
ISO/IEC DTR 13211–2

Modules: Amendment

N251

Editor: Jonathan Hodgson
jhodgson@sju.edu

November 1, 2013

Introduction

This amendment to ISO/IEC 13211-2 Modules serves to clarify the requirements
for a standard conforming implementation of Prolog modules. In particular it
addresses conformance issues left unspecified in clause 6 of ISO/IEC 13211-2.

A conforming module system is required to provide the following.

1. A method of specifying the prolog text defining a particular named mod-
ule. (??).

2. A method to indicate which predicates are to be made available (exported)
for potential use without module name qualification. (??).

3. A method of indicating which other modules are being used (imported)
be a modules and whose exported predicates may thus be used without
module qualification by the importing module. (??).

4. A method to indicate which predicates defined by a given module are
context sensitive, and for such predicates which arguments are context
sensitive. (??).

The clause numbering of this amendment follows that of ISO/IEC 13211-2.

6 Language Concepts and Semantics

6.2.4 Module directives

6.2.4.1 Module directive/2

1

6 LANGUAGE CONCEPTS AND SEMANTICS 2

The module directive module(Name,List)) specifies that the Prolog text in
which it appears forms the body of the module Name and that the predicates
whose predicate indicators appear in the list List are exported by the module.

6.2.5 Module body

A Prolog text that begins with the module directive module/2 (??) defines the
body of the module named in the directive. The module body terminates with
the end of the Prolog text.

6.2.5.5 Directive use module/2

A directive use module(F,L) in the body of a module M where F is the name
of a Prolog text and L is a list of predicate indicators identifying a set of the
predicates exported by the module determined by F specifies that the modules
M imports the predicates in the list L.

6.2.5.6 Module directive use module/1

A directive use module(F) in the body of a module M where F is the name of
a Prolog text specifies that the module Prolog text in which it appears imports
all the predicates exported by the module determined by F.

NOTE – The directive use module(F) in the body of a module M has the same
effect as the ensure loaded(F) in the sense that the public predicates of the
module determined by F are imported into M.

6.2.5.7 Directive meta predicate/1

A directive meta predicate MIS in the body of a module M where MIS is
a sequence of metapredicate mode indicators indicates that the predicates so
identified are context sensitive and that the arguments whose modes are : must
be prefixed with the current source module in which their activation takes place.

6.4 Context sensitive predicates

6.4.4 Examples: Metapredicates

6.4.4.3 Use of the module directive meta predicate/1

This example illustrates the use of the directive meta predicate/1

:- module(example, [a/1]).

:- meta_predicate a(:).

a(G) :- call(G).

6 LANGUAGE CONCEPTS AND SEMANTICS 3

When the exported predicate a/1 is called in an importing module M the effect
of a(G) is the predicate call(example:G) so that G is called in the context of
example rather than in the context of M.
The following example illustrates the use of a metapredicate to obtain context
context information for debugging purposes.
Suppose that the following Prolog text is indicated by the name trace:

:- module(trace, [tr/1]).

:- meta_predicate tr(:).

tr(Goal) :-

Goal = Module : G,

inform_user(’CALL’, Module, G),

call(Goal),

inform_user(’EXIT’, Module, G).

tr(Goal) :-

Goal = Module : G,

inform_user(’FAIL’, Module, G),

fail.

inform_user(Port, Module, Goal) :-

write(Port), write(’ ’), write(Module),

write(’ calls ’), writeq(Goal), nl.

and that the following Prolog text is indicated by the name foo;

:- module(foo, [a/1]).

:- use_module(trace).

a(X) :- tr(b(X)).

b(7).

Assuming that the directives use module(trace) and use module(foo) are in
effect.

The goal: tr(A(X)) succeeds writing:

CALL user calls a(_131111)

CALL foo calls b(_131111)

EXIT foo calls b(7)

EXIT user calls a(7)

The following example also illustrates the use of the module trace.
Suppose that the Prolog text identified by badsortcontains:

6 LANGUAGE CONCEPTS AND SEMANTICS 4

:- module(sort_with_errors, [bad_sort/2]).

:- use_module(trace).

bad_sort(List, SortedList) :-

bad_sort(List, SortedList, []).

bad_sort([], L,L).

bad_sort([X|L], R0, R) :-

tr(split(X,L,L1,L2)),

bad_sort(L1,R0,R1),

bad_sort(L2,[X|R1], R).

split(_, [],[],[]).

split(X, [Y|L], [Y|L1], L2) :-

Y @<X, !,

split(X,L, L1,L2).

split(X, [Y|L], [Y|L1], L2) :-

split(X,L, L1,L2).

Assuming that the directives use module(trace) and use module(badsort)

are in effect,
bad sort([3,2,1], L)

fails writing

CALL sort_with_errors calls split(3,[2,1],_131158,_131159)

EXIT sort_with_errors calls split(3,[2,1],[2,1],[])

CALL sort_with_errors calls split(2,[1],_131170,_131171)

EXIT sort_with_errors calls split(2,[1],[1],[])

CALL sort_with_errors calls split(1,[],_131180,_131181)

EXIT sort_with_errors calls split(1,[],[],[])

FAIL sort_with_errors calls split(1,[],_131180,_131181)

FAIL sort_with_errors calls split(2,[1],_131170,_131171)

FAIL sort_with_errors calls split(3,[2,1],_131158,_131159)

