
Mechanisms for side-effect free I/O

Ulrich Neumerkel

Technische Universität Wien, Austria
ulrich@complang.tuwien.ac.at

Constraints, coroutining, and other advanced language features entered main-
stream Prolog through extensible unification via attributed variables. Still miss-
ing are I/O streams, originally developed in concurrent logic programming. They
give us first and foremostly side effect free input from files. Compared to func-
tional languages, side-effect free I/O hasn’t received the same attention in Pro-
log. Prolog programmers still have to rely on state-ridden language constructs
to perform I/O. Providing side-effect free I/O for Prolog, requires to resolve sev-
eral problems. In particular the presence of backtracking which we do not want
to sacrifice imposes significant restrictions. Our approach relies essentially on
four different elements. The ISO I/O model, DCGs, coroutining via freeze/2 and
a recent cleanup mechanism. While all of these elements are considered to be
well understood, it is their interaction that complicates the situation. For exam-
ple, the interaction of couroutining and DCGs forces us to reconsider commonly
held beliefs about the steadfastness of DCGs. The implicit freeing of resources
facilitated by the cooperation of DCGs and cleanup mechanisms requires sev-
eral adjustments to both. Further fine print is required to address asynchronous
events like interrupts, timeouts and resource errors.

We conjecture that a system needs all of the discussed mechanisms to provide
reliable and efficient side effect free I/O. This might be the reason why side
effect free I/O has not yet found broader acceptance. We will discuss current
implementations and focus on the challenges a system implementer has to face.


