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Abstract

Many Prolog programs are unnecessarily impure because of inadequate means to express syntactic in-
equality. While the frequently provided built-in dif/2 is able to correctly describe expected answers,
its direct use in programs often leads to overly complex and inefficient definitions — mainly due to the
lack of adequate indexing mechanisms. We propose to overcome these problems by using a new predicate
that subsumes both equality and inequality via reification. Code complexity is reduced with a monotonic,
higher-order if-then-else construct based on call/N. For comparable correct uses of impure definitions, our
approach is as determinate and similarly efficient as its impure counterparts.
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1 Introduction

Do Prolog programmers really have to choose between logical purity and efficiency? Even for
the most elementary notion of syntactic equality this question still remains unanswered. Today,
many Prolog programs consist of unnecessarily procedural constructs that have been motivated
by efficiency considerations blurring the declarative vision. To improve upon this situation we
need pure constructs that are of comparable efficiency as their impure counterparts. We focus our
attention on the pure, monotonic subset of modern Prolog processors. The monotonic subset has
many desirable properties: it fits seamlessly with constraints, enables declarative debugging and
program slicing techniques (Weiser 1982; Neumerkel and Kral 2002), and is directly compatible
with alternative search procedures like iterative deepening. Our effort aims into the same direc-
tion that Functional Programming took so successfully; away from a command-oriented view to
the pure core of the paradigm.

Many recent developments have facilitated pure programming in Prolog. In particular, the
widespread adoption of the higher-order built-in predicate call/N (O’Keefe 1984) together with
its codification (ISO/IEC 13211-1:1995/Cor.2 2012) has paved the way to yet unexplored pure
programming techniques. On another track, more and more Prolog processors are rediscovering
the virtues of syntactic inequality via dif/2.

The very first Prolog, sometimes called Prolog 0 (Colmerauer et al. 1973) already supported
dif/2. Unfortunately, the popular reimplementation Prolog I (Battani and Meloni 1973) omitted
dif/2 and other coroutining features. This system was the basis for Edinburgh Prolog (Pereira
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et al. 1978) which led to ISO-Prolog (ISO/IEC 13211-1 1995). After Prolog I, dif/2 was rein-
troduced in Prolog II; independently reinvented in MU-Prolog (Naish 1986) and soon imple-
mentation schemes to integrate dif/2 and coroutining into efficient systems appeared (Carlsson
1987; Neumerkel 1990). The major achievement was that the efficiency of general Prolog pro-
grams not using dif/2 remained unaffected within a system supporting dif/2. In this manner
dif/2 survived in major high-performance implementations like SICStus. However, it still has
not gained general acceptance among programmers. We believe that the main reason for this lack
of acceptance is that dif/2 does not directly deliver the abstraction that is actually needed. Its
direct use leads to clumsy and unnecessarily inefficient code. Its combination with established
control constructs often leads to unsound results. New, pure constructs are badly needed.

Contents. We first recall the deficiencies of Prolog’s if-then-else control constructs. Then the
hidden deficiencies of the pure definition of member/2 are exposed. A refined version is given
whose efficiency is subsequently improved with the help of reification and a new, pure and mono-
tonic if-then-else construct. Finally, we show how our approach permits to define more complex
cases of reification and compare it to constructive negation.

2 The declarative limits of Prolog’s if-then-else

Prolog’s if-then-else construct was first implemented in the interpreter of DEC10 Prolog around
1978 (Pereira et al. 1978); its compiler, however, did not support it. Subsequent implementations,
starting with C-Prolog and Quintus Prolog, adopted it fully which led to its inclusion into the ISO
standard.

For many uses, this construct provides a clean way to express conditional branching. These
uses all assume that the condition is effectively non-recursive and sufficiently instantiated to per-
mit a simple test. Some built-in predicates ensure their safe usage by issuing instantiation errors
in cases that are too general. For example, the built-in predicates for arithmetic evaluation and
comparison like (is)/2 and (>)/2 issue instantiation errors according to the general scheme
for errors (Neumerkel and Triska 2009). But in general, problems arise. For its common use,
the construct ( If_0 -> Then_0 ; Else_0 ) contains three regular goals which is equiva-
lent to ( once(If_0) -> Then_0 ; Else_0 ). The first answer of If_0 is taken, and all
subsequent answers are discarded. The if-then-else has thus similar problems as a commit op-
erator. And even the “soft cut”-versions if/3 and (*->)/2 of SICStus and SWI respectively,
expose the same problems as Prolog’s unsound negation. MU-Prolog (Naish 1986) provided an
implementation of if-then-else that delays the goal If_0 until it is ground. While sound, such an
implementation leads to many answers with unnecessarily floundering goals. Consider the goal
[] = [E|Es] which is not ground and thus leads to floundering. Even for the cases where this
construct works as expected, we still suffer from the lack of monotonicity.

3 What’s wrong with member/2?

Already pure definitions expose problematic behaviors that ultimately lead to impure code. Con-
sider member/2:

member(X, L) is true if X is an element of the list L.

The common actual definition is slightly more general than above since L is not required to be
a list. Certain instances of partial lists like in the goal member(a, [a|non_list]) succeed as
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well. Such generalizations are motivated by efficiency reasons; the cost for visiting the entire list
to ensure its well-formedness is often not acceptable. The complete definition of member/2 can
thus be described as:

member(X, L) is true iff X is an element of a list prefix of L.

member(X, [X|_Es]).

member(X, [_E|Es]) :-

member(X, Es).

?- member(1, [1,2,3,4,5]). ?- member(1, [1,2,1,4,5]).

true true

; false. ; true

; false.

Above, lines starting with ?- show queries followed by their answers—similar to SWI’s top
level shell. Alternative answers are separated by ;. An alternative answer ; false. indicates
that Prolog needed further computation to ensure that no further answer is present. It is thus an
indication that Prolog still uses space for this query, even though no further answer exists. This
is thus a source of inefficiency we will address in this paper.

For its first answer the goal member(1, [1,2,3,4,5]) does not visit the entire list. Nev-
ertheless, upon backtracking, the entire list gets visited anyway. Thus, the well-meant gener-
alization does not lead to a more efficient implementation. For many goals with only a single
solution, member/2 leaves a choicepoint open that can only be reclaimed upon failure or with
non-declarative means like the cut. So while member/2 is itself a pure definition, its space con-
sumption forces a programmer to resort to impurity. A common library predicate to this end is
memberchk/2 which does not leave any choicepoint open at the expense of incompleteness. The
precise circumstances when this predicate is safe to use are difficult to describe. Many manuals
suggest that the goal needs to be sufficiently instantiated without giving a precise criterion. To err
on the safe side, cautious programmers need to add tests which are themselves prone to program-
ming errors and incur runtime overheads. In the following example an insufficiently instantiated
goal leads to an unexpected failure.

memberchk(X, Es) :- ?- X = 2, memberchk(X, [1,2]), X = 2.

once(member(X, Es)). X = 2. % expected solution

?- memberchk(X, [1,2]), X = 2.

false. % unexpected failure

4 A refurbished member/2

The definition of member/2 contains unnecessary redundancy. This becomes apparent when
rewriting the two clauses to an explicit disjunction. In the first branch X = E holds, but in the
second branch this may hold as well. This can be observed with the query member(1, [1,X])

shown below. The second answer X = 1 is already subsumed by the first answer true. The
branches of the disjunction are thus not mutually exclusive. By adding an explicit dif/21 to the

1 An ISO conforming definition is given in the appendix for systems without dif/2.
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second branch this redundancy is eliminated. Note that there are still possibilities for less-than-
optimal answers as in the query memberd(1, [X,1]) where the two answers could be merged
into a single answer.

member(X, [E|Es]) :- memberd(X, [E|Es]) :-

( X = E ( X = E

; member(X, Es) ; dif(X, E),

). memberd(X, Es)

).

?- member(1, [1,X]). ?- memberd(1, [1,X]).

true true

; X = 1. % redundant answer ; false.

?- member(1, [X,1]). ?- memberd(1, [X,1]).

X = 1 X = 1

; true. % ~ redundant ; dif(X, 1)

; false.

?- memberd(1, [1,2,3]).

true

; false. % leftover choicepoint

For sufficiently instantiated cases where memberchk/2 yields correct results, there are no re-
dundant answers for memberd/2. However, it still produces “leftover choicepoints” displayed as
; false. Space is thus consumed, even after succeeding. This is a frequent problem when using
dif/2 directly: it cannot help to improve indexing since it is implemented as a separate built-
in predicate. Indexing techniques have been developed both for the rapid selection of matching
clauses and to prevent the creation of superfluous choicepoints. They are even more essential
to pure Prolog programs which cannot resort to impure constructs like the cut. With dif/2 the
situation is similar: for the frequent case that X and E are identical, a choicepoint is created even
though we know that the goal dif(X, E) will fail upon backtracking. Further, programming
with dif/2 is rather cumbersome since all conditions have to be stated twice: once for the pos-
itive case and once for the negative. Therefore, for both execution and programmer efficiency, a
new formulation is needed.

5 Reification of equality

The disjunction X = E ; dif(X, E) is combined into a new predicate =(X, E, T) with an
additional argument which is true if the terms are equal and false otherwise. In this manner
the truth value is reified. An implementer is now free to replace the definition of (=)/3 by a more
efficient version. The simple ISO conforming implementation in the appendix is already able to
eliminate many unnecessary choicepoints for all cases where the terms are either identical or not
unifiable. A more elaborate implementation might avoid to visit the terms several times.
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=(X, X, true). memberd(X, [E|Es]) :-

=(X, Y, false) :- =(X, E, T),

dif(X, Y). ( T = true

; T = false,

memberd(X, Es)

).

Still, this direct usage of reifying predicates does not address all our concerns. On the one
hand there is an auxiliary variable for each reified goal and on the other hand many Prolog im-
plementations cannot perform the above disjunction without a leftover choicepoint. Both issues
are addressed using a higher-order predicate.

6 The monotonic if /3

Our new, monotonic if-then-else is of the form if_(If_1, Then_0, Else_0). The condition
If_1 is now no longer a goal but an incomplete goal, which lacks one further argument. That
argument is used for the reified Boolean truth value.

memberd(X, [E|Es]) :- ?- memberd(1, [1,X]).

if_( X = E % (=)/3 true. % fully deterministic

, true

, memberd(X, Es) ?- memberd(1, [1,2,3]).

). true. % fully deterministic

The implementation of if_/3 given in the appendix already avoids many useless choicepoints.
Our choice to use a ternary predicate in place of the nested binary operators was primarily moti-
vated by the semantic difficulties in ISO Prolog’s if-then-else construct whose principal functor
is (;)/2 and not (->)/2. This means that there are two entirely different control constructs
with the very same principal functor: 7.8.6 (;)/2 – disjunction and 7.8.8 (;)/2 – if-then-else
(ISO/IEC 13211-1 1995). To avoid this very hard-to-resolve ambiguity, we chose if_/3.

While our implementation of if_/3 in the appendix avoids the creation of many useless choi-
cepoints, the overall performance relies heavily on the meta-call call/N. For this reason, we
provide an expanding version that removes many meta-calls in if_/3. This goal expansion is
provided in library(reif). Table 1 compares two uses of memberchk/2 with their pure coun-
terparts. First, the letter ‘z‘ is searched in a list with all letters from a to z followed by a space.
The second test searches in a list of pairs of the form ‘Key-Value‘ the 10th element via a key
(lassoc). Note that the impure and pure version are slightly different. The impure version may
skip invalid elements that are not pairs ; the pure version will fail in such a case. The built-in
memberchk/2 and a version based on once(member(X,Xs)) are compared with pure and com-
plete versions, either using dif/2 directly ; or using if_/3 directly ; as well as the expansion
generated by library(reif). The measurements were performed with 106 repetitions of the
goals on an Intel Core i7-4700MQ 2.4 GHz using SICStus 4.3.2 and SWI 7.3.20. Using -O for
SWI did not produce any improvements. We believe that the current overheads of a factor of 2
to 3 could be further reduced if specialized built-ins for conditional testing and a better register
allocation scheme in SICStus were available.

Based on if_/3, many idiomatic higher-order constructs can be defined, now with substan-
tially more general uses. The commonly used predicate for filtering elements of a list, often called
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Table 1. Runtimes of impure vs. pure definitions

memberchk/2 memberd/2

system built-in once dif if /3 expanded

SICStus 0.690s 0.690s 1.620s 7.050s 1.380s
SWI 0.761s 1.890s 8.493s 10.053s 2.463s

lassoc/3 memberk/3

system built-in once — if /3 expanded

SICStus 0.470s 0.470s 3.060s 0.640s
SWI 0.591s 1.140s 4.641s 1.350s

include/3 or filter/3, is now replaced by a definition tfilter/3 using a reified condition.
The first argument of tfilter/3 is an incomplete goal which lacks two further arguments. One
for the element to be considered and one for the truth value. The following queries illustrate
general uses of this predicate that cannot be obtained with the traditional definitions.

tfilter(_CT_2, [], []).

tfilter(CT_2, [E|Es], Fs0) :-

if_(call(CT_2,E), Fs0 = [E|Fs], Fs0 = Fs ),

tfilter(CT_2, Es, Fs).

?- tfilter(=(X), [1,2,3,2,3,3], Fs).

X = 1, Fs = [1]

; X = 2, Fs = [2,2]

; X = 3, Fs = [3,3,3]

; Fs = [], dif(X, 1), dif(X, 2), dif(X, 3).

duplicate(X, Xs) :- ?- duplicate(X, [1,2,3,2,3,3]).

tfilter(=(X), Xs, [_,_|_]). X = 2

; X = 3

; false.

7 General reification

So far, we have only considered the reified term equality predicate (=)/3. Each new condition of
if_/3 requires a new reified definition. In contrast to constructive negation (Chan 1989; Drabent
1995), these definitions are not constructed automatically. To test for membership the following
reified definition might be used.

memberd_t(X, Es, true) :-

memberd(X, Es).

memberd_t(X, Es, false) :-

maplist(dif(X), Es).
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This definition insists on a well-formed list in the negative case. Contrast this to constructive
negation which considers any failing goal memberd(X, Es) as a valid negative case. Our def-
inition thus fails for memberd_t(X, non_list, T), that is, this case is neither true nor false.
Constructive negation would consider this a case for T = false. On the other extreme are ap-
proaches that guarantee that type restrictions are maintained. However, our definition happens to
be true for memberd_t(1, [1|non_list], true) — for efficiency reasons. A system main-
taining the list-type would fail in this case whereas we visit the list only for the very necessary
parts. It is this freedom between the two extremes of constructive negation and well-typed restric-
tions that permits an efficient implementation of above definition. In fact, the following improved
definition visits lists in the very same manner as the impure memberchk/2 — for comparable
cases. And for more general cases it maintains correct answers.

memberd_t(X, Es, T) :- l_memberd_t([], _, false).

l_memberd_t(Es, X, T). l_memberd_t([E|Es], X, T) :-

if_( X = E

, T = true

, l_memberd_t(Es, X, T) ).

firstduplicate(X, [E|Es]) :- ?- firstduplicate(1, [1,2,3,1]).

if_( memberd_t(E, Es) true.

, X = E

, firstduplicate(X, Es) ?- firstduplicate(X, [1,2,2,1]).

). X = 1.

?- firstduplicate(X, [A,B,C]).

X = A, A = B

; X = A, A = C, dif(C, B)

; X = B, B = C, dif(A, C), dif(A, C)

; false.

The following example shows how we deal with reification in the general case. Again, it guar-
antees a well-typed tree only for the negative case. In the positive case, the tree is visited only
partially. Note that the reified version on the right uses a reified version of disjunction. Instead of
(;)/2 the reified (;)/3 defined in the appendix is used. This reified version is now significantly
more compact than defining the positive and negative cases explicitly. In fact, it is close in size
to the positive case (treemember/2) alone.
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treemember_t(E, Tr, true) :-

treemember(E, Tr).

treemember_t(E, Tr, false) :-

tree_non_member(E, Tr). treememberd_t(_, nil, false).

treememberd_t(E, t(F,L,R), T) :-

treemember(E, t(F,L,R)) :- call(

( E = F ( E = F

; treemember(E, L) ; treememberd_t(E, L)

; treemember(E, R) ; treememberd_t(E, R)

). ),

T).

tree_non_member(_, nil).

tree_non_member(E, t(F,L,R)) :-

dif(E, F),

tree_non_member(E, L),

tree_non_member(E, R).

8 Conclusion

We have presented a new approach to improving the efficiency of pure programs using syntac-
tic inequality. Our solution to indexing dif/2 was to provide a generalized reifying definition
together with a monotonic if-then-else construct. In this manner the calls to the actual built-in
dif/2 are reduced to those cases that actually need its general functionality. In all other situa-
tions, the programs run efficiently without calling dif/2 and without creating many unnecessary
choicepoints.

Acknowledgements. The presented programs were publicly developed on comp.lang.prolog and
as answers to questions on stackoverflow.com.

2009-10-15 ISO-dif/2 comp.lang.prolog
2012-12-01 Reification of term equality stackoverflow.com/q/13664870
2014-02-23 memberd/2 stackoverflow.com/a/21971885
2014-02-23 tfilter/3 stackoverflow.com/a/22053194
2014-12-09 if_/3 stackoverflow.com/a/27358600

Further examples: stackoverflow.com/search?q=[prolog]+if_

Appendix A Appendix

The full library(reif) and the benchmarks (memberbench) are available at:
http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/sicstus

dif(X, Y) :-

X \== Y,

( X \= Y -> true ; throw(error(instantiation_error,_)) ).
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% :- meta_predicate(if_(1, 0, 0)).

if_(If_1, Then_0, Else_0) :-

call(If_1, T),

( T == true -> call(Then_0)

; T == false -> call(Else_0)

; nonvar(T) -> throw(error(type_error(boolean,T),_))

; /* var(T) */ throw(error(instantiation_error,_))

).

=(X, Y, T) :-

( X == Y -> T = true

; X \= Y -> T = false

; T = true, X = Y

; T = false,

dif(X, Y) % ISO extension

% throw(error(instantiation_error,_)) % ISO strict

).

’,’(A_1, B_1, T) :-

if_(A_1, call(B_1, T), T = false).

;(A_1, B_1, T) :-

if_(A_1, T = true, call(B_1, T)).
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