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Abstract

We present a new transformation of Prolog programs preserving opera-
tional equivalence. Our transformation — EBC (equality based continu-
ation) transformation — relies on the introduction of equations between
terms. These equations are used to introduce alternative and more effi-
cient representations of terms. When applied to binary Prolog programs,
EBC is able to perform the following optimizations by mere source to
source transformations: removal of existential variables in programs us-
ing difference lists and accumulators, reduction of the number of occur-
checks, interprocedural register allocation when executed on the WAM,
linearization of recursions, optimization of continuation-like user data
structures.

1 Introduction
The limitations of fold/unfold transformations. Currently, most pro-
gram transformation schemes for Prolog programs and logic programs are based
on the framework of fold/unfold transformations as defined by [24] or [16]. This
framework is an adaption of fold/unfold transformations originally developed
within functional languages [6]. Fold/unfold transformations introduce equal-
ities between logic programs expressed at the level of ‘control structures’, i.e.,
predicates, clauses and goals. Transformations within fold/unfold are therefore
able to improve or specialize a program on the level of the control structures.
They allow a programmer to write more generic and reusable programs and
specialize them thereafter, in particular, with the strategy of partial evalua-
tion.

However, the ‘data structures’ of logic programs, i.e., terms play only a sec-
ondary role in these transformations. Fold/unfold transformation do not define
directly any transformation rules for terms1. By reasoning on the goal level,
current fold/unfold transformations are unable to transform a given dynamic
data structure in another different dynamic data structure. E.g., a program
manipulating lists can only be transformed into a program that either contains
no corresponding lists at all or that contains (parts of) those very lists, e.g., in

∗To appear in Logic Program Synthesis and Transformation, LOPSTR 1993, Springer-
Verlag

1Note that the fold/unfold framework is in principle able to describe any transformation
desired because the rules for goal replacement (Chapter 3 [24]) allow to replace a goal by any
‘equivalent’ one. However, no transformations capable of transforming data structures are
known in the literature.
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the form of a difference-list. Similarly, redundancies between goals cannot be
removed in many cases because a goal can only be absorbed or transformed to
a different goal. For example, it is impossible to remove all existential variables
attached to the difference list in programs corresponding to grammar rules.

Our transformation overcomes the deficiencies of fold/unfold transforma-
tions currently in use by using equivalences between terms instead. When our
transformation is applied to binary Prolog we are able to improve programs on
the goal level as well since goals are encoded as terms.

Binary Prolog. Binary Prolog [25] corresponds to the notion of continuation
passing style (CPS) [26] in functional programming languages. When encoding
Prolog with the help of binary Prolog using Tarau’s transformation [25] Prolog’s
AND-control is encoded with terms. These new terms are called continuations
corresponding to closures in functional programming languages [1]. There are
several advantages of using binary Prolog: First, binary Prolog is simpler to
implement. Second, binary programs are better amenable to source to source
transformations, in particular, our EBC-transformation.

EBC-transformations. In order to change the representation of a program
we introduce alternative representations of terms. Conceptually, the syntactic
unification of Prolog is extended by new equations that do not alter the behavior
of unification. In general we therefore need to introduce new function symbols.
The new equations describe alternative and often more efficient representations
of terms. Our approach of extending unification is quite different from other
approaches like CLP. In EBC we transforme ordinary Prolog programs without
any extension while CLP provides extensions to unification visible to the user.
We restrict the additional equations to cases that can be implemented with
syntactic unification only. In particular we restrict ourselves to terms that serve
as continuations. In this case the extended unification can be implemented with
syntactic unification.

Contents. We open our presentation with a detailed example in Sect. 2.
This example shows how difference lists and in particular grammar rules can
profit from our optimization. In Sect. 3 we present the general framework of
EBC-transformation underlining the basic notion of conservative extension to
unification. The optimization of context arguments is discussed in Sect. 4.
General strategies for EBC are discussed in Sect. 5. We present all equational
schemes developed so far. Finally, related work is found in Sect. 6.

2 Transformation of difference lists

This section shows how EBC treats typical programs with difference lists. Such
programs are a source of inefficiency in current Prolog implementations when
compared to their procedural counterparts.

Notation. subcontinuations are underlined and changed parts are bold.
Equations introduced are written A =. B to avoid confusion with Prolog’s =/2
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and =̇ used in unification theory. We do not distinguish between function and
predicate symbols in binary programs. Symbols in an equation refer to both.

2.1 A first example

We present an informal derivation in seven steps of a simple program containing
an existential variable within a difference list. The formal transformation rules
are described in Section 3. The predicate expr/3 describes the relation between
a difference list containing terminal symbols and the corresponding abstract
syntax tree. Fold/unfold frameworks are unable to remove Xs12.

expr(t(T)) −→
[t(T)].

expr(node(TL,TR)) −→
[op],
expr(TL),
expr(TR).

expr(t(T), [t(T)|Xs],Xs).
expr(node(TL,TR), [op|Xs0],Xs) ←

expr(TL, Xs0,Xs1),
expr(TR, Xs1,Xs).

1st step: binary form. First the program is transformed into binary form
with Tarau’s transformation [25]. A new argument is added to represent the
continuation in an explicit manner. The goals after the first goal in the body are
encoded as function symbols placed in the continuation argument of the first
goal. Facts are transformed into rules, that call the remaining continuation,
denoted as the meta-call Cont.

expr(t(T), [t(T)|Xs],Xs, Cont) ←
Cont.

expr(node(TL,TR), [op|Xs0],Xs, Cont) ←
expr(TL, Xs0,Xs1, expr(TR, Xs1,Xs, Cont)).

2nd step: separation of an output argument. The equation below intro-
duces two new structures expr1/3 and rest/2. These two new function symbols
serve as an alternative (and hopefully more efficient) representation for the old
function symbol expr/4. By and large, the equation is compiled into the pro-
gram as follows. In the body of the clauses the equation is used to replace the
old function symbol. For every clause containing the expr/4 in the head, we
add a new alternative clause. In our example, the program is duplicated.

expr(T, Xs0,Xs, Cont) =. expr1(T, Xs0, rest(Xs, Cont)).

expr(t(T), [t(T)|Xs], Xs, Cont) ←
Cont.

expr(node(TL,TR), [op|Xs0],Xs, Cont) ←
expr1(TL, Xs0, rest(Xs1, expr1(TR, Xs1, rest(Xs, Cont)))).

expr1(t(T), [t(T)|Xs], rest(Xs, Cont)) ←
Cont.

expr1(node(TL,TR), [op|Xs0], rest(Xs, Cont)) ←
expr1(TL, Xs0, rest(Xs1, expr1(TR, Xs1, rest(Xs, Cont)))).

3rd step: folding of the redundant definition. The definition of expr/4 is
expressed with the help of expr1/3. This step serves only to undo the duplication
of code. For a practical transformation system it is indeed easier to combine
steps 2 and 3 to a single transformation step.

2To be more precise, the strategy presented by Proietti and Pettorossi [21] is able to
remove the existential variable, but introduces a new, different existential variable.
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expr(T, Xs0,Xs, Cont) ←
expr1(T, Xs0, rest(Xs, Cont)).

expr1(t(T), [t(T)|Xs], rest(Xs, Cont)) ←
Cont.

expr1(node(TL,TR), [op|Xs0], rest(Xs, Cont)) ←
expr1(TL, Xs0, rest(Xs1, expr1(TR, Xs1, rest(Xs, Cont)) )).

4th step: simplification of the continuation. The structure rest(Xs,Cont)
is redundant in the rule. It does not contribute anything to the computation.
This can be seen from the equation above: rest(Xs,Cont) will always occur where
expr1/3 occurs. It is therefore safe to generalize the second clause in expr1/3.
This generalization does not require a global analysis of the program.

expr(T, Xs0,Xs, Cont) ←
expr1(T, Xs0, rest(Xs, Cont)).

expr1(t(T), [t(T)|Xs], rest(Xs, Cont)) ←
Cont.

expr1(node(TL,TR), [op|Xs0], RestXsCont) ←
expr1(TL, Xs0, rest(Xs1, expr1(TR, Xs1, RestXsCont))).

5th step: definition of a separate predicate to execute the continu-
ation. To make the continuations in expr1/3 more uniform we define a new
predicate demo rest/2 that deals with the continuation rest/2. Again, as step 3,
this step serves only to keep the program compact. When transforming several
predicates this step helps to keep the program compact. For every predicate a
single clause is added for demo rest/2. Without this step, step 6 would expand
every fact of the original program to several rules.

expr(T, Xs0,Xs, Cont) ←
expr1(T, Xs0, rest(Xs, Cont)).

expr1(t(T), [t(T)|Xs], RestXsCont) ←
demo rest(RestXsCont, Xs).

expr1(node(TL,TR), [op|Xs0], RestXsCont) ←
expr1(TL, Xs0, rest(Xs1, expr1(TR, Xs1, RestXsCont))).

demo rest(rest(Xs, Cont), Xs) ←
Cont.

6th step: compaction of the continuation. The existential variable Xs1
occurs only in rest/2 and expr1/3. A new structure rest expr1/3 is introduced to
combine both. Xs1 is therefore reduced to a void variable. demo rest/2 contains
new clause in order to read the new representation rest expr1/3.

rest(Xs1, expr1(TR, Xs1, RestXsCont)) =. rest expr1(TR, Xs1, RestXsCont).

expr(T, Xs0,Xs, Cont) ←
expr1(T, Xs0, rest(Xs, Cont)).

expr1(t(T), [t(T)|Xs], RestXsCont) ←
demo rest(RestXsCont, Xs).

expr1(node(TL,TR), [op|Xs0], RestXsCont) ←
expr1(TL, Xs0, rest expr1(TR, Xs1, RestXsCont)).

demo rest(rest(Xs, Cont), Xs) ←
Cont.

demo rest(rest expr1(TR, Xs, RestXsCont), Xs) ←
expr1(TR, Xs, RestXsCont).
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7th step: elimination of the void existential variable. Since Xs1 is now
a void variable we reduce it completely with the equation below. Note, that
this equation does not preserve equivalence between general terms. It has to be
ensured that the equation is applied (as in this example) only to void variables
and that the corresponding simplified structure rest expr2/2 is read only once.
In the case of continuations this is trivially true. In a transformation system it
is useful to combine steps 6 and 7.

rest expr1(TR, Xs1, RestXsCont) =. rest expr2(TR, RestXsCont).

expr(T, Xs0,Xs, Cont) ←
expr1(T, Xs0, rest(Xs, Cont)).

expr1(t(T), [t(T)|Xs], RestXsCont) ←
demo rest(RestXsCont, Xs).

expr1(node(TL,TR), [op|Xs0], RestXsCont) ←
expr1(TL, Xs0, rest expr2(TR, RestXsCont)).

demo rest(rest(Xs, Cont), Xs) ←
Cont.

demo rest(rest expr2(TR, RestXsCont), Xs) ←
expr1(TR, Xs, RestXsCont).

2.2 Arbitrary grammar rules

The transformation above is easily extended to optimize arbitrary translated
DCG-clauses, or as a further generalization EDCGs [22].

• For every binary predicate p/n + 2 an equation is added to split the rest
list from the other arguments (as in step 2): p(a1, ...an, Xs0, Xs, Cont) =.
p′(a1, ...an, Xs0, rest(Xs, Cont)). It is important to note that all equations
must contain the same function symbol rest/2.

• The definition of the interface rule as in step 3 can be avoided if all calls
to phrase/3 are known statically.

• Simplification as in step 4.

• The definition of demo rest/2 is the same as above. I.e., there is only
a single auxiliary predicate introduced, independent of the number of
different predicates.

• For every function symbol p′/n + 1 introduced above, a new equation is
added: rest(Xs, p′(a1, ...an, Xs, XsCont)) =. rest p′(a1, ...an, XsCont).

To summarize, every grammar rule is translated to a single new clause, a single
auxiliary predicate is defined, that serves as the ‘meta-call’ within the grammar.

2.3 Optimizations performed

The final program in our example above shows most of the optimizations per-
formed by EBC on general grammar rules. All these optimizations can be
observed on existing Prolog systems based on the WAM.
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1. It contains a smaller continuation. Instead of five memory cells only three
are used. I.e., all memory used to represent the difference list is saved.

2. The program analyses the first 2551 phrases 67% faster with BinProlog
1.39 and 30% faster with the compiler SICStus Prolog 2.1. Even though
the original program uses SICStus’ environment stack and the trans-
formed program uses the heap the transformed version is faster. Both
systems were measured on SPARCstation ELC, CPU 33MHz Cypress,
8Mb RAM.

3. The number of argument registers is reduced by one, therefore reducing
the size of choice points.

4. All trail checks related to passing the difference list further on are omitted.

5. In the case that occur-checks are desired, all occur-checks related to the
difference list in the original program are eliminated up to a single occur-
check for every solution of the goal :- expr(T, Xs0, Xs). For the goal
← expr(T, Xs, []) no occur-check has to be executed for handling the
difference list. Note, that one of the arguments against the occur-check
is that it reduces Prolog’s efficiency in handling difference lists.

Joachim Beer’s extension to the WAM [3, 4] designed to reduce the num-
ber of trails and occur-checks should be seen as a rather complementary
approach to occur-check reduction since his machine cannot handle differ-
ence lists in the same manner. In particular, in the program quicksort/3
as defined in [4], page 54, we are able to remove all of the 50 necessary
occur-checks, while Beer’s machine still performs 49.

2.4 Application to DCGs and similar formalisms

The example above presented a typical case occurring in many programs. By
using difference lists a state is propagated further. In the case of DCGs the state
is the string to be analyzed or generated. With the help of EBC-transformations
these states do not require space within the continuation as long as all pred-
icates share the difference list. The following table shows the gain in space
consumption of our transformation for generalized DCGs (like EDCGs [22])
that are also capable of including ‘external predicates’ (e.g. for symbol table
lookup) within the grammar. These generalized DCGs posses n implicit states.
The gain for ‘ordinary’ DCGs, where only a single simple state is present, is
given with n = 1. Our transformation has an additional initialization cost for
implementing the entry predicate phrase. However, all continuations within the
grammar are either reduced in size or equal (when using external predicates
heavily). In particular, in the usual case (case 5), the size of the continuation
is reduced considerably.

The additional states in an EDCG can be used for tasks currently imple-
mented with side effects or manual transformations. E.g.: a) error recovery
b) line counting c) indentation checks d) safe left recursions. With the help
of our transformation, the cost for such additional arguments is very small,
comparable to the cost of global variables in procedural languages.
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situation gain
1 ← phrase(g,x1,. . . ,xn, y1,. . . ,yn ).

orig. 0 −(2 + n)
EBC (2 + n)

2 ← phrase(g,x1,. . . ,xn,[],. . . ,[]).
orig. 0 −2
EBC (2)

3 ← . . . , phrase(g,x1,. . . ,xn, y1,. . . ,yn).
orig. (2 + ng + 2n) −2
EBC (2 + ng + n) + (2 + n)

4 ← . . . , phrase(g,x1,. . . ,xn,[],. . . ,[]).
orig. (2 + ng + 2n) n− 2
EBC (2 + ng + n) + (2)

5 . . .−→ . . . , g, . . .
orig. (2 + ng + 2n) 2n
EBC (2 + ng)

6 . . .−→ {. . .}.
orig. (2 + 2n) n
EBC (2 + n)

7 . . .−→ {. . .}, g, . . .
orig. (2 + ng + 2n) n
EBC (2 + ng + n)

8 . . .−→ . . . , g, {. . .}.
orig. (2 + ng + 2n) + (2 + 2n) 2n− 2
EBC (2 + ng) + (2 + n) + (2 + n)

9 . . .−→ . . . , g, {. . .}, h, . . .
orig. (2 + ng + 2n) + (2 + nh + 2n) 2n− 2
EBC (2 + ng) + (2 + n) + (2 + nh + n)

3 EBC-transformation

EBC-transformations transform a given binary program into an equivalent one.
We do not consider currently non-binary programs. The transformation formal-
ism is divided into three parts: equations providing alternative representations,
compilation of these equations into the program, simplification of the compiled
programs.

In the sequel we make no distinction between predicate symbols and function
symbols. A binary program can be represented by a single binary predicate,
encoding all predicate symbols with function symbols. We use the word contin-
uation for the head and the (single) goal of a binary clause. If a continuation is
a function symbol it contains (beside others) a single argument that is used to
hold further subcontinuations. Usually this argument is the last one. We de-
note by Told, the set of terms constructed from the function symbols Fold that
are present in the original program and some variables. Tnew ⊃ Told denotes
the corresponding set of the new program. θ and σ are substitutions.

3.1 Conservative extension

We define a conservative extension to syntactic unification as a set E of equa-
tions of the form ‘x=. y’ with x, y ∈ Tnew such that for all terms s and t ∈ Told:

∃θ.sθ = tθ iff ∃ρ.sρ =E tρ 3

3=E means equality modulo the equations E.
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As long as the equations in E contain only terms in Told such an extension is
considered trivial. No alternative representations could be constructed.

Our notion of conservative extension can be seen as a restriction to the
notion of consistency in rewrite systems and algebraic specifications [10]. A set
of equations E is consistent if for all ground terms the condition above holds.
I.e., consistency is a necessary but not sufficient condition to qualify E as a
conservative extension. The following example gives an equation that qualifies
as consistent but not as a conservative extension.

Fold = {f, g, c}, Fnew = {h}, E = {f(X)=. g(h(X))}
The equation E is consistent with respect to Fold. On the other hand, E is not
a conservative extension since there is no substitution θ for f(c) = g(X)θ but
there is a ρ = {Y 7→ h(c)} with f(c)ρ =E g(Y )ρ.

3.2 Compilation of equations

We are interested in implementing the equational unification above with the
help of syntactic unification. Since we want to keep the overhead for compiling
equations as low as possible we only compile equations over terms that are never
variables at runtime. To avoid any dataflow analysis we restrict ourselves to
the continuation generated by the transformation from Prolog to binary Prolog.
The compilation is divided into the compilation of goals and heads.

Compilation of goals. Continuations in the goals are never read but are sim-
ply written. We are therefore free to replace any subcontinuation that matches
a given equation by the other side of the equation. Let r be a subcontinuation,
and s=. t an equation. The subcontinuation r can be replaced by tθ if r = sθ.
Remark that we are allowed to use the equations in any direction desired.

As a special case, equations s=. t with VAR(s) ⊂ VAR(t) are allowed to
eliminate void variables. In this case, all void variables in the equation must
match void variables in the subcontinuation.

Compilation of heads. The head of a clause reads and unifies continuations.
It must therefore be able to deal with all alternative representations of a term.
For every clause C we create for every rewriting yielding a different head a new
clause Ci. All resulting clauses Ci must not be unifyable with one another.
Usually, only a single transformation step is required for every combination
of a clause and an equation. The rewriting of clauses must not necessarily
terminate. This is in particular the case when recursive equations are used. If a
clause can be rewritten for the second time the term to be rewritten is separated
into a new auxiliary predicate. In this manner, simple infinite rewritings can
be compiled into recursive predicates.

3.3 Simplification of clauses

In most of the interesting applications of EBC investigated so far a simplifica-
tion step is required after the compilation of equations. In this step redundan-
cies in the program are removed that have been made explicit by the introduced
equations. The conditions for simplification depend only on the equations E
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compiled in the previous step and the clause to be simplified. No global analysis
is required to validate the simplification step.

The original clause Co = Ho ← Bo was compiled into C = H ← B, besides
possibly other clauses. Simplification is carried out by generalizing a binary
clause C = H ← B to a clause Cg = Hg ← Bg under the following conditions:

1. C = Cgθ, and dom(θ) ⊆ VAR(Bg). I.e., only those generalizations of the
head are allowed, that are covered by generalizations in the body.

2. For every clause H ← B and its generalization(s) Hg ← Bg the following
condition must hold for all i, j ≥ 1:
Old(Pi(H) ← Pj(G)) = Old(Pi(Hg) ← Pj(Gg))
Old(H ← B) is the set of rules Ho ← Go constructed with Told that are
unifiable with H ← B.
Pi(L) is a projection of the continuation L that substitutes the i-th sub-
continuation of L by a new free variable Conti. P1(L) =Cont1, i.e., the
whole term is substituted. P2(L) substitutes the first subcontinuation by
Cont2 etc.
This condition ensures that during execution the bindings at the outer
continuations will be identical to the original program. This means that
built-in predicates, read and write statements, cuts etc. may be used in
the programs to be transformed at any place4.

Examples. Given the equation p(E, Cont) =. q(E, r(E, Cont)), the clause p(E,
Cont) ← q(E, r(E, Cont)) can be generalized to p(E, Cont) ← q(E, r( E, Cont)).
However, it is not allowed to generalize to p(E, Cont) ← q( E, r(E, Cont)).

Note, that simplification is driven heavily by the redundancy exposed in the
equations E:

p(X,X, Cont) ←
q(X,X, Cont).

p(A,B, Cont) =. p1(r(A,B, Cont)).
q(A,B, Cont) =. q1(r(A,B, Cont)).

p1(r(A,A, Cont)) ←
q1(r(A,A, Cont)).

The following generalization is invalid, since Old(p1(ABCont) ← p1(ABCont))
contains the clause p(X,Y, Cont) ← q(X,Y, Cont) while Old(p1(r(A,A, Cont)) ←
q1(r(A,A, Cont)) does not contain this clause.

p1(ABCont) ← % violates Cond. 2
q1(ABCont).

However, the same generalization is valid, under a different set of equations:
p(A,A, Cont) =. p2(r(A,A, Cont)).
q(A,A, Cont) =. q2(r(A,A, Cont)).

p2(r(A,A, Cont)) ←
q2(r(A,A, Cont)).

p2(ABCont) ← % valid
q2(ABCont).

4Cuts are represented in binary Prolog with an auxiliary variable used for labeling.
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4 Transformation of context arguments

The application of the generalization rules is demonstrated by the following
program that uses the built-in predicate var/1 that is sensible to bindings.
While the goal var/1 is part of the body, we will still write it as a separate goal
to ease reading.

equalnodes(nil, El).
equalnodes(node(El,L,R), El) ←

var(El),
equalnodes(L, El),
equalnodes(R, El).

equalnodes(nil, El, Cont) ←
Cont.

equalnodes(node(El,L,R), El, Cont) ←
var(El),
equalnodes(L, El, equalnodes(R, El, Cont)).

The continuation contains the redundant variable El. We make this redundancy
more explicit by duplicating the occurrences of El.

equalnodes(T, El, Cont) =. equalnodes1(T, El, rest(El, Cont)).

equalnodes(T, El, Cont) ←
equalnodes1(T, El, rest(El, Cont)).

equalnodes1(nil, El, rest(El, Cont)) ←
Cont.

equalnodes1(node(El,L,R), El, rest(El, Cont)) ←
var(El),
equalnodes1(L, El, rest(El, equalnodes1(R, El, rest(El, Cont)) )).

In the following step several variables are renamed.
equalnodes(T, El, Cont) ←

equalnodes1(T, El, rest( El, Cont)).

equalnodes1(nil, El, rest(El, Cont)) ←
Cont.

equalnodes1(node(El,L,R), El, rest(El2, Cont)) ←
var(El),
equalnodes1(L, El, rest(El1, equalnodes1(R, El1, rest( El2, Cont)) )).

Note that the e.g.,following generalizations are invalid:
% wrong example
equalnodes(T, El, Cont) ←

equalnodes1(T, El, rest(El, Cont)). % violates Cond. 2

equalnodes1(nil, El1, rest( El2, Cont)) ← % violates Cond. 1
Cont.

equalnodes1(node(El,L,R), El2, rest(El1, Cont)) ←
var(El),
equalnodes1(L, El2, rest(El1, equalnodes1(R, El1, rest(El, Cont)) )).

% El2 and El violate Cond. 4

The redundant subcontinuation is removed in the clause equalnodes1/3.
equalnodes(T, El, Cont) ←

equalnodes1(T, El, rest( El, Cont)).

equalnodes1(nil, El, rest(El, Cont)) ←
Cont.

equalnodes1(node(El,L,R), El, ElCont) ←
var(El),
equalnodes1(L, El, rest(El1, equalnodes1(R, El1, ElCont) )).

The subsequent steps are similar to our first example expr/4. We omit the
intermediary steps, only showing the result and the equations used.
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rest(El, equalnodes(R, El, ElCont)) =. rest equalnodes(R, ElCont).
rest( El, Cont) =. rest1(Cont).

equalnodes(T, El, Cont) ←
equalnodes1(T, El, rest1(Cont)).

equalnodes1(nil, El, ElCont) ←
restel(ElCont, El).

equalnodes1(node(El,L,R), El, ElCont) ←
var(El),
equalnodes1(L, El, rest equalnodes1(R, ElCont)).

restel(rest1(Cont), El) ←
Cont.

restel(rest equalnodes(R, ElCont),El) ←
equalnodes(R, El, ElCont).

The final program does no more contain the variable El in its continuation. Fur-
thermore, El resides always in the second argument. Executed on the WAM,
the variable El can be considered as being allocated ‘globally’, (i.e.: interpro-
cedurally) in the second argument register.

5 Strategies and schemes of equations
For a transformation system to be of practical use, strategies avoiding the
very large search space have to be developed. There are several sources that
contribute to the search space of EBC-transformations: a) the choice of an
appropriate scheme of equations b) the effective instantiation of the scheme c)
the choice of simplifications.

The development of schemes of conservative equations seems to be an in-
herent manual operation. The methods developed within the context of rewrite
systems and algebraic specification might be adaptable to automate this pro-
cess. However, a scheme of equations often determines a particular optimiza-
tion. E.g. optimization of difference lists, context arguments. It seems that
a practical transformation system might only choose from given schemes of
equations; similar to a compiler for an imperative programming language that
comprises several optimization passes like common subexpression elimination,
global or even interprocedural register allocation etc. Below, we present the
equational schemes and their use in optimization.

The effective instantiation of an equation scheme is often ‘driven’ by the
subsequent simplification. Since the conditions for simplification are closely re-
lated to the equations used, we can on the other hand take the simplifications as
a condition for the application of a certain equation. For example, in predicate
expr/4 the equation expr(T, Xs0,Xs, Cont) =. expr1(T, Xs0, rest(Xs, Cont)) was
the only choice possible to allow a subsequent simplification of the continua-
tion rest(Xs, Cont). If we would have tried expr(T, Xs0,Xs, Cont) =. expr2(T, Xs,
rest(Xs0,Cont)). instead, no simplification of rest(Xs, Cont) would have been
possible. The search for an appropriate equation can therefore be pruned by
the subsequent simplification. It seems therefore appropriate to associate to
every equation specialized simplification operations thus avoiding the search
space within simplification.

For the sake of simplicity, we present concrete equations for the encountered
schemes, the arguments of function symbols might be appropriately increased.
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Output argument splitting. An argument Out is only passed further from
the head to the last goal in a clause. Typically, the second argument of a
difference list or an accumulator is an output argument.

old1(Args,Out,Cont) =. new1(Args,new(Out, Cont))
old2(Args,Out,Cont) =. new2(Args,new(Out, Cont))
...

Simplification: removal of new(B, Cont)

Forced output argument splitting. A context argument Ctx is passed
around, by duplicating its occurrences it can be treated as an output argument
above.

old1(Args, Ctx, Cont) =. new1(Args, Ctx, new(Ctx, Cont))
old2(Args, Ctx, Cont) =. new2(Args, Ctx, new(Ctx, Cont))
...

Simplification: renaming of duplicated variables, removal of new(Ctx, Cont).

Compacting continuations. Two continuations that share some arguments,
or variables are folded into a new one. The new structure contains the union
Args12 of both arguments.

old1(Args1, old2(Args2, Cont)) =. new(Args12, Cont).

No simplification required. However, most occurrences of old1/2 should have
been replaced. Note that Args1 and Args2 may contain function symbols oldf/1
that are not continuations themselves. e.g.:

old1(A, old2(oldf(A), Cont)) =. new(A, Cont).

Recursive context introduction. Used to split recursive programs into
several iterations.

old1(A, old2(B, Cont)) =. old1(A, new(A, old2(B, Cont))).

Simplification: renaming of duplicated variables.

Merging/splitting user continuations. In a program a recursive data
structure is used in a ‘continuation like’ manner. By the following equations,
such data structures can be merged with the system continuation. No analysis
is required to ensure that a user data structure is ‘continuation like’. For, if it is
not, not all occurrences can be merged with the system continuation. Typical
examples for this scheme merge a list with the continuation; or split recursive
parts of a continuation in order to implement them with a counter. See [20] for
an exemplary use.

old1(oldc,old2(Cont)) =. newc(Cont).
old1(oldf(F), Cont) =. newf(old1(F,Cont)).

Condition of application: all occurrences of oldc/0 and oldf/1 should have
been replaced.
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6 Related work

Source-to-source transformations. Sato and Tamaki’s CPS-conversion [23]
separates input and output arguments, yielding binary programs. However,
their method has to rely on a previous analysis. Otherwise, they do not pre-
serve finite failure and infinite loops. The derived program perm/2 in [23] loops
for ← perm( ,const) while the original fails. Further, as observed by Tarau [25],
clause indexing is not preserved.

Particular strategies within fold/unfold have been investigated. Proietti
and Pettorossi present a fold/unfold-strategy [21] to remove existential vari-
ables. Such variables cannot be removed by EBC and vice versa. A fold/unfold-
strategy to remove unnecessary structures is presented by Gallagher and Bruynooghe
[9]. Demoen [7] considers transformations for binary programs that are explica-
ble within the framework of fold/unfold-transformations. I.e., folding of goals
in order to ‘build up continuations incrementally’ (Sect. 1), partial evaluation
(Sect. 2.1); void variable elimination in the body (Sect. 2.3), register move
optimization (Sect. 2.5).

Low-level optimizations. Beer [4] optimizes uninitialized variables. Meyer
uses destructive assignments in environments [17]. Compile time garbage col-
lection [14, 18, 11] might yield similar results for difference lists. However, no
published results on programs like DCGs are known to the author.

Other formalisms. The compilation of unification in EBC-transformations
is related to narrowing ([2] 6.1.3). Grammars in λ-Prolog [15] do not need any
auxiliary variables. Thus λ-Prolog is an interesting formalism for further trans-
formations. CPS-transformations were originally investigated in functional lan-
guages [26]. We have so far not found transformations corresponding to EBC
in functional languages. The reason for this seems to be the absence of the
logical variable. The close relation of Attribute Grammars and logic programs
[8] suggests that optimizations for AGs [13, 12] can be applied to Prolog; as
investigated by Bouquard [5] comparing WAM and FNC-2.

7 Further work

The further development of strategies seems to be most promising since EBC-
transformations are able to obtain programs that are very close to their coun-
terparts in procedural programming languages. Although our transformation
rules are equivalence preserving they are not completely invertible. In partic-
ular, the simplification of continuations cannot be inverted. This means, that
for certain transformations, we have to ‘invent’ the desired program and then
derive from the invented program the original program. Further research is
required to improve the transformation rules.

The precise relation between fold/unfold for logic programs and EBC is not
yet clear to the author. It seems, however, that fold/unfold does not cover EBC-
transformations. For example, the existential variable in expr/4 has resisted the
author’s attempts for removal within fold/unfold.
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Our transformation circumvents the environment stack of the classic WAM.
However, WAM compilation can be easily adopted compiling the continuations
back into stack frames. Registers would be valid beyond the ‘proceed barrier’.

Acknowledgements. I thank Gernot Salzer for many comments on EBC-
transformations. The three anonymous referees provided many appreciated
comments.
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[12] C. Julié and D. Parigot. Space optimization in the FNC-2 attribute grammar system.
In P. Deransart and M. Jourdan, editors, Attribute Grammars and their Applications
(WAGA), volume 461 of Lecture Notes in Computer Science, pages 29–45. Springer-
Verlag, Sept. 1990.

[13] U. Kastens and M. Schmidt. Lifetime analysis for procedure parameters. In B. Robinet
and R. Wilhelm, editors, Proceedings of the 1st European Symposium on Programming
(ESOP ’86), volume 213 of Lecture Notes in Computer Science, pages 53–69. Springer-
Verlag, Mar. 1986.
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