
Declarative Language Extensions for Prolog Courses

Ulrich Neumerkel
Technische Universität Wien, Austria

ulrich@complang.tuwien.ac.at

Markus Triska
Technische Universität Wien, Austria

Markus.Triska@tuwien.ac.at

Jan Wielemaker
Universiteit van Amsterdam, Netherlands

J.Wielemaker@uva.nl

Abstract
In this paper we present several extensions to support a more
declarative view of programming in Prolog. These extensions en-
able introductory Prolog courses to concentrate on the pure parts
of Prolog for longer periods than without. Even quite complex pro-
grams can now be written free of any reference to the more prob-
lematic constructs. Our extensions include an alternate way to han-
dle the occurs-check, efficient side-effect free I/O with DCGs, and
a uniform approach to integer arithmetic that overcomes the disad-
vantages of arithmetical evaluation and finite domain constraints,
but combines and amplifies their strengths. All extensions have
been included recently into the SWI-Prolog distribution1.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Constraint and logic lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features; K.3.2 [Computers and Education]: Computer and
Information Science Education

General Terms Design, Human Factors, Languages

Keywords Teaching Prolog, side-effect free I/O, occurs-check,
constraints

1. Introduction
The traditional approach to teaching Prolog codified in the late
1970s confronts the student with a collection of Prolog’s weak-
nesses and imperfections. Ad hoc control constructs, incorrect
implementations of negation and unification, side-effecting predi-
cates, and moded arithmetic are all covered by introductory Prolog
courses, obscuring the profound ideas behind. In fact, taking tradi-
tional Prolog, it is almost impossible to write a non-trivial program
without any significant violation of the pure logic programming
paradigm. In such a context, the learner has quite some difficulty
to see through all the accumulated archaisms the actual declara-
tive beauty. On the other hand, there has been significant progress
within Prolog systems overcoming its original deficiencies.

It is one of the biggest challenges in Prolog courses to remove
those thorny and distracting elements giving way to better under-
standing of the logic programming paradigm. As a first step in that
direction one might reconsider the course’s syllabus (Neumerkel

1 http://www.swi-prolog.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FDPE’08, September 21, 2008, Victoria, BC, Canada
Copyright c© 2008 ACM 978-1-60558-068-5/08/09. . . $5.00

1995) to cover pure monotonic programs in the beginning as
long as possible. This limits the first part to pure programs and
DCGs with numbers represented as terms in Peano arithmetic
style using0 ands/1. Pure monotonic programs have many ad-
vantages compared to impure or non-monotonic ones. They al-
low advanced diagnostic slicing-techniques (Neumerkel and Kral
2002) to explain various errors. Even procedural properties like
non-termination (Neumerkel and Mesnard 1999) can be succinctly
explained. Alternate execution strategies like iterative deepening
are also reserved to monotonic programs. We use such strategies
in situations where Prolog’s simple but efficient execution strategy
ends up looping.

For the above reasons, staying with monotonic programs is ben-
eficial. Unfortunately, monotonicity limits also applicability con-
siderably, since the only way to get feedback from such programs
are a shell’s answer substitutions. A possible way out, chosen by
one of the authors, was to develop a specialized programming envi-
ronment (Neumerkel and Kral 2002) that permits to display answer
substitutions in a side-effect free manner. This extended the cases
of interesting pure programs somewhat and permitted to integrate
many diagnostic programs. However, the shortcomings of this ap-
proach remain significant as the step from within the environment
to the outside is discouraging.

In this paper we consider another, complementary approach that
strengthens the pure parts of the Prolog language in general. The
proposed extensions can be used within or without an environment.
We enlarge Prolog’s pure monotonic parts to cover restricted forms
of side-effect free I/O in Sect. 3, as well as arithmetic that subsumes
even finite domain constraints in Sect. 4. But first, we reconsider in
Sect. 2 an often denied problem that already haunts beginners in
their pure programs.

2. The occurs-check remains a problem
Queries like?- X = s(X). should fail, as there is no finite term
that satisfies the equation. The unification algorithm employed re-
quires a separate test to ensure that a variable does not occur as
subterm of the term it should be bound to. This test is known as
occurs-check.

Most Prolog implementations do not include the occurs-check
within default unification for efficiency reasons. It is generally
perceived to be a non-issue. Quite in contrast to this commonly
held view, our experience in teaching shows that occurs-checks
help identify typical beginner’s errors. Further, termination results
from proof- or inference-systems based on norms over the natu-
ral numbers—the overwhelming majority of current systems, like
cTI (Mesnard and Neumerkel 2001), all assume that the analysed
programs only produce first order terms, and thus most probably
use unification with occurs-check. To profit from those advanced
tools, there is no way around. For all these reasons we developed a
new unification mode.

2.1 The occurs-check in ISO Prolog

In the end 1980s, when ISO commenced to standardize Prolog (ISO
1995), most Prolog systems—including SWI-Prolog—contained
an unreliable unification algorithm that sometimes worked, some-
times looped and sometimes aborted the entire Prolog system in
error. Given such “current practice” for the very core operation of a
programming language, ISO was faced with an almost unsolvable
task. The existing systems could not be ruled out—they represented
the overwhelming majority. Interest in adopting better unification
algorithms was low for fear of reduced speed (LIPS-ratings)—the
perceived selling argument at that time. It was a highly laborious
and time consuming effort to find a way out to define unification
around such undefinable behavior (Deransart 1990; Scowen 1990).
The solution consisted in identifying a set of programs not subject
to occurs-check—NSTO (Deransart et al. 1991) that can be reliably
executed on all systems, regardless of their imperfections. Unifica-
tions that are STO, are required to be performed with the built-in
predicateunify_with_occurs_check/2. For standard conform-
ing programs, the programmer must add manually such extra goals,
a tedious activity with no feedback about its outcome—be it suc-
cess or failure. Even worse, the NSTO-property is undecidable for
a given program. And to decide it for a single unification, an expen-
sive nondeterminate algorithm is required, that incurs in the worst
case exponential overheads (Deransart et al. 1991) compared to the
usually employed unification algorithms. This quite complex situa-
tion and the absence of tools to decide (at least partially) the NSTO-
property, persuaded Prolog implementers one by one, to swallow
the bitter pill and implement a reliably terminating unification al-
gorithm based on rational trees. In this manner, embarrassing bus
errors were avoided, but problems with semantics still remained.

Several studies concluded (Deransart et al. 1991; Apt and Pel-
legrini 1992) that many well-known Prolog programs are NSTO.
From these studies however, we can only conclude that the occurs-
check is not a problem for most final, correct programs.

2.2 Sources of STO programs

These conclusions do not hold for the many intermediary incorrect
states of a program prior to its completion. And even less for the
intermediary states beginners produce. There are several reasons,
why beginners produce erroneous STO-programs. The first is that
the concept of the logic variable is rather difficult to grasp for
students accustomed to imperative programming. Not surprisingly,
they try to re-assign values to the same variable. For example, goals
like L = [El|L] are written with the intention to add an element to
a list. A further reason frequently surfacing in more advanced parts
are misunderstandings concerning the nature of differences as they
appear in difference lists. While some of those errors are detectable
statically with an ad hoc analysis, the general case defies simple
minded approaches. We are thus left in a state of uncertainty about
the NSTO property of a program.

Apart from these errors, there are cases where the STO prop-
erty leads to correct but highly inefficient programs. Consider
pairmatrix/1 describing quadratic matrices of pairs.

pairmatrix(S) :-
maplist(same_length(S),S),
maplist(maplist(pair),S).

same_length(Xs, Xs).
same_length([_X|Xs],[_Y|Ys]) :-

same_length(Xs, Ys).

pair(_A-_B).
?- pairmatrix(M).
?- length(M,N), pairmatrix(M).

Ideally, pairmatrix/1 finds for each length the most general
quadratic matrix of pairs. The query?- pairmatrix(M). yields
with rational tree unification the solutionM = [] before ending up
in an infinite loop. When enabling unification with occurs-check
the situation is only slightly improved. A single further solution
M = [[_A-_B]] is found. Clearly, unification with occurs-check
did not help much to improve this case. It happens quite fre-
quently that programs with failing occurs-check end up in loops
(Neumerkel 1992).

Querying with a given length, results in the desired answers.
However, both unification modes get slow very quickly taking
about10n inferences. For the length of 8, occurs-check unifica-
tion requires more than one million inferences, and rational tree
unification even 715 million inferences.

It is just problems like these, that are very hard to locate—not
only for students. Our sophisticated termination analyzers are of
no help in this situation—they simply agree thatpairmatrix/1
terminates for every given length. The situation in this particular
case is even less intuitive, as execution with occurs-check is faster
than rational tree unification. Commonly it is assumed that the
occurs-check will incur overheads and not speedups. Silent failure
during occurs-check is evidently no viable alternative. To locate
the problem we need to know that there has been some unification
that failed due to the occurs-check. The reader is invited to try to
locate the error alone. In the appendix, we give an explanation to
the problem.

2.3 An error mode for unification

We solved this problem by implementing a new execution mode
that issues an error during those STO-unifications that are easy
to detect, signaling that the program is STO. In this mannerany
creation of an infinite term is prevented. With our new unification,
the problematic STO-situation in the example above is identified
after 5 inferences. Note that in this example a type system might
have helped us. However, to date, we are unaware of any type
system for Prolog that produces actual guarantees as type systems
do so reliably for functional languages.

Another kind of errors that are hard to locate and cannot even
be located with type systems are incorrect uses of differences like
the query?- phrase([1],Xs,Xs).Such cases correspond some-
what to infinite lists in pure functional programming languages.

2.4 ISO compliance

Our new execution mode differs from standard unification only in
cases where the standard has explicitly foreseen undefined cases,
cf. Note 3 of 7.3.4 (ISO 1995). It can be seen as a means to identify
STO cases fulfilling partially the “not required” test of Note 4
of 7.3.4: STO and NSTO are decidable properties for a single
unification. However processors are not required to include such
a test.

Another decision requiring justification concerns the exact er-
ror to produce. At the first glance, type errors seem to be the
most attractive. However, type errors in the sense of ISO (7.12.2
error classification clause b) assume that there isone incorrect
culprit. In our case of an attempted unification, this could only
be the resulting infinite term. But there are unifications that pro-
duce an error, but would fail with rational trees as for example
f(X,a) = f(s(X),b). Further, one central aim of this improved
unification is to prevent the creation of infinite terms. By trans-
mitting an infinite term for a type error, this guarantee would be
undermined.

Another error candidate is the representation error which is
foreseen for situations where an implementation defined limit
is breached. Again, the error is not able to represent two ar-
guments with arbitrary terms. As the error situation does not

fit into the existing standard errors, we use the new error term
occurs_check(TermA, TermB) where the arguments are the
terms prior to the attempted unification.

2.5 Implementation

For long, the occurs-check was avoided at any price (Colmerauer
1982)—and not without reason. Even very simple programs incur
significant overheads. We have put thus considerable effort into re-
ducing the overheads for the new occurs-check unification—many
tiny benchmarks are evenfaster than without and most variable-
term unifications are performed in constant time whereas general
occurs-check unification requires time linear in the size of the big-
ger term. Focusing on an efficient implementation was very impor-
tant as efficiency problems surface rapidly. To illustrate the over-
heads one faces, consider the minimal example of a grammar. The
nonterminalas//0 describes a sequence of the character a.

as --> [].
as --> "a", as.

For the above grammar, recent DCG-implementations (Moura
2008) will not incur any overhead due to occurs-check2. So recog-
nizing a sequenceas will take time linear to its length. However,
by simply reformulating this grammar to the form below, quadratic
overheads appear. For a sequence of thousand characters, the over-
heads between naive occurs-check and our implementation surpass
two orders of magnitude. In more realistic programs, these over-
heads are often higher due to more complex nesting and nondeter-
minism. Unnecessary overheads are caused by differences passing
the list back. As a rule of thumb, for every comma after a non-
terminal in a grammar rule, a superfluous occurs-check with cost
proportional to the remaining list is performed. With our optimized
occurs-check implementation, the passing of a given list in a DCG
does not perform any occurs-check to search the list.

as --> [].
as --> a, as.

a --> "a".

Despite all our efforts, overheads caused by occurs-check are
still considerable. For this reason this new safe execution mode
might remain reserved for learning, testing, and debugging. It is
definitely preferable to use it in place of the classical occurs-check
that results in silent failures and therefore leaves the programmer
in the unknown. It also helps to predict the behavior under rational
tree unification: If a goal does not produce an occurs-check error, it
will behave exactly the same way with rational tree unification.

2.6 Proving termination

Most existing systems for proving or inferring termination proper-
ties in Prolog programs like cTI (Mesnard and Neumerkel 2001) as-
sume that terms can be mapped onto the natural numbers according
to a given norm. This implies that only finite terms can be modeled.
Take as an example the most elementary norm known as term-size.
Here all constants are mapped to 0 and function symbols count as
1 plus the sum of the arguments’ sizes. The terms 0, s(0), t(s(0),0)
are thus mapped onto 0, 1 (1+0), and 2 (1+(1+0)+0) respectively.
The goals(0) = s(s(0)) would be mapped onto1 = 2. The
failure is thus evident even by investigating only the terms’ sizes.
Now consider the goals(X) = X which is mapped to1+X = X,
an equation without any solution in the natural numbers. From this
we conclude that the goals(X) = X does not have a solution. Cer-
tainly, this is not the case with rational tree unification. Here, this

2 Older DCG translations that used an auxiliary predicate’C’/3 for termi-
nal symbols had even here quadratic overheads.

goal will succeed withX bound to a term that cannot be mapped
consistently onto the natural numbers.

Our new execution mode shares all termination results with
the classical occurs-check mode. Therefore, we can take results of
termination inference literally.

2.7 Usage

Our new improved unification mode can be activated by putting the
directive :- set_prolog_flag(occurs_check,error). into
the startup file (.plrc or pl.ini). Alternatively, SWI-Prolog’s
unit-testing environmentplunit (Wielemaker 2006) identifies
STO-situations of all tests by comparing the results in the different
unification modes.

3. Pure I/O via DCGs
I/O in Prolog is the first big show stopper to more interesting pure
programs. There is no way around showing the deplorable side-
effecting predicates when we want to parse some file. These pred-
icates are the ideal attention-sink for students. Declarative reason-
ing simply does not work any more. The only debugging help for
students are tracers that reinforce a procedural viewpoint by show-
ing step-by-step the actual execution trace. Very quickly, the entire
declarative stance one had built in a week-long path is unlearned
within minutes. But even if we were willing to give up all purity,
side-effecting programs remain very much prone to errors, as we
have to fully understand and tame Prolog’s nondeterminism. What
did other languages do in that situation?

Pure declarative languages have no direct connection to the out-
side world. Their inner formalisms need to find their own mean-
dering track to reach that state-ridden world—most often a search
that is not obvious at its outset, as testified by the evolution of the
I/O system (Hudak et al. 2007) in the Haskell programming lan-
guage. When considering declarative languages with pure I/O, we
see three different approaches: streams/continuations, monads and
uniqueness-types. These approaches have been developed for func-
tional languages, concurrent logic languages, and a moded logic
language. Where Prolog differs so fundamentally, is its deep non-
determinism that we do not want to give up at any price. It makes a
big difference that this nondeterminism is built-in. If backtracking
would be provided in a monadic manner, things would be signif-
icantly simpler. This nondeterminism undermines the quasi single
threadedness properties implicitly present in all three approaches
and required to “do something”. While it is obvious that Clean’s
(Barendsen and Smetsers 1993) and Mercury’s (Somogyi et al.
1996) uniqueness-types guarantee single threadedness, this is also
true for the other approaches. A stream element can only be re-
duced once, regardless of the number of referents. It seems that
there is no way to perform general I/O operations as long as deep
nondeterminism is in play. We have therefore settled with less than
general interaction—I/O via DCGs on files (seekable devices). In
this manner we can preserve Prolog’s nondeterminism.

:- use_module(library(pio)).
... --> [] | [_],

?- phrase_from_file((..., "searched", ...), file).
?- phrase_from_file((...,"a"|...,"b"), file).
?- phrase_from_file((...,("a"|"b")), file).

Consider searching a file for a given string. The non-terminal
... (“ellipsis”) describes an arbitrary sequence of arbitrary length.
When we are interested in a particular string within a file, there
must be an arbitrary sequence before and after that string. The en-
tire file must be thus of the form(...,"searched",...). Li-
brarypio gives us access to pure I/O viaphrase_from_file/2

and phrase_to_file/2. SWI-Prolog performs all of the above
queries in constant space. Space requirements are thus indepen-
dent of the file’s size. Note that the second query above is a very
naive way to assure that the last character in a file is a or b. Our
naive formulation leads to two linear searches—still this opera-
tion runs in constant space. Quite symmetrically, output to a file
is provided withphrase_to_file(NonTerminal, Filename).
In many cases our pure formulations are comparable in efficiency
with direct side-effecting definitions.

Our approach to I/O is less powerful than the I/O systems in
other declarative languages, but powerful enough to keep introduc-
tory Prolog courses clean from traditional I/O. While functional ap-
proaches are able to cover the entire spectrum of I/O activities, and
are thus able to change and sense the world at the same time, we
only allow unidirectional reading and writing alone. On the other
hand, we allow in both parts full nondeterminism and profit from
efficient buffering techniques that make overheads vanish without
sophisticated compilation techniques. To make this approach ef-
fective, it was necessary to improve SWI-Prolog’s garbage collec-
tor (Wielemaker and Neumerkel 2008).

4. Uniform arithmetic
We have three different ways to represent and use natural numbers
in Prolog. The simplest way are terms in the style of Peano arith-
metic. Then, we have the moded built-in predicates likeis/2 and
its associated arithmetical comparison operators. Finally, there are
the finite-domain predicates that define a different set of relations
between integers. All three representations have certain strengths
and weaknesses. To simplify matters, we unified the last two.

While moded arithmetic and finite-domain predicates share
the same integers, their uses were originally quite orthogonal. In
moded arithmetic the entire expression must be ground at eval-
uation time but integers can be of arbitrary size. Finite domain
variables had originally (van Hentenryck 1989) to be defined using
ranges that were declared statically. At runtime no further change
(i.e. enlargement) to the declared range was possible. To change the
size of a problem the file had to be edited manually. Subsequent im-
plementations removed such strong restrictions step-by-step. One
of the most significant generalizations was achieved 1996 with the
first release of a finite domain system for SICStus Prolog (Carlsson
et al. 1997). The equality relation#=/2 could now be used in place
of is/2 for integers. Domains could be open (infinite), the restric-
tion for finite domains was removed for general relations and only
kept for labeling—the single place where this restriction makes
sense. Extending labeling to infinite domains would make labeling
nonterminating. For infinite domains,labeling/2 issues an in-
stantiation error, thereby enforcing termination. After a decade of
using this quite advanced implementation in Prolog programming
courses, a new implementation was created for SWI-Prolog that
built upon our decade of experience usingclpfd in programming
courses and further generalizes and improves the state of the art.

4.1 Extending domains

Domain limits are no longer restricted to small values (typically
below word sizes), but can be of arbitrary size, like in the query
?- abs(X) #=< 7^7^7. Traditional finite domain applications
will not profit from this extension, but it allows us to solve problems
that have been known rather in integer programming circles. For
example, the famous 7-11 problem3 already surpasses the limits of
SICStus on 32-bit systems. Also, this extension improves clpfd for
general multi-moded functions.

3 Attributed to Doug Brumbaugh but also to Don Edwards by (Pritchard and
Gries 1983). See also (Michalewicz and Fogel 1998) chapter III.

4.2 Subsuming is/2 efficiency-wise

To eradicate is/2 from introductory courses completely, clpfd con-
straints are now specialized for the simply evaluable integer cases.
For tiny integer intensive inner loops, clpfd’s overhead is now about
30% compared to a direct usage of is/2. Prior to this optimization,
overheads reached two orders of magnitude.

4.3 An always terminating clpfd

Termination within a finite domain constraint solver is trivially
guaranteed as long as all domains are finite. By allowing infi-
nite domains we gain significant expressibility but also may re-
ceive nonterminating propagation in return. Many clpfd-systems
do not terminate for cases likeX#>abs(X) or more generally
X#>Y,Y#>X,X#>=0. This is not a problem for classical finite do-
main applications, that where developed at a time when infinite
domains did not exist. However, it subverts or weakens termination
proofs (Mesnard and Neumerkel 2001). All provers assume that a
simple goal likeX = 1 will terminate, regardless of the constraint
store accumulated by previous goals. An analysis taking into ac-
count such irregularities in existing provers would have to involve
considerable complexity. It also makes explanations for nontermi-
nation more complex (Neumerkel and Mesnard 1999).

A frequent source of such “senseless” nonterminating con-
straints stems from misunderstandings of the nature of logical vari-
ables similar to cases requiring occurs-check, discussed in Sect. 2.
These misunderstandings result in equations with multiple occur-
rences of variables on both sides that have no solution but do not
terminate in many systems.

In SWI-Prolog’s clpfd-implementation all predicates terminate
always, regardless of the actual equations involved. A strict inter-
pretation of the ISO error model facilitates both monotonicity and
termination. This makes programming with constraints more pre-
dictable and helps to localize actual sources of nontermination (un-
related to clpfd). In particular, labeling always terminates. This per-
mits us to construct simple termination proofs for predicates using
labeling. Most predicates exploiting the actual constraint function-
ality consists of two parts: In the first called core-relation, the do-
mains of variables are posted and the actual constraints are estab-
lished. The second part contains the actual search using labeling.
The search is quite often a time consuming activity—direct obser-
vation of universal termination of the entire predicate is therefore
unrealistic. But testing for termination of the core-relation is realis-
tic. A terminating core-relation is a proof for universal termination
of the entire relation. Note that in systems with nonterminating uni-
fications such proofs are invalid.

4.4 Syntactic disambiguation

Using SICStus Prolog’s finite domain constraint solver in program-
ming courses, it soon became apparent that the syntactic choice
of operators added unnecessary confusion to students. The reifica-
tion operator#<= is often confused with and used in place of the
comparison#=<. This should come as no surprise since most pro-
gramming languages except Prolog denote “smaller or equal” with
<=, whereas Prolog uses=<. Typos like these cannot be reliably
detected with type systems as both are relations between integers.
Within SICStus we removed#<= which is symmetric to#=>. In
SWI, we took the liberty to rename all reification relations to#<==,
#<==>, and#==>.

4.5 Complete labeling for extrema

All preexisting implementations that provide maximization within
labeling provide only an incomplete implementation for labeling
extrema. In most cases only one (arbitrary) solution is produced.
Such an incomplete implementation causes difficulties similar to

those caused by the !-operator used to prune the search space. Writ-
ing a completed labeling procedure based on an incomplete one is a
relatively tedious task—definitely too difficult for beginners. How-
ever, for those rare cases where only a single solution should be
produced, committing our complete implementation to the first so-
lution is trivial.

5. Conclusions
We presented several improvements to Prolog programming espe-
cially well suited to dispose common impurities. We hope that the
presented libraries for Prolog available in the current SWI-Prolog
distribution will contribute to spread a purer and better program-
ming style within introductory Prolog courses.

A. An explanation for pairmatrix/1
The predicatepairmatrix/1 given in 2.2 shows in a prototypi-
cal situation how the absence and even the presence of the occurs-
check leads to a highly inefficient program that can easily be iden-
tified as STO. The program is a slight simplification of an actual
programming error. We used the higher-ordermaplist/2 to keep
the presentation short.

From outside, the user has the impression thatpairmatrix/1
is correctly defined as only correct solutions are shown. Also an
algorithmic debugger (Shapiro 1983) has no chance to locate the
error. To understand the problem we have to delve into the predi-
cate’s definition despite its correctness. The rule ofpairmatrix/1
is a conjunction of two goals. The first goal produces besides the
actual correct solutions also incorrect solutions some of which con-
tain infinitely nested lists. The second goal effectively eliminates all
undesired solutions of the first goal and thus all infinite trees, by in-
sisting on a list of list of pairs, whereas incorrect solutions have a
list in place of where the pair structure-/2 should be.

The first goalmaplist(same_length(S),S) should define a
squared matrix, i.e. a list of lists, all of the same length. How-
ever, the definition ofsame_length/2 is too general. For exam-
ple, the goal?- same_length(unlist, unlist). is true, while
unlist is just a constant, but no list. It is the generalized fact
same_length(Xs, Xs) that is responsible for the confusion. For
each list of lengthn we have nown further solutions, all of which
are unexpected. Those extra solutions set some elements of one
list equal to elements in the other list. But one list occurs as el-
ement of the other. This means that the additional solutions all
contain some list-of-list-of-list. Some of those solutions will con-
tain infinitely nested lists, but not all of them. Consider the query
?- S = [_,_], maplist(same_length(S),S). that produces
eight additional and unexpected answers beside the expected an-
swerS = [[_,_],[_,_]]. All of those unexpected answers con-
tain infinitely nested lists, exceptS = [[_,[_A,_B]],[_A,_B]].
Considering only infinitely nested lists would therefore prevent
to understand the actual problem. By specializing the fact to the
single meaningful case that does not imply unwanted unification
same_length([], []) the error is removed.

Generalizations as the factsame_length(Xs,Xs). might be
considered a programming error, but it is quite common practice
in Prolog to define relations slightly too general as witnessed by
the idiomaticalappend/3-predicate. Similarly, consider the expan-
sion of the DCG-ruleepsilon --> []. which is the very fact
epsilon(Xs,Xs). that we considered incorrect for the predicate
same_length/2! The exact circumstances, where such a gener-
alization is acceptable and where not, are not easily accessible to
most programmers. Tools that help to clarify the actual role of terms
by identifying STO-situations are therefore very helpful.

Acknowledgments
We would like to thank Tom Schrijvers for his solverbounds that
we used as a starting point for the newclpfd implementation.

References
K. Apt, A. Pellegrini. Why the occur-check is not a problem. PLILP. 1992.

LNCS 631.

E. Barendsen, J.E.W. Smetsers. Conventional and uniqueness typing in
graph rewrite systems. FSTTCS. 1993. LNCS 761.

M. Carlsson, G. Ottosson, B. Carlson. An Open-Ended Finite Domain
Constraint Solver. PLILP. 1997.

A. Colmerauer. Prolog and Infinite Trees. Logic Programming, K.L. Clark,
S.-A. Trnlund (eds), 1982.

P. Deransart. The problem of unification in standard Prolog - a discussion
paper in ISO/IEC JTC1 SC22 WG17 N59 Prolog, Vienna papers - 2 -
1990.

P. Deransart, G. Ferrand, M. Teguia. NSTO Programs (Not Subject to
Occur-Check). ISLP. 1991.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT-
Press, 1989.

P. Hudak, J. Hughes, S.Peyton Jones, Ph. Wadler. A History of Haskell:
Being Lazy with Class. HOPL ACM 2007.

ISO/IEC 13211-1 Programming languages - Prolog - Part 1: General core.
1995. (7.3 Unification)

F. Mesnard, U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. SAS. 2001, LNCS 2126.

Z. Michalewicz, D.B. Fogel. How to Solve It: Modern Heuristics. Springer,
1998/2000.

P. Moura (ed.) ISO/IEC DTR 13211-3:2006 Definite clause grammar rules
(Draft of April 2008).

U. Neumerkel. Pruning Infinite Failure Branches in Programs with Occur-
Check. LPAR. 1992.

U. Neumerkel. How to teach Prolog. Teaching beginners Prolog. Tutorial
PAP. 1995.

U. Neumerkel. Teaching Prolog and CLP, Tutorial ICLP. 1997.

U. Neumerkel, F. Mesnard. Localizing and explaining reasons for nonter-
minating logic programs with failure slices. PPDP. 1999. LNCS 1702.

U. Neumerkel, St. Kral. Declarative program development in Prolog with
GUPU. WLPE. 2002.

P. Pritchard, D. Gries. The Seven-Eleven Problem. Cornell University TR
83-574 http://hdl.handle.net/1813/6414 1983.

R. Scowen. Unification - another discussion paper in ISO/IEC JTC1 SC22
WG17 N59 Prolog, Vienna papers - 2 - 1990.

E. Shapiro, Algorithmic Program Debugging. MIT Press, 1983.

Z. Somogyi, F. Henderson, Th. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. JLP
29(1-3), 1996.

J. Wielemaker. A programming environment for developing large applica-
tions. LPE. 1990.

J. Wielemaker. An overview of the SWI-Prolog programming environment.
WLPE. 2003.

J. Wielemaker. Prolog Unit Tests. Manual. http://www.swi-prolog.org/
packages/plunit.html 2006.

J. Wielemaker, U. Neumerkel. Garbage Collection for Pure Input Streams.
Submitted paper. 2008.

