
Declarative program development in Prolog with GUPU

Ulrich Neumerkel, Stefan Kral

Technische Universität Wien

• Programming environment for beginners

• New program development process

specification & implementation phase

• All phases are supported by diagnostic facilities

• Emphasizing notion of relation

1

GUPU

1,

2

GUPU

Gesprächs

1, 2,

2

GUPU

Gesprächsunterstützende

1, 2, 3,

2

GUPU

Gesprächsunterstützende Programmierübungs

1, 2, 3, 4,

2

GUPU

Gesprächsunterstützende Programmierübungsumgebung

1, 2, 3, 4, 5,

2

GUPU — explication

Gesprächsunterstützende Programmierübungsumgebung
environnment

1, 2, 3, 4, 5, 6,

2

GUPU — explication

Gesprächsunterstützende Programmierübungsumgebung

cours de← environnment

1, 2, 3, 4, 5, 6, 7,

2

GUPU — explication

Gesprächsunterstützende Programmierübungsumgebung

programmation de← cours de← environnment

1, 2, 3, 4, 5, 6, 7, 8,

2

GUPU — explication

Gesprächsunterstützende Programmierübungsumgebung

supportant ← programmation de← cours de← environnment

1, 2, 3, 4, 5, 6, 7, 8, 9,

2

GUPU — explication

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation → supporting

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation → supporting → programming

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation → supporting → programming → course

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation → supporting → programming → course → environment

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

2

GUPU — explication — explanation

Gesprächsunterstützende Programmierübungsumgebung

conversations des← supportant ← programmation de← cours de← environnment
Conversation → supporting → programming → course → environment

• Used since 1992
• Under continual development since 1991
• Original motivation: realize courses with a large number of students
• Eases assessment (marking) — instantaneous, automated pre-marking
• General attitude: Mark now, don’t delay it unto the end
• 9 weeks/about 80 (small) exercises
• Flexible low cost system for deadlines
• Simple to use — very simple interaction mode
• Consistent view of program
• Useless notions absent (files, shells, overlapping windows etc.)
• Side effect free. Pure, monotone subset of Prolog including constraints
• currently trilingual (German, French, English)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

2

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control.

•

•
•
•
•
• Conclusion:

1,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control

•

•
•
•
•
• Conclusion:

1, 2,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

•

•
•
•
•
• Conclusion:

1, 2, 3,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

•
•
•
•
• Conclusion:

1, 2, 3, 4,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer:

•
•
•
•
• Conclusion:

1, 2, 3, 4, 5,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

•
•
•
•
• Conclusion:

1, 2, 3, 4, 5, 6,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

•
•
•
• Conclusion:

1, 2, 3, 4, 5, 6, 7,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

• Programming techniques — currently no experience.

•
•
• Conclusion:

1, 2, 3, 4, 5, 6, 7, 8,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

• Programming techniques — currently no experience.

• Read predicates as English sentences — works only for very tiny programs.

•
• Conclusion:

1, 2, 3, 4, 5, 6, 7, 8, 9,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

• Programming techniques — currently no experience.

• Read predicates as English sentences — works only for very tiny programs.

• Selective reading of predicates — works also for larger programs.

• Conclusion:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

• Programming techniques — currently no experience.

• Read predicates as English sentences — works only for very tiny programs.

• Selective reading of predicates — works also for larger programs.

• Conclusion: If predicates are written, it is already too late.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

3

Challenge: Understanding relations

• easy to confuse with procedures

• Algorithm = Logic + Control. Often: Algorithm ≈ Control ⇒ Logic ≈ 0

• input/output:

What is the input/output of a predicate?

Answer: There is no input/output — not helpful.

• Naming: avoid imperative names — helps somewhat, but soon forgotten.

• Programming techniques — currently no experience.

• Read predicates as English sentences — works only for very tiny programs.

• Selective reading of predicates — works also for larger programs.

• Conclusion: If predicates are written, it is already too late.

How to focus on the declarative properties?
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

3

Extreme Programming

Lightweight, agile method developed by Kent Beck for Smalltalk.
Practice to Code Unit Test First Test program into existence!

• All code must have unit tests.

• All code must pass all unit tests before it can be released.

•When a bug is found tests are created.

• Acceptance tests are run often.

4

Extreme Programming

Lightweight, agile method developed by Kent Beck for Smalltalk.
Practice to Code Unit Test First Test program into existence!

• All code must have unit tests.

• All code must pass all unit tests before it can be released.

•When a bug is found tests are created.

• Acceptance tests are run often.

In LP tests are

•much easier to write ... than in traditional languages

•much more expressive ... —— “ ——

because of ...

4

Extreme Programming

Lightweight, agile method developed by Kent Beck for Smalltalk.
Practice to Code Unit Test First Test program into existence!

• All code must have unit tests.

• All code must pass all unit tests before it can be released.

•When a bug is found tests are created.

• Acceptance tests are run often.

In LP tests are

•much easier to write ... than in traditional languages

•much more expressive ... —— “ ——

because of logical variables.

• less specific: ← alldifferent(Xs).

• higher coverage: 6← alldifferent([X,X|]).

4

Focus on declarative properties in GUPU

• Tests: assertions

– Positive assertions: ← Goal should succeed

– Negative assertions: 6← Goal should fail

• Close integration: Tests are written into the program text

• All predicates must have assertions

• Errors are signaled immediately within the program text,
explanations based on slicing are offered

• Adding further assertions very easy

– Duplicate and modify existing assertion

– Offered by diagnostic facilities

• Tests are run very often: Upon every saving, all assertions are tested

5

Methodology for writing assertion tests

1. Start with the least specific test.
← alldifferent(Xs). There is at least a single solution, Xs is anything

2. Estimate cardinality of minimal possible set of answer substitutions.
If infinite, goal must not terminate.
6 ∞← alldifferent(Xs), false.

3. Go further to more specific tests.
← Xs = [,], alldifferent(Xs).

4. For every positive assertion, find a similar negative assertion.
6← Xs = [1,1], alldifferent(Xs).

5. Generalize negative assertions as much as possible.
6← Xs = [X,X], alldifferent(Xs).

6. Specialize positive assertions as much as possible.
← Xs = [1,2], alldifferent(Xs).

But, one problem remains...

6

Testing prior to coding

Biggest obstacles to testing prior to coding:

• Cumbersome to write tests containing lots of data

• Incorrect tests slows development

• No motivation to write tests since they might be wrong

• Adjusting tests to the program

Conclusion:

7

Testing prior to coding

Biggest obstacles to testing prior to coding:

• Cumbersome to write tests containing lots of data

• Incorrect tests slows development

• No motivation to write tests since they might be wrong

• Adjusting tests to the program

Conclusion:

•Attention span too large for beginners

Solution:

• Put learner into the position of testing predicates prior to writing them

7

Reference implementation — testing the tests

Assertions are tested against reference implementation.
Reference implementation is considered correct for

• unconditional success (no pending constraints)

• finite failure

Reference implementation is ignored for:

• (implementation related — reference implementation not perfect)

– exceptions

– computation takes too long/loops

– conditional success with constraints that cannot be resolved

• (specification related — relation is under-specified)

Signaled as exceptions or constraints. E.g.: child of/2

⇒ All procedural issues are ignored.
Marking system already counts correct assertions.

8

Diagnosis of incorrect negative assertions

• reason: there is a solution

• show solution in the form of a positive assertion

• try to make assertion as specific as possible

– show binding (answer substitution)

– try to ground remaining variables with constants any1, ...

6← Xs = [, , |], alldifferent(Xs).
@@ % != Should be positive!
@@ % Even this specialized assertion should be true
@@ ← Xs = [any0,any1,any2], alldifferent(Xs).

– try to ground fd-variables with some values

9

Diagnosis of incorrect positive assertions

• reason: there is no solution

• show a generalized goal in form of a negative assertion

• try to generalize assertion to better localize the error
← alldifferent([a,b,c,d,c,f]).
@@ % != Should be negative!
@@ % @ Generalized negative assertion
@@ 6← alldifferent([, ,c, ,c,]).
@@ % @ Further generalization
@@ 6← alldifferent([, ,V0, ,V0,]).
@@ % @ Generalization by goal replacement
@@ 6← alldifferent([V0, ,V0|]).

← [a,b,c,d] = [a,b,e,d].
@@ % != Fails as it should!
@@ % @ Generalized negative assertion
@@ 6← [, ,c|]=[, ,e|].
@@ % @ Generalization using dif/2
@@ 6← dif(V0,V1),[, ,V0|]=[, ,V1|].

10

Some revealing examples

code inconnu/2:

• Nothing is said about the relation except that you will only get information
about it via assertions

• Relation defined differently for everyone

Effects of testing with reference implementation

+ test coverage significantly better

+ more than twice as many assertions are written

+ almost no incorrect programs (i.e. automatic marking almost perfect)

+ students consider (and question) the example statements more closely

+ almost no student questions concerning example statements (most frequent
question previously: What is the output?)

+ (the very few) questions focus rather on the specification itself

+ more fun due to fast response

11

After coding: reading of programs

• traditional readings: declarative and procedural

• selective readings: use transformations to obtain slices (fragments)

generalization: delete goals

father(Father) ←
* male(Father),
child of(C, Father).

specialization: add goals (false/0: failure slice).

married to(Husband, Spouse) ← false,
husband spouse(Husband, Spouse).

married to(Spouse, Husband) ←
husband spouse(Husband, Spouse).

+ eases reading of larger programs

+ remains close to source code, simple presentation by hiding parts

+ no new formalism like proof trees, traces

+ works also with incomplete constraints

12

Slicing explanations

insufficiency (unexpected success): maximal failing generalization

explains data inconsistency and modeling errors

incorrectness (unexpected success): maximal specialization (with false/0)
that succeeds

non-termination: maximal non-terminating specialization

Common properties:

+ error in fragment implies error in original program

+ visible fragment has to be changed

+ no user-interaction (⇒ no debugging errors possible!)

? slicing or program modification ?

13

Viewers

• side effect free visualization of answer substitutions

• general form: ← Viewer <<< Goal.

• <<< can only be used within assertions, not allowed in rules

• most viewers are implemented side effect free within GUPU

• very few elementary viewers text, postscript

14

Problems searching for explanations of unexpected failure

• non-termination because of generalized fragments

→ analyse termination (cTI)

• complexity: sub-problem already NP-hard, no approximation possible

(Monotone Minimum Satisfying Assignment, Umans 1999)

→ search local minima, one by one (one test per line)

• labeling for generalized fragments often very expensive

→ adopt labeling strategy

Similar sub-problem: Explanations in PPC (Narendra Jussien)

• generalization of (dynamic) constraint system

• much more constraints (at runtime) than (static) program points

- more costly

- less readable — but contains more information

• uses a search interlaced with labeling (very interesting!)

15

