
ISO/IEC DTR 13211–3:2006

Definite clause grammar rules

Editor: Klaus.Daessler, DIN
klaus.daessler@mathint.com

April 8, 2015

Introduction

This technical report (TR) is an optional part of the International Standard for
Prolog, ISO/IEC 13211. Prolog manufacturers wishing to implement Definite
Clause Grammar rules in a portable way should do so in compliance with this
technical report.

Grammar rules provide convenient functionality for parsing and processing
text in a variety of languages. They have been implemented in many Prolog
processors. This TR is an extension to the ISO/IEC 13211–1 Prolog standard,
adopting a similar structure. In particular, this TR adds new subclauses to, or
modifies existing subclauses of ISO/IEC 13211–1.

Previous editors and draft documents

• Paulo Moura: ISO/IEC DTR 13211– 3:2006 Grammar rules in Prolog,
ISO, 2006-10

• Roger Scowen: N171 — ISO/IEC DTR 13211–3:2004 Grammar rules in
Prolog, ISO, 2004-05

• Tony Dodd: DCGs in ISO Prolog — A Proposal, BSI, 1992

1

INTRODUCTION 2

Contributors

This list needs to be completed; so far we have only included people present
at the ISO meetings collocated with the ICLP (2005, 2006, and 2007), Richard
O’Keefe, and the authors of the two drafts cited.

• Bart Demoen (Belgium)

• David Warren (USA)

• Jan Wielemaker, (Netherlands)

• Joachim Schimpf (UK)

• Jonathan Hodgson (USA)

• Jose Morales (Spain)

• Katsuhiko Nakamura (Japan)

• Klaus Daessler (Germany)

• Manuel Carro (Spain)

• Manuel Hermenegildo (Spain)

• Mats Carlsson (Sweden)

• Mike Covington (USA)

• Paulo Moura (Portugal)

• Per Mildner (Sweden)

• Peter Szabo (Hungary)

• Peter Szeredi (Hungary)

• Pierre Deransart (France)

• Richard O’Keefe (NZ)

• Roger Scowen (UK)

• Tony Dodd (UK)

• Ulrich Neumerkel (Austria)

• Victor Santos Costa (Portugal)

1 SCOPE 3

1 Scope

This TR is designed to promote the applicability and portability of Prolog gram-
mar rules in data processing systems that support standard Prolog as defined in
ISO/IEC 13211–1:1995 and, if supported by the processor, in ISO/IEC 13211–
2:2000, and the two Corrigenda of 13211-1: ISO/IEC 13211-1 Technical Cor-
rigendum 1:2007-11, and ISO/IEC 13211-1 Technical Corrigendum 2:2012-02.
This TR specifies:

a) The representation, syntax, and constraints of Prolog grammar rules

b) A logical expansion of grammar rules into Prolog clauses

c) A set of built-in predicates for parsing with grammar rules

d) A reference implementation.

NOTE — The scope, expressed in clause 1, Scope, of ISO/IEC 13211–1:1995
does apply to this TR.

2 Normative references

The following TR contains provisions which, through reference in this text,
constitute provisions of this TR as Part of ISO/IEC 13211.

• ISO/IEC 13211-1:1995

• ISO/IEC 13211-2:2000

• Corrigendum 1 of 13211-1:2006

• Corrigendum 2 of 13211-1:2012

3 Definitions

For the purposes of this TR, the following Definitions are added to the ones
specified in ISO/IEC 13211–1:

3.1 alternative: A compound term with principal functor (;)/2 or with
principal functor (’|’)/2 with each argument being a body (of a grammar-
rule).

3.2 body (of a grammar-rule): See grammar-rule-body

3.3 clause-term: A read-term T. in Prolog text where T does not have prin-
cipal functor (:-)/1 nor principal functor (-->)/2. (This definition replaces
subclause 3.33 of ISO/IEC 13211–1).

3 DEFINITIONS 4

3.4 comprehensive terminal-sequence: see terminal-sequence, compre-
hensive.

3.5 cover, a terminal-sequence by a non-terminal (resp. a body):
A terminal sequence is covered by a non-terminal (resp. a body) if the non-
terminal (resp. the body) generates the terminal sequence. Alternatively if the
non-terminal (resp. body) parses the terminal sequence.

3.6 definite clause grammar: A definite clause grammar is a set of definite
clause non-terminal definitions, and a definite clause non-terminal definition is
a sequence of grammar-rules.

3.7 expansion (of a grammar-rule): The preparation for execution (cf.
ISO/IEC 13211–1, subclause 7.5.1) of a grammar rule.

3.8 generating (wrt a non-terminal and a definite clause grammar):
Producing a terminal-sequence of that definite clause grammar, obeying semi-
contexts, if any.

3.9 grammar-body-element: A grammar-body-cut (the atom !), or a
grammar-goal, or a non-terminal, or a terminal-sequence.

3.10 grammar-body-not: A compound term with principal functor (\+)/1
whose argument is a body (of a grammar rule).

3.11 grammar-body-sequence: A compound term with principal functor
(’,’)/2 and each argument being a body (of a grammar-rule).

3.12 grammar-goal: A compound term with principal functor {}/1 whose
argument is a goal.

3.13 grammar-rule: A compound term with principal functor (-->)/2.

3.14 grammar-rule-body: A compound term which forms, or is in the
form of, the second argument of a grammar-rule. A grammar-body-sequence,
or an alternative, or a grammar-body-not, or a grammar-body-element.

3.15 grammar-rule-head: The first argument of a grammar-rule. Either
a non-terminal (of a grammar), or a compound term whose principal functor is
(’,’)/2, where the first argument is a non-terminal (of a grammar), and the
second argument is a semicontext (cf Definition 3.21).

3.16 new variable with respect to a term T: A variable that is not a
member of the variable set of T.

3 DEFINITIONS 5

3.17 non-terminal (of a grammar-rule): A callable term (cf. ISO/IEC
13211–1, Definitions 3.25), i.e., an atom or a compound term, that denotes a
non terminal symbol of a grammar rule.

3.18 non-terminal indicator: A compound term A//N where A is an atom
and N is a non-negative integer, denoting one particular non-terminal (cf 7.13.4).

3.19 parsing (wrt. a definite clause grammar): Successively accept-
ing or consuming terminal-sequences, assigning them to corresponding non-
terminals and obeying semicontexts, if any.

3.20 remaining terminal-sequence: See terminal-sequence, remaining.

3.21 semicontext: A terminal-sequence occurring optioally after the non-
terminal of a grammar-rule-head, constraining parsing (respectively generation)
by this grammar rule.

3.22 steadfastness of a goal wrt. an argument Goal G is steadfast
in argument n of its sequence of arguments, if for any term T that is the nth
argument in the goal, and the goal Gnw that results by replacing T by a new
variable Vnw the execution (cf. ISO/IEC 13211–1, subclause 7.7.1) of G and
(Gnw, Vnw=T) is the same.

3.23 terminal (of a grammar): Any Prolog term that denotes a terminal
symbol of the grammar.

3.24 terminal-sequence: A list (cf. ISO/IEC 13211–1, subclauses 3.99,
6.3.5 and 6.3.1.3) whose first argument, if any, is a terminal (of a grammar),
and the second argument, if any, is a terminal-sequence.

3.25 terminal-sequence, comprehensive: Terminal sequence containing
a prefix, and the prefix covered (cf. Definition 3.5) by a grammar-rule-body, i.e.
accepted resp. generated by phrase/3 (cf 8.18.1) .

3.26 terminal-sequence, remaining: Rest of comprehensive terminal-sequence
without the leading terminal-sequence covered (cf. Definition 3.5) by a grammar-
rule-body.

3.27 variable, new with respect to a term T: See new variable with
respect to a term T.

4 SYMBOLS AND ABBREVIATIONS 6

4 Symbols and abbreviations

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5 Compliance

5.1 Prolog processor

A conforming Prolog processor shall:

a) Correctly prepare for execution Prolog text which conforms to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

b) Correctly execute Prolog goals which have been prepared for execution
and which conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

c) Reject any Prolog text or read-term whose syntax fails to conform to:

1. the requirements of this TR, and

2. the requirements of ISO/IEC 13211–1, and

3. the implementation defined and implementation specific features of
the Prolog processor,

d) Specify all permitted variations from this TR in the manner prescribed by
this TR and by the ISO/IEC 13211–1, and

e) Offer a strictly conforming mode which shall reject the use of an imple-
mentation specific feature in Prolog text or while executing a goal.

NOTE — This extends the corresponding subclause of ISO/IEC 13211–1.

5.2 Prolog text

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

5.3 Prolog goal

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

6 SYNTAX 7

5.4 Documentation

The corresponding subclause in the ISO/IEC 13211–1 Prolog standard is mod-
ified as follows:

A conforming Prolog processor shall be accompanied by documentation that
completes the definition of every implementation defined and implementation
specific feature specified in this TR and in ISO/IEC 13211–1 Prolog.

5.5 Extensions

The corresponding subclause in the ISO/IEC 13211–1 Prolog standard is mod-
ified as follows:

A processor may support, as an implementation specific feature, any construct
that is implicitly or explicitly undefined in this TR or in the ISO/IEC 13211–1
Prolog standard.

A Prolog processor may support additional grammar control constructs, be-
yond the required ones by this standard (cf. 7.14). These additional control
constructs must be treated as non-terminals by a Prolog processor working in
a strictly conforming mode (see 5.1e).

NOTE — Examples for additional grammar control constructs include soft-
cuts and control constructs that enable the use of grammar rules stored on
encapsulation units other than modules, such as objects.

5.5.2 Predefined operators

Please see subclause 6.3 for the new predefined operators that this TR adds to
the ISO/IEC 13211–1 Prolog standard.

6 Syntax

6.1 Notation

6.1.1 Backus Naur Form

No changes from the ISO/IEC 13211–1 Prolog standard.

6.1.2 Abstract term syntax

The text near the end of this subclause in the ISO/IEC 13211–1 Prolog stan-
dard is modified as follows:

Prolog text (6.2) is represented abstractly by an abstract list x where x is:

a) d.t where d is the abstract syntax for a directive, and t is Prolog text, or

6 SYNTAX 8

b) g.t where g is the abstract syntax for a grammar rule, and t is Prolog
text, or

c) c.t where c is the abstract syntax for a clause, and t is Prolog text, or

d) nil, the empty list.

The following subclause extends, with the specified number, the corresponding
ISO/IEC 13211–1 subclause.

6.1.3 Variable names convention for terminal-sequences

This TR uses variables named S0, S1, ..., S to represent the terminal-sequences
used as arguments when processing grammar rules or when expanding gram-
mar rules into clauses. In this notation, the variables S0, S1, ..., S can be
regarded as a sequence of states, with S0 representing the initial state and the
variable S representing the final state. Thus, if the variable Si represents the
terminal-sequence in a given state, the variable Si+1 will represent the remain-
ing terminal-sequence after parsing Si with a grammar rule.

6.2 Prolog text and data

The first paragraph of this subclause on ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of read-terms which denote (1) directives, (2) grammar
rules, and (3) clauses of user-defined procedures.

6.2.1 Prolog text

The corresponding subclause in the ISO/IEC 13211–1 is modified as follows:

Prolog text is a sequence of directive-terms, grammar-rule terms, and clause-
terms.

prolog text = p text
Abstract: pt pt

p text = directive term , p text
Abstract: d.t d t

p text = grammar rule term , p text
Abstract: g.t g t

p text = clause term , p text
Abstract: c.t c t

p text = ;
Abstract: nil

6 SYNTAX 9

6.2.1.1 Directives

Syntactically, there are no changes w.r.t. ISO/IEC 13211–1 Prolog standard,
with the exception of the operator syntax (cf 6.3); for the semantic changes
see 7.4.2 of this TR. Whenever directives are applicable to non-terminals, the
non-terminal indicators (cf 7.13.4), as arguments of these directives, shall be
used like predicate indicators for the predicates, resulting from expanding these
non-terminals.

NOTE — The directives dynamic/1, multifile/1 and discontiguous/1 are
applicable to non-terminal indicators.

6.2.1.2 Clauses

The corresponding subclause in the ISO/IEC 13211–1 is modified as follows:

clause term = term, end
Abstract: c c
Priority: 1201
Condition: The principal functor of c is not (:-)/1
Condition: The principal functor of c is not (-->)/2

NOTE — Subclauses 7.5 and 7.6 define how clauses become part of the database.

The following subclause modifies, with the specified number, the corresponding
ISO/IEC 13211–1 subclause:

6.2.1.3 Grammar rules

grammar rule term = term, end
Abstract: gt gt
Priority: 1201
Condition: The principal functor of gt is (-->)/2

grammar rule = grammar rule term
Abstract: g g

NOTE — Subclause 10 of this TR defines how a grammar rule in Prolog text is
expanded into an equivalent clause when Prolog text is prepared for execution.

6.2.1.4 Semicontexts

7 LANGUAGE CONCEPTS AND SEMANTICS 10

semicontext term = term
Abstract: sc sc
Priority: 1201
Condition: semicontext term is a list

semicontext = semicontext term
Abstract: s s

NOTE — Subclause 10 of this TR, dcg rule/4, first clause, defines how a
semicontext in a grammar rule is expanded when Prolog text is prepared for
execution.

6.3 Terms

Extend the operator table of subclause 6.3.4.4 of ISO/IEC 13211–1 as follows:

Priority Specifier Operator(s)
1105 xfy ’|’

NOTE — The operator (-->)/2, specified in subclause 6.3.4.4 of the ISO/IEC
13211–1 Prolog standard, is used as the principal functor of grammar rules.

7 Language concepts and semantics

The following subclause extends, with the specified number, the corresponding
ISO/IEC 13211–1 subclause:

7.4 Prolog text

7.4.2 Directives

A non-terminal indicator may appear anywhere that a predicate indicator can
appear in the following directives: multifile/1, and discontiguous/1 as spec-
ified in subclause 7.4.2 of the ISO/IEC 13211–1 Prolog standard.

7.4.4 Grammar rules

A grammar rule term in Prolog text (6.2.1.3) enables suitable clauses to be
added to the database.
The non-terminal indicator NT//N of the non-terminal of the grammar-rule-
head shall not be the non-terminal-indicator of a grammar control construct,
and the predicate indicator NT/M where M is N + 2 shall not be the predicate
indicator of a built-in predicate or a control construct.

During preparation for execution the Prolog processor converts grammar rule
terms to Prolog procedures of the database. Section 10 of this DTR defines a
correspondence between grammar rule terms and suitable clauses of a procedure
in the database.

7 LANGUAGE CONCEPTS AND SEMANTICS 11

7.5 Database

7.5.1 Preparing a Prolog text for execution

If a Prolog grammar rule with non-terminal indicator NT//N is prepared for
execution, and a Prolog clause with predicate-indicator NT/M, where M is N
+ 2, is already part of the extended database, or vice versa, then the effect of
this preparation for execution shall be implementation dependent.

7.13 Grammar rules

7.13.1 terminals and non-terminals

In grammar rule bodies, one or more terminals are represented by terms directly
contained in lists in order to distinguish them from non-terminals. The empty
terminal sequence (empty list) is possible. Non-terminals are represented by
callable terms.

NOTE — In the context of a grammar rule, terminals represent tokens of some
language, and non-terminals represent sequences of tokens (see, respectively,
Definitions 3.23 and 3.17).

7.13.1.1 Example

A simple grammar consisting of 11 grammar rules, parsing or generating termi-
nal sequences of the form

[the, dog, runs]
[the, dog, barks]
[the, dog, bites]
[the, nice, cat, barks]

is given:

sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb.
noun_phrase --> article, noun.
noun_phrase --> article, adjective, noun.
article --> [the].
adjective --> [nice].
noun --> [dog].
noun --> [cat].
verb --> [runs].
verb --> [barks].
verb --> [bites].

Here the symbols sentence, verb phrase, verb etc. denote non-terminals,
whereas runs, nice, cat etc. denote terminals.

7 LANGUAGE CONCEPTS AND SEMANTICS 12

7.13.2 Format of grammar rules

A grammar rule has the format:

GRHead --> GRBody.

where GRHead, the grammar-rule-head (cf. Definition 3.15), can be rewritten by
GRBody, its grammar-rule-body (cf. Definition 3.14). The head and the body
of grammar rules are constructed from terminals and non-terminals, including
special non-terminals, the grammar control constructs. The grammar-rule-head
is a non-terminal, or a non-terminal, followed by a terminal-sequence (a semi-
context, see 7.13.3):

NonTerminal --> GRBody.

NonTerminal, Semicontext --> GRBody.

If NonTerminal is a grammar control construct its effect shall be implementa-
tion dependent.
The effect of a Semicontext which is not a terminal-sequence shall be imple-
mentation dependent.

The control constructs that may be used in a body are described in subclause
7.14. An empty body is represented by an empty terminal sequence:

GRHead --> [].

NOTE — There is no (-->)/1 form for grammar rules.

7.13.3 Semicontext

7.13.3.1 Description

A semicontext is a terminal-sequence (see 3.24), which follows, separated by a
comma, the non-terminal of the head of a grammar rule (see 3.15). The termi-
nals of the semicontext make up a prefix of the remaining terminal-sequence.

7.13.3.2 Examples

Assume we need rules to look-ahead one or two tokens that would be consumed
next. This could be accomplished by the following grammar rules:

look_ahead(X), [X] --> [X].
look_ahead(X, Y), [X,Y] --> [X,Y].

When used for parsing, procedurally, these grammar rules can be interpreted
as, respectively, consuming, and then restoring, one or two terminals.
Another example may be a small grammar rule with semicontext:

phrase1, [word] --> phrase2, phrase3.

7 LANGUAGE CONCEPTS AND SEMANTICS 13

After preparation for execution this may occur in the database as follows.

phrase1(S0, S):-
phrase2(S0, S1),
phrase3(S1, S2),
S = [word | S2].

NOTES

1 In case of parsing, as soon as phrase2 and phrase3 have successfully
parsed the comprehensive terminal-sequence (input list), the terminal word is
prefixed to the remaining terminal-sequence. word is then the first terminal to
be consumed in further parsing after phrase1. Thus further parsing is con-
strained by the semicontext.

2 The concepts comprehensive terminal-sequence resp. remaining terminal-
sequence are often called input list resp. output list. This is misleading, because
it only considers the case of parsing using a grammar. There a terminal list shall
be parsed wrt. non-terminals, and there will be a remainder after the parsing
step. The inverse case, generating sentences by expanding grammars, where the
comprehensive terminal-sequence is the output list, is ignored by such wording.

3 There are cases, where the remaining terminal-sequence is the comprehen-
sive terminal-sequence. See, e.g. the following grammar rule. There maybe a
trailing terminal-sequence, however, as the following example shows.

nt,[word] --> [].

which may be expanded by preparation for execution to:

nt(S0, S) :- S = [word|S0]).

This non-terminal nt represents an empty terminal sequence (cf. 7.14.1), but
constrains further parsing to take place with word as next token.

4 It should be noted that phrase/2 (cf 8.18.1.3) cannot succeed when ap-
plied to a grammar rule, whose head contains a non empty semicontext, as in
the case above.

5 Some processors allow a cut in the semicontext; e.g.

a, !, [word] --> b.
Moving this cut to the end of the grammar body, c.f. a, [word] --> b, !.
leads to identical execution. Thus this TR does not permit a cut in the semi-
context.

7 LANGUAGE CONCEPTS AND SEMANTICS 14

7.13.4 Non-terminal indicator

A non-terminal indicator is a compound term //(A, N) where A is an atom and
N is a non-negative integer.

The non-terminal indicator //(A, N) indicates the non-terminal of the head of
a grammar rule where A is an atom, representing the non-terminal, and N is its
arity, a non-negative integer

NOTES

1 In Prolog text, including ISO/IEC 13211–1 and this TR, a non-terminal
indicator //(A, N) is normally written as A//N or as (A)//N depending on
whether or not A is an operator (cf. 7.1.6.6 of 13211–1).

2 The concept of non-terminal indicator is similar to the concept of predi-
cate indicator defined in subclauses 3.131 and 7.1.6.6 of the ISO/IEC 13211–1
Prolog. Non-terminal indicators may be used in exception terms thrown when
processing or using grammar rules. In addition, non-terminal indicators may ap-
pear at some places, where a predicate indicator as defined in ISO/IEC 13211–1
can appear. See 7.4.2. Furthermore non-terminal indicators may be used in a
predicate property (cf. subsection ??). In particular, using non-terminal indica-
tors in predicate directives allows the details of the expansion of grammar rules
into Prolog clauses to be abstracted.

7.13.4.1 Examples

For example, given the following grammar rule:

sentence --> noun_phrase, verb_phrase.

The corresponding non-terminal indicator for the grammar rule left-hand side
non-terminal is sentence//0.

:- multifile(sentence//0).

So grammar rules for sentence//0 may be distributed over several files.

7.14 Grammar control constructs

This definition of each grammar control construct gives its logical meaning and
the procedural effects for executing it wrt. its arguments, if any, after preparing
it for execution.

Expansion of grammar control constructs is not simply a replacement by Prolog
control constructs. For the expansion of every grammar control construct there

7 LANGUAGE CONCEPTS AND SEMANTICS 15

is a formal definition in subclause 10.
The correspondence between the following subclauses and the corresponding for-
mal definitions is given by the argument of the clauses of predicate dcg constr/1
or, respectively, by the principal functor of the first argument of the clauses of
predicate dcg cbody/4 in subclause 10

After preparation for execution of Grammar Rules, named “Grammar Rule ex-
pansion” or “expansion” for short, the non-terminals, with exception of phrase//1,
result in control constructs, respectively built-in predicates of ISO/IEC 13211-
1 Prolog. Grammar Rule expansion is defined by using the built-in predicate
phrase/3 (see subclause 8.18.1) and subclause 10.

The following subclauses explicate the linkages between the terminal sequences
upon expansion of the control constructs.

7.14.1 []//0 – empty terminal-sequence

7.14.1.1 Description

In phrase([], S0, S) the expansion result of the grammar control construct
empty terminal-sequence (a terminal sequence without contents) unifies the
remaining terminal sequence S with the comprehensive terminal sequence S0,
i.e. has no effect on parsing resp. generating during execution.

7.14.2 (’.’)//2 – terminal sequence

7.14.2.1 Description

(’.’) used as a non-terminal (’.’)//2 separates its first argument, the
terminal on its left hand side from the second argument, the terminal sequence
on its right hand side.

7.14.3 (’,’)//2 – concatenation

7.14.3.1 Description

In the body of a grammar-rule the non-terminal (’,’)//2 acts as principal
functor of a grammar-body-sequence (cf. Definition 3.11) with a first grammar
body GBFirst and a second grammar body GBSecond. Each of them is then
subject to subsequent separate expansion - GBFirst first, and then GBSecond.
After being completely expanded, the expansions of GBFirst and GBSecond
shall be arguments of a conjunction wrt. subclause 7.8.5 of ISO/IEC 13211-1
Prolog, which results from expansion of (’,’)//2.

7 LANGUAGE CONCEPTS AND SEMANTICS 16

If contained directly in the head(of a grammar rule), (’,’)//2 acts simply as
main functor (’,’)/2 of a term consisting of an expanded grammar-rule-head
and a semicontext; cf 7.13.3.

7.14.4 (;)//2 – alternative

7.14.4.1 Description

An alternative grammar control construct, whose first argument is of the form
->(,) shall be an if-then-else grammar control construct. In the body of
a grammar rule (;)//2 acts as principal functor of an
alternative. (cf. Definition 3.1) with a first grammar body GBFirst and a sec-
ond grammar body GBSecond. Each of them is subject to subsequent separate
expansion. The alternative is expanded to the disjunction (;)/2; cf subclause
7.8.6 of ISO/IEC 13211-1 Prolog. After being expanded, the expansion of GB-
First shall be the first, and the expansion of GBSecond shall be the second
argument of the disjunction, which results from expansion of (;)//2.

NOTE — The effect of comma and semicolon, (’,’)//2, (;)//2, may be un-
derstood best by application of write canonical/1 (see subclause 8.14.2.5 of
ISO/IEC 13211–1) on a grammar rule, containing them:

?- write_canonical((sentence --> subject, verb, object;
object, verb, subject)).

--> (sentence, ;(’,’(subject, ’,’(verb, object)),
(’,’(object, ’,’(verb, subject))))

yes

This may lead to the following Prolog clause after preparation for execution:

sentence(S0, S) :-
(subject(S0, S1),
verb(S1, S2),
object(S2, S)

; object(S0, S3),
verb(S3, S4),
subject(S4, S)

).

7.14.5 (;)//2 with (->)//2 – if-then-else

7.14.5.1 Description

NOTE – (;)//2 (cf. 7.14.4) serves two different functions depending on whether
or not its first argument is a compound term with grammar control construct
(->)//2. See 7.14.4 for the use of (;)//2 for alternative, when the first

7 LANGUAGE CONCEPTS AND SEMANTICS 17

argument of (;)//2 does not immediately contain a grammar control construct
(->)//2.

7.14.5.2 Description

In the grammar control construct ;(->(GRIf, GRThen),GRElse) the grammar
control construct (;)//2 has as arguments a grammar rule body ->(GRIf,
GRThen) and a second grammar rule body GRElse.
The grammar rule bodies GRIf, GRThen and GRElse are subject to separate
expansion to If, Then and Else, respectively.
The result of expansion is an if-then-else (cf subclause 7.8.8 of ISO/IEC 13211-
1), with an If resulting from grammar rule body GrIf, a Then resulting from
grammar rule body GrThen, and an else construct Or resulting from grammar
rule body GRElse.

7.14.6 (’|’)//2 – second form of alternative

7.14.6.1 Description

’|’ used as a non-terminal (’|’)//2 has the same behaviour as (;)//2,
when used for an alternative. See subclause 7.14.4. The use of (’|’)//2 instead
of (;)//2 in an if-then-else, cf 7.14.5, shall be implementation-dependent.

7.14.7 {}//1 – grammar-body-goal

7.14.7.1 Description

The non-terminal {G}, with G a Prolog goal, according to ISO/IEC 13211-1:1995,
can stand at any place of a non-terminal inside a grammar-rule-body. After
expansion the braces are omitted, the goal G is unchanged. On execution G is
executed like any Prolog goal.
If G immediately contains a cut (’ !’), this is handled like a grammar-body-cut
(cf. 7.14.10), i.e. the effect of the cut extends outside the non-terminal {G}.

7.14.8 call//1

7.14.8.1 Description

Expanding, i.e. preparing for execution of the non-terminal

call//1

shall result after the expansion in the goal for the built-in predicate

call/3

which is required by this TR and defined in 8.15.4 of ISO/IEC 13211-1:1995/Cor.2:2012(E).

NOTE — Consider the following example for the correspondence for grammar
rules between call//1 and call/3:

7 LANGUAGE CONCEPTS AND SEMANTICS 18

atom_charsdiff(Atom, Xs0, Xs):-
atom_chars(Atom, Chars),
append(Chars, Xs, Xs0).

atomchars(Atom) --> call(atom_charsdiff(Atom)).

at_eos_pred([], []).

at_eos --> call(at_eos_pred).

7.14.9 phrase//1

7.14.9.1 Description

phrase//1 is a grammar rule built-in predicate for using the built-in predicate
phrase/3.

Expanding, i.e. preparing for execution of the non-terminal

phrase//1

with argument G

shall result in a goal for the built-in predicate

phrase/3 with first argument G.

For a definition of the built-in predicate phrase/3 see subclause 8.18.1.

7.14.10 !//0 – grammar-body-cut

7.14.10.1 Description

In the body of a grammar rule !//0 is a grammar-body-cut. After expansion
the grammar-body-cut becomes the control construct cut, !/0, as in subclause
7.8.4 of ISO/IEC 13211-1 Prolog.

Implementations conforming to this TR shall not define or use a predicate !/2.

7.14.11 (\+)//1 – grammar-body-not

The effect of (\+)//1 in grammar rules shall be implementation dependent.

7 LANGUAGE CONCEPTS AND SEMANTICS 19

7.14.11.1 Description

The grammar-body-not (\+)//1 with a grammar body as argument becomes
the principal functor (\+)/1, the not provable operator. This functor (\+)/1
is applied to the expanded grammar body of the grammar-body-not. If the
resulting goal succeeds the expanded rule does not change the comprehensive
terminal sequence.

Implementations conforming to this TR shall not define or use a predicate
(\+)/3.

NOTE — The effect of (\+)//1 can be seen in the following example.

The grammar rule

a --> \+ b.

may be expanded to:

a(S0, S) :- \+ b(S0, _), S0 = S.

7.14.12 ->//2 - if-then

The effect of (->)//2 in grammar rules except in the first argument of an
alternative (cf. 7.14.5) shall be implementation dependent.

7.15 Executing clauses expanded from grammar rules

If a grammar rule to be prepared for execution has a non-terminal indicator
NT//N, and NT is the name of the predicate indicator NT/M, with M is N
+ 2, of a built-in predicate, the result of expansion and the behaviour of the
prepared grammar rule on execution is implementation dependent. This does
not hold for the required non-terminals expanding to built-in predicates defined
in 7.14.

When the database does not contain a procedure, prepared for execution from
one or more grammar rules with non-terminal indicator NT//N during execu-
tion of a goal, prepared for execution from a non-terminal with non-terminal
indicator NT//N, the behaviour of the processor shall be as follows:

If the error handling of the processor is standard conforming as specified
in subclause 7.7.7 of ISO/IEC 13211–1, then the error term as specified in
subclause 7.7.7b of ISO/IEC 13211–1 when the flag unknown is set to error
shall be:

existence_error(procedure, NT/M)

8 BUILT-IN PREDICATES 20

If the error handling of the processor supports definite clause grammar errors,
then the error term shall be:

existence_error(grammar_rule, NT/M)

In other cases the behaviour shall be implementation specific.

NOTES

1 Prolog processors shall report errors resulting from execution of grammar
rules at the same abstraction level as grammar rules whenever possible.

2 Parsing resp. generating of terminal sequences using grammar rules is de-
fined in subclause 8.18.1. Grammar rules are expanded there into Prolog clauses
during preparation for execution, which maps the parsing or generating with a
grammar-rule-body into executing a goal given a sequence of predicate clauses.
See subclause 7.7 of ISO/IEC 13211–1 for details.

8 Built-in predicates

8.18 Grammar rule built-in predicates

8.18.1 phrase/3, phrase/2

8.18.1.1 Description

phrase(GRBody, S0, S) is true iff S0 either unifies with the concatenation of
the grammar-body-sequence of GRBody, if any, (cf. Definition 3.11) with the re-
maining terminal-sequence S, or with the concatenation of a terminal-sequence
resulting from generation by the non-terminal, if any, of GRBody w.r.t. the cur-
rent Grammar rules with the remaining terminal-sequence S.

Execution of the predicate phrase/3 serves two goals: Firstly the final expan-
sion(of a grammar rule) (cf. Definition 3.7), when this has not taken place
earlier, i.e. preparation for execution of its body and arguments; thereafter,
secondly, the execution of the resulting Prolog goals.

NOTE 1 — An A of a B means, construct A is directly contained in construct B.
This is general standard wording for programming languages.

NOTE 2 — The simple grammar of example 7.14.1.1 may be prepared here for
execution.

Then with

GRBody: non-terminal: noun_phrase
S0: comprehensive terminal-sequence: [the, dog, barks]
S: remaining terminal-sequence: [barks]

8 BUILT-IN PREDICATES 21

phrase(noun phrase, [the, dog, barks], [barks]) is true.

If the non-terminal of GRBody, if any, is followed by a semicontext (cf. Definition
3.21), then the semicontext shall be prefixed to the remaining terminal sequence
after having been parsed resp. generated wrt. the non-terminal of GRBody.
Procedurally, phrase(GRBody, S0, S) is executed by calling the Prolog goal
corresponding to the expansion of the grammar-rule-body GRBody, given the
terminal-sequences S0 and S, according to the logical expansion of grammar
rules described in subclause 10. See in particular the clauses for dcg rule/4.

phrase(GRBody, S0, S) shall be steadfast (cf. 3.22) in its third argument S.

8.18.1.2 Template and modes

phrase(+grammar-rule-body, ?comprehensive-terminal-sequence,
?remaining-terminal-sequence)

For definitions of comprehensive-terminal-sequence and remaining-terminal-sequence
see Definitions 3.25 resp. 3.26, for grammar-rule-body see Definition 3.14.

8.18.1.3 Bootstrapped built-in predicates

The built-in predicate phrase/2 provides similar functionality to phrase/3.
The goal phrase(GRBody, S0) is true when all terminals in the terminal-sequence
S0 are consumed and accepted respectively generated.

phrase(GRBody, S0) :-
phrase(GRBody, S0, []).

8.18.1.4 Errors

a) GRBody is a variable
— instantiation error

b) GRBody is neither a variable nor a callable term
— type error(callable, GRBody)

The following two errors are implementation defined if applied to phrase/3,
i.e. no error checking is required on S0 and S by this TR for phrase/3.
If, however, a Prolog processor offers them, their form and consequence
must be the following:

c) S0 is not a terminal-sequence
— type error(terminal sequence, S0)

For phrase/2 error clause c is required.

d) S is not a terminal-sequence
— type error(terminal sequence, S)

8 BUILT-IN PREDICATES 22

NOTE — This relaxation is allowed because handling these errors could
overburden a Prolog processor.

8.18.1.5 Examples

These examples assume that the following grammar rules has been correctly
prepared for execution and are part of the complete database:

determiner --> [the].
determiner --> [a].

noun --> [boy].
noun --> [girl].

verb --> [likes].
verb --> [scares].

noun_phrase --> determiner, noun.
noun_phrase --> noun.

verb_phrase --> verb.
verb_phrase --> verb, noun_phrase.

sentence --> noun_phrase, verb_phrase.

Some example calls of phrase/2 and phrase/3:

| ?- phrase([the], [the]).
yes

| ?- phrase(sentence, [the, girl, likes, the, boy]).
yes

| ?- phrase(sentence, [the, girl, likes, the, boy, today]).
no

| ?- phrase(sentence, [the, girl, likes]).
yes

| ?- phrase(sentence, Sentence).

Sentence = [the, boy, likes]
yes

| ?- phrase(noun_phrase, [the, girl, scares, the, boy], Rest).

Rest = [scares, the, boy]

9 EVALUABLE FUNCTORS 23

yes

9 Evaluable functors

NOTE — No changes from the ISO/IEC 13211–1 Prolog standard.

10 Logical Expansion

:- op(1105,xfy,’|’).

% This program uses append/3 as defined in the Prolog prologue.

% Expands a DCG rule into a Prolog rule, when no error condition applies.

dcg_rule((NonTerminal, Terminals --> GRBody), (Head :- Body)) :-
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S1, Goal1),
dcg_terminals(Terminals, S, S1, Goal2),
Body = (Goal1, Goal2).

dcg_rule((NonTerminal --> GRBody), (Head :- Body)) :-
NonTerminal \= (_, _),
dcg_non_terminal(NonTerminal, S0, S, Head),
dcg_body(GRBody, S0, S, Body).

dcg_non_terminal(NonTerminal, S0, S, Goal) :-
NonTerminal =.. NonTerminalUniv,
append(NonTerminalUniv, [S0, S], GoalUniv),
Goal =.. GoalUniv.

dcg_terminals(Terminals, S0, S, S0 = List) :-
append(Terminals, S, List).

dcg_body(Var, S0, S, Body) :-
var(Var),
Body = phrase(Var, S0, S).

dcg_body(GRBody, S0, S, Body) :-
nonvar(GRBody),
dcg_constr(GRBody),
dcg_cbody(GRBody, S0, S, Body).

dcg_body(NonTerminal, S0, S, Goal) :-
nonvar(NonTerminal),
\+ dcg_constr(NonTerminal),
NonTerminal \= (_ -> _),
dcg_non_terminal(NonTerminal, S0, S, Goal).

10 LOGICAL EXPANSION 24

% The following constructs in a grammar rule body
% are defined in the corresponding subclauses.

dcg_constr([]). % 7.14.1
dcg_constr([_|_]). % 7.14.2 - terminal sequence
dcg_constr((_, _)). % 7.14.3 - concatenation
dcg_constr((_ ; _)). % 7.14.4 - alternative

% 7.14.5 - if-then-else
dcg_constr((_ ’|’ _)). % 7.14.6 - alternative
dcg_constr({_}). % 7.14.7
dcg_constr(call(_)). % 7.14.8
dcg_constr(phrase(_)). % 7.14.9
dcg_constr(!). % 7.14.10
% dcg_constr(\+ _). % 7.14.11 - not (implementation dependent)
% dcg_constr((_ -> _)). % 7.14.12 - if-then (implementation dependent)

% The principal functor of the first argument indicates
% the construct to be expanded.

dcg_cbody([], S0, S, S0 = S).
dcg_cbody([T|Ts], S0, S, Goal) :-

dcg_terminals([T|Ts], S0, S, Goal).
dcg_cbody((GRFirst, GRSecond), S0, S, (First, Second)) :-

dcg_body(GRFirst, S0, S1, First),
dcg_body(GRSecond, S1, S, Second).

dcg_cbody((GREither ; GROr), S0, S, (Either ; Or)) :-
\+ subsumes_term((_ -> _),GREither),
dcg_body(GREither, S0, S, Either),
dcg_body(GROr, S0, S, Or).

dcg_cbody((GRCond ; GRElse), S0, S, (Cond ; Else)) :-
subsumes_term((_GRIf -> _GRThen), GRCond),
dcg_cbody(GRCond, S0, S, Cond),
dcg_body(GRElse, S0, S, Else).

dcg_cbody((GREither ’|’ GROr), S0, S, (Either ; Or)) :-
dcg_body(GREither, S0, S, Either),
dcg_body(GROr, S0, S, Or).

dcg_cbody({Goal}, S0, S, (Goal, S0 = S)).
dcg_cbody(call(Cont), S0, S, call(Cont, S0, S)).
dcg_cbody(phrase(Body), S0, S, phrase(Body, S0, S)).
dcg_cbody(\+ GRBody, S0, S, (\+ phrase(GRBody,S0,_), S0 = S)).
dcg_cbody(!, S0, S, (!, S0 = S)).
dcg_cbody((GRIf -> GRThen), S0, S, (If -> Then)) :-

dcg_body(GRIf, S0, S1, If),
dcg_body(GRThen, S1, S, Then).

	Introduction
	Previous editors and draft documents
	Contributors

	Scope
	Normative references
	Definitions
	Symbols and abbreviations
	Compliance
	Prolog processor
	Prolog text
	Prolog goal
	Documentation
	Extensions
	Predefined operators

	Syntax
	Notation
	Backus Naur Form
	Abstract term syntax
	Variable names convention for terminal-sequences

	Prolog text and data
	Prolog text

	Terms

	Language concepts and semantics
	Prolog text
	Directives
	Grammar rules

	Database
	Preparing a Prolog text for execution

	Grammar rules
	terminals and non-terminals
	Format of grammar rules
	Semicontext
	Non-terminal indicator

	Grammar control constructs
	[]//0 -- empty terminal-sequence
	('.')//2 -- terminal sequence
	(',')//2 -- concatenation
	(;)//2 -- alternative
	(;)//2 with (->)//2 -- if-then-else
	('|')//2 -- second form of alternative
	{}//1 -- grammar-body-goal
	call//1
	phrase//1
	!//0 -- grammar-body-cut
	("026E30F +)//1 -- grammar-body-not
	->//2 - if-then

	Executing clauses expanded from grammar rules

	 Built-in predicates
	Grammar rule built-in predicates
	phrase/3, phrase/2

	Evaluable functors
	Logical Expansion

