
Indexing dif/2

Ulrich Neumerkel1 and Stefan Kral2

1 TU Wien, Austria
ulrich@complang.tuwien.ac.at

2 Fachhochschule Wiener Neustadt, Austria
stefan.kral@fhwn.ac.at

Abstract. Many Prolog programs are unnecessarily impure because of
inadequate means to express syntactic inequality. While the frequently
provided built-in dif/2 is able to correctly describe expected answers,
its direct use in programs often leads to overly complex and inefficient
definitions — mainly due to the lack of adequate indexing mechanisms.
We propose to overcome these problems by using a new predicate that
subsumes both equality and inequality via reification. Code complexity
is reduced with a monotonic, higher-order if-then-else construct based on
call/N. For comparable correct uses of impure definitions, our approach
is as determinate as its impure counterparts.

1 Introduction

Do Prolog programmers really have to choose between logical purity and effi-
ciency? Even for the most elementary notion of syntactic equality this question
still remains unanswered. Today, many Prolog programs consist of unnecessar-
ily procedural constructs that have been motivated by efficiency considerations
blurring the declarative vision. To improve upon this situation we need pure
constructs that are of comparable efficiency as their impure counterparts. We
focus our attention on the pure, monotonic subset of modern Prolog processors.
The monotonic subset has many desirable properties: it fits seamlessly with con-
straints, enables declarative debugging and program slicing techniques [6, 14],
and is directly compatible with alternative search procedures like iterative deep-
ening. Our effort aims into the same direction that Functional Programming
took so successfully; away from a command-oriented view to the pure core of the
paradigm.

Many recent developments have facilitated purer programming in Prolog.
In particular, the widespread adoption of the higher-order built-in predicate
call/N together with its codification [17] has paved the way to a new uncharted
territory of pure programming techniques. On another track, more and more
Prolog systems are rediscovering the virtues of syntactic inequality via dif/2.

The very first Prolog system, sometimes called Prolog 0 [1], already supported
dif/2. Unfortunately, the popular reimplementation, Prolog I, omitted dif/2

and other coroutining features [2]. This system was the basis for Edinburgh Pro-
log [4] which led to ISO-Prolog [12]. Later, dif/2 was reintroduced in Prolog II;

2

independently reinvented in MU-Prolog [8] and soon implementation schemes
to integrate dif/2 and coroutining into efficient systems appeared [9, 11]. The
major achievement was that the efficiency of general Prolog programs not using
dif/2 remained unaffected within a system supporting dif/2. In this manner
dif/2 survived in major high-performance implementations like SICStus-Prolog.
However, it still has not gained general acceptance among programmers. We be-
lieve that the main reason is that dif/2 does not directly deliver the abstraction
that is actually needed. Its direct use leads to clumsy and unnecessarily inef-
ficient code. Its combination with established control constructs often leads to
unsound results. New, pure constructs are badly needed.

Contents. We first recall the deficiencies of Prolog’s if-then-else control con-
structs. Then the hidden deficiencies of the pure definition of member/2 are
exposed. A refined version is given whose efficiency is subsequently improved
with the help of reification and a new, pure and monotonic if-then-else con-
struct. Finally, we show how our approach permits to define more complex cases
of reification and compare it to constructive negation.

2 The declarative limits of Prolog’s if-then-else

Prolog’s if-then-else construct was first implemented in the interpreter of DEC10
Prolog around 1978 [4]; its compiler, however, did not support it. Subsequent
implementations, starting with C-Prolog and Quintus Prolog, adopted it fully
which led to its inclusion into the ISO standard.

For many uses, this construct provides a clean way to express conditional
branching. These uses all assume that the condition is effectively non-recursive
and sufficiently instantiated to permit a simple test. Some built-in predicates en-
sure their safe usage by issuing instantiation errors in cases that are too general.
For example, the built-in predicates for arithmetic evaluation and comparison
like (is)/2 and (>)/2 issue instantiation errors. But in general, problems arise.
For its common use, the construct (If_0 -> Then_0 ; Else_0) contains
three regular goals which is equivalent to (once(If_0) -> Then_0 ; Else_0).
The first answer of If_0 is taken, and all subsequent answers are discarded. The
if-then-else has thus similar problems as any commit operator. And even the
“soft cut”-versions if/3 or (*->)/2 expose the same problems as Prolog’s un-
sound negation. MU-Prolog [8] provided an implementation of if-then-else that
delays the goal If_0 until it is ground. While sound, such an implementation
leads to many answers with unnecessarily floundering goals. Consider the goal
[] = [E|Es] which is not ground and thus leads to floundering. Even for the
cases where this construct works as expected, we still suffer from the lack of
monotonicity.

3

3 What’s wrong with member/2?

Even pure definitions expose problematic behaviors that ultimately lead to im-
pure code. Consider member/2:

member(X, L) is true if X is an element of the list L.

The common actual definition is slightly more general than the above defini-
tion since L is not required to be a list. Also certain instances of partial lists are
permitted. For example, the goal member(a, [a|non_list]) succeeds as well.
Such generalizations are often considered acceptable for efficiency reasons. The
idea is that the cost for visiting the entire list and ensuring its well-formedness
may be avoided. The complete definition of member/2 can thus be described as
follows:

member(X, L) is true iff X is an element of a list prefix of L.

member(X, [X|_Es]).

member(X, [_E|Es]) :-

member(X, Es).

?- member(1, [1,2,3,4,5]). ?- member(1, [1,2,1,4,5]).

true true

; false. ; true

; false.

For its first answer member/2 does not visit the entire list. Nevertheless, upon
backtracking, the entire list gets visited anyway. Thus, the well-meant generaliza-
tion does not lead to a more efficient implementation. For many goals with only
a single solution, member/2 leaves a choicepoint open that can only be reclaimed
upon failure or with non-declarative means like the cut. So while member/2 is
itself a pure and immaculate definition, its voracious space consumption forces
a programmer to resort to impurity. A common library predicate to this end is
memberchk/2 which does not leave any choicepoint open. However, the precise
circumstances when this predicate is safe to use are difficult to describe. Many
manuals suggest that the goal needs to be sufficiently instantiated without giving
a precise criterion. To err on the safe side, a cautious programmer needs to add
manual tests which are themselves prone to errors and incur runtime overheads.

memberchk(X, Es) :- ?- X = 2, memberchk(X, [1,2]), X = 2.

once(member(X, Es)). X = 2.

?- memberchk(X, [1,2]), X = 2.

false. % unexpected failure

4

4 A refurbished member/2

The definition of member/2 already contains unnecessary redundancy. This be-
comes apparent when rewriting the two clauses to an explicit disjunction. In the
first branch X = E holds, but in the second branch this may hold as well. This can
be observed with the query member(1, [1,X]). The second answer is already
subsumed by the first. The branches of the disjunction are thus not mutually
exclusive. By adding an explicit dif/23 to the second branch this redundancy is
eliminated. Note that there are still possibilities for less-than-optimal answers as
in the query memberd(1, [X,1]) where the two answers could be merged into
a single answer.

member(X, [E|Es]) :- memberd(X, [E|Es]) :-

(X = E (X = E

; member(X, Es) ; dif(X, E),

). memberd(X, Es)

).

?- member(1, [1,X]). ?- memberd(1, [1,X]).

true true

; X = 1. % redundant answer ; false.

?- member(1, [X,1]). ?- memberd(1, [X,1]).

X = 1 X = 1

; true. % ~ redundant ; dif(X, 1)

; false.

?- memberd(1, [1,2,3]).

true

; false. % leftover choicepoint

For sufficiently instantiated cases where memberchk/2 yields correct results,
there are no redundant answers for memberd/2. However, it still produces “left-
over choicepoints” displayed as ; false. Space is thus consumed, even after
succeeding. This is a frequent problem when using dif/2 directly: it cannot help
to improve indexing since it is implemented as a separate built-in predicate. In-
dexing techniques have been developed both for the rapid selection of matching
clauses and to prevent the creation of superfluous choicepoints. They are even
more essential to pure Prolog programs which cannot resort to impure constructs
like the cut. With dif/2 the situation is quite similar: for the frequent case that
X and E are identical, a choicepoint is created even though we know that the
goal dif(X, E) will fail upon backtracking. Further, programming with dif/2

is rather cumbersome since all conditions have to be stated twice: once for the
positive case and once for the negative. So for both execution and programmer
efficiency, a new formulation is needed.

3 An ISO conforming definition is given in the appendix for systems without dif/2.

5

5 Reification of equality

The disjunction X = E ; dif(X, E) is combined into a new predicate =(X, E, T)

with an additional argument which is true if the terms are equal and false

otherwise. In this manner the truth value is reified. An implementer is now free
to replace the definition of (=)/3 by a more efficient version. The simple ISO
conforming implementation in the appendix is already able to eliminate many
unnecessary choicepoints for all cases where the terms are either identical or
not unifiable. A more elaborate implementation might avoid to visit the terms
several times.

=(X, X, true). memberd(X, [E|Es]) :-

=(X, Y, false) :- =(X, E, T),

dif(X, Y). (T = true

; T = false,

memberd(X, Es)

).

Still, this direct usage of reifying predicates does not address all our concerns.
On the one hand there is an auxiliary variable for each reified goal and on the
other hand many Prolog implementations cannot perform the above disjunction
without a leftover choicepoint. Both issues are addressed using a higher-order
predicate.

6 The monotonic if /3

Our new, monotonic if-then-else, based on the recently codified call/N, is of
the form if_(If_1, Then_0, Else_0). The condition If_1 is now no longer a
goal but rather a partial goal, also referred to as “continuation”, which lacks one
further argument. That argument is used for the reified boolean truth value.

memberd(X, [E|Es]) :- ?- memberd(1, [1,X]).

if_(X = E % (=)/3 true.

, true

, memberd(X, Es) ?- memberd(1, [1,2,3]).

). true.

The implementation of if_/3 given in the appendix already avoids many
useless choicepoints. Our choice to use a ternary predicate in place of the nested
binary operators was primarily motivated by the semantic difficulties in ISO
Prolog’s if-then-else construct. In fact, the principal functor is (;)/2 and not
(->)/2. This means, that there are two entirely differing control constructs with
the very same principal functor: 7.8.6 (;)/2 – disjunction and 7.8.8 (;)/2 –
if-then-else [12]. To avoid this very hard-to-resolve ambiguity, we chose if_/3.
Based on if_/3, many next-to-idiomatic higher-order constructs can be defined,
now with substantially more general uses.

6

tfilter(_CT_2, [], []).

tfilter(CT_2, [E|Es], Fs0) :-

if_(call(CT_2,E), Fs0 = [E|Fs], Fs0 = Fs),

tfilter(CT_2, Es, Fs).

?- tfilter(=(X), [1,2,2], Fs).

X = 1, Fs = [1]

; X = 2, Fs = [2, 2]

; Fs = [], dif(X, 2), dif(X, 1).

duplicate(X, Xs) :- ?- duplicate(X, [1,2,2,1,3]).

tfilter(=(X), Xs, [_,_|_]). X = 1

; X = 2

; false.

7 General reification

So far, we have only considered the reified term equality predicate (=)/3. Each
new condition of if_/3 requires a new reified definition. In contrast to construc-
tive negation [10, 13], these definitions are not constructed automatically.

memberd_t(X, Es, true) :-

memberd(X, Es).

memberd_t(X, Es, false) :-

maplist(dif(X), Es).

This definition insists on a well-formed list in the negative case. Contrast
this to constructive negation which considers any failing goal memberd(X, Es)

as a valid negative case. Our definition fails for memberd_t(X, non_list, T),
that is, this case is neither true nor false. Constructive negation would consider
this a case for T = false. On the other extreme are approaches that guarantee
that certain type restrictions are maintained. However, our definition happens
to be true for memberd_t(1, [1|non_list], true) — for efficiency reasons. A
system maintaining the list-type would fail in this case whereas we visit the list
only for the very necessary parts. It is this freedom between the two extremes
of constructive negation and well-typed restrictions that permits an efficient im-
plementation of above definition. In fact, the following improved definition visits
lists in the very same manner as the impure memberchk/2 — for comparable
cases. And for more general cases it maintains correct answers.

memberd_t(X, Es, T) :- l_memberd_t([], _, false).

l_memberd_t(Es, X, T). l_memberd_t([E|Es], X, T) :-

if_(X = E

, T = true

, l_memberd_t(Es, X, T)).

7

firstduplicate(X, [E|Es]) :- ?- firstduplicate(1, [1,2,3,1]).

if_(memberd_t(E, Es) true.

, X = E

, firstduplicate(X, Es) ?- firstduplicate(X, [1,2,2,1]).

). X = 1.

?- firstduplicate(X, [A,B,C]).

X = A, A = B

; X = A, A = C, dif(C, B)

; X = B, B = C, dif(A, C), dif(A, C)

; false.

The following example shows how we deal with reification in the general case.
Again, it guarantees a well-typed tree only for the negative case. In the positive
case, the tree is visited only partially.

treemember_t(E, Tr, true) :-

treemember(E, Tr).

treemember_t(E, Tr, false) :-

tree_non_member(E, Tr). treememberd_t(_, nil, false).

treememberd_t(E, t(F,L,R), T) :-

treemember(E, t(F,L,R)) :- call(

(E = F (E = F

; treemember(E, L) ; treememberd_t(E, L)

; treemember(E, R) ; treememberd_t(E, R)

).),

T).

tree_non_member(_, nil).

tree_non_member(E, t(F,L,R)) :-

dif(E, F),

tree_non_member(E, L),

tree_non_member(E, R).

8 Conclusion

We have presented a new, pure approach to improving the efficiency of programs
using syntactic inequality. Our solution to indexing dif/2 was to provide a gen-
eralized reifying definition together with a monotonic if-then-else construct. In
this manner the calls to the actual built-in dif/2 are reduced to those cases that
actually need its general functionality; these are insufficiently instantiated cases
where syntactic equality or inequality cannot be determined. In all other situa-
tions, the programs run efficiently without calling dif/2 and without creating
many unnecessary choicepoints.

Acknowledgements. The presented programs where publicly developed on
comp.lang.prolog and stackoverflow.com

8

2009-10-15 ISO-dif/2 comp.lang.prolog
2012-12-01 Reification of term equality stackoverflow.com/q/13664870
2014-02-23 memberd/2 stackoverflow.com/a/21971885
2014-02-23 tfilter/3 stackoverflow.com/a/22053194
2014-12-09 if_/3 stackoverflow.com/a/27358600

Further examples: stackoverflow.com/search?q=[prolog]+if_

A Appendix

dif(X, Y) :-

X \== Y,

(X \= Y -> true ; throw(error(instantiation_error,_))).

% :- meta_predicate(if_(1, 0, 0)).

if_(If_1, Then_0, Else_0) :-

call(If_1, T),

(T == true -> call(Then_0)

; T == false -> call(Else_0)

; nonvar(T) -> throw(error(type_error(boolean,T),_))

; /* var(T) */ throw(error(instantiation_error,_))

).

=(X, Y, T) :-

(X == Y -> T = true

; X \= Y -> T = false

; T = true, X = Y

; T = false,

dif(X, Y) % ISO extension

% throw(error(instantiation_error,_)) % ISO strict

).

’,’(A_1, B_1, T) :-

if_(A_1, call(B_1, T), T = false).

;(A_1, B_1, T) :-

if_(A_1, T = true, call(B_1, T)).

References

1. A. Colmerauer, H. Kanoui, Ph. Roussel, R. Pasero. Un système de communication
homme-machine en Français, Rapport de recherche, CRI 72-18. U.E.R de Luminy.
Université d’Aix-Marseille. 1972-1973.

2. G. Battani, H. Meloni. Interpréteur du langage de programmation Prolog, Rapport
de D.E.A. d’Informatique Appliquée. Groupe d’Intelligence Artificielle, U.E.R. de
Luminy. Université d’Aix-Marseille. 1973.

9

3. Ph. Roussel. Prolog, manuel de référence et d’utilisation. Groupe d’Intelligence
Artificielle de Marseille-Luminy. 1975.

4. L. M. Pereira, F. C. N. Pereira, D. H. D. Warren. User’s Guide to DECsystem-10
Prolog. 1978.

5. D. H. D. Warren. Higher-Order Extensions to Prolog - Are They Needed?, Ma-
chine Intelligence 10. 1982. Originally: International Machine Intelligence Work-
shop, Cleveland, April 1981, DAI Research Paper 154.

6. M. Weiser. Programmers Use Slices When Debugging. CACM 25(7): 446-452, 1982.
7. R. O’Keefe. Draft Proposed Standard for Prolog Evaluable Predicates. 1984. Copy:

http://www.complang.tuwien.ac.at/ulrich/iso-prolog/okeefe.txt
8. L. Naish. Negation and Control in Prolog. LNCS 238. 1986.
9. M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the WAM.

ICLP 1987.
10. D. Chan. An Extension of Constructive Negation and its Application in Coroutin-

ing. NACLP 1989.
11. U. Neumerkel. Extensible Unification by Metastructures. META’90. 1990.
12. ISO/IEC 13211-1:1995 Programming languages - Prolog - Part 1: General core.
13. W. Drabent. What is failure? An approach to constructive negation. Acta Infor-

matica 32(1):27-59, 1995.
14. U. Neumerkel, St. Kral. Declarative program development in Prolog with GUPU.

12th Workshop on Logic Programming Environments (WLPE), Copenhagen 2002.
15. U. Neumerkel. Lambdas und Schleifen in monotonen Logikprogrammen. KPS 2009.
16. U. Neumerkel, M. Triska. An error class for unexpected instantiations. ISO/IEC

JTC1 SC22 WG17 N226. 2010. http://www.complang.tuwien.ac.at/ulrich/iso-
prolog/error k

17. ISO/IEC 13211-1:1995/Cor 2:2012. Second Technical Corrigendum for Program-
ming languages - Prolog - Part 1: General core.

