
Interprocedural register allocation
for the WAM based on
source-to-source transformations

Ulrich Neumerkel
Institut für Computersprachen
Technische Universität Wien
A-1040 Wien, Austria
ulrich@complang.tuwien.ac.at

Abstract

An approach for interprocedural register allocation for the WAM is presented
which is based on source-to-source transformations of an intermediary lan-
guage called Continuation Prolog. Continuation Prolog fills the conceptual
gap between Prolog source code and the underlying abstract machine. Our
approach does not require an analysis of the whole program. Only the def-
inition of a predicate must be analyzed, but not its use. For certain kinds
of predicates like DCGs no analysis is required at all. An implementation of
our approach has been integrated into the WAM code generation of SICStus-
Prolog. Our approach yields speedups up to 30% for existing benchmarks.

1 Introduction

Current Prolog implementations still lack many optimizations even for com-
mon applications like syntax analysis. Nonterminal e//0 illustrates the prob-
lem.

e −→ ”t”.
e −→ ”o”, e, e.

In a procedural language this is implemented with recursive descent. The
input string is a global variable which is updated destructively. In Prolog
the variable representing the input string is simulated with several different
logic variables since logic variables only represent a single state.

e([0′t |
Xs−−−→

Xs], Xs).

e([0′o |
Xs0−−−−−−−−−−−−→

Xs0], Xs) ← e(Xs0,
Xs1−−−−−−→

Xs1), e(Xs1, Xs).←−−−−−−−−−−−−−−−−−−−−−−−
Xs

These overheads can be observed in all Prolog machines. In most ma-
chines the variables are allocated in memory; memory must be initialized,
the binding of theses variables require superfluous trail checks. Eventually,
the different states of the input string are written into memory and read

1

back. This overhead is necessary even if the input string is simply passed
around. The procedural counterpart requires for the comparable task a sin-
gle memory location to represent the variable. Overheads for maintaining
the input string only occur if the input string is read. Evidently the imper-
ative implementation is more efficient than a Prolog implementation. While
current optimizing Prolog compilers reduce these overheads, they do not
remove them completely.

In previous work we have developed program transformations for Pro-
log [5] that are able to express certain optimizations which are not possi-
ble in the framework of fold/unfold [11]. Beside other applications, EBC-
transformations allow to express comparatively low level optimizations on
a source-to-source basis. Originally our transformations dealt with binary
logic programs [12] therefore restricting their scope of application to binary
Prolog systems. Recently our transformations were reformulated using a
new intermediary language called Continuation Prolog [6] (which can be
seen as a special case of Continuation Logic Programming [13]). With the
help of Continuation Prolog programs are optimized to serve both BinWAM-
and WAM-based systems. This paper focuses on WAM-based systems and
presents a new way for compiling Continuation Prolog programs into WAM-
code.
Limitations of fold/unfold. Traditional source-to-source transformations
are severely limited for many applications by using plain Prolog. Every
Prolog goal is seen independently of other goals. The context between goals
cannot be expressed adequately. Either two consecutive goals are merged
together completely (using definition and folding à la [7]) or they remain
separated. Quite often, as in the case of list differences there are circular
dependencies like in e//0 that are not resolvable by fold/unfold. For this
reason we use a variant of Prolog —Continuation Prolog— that is able to
express context between goals with ease.
Continuation Prolog. The meaning of a Continuation Prolog program
is given by contint/1. Continuation Prolog rules are represented by facts
←←/2. The only difference between Continuation Prolog and regular Prolog
is that a rule head can contain more than one element. An inference with
rulediff/2 is thus able to read several elements (with the goal append(Hs, Cs1,
Cs0)). This extension allows transformations that cannot be expressed with
traditional transformation systems which operate on the level of goals.

contint(C) ←
contint([C],[]).

contint(Cs,Cs).
contint([C|Cs0],Cs) ←

rulediff([C|Cs0], Cs1),
contint(Cs1,Cs).

rulediff(Cs0, Cs) ←
(Hs ←← Gs),
append(Hs, Cs1, Cs0),
append(Gs, Cs1, Cs).

rulediff spez([H|Cs1], Cs) ← % regular meta interpreter
([H] ←← Gs),
append(Gs, Cs1, Cs).

The relation between Continuation Prolog and Binary Prolog is straight-

2

forward. Each element C of a continuation Cs in Continuation Prolog corre-
sponds to a term BinCont in Binary Prolog. A translation into WAM-code
is given in subsequent chapters.

contlit to binlitsdiff(C, BinCont0,BinCont) ←
C =.. [F|Args],
append(Args,[BinCont],ArgsBinCont),
BinCont0 =.. [F|ArgsBinCont].

contlits to binlitsdiff([], BinCont,BinCont).
contlits to binlitsdiff([C|Cs], BinCont0,BinCont) ←

contlit to binlitsdiff(C, BinCont0,BinCont1),
contlits to binlitsdiff(Cs, BinCont1,BinCont).

contclause to binaryclause((Hs ←← Gs), (BH ← BG)) ←
contlits to binlitsdiff(Hs, BH, Cont),
contlits to binlitsdiff(Gs, BG, Cont).

Overview. Our approach to interprocedural register allocation is summa-
rized by the following predicate.

contprolog llprologallocated (CProg0, LLProg, Anns) ←
contprolog (CProg0, Anns), % heuristics
contprolog ebctransformed (CProg0,CProg, Anns), % Sect.2
contprolog llprolog (CProg, LLProg, Anns). % Sect.3

In Sect.2 we describe how a Continuation Prolog program (CProg0) is
first transformed with EBC-transformations. Sect.3 describes the transla-
tion from a Continuation Prolog program into a low-level Prolog program.
We note that not all results of EBC-transformations can be translated into
ll-Prolog. In order to reduce the nondeterminate search caused by contpro-
log ebctransformed /3 heuristics may be used (contprolog /2). This paper
deals only with EBC-transformations and the translation into low-level Pro-
log. Low-level Prolog is translated into SICStus’ WAM instructions which
may then be translated into emulator code or machine code [3].

Sect.4 presents a shortcut for DCGs. Sect.5 evaluates performance. Our
approach is compared to related work in Sect.6.

2 The transformation system

EBC- (equality based continuation) transformations transform a program
in Continuation Prolog into an operationally equivalent one. Also infinite
derivations and errors are preserved. The transformation formalism is di-
vided into three parts: equations providing alternative representations for
continuations, compilation of these equations into the program, simplifica-
tion of the compiled programs.

A continuation is a list of continuation elements. A subcontinuation s

3

is a sublist of continuation c where c = r · s · t. The symbol · denotes the
concatenation of two continuations. A rule in Continuation Prolog consists
of a continuation in the head and a continuation in the body.

2.1 Equations of continuations

EBC-transformations introduce new alternative representations of continua-
tions via equations. To some extent these equations correspond to definitions
in fold/unfold. Equations are of the form s=. t. Both s and t are continua-
tions (lists of continuation elements). With this equation every continuation
c where c = u · sθ · v is equivalent to d = u · tθ · v. For example, the equation
[e(Xs0,Xs)] =. [e1(Xs0), r(Xs)]. states that the new functors e1/1 and r/1
may serve as substitutes for e/2. The continuation [e(Ys0,Ys1), e(Ys1, Ys)
] may now be replaced by [e1(Ys0), r(Ys1), e1(Ys1), r(Ys)]. In this paper
we consider equations of the form

[old(a1, ...an, b1, ...bm)] =. [new1(a1, ...an), new2(b1, ...bm)]
where all ai and bi are distinct variables. These equations will split split up
a continuation into two separate parts. The second part is intended for a
predicate’s output arguments.

2.2 Compilation of equations

Equality over continuation is implemented with syntactic unification only.
Prior to execution, the equations are compiled into the program.
Compilation of goals. Continuations in the goals are never read but
are simply written. We are therefore free to replace any subcontinuation
that matches a given equation by the other side of the equation. With the
continuation equation u=. v the body c0 = r · s · t with s = uθ is translated
into c1 = r · vθ · t Remark that we are allowed to use the equations in any
direction desired.
Compilation of heads. The head of a clause reads and unifies continua-
tions. It must therefore be able to deal with all alternate representations of
a term. In general all possible rewritings of the heads have to be added to
the program. Since we restrict ourselves to equations of a very simple form,
the following shortcut is possible instead.

All heads are rewritten. For each equation
[old(a1, ...an, b1, ...bm)] =. [new1(a1, ...an), new2(b1, ...bm)]
the clause [old(a1, ...an, b1, ...bm)] ←← [new1(a1, ...an), new2(b1, ...bm)]
is added to the program. These clauses serve therefore as an interface from
the old representation to the new one.

2.3 Simplification of clauses

In all applications of EBC investigated so far a simplification step is required
after the compilation of equations. In this step redundancies in the program
are removed that have been made explicit by the introduced equations. The

4

conditions for simplification depend only on the equations E compiled in
the previous step and the clause to be simplified. No global analysis is
required to validate the simplification step. For the equations in this paper
the following simplification rule suffices.

A clause h · r←←b · r can be simplified to h←←b if r is a single continuation
element with all arguments being distinct variables and the variables in r do
not occur in h and b.

2.4 Example

The translation of arithmetical expressions (taken from [9], Fig. 3.2) will
serve as an example.

expr(I,T) −→
{integer(I)},
!,
{I = T}.

expr(A+B,T) −→
expr(A,TA),
expr(B,TB),
[’add’(TA,TB,T)].

Translation into Continuation Prolog. Every goal is mapped into a
single continuation element. Cuts do not need to be transformed into labeled
cuts because the scope for the cuts will not change during this particular
strategy.

[expr(I,T,Xs0,Xs)] ←←
[integer(I),

!,
I = T,
Xs0 = Xs

].

[expr(A+B,T,Xs0,Xs)] ←←
[expr(A,TA,Xs0,Xs1),

expr(B,TB,Xs1,Xs2),
Xs2 = [’add’(TA,TB,T)|Xs]

].

Regrouping of output unifications. Output unifications are grouped
into a single goal to simplify the splitting of output arguments. Instead of
defining a separate predicate for each such case, we use the goal =/2 instead.

[expr(I,T,Xs0,Xs)] ←←
[integer(I),

!,
[I,Xs0] = [T,Xs]

].

[expr(A+B,T,Xs0,Xs)] ←←
[expr(A,TA,Xs0,Xs1),

expr(B,TB,Xs1,Xs2),
Xs2 = [’add’(TA,TB,Tx)|Xs3],
[Tx,Xs3] = [T,Xs]

].

Splitting output arguments and simplification. The second argument
and the rest of the list difference are split into a separate continuation ele-
ment. Notice that any split of arguments is possible and correct. However,
only some of them will allow a subsequent simplification and will eventually
be translatable into WAM-code.

In both clauses the continuation r/2 is now redundant. It is simply read
by the head and written back in the last goal. We therefore remove these

5

redundant parts. Note that this simplification step is only possible if r/2
really contains output arguments. If r/2 would contain some terms in the
head, no simplification would be possible.

[expr(E,T,Xs0,Xs)] =. [expr1(E,Xs0), r(T,Xs)].
[[Tx,Xs0] = [T,Xs]] =. [=([Tx,Xs0]), r(T,Xs)].

[expr(E,T,Xs0,Xs)] ←←
[expr1(E,Xs0),

r(T,Xs)
].

[=([Tx,Xs0]), r(T,Xs)] ←←
[[Tx,Xs0] = [T,Xs]].

[expr1(I,Xs0),r(T,Xs)] ←←
[integer(I),

!,
=([I,Xs0]),
r(T,Xs)

].

[expr1(A+B,Xs0), r(T,Xs)] ←←
[expr1(A,Xs0),

r(TA,Xs1),
expr1(B,Xs1),
r(TB,Xs2),
Xs2 = [’add’(TA,TB,Tx)|Xs3],
=([Tx,Xs3]),
r(T,Xs)

].

The predicate is now ready for direct compilation into WAM-code. If
the generation of a binary Prolog program is desired, further transformation
steps are required [6].

[expr1(I,Xs0)] ←←
[integer(I),

!,
=([I,Xs0])

].

[expr1(A+B,Xs0)] ←←
[expr1(A,Xs0),

r(TA,Xs1),
expr1(B,Xs1),
r(TB,Xs2),
Xs2 = [’add’(TA,TB,Tx)|Xs3],
=([Tx,Xs3])

].

3 Compiling Continuation Prolog into WAM-code

Subset. Since the WAM uses a simple stacking regime for determinate
control flow, only a subset of Continuation Prolog can be directly translated
into WAM-code. The following Continuation Prolog programs are directly
translatable into WAM-code without using the heap for AND-control.

All functors of continuation elements are classified according to their
occurrence in the head.

6

1. Predicate functors. They only occur as the first element in the head.

2. Continuation functors. They occur only as the second element.

If a clause contains a continuation functor in its head, the body of the
clause must be empty. The continuation functor must be the same for all
clauses of the same predicate. For other clauses there is no restriction.
Low level built-ins. To keep our implementation simple by reusing the
WAM-code generator of SICStus (plwam), the translation to WAM-code is
not performed directly on Continuation Prolog programs. Instead, Continu-
ation Prolog programs are translated back into regular Prolog extended with
two new low-level built-ins. Both built-ins are of arbitrary arity.

’SINK’/n : ensures that all its arguments are located in the corresponding
argument registers. It must only occur as the last goal of a clause.
Code generation for ’SINK’/n is very similar to code generated for a
regular goal with LCO.

When there are no other regular goals, ’SINK’/n is translated into a
proceed instruction. Otherwise execute ’SINK’/n is generated. In this
manner also blocked goals are executed without affecting the n valid
registers.

’SOURCE’/n : ensures that all its arguments are using the corresponding
argument registers. It occurs in a clause only directly after a regular
goal (i.e., after a call instruction). Code generation is similar to head
arguments.

In an experimental extension to the SICStus-Prolog compiler these built-
ins have been integrated. Both built-ins are translated into the existing
WAM instruction set. It was not necessary to extend the WAM. While
’SINK’/n is very close to a regular goal, the ’SOURCE’/n built-in required
a more complex register allocation in the body of a clause.

The argument list of both built-ins consists of a list of decorated terms.
A dash means that the argument is undefined. A term decorated with the
structure +(X) means that the argument should be the value X. The following
predicate pop/1 ensures that the second argument will be set to the integer
8250 while the value of the first argument is arbitrary. When using pop/1
only the second argument (or none) may be used with ’SOURCE’/2. Our
transformation ensures the correct usage of these built-ins.

7

pop(china) ←
’SINK’(-,+(8250)).

pop(C,P) ←
pop(C),
’SOURCE’(-,+P).

pop void(C) ←
pop(C),
’SOURCE’(-,-). % P not needed.

Continuation Prolog to low-level Prolog. The translation of the Con-
tinuation Prolog subset to low-level Prolog is straight-forward. Predicate
functors are mapped into heads and goals. Each argument of a continuation
functor is mapped onto a different argument register. Continuation functors
in the head are mapped onto ’SINK’/n goals, while continuation functors in
the body are mapped onto corresponding ’SOURCE’/n instructions. As an
optimization, output unifications (=/1) at the end of a rule are translated
directly into ’SINK’/n goals.

[expr1(I,Xs0)] ←←
[integer(I),

!,
=([I,Xs0])

].
[expr1(A+B,Xs0)] ←←
[expr1(A,Xs0),

r(TA,Xs1),
expr1(B,Xs1),
r(TB,Xs2),
Xs2 = [’add’(TA,TB,T)|Xs],
=([T,Xs])

].

expr1(I,Xs0) ←
integer(I),
!,
’SINK’(+I,+Xs0).

expr1(A+B,Xs0) ←
expr1(A,Xs0),
’SOURCE’(+TA,+Xs1),
expr1(B,Xs1),
’SOURCE’(+TB,+Xs2),
Xs2 = [’add’(TA,TB,T)|Xs],
’SINK’(+T,+Xs).

Final example code. The effect of our transformation is summarized
below. For the simple rule, all superfluous instructions have been removed.
Only built-in calls remain. Also the recursive rule is improved significantly.
Only two instruction for moving values remain (marked with %%). All other
instructions are required because they read/create terms. The final program
is 30% faster (cf. Sect.5).
% Prolog code
expr(I, T, Xs0,Xs) ←
integer(I),
!,
I = T,
Xs0 = Xs.

% Original WAM

[builtin(integer(0),else)
,cutb
,get x val(1,0)
,get x val(2,3)
,proceed].

% Optimized WAM

[builtin(integer(0),else)
,cutb
,proceed].

% ll-Prolog
expr(I, Xs0) ←
integer(I),
!,
’SINK’(+I, +Xs0).

8

% Prolog code
expr(A+B,

T, Xs0,
Xs) ←

expr(A,TA,Xs0,Xs1),

expr(B,TB,Xs1,Xs2),
Xs2 = [

’add’(
TA,
TB,
T) | Xs].

% Original WAM
[get str x0((+)/2)
,allocate
,get y var(4,3)
,get y var(3,1)
,unify x var(0)
,unify y var(5)
,put y var(1,1)
,put y var(6,3)
,init([0,2])
,call(expr/4,7)
,put y val(5,0)
,put y first val(2,1)
,put y unsafe val(6,2)
,put y first val(0,3)
,call(expr/4,5)
,put y val(0,0)
,get list(0)
,unify temp var(0)
,unify y local val(4)
,get temp str(’add’/3,0)
,unify y local val(1)
,unify y local val(2)
,unify y local val(3)
,deallocate
,execute(true/0)].

% Optimized WAM
[get str x0((+)/2)
,unify x var(0)
,allocate
,unify y var(1)

,init([0])
,call(expr1/2,2)
,get y first val(0,0)%%

,put y val(1,0)%%
,call(expr1/2,1)

,get list(1)
,unify temp var(2)
,unify x var(1)
,get temp str(’add’/3,2)
,unify y local val(0)
,unify x local val(0)
,unify x var(0)
,deallocate
,execute(’SINK’/2)].

% ll-Prolog
expr1(A+B, Xs0) ←

expr1(A, Xs0),
’SOURCE’(+TA,+Xs1),

expr1(B, Xs1),

’SOURCE’(+TB,+[

’add’(
TA,
TB,
T) | Xs]),

’SINK’(+T,+Xs).

Blocked goals. SICStus-Prolog blocked goals are executed at call, execute
and heapmargin call instructions. At these points of execution allocation is
aware of all life registers. Therefore, no special precaution must be taken
in these cases. When a clause uses inline-built-ins at the end of a clause,
SICStus generates an execute true/0 instruction instead of proceed. In our
optimized clauses a call to a dummy predicate with higher arity is generated
instead (’SINK’/n).

Block declarations for optimized predicates are currently not implemented.
They can be simulated as follows. A test for the blocking condition is added
to the optimized predicate/2. In case of it being true the auxiliary predicate
blockable predicate/4 is called. The output arguments of the suspended goal
are passed back into the registers where they are expected to be by the callers
of predicate/2. In this manner both the calling conventions for blocked goals
and our optimized predicates can coexist.

% Simulating ← block predicate(-, ...).
predicate(I1, ...) ←

var(I1),
!,
blockable predicate(I1,..., O1,...),
’SINK’(+O1,...).

predicate(I1, ...) ←
... .

← block blockable predicate(-, ?, ?, ?).
blockable predicate(I1,..., O1,...) ←

predicate(I1,...),
’SOURCE’(+O1,...).

Limitations of EBC-register allocation. Many existing Prolog pro-
grams are written in a style that limits the application of our optimization.

9

Mostly this is due to the improper usage of cut and output unifications. The
nonterminal expr//2 (from [9], Fig. 3.2) illustrates the problem.

expr((X is Expr), Code) ←
phrase(expr(Expr, X), Code).

expr(V, V) −→ {var(V)}, !.
expr(I, I) −→ {integer(I)}, !.
expr(A+B, T) −→ expr(A, TA), expr(B, TB), [’add’(TA,TB,T)].
expr(A-B, T) −→ expr(A, TA), expr(B, TB), [’sub’(TA,TB,T)].
expr(A*B, T) −→ expr(A, TA), expr(B, TB), [’mul’(TA,TB,T)].
expr(A/B, T) −→ expr(A, TA), expr(B, TB), [’div’(TA,TB,T)].

In expr//2 the second argument cannot be identified as an output argument
because of the cut occuring after the last occurrence of the variable of the
second argument. By placing the output unification after the cut the second
argument becomes an output argument.

expr(V, T) −→ {var(V)}, !, {V = T}.
expr(I, T) −→ {integer(I)}, !, {I = T}.

4 Direct compilation of DCGs

Commonly DCGs are implemented by a preprocessing phase which maps
each grammar rule onto a predicate. The string or list the DCG describes is
represented with a list difference. All of these differences can be identified
with our transformation based analysis. The preprocessing, transformation
and register allocation phases can be bypassed by translating a grammar rule
directly into our intermediary language ready for WAM-code generation.

Each nonterminal of arity n is translated into a predicate of arity n + 1.
The string is allocated in the second argument to avoid interference with
first argument indexing. As an exception, for nonterminals of arity zero the
input string is put into the first argument. The output argument is always
allocated in the second argument (’SINK’(-,+Xs)).

a −→
[].

b(1) −→
[].

c(1,2) −→
[].

a(Xs) ←
’SINK’(-,+Xs).

b(1, Xs) ←
’SINK’(-,+Xs).

c(1, Xs, 2) ←
’SINK’(-,+Xs).

10

qsorted([E|Es]) −→
{partition(Es,E,Es1,Es2)},
qsorted(Es1),
[E],
qsorted(Es2).

qsorted([]) −→
[].

qsorted([E|Es], Xs0) ←
partition(Es,E,Es1,Es2),
qsorted(Es1, Xs0),
’SOURCE’(-,+[E|Xs1]),
qsorted(Es2, Xs1).

qsorted([], Xs0) ←
’SINK’(-,+Xs0).

phrase qsorted(Es, Xs0,Xs) ←
qsorted(Es, Xs0),
’SOURCE’(-,+Xs).

5 Benchmark results

Our transformation is particularly well suited to optimize differences. As
Taylor remarks [15] “they are not prevalent in benchmark programs but
skilled Prolog programmers make significant use of them.” We present there-
fore both artificial predicates which show the potential of our optimization
for differences as well as those of the existing benchmarks, where our opti-
mization was applicable.

The transformations we applied are all mono-variant (each program point
is translated into a single corresponding program point). Therefore no code
duplication has taken place. In all of the examples the actual number of
WAM instructions has been reduced. Measurements were made under SIC-
Stus 3#3 on a i486 DX2-66 with 16MB RAM.

For each benchmark, up to four versions are measured. “orig”: the
original predicate; “modif”: a manually rewritten version to ensure stead-
fastness. In most of the cases these modifications were necessary to make
EBC-transformations applicable. “EBC”: using our optimizations; either
via transformations or via direct DCG-translations. “tuned”: further im-
provements that go beyond the optimizations in this paper. The speedup
factors compare our programs with the version “modif” (or “orig” where no
modification was necessary).
e and de are artificial programs to estimate the cost of handling differences.
In addition to the original list difference up to three additional differences
were added which are passed around without any modification. e generates
all possible sentences of length 19. de uses a version of e//0 to parse a given
sentence avoiding shallow backtracking.
qsort is a benchmark by D.H.D. Warren sorting a list of 50 given integers.
The sort predicate uses list differences for the description of the sorted list.
The differences are used in a rather unnatural manner: the end of the list
is computed first and then the beginning. The middle element can thus be
created with a put list instead of a get list instruction. In this manner no
trail testing is necessary in the body. But qsort/2 as it is cannot benefit from

11

our improved WAM code generation technique.
It seems to be more natural, however, to view sorting as describing the

structure of a sorted list. The nonterminal qsorted//1 (see above) describes
a sorted list. As a further improvement (tuned version) partition/4 was
rewritten as a grammar rule. In this manner the list to be sorted always
remains located in its dedicated register. All versions use a steadfast variant
of partition/4 which does not create any choice points.

orig.[ms] modif. EBC tuned

expr ×104 2075 1.53 1.20 1.30
fact 10× 103 156 - 1.06 2.05
fact 100× 103 3296 - 1.02 1.05
qsort ×103 2502 1.00 1.02 1.14
query ×102 3208 - 1.11 1.21
serial ×103 3346 - 1.00 1.16
te 19× 101 30342 - 1.20 -
e 19× 101 15722 - 1.09 -
e+1 19× 101 26424 - 1.55 -
e+2 19× 101 35130 - 1.99 -
e+3 19× 101 44294 - 2.29 -
de 19× 105 9156 - 1.27 -
de+1 19× 105 12150 - 1.67 -
de+2 19× 105 15336 - 2.13 -
de+3 19× 105 17346 - 2.41 -
d-divide 10× 104 2587 1.18 - 1.03
d-log 10× 104 905 1.55 - 1.00
d-ops 8× 104 1769 1.25 - 1.05
d-times 10× 104 2209 1.18 - 1.05
chat ×101 12980 - 1.23 1.31

expr was modified by moving output unification after cuts. The second
output argument was optimized in the tuned version.
d-* are the differentiation benchmarks. They were modified by placing
output unifications after cuts. While the EBC-strategy presented in this
paper is not directly applicable another more advanced technique has been
used to optimize one context argument.
serial: Only the predicate numbered/3 has been optimized. In the tuned
version registers were passed over before/2.
query: The tables pop/2 and area/2 have been transformed. Further some
output unifications were moved to allow the detection of another output
argument
chat: The parser of chat80. The original version is the well known pre-
expanded version. We wrote an alternate expansion for extraposition gram-
mars similar to the DCG expansion. In the tuned version some rules which
are not part of the extraposition grammar were integrated into the grammar.

12

6 Related Work

Comparison with mode analysis. Systems depending on mode analysis
cannot obtain comparable results for the following reasons. In mode analysis
“the mode of a predicate in a program indicates how its arguments will be
instantiated when that predicate is called” [2]. Our approach is independent
of the instantiations at calling time. Only the definition of a predicate (and
the definitions of the predicates used herein) can influence the outcome of
our analysis. Our approach is therefore more robust since separate or in-
cremental analysis is possible. Furthermore in mode analysis the “modes
are meaningful only when the control strategy has been specified” [2]. Our
transformation optimizes the case of traditional Prolog control strategy but
does not preclude different control strategies. Earlier we showed how block-
declarations can be added to an already transformed program.
Aquarius Prolog. Van Roy’s Aquarius Prolog [9] performs interproce-
dural register allocation with the help of uninitialized register conversion
(Chapter 5.4.2). Arguments holding new unaliased variables at calling time
are not initialized and are passed back in registers (uninit reg) if last call op-
timization (LCO) can be preserved. However this optimization applies only
to arguments which are always uninitialized variables. If they are initialized
(as is the case for DCGs where the rest of the list difference is set to nil) no
optimization can be observed. The overheads are 23%, 51%, and 86% for
1, 2, and 3 additional differences. Only by manually moving the unification
with nil after the actual goal some optimizations can be observed. But even
in this case an overhead of 3%, 5%, and 19% remains. We note that moving
certain unifications after a goal may change the meaning of a program. A
separate analysis is necessary to ensure that such a transformation is valid.

This contrasts clearly to EBC where optimizations are independent of the
actual usage. In summary we can conclude that the benefits of integrating
our approach into the highly optimizing Aquarius compiler would be higher
speed and less sensitivity of the optimizer towards a predicate’s use.

additional differences
t[ms] +1 +2 +3

init de 1434 1.23 1.51 1.86
uninit de 1433 1.03 1.05 1.19

init e 2808 1.27 1.58 1.88
uninit e 2160 1.01 1.02 1.05

Overheads for differences in Aquarius

Output value placement. Bigot, Gudeman and Debray propose to allo-
cate output arguments in registers [1] and present a cost model for guiding
allocation. In our setting many of the programs like p/2 cannot be optimized
directly. As Debray remarks “last call optimization (LCO) often interferes
with interprocedural register allocation”. Most of these cases do not oc-

13

cur in the context of our transformation, because EBC cannot detect these
opportunities directly.

← mode p(out,out).
p(X,Y) ← q(X,Y).
p(X,Y) ← q(Y,X).

However, by making output unification in the second clause more explicit,
our transformations could be applied, provided that both arguments of q/2
are actually output arguments. Only then (when LCO is already lost), EBC
is able to optimize the program.

p(X,Y) ← q(X,Y).
p(X,Y) ← q(YOut,XOut), X = XOut, Y = YOut.

Destructive updates. Tarau, Dahl, and Fall implement DCGs as HAGs
(Hidden Accumulator Grammars) using backtrackable (on forward recur-
sion destructive) assignment [13]. They extended the underlying abstract
machine with new instructions whereas our approach does not require any
modification on that level. It seems that HAGs make coroutining signifi-
cantly more complex than our approach because in addition to registers all
hidden states must be taken into account. One potential merit of hidden
states is that they are trailed selectively instead of requiring space in each
choice point. On the other hand each update of a hidden state now re-
quires extra trail checking (and maybe also time stamping). Our approach
produces the same effect if the underlying WAM uses register trailing.

Conclusion

We have presented a program transformation which can be used to perform
interprocedural register allocations on both the WAM and the BinWAM. In
future work we plan to support formalisms that go beyond simple DCGs like
EDCGs [8] and develop guiding heuristics to direct the allocation phase.

Acknowledgments

This work was done within INTAS-93-1702.

References

[1] P. A. Bigot, D. Gudeman, S. K. Debray. Output Value Placement in
Moded Logic Programs. 175–189 ICLP 1994, MIT Press.

[2] Saumya K. Debray, David Scott Warren. Automatic Mode Inference
for Prolog Programs. 78–88 SLP 1986, IEEE.

14

[3] R. C .Haygood. Native Code Compilation in SICStus Prolog. 190–204
ICLP 1994, MIT Press.

[4] U. Neumerkel. Specialization of Prolog programs with partially static
goals and binarization, Dissertation. Inst. für Computersprachen, TU-
Wien, 1992.

[5] U. Neumerkel. A Transformation Based on the Equality between Terms.
LOPSTR 1993, Springer-Verlag.

[6] U. Neumerkel. Continuation Prolog: A new intermediary language for
WAM and BinWAM code generation. ILPS 95 Workshop on Sequen-
tial Implementation Technologies for Logic Programming Languages,
Portland December 1995.

[7] M. Proietti, A. Pettorossi. Unfolding-definition-folding in this order, for
avoiding unnecessary variables in logic programs. PLILP 1991, LNCS
528, 347–358, Springer-Verlag.

[8] P. v. Roy. A Useful Extension to Prolog’s Definite Clause Grammar
Notation. ACM SIGPLAN Notices, Vol. 24, No. 11, 1989, 132–134.

[9] P. v. Roy. Can Logic Programming Execute As Efficiently As Imperative
Programming? Diss., UC Berkeley, December 1990.

[10] T. Sato, H. Tamaki. Existential continuation. New Generation Com-
puting, 6(4):421–438, 1989.

[11] H. Tamaki, T. Sato. Unfold/fold transformation of logic programs. S.-Å.
Tärnlund, (Ed.), 2nd Int-l Logic Prog. Conf, 127–138, Uppsala, 1984.

[12] P. Tarau, M. Boyer. Elementary logic programs. PLILP 1990, LNCS
456, Springer-Verlag.

[13] P. Tarau, V. Dahl, A. Fall. Backtrackable State with Linear Assump-
tions, Continuations and Hidden Accumulator Grammars. ILPS 95
Workshop on Visions for the Future of Logic Programming, Portland
December 1995.

[14] J. Andrews, V. Dahl, P. Tarau. Continuation logic programming: The-
ory and Practice. ILPS 95 Workshop on Operational and Denotational
Semantics of Logic Programs, Portland December 1995.

[15] A. Taylor. High-Performance Prolog Implementation. Ph.D. diss.,
Univ. of Sydney, June 1991.

15

