
Better Termination for Prolog with Constraints

Markus Triska1, Ulrich Neumerkel1, and Jan Wielemaker2

1 Technische Universität Wien, Austria
{triska,ulrich}@complang.tuwien.ac.at

2 Universiteit van Amsterdam, The Netherlands
J.Wielemaker@uva.nl

Abstract. Termination properties of actual Prolog systems with con-
straints are fragile and difficult to analyse. The lack of the occurs-check,
moded and overloaded arithmetical evaluation via is/2 and the occa-
sional nontermination of finite domain constraints are all sources for in-
validating termination results obtained by current termination analysers
that rely on idealized assumptions. In this paper, we present solutions to
address these problems on the level of the underlying Prolog system. Im-
proved unification modes meet the requirements of norm based analysers
by offering dynamic occurs-check detection. A generalized finite domain
solver overcomes the shortcomings of conventional arithmetic without
significant runtime overhead. The solver offers unbounded domains, yet
propagation always terminates. Our work improves Prolog’s termination
and makes Prolog a more reliable target for termination and type anal-
ysis. It is part of SWI-Prolog since version 5.6.50.

1 Introduction

Termination plays a central role in Prolog programs. Prolog’s complex control
mechanism often taxes a programmer’s intuition about termination. Tools to
support both experts and beginners are therefore highly valuable and the devel-
opment of such systems has received considerable attention [8, 4, 12]. One of the
authors was particularly interested in developing termination tools for support-
ing beginners within the learning environment GUPU [14]. In a collaborative
effort, the termination inference system cTI [12] was developed that featured
not only a web interface but was designed to specifically meet the incremental
demands for an on-the-fly analyser by employing a strict bottom up approach.

Much to our chagrin, the resulting system soon showed the limitations of cur-
rent approaches for our original goals. cTI worked quite impressively for current
benchmarks but did not reflect the entire spectrum of termination properties
of actual Prolog implementations. cTI—like most other norm based approaches
[4]— was founded on some assumptions that are not true for existing Prolog
systems. As a consequence, the termination conditions inferred with cTI are not
literally applicable to the target system—at that time SICStus Prolog. We note
that these problems do not show in existing termination benchmarks, but are
frequently occurring in the incorrect programs beginners write. The source of



2 Markus Triska, Ulrich Neumerkel, and Jan Wielemaker

the problem is the lack of the occurs-check in existing Prolog implementations
giving way to rational trees that can no longer be mapped onto the integers.
While there are approaches to determine occurs-check freeness statically [6], as
well as finite trees [2] we finally chose to go for the maximum which is performing
the occurs-check dynamically.

With the addition of constraints to Prolog’s core language, new sources of
unforeseen nontermination opened, further complicating procedural reasoning.
The traditional is/2 predicate with its overloaded semantics posed even more
problems. To meet all these needs we implemented a new version of a generalized
finite domain solver. This library subsumes the functionality of integer arithmetic
and constraint programming, combines their strengths, and terminates always,
permitting better termination results.

Content. We first describe our new approach to the old occurs-check problem and
then discuss our improvement to clpfd to subsume is/2-functionality. Finally we
present our new always terminating implementation of clpfd.

2 Occurs-check

Most existing Prolog implementations use rational tree unification [5] to avoid
overheads caused by the occurs-check of finite tree unification. While rational
trees are an interesting domain in their own right, they are often an indication
for programming errors. For beginners, it is very common to accidentally confuse
assignment and unification. Goals like Xs = [X|Xs] are often written with the
intention to add to the list Xs an element. Also misunderstandings concerning
the scoping of variables lead to infinite terms. Exactly such cases are not covered
by existing norm based approaches that assume the finiteness of terms.

We added two new standard conforming unification modes that prevent the
creation of infinite terms. Apart from traditional occurs-check that fails silently,
a new mode was added to better localize attempts to create infinite terms. By
issuing ?- set_prolog_flag(occurs_check,error). at runtime all attempts
to create infinite terms are detected and an error is issued. In this manner all
programs are identified that create infinite terms. Also, most programs subject
to occurs-check (STO) are detected, that are ruled out by the ISO standard [10].

Our implementation tries to avoid the costly occurs-check scan for the most
frequent cases of passing variables. Current Prolog implementations allocate vari-
ables that do not occur within a structure in a separate storage area, mostly
known as the goal or environment stack. Those variables are unified in constant
time with structured terms, as they cannot be the subterm of a structure. In
this manner, most uses of difference lists and differences with other data struc-
tures do not require the occurs-check. The actual testing can be further reduced
taking into account that Prolog compilers emit specialised unification instruc-
tions where possible, based on its knowledge about the arguments involved in
unification. Only the cases of instructions of general unification are subject to
occurs-check. All other cases do not cause any overhead. As of version 5.7, all



Better Termination for Prolog with Constraints 3

overheads for handling the list differences of DCGs are completely removed for
an initial goal phrase/2. For phrase/3 there is a single occurs-check for each
solution found.

3 Overcoming is/2

Using is/2 in pure programs has many disadvantages. For one, is/2 works only
for certain restricted modes thereby limiting the relational view of a predicate.
This relational view permits to test programs more extensively—testing them
with generalized modes. Even if those generalized modes are not used in the
final application, they help to detect otherwise undiscovered problems. Consider
for example McCarthy’s “mysterious” 91-function. With the following query we
search for results different to 91.

mc_carthy_91(X, Y) :-
X #> 100, Y #= X - 10.

mc_carthy_91(X, Y) :-
X #=< 100, Z #= X + 11,
mc_carthy_91(Z, Z1),
mc_carthy_91(Z1, Y).

?- Y #\= 91, mc_carthy_91(X, Y).
Y in 92..sup,
-10+X#=Y,
X in 102..sup ;
(looping)

Attempts to emulate with is/2 different modes require the explicit usage of
var/1 and nonvar/1, two built-ins that lead frequently to errors due to forgotten
modes.

The overloading of integer and floating-point arithmetic is another source
of frequent errors with is/2. An accidentally introduced float might lead to
unexpected failures. Modeling without knowing whether or not a variable is a
float is not reliably possible, thereby weakening termination analysis [8].

For these reasons we propose to use in place of is/2 the corresponding #=/2
of clpfd and the corresponding comparison relations. To make this shift more
practical we removed the common limits of #=/2 to small integers and improved
execution for such simple moded cases. While using #=/2 in place of is/2 in-
curred overheads greater than two orders of magnitude for small loops, our
improved implementation is only about 30% slower than naive is/2. In this
manner, we obtain predicates that are simpler to type and that are not moded.

The original version of factorial/2 is not tail recursive due to the moded-
ness of is/2. The space for allocating the environments in the original version
is traded for allocating constraints on the global stack. factorial/2 now termi-
nates if either the first argument is finite, or the second argument is finite and
not equal zero.



4 Markus Triska, Ulrich Neumerkel, and Jan Wielemaker

factorial(0, 1).
factorial(N, F) :-

N #> 0,
F #= F0*N,
N1 #= N - 1,
factorial(N1, F0).

?- Y in 1..5, factorial(X,Y).
Y = 1,
X = 0 ;
Y = 1,
X = 1 ;
Y = 2,
X = 2 ;
false.

4 Terminating constraints

Current implementations of finite domain constraints are optimized for the tra-
ditional usage pattern of constraint satisfaction. First, variables get their asso-
ciated domains, then the constraints between variables are posted, and finally
labeling searches for actual solutions. In current implementations, the declara-
tion of a variable’s domain is just a simple goal. (Original systems required a
static declaration.) The extension from this limited view toward a general con-
straint systems over integers, a kind of CLP(Z), is straightforward.

By accepting variables without a finite domain, we open the door to nonter-
minating constraint propagation. Consider the query ?- X#>Y, Y#>X, X#>0.
Existing constraint solvers will try to reduce the domains until the maximal
domain value is encountered, then failing or yielding a representation error. We
therefore consider this case the same as genuine nontermination. Note that non-
termination does not only occur due to posting a constraint but also may happen
during labeling.

?- X#>Y, Y#>X, X#>B*Y, B in -1..0, labeling([],[B])
Termination within constraint propagation is ensured by propagating domain

changes in infinite domains only once. At the price of weakening consistency we
can now guarantee that clpfd and all unifications with constrained variables
terminate.

4.1 Observing termination

The notion of termination and nontermination are idealizations of actual ob-
servable behavior that lead to seemingly paradoxical situations. The query
?- X#>X*X. terminates rapidly in SICStus 3 with a representation error. Still, we
consider this a case of non-termination. For ?- abs(X)#<7^7^7,X#>Y,Y#>X. in



Better Termination for Prolog with Constraints 5

SWI, termination is not observable within reasonable time. However, we consider
this case terminating.

Another rather unintuitive consequence concerns the termination property
of the entire program. While our improvement guarantees termination for unifi-
cation and all clpfd-goals, and therefore might improve termination of the entire
program, there are cases where a stronger propagation that does not terminate
in the general case will nevertheless result in better termination of the entire pro-
gram. This may happen, if the stronger propagation results in failure preventing
an infinite loop, while terminating propagation yields inconsistency.

4.2 Ad hoc termination proofs

With an always terminating clpfd, we are able to perform some simple forms of
termination testing when using labeling. One frequent problem with larger con-
straint problems concerns the time span to wait for the first solution. Quite often
labeling is considered to be inefficient, when in reality the actual predicate defini-
tion that posts the constraints does not terminate. To avoid this situation we sep-
arate the actual relation from labeling. In place of the original predicate p/n we
define a new relation p_/n+1 (“core relation”) that contains an additional argu-
ment for the list of variables to be labeled. Consider for example as original query
?- queens(Ds). describing solutions for a given fixed length of Ds. This query is
now formulated as ?- queens_(Ds,Zs), labeling([],Zs). Suppose now that
the answer does not appear immediately. Should we wait for an answer? What, if
the query does not terminate? To better understand the termination properties
involved we can consider the following query. If ?- queens_(Ds,Zs), false.
terminates (by observation), we know also that the query followed by labeling will
terminate, since in our implementation labeling/2 is guaranteed to terminate.
We thus obtain a proof for termination by observing the termination of another
related predicate. In systems without our favorable termination property, a ter-
minating ?- queens_(Ds,Zs), false. does not constitute a termination proof
of the goal followed by a search with labeling/2.

4.3 Black-box testing

While developing and testing library(clpfd), it soon became evident that manual
testing and testing with given applications is not sufficient. We noted as one of
the most prominent coding errors the omission of certain rare cases of instanti-
ations. The current implementation in Prolog based on hProlog-style attributed
variables [7] does not guarantee any properties concerning the correctness of the
implementation. The concerns consistency and correctness must be dealt with
on the same level - thereby increasing the chance for errors. As one of the au-
thors experienced similar problems with other constraint implementations prior
to SWI, it was evident that a more systematic approach was needed. Existing
approaches to testing and specifying finite domain constraints [1] were also not
very attractive, as they require considerable effort for specifying the actual prop-
agation mechanism. Such complex specifications may again be a further source



6 Markus Triska, Ulrich Neumerkel, and Jan Wielemaker

of errors. We therefore focused on testing with strictly minimal information -
thereby minimizing demotivating cases of false alarms.

We concentrated on testing a fixed set of algebraic properties for small finite
domains. So far, all encountered correctness errors could be shown to violate
those properties. We illustrate our approach with an error located in this manner
(i3a#98). The query ?- X in 0..2, 0/X#=0. should succeed, but failed. Even
to the experienced constraint programmer it is not obvious by naively inspecting
this query what the correct result should be. The bug was located automatically
by detecting a difference between the following two queries:

?- X in 0..2, 0/X #= 0, X = 1.
?- X = 1, X in 0..2, 0/X #= 0.

The first query failed, the second succeeded. Evidently, there must be at least
one error—either in the first or second query, or in both. Most errors found are
related to the implementation of nonlinear constraints like general multiplication.
Also, sharing of variables was a frequent cause for errors. In total, more than
30 errors of this kind were found by systematically exploring a tiny slice of all
possible formulae.

For efficient testing, (rapid) termination of clpfd’s propagation is indispens-
able. This permits to test many queries simultaneously. On systems with nonter-
minating propagation, we would have to rely on timeout mechanisms to interrupt
certain queries that cannot be tested in this way.

4.4 Related work

SICStus Prolog [3] was the first system to generalize finite domain constraints
without sacrificing correctness. It uses small integers for domains but signals
domain overflows as representation errors and not as silent failures.

Built-in support for the occurs-check has been implemented with similar
techniques in Sepia Prolog [13] and its successor Eclipse Prolog [16].

5 Conclusions

The presented improvements constitute a more solid target for termination anal-
ysis than prior implementations. We hope that they will lead to the development
of more powerful analysers.

Acknowledgements. We would like to thank Philipp Kolmann of ZID for his
generous support on the Condor based [15] WINZIG-grid [11] at TU Wien that
we use to perform large scale tests.



Better Termination for Prolog with Constraints 7

References

1. K.R. Apt, P. Zoeteweij. An Analysis of Arithmetic Constraints on Integer Intervals,
Constraints 12(4). 2007.

2. R. Bagnara, E. Zaffanella, R. Gori, P. Hill. Boolean functions for finite-tree depen-
dencies. LPAR 2001.

3. M. Carlsson, G. Ottosson, B. Carlson. An Open-Ended Finite Domain Constraint
Solver. PLILP. 1997.

4. M. Codish, C. Taboch. A Semantic Basis for the Termination Analysis of Logic
Programs. JLP. 41(1), 1999.

5. A. Colmerauer. Prolog and Infinite Trees. Logic Programming, K.L. Clark, S.-
A. Tärnlund (eds), 1982.

6. L. Crnogorac, A. Kelly, H. Søndergaard. A comparison of three occur-check anal-
ysers. SAS 1996.

7. B. Demoen. Dynamic attributes, their hProlog implementation, and a first evalu-
ation, TR CW 350, Leuven, 2002.

8. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, A. Serebrenik. Automatic Termination
Analysis of Programs Containing Arithmetic Predicates. Electr. Notes TCI 30(1),
1999.

9. A. Faustino da Silva, V. S. Costa. The Design and Implementation of the YAP
Compiler, ICLP 2006.

10. ISO/IEC 13211-1 Programming languages - Prolog - Part 1: General core. 1995.
(7.3 Unification)

11. Ph. Kolmann. University Campus Grid Computing. Diploma thesis, TU Wien,
2005.

12. F. Mesnard, U. Neumerkel. Applying Static Analysis Techniques for Inferring Ter-
mination Conditions of Logic Programs. SAS 2001.

13. M. Meier. SEPIA: A Basis for Prolog Extensions. LPAR 1992.
14. U. Neumerkel, St. Kral. Declarative program development in Prolog with GUPU.

WLPE. 2002.
15. D. Thain, T. Tannenbaum, M. Livny. Condor and the Grid. In F. Berman, G. Fox,

A. Hey (ed.), Grid Computing: Making the Global Infrastructure a Reality. Wiley,
2003.

16. M. Wallace, St. Novello, J. Schimpf. ECLiPSe: A Platform for Constraint Logic
Programming, ICL systems yournal 1997.

17. J. Wielemaker. An Overview of the SWI-Prolog Programming Environment,
WLPE 2003.


