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Abstract. In this paper we discuss techniques to copy overlapping terms.
Starting from the classical Cheney-style copying algorithm, we present
several refinements that exploit compact terms where a structure’s last
argument overlaps with the following structure. Finally, a two pass al-
gorithm is presented that uses less auxiliary space and that exploits all
possible overlaps for finite terms. In spite of its using two passes, this al-
gorithm is comparable in speed to single pass algorithms. The presented
algorithms have been used and compared within BinProlog.1
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1 Introduction

Usage of copying algorithms. Algorithms for copying terms are used for
many purposes. In the case of a Prolog system copying is used for implementing
various predicates like setof/3, copy term/2 and lemmaing predicates as well as
assert/1. These predicates require so called non-destructive copying algorithms
which preserve the original term. Further, copying algorithms are often used for
garbage collection. In this case the original term can be discarded and so called
destructive copying can be used.

BinProlog. In this paper we consider adaptations of copying algorithms for the
term representation used in the BinProlog system. BinProlog is a C-emulated
Prolog system that uses a simplified WAM [7] called BinWAM [5] which executes
Prolog in a continuation passing style. The BinWAM uses also a simplified term
representation that has been adopted to support last argument overlapping [6].

Contents. In Section 2 presents the simple term representation used in the
BinWAM. Section 3 discusses algorithms for copying overlapping terms. Section
4 presents performance results in BinProlog.

1 URL: ftp://clement.info.umoncton.ca/pub/BinProlog



2 Term representation

We compare the simplified term representation of the BinWAM with the tradi-
tional structure copying representation used in the WAM. As the BinWAM uses
a continuation passing style to implement goals, it allocates more terms than
the traditional WAM. A compact representation of heap terms is therefore of
particular interest for the BinWAM. This representation is also of interest for
other structure copying Prolog systems.

Tag-on-pointer representation. Current structure copying Prolog machines
like the WAM use several pointer types to represent terms. Usually, at least three
pointer types are used. We call this representation tag-on-pointer representation.

1. reference or variable
2. pointer to a structure
3. pointer to a list, as an optimization for structure ./2

The term [f(X,a)] is represented as in Fig. 1.
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Fig. 1. Representation of the term [f(X,a)] in the WAM.

The specialized pointer type for lists is not strictly needed. Yet, most machines
implement this optimization. Usually, references are tagged by word alignment.
The other pointer tags are encoded in the lower bits. When creating a pointer,
a dedicated tag is added to the address.

Tag-on-data representation. The BinWAM uses a single pointer type. Point-
ers are word aligned so no extra tagging is needed. Only data that does not
contain pointers is tagged: functor blocks, atoms and integers.

1. reference, variable, or pointer to structure

In the case of the term [f(X,a)] the BinWAM requires 6 cells (Fig. 2), while
the WAM requires only 5.

Term manipulation for this simplified representation is quite similar to the
WAM, some differences must be observed for binding variables. By and large
the efforts are comparable to the WAM.
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Fig. 2. Representation of the term [f(X,a)] in the BinWAM.

Last argument overlapping. While the BinWAM does not provide a special-
ized representation for lists, it allows a more general optimized representation
useful for any structure. References to structures in the last argument of another
structure can be replaced by the structure itself. The WAM represents a list of
n elements by 2n memory cells. Fig. 3 shows the representation of the list [1,2,3]
in the classical WAM.
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Fig. 3. Representation of the list [1,2,3] in the WAM.

Other structures of arity 2 are encoded with a separate functor block indicating
the structures name and arity. To represent a list of n elements with an other
functor 3n memory cells are required (Fig. 4).
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Fig. 4. Representation of the term t(1,t(2,t(3,n))) in the WAM.

Since pointers in the BinWAM are untagged the last argument of a structure
can contain directly the next structure’s functor block (Fig. 5).

The BinWAM is able to represent a list of n elements with 2n + 1 cells.
However, to exploit this representation cells must be allocated in appropriate
order. Already allocated structures cannot exploit this optimization as show in
Fig. 6. In the best case, last argument overlapping can half a term’s size. For
example the term sn can be represented with only n+1 cells, whereas the WAM
requires always 2n cells. Fig. 7 shows the case n = 5.
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Fig. 5. Representations of the term t(1,t(2,t(3,n))) in the BinWAM.
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Fig. 6. Unexploited overlapping.

Adaptations for last argument overlapping. A few built-ins had to be
modified in order to read the new compact representation. Instructions creating
structures were modified to create overlapping structures if possible. Built-ins
that copy terms have been adapted as will be shown in the next section.

Last argument overlapping versus CDR-coding. Techniques for elimi-
nating pointers in data structures of symbolic programming languages are well
known. In particular, CDR-coding has been used in LISP-systems. In such sys-
tems, a CONS-cell does not contain the CDR-pointer to the next CONS-cell.
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Fig. 7. Representations of the term s(s(s(s(s(0))))) in WAM and BinWAM.



Instead, a special tag in the CAR indicates that the next CONS-cell is located
at the place of the CDR. CDR-coding has been investigated for Prolog in [3].
Since this technique requires additional effort for decoding pointers it is a good
candidate for hardware implementations.

In comparison to CDR-coding last argument overlapping is much simpler.
On the other hand the typical reduction of terms is also lower: CDR-coding
reduces a list of 2n cells to approximately n cells. The typical storage reductions
of last argument overlapping are smaller, typically less than 3n to 2n. For Prolog
systems, last argument overlapping is a more general optimization that applies
to any structure and requires no special tags. In particular, continuations profit
from our optimization. Optimizations of CDR-coding, like the preallocation of
storage for the simultaneous creation of several CDR-coded lists [4] does not seem
to be feasible for our technique. Modifications to copy-collection for linearizing
lists were already discussed by Baker [1] in the context of CDR-coding in LISP-
systems.

3 Copying algorithms

3.1 Breadth first copying

The classical algorithm of Cheney [2] has been adapted for the BinWAM’s terms
(Fig. 15). During copying, structures and variables are marked with a forward
references. Since all pointers in the BinWAM are untagged, following a refer-
ence chain is performed implicitly with the dereferencing operation DEREF2.
When the original term is no more required as in the case of garbage collection,
Cheney’s algorithm uses no auxiliary space. For non-destructive copying the for-
warding pointers in the original term must be trailed (CT TRAIL IT) such that
they can be removed after copying (UNWIND TRAIL). Non-destructive copying
requires thus auxiliary space equal to the number of forwarding pointers.

Worst case of breadth first copying. The term t(sn,sn) illustrates the defi-
ciencies of breadth first copying. This term requires in the best case 2+2(n+1) =
2n + 4 memory cells: n + 1 for each term sn and 2 cells for the structure t/2
which overlaps with its second subterm. Copying this term breadth first expands
the term to 3 + 2(2n) = 4n + 3 memory cells yielding an expansion ratio of 1 :
2. Thus, in the worst case, a simple Cheney copying algorithm doubles the size
of the copied term.

3.2 Last argument first copying

The adaptations of the simple Cheney style copying algorithm are very few (cf.
the bold parts in Fig. 15). When a structure is copied, the last argument is
checked for another uncopied structure. Only if there is none, the algorithm
resumes to the main loop, otherwise the algorithm continues copying with the
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Fig. 8. Breadth first copying vs. Last argument first and breadth first for t([a,b],[c,d]).

last argument. Many structures are now copied in an optimal manner, as e.g.
the term t([a,b],[c,d]) (Fig. 8).

This algorithm exploits all possibilities for last argument overlapping as long
as there are no shared subterms, that are referred to from both a last argu-
ment position and another position. Overlaps of structures that are referred to
from both a last argument position and another position are only copied opti-
mally, if the reference out of a last argument position happens to be copied first.
Otherwise, the overlap is not detected.

Worst case of last argument first copying. To construct the worst case
we take a term with the best compression rate (sn) and refer to each subterm
from a different position. Consider e.g. the term f(s1, s2, ..., sn−1, sn, 0) where
all common subterms are shared. The optimal representation requires 2n + 3
memory cells for all n > 0 : n + 2 for the functor f/n + 1 and n + 1 for the term
sn. In this case, all terms si 0 < i < n are represented as pointers to subterms
of sn (Fig. 9).
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Fig. 9. Optimal representation of f(s1, ..., sn, 0) for n = 6.

Every structure s/1 up to one can be accessed twice: once from the structure
f/n+1 and once from another structure s/1. In order to perform optimal copying,
the topmost structure representing sn should be copied first. However, a left-
to-right scan first copies s1, then s2 etc. All last argument overlaps are hence
destroyed. The resulting copy (Fig. 10) requires (n+2)+2n = 3n+2 cells. Thus



yielding an expansion ration of 1 : 2. Fig. 10 illustrates the case n = 5. Not that
changing the direction of the scan only causes a different term to be the worst
case.
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Fig. 10. Worst case after copying of f(s1, ..., sn, 0) for n = 6.

To avoid the premature copying of overlapping structures it would be best to
start copying non overlapping structures. Unfortunately such an approach seems
to be very costly since it seems to require considerable auxiliary space. Instead,
the algorithm in the next part simply avoids copying overlapping structures at
inappropriate places.

3.3 A mark & copy algorithm

Our algorithm is outlined in Fig. 11. The major part of our algorithm consists
of a marking and a copying phase. These phases detect overlapping structures
and delay their being copied by storing a reference to them. After copying the
delayed terms are reconsidered. In case of finite terms, all of the delayed terms
will be copied. In case of infinite terms a delayed structure is copied and the
marking and copying phase resumes.

term mc copy term(h,t,from,to,wam)
...

{ do
{ Phase 1: mark term

Phase 2: copy term
update delayed references
find uncopied references

}
while (there is an uncopied reference, choose an uncopied reference);
untrail forward references

}

Fig. 11. Outline of mark&copy



Phase 1: Marking. The primary purpose of the marking phase is to identify
candidates for overlaps. Note that not all structures that are referenced from a
last argument are overlaps. E.g. the term X = s(X) will be marked as a candidate,
yet an overlap cannot be realized.

Since a separate marking pass approximately doubles the execution time of
copying, we extended the simple marking algorithm to detect more information
about structures. In addition to detecting possible candidates for last argument
overlapping the number of references to a cell are counted as well. A two bit
reference count is used to distinguish between the states “unmarked” “marked
once” and “marked more than once”.

Functor blocks are marked using the following bits:

marked: true, if structure is referred to by at least one reference
marked multiply: true, if structure is referred to by more than one reference
lastarg referenced: true, if structure is referred to by a last argument

Phase 2: Copying. Copying uses the information collected in the marking
phase as follows:

1. For structures that are referred to only once (“marked multiply” is false)
no forward reference is created. Therefore there is also no need to trail this
forward reference, and untrail it after copying.

2. Structures are no more tested to be in old- or newspace. A structure in
newspace is not marked at all, whereas a structure in oldspace is always
marked.

3. Structures marked as “lastarg referenced” are not copied if copying would
not exploit overlapping. Instead the reference to this structure is stored on
the trail for later copying or updating.

Auxiliary space. The stack required in the marking phase is allocated in the
newspace, so auxiliary space is only created for forward references and delayed
references. The algorithm creates forward references for structures only if they
are referenced at least twice. For many small terms (as e.g. when using setof/3)
no auxiliary space is needed.

While mark & copy is optimal for finite structures, infinite structures are still
handled suboptimally. Argument overlaps remain unexploited if the only access
to the subterm is via an overlapping structure as in Fig. 12. In this case the
algorithm copies the structure potentially losing the possibility for overlaps.

Worst case for mark & copy. The worst case ratio of the previous algorithm
(2 : 3) is not reduced. Fig. 13 shows such a structure for n = 4. There are n cyclic
terms Ti of the form Ti+1 = s(f(Ti+1,Ti)). The innermost term T0=a. Therefore,
except of Tn all terms are subterms of other terms. All functors f/2 and all but
one functor s/1 are marked as overlaps. All n structures f/2 are referred to from
n external places. The term consists in the best case of (1+n)+(3n+1) = 4n+2
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Fig. 12. The simplest case of unexploited overlapping.

cells. Since all terms f/2 seen from outside are marked as overlaps, the first round
of the copying algorithm delays all copies. In the next round a term is chosen
to be copied in spite its being marked as an overlap. In case of an unfortunate
choice (all terms appear equal from outside) all overlaps are destroyed (Fig. 13).
The term now occupies (1 + n) + 5n = 6n + 1 cells.
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Fig. 13. Worst case for mark & copy for n = 4

4 Performance evaluation

The table Fig. 14 shows the times for copying 100 000 times the indicated term
on a on Sparc 10/20. Benchmark “nil” copies just the atom [] and shows the
calling overheads incurred. “list a” measures a list of atoms of given length.
“list a 16” corresponds to the average size of a term to be copied. “s1” is an
s(X)-term of indicated length. “f3” is a linear term with functor term3/3. When



the term’s arity increases our new algorithm deteriorates, since marking visits
all cells.

data n Cheney orig. Cheney overl. Mark & Copy

nil 0 520 1.00 520 1.00 520 1.00

list a 8 1440 1.00 1210 0.84 1420 0.99

list a 16 2270 1.00 1770 0.78 2240 0.99

list a 1024 119700 1.00 80170 0.67 102400 0.86

s1 8 1320 1.00 1070 0.81 1190 0.90

s1 16 2030 1.00 1490 0.73 1700 0.84

s1 1024 98640 1.00 56510 0.57 65930 0.67

term3 8 1560 1.00 1380 0.88 1720 1.10

term3 16 2480 1.00 2020 0.81 2810 1.13

term3 1024 134560 1.00 100390 0.75 149730 1.11

Fig. 14. Execution times (ms) for copying 100 000 times on Sparc 10/20
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This article was processed using the LATEX macro package with LLNCS style



term copy term(h,t,from,to,wam)
term h,t,from,to; stack wam;

{ term ct = h; term *TR=TR TOP;
SETREF(h++,t);
do
{ term t; cell val t;

t = ct; DEREF2(t,val t);
if (t == ct)
{}

else if (ATOMIC(val t)) SETCELL(ct,val t);
else if (INSPACE(t,from,h)) SETREF(ct,t);
else if (VAR(val t))
{ SETREF(ct,ct);

CT TRAIL IT(t); SETREF(t,ct); /* Forward reference */
}

else
{ SETREF(ct,h);

do
{ cell arity = GETARITY(val t);

SETCELL(h,val t);
CT TRAIL IT(t); SETREF(t,h); /* Forward reference */
if(h>to) OVERFLOW;
COPY CELLS(h,t,arity-1);
h += arity; t += arity;
DEREF2(t,val t);

}
while (COMPOUND(val t) && !INSPACE(t,from,h));
if (COMPOUND(val t)) SETREF(h++,t);
else SETCELL(h++,val t);

}
ct++;

}
while (ct < h);
UNWIND TRAIL(TR,TR TOP);
return h;

}

a

Fig. 15. Cheney style copying. Bold parts are adaptations for last argument overlap-
ping


