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Foreword 

ISO (the International Organization for Standardization) and IEC (the Inter- 
national Electrotechnical Commission) form the specialized System for worldwide 
standardization. National bodies that are members of ISO or IEC participate in the 
development of International Standards through technical committees established 
by the respective organization to deal with particular fields of technical activity. 
ISO and IEC technical committees collaborate in fields of mutual interest. Other 
international organizations, governmental and non-governmental, in liaison with 
ISO and IEC, also take part in the work. 

In the field of information technology, ISO and IEC have established a joint 
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the 
joint technical committee are circulated to national bodies for voting. Publication 
as an International Standard requires approval by at least 75 % of the national 
bodies casting a vote. 

International Standard ISO/IEC 10967-1 was prepared by Joint Technical Com- 
mi ttee ISO/IEC JTC 1, Information technology, Subcommittee SC 22, 
Programming languages, their environments and System soj?ware interfaces. 

ISO/IEC 10967 consists of the following Parts, under the general title Znformation 
technology - Language independent arithmetic: 

- Part 1: Integer andfloating Point arithmetic 

- Part 2: Mathematical procedures 

- Part 3: Complex arithmetic and procedures 

Additional Parts will specify other arithmetic types or operations. 

Annexes A to J of this part of ISO/IEC 10967 are for information only. 
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Introduction 

The aims 

Programmers writing programs that perform a significant amount of numeric processing have often 
not been certain how a program will perform when run under a given language processor. Program- 
ming language Standards have traditionally been somewhat weak in the area of numeric processing, 
seldom providing an adequate specification of the properties of arithmetic data types, particularly 
floating Point numbers. Often they do not even require much in the way of documentation of the 
actual arithmetic data types by a conforming language processor. 

It is the intent of this part of ISO/IEC 10967 to help to redress these shortcomings, by setting out 
precise definitions of integer and floating Point data types, and requirements for documentation. 
This is done in a way that makes as few presumptions as possible about the underlying machine 
architecture. 

It is not claimed that this part of ISO/IEC 10967 will ensure complete certainty of arithmetic 
behavior in all circumstances; the complexity of numeric Software and the difficulties of analysing 
and proving algorithms are too great for that to be attempted. Rather, the requirements set forth 
here will provide a firmer basis than hitherto for attempting such analysis. 

Hence the first aim of this part of ISO/IEC 10967 is to enhance the predictability and reliability 
of the behavior of programs performing numeric processing. 

The second aim, which helps to support the first, is to help programming language Standards to 
express the semantics of arithmetic data types. These semantics need to be precise enough for 
numerical analysis, but not so restrictive as to prevent efficient implementation of the language on 
a wide range of platforms. 

The third aim is to help enhance the portability of programs that perform numeric processing 
across a range of different platforms. Improved predictability of behavior will aid programmers 
designing code intended to run on multiple platforms, and will help in predicting what will happen 
when such a program is moved from one conforming language processor to another. 

Note that this part of ISO/IEC 10967 does not attempt to ensure bit-for-bit identical results 
when programs are transferred between language processors, or translated from one language into 
another. Programming languages and platforms are too diverse to make that a sensible goal. How- 
ever, experience Shows that diverse numeric environments tan yield comparable results under most 
circumstances, and that with careful program design significant portability is actually achievable. 

The content 

This part of ISO/IEC 10967 defines the fundamental properties of integer and floating Point num- 
bers. These properties are presented in terms of a parameterized model. The Parameters allow 
enough Variation in the model so that most platforms are covered, but when a particular set of 
Parameter values is selected, and all required documentation is supplied, the resulting information 
should be precise enough to permit careful numerical analysis. 

The requirements of this part of ISO/IEC 10967 cover three areas. First, the programmer must 
be given runtime access to the Parameters and functions that describe the arithmetic properties 
of the platform. Second, the executing program must be notified when proper results cannot be 
returned (e.g., when a computed result is out of range or undefined). Third, the numeric properties 
of conforming platforms must be publicly documented. 

vi 
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This part of ISO/IEC 10967 focuses on the classical integer and floating Point data types. Later 
Parts will consider common mathematical procedures (Part 2), complex numbers (Part 3), and 
possibly additional arithmetic types such as fixed Point. 

Relations hip to hardware 

ISO/IEC 10967 is not a hardware architecture Standard. It makes no sense to talk about an “LIA 
machine.” Future platforms are expected either to duplicate existing architectures, or to satisfy 
high quality architecture Standards such as IEC 559 (also known as IEEE 754). The floating Point 
requirements of this part of ISO/IEC 10967 are compatible with (and enhance) IEC 559. 

This part of ISO/IEC 10967 provides a bridge between the abstract view provided by a programming 
language Standard and the precise details of the actual arithmetic implementation. 

The benefits 

Adoption and proper use of this part of ISO/IEC 10967 tan lead to the following benefits. 

Language Standards will be able to define their arithmetic semantics more precisely without pre- 
venting the efficient implementation of their language on a wide range of machine architectures. 

Programmers of numeric Software will be able to assess the portability of their programs in advance. 
Programmers will be able to trade off program design requirements for portability in the resulting 
program. 

Programs will be able to determine (at run time) the crucial numeric properties of the implementa- 
tion. They will be able to reject unsuitable implernentations, and (possibly) to correctly characterize 
the accuracy of their own results. Programs will be able to extract apparently implementation de- 
pendent data (such as the exponent of a floating Point number) in an implementation independent 
way. Programs will be able to detect (and possibly correct for) exceptions in arithmetic processing. 

End users will find it easier to determine whether a (properly documented) application program is 
likely to execute satisfactorily on their platform. This tan be done by comparing the documented 
requirements of the program against the documented properties of the platform. 

Finally, end users of numeric application packages will be able to rely on the correct execution of 
those packages. That is, for correctly programmed algorithms, the results are reliable if and only 
if there is no notification. 

vii 
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Annex A is intended to be read in parallel with the Standard. 

@ ISO/IEC 
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Information technology - 
Language independent arit hmetic - 
Part 1: 
Integer and floating Point arithmetic 

1 Scope 

This part of ISO/IEC 10967 defines the properties of integer and floating Point data types on com- 
Puter Systems to ensure that the processing of arithmetic data tan be undertaken in a reliable and 
predictable manner. Emphasis is placed on documenting the existing Variation between Systems, 
not on the elimination of such Variation. The requirements of this part of ISO/IEC 10967 shall 
be in addition to those that may be specified in other Standards, such as those for programming 
languages (See clause 7). 

It is not the purpose of this part of ISO/IEC 10967 to ensure that an arbitrary numerical function 
tan be so encoded as to produce acceptable results on all conforming Systems. Rather, the goal 
is to ensure that the properties of arithmetic on a conforming System are made available to the 
programmer. 

Therefore, it is not reasonable to demand that a Substantive piece of Software run on every imple- 
mentation that tan Claim conformity to this part of ISO/IEC 10967. 

An implernentor may choose any combination of hardware and Software support to meet the speci- 
fications of this part of ISO/IEC 10967. It is the arithmetic environment, as seen by the User, that 
does or does not conform to the specifications. 

The term implementation (of this part of ISO/IEC 10967) d enotes the total arithmetic environment, 
including hardware, language processors, exception handling facilities, subroutine libraries, other 
Software, and all pertinent documentation. 

1.1 Specifications included in this part of ISO/IEC 10967 

This part of ISO/IEC 10967 defines integer and floating Point data types. Definitions are included 
for bounded, unbounded, and modulo integer types, as well as both normalized and denormalized 
floating Point types. 

The specification for an arithmetic type includes 

a) The set of computable values. 

b) The set of computational operations provided, including 

1) primitive operations (addition, subtraction, etc.) with operands of the Same type, 
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2) comparison operations on two operands of the Same type, 

3) conversion operations from any arithmetic type to any other arithmetic type, and 

4) operations that access properties of individual values. 

c) Program-visible Parameters that characterize the values and operations. 

d) Procedures for reporting arithmetic exceptions. 

NOTE - A.1.3 describes planned future work in this area. 

1.2 Specifications not within the scope of this part of ISO/IEC 10967 

This part of ISO/IEC 10967 provides no specifications for 

a) Arithmetic and comparison operations whose operands are of more than one data type. This 
part of ISO/IEC 10967 neither requires nor excludes the presence of such “mixed Operand” 
operations. 

b) A general unnormalized floating Point data type, or the operations on such data. This part . 
of ISO/IEC 10967 neither requires nor excludes such data or operations. 

c) An interval data type, or the operations on such data. This part of ISO/IEC 10967 neither 
requires nor excludes such data or operations. 

d) A fixed Point data type, or the operations an such data. This part of ISO/IEC 10967 neither 
requires nor excludes such data or operations. 

e) A rational data type, or the operations on such data. This part of ISO/IEC 10967 neither 
requires nor excludes such data or operations. 

f) The properties of arithmetic data types that are not related to the numerical process, such 
as the representation of values on physical media. 

g) Floating Point values that represent infinity or non-numeric results. However, specifications 
for such values are given in IEC 559. 

h) The properties of integer and floating Point data types that properly belong in language 
Standards. Examples include 

1) The Syntax of literals and expressions. 

2) The precedence of Operators. 

3) The rules of assignment and Parameter passing. 

4) The presence or absence of automatic type coercions. 

5) The consequences of applying an Operation to values of improper type, or to uninitialized 
data. 

NOTE - See clause 7 and annex E for a discussion of language Standards and language 
bindings. 

The internal representation of values is beyond the scope of this part of ISO/IEC 10967. Internal 
representations need not be unique, nor is there a requirement for identifiable fields (for sign, 
exponent, and so on). The value of the exponent bias, if any, is not specified. 
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2 Conformity 

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by reference 
and further defined in other International Standards; specifically in language Standards and in 
language binding Standards. Binding Standards specify the correspondence between the abstract 
data types and operations of this part of ISO/IEC 10967 and the concrete language Syntax of the 
language Standard. A language Standard that explicitly provides such binding information tan 
serve as a binding Standard. 

When a binding Standard for a language exists, an implementation shall be said to conform to this 
part of ISO/IEC 10967 if and only if it conforms to the binding Standard. In particular, in the case 
of conflict between a binding Standard and this part of ISO/IEC 10967, the specifications of the 
binding Standard shall take precedence. 

When no binding Standard for a ianguage exists, an implementation conforms to this part of 
ISO,‘IEC 10967 ‘f 1 and only if it provides one or more data types that together satisfy all the 
requirements of clauses 5 through 8. Conformity is relative to that designated set of data types. 

NOTES 

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding if 
no binding Standard exists. See clause A.7 for recommendations on the proper content of a 
binding Standard. See annex F for an example of a conformity Statement, and annex E for 
suggested language bindings. 

2 A complete binding for this part of ISO/IEC 10967 will include a binding for IEC 559 as 
well. See 5.2.9 and annex C. 

An implementation is free to provide arithmetic types that do not conform to this part of ISO/IEC 
10967 or that arc beyond the scope of this part of ISO/IEC 10967. The implementation shall not 
Claim conformity for such types. 

An implementation is permitted to have modes of Operation that do not conform to this part of 
ISO/IEC 10967. However, a conforming implementation shall specify how to select the modes of 
Operation that ensure conformity. 

3 Normative reference 

The following Standard contains provisions which, through reference in this text, constitute provi- 
sions of this part of ISO/IEC 10967. At the time of publication, the edition indicated was valid. 
All Standards are subject to revision, and Parties to agreements based on this part of ISO/IEC 
10967 are encouraged to investigate the possibility of applying the most recent edition of the stan- 
dard indicated below. Members of IEC and ISO maintain registers of currently valid International 
Standards. 

IEC 559:1989, Binary fioating-Point arithmetic for microprocessor Systems. 
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4 Symbols and definitions 

4.1 Symbols 

In this part of ISO/IEC 10967, Z denotes the set of mathematical integers, R denotes the set of 
real numbers, and C denotes the set of complex numbers. Note that Z c R c C. 

All prefix and infix Operators have their conventional (exact) mathematical mean.ing. The conven- 
tional notation for set definition and manipulation is also used. In particular this part of ISO/IEC 
10967 uses 

3 and C-J for logical implication and equivalence 
+ - *, /, xy, Zog,y, fi, 1x1, 1x1, and tr(x) on reals 
<: 5: =, #, >, and > on reals - 
X, U, E, C, and = on sets of integers and reals 
max and min on non-empty sets of integers and reals 
-+ for a mapping between sets 

This part of ISO/IEC 10967 uses * for multiplication, and x for the Cartesian product of Sets. 

For x E R, the notation 1x1 designates the largest integer not greater than x: 

1x1 E z and x-l<L2J<x 

and tr(x) designates the integer part of x (truncated toward 0): 

tr(x) = 1x1 ifx>O 
=-l-x] ifx70 

The type Boolean consists of the two values true and false. Predicates (like < and =) produce 
values of type Boolean. 

4.2 Definitions 

For the purposes of this part of ISO/IEC 10967, the following definitions apply: 

arithmetic data type: A data type whose values are members of Z, R, or C. 

NOTE 1 - This part of ISO/IEC 10967 specifies requirements for integer and floating Point 
data types. Complex numbers are not covered here, but will be included in a subsequent 
part of ISO/IEC 10967 [15]. 

axiom: A general rule satisfied by an Operation and all values of the data type to which the 
Operation belongs. As used in the specifications of operations, axioms are requirements. 

continuation value: A computational value used as the result of an arithmetic Operation when 
an exception occurs. Continuation values are intended to be used in subsequent arithmetic 
processing. (Contrast with exceptional value. See 6.1.2.) 

NOTE 2 - The infinities and NaNs produced by an IEC 559 System are examples of 
continuation values. 

data type: A set of values and a set of operations that manipulate those values. 

denormalization 10s~: A larger than normal rounding error caused by the fact that denormalized 
values have less than full precision. (See 5.2.5 for a full definition.) 
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denormalized: Those values of a floating Point type F that provide less than the full precision 
allowed by that type. (See FD in 5.2 for a full definition.) 

error: (1) The differente between a computed value and the correct value. (Used in phrases like 
“rounding error” or “error bound.“) 

(2) A synonym for exception in phrases like “error message” or “error output.” Error and 
exception are not Synonyms in any other context. 

exception: The inability of an Operation to return a suitable numeric result. This might arise 
because no such result exists mathematically, or because the mathematical result cannot be 
represented with sufficient accuracy. 

exceptional value: A non-numeric value produced by an arithmetic Operation to indicate the oc- 
currence of an exception. Exceptional values are not used in subsequent arithmetic processing. 
(See clause 5.) 

NOTES 
3 Exceptional values are used as part of the defining formalism only. With respect to this 

part of ISO/IEC 10967, they do not represent values of any of the data types described. 
There is no requirement that they be represented or stored in the computing System. 

4 Exceptional values are not to be confused with the NaNs and infinities defined in IEC 
559. Contrast this definition with that of contirazscatiora uarke above. 

exponent bias: A number added to the exponent of a floating Point number, usually to transform 
the exponent to an unsigned integer. 

helper function: A function used solely to aid in the expression of a requirement. Helper functions 
are not visible to the programmer, and are not required to be part of an implementation. 
However, some implementation defined helper functions are required to be documented. 

implementation (of this part of ISO/IEC 10967): The total arithmetic environment presented to 
a programmer, including hardware, language processors, exception handling facilities, sub- 
routine libraries, other Software, and all pertinent documentation. 

normalized: Those values of a floating Point type F that provide the full precision allowed by 
that type. (See 8’~ in 5.2 for a full definition.) 

notification: The process by which a program (or that program’s User) is informed that an arith- 
metic exception has occurred. For example, dividing 2 by 0 results in a notification. (See 
clause 6 for details.) 

Operation: A function directly available to the User, as opposed to helper functions or theoretical 
mathematical functions. 

precision: The number of digits in the fraction of a floating Point number. (See 5.2.) 

rounding: The act of computing a representable final result for an Operation that is close to the 
exact (but unrepresentable) result for that Operation. Note that a suitable representable 
result may not exist (see 5.2.6). (S ee also A.5.2.5 for some examples.) 

rounding function: Any function rnd : R -+ X (where X is a discrete subset of R) that maps 
each element of X to itself, and is monotonic non-decreasing. Formally, if x and y arc in R, 

x E X + rnd(x) = x 
x < y 3 rd(x) 5 rnd(y) 

5 
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Note that if u E R is between two adjacent values in X, r&(u) selects one of those adjacent 
values. 

round to nearest: The property of a rounding function r& that when u E 73 is between two 
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant 
from u, either may be Chosen. 

round toward minus infinity: The property of a rounding function rnd that when u E R is 
between two adjacent values in X, rnd(u) selects the one less than u. 

round toward Zero: The property of a rounding function rnd that when u E R is between two 
adjacent values in X, rnd(u) selects the one nearest 0. 

shall: A verbal form used to indicate requirements strictly to be followed in Order to conform to 
the Standard and from which no deviation is permitted. (Quoted from [2].) 

should: A verbal form used to indicate that among several possibilities one is recommended as 
particularly suitable, without mentioning or excluding others; or that (in the negative form) 
a certain possibility is deprecated but not prohibited. (Quoted from [2].) 

signature (of a function or Operation): A summary of information about an Operation or function. 
A signature includes the Operation name, the minimum set of inputs to the Operation, and 
the maximum set of Outputs from the Operation (including exceptional values if any). The 
signature 

addi : I x I -+ I U {integer-Overflow} 

states that the Operation named addi shall accept any pair of I values as input, and (when 
given such input) shall return either a Single I value as its output or the exceptional value 
integer-Overflow. 

A signature for an Operation or function does not forbid the Operation from accepting a wider 
range of inputs, nor does it guarantee that every value in the output range will actually be 
returned for some input. An Operation given inputs outside the stipulated input range may 
produce results outside the stipulated output range. 

5 The arithmetic types 

A type consists of a set of values and a set of operations that manipulate these values. For any 
particular type, the set of values is characterized by a small number of Parameters. An exact 
definition of the value set will be given in terms of these Parameters. 

Given the type’s value set (V), the type’s operations will be specified as a collection of mathe- 
matical functions on V. These functions typically return values in V, but they may instead return 
certain “exceptional” values that are not in any arithmetic type. The exceptional values are inte- 
ger-Overflow, floating-Overflow, underflow, and undefined. 

NOTES 

1 Exceptional values arc used as part of the defining formalism only. With respect to this part 
of ISO/IEC 10967, they do not represent values of any of the data types described. There is 
no requirement that they be represented or stored in the computing System. They are not 
used in subsequent arithmetic operations. 

2 The values Not-ca-Nzsmber and irafiiaity introduced in IEC 559 (also known as IEEE 754) are 
not considered exceptional values for the purposes of this part of ISO/IEC 10967. They are 
“continuation values” as defined in 6.1.2. 

6 
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Whenever an arithmetic Operation (as defined in this clause) returns an exceptional value, notifi- 
cation of this shall occur as described in clause 6. 

Esch Operation has a signature which describes its inputs and Outputs (including exceptional val- 
ues). Esch Operation is further defined by one or more axioms. 

An implementation of a conforming integer or floating Point type shall include all the values defined 
for that type in this part of ISO/IEC 10967. Additional numeric values shall not be included in 
such a type. However, an implemented type is permitted to include additional non-numeric 

exceptions). (for example, continuation values representing 
values 

NOTE 3 - This part of ISO/IEC 10967 does not define the behavior of operations when 
applied to such additional non-numeric values. Other Standards (such as IEC 559) do define 
such behavior . 

An implementation of a conforming integer or floating Point type shall include all the operations 
defined for that type in this part of ISO/IEC 10967. Additional operations are explicitly permitted. 

The type Boolean is used to specify Parameter values and the results of comparison operations. An 
implementation is not required to provide a Boolean type, nor is it required to provide operations 
on boolean values. However, an implementation shall provide a means of distinguishing true from 
false as Parameter values and as results of operations. 

NOTE 4 - This part of ISO/IEC 10967 requires an implementation to provide “means” or 
“methods” to access values, operations, or other facilities. Ideally, these methods are provided 
by a language or binding Standard, and the implementation merely cites these Standards. Only 
if a binding Standard does not exist, must an individual implementation supply this information 
on its own. See clause A.7. 

51 . Integer types 

An integer type I shall be a subset of 2, characterized by four Parameters: 

bounded E Boolean 
modulo E Boolean 
minint E I 
maxint E I 

(whether the set I is finite) 
(whether out-of-bounds results “wrap”) 
(the smallest integer in 1) 
(the largest integer in I) 

If bounded is false, the set I satisfies 

I=2 

In this case, modulo shall be false, and the values of minint and maxint are not meaningful. 

If bounded is true, the set I satisfies 

I = (x E 2 1 minint < x < maxint) - - 

and minint and maxint shall satisfy 

maxint > 0 

and one of: minint = 0 
minint = -(maxint) 
minint = - (maxint + 1) 

An integer type with minint < 0 is called signed. An integer type with minint = 0 is called 
unsigned. An integer type in which bounded is false is signed. 
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NOTES 

1 Most traditional programming languages call for bounded integers. Others allow an integer 
type to have an unbounded range. A few languages permit the implementation to decide 
whether an integer type will be bounded or unbounded. (See A.5.1.0.3 for further discussion.) 

2 Operations on unbounded integers will not Overflow, but may fail due to exhaustion of 
resources. 

An implementation may provide more than one integer type. A method shall be provided for a 
program to obtain the values of the Parameters bounded, modulo, minint, and maxint, for each 
integer type provided. 

NOTE 3 - If the value of a Parameter (like bozsnded) is dictated by a language Standard, 
implernentations of that language need not provide program access to that Parameter explicitly. 

5.1.1 Operations 

For each integer type, the following operations shall be provided: 

addr: I x I + I U {integer-Overflow} 
subr: I x I + i U {integer-Overflow} 
mulI: I X I + I U {integer-Overflow} 
divr: I x I + I U {integer-Overflow, undefined) 
remr: I x I + I U {undefined} 
modl: I x I -+ I U {undefined} 
negl: I -+ I U {integer-Overflow) 
absi: I -+ I U {integer-Overflow} 
signr: I -+ I 
e!w I x I -+ Boolean 
neqI: I x I -+ Boolean 
ISS I: I x I + Boolean 
klI : I x I -+ Boolean 
gtrl: I x I + Boolean 
geqr: I x I -+ Boolean 

If I is unsigned, it is permissible to omit the operations negi, absi, and signr. 

5.1.2 Modul0 integers versus Overflow 

If bounded is true, the mathematical operations +, -, *, and / (after rounding) tan produce results 
that lie outside the set I. In such cases, the computational operations addl, subi, muZI, and divI 
shall either Cause a notification (if modulo = false), or return a “wrapped” result (if modulo = 
true). 

The helper function 

wrapr: 2 -+ I 

(which produces the wrapped result) is defined as follows: 

wrapr(x) = x + j * (maxint - minint + 1) for some j in 2 

wrap+) E I 



@ ISO/IEC ISO/IEC 10967=1:1994(E) 

5.1.3 Axioms 

For all values x and y in 1, the following shall apply: 

addi(x, Y) =x+y ifx+yEI 
= wrap& + y) if x + y $ I and modulo = true 
= integer-Overflow if x + y 4 1 and modulo = false 

subi(x, Y) =x-y if x -yEI 
= wrapI(x - y) if x - y # I and modulo = true 
= integer-Overflow if x - y # I and modulo = false 

mulr(x, Y) =x*y ifx*yEI 
= wrapr(x * y) if x *y # I and modulo = true 
= integer-Overflow if x >I( y @ I and modulo = false 

An implementation shall provide one or both of the Operation pairs div{/rem! and 
divflremi. ( The functions 11 and tr() are defined in 4.1.) 

divf(x, Y) = WYI if y # 0 and Lx/yJ E I 
= wraPr( LXIY] > if y # 0 and lx/y] $ I and modulo = true 
= integer-Overflow if y # 0 and lx/y] 4 I and moduZo = false 
= undefined 

\ 
ify=O 

rem;(x, Y) = x - (LdYl *y> ify#O 
= undefined ify=O 

divl(x, Y) = tr(zly) if y # 0 and tr(x/y) E I 
= wraPI(tr(xlY)) if y # 0 and tr(x/y) # I and modulo = true 
= integer-Overflow if y # 0 and tr(x/y) # I and modulo = false 
= undefined ify=O 

rem;(x, Y) = Ic - @(XlY) * Y) ify#O 
= undefined ify=O 

An implementation shall provide one or both of mody and mod;. 

modl(z, Y) = x - (l~/Yl *y> ify#O 
= undefined ify=O 

mod;(x, Y) = x - (LXIYJ *y> ify>O 
= undefined ify<O - 

negI(x) = -x if-xEI 
= wrapI(-2) if -x ft I and modulo = true 
= integer-Overflow if -x $ I and modulo = false 

ah(x) =X I I 
= wraPI(lxl) 
= integer-Overflow 

if 1x1 E 1 
if 1x1 @ I and modulo = true 
if IX 1 $ I and modulo = false 

signi(x) = 1 ifx>O 
- - 0 ifx=O 
- -- 1 ifx<O 

eqr(x,y) = true <=> x = y 

neqr(x, Y) = true <=> x # y 
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Zss~(x,y) = true e x<y 

leqr(x,y) = true t=> x 5 y 

gtri(x,y) = true e x > y 

9w(x, Y) = true (=) x > y - 

5.2 Floating Point types 

NOTE 1 - This part of ISO/IEC 10967 does not advocate any particular representation for 
floating Point values. However, concepts such as WZ&, precisiora, and ezcporaerat are derived from 
an abstract model of such values as discussed in A.5.2. 

A floating Point type F shall be a finite subset of R, characterized by five Parameters: 

rE2 (the radix of F) 
PE2 (the precision of F) 
emin E 2 (the smallest exponent of F) 
emax E 2 (the largest exponent of F) 
denorm E Boolean (whether F contains denormalized values) 

The Parameters r and p shall satisfy 

r>2 and p>2 - - 

and r should be even. 

The Parameters emin, emax, and p shall satisfy 

p - 2 < -emin < rp - 1 - - 

p < emax < rp - 1 - - 

Given specific values for r, p, emin, emax, and denorm, the following sets are defined: 

FN= (0, 33 * remP ( i, e E 2, 9-l < i 5 rp - 1, emin 5 e < emax> 

FD= {ki * re-P 1 i, e E 2, 1 5 i 5 9-l - 1, e = emin) 

F = FN U FD if denorm = true 
= FN if denorm = false 

The elements of FN are called normalized floating Point values because of the constraint 
7-P-l < i < rp - - - 1. The elements of FD are called denormalized floating Point values. 

NOTE 2 - The terms raormalized and deraormcalized refer to the mathematical values involved, 
not to any method of representation. 

The type F is called normalized if it contains only normalized values, and called denormalized if it 
contains denormalized values as well. 

An implementation may provide more than one floating Point data type. A method shall be 
provided for a program to obtain the values of the Parameters r, p, emin, emax, and denorm, for 
each floating Point type provided. 

NOTE 3 - The conditions placed upon the Parameters T, p, emin, and erru;Gz are sufficient to 
guarantee that the abstract model of F is well-defined and contains its own Parameters. More 
stringent conditions are needed to produce a computationally useful floating Point type. These 
are design decisions which are beyond the scope of this part of ISO/IEC 10967. (See A.5.2.) 

10 
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The following set is an unbounded extension of F: 

5.2.1 

F I = FN U FD U { rti * re-p 1 i, e E 2, 9-l < i < rp - 1, e > emax) - - 

NOTE 4 - The set F* contains values of magnitude larger than those that are representable 
in the type F. F* will be used in defining rounding. 

Range and granularity constants 

The range and granularity of F are characterized by the following derived constants: 

f max = max (z E F 1 z > 0) = (1 - rvp) * remax 

fminN = min {z E FN 1 z > O> = Ternen-’ 

fminD = min {z E FD 1 z > 0} = renzin-P 

f min = min (z E F 1 z > 0} = fmi?zD if denorm = true 
= fmi?aN if denorm = false 

epsilon = rl-P (the maximum relative spacing in FN) 

A method shall be provided for a program to obtain the values of the derived constants fmax, fmin, 
fminN, and epsilon, for each floating Point data type provided. 

5.2.2 Operations 

For each floating Point type, the following operations shall be provided: 

addF: F x F + F U {floating-Overflow, underflow} 
subp: F x F + F U {floating-Overflow, underflow) 
mulF: F x F -+ F U {floating-Overflow, underflow} 

. 
dzv F: F x F + F U {floating-Overflow, underflow, undefined} 
negF: F +F 
absF: F +F 
signF: F -+F 
exponentp: F + J U {undefined} 
fractionp: F +F 
scalep: F x J + F U {floating-Overflow, underflow} 
SUCCF: F + F U {floating-Overflow} 
predF: F + F U {floating-Overflow} 
?.dpF: F + F U {underflow, undefined} 
truncp: FxJ+F 
roundF: F x J + F U {floating-Overflow) 
intpartF: F -+F 
fractpa?$$ F -+ F 
eqF: F x F + Boolean 
neqF: F x F + Boolean 
ISS F: F x F + Boolean 

leqF . 

gtr Fi 
F x F + Boolean 
F x F -+ Boolean 

9eqF: F x F + Boolean 

11 
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J shall be a data type containing all integer values from -(emax - emin + p - 1) to (emax - 
emin + p - 1) inclusive. 

NOTES 

1 J should be a conforming integer type (if practical). However, a floating Point type will 
suffice. 

2 Operations are permitted to accept inputs not listed above. In particular, IEC 559 requires 
floating Point operations to accept infinities and NaNs as inputs. Such values are not in F. 

5.2.3 Approximate operations 

The operations addF, subp, ??&F, divp, and scakJ7 are approximations of exact mathematical 
operations. They differ from their exact counterparts in that 

a) they produce “rounded” results, and 

b) they produce notifications. 

The axioms for floating Point define these approximate operations as if they were computed in 
t hree st ages: 

a) Compute the exact mathematical answer. (For addition and subtraction, a close approxima- 
tion to the exact answer may be used.) 

b) Round this answer to p digits of precision. (The precision will be less if the answer is in the 
denormalized range.) 

c) Determine if notification is required. 

These stages will be modelled by three helper functions: add> (Stage a, for addition only), rndF 
(Stage b), and res?.&& (Stage c). These helper functions are not visible to the programmer, and 
are not required to be part of the implementation. An actual implementation need not perform 
the above stages at all, merely return a result (or produce a notification) as if it had. 

Different floating Point types may have different Versions of addF, rndF, and resz&l7. 

5.2.4 Approximate addition 

Some hardware implernentations of addition compute an approximation to addition that loses 
information Prior to rounding. As a consequence, x + y = u + v may not imply addF(x, y) = 
addF(u, v). 

The addF helper function is introduced to model this pre-rounding approximation: 

add> :FxF+R 

For all values u, v, x, and y in F, and i in 2, the following axioms are satisfied by add>: 

addF(u, v) = add>(v, u) 

add$(-u, -v) = -ad&>@, v) 

x<u+v<y 3 x<add>(u,v)<y - - - - 

u 5 v 3 add>(u,x) 5 add>(v,x) 

If u, v, u * r’, and v * ri are all in FN, 

12 
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addF(u * Ti, v * ri) = add>(u, v) * r’ 

NOTE - The above five axioms Capture the following properties: 

a) Add$ is commutative. 

b) Add& is sign symmetric. 

c) Add; is in the Same “basic interval” as u + V, and is exact if u + ‘u is exactly representable. 
(A basic interval is the range between two adjacent F values.) 

d) Add> is monotonic. 

e) Add> does not depend on the exponents of its arguments (only on the differente of the 
exponents). 

Ideally, no information should be lost before rounding. Thus, add> should satisfy 

add>(x, y) = x + y 

5.2.5 Rounding 

For floating Point operations, rounding is the process of taking an exact result in R and producing 
a pdigit approximation. 

The rndp helper function is introduced to model this process: 

rndF: R -+ F* 

RndF is a rounding function as defined in 4.2. RndF is sign symmetric. That is, for x E R, 

rndF(-x) = -rndp(z) 

For x E R and i E 2, such that 1x1 > fminN and IX * rii > fminN, 

rndp(x * r’) = rndF(x) * ri 

NOTE - This rule means that the rounding function does not depend on the “exponent” part 
of the real number except when denormalization occurs. 

If, for some x E R and some i E 2, such that 1x1 < fmi?zN and IX * ril 2 fminN, the formula 

rndF(x * r’) = rndF(x) * ri 

does not hold, then rndF is said to have a denormalization loss at x. 

5.2.6 Result function 

A floating Point Operation produces a rounded result or a notification. The decision is based on 
the computed result (either before or after rounding). 

The res?.+? helper function is introduced to model this decision: 

res&? : R X (R -+ F*) -+ F U {floating-overflow, underflow} 

NOTE - The first input to res?&7 is the computed result before rounding, and the second 
input is the rounding function to be used. 

For all values x in R, and any rounding function rnd in (R -+ F*), the following shall apply: 

For x = 0 or fminN 5 IX 1 5 fmax: 

resh$(x, rnd) = rnd(x) 

13 
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For 1x1 > fmax: 

redtF(x, rnd) = rnd(x) 
= floating-Overflow 

if (rnd(x)l = fmax 
otherwise 

For 0 < 1x1 < fmkN: 

resultF(x, rnd) = rnd(x) or underflow if Irnd(x)l = fntinN 
- - rnd(x) or underflow if Irnd(x)l E FD, denorm = true, and 

rnd has no denormalization loss at x 
- - underflow otherwise 

An implementation is allowed to choose between rnd(x) and underflow in the region between 0 
and fmi?xN. However, a denormalized value for rnd(x) tan be Chosen only if denorm is true and 
no denormalization loss occurs at x. An implementation shall document how the choice between 
rnd(x) and underflow is made. 

5.2.7 Axioms 

For convenience, define two helper functions: eF and rnF. 

Define CF: R --+ 2 such that 

eF(x) = Lkblxl] + 1 if 1x1 2 fminN 
= emin if 1x1 < f?ninN 

NOTE 1 - The value eF (2) is that of the e in the definitions of FN, FD, and F*, and has been 
defined to have the value emin at 0. When z is in FD, eF(z) is emin regardless of 2. 

Define ?%F : F x 2 --+ F* such that 

TnF(x, n) = signF(x) * [lxl/re++n + 1/2] * re++ 

NOTE 2 - The value mp(x) is x rounded to n digits of precision (using traditional round to 
nearest in which ties round away from Zero). 

For all values x and y in F, and n an integer in J the following shall apply: 

addF(x, Y) = resultF(add>(x, y), rndF) 

subF(x, Y) = addp(x, -y) 

mulF(x, Y) = resu&(x * y, rndF) 

divF(x, y) = resukF(x/y, rndF) ify#O 
= undefined ify=O 

negF(x) = -It: 

absF(x) -12: I I 
signF(x) = 1 

- - 0 
- -- 1 

exponentp (x) = pg&l] + 1 
= undefined 

fractionp (z) = z/fexponentF ‘x’ 
- - 0 

ifx>O 
ifx=O 
ifx<O 

ifx#O 
ifx=O 

ifx#O 
ifx=O 

14 
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scaleF(x, n) = resultF(x * rn, rndF) 

succF(x) = min {z E F 1 z > x} if x # fmax 
= floating-Overflow if 2 = fmax 

predF(x) = max {z E F 1 z < x} if x # -fmax 
= floating-Overflow if x = -fmax 

uh’F(x) = TeF (X)-P 

= underflow 
= undefined 

if x # 0 and reF(x)-P E F 
if x # 0 and reF(x)-P 4 F 
ifx=O 

truncF(x, n) = lx/reF(x)-n] * reF(x)sn if X > 0 
= -truncF(-x, n) ifx<O 

roundp(z, n) = rnF(x, n) if l?%F(x,?z)1 < fmaz 
= floating-Overflow if IrnF(z,n)I > fmaz 

intpartF(x) = signF(x) * Llxl] 

eqF(x,y) = true <=> X = y 

ne!@‘@, y> = true 0 x # y 

hsF(x,y) = true ( x < y 

leqF(x,y) = true <=> X 5 y 

gtrF(x,y) = true ( x > y 

geqF(% Y) = true <* x > y - 

5.2.8 Rounding constants 

Two derived constants shall be provided to characterize the rounding function: rnd-error and 
rnd-style. 

Define the derived constant rnd-error to be the smallest element of F such that 

I X- rndF(x)( 5 rnd-error * r eF(rndF(=))-?' 

for all x E R. If add>(x, y) is not identically equal to x + y for all x, y E F, then rnd-error shall 
be defined as 1. (See add> in 5.2.4.) 

NOTE - The requirement that rndp be a rounding function implies that rnd-error < 1. 
However, some definitions for rndp may yield smaller values for rnd-error. (See A.5.2.8.)- 

A method shall be provided for a program 
for each floating Point data type provided. 

RndF 

I 
RndF 

I 

to obtain the value of the derived constant rnd-er 

has the round toward zero property if for x E R 

rndF(x)l 5 1x1 

has the round to nearest property if for x E R 

rndp(x) - XI<+ * r eF(+p 

15 
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Note that the behavior when x is exactly halfway between values in F is not specified by this 
definition. 

The derived constant rnd-style, having one of three allowed constant values, is defined by 

rnd-style = nearest 
= truncate 
= other 

if rndp has the round to nearest property 
if rndp has the round toward zero property 
ot herwise 

If add&(x, y) is not identically equal to x + y for all x, y E F, then rnd-style shall be defined as 
other. 

A method shall be provided for a program to obtain the value of the derived constant rnd-style 
for each floating Point data type provided. In addition, a notation for each of the values nearest, 
truncate, and other shall be provided such that the value of rnd-style tan be compared to the 
constants. 

5.2.9 Conformity to IEC 559 

One further behavioral Parameter shall be provided for each floating Point type F: 

iec-559 E Boolean (whether F conforms to IEC 559) 

The Parameter iec-559 shall be true only when the type F completely conforms to the requirements 
of IEC 559 (also known as IEEE 754). F may correspond to any of the floating Point types defined 
in IEC 559. 

When iec-559 is true, all the facilities required by IEC 559 shall be provided. Methods shall be 
provided for a program to access each such facility. In addition, documentation shall be provided 
to describe these methods, and all implementation choices. 

NOTE 1 - The IEC 559 facilities include values for infinities and NaNs, extended comparisons, 
program control of rounding, an inexact exception flag, and so on. See annex C for more 
information. 

When iec-559 is true, all operations and values common to this part of ISO/IEC 10967 and IEC 
559 shall satisfy the requirements of both Standards. Values present only in IEC 559 (-0, +oo, 
-00, and the NaNs) need only satisfy the requirements of IEC 559. The value set F as used in the 
definitions and axioms of 5.2 does not contain these extra values - it only contains the common 
values. Thus, the axioms in 5.2.7 apply only to the common values. Nevertheless, the operations 
in 5.2.2 shall not distinguish -0 from +O. 

NOTE 2 - An implementation of IEC 559 tan distinguish -0 from +0 only by the use of 
operations not in 5.2.2, or by the generation or use of values not in F (infinities). 

A method shall be provided for a program to obtain the value of the Parameter iec-559 for each 
floating Point data type provided. 

5.3 Conversion operations 

A conversion Operation is a function from one arithmetic type to another arithmetic type. Conver- 
sion operations shall be provided 

a) between any two distinct integer types, 

b) between any two distinct floating Point types of the Same radix, 
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c) from any integer type to any floating Point type, and 

d) from any floating Point type to any integer type. 

NOTE 1 - This part of ISO/IEC 10967 does not define conversion operations between floating 
Point types with different radices. 

Let Ia and &, be two integer types. The conversion Operation 

cutIa+i, : Ia -+ Ib U {integer-overflow} 

shall be defined by 

C%&Ib (2> =X if x E Ib 
= WraPIb (2) if x $ Ib and moduloIb = true 
= integer-Overflow if x $ Ib and moduloIb = false 

where modulolb is the modulo Parameter for type Ib. 

Let nearestx be a helper rounding function from R to X satisfying the round to nearest property. 

Let FQ and Fb be two floating Point types with the Same radix. The conversion Operation 

cvtFa,Fb : F, -+ & U {floatingoverflow, underflow} 

shall be defined by 

CvtFa+F&) = resultF, (x, nearest&) 

Let I be an integer type, and F be a floating Point type. The conversion Operation 

cvtI+F : I + F u {floating-Overflow) 

shall be defined by 

cutI,F(x) = resultF(x ) nearestp) 

Let F be a floating Point type, and I be an integer type. The conversion Operation 

c&F+I : F + I U {integer-Overflow} 

shall be defined by 

cutF+I(x) = rndF,I(x) 
= wrapI(rndF+I(x)) 
= integer-Overflow 

if rndp,l(x) E I 
if rndF+I(x) $ I and moduloI = true 
if rndF+I(x) @ 1 and moduloI = false 

where modular is the modulo Parameter for type I and rndF+I is a helper rounding function from 
R to 2.5 

NOTE 2 - With proper choice of rndp,I, the function cvtF+I could be identical with the 
function floor, truncate, round, or ceiling. These functions will be described in more detail in 
Part 2 of ISO/IEC 10967. 

An implementation may provide more than one conversion Operation for a given pair of types. In 
Par ticular, different choices for rndF+I or nea?-&F tan produce different conversion operations. 
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6 Notification 

Notification is the process by which a user or program is informed that an arithmetic Operation 
cannot be performed. Specifically, a notification shall occur when any arithmetic Operation returns 
an exceptional value as defined in clause 5. 

6.1 Notification alternatives 

Three alternatives for notification are provided here. The requirements are: 

a) The alternative in 6.1.1 shall be supplied in conjunction with any language which provides 
support for exception handling. 

b) The alternative in 6.1.2 shall be supplied in the absence of language support for exception 
handling. 

c) The alternative in 6.1.3 shall be supplied by all implernentations. 

6.1.1 Language defined notification 

If the programming language in use defines an exception handling mechanism that tan 

a) 
b) 
4 
4 

then 

Such 

detect. the occurrence of arithmetic exceptions, 

report such exceptions to the executing program, 

permit the programmer to specify code to compensate for such exceptions, and then 

continue program execution, 

notifications shall be handled by that language defined mechanism. 

a mechanism may be defined as part of the programming language Standard itself or by a 
separate binding Standard. 

NOTE - The exception handling mechanisms of Ada and PL/1 are examples of language 
defined notification. In these languages, an exception Causes a prompt alteration of control 
flow to execute user provided exception handling Code. Other notification mechanisms, such 
as continued execution with special non-numeric “error values,” may be appropriate for other 
languages. 

‘The manner in which the exception handling code is specified and the capabilities of such excep- 
tion handling code (including whether it is possible to resume the Operation which caused the 
notification) is the province of the language Standard, not this arithmetic Standard. 

,If no exception handling code is provided for a particular occurrence of the return of an excep- 
tional value as defined in clause 5, that fact shall be reported to the user of that program in an 
unambiguous and “hard to ignore” manner. (See 6.1.3.) 
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6.1.2 Recording of indicators 

An implementation shall provide this alternative for any language that does not provide a mech- 
anism for the handling of exceptions. It is allowed (with System support) even in the presence of 
such a mechanism. 

Notification consists of two elements: a prompt recording of the fact that an arithmetic Operation 
returned an exceptional value, and means for the program or System to interrogate or modify the 
recording at a subsequent time. 

The recording shall consist of four indicators, one for each of the exceptional values that may be 
returned by an arithmetic Operation as defined in clause 5: integer-Overflow, floating-Overflow, 
underflow, and undefined. 

These indicators shall be clear at the Start of the program. They are set when any arithmetic 
Operation returns an exceptional value as defined in clause 5. Once set, an indicator shall be 
cleared only by explicit action of the program. The implementation shall not allow a program to 
complete successfully with an indicator that is set. Unsuccessful completion of a program shall be 
reported to the user of that program in an unambiguous and “hard to ignore” manner. (See 6.1.3.) 

NOTE 1 - The Status flags required by IEC 559 are an example of this form of notification, 
prouided that the program is not allowed to terminate successfully with any Status flags still set. 

Consider a set E including at least four elements corresponding to the four exceptional values: 
integer-Overflow, floating-Overflow, underflow, and undefined. Let Ind be be a type whose 
values represent the subsets of E. 

An implementation shall provide an embedding of Ind into a programming language type. In 
addition, a method shall be provided for denoting each of the values of Ind (either as constants or 
via computation). 

The following four operations shall be provided: 

clear-indicators: Ind -+ 
set-indicators: Ind -+ 
test-indicators: Ind -+ Boolean 
current-indicators: -+ Ind 

For every value S in Ind, the above four operations shall behave as follows: 

clear-indicators(S) clear each of the indicators named in S 

set-indicators(S) set each of the indicators named in S 

test-indicators(S) return true if any of the indicators named in S is set 

current-indicatorso return the names of all indicators that are currently set 

Indicators whose names are not in S shall not be altered. 

An implementation is permitted to expand the set E to include additional notification indicators 
beyond the four listed above. 

When any arithmetic Operation returns an exceptional value as defined in clause 5, in addition 
to recording the 
failed arithmetic 

event, an implementation shall provide value for the result of the 
Operation, and continue execution from 

a continuation 
that Point: 

a) In the case of underflow (that is, when resultF(x,rnd) = underflow), the continuation 
value shall be rnd(x) when denorm = true, and 0 when denorm = false. 

19 



ISO/IEC 10967-1:1994(E) @ ISO/IEC 

b) In the case of integer-Overflow, floating-Overflow, and undefined, the continuation value 
shall be implementation defined. There are no restrictions on this continuation value. It is 
not required to be a valid value of the type I or F. 

NOTES 

2 The infinities and NaNs produced by an IEC 559 System are examples of values not in F 
which might be used as continuation values. If the iec-559 Parameter is true, the continuation 
values must be precisely those stipulated in IEC 559. 

3 It is not specified by this part of ISO/IEC 10967 what happens when an Operation is applied 
to a value that is not in its input domain (as defined by the Operation signature). Thus, for 
example, the behavior of addp on a NaN is not in the scope of this part of ISO/IEC 10967. 

4 No changes to the specifications of a language Standard are required to implement this 
alternative for notification. The recordings tan be implemented in System Software. The 
operations for interrogating and manipulating the recording tan be contained in a System 
library, and invoked as library routine calls. 

6.1.3 Termination with message 

An implementation shall provide this alternative, which serves as a back-up if the programmer has 
not provided the necessary code for either of the other alternatives. 

Notification consists of prompt delivery of a “hard-to-ignore” message, followed by termination 
of execution. Any such message should identify the Cause of the notification and the Operation 
responsible. 

6.2 Delays in notification 

Notification may be momentarily delayed for Performance reasons, but should take place as close 
as practical to the attempt to perform the responsible Operation. When notification is delayed, it 
is permitted to merge notifications of different occurrences of the return of the same exceptional 
value into a Single notification. However, it is not permissible to generate duplicate or spurious 
notifications. 

In connection with notification, ‘(prompt” means before the occurrence of a significant program 
event. For recording of indicators as described in 6.1.2, a significant program event is an attempt 
by the program (or System) to access the indicators, or the termination of the program. For 
language defined notification as described in 6.1.1, the definition of a significant event is language 
dependent, is likely to depend upon the scope or extent of the exception handling mechanisms, 
and must therefore be provided by language Standards or by language binding Standards. For 
termination with message as described in 6.1.3, the definition of a significant event is again language 
dependent, but would include producing output visible to humans or other programs. 

NOTES 

1 Roughly speaking, “prompt” should at least imply “in time to prevent an erroneous response 
to the exception.” 

2 The Phrase “hard-to-ignore” is intended to discourage writing messages to log files (which are 
rarely read), or setting program variables (which disappear when the program completes). 
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6.3 User selection of alternative for notification 

A conforming implementation shall provide a means for a User or program to select among the 
alternate notification mechanisms provided. The choice of an appropriate means, such as Compiler 
Options, is left to the implementation. 

The language or binding Standard should specify the notification alternative to be used in the 
absence of a user choice. The notification alternative used in the absence of a user choice shall be 
documented. 

7 Relationship wit h language Standards 

A computing System often provides arithmetic data types within the context of a Standard pro- 
gramming language. The requirements of this part of ISO/IEC 10967 shall be in addition to those 
imposed by the relevant programming language Standards. 

This part of ISO/IEC 10967 does not define the Syntax of arithmetic expressions. However, pro- 
grammers need to know how to reliably access the operations defined in this part of ISO/IEC 
10967. 

NOTE 1 - Providing the information required in this clause is properly the responsibility of 
programming language Standards. An individual implementation would only need to provide 
details if it could not cite an appropriate clause of the language or binding Standard. 

An implementation shall document the notation used to invoke each Operation specified in clause 5. 

NOTE 2 - For example, integer equality (e&, j)) might be invoked as 

i=j in 
i == j in 
i .EQ. j in 
( =ij) in 

Pascal [ 51 and Ada [6] 
C [9] and Fortran [3] 
Fortran [3] 
Common Lisp [32] 

An implementation shall document the semantics of arithmetic expressions in terms of compositions 
of the operations specified in clause 5. 

NOTE 3 - For example, if z, y, and z are declared to be Single precision (SP) reals, and 
calculation is done in Single precision, then the expression 

x+ycz 

might translate to 

bP( addsp(x,y), 2 ) 

If the language in question did all computations in double precision, the above expression might 
translate to 

lss~p( addDp( cvt SP+DP(x)r CatSP+DP(Y) ), CvtSP+DP(Z) ) 

Alternatively, if x was declared to be an integer, the above expression might translate to 

hP( addsp( CvtI+SP(x), Y ), 2 ) 

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might 
not be executed as written. An implementation shall document the possible transformations of 
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include 

a) Insertion of operations, such as data type conversions or changes in precision. 
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b) Reordering of operations, such as the application of associative or distributive laws. 

c) Replacing operations (or entire subexpressions) with others, such as “2 * z” -+ “II: + z” or 
(‘x/c” -5 ‘(2 * (l/c) .” 

d) Evaluating constant subexpressions. 

e) Eliminating unneeded subexpressions. 

Only transformations which alter the semantics of an expression (the values produced, and the 
notifications generated) need be documented. Only the range of permitted transformations need 
be documented. It is not necessary to describe the specific choice of transformations that will be 
applied to a particular expression. (See the Fortran Standard [3], particularly clauses 7.1.2 and 
7.1.7, for an example of documentation in this area.) 

The textual scope of such transformations shall be documented, and any mechanisms that provide 
programmer control over this process should be documented as well. 

NOTE 4 - It is highly desirable that programming languages intended for numerical use 
provide means for limiting the transformations applied to particular arithmetic expressions. 
Control over changes of precision is particularly useful. 

8 Documentation requirements 

In Order to conform to this part of ISO/IEC 10967, an implementation shall include documentation 
providing the following information to programmers. 

NOTES 

1 Much of the documentation required in this clause is properly the responsibility of program- 
ming language or binding Standards. An individual implementation would only need to 
provide details if it could not cite an appropriate clause of the language or binding Standard. 

2 Some of the following items should not be standardized. See clause A.7 for a discussion of 
this topic. 

a) A list of the provided integer and floating Point types that conform to this part of ISO/IEC 
10967. 

b) For each integer type, the values of the Parameters: bounded, modulo, minint, and maxint. 
(See 5.1.) 

c) For each floating Point type, the values of the Parameters: r, p, emin, emax, denorm, and 
iec-559. (See 5.2 .) 

d) For each integer type 1, which (or both) of the two permitted div1 and remI pairs are provided 
for that type, and which (or both) of the two modr functions are provided for that type. (See 
5.1.3.) 

e) For each unsigned integer type 1, which (if any) of the operations negl, absl, and signI are 
omitted for that type. (See 5.1.3.) 

f) For each floating Point type F, the full definitions of rndp, resultp, and addg. (See 5.2.5, 
5.2.6, and 5.2.4.) (Th is should include values for rnd-error and rnd-style.) 

g) For each floating Point type F, the type J used with the four operations exponentF, scaZeF, 
t?%ncF, and roundp. (See 5.2.2.) 
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For each pair of types, a list of conversion operations provided including the semantics of each 
rndF+l and nea??stF function. (See 5.3.) 

The notation for invoking each Operation provided by this part of ISO/IEC 10967. (See 5.1.1 
and 5.2.2.) 

The translation of arithmetic expressions into combinations of operations provided by this 
part of ISO/IEC 10967, including any use made of higher precision. (See clause 7.) 

For each integer type, the method for a program to obtain the values of the Parameters: 
bounded, modulo, minint, and maxint. (See 5.1.) 

For each floating Point type, the method for a program to obtain the values of the Parameters: 
r, p, emin, emax, denorm, and iec-559. (See 5.2.) 

For each floating Point type, the method for a program to obtain the values of the derived 
constants fmax, fmin, fm;nlN, epsilon, rnd-error, and rnd-style, and the notation for the 
three values of rnd-style. (See 5.2.1 and 5.2.8.) 

The methods used for notification, and the information made available about the Violation. 
(See clause 6.) 

The means for selecting among the notification methods, and the notification method used 
in the absence of a user selection. (See 6.3.) 

When “recording of indicators” is the method of notification, the type used to represent Ind, 
the method for denoting the values of Ind (the association of these values with the subsets of 
E must be clear), and the notation for invoking each of the four “indicator” operations. (See 
6.1.2.) 

For each floating Point type where iec-559 is true, and for each “implementor choice” per- 
mitted by IEC 559, the exact choice made. (See 5.2.9.) 

For each floating Point type where iec-559 is true, and for each of the facilities required by 
IEC 559, the method available to the programmer to exercise that facility. (See 5.2.9 and 
annex C.) 
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Annex A 
(informative) 

Rat ionale 

@ ISO/IEC 

This annex explains and clarifies some of the ideas behind ISO/IEC 10967-1, Information technology 
- Language independent arithmetic - Part 1: Integer and fioating Point arithmetic (LIA-1). This 
allows the Standard itself to be concise. Many of the major requirements are discussed in detail, 
including the merits of possible alternatives. The clause numbering matches that of the Standard, 
although additional clauses have been added. As a consequence, the clause numbering in this annex 
deviates from conventional ISO usage. 

A.l Scope 

The scope of LIA-1 includes the traditional primitive arithmetic operations usually provided in 
hardware. The Standard also includes several other useful primitive operations which could easily 
be provided in hardware or Software. An important aspect of all of these primitive operations is 
that they are to be regarded as atomic rather than implemented as a sequence of yet more primitive 
operations. Hence, each primitive floating Point Operation has a one ulp error bound, and primitive 
operations are never interrupted by an intermediate notification. 

LIA-1 provides a parameterized model for arithmetic. Such a model is needed to make concepts 
such as “precision” or “exponent range” meaningful. However, there is no such thing as an “LIA-1 
machine.” It makes no sense to write code intended to run on all machines describable with the 
LIA-1 model - the model covers too wide a range for that. It does make sense to write code that 
uses the LIA-1 facilities to determine whether the platform it’s running on is suitable for its needs. 

A.l.l Specifications included in this part of ISO/IEC 10967 

This part of ISO/IEC 10967 is intended to define the meaning of an “integer type” and a “floating 
Point type,” but not to preclude other arithmetic or related types. 

The specifications for integer and floating Point types are given in sufficient detail to 

a) support detailed and accurate numerical analysis of arithmetic algorithms, 

b) serve as the first of a family of Standards, as outlined in A.1.3, 

c) enable a precise determination of conformity or non-conformity, and 

d) prevent exceptions (like Overflow) from going undetected. 

A.1.2 Specifications not within the scope of this part of ISO/IEC 10967 

There are many arithmetic Systems, such as fixed Point arithmetic, significance arithmetic, interval 
arithmetic [33], rational arithmetic, level-index arithmetic, slash arithmetic, and so on, which differ 
considerably from traditional integer and floating Point arithmetic, as well as among themselves. 
Some of these Systems, like fixed Point arithmetic, are in wide-spread use as data types in Standard 
languages; most are not. A form of floating Point is defined by Kulisch and Miranker [28, 291 which 
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is compatible with (but considerably stricter than) LIA-1. For reasons of simplicity and clarity, 
these alternate arithmetic Systems are not treated in LIA-1. They should be the subject of other 
Parts of ISO/IEC 10967 if and when they become candidates for standardization. 

The portability goal of LIA-1 is for programs, rather than data. LIA-1 does not specify the internal 
representation of data. However, portability of data is the subject of another Standard, ASN.l [7]. 

Mixed mode operations, and other issues of expression semantics, are not addressed directly by 
LIA-1. However, suitable documentation is required (see clause 7). 

A.1.3 Proposed follow-ons to this part of ISO/IEC 10967 

It is planned that the following topics be the subject of a family of Standards, of which LIA-1 is 
the first member: 

’ a) Specifications for the usual elementary functions [14]. 

b) Specifications for converting arithmetic values to and from text strings, particularly for 
I/O [14]. 

c) Specifications for converting between floating Point types of different radix [14]. 

d) Specifications for complex data types [15]. 

This list is incomplete, and no ordering should be inferred. 

Esch of these new sets of specifications is necessary to provide a total numerical environment for 
the support of portable robust numerical Software. The properties of the primitive operations will 
be used in the development of elementary and complex functions and conversion routines which 

a) are realistic from an implementation Point of view, 

b) h ave acce pt able Performance, and 

c) have adequate accuracy to support numerical analysis. 

In connection with the third Point, the accuracy properties of the primitive operations will be used 
to arrive at accuracy specifications for the more advanced operations. For radix conversion and 
operations on complex number types, accuracy specifications comparable to those in LIA-1 are 
certainly feasible, but may have unacceptable Performance penalties. Complete verification of the 
accuracy of an elementary function may not be possible. 

A.2 Conformity 

A conforming System consists of an implementation (which obeys the requirements) together with 
documentation which Shows how the implementation conforms to this part of ISO/IEC 10967. 
This documentation is vital since it gives crucial characteristics of the System, such as the range 
for integers, the range and precision for floating Point, and the actions taken by the System on the 
occurrence of notifications. 

The binding of LIA-1 facilities to a particular programming language should be as natura1 as possi- 
ble. Existing language Syntax and features should be used for operations, Parameters, notification, 
and so on. For example, if a language expresses addition by % + y,” then the LIA-1 addition 
Operation add should be bound to the infix “+” Operator. 
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Most integer arithmetic implernentations are expected to conform to the specifications in this part 
of ISO/IEC 10967. 

Most current implernentations of floating Point tan be expected to conform to the specifications in 
this part of ISO/IEC 10967. In particular, implernentations of IEEE 754 [l] will conform, provided 
that the user is made aware of any Status flags that remain set upon exit from a program. 

The documentation required by LIA-1 will highlight the differentes between “almost IEEE” Systems 
and fully IEEE conforming ones. 

type, a Single floating Point type, or Note that a System tan Claim conformity for a Single integer 
a collection of arithmetic types. 

An implementation is free to provide arithmetic types (e.g. fixed Point) or arithmetic operations 
( g e. . exponentiation on integers) which may be required by a language Standard but are not 
specified by LIA-1. Similarly, an implementation may have modes of Operation (e.g. notifications 
disabled) that do not conform to LIA-1. The implementation must not Claim conformity to LIA- 
1 for these arithmetic types or modes of Operation. Again, the documentation that distinguishes 
between conformity and non-conformity is critical. An example conformity Statement (for a Fortran 
implementation) is given in annex F. 

A.2.1 Validation 

This part of ISO/IEC 10967 gives a very precise description of the properties of integer and floating 
Point types. This will expedite the construction of conformity tests. It is important that objective 
tests be available. Schryer [30] h as shown that such testing is needed for floating Point since two 
thirds of units tested by him contained serious design flaws. Another test Suite is available for 
floating Point [24], which includes enhancements based upon experience with Schryer’s work [30], 
but progress here is inhibited by the lack of a Standard against which to test. 

LIA-1 does not define any process for validating conformity. 

Independent assurance of conformity to LIA-1 could be by spot Checks on products with a Validation 
Suite, as for language Standards, or via vendors being registered under ISO/IEC 9001, Model for 
quality assurance in production and installation 181, enhanced with the requirement that their 
products claiming conformity are tested with the Validation Suite and checked to conform as part 
of the release process. 

Alternatively, checking 
document the evidente 

A.3 

could be regarded as the responsibility of the vendor, who would then 
supporting any Claim to conformity. 

Normative references 

A.4 Symbols and definitions 

An arithmetic Standard must be understood by numerous People with different backgrounds: nu- 
merical analysts, Compiler-writers, programmers, microcoders, and hardware designers. This raises 
certain practical difficulties. If the Standard were written entirely in a natura1 language, it might 
contain ambiguities. If it were written entirely in mathematical terms, it might be inaccessible 
to some readers. These Problems were resolved by using mathematical notation for LIA-1, and 
providing this rationale in English to explain the notation. 
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There are various notations for giving a formal definition of arithmetic.’ In [36] a formal definition is 
given in terms of the Brown model [22]. S ince the current proposal differs from the Brown model, 
the definition in [36] is not appropriate for LIA-1. The production of a formal definition using 
VDM [27] would nevertheless be useful. 

A.4.1 Symbols 

LIA- 1 uses the conventional notation for sets and operations on Sets. The set Z denotes the set of 
mathematical integers. This set is infinite, unlike the finite subset which a machine tan conveniently 
handle. The set of 
1/3 and J2 are in 

real numbers is denoted by R, which is also infinite. Hence numbers such as 7r, 
R, but usually they cannot be represented exactly in a Computer. 

This annex uses the conventional notation for open and closed intervals of real numbers, e.g. the 
interval [a, b) d enotes the set (zla < IC < b}. - 

A.4.2 Definitions 

A vital definition is that of “notification.” A notification is the report (to the program or User) 
that results from an error or exception as defined in ISO/IEC TR 10176 [lO]. 

The principle behind notification is that such events in the execution of a program should not 
go unnoticed. The preferred action is to invoke a Change in the flow control of a program (for 
example, an Ada “exception”), to allow the user to take corrective action. Traditional practice is 
that a notification consists of aborting execution with a suitable error message. The various forms 
of notification are given names, such as floating-overflow, so that they tan be distinguished. 

Another important definition is that of a rounding function. A rounding function is a mapping from 
the real numbers onto a subset of the real numbers. Typically, the subset X is an “approximation” 
to R, having unbounded range but limited precision. X is a discrete subset of R, which allows 
precise identification of the elements of X which are closest to a given real number in R. 
rounding function md maps each real number u to an approximation of u that lies in X. 

The 

If a real number u is in X, then clearly u is the best approximation for itself, so rnd(u) = u. If 
u is between two adjacent values ~1 and ~2 in X, then one of these adjacent values must be the 
approximation for u: 

x1 < u < x2 3 rnd(u) = xl or rnd(u) = x2 

Finally, if rnd(u) is the approximation for u, and z is between u and rnd(u), then rnd(u) is the 
approximation for 2 also. 

u < z < rnd(u) + rnd(z) = rnd(u) 
rnd(u) < z < u :) rnd(z) = rnd(u) 

The last three rules are special cases of the monotonicity requirement 

x < y + rd(x) 5 m-d(y) 

which appears in the definition of a rounding function. 

Note that the value of rnd(u) depends only on u and not on the arithmetic Operation (or operands) 
that gave rise to u. However, see A.5.2.4for a discussion of the subtle interaction between addF(Ic, y) 
and the rounding function. 
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The graph of a rounding function looks like a series of Steps. As u increases, the value of rnd(u) is 
constant for a while (equal to some value in X) and then jumps abruptly to the next higher value 
in X. 

Some examples may help clarify things. Consider a number of rounding functions from R to Z. 
One possibility is to map each real number to the next lower integer: 

rnd(u) = Lu] 

This gives rnd(1) = 1, rnd(l.3) = 1, rnd(1.99. l  0) = 1, and rnd(2) = 2. Another possibility would 
be to map each real number to the next higher integer. A third example maps each real number 
to the closest integer (with half-way cases rounding toward plus infinity): 

rnd(u) = Lu + 0.51 

This gives rnd(1) = 1, rnd(1.49. l ) = 1, rnd(l.5) = 2, and rnd(2) = 2. Esch of these examples 
corresponds to rounding functions in actual use. For some floating Point examples, see A.5.2.5. 

Note, the value rnd(u) may not be representable. The resu& function deals with this possibility. 
(See A.5.2.6 for further discussion.) 

There is a precise distinction between shall and should as used in this part of ISO/IEC 10967: shaZZ 
implies a requirement, while should implies a recommendation. One hopes that there is a good 
reason if the recommendation is not followed. 

Additional definitions specific to particular types appear in the relevant clauses. 

A.5 The arithmetic types 

Esch arithmetic type is a subset of the real numbers characterized by a small number of Parameters. 
Two basic classes of types are specified: integer and floating Point. A typical System could support 
several of each. 

In general, the Parameters of all arithmetic types must be accessible to an executing program. 
However, sometimes a language Standard requires that a type Parameter has a known value (for 
example, that an integer type is bounded). In this case, the Parameter must have the same value in 
every implementation of that language and therefore need not be provided as a run-time Parameter. 

The signature of each Operation lists the possible input and output values. All operations are 
defined for all possible combinations of input values. Exceptions (like dividing 3 by 0) are modelled 
by the return of non-numeric exceptional values (like undefined). 

The presence of an exceptional value in a signature says that the notification may occur in some im- 
plementations, but not necessarily in all implernentations. For example, integer arithmetic will not 
Overflow in an implementation with unbounded integers. The axioms (5.1.3, 5.2.7) state precisely 
when notifications must occur. 

The philosophy of LIA-1 is that all operations either produce correct results or give a notification. 
A notification must be based on the final result; there tan be no spurious intermediate notifications. 
Arithmetic on bounded, non-modulo, integers must be correct if the result lies between minint and 
maxint and must produce a notification if the mathematically well-defined result lies outside this 
interval (integer-Overflow) or if there is no mathematically well-defined result (undefined). 
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A.5.1 Integer types 

Most traditional Computer languages assume the existente of bounds on the range of integers 
which tan be data values. Some languages place no limit on the range of integers, or even allow 
the boundedness of the integer type to be an implementation choice. 

LIA-1 uses the Parameter bounded to distinguish between implernentations which place no restric- 
tion on the range of integer data values (bounded = false) and those that do (bounded = true). If 
the integer type 1 is bounded, then two additional Parameters are required, minint and maxint. 
For unbounded integers, minint and maxint would have no meaning, so they are not provided. 

For bounded integers, there are two approaches to out-of-range values: notification and “wrapping.” 
In the latter case, all computation except comparisons is done modulo the cardinality of I (typically 
2N for some N), and no notification is required. 

A.5.1.0.1 Bounded non-modulo integers 

For bounded non-modulo integers, it is necessary to define the range of representable values, and 
to ensure that notification occurs on any Operation which would give a mathematical result outside 
that range. Different ranges result in different integer types. The values of the Parameters minint 
and maxint must be accessible to an executing program. 

The allowed ranges for integers fall into three classes: 

a) minint = 0, corresponding to unsigned integers. The Operation negl would always produce 
integer-Overflow (except on 0), and may be omitted. The Operation abq is the identity 
mapping and may also be omitted. The Operation divr never produces integer-Overflow. 

b) minint = -maxint, corresponding to one ‘s complement or sign-magnitude integers. None of 
the operations negr, absI or divI produces integer-Overflow. 

c) minint = -(maxint + l), corresponding to two’s compiement integers. The operations neg1 
and abq produce integer-Overflow only when applied to minint. The Operation divI pro- 
duces integer-Overflow when minint is divided by -1, since 

minint/(- 1) = -minint = maxint + 1 > maxint. 

The Pascal, Modula-2 and Ada programming languages support subranges of integers. Such sub- 
ranges typically do not satisfy the rules for maxint and minint. However, we do not intend to say 
that these languages are non-conforming. Esch subrange type tan be viewed as a subset of an ideal 
integer type that does conform to our rules. Integer operations are defined on these ideal types, 
and the subrange constraints only affect the legality of assignment and Parameter passing. 

A.5.1.0.2 Modul0 integers 

Modul0 integers were introduced because there are languages that mandate wrapping for some 
integer types (e.g., C’s unsigned int type), and make it optional for others (e.g., C’s signed int 
tY P") l  

Modul0 integers behave as above, but wrap rather than Overflow. 

Bounded modulo integers (in the limited form defined here) are definitely useful in certain applica- 
tions. However, bounded integers are most commonly used as an efficient hardware approximation 
to true mathematical integers. In these latter cases, a wrapped result would be severely inaccurate, 
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and should result in a notification. Unwary use of modulo integers tan easily lead to undetected 
programming errors. 

The developers of a programming language Standard (or binding Standard) should carefully consider 
which (if any) of the integral programming language types are bound to modulo integers. Since 
modulo integers are dangerous, programmers should always have the Option of using non-modulo 
(Overflow checking) integers instead. 

A.5.1.0.3 Unbounded integers 

Unbounded integers were introduced because there are languages which provide integers with no 
fixed upper limit. The value of the Boolean Parameter bounded must either be fixed in the language 
definition or must be available at run-time. Some languages, like Prolog, permit the existente of 
an upper limit to be an implementation choice. 

In an unbounded integer implementation, every mathematical integer is potentially a data Object. 
The actual values computable depend on resource limitations, not on predefined bounds. 

LIA-1 does not specify how the unbounded type is implemented. Typical implernentations use 
a variable; amount of storage for an integer, as needed. Indeed, if an implementation supplied a 
fixed amount of storage for each integer, this would establish a de facto maxint and minint. It 
is important to note that LIA-1 is not dependent upon hardware support for unbounded integers 
(which rarely, if ever, exists). In essence, LIA-1 requires a certain abstract functionality, and this 
tan be implemented in hardware, Software, or more typically, a combination of the two. 

Operations on unbounded integers will never Overflow. However, the storage required for unbounded 
integers tan result in a program failing due to lack of memory. This is logically no different from 
failure through other resource limits, such as time. 

The implementation may be able to determine that it will not be able to continue processing in 
the near future and may issue a warning. Some recovery may or may not be possible. It may be 
impossible for the System to identify the specific location of the fault. However, the implementation 
must not give false results without any indication of a Problem. 

It may be impossible to give a definite “practical” value below which integer computation is guaran- 
teed to be Safe, because the largest representable integer at time t may depend on the machine state 
at that instant. Sustained computations with very large integers may lead to resource exhaustion. 

The signatures of the integer operations include integer-Overflow as a possible result because 
th,ey refer to bounded integer operations as well. 

A.5.1.1 Operations 

A.5.1.2 Modul0 integers versus Overflow 

Wrapr produces results in the range [minint, maxint]. These results are positive for unsigned 
integer types, but may be negative for signed types. 

30 



@ ISO/IEC ISO/IEC 10967~1:1994(E) 

A.5.1.3 Axioms 

The ratio of two integers is not necessarily an integer. Thus, the result of an integer division may 
require rounding. Two rounding rules are in common use: round toward minus ir&nity (divi), and 
round toward zero (divi). Both are allowed by LIA-1. These rounding rules give identical results 
for diq(x, y) h w en x and y have the Same sign, but produce different results when the signs differ. 
For example, 

divi(-3,2) = -2 
divi(-3,2) = -1 

(flooring division: round toward minus infinity) 
(truncating division: round toward Zero) 

Div{ satisfies an broadly useful recurrence relation: 

divi(x + i >fc y, y) = divi(x, y) + i if y # 0, and no Overflow occurs 

and is the form of division preferred by many mathematicians. Divj is the traditional form of 
division introduced by Fortran. 

Integer division is frequently used for grouping. For example, if a series of indexed items are to be 
partitioned into groups of N items, it is natura1 to put item i into group diq(i, N). This works 
fine if divrf is used for divl. However if divi is used, and i tan be negative, group 0 will get 2N - 1 
items rather than the desired N. This uneven behavior for negative i tan Cause subtle program 

- f errors, and is a strong reason for preferring the use of dzvI. 

Remi( x, y) gives the remainder after division. It is coupled to division by the following identities: 

~1: = divi(2, y) * y + rem~(x, y) 

0 L Ireml(x, Y)I < IYI 
if y # 0, and no Overflow occurs 
ify#O 

Thus, div{ and remf form a logical pair, as do divi and remi. Note that computing remI(x, y) as 

SUbI(X, muh(diw(x, Y), Y)) 

is not correct because divl(x, y) tan Overflow but reml(x, y) cannot. 

The modulus Operation and the remainder Operation are quite similar (in fact, mody is identical 
to remf), but they have been selected to satisfy somewhat different identities. In addition, various 
languages have Chosen to extend the definition of the modulus Operation, modl(z, y), to permit 
negative values for the second argument, while others (like Pascal) choose to forbid it. LIA-1 
introduces two Versions of the modulus Operation: modl, which extends the definition of modulus, 
and mod:, which is undefined when y < 0. The modulus operations satisfy the following identities 
(in the absence of notification): 

X = modl(x, y) + i * y for some integer i 

0 < m&(a:, Y) < y 
y 2 mody(x, y) < 0 

ify>O 
ify<O 

A.5.2 Floating Point types 

Floating Point values are traditionally represented as either zero or 

X=fg*re = &O.fifi...fp * re 
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where 0.f&...fp is the p-digit fraction g (represented in base, or radix, r) and e is the exponent. 

The exponent e is an integer in [emin,emax]. The fraction digits are integers in [O,r - 11. If the 
floating Point number is normalized, fi is not Zero, and hence the minimum value of the fraction g 
is l/r and the maximum value is 1 - r-T 

This description gives rise to five Parameters that completely characterize the values of a floating 
Point type: 

radix r: the “base” of the number System. 

precision p: the number of radix r digits provided by the type. 

emin and emax: the smallest and largest exponent values. They define the range of the type. 

denorm: (a Boolean) true if the type includes denormalized values; false if nat. 

The fraction g tan also be represented as i * r-p, where i is a p-digit integer in the interval 
[rpml , rp - 11. Thus 

X = *g * re = f(i * TP) * re = 33 * reeP 

This is the form of the floating Point values used in defining the finite set FN. 

Note that in some imple m entations, th e exponen 
exponent. LIA-1 uses the U nbiased, t rue exponent. 

.t e is encoded with a bias added to the true 

The IEEE Standards 754 [l] and 854 [20] p resent a slightly different model for the floating Point 
type. Normalized floating Point numbers are represented as 

*f&.~.fp-l * re 

where fo.fi...fp-l is the p-digit significand (represented in radix r, where r is 2 or lO), fo # 0, and 
e is an integer exponent between a given E,;, and Emaz. The minimum value of the significand is 
1; the maximum value is r - l/rV 

The IEEE significand is equivalent to gw. Consequently, the IEEE Emaa: and E,;, are one smaller 
than the emax and emin eiven in the LIA-1 model. 

U  

The fraction model and the significand model are equivalent in that they tan generate precisely 
the Same sets of floating Point values. Currently, all ISO/IEC JTCl/SC22 programming language 
Standards that present a model of floating Point to the programmer use the fraction model rather 
than the significand one LIA-1 has Chosen to conform to this trend. 

A.5.2.0.1 Denormalized numbers 

The IEEE Standards 754 and 854 and a few non-IEEE implernentations include denormalized 
numbers. LIA-1 models a denormalized floating Point number as a real number of the form 

X = -j-i * remin-P 

where i is an integer in the interval [l, 9-l - 11. The corresponding fraction g lies in the interval 
L r -P, l/r -r-P]; its most significant digit is Zero. Denormalized numbers partially fill the “underflow 
gaps” in fminN that occur between hemine and 0. Taken together, they comprise the set FD. 

The values in FD are linearly distributed with the Same spacing as the values in the range [reminH1, 
remin) in FN. Thus they h ave a maximum absolute representation error of remin-p. However, since 
denormalized numbers have less than p digits of precision, the relative representation error tan vary 
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widely. This relative error varies from epsilon = r l-p at the high end of FD to 1 at the low end of 
FD. Near 0, the relative error increases without bound. 

Whenever an addition or subtraction produces a result in FD, that result is exact - the relative 
error is Zero. Even for an “effective subtraction” no accuracy is lost, because the decrease in the 
number of significant digits is exactly the Same as the number of digits canceled in the subtraction. 
For multiplication, division, scaling, and some conversions, significant digits (and hence accuracy) 
may be lost if the result is in FD. 

The entire set of floating Point numbers F is either FN U FD (if denormalized numbers are pro- 
vided), or FN (if all numbers are normalized). Thus LIA-1 allows, but does not require, the use of 
denormalized numbers. See Coonen [23] f or a detailed discussion of the properties of denormalized 
numbers. 

A.5.2.0.2 Constraints on the floating Point Parameters 

The constraints placed on the floating Point Parameters are intended to be close to the minimum 
necessary to have the model provide meaningful information. We will explain why each of these 
constraints is required, and then suggest some constraints which have proved to be characteristic 
of useful floating Point data types. 

We require that r > 2 and p > 2 in Order to ensure that we have a meaningful set of values. - - 
present, only 2, 8, 10, and 16 appear to be in use as values for r. 

At 

The requirement that emin < 2 - p ensures that epsiion is representable in F. - 

The requirement that emax > p ensures that l/epsiZon is representable in F. It also implies that 
all integers from 1 to r P - 1 ie exactly representable. 

The Parameters r and p logically must be less than 9, so they are automatically in F. The 
additional requirement that emax and -emin are at most rp - 1 guarantees that emax and emin 
are in F as well. 

A consequence of the above restrictions is that a language binding tan choose to report r, p, emin, 
and emax to the programmer either as integers or as floating Point values without loss of accuracy. 

Constraints designed to provide: 

a> adeq uate precision for scientific applications, 

b) “balance” between the Overflow and underflow thresholds, and 

c) “balance” between the range and precision Parameters 

are specified in IEEE 854 [20] and also are applied to the model and safe numbers of Ada [6]. 
No such constraints are included in LIA-1, which emphasizes descriptive, rather than prescriptive, 
specifications for arithmetic. However, the following restrictions have some useful properties: 

a) r should be even. 

The most accurate rounding rule (round to nearest) is significantly more expensive to imple- 
ment when r is odd, and commonly occuring values (like 0.5) cannot be represented exactly. 

b) rp-’ > 106 - 

This gives a maximum relative error (epsilon) of one in a million. This is easily accomplished 
by 24 binary or 6 hexadecimal digits. 
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4 

dJ 

e> 

emin - 1 < -k * (p - 1) - with k 2 2 and k as large an integer as practical. 

This guarantees that epsilon’” is in F which makes it easier to simulate higher levels of 
precision than would be offered directly by the values in the data type. 

emax > k * (p - 1) 

This guarantees that epsilon-‘” is in F and is useful for the Same reasons as given above. 

-2 < (emin - 1) + emax < 2 - - 

This guarantees that the geometric mean &??zinN * fmax of fm&N and fmax lies between l/r 
and r. This also means that for “most” x in FN the reciprocal l/x is also in FN. One would 
like to be able to guarantee this for all x. Unfortunately this cannot be done. Consider the 
reciprocals of fnz&N and fmax: 

l/fminN in FN implies l/fminN 5 fmax 
l/fmax in FN implies l/f max > fminN - 

Since fminN is a power of r and fmax is not, neither equality tan hold in the above. Further, 
with both equalities removed, only one of the remaining inequalities tan hold. 

All of these restrictions are satisfied by most (if not all) implernentations. A few implernentations 
present a floating Point model with the radix Point in the middle or at the low end of the frac- 
tion. In this case, the exponent range given by the implementation must be adjusted to yield the 
LIA-1 emin and emax. In particular, even if the minimum and maximum exponent given in the 
implementation’s own model were negatives of one another, the adjusted emin and emax become 
asymmetric. 

A.5.2.0.3 Radix complement floating Point 

LIA-1 presents an abstract model for the floating Point type, defined in terms of Parameters. An 
implementation is expected to be able to map its own floating Point numbers to the elements in 
this model, but LIA-1 places no restrictions on the actual internal representation of the floating 
Point values. 

The floating Point model presented in LIA-1 is sign-magnitude. A few current implernentations 
keep their floating Point fraction in a radix-complement format. Several different Patterns for 
radix-complement floating Point have been used, but a common feature is the presence of one 
extra negative floating Point number: the most negative. This “most negative” Floating Point 
number has no positive counterpart. It belongs to F*, and its value is -fmax - ulpp(fmax). Some 
radix-complement implementations also omit the negative counterpart of fminN. 

In Order to accommodate radix-complement floating Point, LIA-1 would have to 

a) define additional derived constants which correspond to the negative counterparts of fmin 
(the “least negative” floating Point number) and fmax (the “most negative” floating Point 
number); 

b) add floating-Overflow to the signature of negF (because negF evaluated on the “most neg- 
ative” number will Overflow); 

c) add floating-Overflow to the signature of absF (because absF will Overflow when evaluated 
on the “most negative” number); 

d) perhaps add underflow to the signature of negF, if -fminN is omitted; 
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e> remove -x from the definitions of subp and ??uncF, and redefine these operations and also 
roundF operations to ensure that every floating Point number behaves correctly; 

f) redefine the predp and SUCCF operations to treat the “most negative” floating Point number 
properly. 

Because of this complexity, LIA-1 does not currently include radix-complement floating Point. 

Floating Point implernentations with sign- magnitude or (radix- 1)-complement fractions tan map 
the floating Point numbers directly to the LIA-1 model without these adjustments. 

A.5.2.0.4 Infinity and NaNs 

The IEEE Standards 754 [l] and 854 [20] p rovide non-numeric values to represent infinity and 
Not-a-Number. Infinity represents a large value beyond measure, either as an exact quantity (from 
dividing a finite number by Zero) or as the result of untrapped Overflow. A NaN represents an 
indeterminate, and hence invalid, quantity (e.g. from dividing zero by Zero). 

Most non-IEEE floating Point implernentations do not provide infinity or NaNs. Thus, programs 
that make use of infinity or NaNs will not be portable to Systems that do not provide them. Non- 
portable programs are not in the scope of LIA-1. Therefore, LIA-1 makes no Provision for infinity 
or NaNs. The behavior of operations with an infinity or a NaN as input is not defined by LIA-1. 
However, be sure to read 5.2.9 and clause C.l. 

The handling of arithmetic exceptions by testing results for infinity or NaN is not portable. There- 
fore, programmers desiring portability to both IEEE and non-IEEE Systems should use the notifi- 
cation methods described in clause 6. 

A.5.2.0.5 Signed zero 

The IEEE Standards define both +0 and -0. Very few non-IEEE implernentations provide the user 
with two “different” Zeros. Even in an IEEE implementation, the two encodings of zero tan only 
be distinguished with operations that are not provided in LIA-1, e.g. use of the IEEE copysign 
function, dividing by zero to obtain signed infinity, or (possibly) converting to a decimal string. 
Programs that assume +0 and -0 are distinct will not be portable to non-IEEE Systems. Therefore, 
LIA-1 makes no distinction between +0 and -0. 

A.5.2.1 Range and granularity constants 

The positive real numbers fmax, fmin, and fminN are interesting boundaries in the set F. fmax 
is the “overflow threshold.” It is the largest value in both F and FN. fmin is the “underflow 
threshold.” It is the value of smallest magnitude in F. fminN is the “denormalization threshold.” 
It is the smallest normalized value in F: the Point where the number of significant digits begins to 
decrease. Finally, fminD is the smallest denormalized value, representable only if denorm is true. 

LIA-1 requires that the values of fmax, fmin, and fminN be accessible to an executing pro- 
gram. All non-Zero floating Point values fall in the range flfmin, fmax], and values in the range 
fGfminN, fmax] tan be represented with full precision. 

The derived constant fminD need not be given as a run-time Parameter. On an implementation in 
which denormalized numbers are provided and enabled, the value of fminD is fmin. If denormalized 
numbers are not present, the constant fminD is not representable, and fmin = fminN. 
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The derived constant epsilon must also be accessible to an executing program: 

epsilon = +* 

It is defined as ratio of the weight of the least significant digit of the fraction g, T-p, to the minimum 
value of g, l/r. So epsilon tan be described as the largest relative representation error for the set 
of normalized values in F’. 

An alternate definition of epsilon currently in use is the smallest floating Point number such that 
the expression “l+epsilon” yields a value greater than 1. This definition is flawed because it 
depends on the characteristics of the rounding function. For example, on an IEEE implementation 
with round-to-positive-infinity, epsilon would be fmino. 

A.5.2.2 Operations 

This clause describes the floating Point operations defined by LIA-1. 

a> 

b) 

4 

4 

e> 

f > 
d 

hl 

9 

. 
J) 

k) 

Z’he operations addF, SubF, m’?& and diup carry out the usual basic arithmetic operations 
of addition, subtraction, multiplication and division. 

The operations negF and absF produce the negative and absolute value, respectively, of the 
input argument. They never Overflow or underflow. 

The Operation SignF returns 
is positive, Zero, or negative. 

a floating Point +l, 0, or -1, depending on whether its argument 

The Operation expo?zentF gives the exponent of the floating Point number in the model as 
presented in LIA-1, as though the range of exponent values was unbounded. The value of 
expone?ztF tan also be thought of as the “Order of magnitude” of its argument, i.e., if n is an 
integer such that ?-’ 5 x < ?, then exponentF(x) = n. Expone?-&@) is undefined. 

The Operation fra&ionF scales its argument (by a power of r) until it is in the range f[l/r, 1). 
Thus, for x # 0, 

x = fractionF (2) * rexponentF (x) 

The Operation sc&F scales a floating Point number by an integer power of the radix. 

The Operation SUCCF returns the closest element of F greater than the argument, the “suc- 
cessor” of the argument. 

The Operation predF returns the closest element of F less than the argument, its (‘predeces- 
sor .” 

Together, the SUCCF and predp operations correspond to the IEEE 754 recommended function 
nextafter. These operations are useful for generating adjacent floating Point numbers, e.g. in 
Order to test an algorithm in the neighborhood of a “sensitive” Point. 

The Operation UlpF gives the value of one unit in the last place, i.e., its value is the weight of 
the least significant digit of a non-Zero argument. The Operation is undefined if the argument 
1s Zero. 

The Operation i?uncF Zeros out the low (p - n) digits of the first argument. 
then 0 is returned; and when n > p the argument is returned. - 

When n < 0 - 

The Operation roundp rounds the first argument to n significant digits. That is, the nearest 
n-digit floating Point value is returned. Values exactly half-way between two adjacent n-digit 
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floating Point numbers round away from Zero. RoundF differs from ??uncF by at most 1 in 
the n-th digit. Note that roundF is distinct from the function rndF. RoundF is not intended 
to provide access to machine rounding. 

The tru?zcF and roundF operations tan be used to Split a floating Point number into a number 
of “shorter” Parts in Order to expedite the Simulation of multiple precision operations without 
use of operations at a higher level of precision. 

1) The Operation in@artF isolates the integer part of the argument, and returns this result in 
floating Point form. 

m) The Operation fractpartp returns the value of the argument minus its integer part (obtained 
by intpartF>. 

n) The Boolean operations are atomic operations which never produce a notification, and always 
return true or false in accordance with the exact mathematical result. 

An implementation tan easily provide any of these operations in Software. See [34] for a Sample 
portable implementation in Pascal. However, portable Versions of these operations will not be as 
efficient as those which an implementation provides and “tunes” to the architecture. 

Standardizing functions such as exponentJ.7 and UlpF helps shield programs from explicit depen- 
dence on the underlying format. 

The requirement that J contains all the integer values in the range f(emax - emin +p - 1) means 
that the integer argument to the function sc&7 is in range whenever scaling between values in F. 
This is a reasonably weak condition which most arithmetic Systems easily satisfy. 

A.5.2.3 Approxi mate operations 

Let’s apply the three Stage model to multiplication (??%!&i(~, y)): 

a) First, compute the perfett result, x * y, as an element of 32. 

b) Second, modify this to form a rounded result, rndp(x * y), as an element of F*. 

c) Finally, decide whether to accept the rounded result or to Cause a notification. 

Putting this all together, we get the defining axiom for multiplication: 

mulF(x, Y) = resultF(x * y, rndp) 

(For technical reasons, the res?.&7 function is defined to compute rndF(x * y) internally.) 

Note that in re 
(b) and (c), i.e. 

ality, step (a) 
? to produce a 

only n eeds to compute enough of x * y to be able to complete Steps 
roun .d ed result and to decide on Overflow and underflow. 

The helper functions rndF, res&F, and add> are t he Same for all the operations of a given float 
Point type. Similarly, the constants rnd-error and rnd-style do not differ between operations. 

ing 

The helper functions are not visible to the programmer, but they are included in the required 
documentation of the type. This is because these functions form the most concise description of 
the semantics of the approximate operations. 
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A.5.2.4 Approximate addition 

The definition of floating Point addition and subtraction given in LIA-1 is more complex than for 
any other arithmetic Operation. This is because some highly-optimized machines modify one or 
both operands before computing the sum. 

The typical addition/subtraction implementation described below Shows the interaction between 
alignment, negation, and guard digits. 

Floating Point additions and subtractions form two cases, depending on the signs of the operands: 
implied additions (addition of operands of the Same sign or subtraction of operands with different 
signs) and implied subtractions (addition with opposite signs, subtraction with like signs). In both 
implied addition and subtraction, the radix Points of the operands are aligned by right-shifting the 
smaller operand’s fraction. In an implied subtraction, the smaller Operand must also be negated, 
but there is a Performance tost associated with negating before the alignment shift. To negate after 
alignment, enough guard digits must be maintained at the right to propagate the borrow correctly 
even if digits were lost in the alignment shift. 

If the design goal is merely 1-ulp accuracy, then a Single guard digit is sufficient. This is for implied 
subtraction - implied addition doesn’t need it. 

If round toward zero is desired, implied subtraction requires a Single guard digit plus a “sticky 
bit” (which records whether any information was lost during alignment). Again, implied addition 
doesn’t need these. 

Finally, if round to nearest is desired (either Version), both implied addition and implied subtraction 
need an additional “rounding bit.” This bit records the size of the next lower guard digit relative 
to 7-12. 

Some implernentations omit both the rounding bit and the sticky bit. This increases the execution 
Speed and simplifies the hardware design. However, the smaller Operand may have lost some 
precision during the alignment and negation. This slight loss of precision tan become visible to the 
programmer when the computed result unexpectedly rounds to the other one of the two elements 
of F most closely bracketing the true result. In fact, in such an implementation, the computed 
result cannot be predicted from the true sum alone, but depends on the exact operands given. 

LIA-1 introduces a helper function add> to model such Performance optimizations. Add>(x, y) 
is an approximate sum of x and y. It represents an intermediate Stage in the computation of 
addF(x, y) - one which occurs after x and y have been combined into a Single value, but (possibly) 
before all rounding Steps have been completed. 

Thus, the defining axiom for addition will be 

addF = resu&(add>(x, y), rndF) (the LIA-1 axiom) 

rather than 

addF = resu&(x + y, rndp) (a more stringent axiom) 

The ideal definition of add>(x, y) is x. + y. However, as noted above, some implernentations of 
addition are less than ideal. 

Add> is constrained by five axioms. These are designed to ensure that add>(x, y) behaves enough 
like x + y so that the final computed sum addF(x, y) will satisfy a reasonable set of identities - 
identities that most real machines actually satisfy. These axioms guarantee that the approximation 
process does not forte the result too far from the mathematical result, does not depend on the Order 
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of operands, is monotonic non-decreasing in each Operand independently, and behaves well under 
Change of sign. In general, add> will depend on the alignment shift (the differente in exponents), 
but not on the magnitude of the exponents. 

A.5.2.5 Rounding 

Floating Point operations are rarely exact. The true mathematical result seldom lies in F, so this 
result must be rounded to a nearby value that does lie in F. For convenience, this process is 
described in three Steps: first the exact value is computed, then the exact value is rounded to the 
appropriate precision, finally a determination is made about Overflow or underflow. 

The rounding rule is specified by a rounding function rndF, which maps values in R onto values in 
F*. F* is the set FN U FD augmented with all values of the form 33 * re-P where rPwl < i < r* - 1 - - 
(as in FN) but e > emax. The extra values in F* are unbounded in range, but all have exactly p 
digits of precision. These are “helper values,” and are not representable in the type F. 

The requirement of “sign symmetry,” rndp(-x) = -rndF(x), is needed to ensure the arithmetic op- 
erations addF, subp, m?.&7, and divF have the expected behavior with respect to sign, as described 
in A.5.2.12. 

In addition to being a rounding function (as defined in 4.2), rndp must not depend upon the 
exponent of its input (except for denormalized values). This is captured by a “scaling rule:” 

rndF(x * rj) = rndF(x) sr< rj 

which holds as long as x and x * r j have magnitude greater than (or equal to) fmi?zjV. 

Denormalized values have a wider relative spacing than normalized values. Thus, the scaling rule 
above does not hold for all x in the denormalized range. When the scaling rule fails, we say that 
rndp has a denormalization loss at x, and the relative error 

I x-rndF(x) 
X I 

is typically larger than for normalized values. 

Within a Single exponent range, the rounding function is not further constrained. In fact, an 
implementation that conforms to LIA-1 could provide a number of rounding rules. Esch such rule 
would give rise to a logically distinct set of floating Point operations (or types). 

Information about the rounding function is available to the programmer via a pair of derived 
constants: rnd-error and rnd-style. See 5.2.8 and A.5.2.8 for an explanation of these constants 
and a further discussion of rounding. 

A.5.2.6 Result function 

The rounding function rndF produces unbounded values. A result function is then used to check 
whether this result is within range, and to generate an exceptional value if required. The result 
function res?+&7 takes two arguments. The first one is a real value x (typically the mathematically 
correct result) and the second one is a rounding function rnd to be applied to x. 

If F does not include denormalized numbers, and rnd(x) is representable, then res%& returns 
rnd(x). If rnd(x) is too large or too small to be represented, then res?&7 returns floating- 
Overflow or underflow respectively. 
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The only differente when F does contain denormalized values occurs when rnd returns a denormal- 
ized value. If there was a denormalization loss in computing the rounded value, then res?&F must 
return underflow. On the other hand, if there was no denormalization loss, then the implemen- 
tation is free to return either underflow (causing a notification) or rnd(x). Note that IEEE 754 
allows some implementation flexibility in precisely this case. See the discussion of “continuation 
value” in 6.1.2. 

ResultF(x,rnd) takes rnd as its second argument (rather than taking rnd(x)) because one of the 
final Parts of the definition of res?&F refers to denormalization 10s~. Denormalization loss is a 
property of the function rnd rather than the individual value rnd(x). 

A.5.2.7 Axioms 

Note that the helper function eF is not the Same as the expo?zentF Operation. They agree on 
normalized numbers, but differ on denormalized ones. Expone?&+) is Chosen to be the exponent 
of x as though x were in normalized form and the range and precision were unbounded. For 
denormalized numbers, eF(x) is equal to emin. 

The helper function rnF(x, n) rounds a Aoating Point number x to n digits of precision (radix r). 
Values that are exactly half-way between two adjacent n-digit floating Point numbers round away 
from Zero. 

A.5.2.8 Rounding constants 

What are the most common rounding rules? 

IEEE 754 [l] and 854 [20] d fi e ne f our rounding rules. In addition, a fifth rounding rule is in common 
use. Hence, a useful list is as follows: 

a) Round toward minus infinity 

b) Round toward plus infinity 

c) Round toward zero 

d) IEEE round to nearest: In the case of a value exactly half-way between two neighboring 
values in F, select the “even” result. That is, for x > 0 in F and u = r eF(+p 

rnd(x + $u) = x + u if x/u is odd 
=X if x/u is even 

This is the default rounding mode in the IEEE Standards. 

e) Traditional round to nearest: In the case of a half-way value, round away from Zero. That 
is, if x and u are as above, then 

rnd(x + iu) = x + u 

The first two of these rounding rules do not have sign symmetry, but the last three do, and are 
possible candidates for rndp. The round toward zero rule has a rnd-style of truncate. The 
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two round to nearest rules have a rnd-style of nearest. 
round-style of other. 

Rounding rules not listed here have a 

The first three rules give a one-ulp error bound. That is, rnd-error is 1. The last two give a 
half-ulp bound, so rnd-error is & However, one cannot conclude that rnd-style is truncate 
when rnd-error is 1, nor that rnd-style is nearest if rnd-error is i. Most current non-IEEE 
implernentations provide either the third rule or the last rule. 

A.5.2.9 Conformity to IEC 559 

IEC 559 is the international Version of IEEE 754. 

Note that “methods shall be provided . . . to access each [IEC 5591 facility.” This means that a 
complete LIA-1 binding will include a binding for IEC 559 as well. 

IEC 559 contains an annex listing a number of recommended functions. While not required, im- 
plementations of LIA-1 are encouraged to provide those functions. 

A.5.2.10 Relations among floating Point types 

An implementation may provide more than one floating Point type, and most current Systems do. 
It is usually possible to Order those with a given radix as Fl, F2, F3, l  l  l  such that 

Pl L P2 I P3"' 
eminl > emin2 2 emin3. l  9 - 
emaxl < emax2 < emax3 l  l  0. - - 

A number of current Systems do not increase the exponent range with precision. However, the 
following constraints 

2 *Pi L Pi+1 

2 * (emini - 1) > (emin;+l - 1) - 
2 >k emax; 5 emax;+l 

for each pair F; and F;,l would provide advantages to programmers of numerical Software (for 
floating Point types not at the widest level of range-precision): 

a) The constraint on the increase in precision expedites the accurate calculation of residuals in 
an iterative procedure. It also provides exact products for the calculation of an inner product 
or a Euclidean norm. 

b) The constraints on the increase in the exponent range makes it easy to avoid the occurrence of 
an Overflow or underflow in the intermediate Steps of a calculation, for which the final result 
is in range. 

A.5.2.11 Levels of predictability 

This clause explains why the method used to specify floating Point types was Chosen. 

The main question is, “How precise should the specifications be. 3” The possibilities range from 
completely prescriptive (specifying every last detail) to loosely descriptive (giving a few axioms 
which essentially every floating Point System already satisfies). 
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IEEE 754 [l] takes the highly prescriptive approach, allowing relatively little latitude for Variation. 
It even stipulates much of the representation. The Brown model [22] Comes close to the other 
extreme, even permitting non-deterministic behavior. 

There are (at least) five interesting Points on the range from a strong specification to a very weak 
one. 

a) 

b) 

These are 

Specify the set of representable values exactly; define the operations exactly; but leave the 
representations unspecified. 

Allow limited Variation in the set of representable values, and limited Variation in the Operation 
semantics. The Variation in the value set is provided by a small set of Parameters, and the 
Variation in the Operation semantics is provided by permitting different rounding functions 
and small differentes in Overflow and underflow checking. 

Use Parameters to define a “minimum” set of representable values, and an idealized set of 
operations. This is called a model. Implernentations may provide more values (extra preci- 
sion), and different Operation semantics, as long as the implemented values and operations 
are sufficiently close to the model. The Standard would have to define “sufficiently close.” 

Allow any set of values and Operation semantics as long as the operations are deterministic 
and satisfy certain accuracy constraints. Accuracy constraints would typically be phrased as 
maximum relative errors. 

Allow non-deterministic ope rations. 

The IEEE model is close to (a). The Brown model is close to (e). LIA-1 selects the second approach 
because it permits conformity by most current Systems, provides flexibility for high Performance 
designs, and discourages increase in Variation among future Systems. 

Note that the Brown model allows “Parameter penalties” (reducing p or emin or emax) to com- 
pensate for inaccurate hardware. The LIA-1 model does not permit Parameter penalties. 

A major reason for rejecting a Standard based upon the Brown model is that the relational oper- 
ations do not (necessarily) have the properties one expects. For instance, with the Brown model, 
x < y and y < z does not imply that x < Z. 

A.5.2.12 Identities 

By choosing a relatively strong specification of floating Point, certain useful identities are guaranteed 
to hold. The following is a Sample list of such identities. These identities tan be derived from the 
axioms defining the arithmetic operations. 

In the following discussion, let u, V, x, and y be elements of F, and let j, k, and n be integers. 

The seven OperatiOnS addF, subp, ?n?..&, diup, sc&+ cvtFl+F, and &&+F compute apprOXima- 

tions to the ideal mathematical functions. All the other operations defined in LIA-1 produce exact 
results (in the absence of notifications). 

Since the seven approximate operations are all so similar, it is convenient to give a series of rules 
that apply to all of the seven (with some qualifications). Let @  be any of the given operations, and 
let 4 be the corresponding ideal mathematical function. In what follows, if 4 is a Single argument 
function, ignore the second argument. 

When 4(x) y) is defined, and no notification occurs, 
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u < tp(x, y) < ‘u + u < qx, y) < v - - - - (1) 
When +(x, y) is defined, and no notification occurs, 

sb(x, Y) E F * +(x, Y> = 5% Y) 

wem 4(‘zL, x) and $(v, Y) are defined, and no notification occurs, 

4(u, x> L $+J, Y) * w.4 x> L qv, Y) (111) 

When +(x, y) is defined, non-Zero, and no notification occurs, 

Ia(x~ Y> - +(x, Y)t 5 u&+?+, Y)) 5 ubF(@(x, Y)) 

where ulpF(z) = T~F(~)-J’ is UlpF extended to all of R (not just F - (0)). 

When 4(x, y) is defined, is in the range rt[f min& fmax], and no notification occurs, 

“‘““;;>‘“‘“’ 5 ?.dpF(l) = epsil on 
? 

When 4(x, y) and 4(x * ~j, y * T”) are defined, are in the range &lfminN,fmax] U {0}, and no 
notification occurs, 

q!(x * rj, y * rk) = +(x, y) * rn 3 @(x * 9, y * r”) = @(x, y) * rn (VI) 

Rules (1) through (VI) apply to the seven approximate operations addF, subp, mulj7, diup, scaleJ7, 
C?&iKQT, and cv??i+,F with one exception. Rule 111 may fail for addF and subp when the approximate 
addition function is not equal to the true sum (i.e., add>(u, x) # u + x, or add>(v, y) # v + y). 
Fortunately, the following weaker rules always hold: 

u < v > addF(u,x) 5 addF(v,x) 
u 5 v > sub&u, x> 5 subF(u, x> 
u 5 2) > subp(x,u) 2 subp(x,u) 

Rules (1) through (VI) 1 a so apply to the “exact” operations, but they don’t say anything of interest. 

Here are some identities that apply to specific operations (when no notification occurs): 

addF(x, y) = addF(y, 2) 

mulF(x, y) = mulF(y, x) 

S’ILbF(x, y) = -S’ILbF(Y, x) 

addF(-x, -y) = -addF(x, y) 

subF(-x, -y) = -subF 

md&x, y) = mdF(x 

divF(-x, y) = diuF(x, - 

For x # 0, 

x E FN 3 exponentJ7 

- Y> = -mdF(x, y) 

Y> = -divF(x, y) 

2) E [emin, emax] 

x E FD 3 exponentF(x) E [emin - p + 1, emin - 11 

rexponentF(x)-l E F 

reXponentF(x)-l < IX1 < rexponentF(x) 
- 

fractionp(x) E [l/r, 1) 
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scaleF (fractimF (x) , expo?wntF (x)) = z 
ScaleF(x, n) is exact (= x >fc rn) if x * rn is in the range IkpminN,fmax] U {0}, or if n 2 0 and 
Jx * rnl 5 fmax. 

For x # 0 and y # 0, 

x = &i * ulpF(x) for some integer i which satisfies 

rpml < i < rp 
1 < im< 9-l 

if x E FN 
- if x E FD 

exponent&x) = exponentF(y) > ulpF(x) = ulpF(y) 

x E FN + U~PF(X) = epsilon * rexponentFO-l 

Note that if denorm = true, UlpF is defined on all non-Zero floating Point values. If denorm = 
false, UlpF underflows on all values less than f?nin&xih, i.e., on all values for which eF(z) < 
emin+p- 1. 

For 1x1 > 1, - 

intpartF(x) = truncF(x, eF(x)> = truncF(x, exponentF(x)) 

For any x, when no notification occurs, 

SUCCF(p?YdF(X)) = X 

predF(SUCCF(X)) = X 

succF(-x) = -predF(x) 

predp(-x) = -succF(x) 

For positive x, when no notification occurs, 

succF(x) = x + ulpl+) 

predF(x) = x - dpF(x) if x is not rn for any integer n > emin 
= x - u!pF(x)/r if x is rn for some integer n 2 emin 

u@F(x) * rPMn = reFcxJen for any integer n 

For any x and any integer n > 0, when no notification occurs, 

rexponentF(s)-l < ItruncF(x, n>l < 1x1 - - 

roundF(x, n) = truncF(x, n), or 
= truncF(x, n) + signpfx) * ulpF(x) * rPen 

A.5.2.13 Precision, accuracy, and error 

LIA-1 uses the term precision to mean the number of radix r digits in the fraction of a floating 
Point data type. All floating Point numbers of a given type are assumed to have the Same precision. 
A denormalized number has the Same number of radix r digits, but the presence of leading Zeros 
in its fraction means that fewer of these digits are significant. 

In general, numbers of a given data type will not have the Same accuracy. Most will contain 
combinations of errors which tan arise from many sources: 
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a) The error introduced by a Single atomic arithmetic Operation; 

b) The error introduced by approximstions in mathematical constants, such as r, 1/3, or fi, 
used as program constants; 

c) The errors incurred in converting data between external format (decimal text) and internal 
format; 

d) The error introduced by use of 

e) The errors arising from limited 

f) Two types of modelling errors: 

a mathematical library routine; 

resolution in measurements; 

1) Approximations made in the formulation of a mathematical model for the application 
at hand; 

2) Conversion of the mathematical model into a computational model, including approxi- 
mations imposed by the discrete nature of Computers. 

g) The maximum possible accumulation of such errors in a calculation; 

h) The true accumulation of such errors in a calculation; 

i) The final differente between the computed “answer” and the “truth.” 

The last item is the goal of error analysis. To obtain this final differente, it is necessary to under- 
stand the other eight items, some of which are discussed below. A future part of this International 
Standard, Information technology - Language independent arithmetic - Part 2: Mathematical pro- 
cedures [ 141, will deal wit h items (b) , (c) , and (d) . 

A.5.2.13.1 LIA-1 and error 

LIA-1 interprets the error in a Single atomic arithmetic Operation to mean the error introduced into 
the result by the Operation, without regard to any error which may have been present in the input 
operands. 

The rounding function introduced in 5.2.5 produces the only Source of error contributed by arith- 
metic operations. If the results of an arithmetic Operation are exactly representable, they must 
be returned without error. Otherwise, LIA-1 requires that the error in the result of a conforming 
Operation be bounded in magnitude by one ulp. 

Rounding that results in a denormalized number triggers a loss of significant digits. The result is 
always exact for an addF or subF Operation. However, a denormalized result for a ?n?.& or divlp 
Operation usually is not exact, which introduces an error of at most one ulp. Because of the loss of 
significant digits, the relative error due to rounding exceeds that for rounding a normalized result. 
Hence accuracy of a denormalized result for a ??&F or divp Operation is usually lower than that 
for a normalized result. 

Note that the error in the result of an Operation on exact input operands becomes an “inherited” 
error if and when this result appears as input to a subsequent Operation. The interaction between 
the intrinsic error in an Operation and the inherited errors present in the input operands is discussed 
below in A.5.2.13.3. 
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A.5.2.13.2 Empirical and modelling errors 

Empirical errors arise from data taken from Sensors of limited resolution, uncertainties in the values 
of physical constants, and so on. Such errors tan be incorporated as initial errors in the relevant 
input Parameters or constants. 

Modelling errors arise from a sequence of approximations: 

a) Formulation of the Problem in terms of the laws and principles relevant to the application. 
The underlying theory may be incompletely formulated or understood. 

b) Formulation of a mathematical model for the underlying theory. At this Stage approximations 
may enter from neglect of effects expected to be small. 

c) Conversion of the mathematical model into a Computer model by replacing infinite series 
by a finite number of terms, transforming continuous into discrete processes (e.g. numerical 
integration), and so on. 

Estimates of the modelling errors tan be incorporated as additions to the computational errors 
discussed in the next section. The complete error model will determine whether the final accuracy 
of the output of the program is adequate for the purposes at hand. 

Finally, comparison of the output of the Computer model with observations may shed insight on 
the validity of the various approximations made - one might even identify a “new” Planet! 

A.5.2.13.3 Propagation of errors 

Let each 
its error 

variable in a program be given by the sum of its true value (denoted with subscript t) and 
(denoted with subscript e). That is, the program variable x 

X ,= Xt+ Xe 

consists of the “true” value plus the accumulated “error.” Note that the values taken on by x are 
“machine numbers” in the set F, while xt and Xe are mathematical quantities in R. 

The following example illustrates how to estimate the total error contributed by the combination 
of errors in the input operands and the intrinsic error in addition. First, the result of an LIA-1 
Operation on approximate data tan be described as the sum of the result of the true Operation on 
that data and the “rounding error,” where 

rounding-error = computed-value - true-value 

Next, the true Operation on approximate data is rewritten in terms of true operations on true data 
and errors in the data. Finally, the magnitude of the error in the result tan be estimated from the 
errors in the data and the rounding error. 

Consider the result, z, of the LIA-1 addition Operation on x and y: 

z = addF(x, y) = (x + y) + rounding-error 

where the true mathematical sum of x and y is 

(1 + Y) = ICt + xe + Yt + Ye = (xt + Yt) + (xe + Ye) 

By definition, the “true” part of z is 

Zt = xt + Yt 
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so that 

z = zt + (2, + ye) + rounding-error 

Hence 

2, = (Xe + ye) + rounding-error 

The rounding error is bounded in magnitude by U~PF(Z). If bounds on Xe and ye are also known, 
then a bound on 2, tan be calculated for use in subsequent operations for which z is an input 
Operand. 

Although it is a lengthy and tedious process, an analysis of an entire program tan be carried out 
from the first Operation through the last. It is likely that the estimates for the final errors will be 
unduly pessimistic because the signs of the various errors are usually unknown. Thus, at each Stage 
the worst case combination of signs and magnitudes in the errors must be assumed. 

Under some circumstances it is possible to obtain a realistic estimate of the true accumulation of 
error instead of the maximum possible accumulation, e.g. in sums of terms with known character- 
istics. 

A.5.2.14 Extra precision 

The use of a higher level of range and/or precision is a time-honored way of eliminating Overflow and 
underflow Problems and providing “guard digits” for the intermediate calculations of a Problem. 
In 
to 

fact, one of the reasons 
permit programmers to 

that programming languages have more than one floating Point type is 
control the precision of calculations. 

Clearly, programmers should be able to control the precision of calculations whenever the accuracy 
of t heir algorithms require it. Conversely, programmers should not be bothered with such details 
in those Parts of their programs that are not precision sensitive. 

Some programming language implernentations calculate intermediate values inside expressions to a 
higher precision than is called for by either the input variables or the result variable. This “extended 
intermediate precision” strategy has the following advantages: 

a) The result value may be closer to the mathematically correct result than if “normal” precision 
had been used. 

b) The programmer is not bothered with explicitly calling for higher precision calculations. 

However, there are also some disadvantages: 

a) Since the use of extended precision varies with implementation, programs become less 
portable. 

b) It is difficult to predict the results of calculations and comparisons, even when all floating 
Point Parameters and rounding functions are known. 

c) It is impossible to rely on techniques that depend on the number of digits in working precision. 

d) Programmers lose the advantage of extra precision if they cannot reliably store Parts of a 
long, complicated expression in a temporary variable at the higher precision. 

e) Programmers cannot exercise precise control when needed. 

f) Programmers cannot trade off accuracy against Performance. 
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Assuming that a programming language designer or implernentor wants to provide extended in- 
termediate precision in a way consistent with LIA-1, how tan it be done? Implernentations must 
follow the following rules detailed in clause 8: 

a) Esch floating Point type, even those that are only used in extended intermediate precision 
calculations, must be documented. 

b) The translation of expressions into LIA-1 operations must be documented. This includes any 
implicit conversions to or from extended precision types occurring inside expressions. 

This documentation allows programmers to predict what each implementation will do. To the 
extent that a programming language Standard constrains what implernentations tan do in this 
area, the programmer will be able to make predictions across all implernentations. In addition, 
the implementation should also provide the user some explicit controls (perhaps with Compiler 
directives or other declarations) to prevent or enable this “si1ent” widening of precision. 

A.5.3 Conversion op erat ions 

The conversion operations are easily defined. Four cases arise according to the Source and destina- 
tion types. When both are integer types, the conversion Operation preserves the value if it is within 
the range of the destination type, otherwise the Operation gives an Overflow notification. 

For the conversion to a floating Point type, the value is computed by applying the result function 
with a round-to-nearest rounding rule for the destination type, and the implementation must docu- 
ment which of the possible round-to-nearest rules is being used. Rules (1) through (VI) of A.5.2.12 
hold for these conversions. In particular, conversion to a higher precision (or wider range) type is 
always exact, and never produces a notification. 

For the floating Point to integer conversions, a special purpose rounding function is applied, which 
may depend upon both the Source and destination types. The function Chosen will differ from 
language to language: Ada chooses round-to-nearest, Pascal provides both round-to-nearest and 
round-to-Zero. 

A.6 Notification 

The essential goal of the notification process is that it should not be possible for a program to 
terminate with an unresolved arithmetic Violation unless the user has been informed of that fact, 
since the results of such a program may be unreliable. 

. 

A.6.1 Notification alternatives 

LIA-1 provides a choice of notification mechanisms to fit the requirements of various programming 
languages. The first alternative (language defined notification) essentially says “if a program- 
ming language already provides an exception handling mechanism, use it.” The second alternative 
(recording of indicators) provides a Standard exception handling mechanism for languages that do 
not already have one. Language or binding Standards are expected to choose one of these two as 
their primary notification mechanism. 

The third alternative (termination with message) is provided for use in two situations: (a) when the 
programmer has not (yet) programmed any exception handling Code, and (b) when a user wants 
to be immediately informed of any exception. 
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Implernentations are encouraged to provide additional mechanisms which would be useful for de- 
bugging. For example, pausing and dropping into a debugger, or continuing execution while writing 
a log file. 

In Order to provide the full advantage of these notification capabilities, information describing the 
nature of the Violation should be complete and available as close in time to the occurrence of the 
Violation as possible. 

A.6.1.1 Language defined notification 

This alternative requires the programmer to provide application specific code which decides whether 
the computation should proceed, and if so how it should proceed. This alternative places the 
responsibility for the decision to proceed with the programmer who is presumed to have the best 
understanding of the needs of the application. 

Note, however, that a programmer may not have provided code for all trouble-spots in the program. 
This implies that program termination must be an available alternative. 

Designers of programming languages and binding Standards should keep in mind the basic principle 
that a program should not be allowed to take significant irreversible action (for example, printing 
out apparently accurate results, or even terminating “norma11y”) based on erroneous arithmetic 
computations. 

Notification mechanisms that automatically alter control flow encourage programmers to consider 
and compensate for all arithmetic exceptions. Other mechanisms should be designed to encourage 
this as well. Any suppression of notification should be done only on explicit orders from the 
programmer. 

A.6.1.2 Recording of indicators 

This alternative gives a programmer the primitives needed to obtain exception handling capabil- 
ities in cases where the programming language does not provide such a mechanism directly. An 
implementation of this alternative for notification should not need extensions to any language. The 
Status of the indicators is maintained by the System. The operations for testing and manipulating 
the indicators tan be implemented as a library of callable routines. 

This alternative tan be implemented on any System with an “interrupt” capability, and on some 
without such a capability. 

This alternative tan be implemented on an IEEE System by making use of the required Status flags. 
The mapping between the IEEE Status flags and the LIA-1 indicators is as follows: 

IEEE flag LIA indicator 
Overflow float ing-Overflow 
underflow underflow 
invalid undefined 
division by zero undefined 
inexact (no counterpart) 

(no counterpart) integer-Overflow 
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LIA-1 does not include notification 
detect inexactness of floating Point 

for inexact because non-IEEE implernentations are unlikely to 
results. 

For a zero divisor, IEEE specifies an invalid exception if the dividend is Zero, and a division by 
zero otherwise. Other architectures are not necessarily capable of making this distinction. In Order 
to provide a reasonable mapping for an exception associated with a zero divisor, LIA-1 specifies 
undefined, regardless of the value of the dividend. 

An implementation must check the recording before successfully terminating the program. Merely 
setting a Status flag is not regarded as adequate notification, since this action is too easily ignored 
by the user and could thus darnage the integrity of a program by leaving the user unaware that 
an unresolved arithmetic Violation occurred. Hence LIA-1 prohibits successful completion of a 
program if any Status flag is set. Implernentations tan provide System Software to test all Status 
flags at completion, and if any flag is set, provide a message. 

The mechanism of recording of indicators proposed here is general enough to be applied to a broad 
range of phenomena by simply extending the value set E to include indicators for other types 
of conditions. However, in Order to maintain portability across implernentations, such extensions 
should be made in conformity with other Standards, such as language Standards. 

Notification indicators are a form of global variable. A Single thread of computation should see only 
one copy of these indicators. However, care should be taken in designing Systems with multiple 
threads or “interrupts” so that 

a) logically asynchronous computations do not interfere with each other’s indicators, and 

b) notifications do not get lost. 

The proper way to do this is part of the design of the programming language or threads System, 
and is not within the scope of LIA-1. 

A.6.1.3 Termination with message 

This altern ative 
main ly for use w 

results in the term 
,hen a programmer 

ination of th e progr am following 
has fail ed to exploit on .e of the o 

an 
ther 

.otification. It is intend 
alternatives provided. 

ed 

The message must be “hard to ignore.” It must be delivered in such a way that there is no possibility 
that the user will be unaware that the program was terminated because of an unresolved exception. 
For example, the message could be printed on the Standard error output device, such as the user’s 
terminal if the program is run in an interactive environment. 

A.6.2 Delays in notification 

Many modern floating Point implernentations are pipelined, or otherwise execute instructions in 
parallel. This tan lead to an apparent delay in reporting violations, since an Overflow in a multiply 
Operation might be detected after a subsequent, but faster, add Operation completes. The provisions 
for delayed notification are designed to accommodate these implernentations. 

Parallel implernentations may also not be able to distinguish a Single Overflow from 
“almost simultaneous” Overflows. Hence, some merging of notifications is permitted. 

two or more 

Imprecise interrupts (where the Offending instruction cannot be identified) tan be accommodated as 
notification delays. Such interrupts may also result in not being able to report the kind of Violation 
that occurred, or to report the Order in which two or more violations occurred. 
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In general the longer the notification is delayed the greater the risk to the continued execution of 
the program. 

A.6.3 User selection of alternative for notification 

On some machine architectures, the notification alternative selected may influence code generation. 
In particular, the optimal Code that tan be generated for 6.1.2 may differ substantially from the 
optimal code for 6.1.3. Because of this, it is unwise for a language or binding Standard to require 
the ability to switch between notification alternatives during execution. Compile time selection 
should be sufficient. 

An implementation tan provide separate selection for each kind of notification (floatingoverflow, 
underflow, etc), but this is not required. 

If a System had a mode of Operation in which exceptions were totally ignored, then for this mode, 
the System would not conform to LIA-1. However, modes of Operation that ignore exceptions may 
have some uses, particularly if they are otherwise LIA-1 conforming. For example, a user may find 
it desirable to verify and debug a program’s behavior in a fully LIA-1 conforming mode (exception 
checking on), and then run the resulting “trusted” program with exception checking off. Another 
non-conforming mode could be one in which the final check on the notification indicators was 
suppressed. 

In any case, it is essential for an implementation to provide documentation on how to select among 
the various LIA-1 conforming notification alternatives provided. 

A.7 Relationship with language Standards 

Language Standards vary in the degree to which the underlying data types are specified. For 
example, Pascal [5] merely gives the largest integer value (maxint), while Ada [6] gives a large 
number of attributes of the underlying integer and floating Point types. LIA-1 provides a language 
independent framework for giving the same level of detail that Ada requires, specific to a particular 
implementation. 

LIA-1 gives the meaning of individual operations on numeric values of particular type. It does not 
specify the semantics of expressions, since expressions are sequences of operations which could be 
mapped into individual operations in more than one way. LIA-1 does require documentation of the 
range of possible mappings. 

The essential requirement is to document the semantics of expressions well enough so that a rea- 
sonable error analysis tan be done. There is no requirement to document the specific optimization 
technology in use. 

An implementation might conform to the letter of LIA-1, but still violate its “spirit” - the principles 
behind LIA-1 - by providing, for example, a sin function that returned values greater than 1 or 
that was highly inaccurate for large input values. Another part of ISO/IEC 10967 will take care of 
this particular example. Beyond this, implernentors are encouraged to provide numerical facilities 
that 

a) are highly accurate, 

b) obey useful identities like those in A.5.2.0.2 or A.5.2.12, 
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4 notify the user whenever the mathematically correct result would be out of range, not accu- 
rately representable, or undefined, 

d) are defined on as wide a range of input values as is consistent with the three items above. 

LIA-1 does not cover programming lang uage issues such as type 
variables. Implernentors are encouraged to catch such errors - at 

errors 
compi 

or the effects of u .n initialized 
le time whenever P ossible, at 

run time if necessary. Uncaught programming errors of this kind tan produce the very unpredictable 
and false results that LIA-1 was d esign ed to avoid. 

A list of the information that every implementation of LIA-1 must document is given in clause 8. 
Some of this information, like the value of emax for a particular floating Point type, will frequently 
vary from implementation to implementation. Other information, like the Syntax for accessing the 
value of emax, should be the Same for all implernentations of a particular programming language. 
See annex E for information on how this might be done. 

To maximize the portability of programs, most of the information listed in clause 8 should be 
standardized for 
language specific 
recommend that 
implementation: 

a) The values 

a given language - either by inclusion in the language Standard itself, or by a 
binding Standard. On the other hand to allow freedom in the implementation, we 
the following information not be standardized, but should be documented by the 

of maxint and minint should not be standardized. 

However, it is reasonable to standardize whether a particular integer type is signed, and to 
give a lower bound on the size of maxint. 

b) The values of r, p, emin, emax, denorm, and (for now) iec-559 should not be standardized. 

However, it is reasonable to give upper bounds on epsilon (G-p), and bounds on the values 
of emin and emax. Certain languages provide decimal floating Point types which require 
r = 10. 

c) The semantics of rndF, res?&F, and add> should not be standardized. 

That is, no further standardization beyond what is already required by LIA-1, since this 
would limit the range of hardware platforms that could support efficient implernentations of 
t he language. 

d) The behavior of neare+ on ties should probably not be standardized. 

e) The IEC 559 implernentor choices should not be limited (except by future revisions of IEC 
559) . 

The allowed translations of expressions into combinations of LIA operations should allow reasonable 
flexibility for Compiler optimization. The programming language Standard must determine what is 
reasonable. In particular, languages intended for the careful expression of numeric algorithms are 
urged to provide ways for programmers to control Order of evaluation and intermediate precision 
within expressions. Note that programmers may wish to distinguish between such “controlled” 
evaluation of some expressions and “don’t care” evaluation of others. 

Developers of language Standards or binding Standards may find it convenient to reference LIA-1. 
For example, the functions rndp, rndF+1, res’-i.&F, add>, eF, and r?zF may prove useful in defining 
additional arithmetic operations. 
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A.8 Documentation requirements 

To make good use of an implementation of LIA-1, programmers need to know not only that the 
implementation conforms, but how the implementation conforms. Clause 8 requires implementa- 
tions to document the binding between the LIA-1 types and operations and the total arithmetic 
environment provided by the implementation. 

An example conformity Statement (for a Fortran implementation) is given in annex F. 

It is expected that an implementation will meet part of its documentation requirements by incor- 
poration of the relevant language Standard. However, there will be aspects of the implementation 
that the language Standard does not specify in the required detail, and the implementation needs 
to document those details. For example, the language Standard may specify a range of allowed 
Parameter values, but the implementation must document the value actually used. The combina- 
tion of the language Standard and the implementation documentation together should meet all the 
requirements in clause 8. 

Most of the documentation required tan be provided easily. The only difficulties might be in 
defining add>, or in specifying the translation of arithmetic expressions into combinations of LIA-1 
operations. 

Compilers often “optimize” code as part of the compilation process. Popular optimizations include 
moving code to less frequently executed spots, eliminating common subexpressions, and reduction 
in strength (replacing expensive operations with eheaper ones). 

Compilers are always free to alter code in ways that preserve the semantics (the values computed 
and the notifications generated). However, when a code transformation may Change the semantics 
of an expression, this must be documented by listing the alternative combinations of operations 
that might be generated. (There is no need to include semantically equivalent alternatives in this 
1 st ) i . 
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Annex B 
(informative) 

Partial conformity 

@ ISO/IEC 

The requirements of LIA-1 have been carefully Chosen to be as beneficial as possible, yet be ef- 
ficiently implemented on almost all existing or anticipated hardware architectures. The bulk of 
LIA-1 requirements are for documentation, or for Parameters and functions that tan be efficiently 
realized in Software. However, the accuracy and notification requirements on the four basic floating 
Point operations (addF, SUbF, ?nu!F, and diZfF) do have implications for the underlying hardware 
architecture. 

A small number of Computer Systems will have difficulty with some of the LIA-1 requirements for 
floating Point. The requirements in question are: 

a) Stritt l-ulp accuracy of addF, S’ILbF, ?n&, and divp. 

b) A common rounding rule for addF, SubF, m?.&, and divp. 

c) The ability to catch all exceptions, particularly underflow. 

d) The ability to do exact comparisons without spurious notifications. 

e) A sign symmetric value set (all values tan be negated exactly). 

As an example, the Cray family of Supercomputers cannot satisfy the first four requirements above 
without a significant loss in Performance. Machines with two’s-complement floating Point formats 
(quite rare) have difficulty with the last requirement. 

Language Standards will want to adopt all the requirements of LIA-1 to provide programmers 
with the maximum benefit. However, if it is perceived that requiring full conformity to LIA-1 will 
exclude a significant Portion of that language’s user community from any benefit, then specifying 
partial LIA-1 conformity, as permitted in clause 2, may be a reasonable alternative. 

Such partial conformity would relax one or more of the five requirements listed above, but would 
retain the benefits of all other LIA-1 requirements. All deviations from LIA-1 conformity must be 
fully documented. 

If a programming language (or binding) Standard states that partial conformity is permitted, pro- 
grammers will need to detect what degree of conformity is available. It would be helpful for the 
language Standard to require Parameters indicating whether or not conformity is complete, and if 
not, which of the five requirements above is violated. 

The following four boolean Parameters might be a suitable set: 

a) Stritt - false when any of the LIA-1 requirements on rounding and accuracy arc violated. 
(See 5.2.4 and 5.2.5.) 

b) Silent-underflow - true when underflow notification is suppressed. 

c) Comparison-via-subtract - true when comparisons may Overflow and underflow like subtrac- 
tion. 

d) Negate-may-fail- true when the set of floating Point values is not sign symmetric. 

Finally, rnd-error may be greater than 1 in non-stritt implernentations. 
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Annex C 
(informative) 

IEC 559 bindings 

ISO/IEC 10967=1:1994(E) 

When the Parameter iec-559 is true for a floating Point type F, all the facilities required by IEC 559 
shall be provided for that type. Methods shall be provided for a program to access each such facility. 
In addition, documentation shall be provided to describe these methods, and all implementation 
choices. 

This means that a complete programming language binding for LIA-1 should provide a binding for 
all IEC 559 facilities as well. A programming language binding for a Standard such as IEC 559 
must define Syntax for all required facilities, and should define Syntax for all optional facilities as 
well. Defining Syntax for optional facilities does not make those facilities required. All it does is 
ensure that those implernentations that choose to provide an optional facility will do so using a 
standardized Syntax. 

The normative listing of all IEC 559 facilities (and their definitions) is given in IEC 559. This 
part of ISO/IEC 10967 does not alter or eliminate any of them. However, to assist the reader, the 
following summary is offered. 

C.l Summary 

A binding of IEC 559 (and thus LIA-1) to a programming language should provide: 

a) The name of the programming language type that corresponds to Single format. 

b) The name of the programming language type that corresponds to double format, if any. 

c) The names of the programming language types that correspond to extended formats, if any. 

For each IEC 559 conforming type, the binding should provide: 

d) A method for denoting positive infinity. (Negative infinity tan be derived from positive infinity 
by negation). 

e) A method for denoting at least one quiet NaN (not-a-number). 

f) A method for denoting at least one signalling NaN (not-a-number). 

For each IEC 559 conforming type, the binding should provide the notation for invoking each of 
t he following operations: 

d 
hl 
9 
. J> 
kl 
9 

Addp, subp, ??&F, and divF. (Already required by LIA-1.) 

Remainder, Square-root, and round-to-integral-value. 

The type conversions Cut&+&, , cvtF+l, cvtI+F. (Already required by LIA-1.) 

Type conversions between the floating Point values and decimal strings (both ways). 

The comparisons eqF, neqFt IssF, ZeqF, @F, and geqF. (Already required by LIA-1.) 

The comparison “unordered.” (Optional in IEC 559, but highly desirable.) 

The other 19 comparison operations. [Optional in IEC 559.) 
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n) The “recommended functions” copysign, negate, scaleb, logb, nextafter, finite, isnan, <>, 
and class. (Esch is optional in IEC 559. Negate, scaleb, logb, and nextafter are redundant 
with existing LIA-1 operations.) 

The binding should provide the ability to read and write the following components of the floating 
Point environment (modes or flags): 

o) The rounding mode. 

p) The five exception flags: inexact, underflow, (floating-)overflow, divide-by-Zero, and invalid. 

q) The disable/enable flags for each of the five exceptions. (Optional in IEC 559.) 

r) The handlers for each of the exceptions. (Optional in IEC 559.) 

The binding should provide boolean Parameters for each implernentor choice allowed by IEC 559: 

s) Whether trapping is implemented. 

t) Whether tininess is detected “before rounding” or “after rounding.” 

u) Whether loss-of-accuracy is detected as a denormalization loss or as an inexact result. 

Note that several of the above facilities are already required by LIA-1 even for implernentations 
that do not conform to IEC 559. 

C.2 Notification 

One appropriate way to access the five IEC 559 exception flags is to use the functions defined in 
6.1.2. This requires extending the set E with three new values: inexact, divide-by-zero, and 
invalid. (Such an extension is expressly permitted by 6.1.2.) Wh enever divide-by-zero or invalid 
is set (whether by the System or explicit programmer action), the LIA-1 indicator undefined is 
set as well. Whenever the LIA-1 indicator undefined is cleared, divide-byzero and invalid are 
cleared as well. 

Designing a binding for the optional “trapping” facility should be done in harmony with the ex- 
ception handling features already present in the programming language. It is possible that existing 
language features are sufficient to meet programmer’s needs. 

C.3 Rounding 

The two directed roundings of IEC 559, round-toward-positive infinity and round-toward-negative- 
infinity, do not satisfy the sign symmetry requirement of 5.2.5. However, the default IEC 559 
rounding does satisfy the LIA-1 requirements. 

To use the directed roundings, a programmer would have to take explicit action to Change the 
current rounding mode. At that Point, the program is operating under the IEC 559 rules, not the 
LIA-1 rules. Such non-conforming modes are expressly permitted by clause 2. 
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Annex D 
(informative) 

Requirements beyond IEC 559 

Any computing System conforming to the requirements of IEC 559 tan economically conform to 
LIA-1 as well. This annex outlines the LIA-1 requirements that go beyond the requirements of IEC 
559. 

For each floating Point type F, the following Parameters or derived constants must be provided to 
the program: 

p, r, emin, emax, denorm, iec-559, fmax, fmin, fmin& epsilon, rnd-error, and 
rnd-style 

The following operations must be provided (typically in Software): 

negF, absp , signF , exponentlp, fractionp, scalelp, succF, predF, Ulp~, truncp, roundp, 
in@artF, and fractpartp 

A method for notification must be provided that conforms to the applicable programming language 
Standard. (This is independent of LIA-1 per se, since any implementation of a Standard language 
must conform to that language’s Standard.) 

When the language (or binding) Standard does not specify a notification method, 6.1.2 requires 
that notification be done by setting “indicators” which reflect the Status flags required by IEC 559. 
(See annex C as well.) 

6.1.3 requires that the programmer tan demand prompt program termination on the occurrence 
of an LIA-1 notification. This is typically implemented using IEC 559 trapping, or (if trapping is 
unavailable) by Compiler generated Code. 

NOTE - The LIA-1 notifications correspond to the IEC 559 exceptions Overflow, underflow, 
divide-by-Zero, and invalid. 

If any Status flags are set at program termination, this fact must be reported to the user of the 
program. 

Thorough documentation must be provided as outlined in clause 8. Citing IEC 559 will be sufficient 
for several of the documentation requirements, including requirements (c), (f), and (h). Note that 
the implernentor choices permitted by IEC 559 must be documented. 
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Annex E 
(informative) 

@ ISO/IEC 

Bindings for specific languages 

This annex describes how a computing System tan simultaneously conform to a language 
and to LIA-1. It contains suggestions for binding the LLabstract” operations specified in 
concrete language Syntax. 

Standard 
LIA-1 to 

Portability of programs tan be improved if two conforming LIA-1 Systems using the same language 
agree in the manner with which they adhere to LIA-1. For instance, LIA-1 requires that the 
derived constant epsilon be provided, but if one System provides it by means of the identifier EPS 
and another by the identifier EPSILON, portability is impaired. Clearly, it would be best if such 
names were defined in the relevant language Standards or binding Standards, but in the meantime, 
suggestions are given here to aid portability. 

The following clauses are suggestions rather than requirements because the areas covered are the 
responsibility of the various language Standards committees. Until binding Standards are in place, 
implernentors tan promote “de facto” portability by following these suggestions on their own. 

The languages covered in this annex are 

Ada 
Basic 
C 
Common Lisp 
Fortran 
Modula-2 
Pascal and Extended Pascal 
PL/1 

This list is not exhaustive. Other languages are suitable for conformity to LIA-1. 

In this annex, the data types, Parameters, constants, operations, and exception behavior of each 
language are examined to see how closely they fit the requirements of LIA-1. Where Parameters, 
constants, or operations are not provided by the language, names and Syntax are suggested. Sub- 
.stantial additional suggestions to language developers are presented in clause A.7, but a few general 
suggestions are reiterated below. 

,This annex describes only the language-level support for LIA-1. An implementation that wishes to 
conform must ensure that the underlying hardware and Software is also configured to conform to 
the LIA-1 requirements. 

A complete binding for LIA-1 will include a binding for IEC 559. Such a joint LIA-1 / IEC 
\559 binding should be developed as a Single binding Standard. To avoid conflict with ongoing 
development, only the LIA-1 specific portions of such a binding are presented in this annex. 

E.l General comments 

Most language Standards permit an implementation to provide, by some means, the Parameters, 
constants and operations required by LIA-1 that are not already part of the language. The method 
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for accessing these additional constants and operations depends on the implementation and lan- 
guage, and is not specified in LIA-1. It could include external subroutine libraries; new intrinsic 
functions supported by the Compiler; constants and functions provided as global “macros;” and so 
on. 

A few Parameters are completely determined by the language definition, e.g. whether the integer 
type is bounded. Such Parameters have the Same value in every implementation of the language, 
and therefore need not be provided as a run-time Parameter. 

During the development of Standard language bindings, each language community should take care 
to minimize the impact of any newly introduced names on existing programs. Techniques such 
as “modules” or name prefixing may be suitable depending on the conventions of that language 
community. 

LIA-1 treats only Single operations on operands of a Single data type, but nearly all computational 
languages permit expressions that contain multiple operations involving operands of mixed types. 
The rules of the language specify how the operations and operands in an expression are mapped 
into the primitive operations described by LIA-1. In principle, the mapping could be completely 
specified in the language Standard. However, the translator often has the freedom to depart from 
t his precise specification: to reorder computations, widen data types, short-circuit evaluations, 
and perform other optimizations that yield “mathematically equivalent” results but remove the 
computation even further from the image presented by the programmer. 

We suggest that each language Standard committee require implernentations to provide a means 
for the user to control, in a portable way, the Order of evaluation of arithmetic expressions. 

Some numerical analysts assert that user control of the precision of intermediate computations is 
desirable. We suggest that language Standard committee consider requirements which would make 
such user control available in a portable way. (See A.5.2.14.) 

Most language Standards do not constrain the accuracy of floating Point operations, or specify the 
subsequent behavior after a serious arithmetic Violation occurs. We suggest that each language 
Standard committee require that the arithmetic operations provided in the language satisfy the 
LIA-1 requirements for accuracy and notification. 

We also suggest that each language Standard committee define a way of handling exceptions within 
the language, e.g. to allow the user to control the form of notification, and possibly to Yix up” the 
error and continue execution. The binding of the exception handling within the language Syntax 
must also be specified. 

If a language or binding Standard wishes to make the selection of the notification method portable, 
but has no Syntax for specifying such a selection, we suggest the use of one of the commonly used 
methods for extending the language such as special comment Statements in Fortran or pragmas in 
C and Ada. 

In the event that there is a conflict between the requirements of the language Standard and the 
requirements of LIA-1, the language binding Standard should clearly identify the conflict and state 
its resolution of the conflict. 

E.2 Ada 

The programming language Ada is defined by ISO/IEC 8652:1986, Information technology - Pro- 
gramming languages - Ada [6]. 
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An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked “t” are not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. The additional facilities tan be provided by means of a package named LIA. 

The Ada data type BOOLEAN corresponds to the LIA-1 data type Boolean. 

Every implementation of Ada has at least one integer data type, and at least one floating Point 
data type. The notations 1NT and FLTare used to stand for the names of one of these data types 
in what follows. 

The Parameters for an integer data type tan be accessed by the following Syntax: 

maxint 
minint 

INT> LAST 
INT’ FIRST 

The Parameter bounded is always true, and need not be provided. The Parameter modulo is always 
false, and need not be provided. 

The Parameters for a floating Point data type tan be accessed by the following Syntax: 

r 
P 

emax 
emin 
denorm 
iec-559 

FLT’MACHINERADIX 
FLT’MACHINEMANTISSA 
FLT’ MACHINEEMAX 
FLT’MACHINEEMIN 
FLT’ DENORM t 
FLT'IEC-559 t 

The derived constants for the floating Point data type tan be accessed by the following Syntax: 

f max 
f?ninN 
f min 
epsilon 
rnd-error 
rnd-style 

FLT’ LAST 
FLT’MINNORM 
FLT’ MIN 
FLT’EPSILON 
FLT’ RND-ERROR 
FLT’RNDSTYLE 

The value returned by the function FLT’RNDSTYLE are from the enumeration type RND-STYLES. 
Esch enumeration literal should correspond as follows to an LIA-1 rounding style value: 

nearest 
truncate 
other 

NEAREST t 
TRUNCATE t 
OTHER t 

The integer operations are listed below, along with the Syntax used to invoke them: 

addI 
subI 
mulI 
dzv l  f 

I 
l  t dzv 

I 

“c+y 
It-Y 
x*Y 
no binding 
ZlY 

f remI x mod y 
x rem y 
x mod y 
no binding 

remf 
mody 
moRI 
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signi 
nw 
absI 

e!U 
nun 
ISS I 

1 4I e 

!wI 

Pa 

SIGNUM(x) 
-X 
abs x 
x=y 
x /= y 

Z<Y 
x c= y 

a:'Y 
x >= y 

where x and y are expressions of type INT. 

The floating Point operations are listed below, along with the Syntax used to invoke them: 

addF 
subp 
mdJ7 

. 
dzv F 

negF 
absF 
signF 
exponentF 
fractionp 
scaleF 
SUCCF 
PredF 

UbF 
truncF 
roundp 
intpartF 

eqF 
neqF 
ISS F 

1 qF e 
@F 

!?eqF 

“c+y 
x-Y 
x*Y 
xiY 
- x 
abs x 
SIGNUM(x) 
EXPONENT(x) 
FRACTION(x) 
SCALE(x, n) 
SUCCESSOR(x) 
PREDECESSOR(x) 
UNITLASTJ’LACE (x) 
TRUNCATE-TO (x, n) 
ROUND-TO (x, n) 
INT-PART (x) 
FRACTJ’ART (x) 
x=y 
x /= y 

a:<Y 
x <= y 
a:‘Y 
x >= y 

where x and y are expressions of type FLT and n is of type INT. 

Type conversions in Ada are always explicit and use the destination type name as the name of the 
conversion function. Hence: 

cvtI,F, cvtFl+F FLT( x) 
cvtF+I, CVk,I INT( x) 

where x is an expression of the appropriate type. An implementation that 
LIA-1 must use a round to nearest style for all conversions to floating Point. 

wishes to conform to 

Ada defines its own method of exception handling based on alteration of control flow. Notification 
is accomplished by raising the exception CONSTRAINTJZRROR. An implementation that wishes to 
conform to LIA-1 must provide a default exception handler which terminates the program if no 
handler for the exception has been supplied by the programmer. 
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In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 

NOTE - A more comprehensive discussion of the relationship between LIA-1 and the Ada 
language tan be found in [35]. In particular, this covers the relationship between the package LIA 
and packages for the elementary functions [16] and for primitive functions [17] being proposed 
to ISO. 

E.3 BASIC 

The programming language BASIC is defined by ISO/IEC 10279:1991, Information technology - 
Programming languages - Full BASIC [12]. 

An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked “t” are not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. 

There is no user accessible BASIC data type corresponding to the LIA-1 data type Boolean. Any of 
the LIA-1 operations that return a Boolean value correspond to “relational-expressions” in BASIC 
which appear within control structures. 

BASIC has one primitive computational data type, numeric. The model presented by the BASIC 
language is that of a real number with decimal radix and a specified (minimum) number of decimal 
digits. Numeric data is not declared directly, but any special characteristics are inferred from how 
they are used and from any OPTIONS that are in forte. 

The BASIC Statement OPTION ARITHMETIC NATIVE ties the numeric type more closely to the 
underlying implementation. The precision and type of NATIVE numeric data is implementation 
dependent. 

Since the BASIC numeric data type does not match the integer type required by LIA-1, an im- 
plementation is not required to supply any of the LIA-1 Parameters or operations for integer data 
types. 

The BASIC numeric type is used for the integer valued type V” introduced in 5.2.2. 

The Parameters for the numeric data type tan be accessed by the following Syntax: 

r 

P 

emax 
emin 
denorm 
iec-559 

RADIX 
PLACES 
MAXEXP 
MINEXP 
DENORM 
IEC-559 

The derived constants for the numeric data type tan be accessed by the following Syntax: 

f max 
fminN 

MAXNUM t 
FMINN t 

fm in EPS(0) 
epsil on EPSILON 
rnd-error RNDERROR 
rnd-style RNDSTYLE 
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The allowed values of the Parameter rnd-style are numeric and tan be accessed by the following 
Syntax: 

nearest 
truncate 
other 

NEAREST t 
TRUNCATE t 
OTHER t 

The LIA-1 floating Point operations are listed below, along with the Syntax used to invoke them: 

addF 
subp 
m?dF 

x+Y 
X-Y 
x*Y . 

dzv F 

negF 
absF 
signF 
exponentp 
fractionF 
scaleF 
SUCCF 
PredF 

Uh’F 
truncp 

roundF 
intpartF 
fractpartF 
eqF 
neqF 
h@’ 

1 !?F e 

@‘F 

9eqF 

a:lY 
-X 
ABS(x) 
SGN(x) 
EXPON(x) 
FRACTION(x) 
SCALE(x, n) 
succ(x) 
PRED(x) 
ULP(x) 
TRUNCTO(x, n) 
ROUNDTO(x, n) 
INX) 
FP(x) 
x=y 
x X y or x 0 y 
ZCY 
x =< y or x <= y 
Z’Y 
X => y or x >= y 

where x and y are numeric expressions and n is integral. 

NOTES 

1 The BASIC EPS (2) function differs from u1p~, in that U@F(Z) raises a notification when 
X = 0 and tan underflow when z is very close to Zero, but EPS(z) returns fmin for these 
values of 2. 

2 The BASIC functions ROUNJI and TRUNCATE differ from roz~n& and truncp in that n refers 
to the number of digits retained after the decimal Point, rather than the total number of 
digits retained. 

The notification method required by BASIC is through alteration of control flow. Notification 
is accomplished through the exception handling facilities required by BASIC. An implementation 
that wishes to conform to LIA-1 must create a BASIC exception in any case where an LIA-1 
Operation would return an exceptional value. BASIC requires that a program Substitute zero 
and continue execution when underflow occurs and no programmer-specified recovery procedure 
has been provided. This does not meet the notification requirements of LIA-1, but is explicitly 
permitted by this binding Standard. 

The exception Codes returned by the function EXTYPE include refinements of the LIA-1 exceptional 
values along with values characterizing non-numeric exceptions as well. The following lists the 
BASIC exception code along with a description and corresponding LIA-1 exceptional value. 
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Code 
1002 
1003 
1502 
1503 
3001 
3010 
3011 

Description 
Numeric expression Overflow 
Numeric supplied function Overflow 
Numeric expression underflow 
Numeric supplied function underflow 
Division by zero 
Attempt to evaluate EXPON (0) 
Attempt to evaluate ULP (0) 

In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 

LIA-I value 
float ing-Overflow 
floating-Overflow 
underflow 
underflow 
undefined 
undefined 
undefined 

E.4 C 

The programming language C is defined by ISO/IEC 9899:1990, Information technology - Pro- 
gramming languages - C [Q]. 

An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked “t” are not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. An implementation that wishes to conform to LIA-1 must supply declarations 
of these items in a header <lia .h>. 

Integer valued Parameters and derived constants tan be used in preprocessor expressions. 

The LIA-1 data type Boolean is implemented in the C data type int (1 = true and 0 = false). 

Every implementation of C has integral types int, long int, unsigned int, and unsigned long 
int which conform to LIA-1. 

NOTE 1 - The conformity of short and char (signed or unsigned) is not relevant since values 
of these types are promoted to int (signed or unsigned) before computations are done. 

C has three floating Point types that conform to this part of ISO/IEC 10967: f loat, double, and 
long double. 

The Parameters for an integer data type tan be accessed by the following Syntax: 

maxint 
minint 
modul o 

INT-MAX LONGJIAX UINT-MAX ULONG-MAX 
INT_MIN LONG-MIN 
INTJJODULO LONG-MODULO t 

The Parameter bounded is always true, and need not be provided. The Parameter minint is always 
0 for the unsigned types, and need not be provided for those types. The Parameter modulo is always 
true for the unsigned types, and need not be provided for those types. 

The Parameters for a floating Point data type tan be accessed by the following Syntax: 

r 

P 
emax 
emin 
denorm 
iec-559 

FLT-RADIX 
FLTJANT-DIG DBLJIANTDIG LDBL-MANTDIG 
FLTmMAX-EXP DBL-MAX-EXP LDBL-MAX-EXP 
FLT-MIN-EXP DBL-MIN-EXP LDBL-MIN-EXP 
FLTDENORM DBLDENORM LDBLDENORM t 
FLT-IEC-559 DBL-IEC-559 LDBL-IEC-559 t 
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The *DENORM macros and *J-EC-559 macros represent booleans and have values 1 or 0. 

The C language Standard presumes that all floating Point precisions use the same radix and rounding 
style, so that only one identifier for each is provided in the language. 

The derived constants for the floating Point data type tan be accessed by the following Syntax: 

f max 
fminN 

f min 
epsil on 
rnd-error 
rnd-style 

FLT-MAX DBL-MAX LDBL-MAX 
FLTlKIN DBL-MIN LDBLJIN 
FLT-TRUE-MIN DBL-TRUE-MIN LDBL-TRUE-MIN t 
FLT-EPSILON DBL-EPSILON LDBLJZPSILON 
FLTRNDJZRR DBLRND-ERR LDBL-RNDJZRR t 
FLTROUNDS 

The C Standard specifies that the values of the Parameter FLTROUNDS are from int with the 
following meaning in terms of the LIA-1 rounding styles. 

truncate 
nearest 
other 

FLTROUNDS = 0 
FLTROUNDS = 1 
FLTROUNDS # 0 or 1 

NOTE 2 - The definition of FLTROUNDS has been extended to cover the rounding style used 
in all MA-1 operations, not just addition. 

The integer operations are either Operators or declared in the header <stdlib.h>. The integer 
operations are listed below, along with the Syntax used to invoke them: 

addI 
subr 
muli 

. 
dzv I 
remI 
modf 
rno4 
negi 
absr 
signl 

w 

nea 
ZSSI 

klr 

SW 
9eqr 

z+Y 
x-Y 
z*Y 
ZlY 
z%y 
modulo(x, y) lmodulo(x,y) 
no binding 
-X 
abs(x) 

sgn(d 
X == Y 
x != y 

Z<Y 
x c= y 

Z'Y 
x >= y 

labs(x) 

lsgn(x) 

where x and y are expressions of the Same integer type. 

The C Standard permits divr and reml (/ and X) to be implemented using either round toward 
4 f minus infinity (dzvI/remI) or toward zero (divflremi). An implementation that wishes to conform 

to LIA-1 must choose the Same rounding for both and document the choice. 

The floating Point operations are either Operators 
tions are listed below, along with the sy ntax used 

or 
to 

declared in the header <math.h>. The opera- 
invoke them: 

addF 
subp 
mdF 

“+Y 
x-Y 
x*Y 
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divF 
ne!?F 
absp 
signF 
ixponentj? 
fractionp 
scalep 
SUCCF 
PredF 

UbF 
truncp 

roundF 
intpartF 
fractpartF 

e!!F 
ne!?F 
hF 

kF 

#rF 

!?eqF 

XlY 
-X 
fabsf (x)t 
fsgnf (x) 
exponf (x) 
fractf (x) 
scalef (x, 72) 
succf (x) 
predf (EC) 

Ulpf(d 
trunctof (2, n) 
roundtof (x, n) 
intprtf (x) 
frcprtf (x) 
X -- -<I Y 
x != y 

a:<Y 
2 c= y 

Ic>Y 
x >= y 

fabs(x) 

fsgdd 
expon(x) 
fract(x) 
scale(x, n) 
succ(x> 

predb) 
ulp(d 
truncto(x, 7x9 
roundto(x, n> 
intprt (x) 
frcprt(x) 

fabsl(x)t 
f sgnl(x) t 
exponl(x) t 
fractl(x) t 
scalel(x, n) t 
succl(x) t 
predl (x) t 
ulpl(d t 
trunctol(x, n) t 
roundtol(x, n) t 
intprtl(x) t 
frcprtl(x) t 

where x and y are expressions of the same floating point type, and n is of type int. 

NOTES 

3 ScaleF tan be computed using the kdexp iibrary function, only if FLT-RADPX = 2. 

4 The Standard C function frexp differs from expnentF in that no notification is raised when 
the argument is 0. 

An implementation that wishes to conform to LIA-1 must provide the LIA-1 operations in all 
floating Point precisions supported. 

C provides the required type conversion operations with explicit cast Operators: 

cvtF+I, cvk+I (int) x, (lang) 2, (unsigned int> Z, 
(unsigned lang) x 

cvtI+F, cvtF’-+F (f loat) 2, (double) x, (lang double) x 

The C Standard requires that float to integer conversions round toward Zero. An implementation 
that wishes to conform to LIA-1 must use round to nearest for conversions to a floating Point type. 

An implementation that wishes to conform to LIA-1 must provide recording of indicators as one 
method of notification. (See 6.1.2.) The data type Ind is identified with the data type unsigned 
int. The valües representing individual indicators should be distinct non-negative powers of two 
and tan be accessed by the following Syntax: 

integer-Overflow INT-QVERFLOW t 
floating-overflow FLT-OVERFLOW t 
underflow UNDERFLOW t 
undefined UNDEFINED t 

The empty set tan be denoted by 0. Other indicator subsets tan be named by combining individual 
indicators using bit-or. For example, the indicator subset 

{floating-overflow, underflow, integer-Overflow} 
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would be denoted by the expression 

The indicator interrogation and manipulation 
used to invoke them: 

FLT-OVERFLOW 1 UNDERFLOW 1 INT-OVERFLOW 

operations are listed below, along with the Syntax 

set-indicators set-indicators(i) t 
clear-indicators 
test-indicators 

clear-indicators(i) 
test-indicators(i) 

t 
t 

current-indicators current-indicatorso t 

where i is an expression of type unsigned int representing an indicator subset. 

In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 

E.5 Common Lisp 

The programming language Common Lisp is under development by ANSI X3J13 [21]. The Standard 
will be based on the definition contained in Common Lisp: the Language [32]. 

An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked “t” arc not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. 

Common Lisp does not have a Single data type that corresponds to the LIA-1 data type Boolean. 
Rather, NIL corresponds to false and T corresponds to true. 

Every implementation of Common Lisp has one unbounded integer data type. Any mathemati- 
cal integer is assumed to have a representation as a Common Lisp data Object, subject only to 
total memory limitations. Thus, the Parameters bounded and modulo arc always false, and the 
Parameters bounded, modulo, maxint, and minint need not be provided. 

Common Lisp has four floating Point types: short-float, single-float, double-float, and 
lang-f lost. Not all of these floating Point types must be distinct. 

The Parameters for the floating Point types tan be accessed by the following constants and inquiry 
functions. 

r 

P 

(float-radix x) 
(float-digits x) 

emax maxexp-short-float, 
maxexp-double-float, 

maxexp-Single-float, 
maxexp-long-float 

emin minexp-short-float, minexp-Single-float, 
minexp-double-float, minexp-lang-float 

denorm denorm-short-float, denorm-Single-float, t 
denorm-double-float, denorm-lang-float t 

iec-559 iec-5599short-float, iec=559=single=float, t 
iec=559=double=float, iec-559~long-float t 
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where x is oftype short-float, Single-float,double-floator long-float. 

The derived constants for the floating Point data type tan be accessed by the following Syntax: 

f max most-positive-short-float 
most-positive-Single-float 
most-positive-double-float 
most-positive-long-float 

fminN 

f min 

epsilon 

rnd-error 

rnd-style 

least-positive-normalized-short-float 
least-positive-normalized-Single-float 
least-positive-normalized-double-float 
least-positive-normalized-long-float 

least-positive-short-float 
least-positive-Single-float 
least-positive-double-float 
least-positive-l ong-f 

short-float-epsilon 
Single-float-epsilon 
double-float-epsilon 
long-float-epsilon 

loat 

short-float-rounding-error 
Single-float-rounding-error 
double-float-rounding-error 
long-float-rounding-error 

rounding 

NOTE 1 - LIA-1 requires sign symmetry in the range of floating Point numbers. Thus the 
Common Lisp constants of the form *-negative-* are not needed since they are simply the 
negatives of their *-positive-* counterparts. 

The value of the Parameter rounding is an Object of type rounding-style. The subtypes of 
rounding-style have the following names corresponding to the LIA-1 rndstyle values: 

nearest 
truncate 
other 

nearest 
truncate 
other 

The integer operations arc listed below, along with the Syntax used to invoke them: 

addI 
subI 
mulI 
dzv l  f 

I 
dzv l  t 

I 
f remI 

remi 
modf 
modP, 
negr 
abq 

(+ x y> 

( - x y> 

(* x y) 

(floor x y) 
(truncate x y) 

hod x y> 

hm x y> 

hod II: y> 

no binding 
(- d 
(abs x) 
(Signum x) 
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f?u 

neqI 
ISS I 

k?I 

SW 

eu 

(= x y> 

u= x y> 

(< x y> 

h= x y> 

0 x y> 

o= x y> 

where x and y are expressions of type integer. 

The floating Point operations are listed below, along with the Syntax used to invoke them: 

addF 
subp 
m?.dF 
divp 
nf??F 
absp 
signF 
exponentp 
fractionp 
scaleF 
SUCCF 
PredF 

u@F 
truncF 
roundF 

(+ x y> 
(- x y> 
(* x y> 
u x y> 
(- x> 
(abs x) 
(Signum 2) 
(f loat-exponent x) 
(decode-float x) 
(scale-float x n) 
(succ x) 
(pred x) 
Np d 
(truncate-float x n) 
(round-float x n) 

(multiple-value-bind (int fract) (ftruncate EC)) 
intpartF 
fractpart p 

int 
f ract 

eqF 
neqF 
ISS F 

kF 

@F 

!?eqF 

(= x y) 
(/= x y> 

(< x y) 

(<= x y> 

0 x y> 

o= x y) 

where x and y are data objects of the Same floating Point type, and n is of integer type. 

NOTES 

2 Only Signum returns 0 when applied to 0 as is required of signF by LIA-1. Neither 
f loat-sign nor decode-f loat do. 

3 The function float-exponent differs from decode-float in that it 
if. the argument is Zero, while decode-float does not. 

generates a notification 

Type conversions in Common Lisp are explicit through conversion functions. The programmer may 
choose the rounding in cvtF+I. Conversions to floating Point type yield a result of default f loat 
type, unless there is a second Operand y, in which case the result is of the same type as y. 

cvtI+F, cvtF’+F 

cvtF+I 

(float x), (float x y) 
(floor x) (round toward minus infinity) 
(ceiling 2) (round toward positive infinity) 
(truncate x) (round toward Zero) 
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(round x) (round to nearest) 

An implementation of Common Lisp that 
when converting to a floating Point type. 

wishes to conform to LIA-1 must use round to nearest 

Common Lisp defines its own method of exception handling based on alteration of control flow. No- 
tification is accomplished by signalling a condition of the appropriate type. The LIA-1 exceptional 
values are represented by the following Common Lisp condition types: 

integer-Overflow 
float ing-Overflow 
underflow 
undefined 

(not needed, the integer type is unbounded) 
floating-Point-Overflow 
f loat ing-Point-underf low 
division-by-Zero, or arithmetic-error 

An implementation that wishes to conform to LIA-1 must Signal the appropriate condition type 
whenever an LIA-1 exceptional value would be returned, and must provide a default handler for 
use in the event that the programmer has not supplied a condition handler. 

In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 

E.6 Fortran 

The programming language Fortran is defined by ISO/IEC 1539:1991, Information technology - 
Programming languages - FORTRAN [3]. 

An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked “t” are not part of the language and must be provided by 
LIA-1. For each of the marked items a suggested an implementation that wishes to conform to 

identifier. is provided. The additional facilities tan be provided by means of a module named LIA. 

The Fortran data type LOGICAL corresponds to the LIA-1 data type Boolean. 

Every implementation of Fortran has one integer data type, denoted as INTEGER, and two float- 
ing Point data types denoted as REAL (Single precision) and DOUBLE PRECISION. (In Fortran ter- 
minology, REAL and DOUBLE PRECISION denote the Same “type” (REAL) but have different KIND 
Parameters. The rest of this clause will use the Fortran terminology.) 

An implementation is permitted to offer additional INTEGER types with a different range and addi- 
tional REAL types with different precision or range, parameterized with the KIND Parameter. 

The Parameters for INTEGER types tan be accessed by the following Syntax: 

max,int 
minint 
modulo 

HUGE(x) 
MININT(x) 
MODINT(x) 

where x is an expression of the appropriate INTEGER type. 

The Parameter bounded is always true, and need not be provided. 

The Parameters for the REAL types tan be accessed by the following Syntax: 
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r 

P 

emax 
emin 
denorm 
iec-559 

RADIX(x) 
DIGITS(x) 
MAXEXPONENT (x) 
MINEXPONENT (x) 
DENORM (x) t 
IEC-559 (x) t 

where x is an expression of the appropriate REAL type. 

The derived constants for REAL data types tan be accessed by the following Syntax: 

f max 
fminN 
f min 
epsil on 
rnd-error 
rnd-style 

HUGE(x) 
TINY(x) 
TINIEST (x) 
EPSILON (x) 
RND-ERROR( x) 
RNDSTYLE(x) 

where x is an expression of the appropriate REAL type. 

The function RNDSTYLE returns one of the following values of type CHARACTER*8: 

nearest 
truncate 
other 

Wearest) 
3runcate’ 
jother’ 

The integer operations are listed below, along with the Syntax used to invoke them: 

addI a=+y 
subI 
mulI 
dzv l  f 

I 
l  t dav I 

f remI 
remi 
mody 
mody 

a:-Y 
z*Y 
no binding 
ZlY 
MODULO(x, y) 
MQD(x, y> 
MODULO(x, y) 
no binding 

negr 
abq 
signr 

f?lI 
nw 

- x 

ABS(x) 
SIGNUM(x) 
x .EQ. y or x == y 
x .NE. y or x /= y 

ISS I x .LT. y or x < y 
x .LE. y or x <= y 
x .GT. y or x > y 
x .GE. y or x >= y 

kI 

SW 

PWI 

where x and y are expressions involving integers of the same KIND. 

The floating Point operations are listed below, along with the Syntax used to invoke them: 

a&dF 
subp 
??dF 

. 
dzv F 

a+Y 
a:-Y 
z*Y 
ZlY 
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negF 
absF 
signF 
exponentp 
fractionp 
scaleF 
s?.hccF 
p=dF 

+‘F 
truncp 

roundp 
intpartF 

eqF 
ne(lF 
ISS F 

hF 

@F 

geqF 

-X 
ABS(x) 
SIGNUM(x) 
EXPON(x) 
FRACTION (x) 
SCALE(x, n) 
NEAREST(x, 1.0) 
NEAREST(x, -1.0) 
ULP (2) 
TRUNCTO (x, n) 
ROUNDTO (x, n) 
AINT(x) 
X - AINT(x) 
x .EQ. y or x == y 
x .NE. y or x /= y 
x .LT. y or x < y 
x .LE. y or x <= y 
x .GT. y or x > y 
x .GE. y or x >= y 

where x and y are reals of the Same KIND, and n is of type INTEGER. 

NOTES 

1 The Fortran function SIGN( 1 ,x) is different from sig?%F because it returns 1 instead of 0 for 
X = 0. 

2 The intrinsic function EXPONENT(x) differs from expone?+&P at x = 0 where it returns 0 
instead of a notification. 

3 The Fortran function SPACING difFers from ?&@F in that it does not raise a notification on 
either underflow or an input of 0. 

An implementation that wishes to conform to LIA-1 must provide the LIA-1 operations and pa- 
rameters for any additional INTEGER or REAL types provided. 

Type conversions in Fortran arc either explicit through conversion functions, or implicit through 
expressions or assignment Statements. For explicit conversions, an optional kind argument indicates 
the KIND of the destination. Conversions to a REAL type are required by LIA-1 to use round to 
nearest. The programmer may select the rounding of the REAL to INTEGER conversion by using one 
of the explicit conversion functions invoked with the following Syntax: 

cvtI+F REAL(x, kind), DBLE(x) (round to nearest) 

cvtF’+F REAL(x, kind), DBLE(x) (round to nearest) 

cvtF+I INT (x, kind) 
NINT (x, kind) 
CEILING(x) 
FLOOR(x) 

(round toward Zero) 
(round to nearest) 
(round toward plus infinity) 
(round toward minus infinity) 

cvtI’+I INT(x, kind) 

An implementation that wishes to conform to LIA-1 must provide recording of indicators as one 
method of notification. (See 6.1.2.) The data type Ind is identified with the data type INTEGER. 
The values representing individual indicators are distinct non-negative powers of two and tan be 
accessed by the following Syntax: 
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integer-Overflow 
floating-Overflow 
underflow 
undefined 

INT-OVERFLOW t 
FLT-OVERFLOW t 
UNDERFLOW t 
UNDEFINED t 

The empty set tan be denoted by 0. Other indicator subsets tan be named by adding together 
individual indicators. For example, the indicator subset 

{floatingoverflow, underflow, integer-Overflow} 

would be denoted by the expression 

FLT-OVERFLOW + UNDERFLOW + INT-OVERFLOW 

The indicator interrogation and manipulation operations are listed below, along with the Syntax 
used to invoke them: 

set-indicators 
clear-indicators 
test-indicators 
current-indicators 

cal1 SET-INDICATORS(i) 
cal1 CLR-INDICATORS (i) 
TEST-INDICATORS (i) 
CURR-INDICATORS() 

where i is an expression of type INTEGER representing an indicator subset. 

In addition, an implementation that wishes to conform to LIA-1 shall 
notification through termination with a message as described in 6.1.3. 

provide the alternative of 

NOTE 4 - Implernentations of Fortran 77 were not required to support names longer than six 
characters. However, they may still wish to provide the Parameters and functions of LIA-1. To 
achieve consistency, it is suggested that the names given here be used after truncating to the 
first six alphabetic characters. 

E.7 Modula-2 

The International Standard [13] defining the programming language Modula-2 is under development 
by ISO/IEC JTCl/SC22/WG13. The Standard will be based on the definition in Wirth [37]. A 
binding for LIA-1 has been included in an early draft [18]. Th ere ore f a suggested binding is not 
included here. 

E.8 Pascal and Extended Pascal 

The programming language Extended Pascal is defined in ISO/IEC 10206:1991, Information tech- 
nology - Programming languages - Extended Pascal [ll]. The programming language ISO Pascal 
is defined by ISO/IEC 7185:1990, Information technology - Programming languages - Pascal [5], 
The programming language ANSI/IEEE Pascal is defined in ANSI/IEEE 77O/X3.97-1983 [19]. 

ANSI/IEEE Pascal and ISO Pascal are so close that for the purposes of this annex they are treated 
as a Single language, “Pascal.” Where Extended Pascal differs from Pascal as regards this annex, 
the differentes are noted. 

An implementation 
language binding. 

should follow all the requirements of LIA-1 unless otherwise specified by this 
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The operations or Parameters marked “t” are not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. 

The LIA-1 data type Boolean is implemented as the Pascal data type boolean. 

Pascal and Extended Pascal have an integer data type and a real data type. 

The Parameters for the integer data type tan be accessed by the following Syntax: 

maxint 
minint 
modul o 

maxint 
minint 
modulo 

t 
t 

The Parameter bounded is always true, and need not be provided. 

The Parameters for the real data type tan be accessed by the following Syntax: 

r 

P 

emax 
emin 
denorm 
iec-559 

radix 
places 
maxexp 
minexp 
denorm 
iec559 

The derived constants for the real data type tan be accessed by the following Syntax: 

f max 
fminN 
f min 
epsil on 
rnd-error 
rndstyle 

maxreal 
minrealn 
minreal 
epsreal 
rnderror 
rndstyle 

NOTE - Extended Pascal requires the constant-identifiers maxreal, minreal, and epsreal, 
but Pascal does not. 

The allowed values of the Parameter rndstyle are from the enumerated data type 

Rndstyles = (nearest, truncate, other) ; 

The integer operations are listed below, along with the Syntax used to invoke them: 

addI 
subr 
muli 
dav l  f 

I 
dzv l  t 

1 

f remI 
remf 
modi 
modl 
negi 

X+Y 

2-Y 

x*Y 

no binding 
x div y 
no binding 
rem(2, y) 
no binding 
x mod y 
-X 

abq abs(x) 
signl 

eqr 
neqI 

signi(x) 
= x Y 

x 0 y 
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ISS I 
l QI e 

gtr1 

!FlI 

X<Y 
x <= y 

X’Y 
x >= y 

where x and y are expressions of type integer. 

The floating Point operations are listed below, along with the Syntax used to invoke them: 

addF 
subp 
m?dF 

. 
dzv F 

negF 
absF 
signF 
exponentp 
fractionp 
scaleF 
s?.hccF 
?‘f-edF 

UlpF 
truncF 

roundp 
intpartF 
fractpartp 
eqF 
neqF 
ISS F 

kjF 

@“F 

!?eqF 

x+Y 
X-Y 
Ec*Y 
XlY 
-X 
abs(x) 
signf(x) 
expon(x) 
fraction(x) 
scale(x, n) 
succf(x) 
predf(x) 

ulpW 
truncto(x, n) 
roundto(x, n) 
intpart (x) 
f ractpart (x) 
x=y 
x 0 y 
X<Y 
x <= y 
X’Y 
x >= y 

where x and y are expressions of type real and n is of type integer. 

Pascal and Extended Pascal provide explicit type conversion functions from the real type to the 
integer type. The programmer tan select between round toward zero and round to nearest. 

CvtF+I trunc(x) 
round(x) 

(round toward Zero) 
(round to nearest) 

The conversion from integer type to real type is done implicitly with assignment and should 
round to nearest. 

cvtI--+F X .- .- n (round to nearest) 

The error cases in LIA-1 which require a notification are either formal error cases in Pascal and 
Extended Pascal, or else violate the requirement for arithmetic to approximate the true mathe- 
matical operations. An implementation of Pascal and Extended Pascal that wishes to conform to 
LIA-1 must detect errors and provide recording of indicators as one method of notification. (See 
6.1.2.) The data type Ind is identified with the data type Indicators: 

Indicator = (integeroverflow, realoverflow, underflow, undefined); 

Indicators = set of indicator; 
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The indicator interrogation and manipulation operations are listed below, along with the Syntax 
used to invoke them: 

set-indicators 
clear-indicators 
test-indicators 
current-indicators 

setindicators(i) 
clearindicators(i) 
testindicators(i) 
currentindicators 

where i is an expression of type indicators representing an indicator subset. 

In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 

E.9 PL/1 

The programming language General Purpose PL/1 is defined by ISO/IEC 6522:1992, Information 
technology - Programming languages - PL/I general purpose subset [4]. 

An implementation should follow all the requirements of LIA-1 unless otherwise specified by this 
language binding. 

The operations or Parameters marked (‘t” are not part of the language and must be provided by 
an implementation that wishes to conform to LIA-1. For each of the marked items a suggested 
identifier is provided. 

The LIA-1 data type Boolean is implemented in the PL/1 data type BIT( 1) (1 = true and 0 = 
false). 

An implementation of PL/1 provides at least one integer data type, and at least one floating Point 
data type. The attribute FIXED(n, 0) selects a signed integer type with at least n (decimal or 
binary) digits of storage. The attribute FLOAT(k) selects a floating Point type with at least k 
(decimal or binary) digits of precision. 

The Parameters for an integer data type tan be accessed by the following Syntax: 

maxint 
minint 
bounded 

maxint (x) 
minint (x) 
bounded(x) 

where x is an expression of the appropriate integer type. 

The Parameter modulo is always false, and need not be provided. 

The Parameters for a floating Point data type tan be accessed by the following Syntax: 

r 

P 

emax 
em-in 
denorm 
iec-559 

radix(x) 
places(x) 
maxexp (x) 
minexp (x) 
denorm(x) 
iec-559(x) 

where x is an expression of the appropriate floating Point type. 

The derived constants for a floating Point type tan be accessed by the following Syntax: 
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f max 
fminN 
f min 
epsilon 
rnd-error 
rnd-style 

maxval (x) 
minval (x) 
trueminval (x) 
epsilon(x) 
rnderror (x) 
rndstyle(x) 

where x is an expression of the appropriate floating Point type. 

The allowed values of the Parameter RNDSTYLE are of type BINARY FIXED (2,0) and tan be accessed 
by the following Syntax: 

nearest 
truncate 
other 

NEAREST t 
TRUNCATE t 
OTHER t 

The integer operations are listed below, along with the Syntax used to invoke them: 

addI 
subI 
muli 
dzv l  f 

I 
dav l  t 

I 

f remI 
remi 
modi 
mody 
negr 
abq 
sigq 

w 

z+Y 
a:-Y 
x*Y 
no binding 
ZlY 

mod(x, y) 

rede, y> 
modh, y) 
no binding 
-X 
abs(x) 
sign(x) 
x=y 
x 1= y 

ISS I 
klr 

0-I 

F?I 

a<Y 
x<=y or xi>y 
Z’Y 
x>=y or XT<y 

where x and y are expressions of the Same FIXED type. 

The floating Point operations are listed below, along with the Syntax used to invoke them. 

addF 
subF 
mulF 
divF 
negF 
absF 
=gnF 
exponentp 

fractionF 
scaleF 
SUCCF 
PredF 

Ub’F 

z+Y 
Z-Y 
2*Y 
XiY 
- x 
abs(x) 
sign(x) 
exponent (x) 
fraction(x) 
scale(x, n) 
succ(x) 
prdd 
ulp(z) 
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truncF 
roundp 
intpartp 
fractpartp 
e!?F 
neqF 
ISS F 

kF 

@F 

geqF 

truncto(x, n) 
round(x, n) 
trunc(x) 
X - trunc(x) 
X == Y 
x -= y 

X<Y 
x<=y or x-r>y 
X’Y 
x>=y or xi<y 

where x and y are expressions of the same FLOAT type, and n is an integer. 

Type conversions in PL/1 are either explicit through conversion functions, or implicit through 
assignment Statements. The explicit conversion Operation to a target type FIXED(n, 0) is invoked 
with the following Syntax: 

~@P--+I 1 cvtF+I FIXED(x, n, 0) 

The explicit conversion Operation to a target type FLOAT(k) is invoked with the following Syntax: 

FLOAT(x, k) 

An implementati 
to floating Point 

.on that wishes to conform to LIA-1 must use round to nearest for the conversions 
types. 

The notification method required by PL/1 is through alteration of control flow. A condition is raised 
which leads to invocation of an interrupt Operation through an ON-unit. The conditions raised by 
PL/1 include some refinements of the exceptional values returned by LIA-1. The following lists the 
PL/1 conditions along with the corresponding LIA-1 exceptional values. 

PL/I condition 
FIXEDOVERFLOW 
SIZE 
OVERFLOW 
UNDERFLOW 
ZERODIVIDE 
UNDEFINED 

LIA-1 value 
integer-Overflow 
integer-Overflow 
floating-Overflow 
underflow 
undefined 
undefined t 

An implementation that wishes to conform to LIA-1 must raise the appropriate condition whenever 
an LIA-1 exceptional value would result. The SIZE condition is raised only in the case of Overflow 
on conversion to an integer type; otherwise FIXEDOVERFLOW is raised. The condition ZERODIVIDE 
is raised in the case of division by Zero. All other cases in which the LIA-1 exceptional value 
undefined is returned shall raise the condition UNDEFINED. An implementation that wishes to 
conform to LIA-1 must provide a default ON-unit which terminates the program with a message, if 
no ON-unit for the condition has been supplied by the programmer. 

In addition, an implementation that wishes to conform to LIA-1 shall provide the alternative of 
notification through termination with a message as described in 6.1.3. 
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Annex F 
(informative) 

Example of a conformity Statement 

This annex presents an example of a conformity Statement for a hypothetical implementation of 
Fortran. The underlying hardware is assumed to provide 32-bit two’s complement integers, and 
32- and 64-bit floating Point numbers. The hardware floating Point conforms to the IEEE 754 
Standard. 

This example concentrates on conformity with LIA-1. Details concerning conformity to IEEE 754, 
while important, have been omitted. The Sample conformity Statement follows. 

This implementation of Fortran conforms to the following Standards: 

ISO/IEC 1539:1991, Information technology - Programming languages - FORTRAN 

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic 
(also IEC 559:1989, Binary jloating-Point arithmetic for microprocessor Systems) 

ISO/IEC 10967-1:1994, Language independent arithmetic - Part: 1 Integer and floating 
Point arithmetic (LIA-1) 

It also conforms to the suggested Fortran binding Standard in clause E.6 of LIA-1. 

Only implementation dependent information is directly provided here. The information in the 
suggested language binding Standard for Fortran (see clause E.6 of LIA-1) is provided by reference. 
Together, these two items satisfy the LIA-1 documentation requirement. 

F.l Types 

There is one integer type, called INTEGER. There are two floating Point types, called REAL and 
DOUBLEPRECISION. 

F.2 Integer Parameters 

The following table gives the Parameters for INTEGER, the names of the generic functions with 
which they tan be accessed at run-time, and their values. 

where x is an expression of type INTEGER. 
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F.3 Floating Point Parameters 

The following table gives the Parameters for REAL and DOUBLE PRECISION, 
functions with which they tan be accessed at run-time, and their values. 

Parameters for Floating Point 
function REAL DOUBLE Parameter 

r RADIX(x) 
DIGITS(x) 

MAXEXPONENT(x) 
MINEXPONENT(x) 

DENORM(x) 
IEC-559(x) 

2 
24 

128 

2 
53 

1024 
-1021 

true 
true 

P 

emax 
eman 

denorm 
iec-559 

- 125 
true 
true 

where x is an expression of the appropriate floating Point type. 
. P The third table gives the derived constants, the names of the generic runctions with which they 

tan be accessed at run-time, and the (approximate) values for REAL and DOUBLE PRECISION. The 
functions return exact values for the derived constants. 

the names of the generic 

constant 

f max 
function 
HUGE(x) 

fminN TINY(x) 

fm in TINIEST(x) 
epsilon EPSILON(x) 

rnd-error RND-ERROR(x) 
rnd-style RND-STYLE(x) 

Derived constants 

3.402823466 e+38 
1.175494351 e-38 
1.401298464 e-45 

REAL 

1.192092896 e-O7 
05 . 

‘nearest) 

DOUBLE 
1.7976931349 e+308 
2.2250738585 e-308 
4.9406564584 e-324 
2.2204460493 e-O16 

05 . 
jnearest’ 

where x 1s an expression of the appropriate floating Point type. 

F.4 Definitions 

The approximate addition function is defined to be true addition: 

add>(q y) = x + y 

The rounding function rndp is one of the four rounding functions implied by IEEE 754-1985 (clause 
4) only two of which conform to LIA-1. In this implementation of Fortran, the programmer selects 
among the rounding functions by using a Compiler directive, a comment line of the form 

! LIA$ directive 

The relevant directives (and the rounding functions they select) are 

!LIA$ SELECT ROUND TO NEAREST 
!LIA$ SELECT ROUND TO ZERO 

(default) 

!LIA$ SELECT ROUND TO PLUS INFINITY (does not conform to LIA-1) 
!LIA$ SELECT ROUND TO MINUS INFINITY (does not conform to LIA-1) 
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These Compiler directives affect all floating Point operations that occur (textually) between the 
directive itself and the end of the smallest enclosing block or scoping unit, unless superseded by a 
subsequent d .irective. 

The above directives select the rounding function for both REAL and DOUBLE PRECISION. In the 
absence of an applicable directive, the default is round to nearest. The round to nearest style 
rounds halfway cases such that the last bit of the fraction is 0. 

The result function resultir is defined to use the selected rounding function rn&. The choice 
between rndp(z) and underflow for the denormalized range is made in accordance with clause 7.4 
of IEEE 754-1985. In IEEE terms, this implementation chooses to detect tininess after rounding, 
and loss of accuracy as an inexact result. 

F.5 Expressions 

Expressions that contain more than one LIA-1 arithmetic Operation or that contain operands of 
mixed precisions or types are evaluated strictly according to the rules of Fortran (see clause 7.1.7 
of the Fortran Standard). 

All computed numeric results are of type INTEGER, REAL, or DOUBLE PRECISION. There are no (‘ex- 
tended precision” intermediate results, or hidden higher precision types. No automatic conversions 
to higher precision (e.g., REAL to DOUBLE PRECISION) are made unless required by the Fortran 
Standard. 

F.6 Notification 

Notifications are raised under all circumstances specified by LIA-1. The programmer selects the 
method of notification by using a Compiler directive. The relevant directives are: 

!LIA$ NOTIFICATION=RECORDING 
!LIA$ NOTIFICATION=TERMINATE 

(default) 

If an exception occurs when termination is the notification method, execution of the program will 
be stopped and a full termination message written on the Standard error output. 

If an exception occurs when recording of indicators is the selected method of notification, the value 
specified by IEEE 754 is used as the value of the Operation and execution continues. If any indicator 
remains set when execution of the program 
be written on the Standard error output. 

is complete, an abbreviated termination message will 

A full termination message provides the following information: 

a) name of the exceptional value (integer-Overflow, floatingoverflow, underflow, or un- 
defined), 

b) kind of Operation whose execution caused the notification, 

c) values of the arguments to that Operation, and 

d) Point in the program where the failing Operation was invoked (i.e. the name of the Source file 
and the line number within the Source file). 

An abbreviated termination message only gives the names of the indicators that remain set. 
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Annex G 
(informative) 

Example programs 

This annex presents a few examples of how various LIA-1 features might be used. The program 
fragments given here are all written in Fortran, C, or Ada, and assume the bindings suggested in 
clauses E.6, E.4, and E.2, respectively. 

G.l Verifying platform acceptability 

A numeric program may not be able to function if the floating Point type available has insufficient 
accuracy or range. Other programs may have other constraints. 

Whenever the characteristics of the arithmetic are crucial to a program, that program should check 
those characteristics early on. 

Assume that an algorithm needs a representation precision of at least 1 part in a million. Such an 
algorithm should be protected (in Fortran) by 

if (l/EPSILON(x) < l.Oe6) then 
print 3, 'This platform has insufficient precision.' 
stop 

end if 

A range test might look like 

if ((HUGE(x) < l.Oe30) .or. (TINY(x) > l.Oe-10)) . . . 

A check for i- ulp rounding would be 

if (RND-ERRoR(x) /= 0.5) . . . 

A program that only ran on IEC 559 platforms would test 

if (.not. IEC-559(x)) . . . 

G.2 Selecting alternate Code 

Sometimes the ability to control rounding behavior is very useful. This ability is provided by IEC 
559 platforms. An example (in C) is 

if (FLT-IEC-559) { 
fesetround (FEJPWARD); 
. . . calculate using round toward plus infinity . . . 
fesetround (FEDOWNWARD); 

l  . . calculate using round toward minus infinity . . . 
fesetround (FEJvEAREsT); /* restore the default rounding */ 
..* combine the differently rounded results . . . 

1 
ehe { 

. . . perform more costly (or less accurate) calculations . . . 
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G.3 Terminating a loop 

Here’s an example of an iterative approximation algorithm. We choose to terminate the iteration 
when two successive approximations are within N ulps of one another. In Ada, this is 

Approx, PrevApprox : Float ; 
N: constant Float := 6.0; -- an arbitrary constant value 

PrevApprox : = First-Guess (input) ; 
Approx : = Next-Guess (input, PrevApprox) ; 
while abs(Approx - PrevApprox) ) N * LIAl .Unit-Last-Place(Approx) loop 

PrevApprox : = Approx; 
Approx : = Next-Guess (input, PrevApprox) ; 

end loop; 

This example ignores exceptions and the possibility of non-convergence. 

G.4 Fast versus reliable 

Consider a Problem which has two solutions. The first Solution is a fast algorithm that works most 
of the time. However, it occasionally gives incorrect answers because of internal floating Point 
Overflows. The second is completely reliable, but is known to be a lot slower. 

The following Fortran code tries the fast Solution first, and, if that fails, uses the slow but reliable 

cal1 clr-indicators (FLT-OVERFLOW) 
result = FAST-SOLUTION (input) 
if (test-indicators (FLT-OVERFLOW)) then 

result = RELIABLE-SOLUTION (input) 
end if 

Demmel and Li discuss a number of similar algorithms in [25]. 

Code that explicitly manipulates indicators may find it necessary to save and restore them as well. 
See clause G.7. 

G.5 High-precision multiply 

In general, the exact product of two pdigit numbers requires about 2p digits to represent. Various 
algorithms are designed to use such an exact product represented as the sum of two p-digit numbers. 
That is, given X and Y, we must compute U and V such that 

U+V=X*Y 

using only pdigit operations. 

Sorenson and Tang [31] present an algorithm to compute U and V. They assume that X and Y 
are of moderate size, so that no exceptions will occur. The Sorensen and Tang algorithm Starts out 
(in C) as 
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Xl = (double) (float) X ; 
x2 = x - Xl; 

Yl = (double) (float) Y; 
Y2 = Y - Yl; 

Al = Xl*Yl; 
A2 = Xl*Y2; 
A3 = X2*Yl; 
A4 = X2*Y2; 

where all values and operations are in double precision. The conversion to Single precision and back 
to double is intended to chop X and Y roughly in half. Unfortunately, this doesn’t always work 
accurately, and as a result the calculation of one or more of the As is inexact. 

Using LIA-1’s roundF Operation, we tan make all these calculations exact. This is done by replacing 
the first four lines with 

Xl = round (X, DBL_MANTDIG/2); 
x2 = x - Xl; 

Yl = round (Y, DBL_MANTDIG/2); 
Y2 = Y - Yl; 

G.6 Estimating error 

The following is a Fortran algorithm for dot product that makes an estimate of its own accuracy. 
Again, we ignore exceptions to keep the example simple. 

real A(lOO), B(lOO), dot, dotmax 
integer 1, loss 

dOt = 0.0 
dotmax = 0.0 
do 1 = 1, 100 

dot = dot + A(1) * B(1) 
dotmax = max (abs(dot), dotmax) 

end do 

loss = expon(dotmax) - expon(dot) 
if (10s~ > digits(dot)/2) then 

print 3, IHalf the precision may be lost.' 

end if 

G.7 Saving and restoring indicators 

Sometimes a section of code needs to manipulate the notification indicators without losing notifica- 
tions pertinent to the surrounding program. The following code (in C) saves and restores indicator 
settings around such a section of Code. 

#define ALLINDICATORS ("0) /* all ones */ 
unsigned int saved-flags; 

savedflags = current-indicators (); 
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clear-indicators (ALL-INDICATORS) ; 
. . . run desired Code . . . 
. . . examine indicators and take appropriate action . . . 
. . . clear any indicators that were compensated for . . . 
set-indicators (savedflags) ; /* merge-in previous state */ 

The net effect of this is that the nested code sets only those indicators that denote exceptions that 
could not be compensated for. Previously set indicators stay set. 
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Annex J 
(informative) 

Glossary 

ISO/IEC 10967~1:1994(E) 

This annex is provided as an aid to the reader who may not be familiar with the terms used in the 
other annexes. All definitions from 4.2 are repeated verbatim. 

accuracy: This term applies to floating Point only and gives a measure of the agreement between 
a computed result and the corresponding true mathematical result. 

arithmetic data type: A data type whose values are members of Z, R, or C. 

NOTE 1 - This part of ISO/IEC 10967 specifies requirements for integer and floating Point 
data types. Complex numbers are not covered here, but will be included in a subsequent 
part of ISO/IEC 10967 [15]. 

axiom: A general rule satisfied by an Operation and all values of the data type to which the 
Operation belongs. As used in the specifications of operations, axioms are requirements. 

boolean: A logical or truth value: true or false. 

complex number: Numbers which include the real numbers as a special case and are often rep- 
resented as x + iy where i = J-l. 

NOTE 2 - Complex numbers are not covered by this part of ISO/IEC 10967, but will be 
included in a subsequent part of ISO/IEC 10967 [15]. 

continuation value: A computational value used as the result of an arithmetic Operation when 
an exception occurs. Continuation values are intended to be used in subsequent arithmetic 
processing. ( Contrast with exceptional value. See 6.1.2.) 

NOTE 3 - The infinities and NaNs produced by an IEC 559 System are examples of 
continuation values. 

data type: A set of values and a set of operations that manipulate those values. 

denormalization 10s~: A larger than normal rounding error caused by the fact that denormalized 
values have less than full precision. (See 5.2.5 for a full definition.) 

denormalized: Those values of a floating Point type F that provide less than the full precision 
allowed by that type. (See FD in 5.2 for a full definition.) 

elementary function: A function such as sin. These functions are usually evaluated as a sequence 
of operations and therefore may have lower accuracy than the basic operations. 

NOTE 4 - This part of ISO/IEC 10967 does not include specifications for elementary 
functions, which will be included in a subsequent part of ISO/IEC 10967, presently under 
development. [ 141 

error: (1) The differente between a computed value and the correct value. (Used in phrases like 
“rounding error” or (Lerror bound.“) 

(2) A synonym for exception in phrases like “error message” or “error output.” Error and 
exception are not Synonyms in any other context. 
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exception: The inability of an Operation to return a suitable numeric result. This might arise 
because no such result exists mathematically, or because the mathematical result cannot be 
represented with sufficient accuracy. 

exceptional value: A non-numeric value produced by an arithmetic Operation to indicate the oc- 
currence of an exception. Exceptional values are not used in subsequent arithmetic processing. 
(See clause 5.) 

NOTES 
5 Exceptional values are used as part of the defining formalism only. With respect to this 

part of ISO/IEC 10967, they do not represent values of any of the data types described. 
There is no requirement that they be represented or stored in the computing System. 

6 Exceptional values are not to be confused with the NaNs and infinities defined in IEC 
559. Contrast this definition with that of corata’raucation velue above. 

exponent: The integer power to which the radix is raised in the representation of a floating Point 
number. See the definition of jloating Point number below. 

expo nent bias: A 
the exponent 

number added 
to an unsigned 

to the exponent of a floating Point number, usually to transform 
integer. 

floating Point: The arithmetic data type used in this part of ISO/IEC 10967 to approximate the 
real numbers R. 

floating Point number: A member of a subset of R, whose value is either zero or tan be given 
in the form 

*0.fif2...fp * re 

where the radix r is the base associated with its data type, the ‘exponent e is an integer 
between emin and emax, and fl, fi, . . . fp are radix r digits. 

fraction: The fractional part 0. fl fi... fp of a floating point number. 

gradual underflow: The use of denormalized floating Point format to decrease the Chance that 
floating Point calculations will underflow. 

helper function: A function used solely to aid in the expression of a requirement. Helper functions 
are not visible to the programmer, and are not required to be part of an implementation. 
However, some implementation defined helper functions are required to be documented. 

identity: A relation among two or more operations of the Same data type which holds for all 
values of the data type. An identity is derivable from the axioms satisfied by the operations 
involved. 

implementation (of this part of ISO/IEC 10967): The total arithmetic environment presented to 
a programmer, including hardware, language processors, exception handling facilities, sub- 
routine libraries, other Software, and all pertinent documentation. 

integer: An element of Z. 

LIA-1: A reference to this part of ISO/IEC 10967. 

mantissa: See the definition of fraction above, which is the term used in this part of ISO/IEC 
10967. 

NaN: ‘(Not a Number,” a non-numeric value used in some Systems to represent the result of a 
numeric Operation which has no result representable in the numeric data type. 
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normalized: Those values of a floating Point type F that provide the full precision allowed by 
that type. (See 8’~ in 5.2 for a full definition.) 

notification: The process by which a program (or that program’s User) is informed that an arith- 
metic exception has occurred. For example, dividing 2 by 0 results in a notification. (See 
clause 6 for details.) 

Operation: A function directly available to the User, as opposed to helper functions or theoretical 
mathematical functions. 

Overflow: Integer 
greater than 

Overflow occurs for bounded integers 
maxint or is less than minint. 

if the integer result of an Operation 

Floating Overflow occurs if the magnitude of the floating Point result of an Operation is greater 
than fmax, the maximum floating Point number in the specified data type. 

precision: The number of digits in the fraction of a floating Point nurher. (See 5.2.) 

radix: The base associated with a floating Point data type. In current practice, the radix is 2, 8, 
10 or 16. 

representable: A term used to describe a real number which is exactly equal to a floating Point 
number. 

rounding: The act of computing a representable final result for an Operation that is close to the 
exact (but unrepresentable) result for that Operation. Note that a suitable representable 
result may not exist (see 5.2.6). (S ee also A.5.2.5 for some examples.) 

rounding funct ion: Any function rnd : R -+ X (where X is a discrete subset of R) that maps 
each element of X to itself, and is monotonic non-decreasing. Formally, if x and y are in R, 

x E X + rnd(x) = x 
x < y + rnd(x) 5 rnd(y) 

Note that if u E R is between two adjacent values in X, rnd(u) selects one of those adjacent 
values. 

round to nearest: The property of a rounding function rnd that when u E R is between two 
adjacent values in X, rnd(u) selects the one nearest U. If the adjacent values are equidistant 
from U, either may be Chosen. 

round toward minus infinity: The property of a rounding function rnd that when u E R is 
between two adjacent values in X, rnd(u) selects the one less than u. 

round toward Zero: The property of a rounding function 
adjacent values in X, rnd(u) selects the one nearest 0. 

rnd that when u E R is between two 

shall: A verbal form used to indicate requirements strictly to be followed in Order 
the Standard and from which no deviation is permitted. (Quoted from [2].) 

to conform to 

should: A verbal form used to indicate that among several possibilities one is recommended as 
particularly suitable, without mentioning or excluding others; or that (in the negative form) 
a certain possibility is deprecated but not prohibited. (Quoted from [2].) 

signature (of a function or Operation): A summary of information about an Operation or function. 
A signature includes the Operation name, the minimum set of inputs to the Operation, and 
the maximum set of Outputs from the Operation (including exceptional values if any). The 
signature 
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addl : I x I + I U {integer-Overflow} 

states that the Operation named addI shall accept any pair of I values as input, and (when 
given such input) shall return either a Single I value as its output or the exceptional value 
integer-Overflow. 

A signature for an Operation or function does not forbid the Operation from accepting a wider 
range of inputs, nor does it guarantee that every value in the output range will actually be 
returned for some input. An Operation given inputs outside the stipulated input range may 
produce results outside the stipulated output range. 

significand: A term used in the IEEE Standards 754 and 854 to denote the counterpart of the 
word fraction used in this part of ISO/IEC 10967. It has the value fo.fi fi...f,-1, where 
fo # 0 for normalized numbers and fo = 0 for denormalized numbers. 

underflow: Underflow occurs if a floating Point result has a value less in magnitude than fminN, 
the minimum normalized floating Point number in the specified data type. 

unnormalized: A non-Zero floating Point value for which fl = 0 in its fraction part O.fi fz...f,. 
This part of ISO/IEC 10967 does not specify the properties of unnormalized numbers, except 
for the special case of denormalized numbers. 

ulp: The value of one “unit in the last place” of a floating Point number. This value depends on 
the exponent, the radix, and the precision used in representing the number. Thus, the ulp of 
a normalized value x, with exponent e, precision p, and radix r, is re-? 
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