← fail.
del(X, [Y|Ys], [Y|Xs]) ←

del(X, Ys, Xs).

← perm(Xs, Ys), fail.

% 2nd failure-slice
perm([], []) ← fail.
perm(Xs, [X|Ys]) ←

del(X, Xs, Zs),
perm(Zs, Ys), fail.

del(X, [X|Xs], Xs).
del(X, [Y|Ys], [Y|Xs]) ← fail,

del(X, Ys, Xs).

← perm(Xs, Ys), fail.

% implementation

← fvectPQ weights(FVect,Weights), FVect=..[|Ps], labeling([],Weights), labeling([], Ps).
% FVect = s(1,0,1,0,0,0,1,0,0), Weights = [2,2,3]. % displayed above
% FVect = s(1,0,1,1,0,1,0,0,0), Weights = [2,2,4]. % displayed above
% FVect = s(1,0,1,1,0,1,1,0,0), Weights = [2,3,5].
% FVect = s(1,0,1,1,0,1,1,1,0), Weights = [2,3,6].

% Definition of the failure-vector
fvectPQ weights(s(P0, P1, P2, P3, P4, P5, P6, P7, P8), [NPreds, NClauses, NPoints]) ←

domain zs(0..1,[P0, P1, P2, P3, P4, P5, P6, P7, P8]),
% Given Query
P0 = 1, P8 = 0,
% Allways terminating
AllTermPerm ⇔ (¬P2 ∨ AllTermDel) ∧ (¬P3 ∨ 0),
AllTermDel ⇔ (¬P6 ∨ 0),
% R1: right propagation of failure
¬P2 ⇒ ¬P3, ¬P3 ⇒ ¬P4, ¬P6 ⇒ ¬P7,
% R2: right propagation of failing entry points
/*perm/2:*/ ¬P0 ∧ ¬P3 ⇒ ¬P1 ∧ ¬P2, /*del/3:*/ ¬P2 ∧ ¬P6 ⇒ ¬P5 ∧ ¬P6,
% R3: right propagation of failing definition
/*perm/2:*/ ¬P1 ∧ ¬P4 ⇒ ¬P8 ∧ ¬P4, /*del/3:*/ ¬P5 ∧ ¬P7 ⇒ ¬P3 ∧ ¬P7,
% R4: right propagation into end-recursive clause
/*perm/2:*/ ¬P1 ⇒ ¬P4, /*del/3:*/ ¬P5 ⇒ ¬P7,
% L1: left propagated of failing definition
/*perm/2:*/ ¬P1 ∧ ¬P2 ⇒ ¬P3 ∧ ¬P0, /*del/3:*/ ¬P5 ∧ ¬P6 ⇒ ¬P2 ∧ ¬P7,
% L2: left propagation over always terminating goals
¬P4 ∧ AllTermPerm ⇒ ¬P3, ¬P8 ∧ AllTermPerm ⇒ ¬P0,
¬P3 ∧ AllTermDel ⇒ ¬P2, ¬P7 ∧ AllTermDel ⇒ ¬P6,
% L3: left propagating failing exit points
¬P8 ⇒ ¬P1 ∧ ¬P4, ¬P3 ⇒ ¬P5 ∧ ¬P7,
% Weights:
NPreds #= min(1,P1+P2) + min(1,P5+P6),
NClauses #= P1+P2+P5+P6,
NPoints #= P0+P1+P2+P3+P4+P5+P6+P7+P8.

12

Table of Contents

1 Introduction . 1

2 Failure-slices . 3

3 Full Prolog . 4
3.1 DCGs . 4
3.2 Finite domain constraints . 4
3.3 Moded built-ins . 5
3.4 Cut . 5
3.5 Negation . 6
3.6 Side effects . 6

4 Implementation . 6
4.1 Encoding the always-terminating property 6
4.2 Interesting failure-slices . 7
4.3 Weighting . 7
4.4 Execution of failure-slices . 7
4.5 Summary . 8

5 Conclusion and future work . 9

A Failure-slices for perm/2 . 11

This article was processed using the LATEX macro package with LLNCS style

