S¥

Chapter 9

make: A Program for Maintaining
Programs

9.1 Introduction

It is common practice to divide larga programs into smaller, more manageable pleces. The
pleces may require quite different tremmentx some may need to be run through a macro
processor, soms may need to ba processed by a sophlsticated program generator such as
yace or lex. The outputs of these generators may then have to be complled with special
options and with certain definfions and declaratlons. The code resulting from these trans-
formations may then need to be laaded together with certain Iibrarles under the control of
tpecial options. Related maintenance activites involve running complicated test scripts and

installing validated modutes.

Unfortunately, 1t i3 vary aasy to forget which files depend on which others, which files have
been modifled recently, and the exact sequence of operations needed to make or exerclse
a new verslon of the program. After a long edillng sesslon, you may ensily loss track of
which files have been changed and which abject modules are sull valid, since 5 change to
a declaration can render absolete 8 dozen other files. Fargeuing to compile a routine that
you've changed or one that uses changed declarations result in & program that does not
work, and 2 bug that can be very hard to track down. On the other hand, recomplling

averything In sight just to be safe s very wasteful.

Bujurureyy 201

sumford m
weiiolg 7 eye g Jadeys

make Is a program that mechanizes many of the activities of program davelopment and
maintenance. 1f the information on inter-file dependencles and command sequences s

stored in a file, the simple command

£ make

ke 9-1

e
R F IR TN

N
T

Iz frequently sufficlent to update the relevant files, regardless of the number that have been
adited since the tast “make”. In most cases, the description file is easy to write and

changes Infrequently, Tt Is usually easter to typs the make command than to Issue even one
of the needed operatlans, so the typical cycle of program development operations becomes

think — edit ~ make — test . . .,

make Is most useful for mediem=~sized programming projects; it does not solve the prob-
lems of maintalalng multiple source versions or of describing huge programs. This chapter
Is a guide for users of make.

NOTE: The Domain Software Engineering Environment (DSEE) is an
optional product that provides users with an Integrated pro-
gramming environment, Some of the features ol make are
similar to those of DSEE, although DSEE provides additlonal
fenturas as well. For more information about DSEE, see Get-
ting Started with the Domain Software Engineering Environ-
ment (008788).

9.2 Basic Features

2~-3

The baslc operation of make I8 to update 3 target file by ensuring that all of the files en
which It depends exist and are current, then creating the target i It has not been modified
since its dependents were, make does a depth-first search of the graph of dependences.
The operatlon of the command depends on the abilily to lind (he date and time that a [ile
was last modified.

Ta illustrate, let us consider a simple example. A program named prog is made by compil-
Ing and ioading-thres C language liles x.¢, y.c, and z.¢ with the IS library. By convention,
the output of the C compliations are found In files named x.0, y.0, and 2.0. Assume that
the files x.c and y.x share some declarations in a file named defs, but that z.c does not.
That Is, x.c and y.c have the line

#include "defs"

“The following text describes the relationships and operalions:

prog : X.0 y.0 t.0
cec %.0 ¥.0 z.0 -18 -0 prog

%x.0 ¥y.0 @ defs

If this Information Is stored in a fite named makefile, Lhe command

$ make

make

performs the operallons neaded 1o recreste prog alter any changes hnd been made to any
of the four source files x.¢, y.C, 2.6, OF defs.

make operates by using three sources of information; a user-supplied description flle (as
ahove), filenames and “last-moditied” mes from the file system, and bullt-In nules 1o
bridge some of the gaps.

In our example, the first line says that prog depends on three .0 fiies. Once these abject
files are current, the second line describes how to loact them to create prog. The third llne
says that x.0 and y.o depend on the flle defs.

From the [le system, make discovers Lhat there are three .c files corresponding to the
needed .o files. Tt then uses bullt-in information about how to penerate an object from &
source file’ {i.e., Issue a cc command with the -¢ optlon).

If make did not have the ability 1o determine sutomaticaily what needs to be done, this
longer description flle would be necessary:

prog : X.0 ¥.0 2.0
cc X.0 ¥.0 z.0 -15 -0 prog

%,0 : ¢ defs
¢c -C X.C

y.,0 : ¥.c dofs
ot ~t ¥.0

z.0 | 2.0
ec -G Z.C

1i none of the saurce or object flies tiad changed since the last time prag was made, all of
the files would be current, and the command

3 maoke

simply announces this fact and stops. If, however, the defs file had baen edited, x.c and
y.c {but not z.c) are recompiled, and then prag is created from the new .o files. it only
the [lie y.c had changed. only it ls recompiled, but prog must sill be retoaded.

§f no target name [s given on the make command line, the flest target mentloned in the
description is created; otherwise, the specified targets are made. The command

$ make N.0

recompiles x.0 I x.c or defs had changed.

If the file exisis alter the commands are executed, lts time of last modification {5 used in
further decislons; otherwise, the current time Is used. Tt s often uselul for programs 10 n-

muake 9-3

-

M

wieeSold v 1eyel B N

\ surziBasg BUIEIUER 0} ‘
5

v en ok o

=V

-4

clude rules with mnemontc names and commands that don’t actually produce a file with
that nama. These entries can take advantage of make’s abllity to generate files and substi-
tute macros. Thus, an entry "save” might bs {ncluded 1o copy & certaln set of flles, or an
entry “cteanup” might be used to throw away unneeded Intermediate files.

You can also maintain a zera-length [ile purely to keep track of the time at which certain
iat:th:nml were performed. This technique is useful for malntaining remote archives and list-
ngs,

make has a simple macre mechanism for substituting in dependency lines and command
gtrings. Macros are defined by command arguments or description Hle lines with embedded
squal signs. A macro Is Invoked by preceding the macro name with a dollar sign: macro
names longer than one character must be enclosed In parentheses. The name of the mac-
10 I8 either the single character aker the dollar sign or a name inside parentheses, The [ol-
lowing are valid macro Invecadons:

$(CFLAGS)
32

${xy)

47z

$(2)

The last two Invocations are identical.

NOTE: To get a doliar sign, escape it with another doliar sign. The se-
quence §§ Is escaped 10 §.

Al of these macros are assigned values during inpul, as shown below. Four special macros
change values during the executlon of the command:

Y
s 5@
e §?
¢ §<

They are discussed later. The following fragment shows the use of some macros:

OBJECTS = %.0 Y.0 2.0
LIBES » 18
prog: $(0BJECTS)
ec $(OBJECTS) $(LIBES) -0 prog

make

. ,

The command

s make

loads the three object flles with the IS library. The command

s make “LIBES= -I! -I5"

ioads them with both the lex {~1t) and the standard {-18) Hbrarles, because macro defini-
uions on the command line averride definlilons in the description. (The shell requires that
you quote arguments that include embedded blanks.}

The following sections detail the form of description files and the command line, and dis-
cuss options and built-ln rutes in more detail.

9.3 Description Files and Substitutions

A description file contains three types of information:

s Macro definidons
» Dependency information
* Hxecutable commands

A comiment convention is also supplied: all characters after a pound sign (%) are jgnored,
as is the pound sign hsell. Blank lines and lines beginning with this character are totally ig-
nored. If a non-comment line is too long, it can be continued using 2 backslash. If (hie Jast
character of 2 line is a backslash, the backstash, newiine, and foliowing blanks and 1abs

are replaced by a single blank.

A macro definkion is an |dentifler followed by an equal sign (=} the ldentifier must not be
preceded by a colon or 2 tab. The name {string of felters and digits) to the left of the
equal sign (trailing blanks and tabs are stripped) Is assigned the siring of characters (ollov-
ing the equal sign {leading blanks and tabs are stripped.) The following are valid macro

definitions:

2 = XYZ
abg = ~11 -ly -18
LIRES =

The last definition assigns LIBES the null siring. A macio that s never explicitly defined
has the null string as value. Macro definitions may also appear on the make command

line.

make 9-5

|

yew g ieldenn

SuureIuEew Jo)

stelbolgd
winfosg 2 8

MR

gy

The generai form of an entry In a descripuon file Is:

targetl [rargec? . . .| :[:] [dependent] | |] [; commands] [# .. .]
[Gab) commands] [#...)

Items Inside brackets may be omiited. Targets and dependents are strings of letters, digits,
perlads, and slashes. (Shell metacharacters * and 7 are expanded when the line is evaly-
ated.} A command I3 any string of characiers not including a pound sign (except when the
pound sign Is in quotes) or newline. Commands may appear either

® Aler a semicolon on a dependency ling
® On lines beginning with a tab immediately following 8 dependency line

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or
double colon) ype,

For the more common single~colan case, a command sequence may be assoclated with at
most one of shese dependency lines. If the target Is out-of-date with any of the depand-
ents on any of the lines, and & command sequence is specified (even a null one following
8 semicalon or tab), t Is executed; ntherwise, & defaull crsation rule may be invoked.

In the double-colan case, & command sequence may be assoclated with each dependency
line; if tha target Is oul of date with any of the files on 2 particular line, the assoclated
commands are executed. A bulli-in rule may also be executed, The double-colon form Is
particularly useful In updating archive-type files,

If a target must be created, the sequence of commands Is exectted, Normally, each.com-
mand fine is printed and then passed to a separate invocation of the shell after substituting
for macros. (The printing Is suppressed in sllent mode or if the command line begins with
an @ sign}. meke normally stops if any commend signals an error by returning a non-zero
ercor code. (Errors are ignored if the ~f aption is specified on the make command line, if
the fake target name “.IGNORE" appears In the description {ile, or If the command string
in the deseription tile begins with a hyphen. Some Domain commands return meaningless
status). Because each command line is passed (o a separate invocation of the shell, care
must be taken with certain commands (e.g., cd and shell eontrol coimmands) that have
meaning only within a single shell process; the results are forgotten before the next line is
executed.

Belore issuing any command, certain macros are seu

¢ $@ Is set to the name of the lile 1o be "made”

® §7 s set 1o the string of names that were found to be younger than the target, If
the command was generated by an implicit rule (see below}

make

o §<is the name of the refated [le that caused the aclion
@ §* is the prefix shared by the current and the dependent filenames.
If a file must ba made but there are no explicit commands or relevant built-in rules, the

commands assoclated with the name *.DEFAULT” are used. If no such name exists,
make prinis a message and stops.

9.4 Using make

The make command takes four kinds of arguments: macro definitions, Rags, descripiion
filenames, and target filenames, The prototyplcal mnake command line is:

$ make { flags | [macro definitions | { targers)
The following summary of the operation of the command explains how these arguments are

interpreted.

First, all macro definltion arguments (arguments with embedded equal signs) are a‘nalyr.c:d
and the assignments are made. Command-line macras override corresponding definitions

found En the description [lles,
Mext, the flag arguments are examined. The permissible flags are as follows:

~i Tenore error codes rewurned by invoked commands. This mode is entared if the
fake target name ".JGNORE" appears In the description file.

Silent mode. Do not print command lines before executing. This mode is also en-

- tered if the fake target name “.STLENT" appears In the description file.

-r Do not use the boilt-in rules.

=N Mo execute mode. Print commands, bul do not execute them. Even lines bepin-
ning with an at-slgn (@) are printed,

-t Tauch the target files (causing them lo be up-to-date) rather than issue the usual
commands.

-q Question. The make command refurns 2 zero oF Non-zerg status code depending
on whether the target file is or is not up-to-date.

-p Print out the complete set of macro definitions and target descriptions.

~-d Debug mode. Print out detailed information on files and times examined.

-f Description filename. The nexi argument is assumed to be the name of a descrip-

\ion file. A filename of “-" denotes the standard inpui. If no —f arguments ap-
pear, the fite named makefile in the current directory Is read.

-~ make 9-7

slweiboid GuueEw 1o} i
wribord 2 eyew g Jeideyn

[LYPN Ty

NOTE: T‘ho contents of the description [iles override any built-in
ritles present.

Fma;ly. the remaining arguments are assumed ta be the names of targets 1o be made; the
ara done In lelt to right order. If there are no such arguments, the flrst name In the 'd ’
scription files that does not begln with a perdod Is “made”, -

9.4.1 Implicit Rules

make uses a table of suffixes and a set of tran
2 sformation rules to supply default depend-
ency Informatlon snd Implied commands. “The default suffix Hst is as follows: i

.0 Qbject file
¢ C source lile
.8 Efl source file
WF Ratfor source file
£ FORTRAN jource file
3 Assembler sourcé file
f:-;&} WY Yace-C source grammar
By Yace-Ratfor source grammar
ye Yacc~Efl source grammar
d Lex source grammar

;f:: :(;Illlowing dilugr?m :;:mmarizcs the default transformation paths, If there are wwo paths
necling a palr of suffixes, the longer one is used only If th k i
o 0 o desoripion. only If the Intermediate flle exists or is

N NI | 8y oy ye .d

Figure 3-1. make Dependency Tree

9-8 make

e g ey |

P

- Fewrya

9.4.2 An

™

If the file x.0 is needed and there is an x.c in the descriptlon or directory, the x.0 15
compiled. If there Is also an .1, that grammar s run through Tex before compiling the re-
sult. However, il there is no x.c but there is an x|, then make diseards the intermediate
Clanguage fite and uses the direct link shown En Flgure 9~1.

1t Is passible to change the names of some of the compilers used in the default, or the Mag
arguments with which they are fnvaked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The com~

mand

% make CCenewee

causes the newce command to be used Instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be fet to cause these come
mands 10 be Issued with optional flags. Thus,

$ make "CFLAGS=-0"

causes the optimizing C compiler to be used.

Example

deseription file used o maintain the make com-

To Hlustrate the use of make, here's the
rammar.

mand ltself. The code for make is spread over many € source files and a ynce g
The description [ile contains:

Dascription file for the make command

P w und -3 | opr -r2 # gsend to GCOS to e printaed

FILES = makefile version.c defs mein.c doname.c misc.c files.c
dosys.cgram.y lex.t gcos.c

OBJECTS = version.o main.o doname.o nmisc.o files.
LIBES= ~1§

LINT = lint -p

CFLAGS = -0

o dosys.o gram,.o

maks: $§{0BJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) ~0 manke

sizo make

3 (OBJECTS): defs
gram.o: lex.¢

cleanup:

-rm ¥.0 gram.c
—du

make -9

swieaBosg BuinRlurel Joy
ueifiold B eyew ‘g Jaideud

C{"

install;
guize make Jusr/bin/make
cp make fusr/bins/make ; rm make
print: $(FILES) # print recently changed files
pr $7.} sP
touch print
test:

make —dp | grap -v TIME >lzep
/usr/bla/make ~dp | grep -v TIME >2zap
diff lzap 2zap

rm lzap 2zap

lint : dosys.c donema.c files.c main.c misc.c version.e gram.c
S{LINT) dosys.c doname.c flles.¢ main,¢ misc.c version.c gram.c

rm gram,c

arch:
ar uv /sys/sourcess2/make.a $(FILES)

make usually prints each command before {ssuing it. Typing make with no argumenis in a
directory containing only the source and descrlptlon file outputs the following:

ce ~-c version.c

ce -¢ main.o

cc ~¢ doname,c¢

cc ~g misc.q

ce -¢ files.c

ee -¢ dosys.c

yacc gram.y

mv y.tab.c gram.c

cc -¢ gram.c

ce version.o main.o doname.o misc.o files.o dosys.o gram.o =15 ~o make

13188+3348+3044 = 19580b = 0408174h

Although none of the source files or grammars are mentioned by name In the description
file, make found them using its suffix rules and issued the needed commands. The string
of digits results from the “size make” command; the printing of the command lIne itsatf
was suppressed by an @ sign. The @ sign on the size command in the description file sup-
pressed the printing of the command, so only the sizes are written.

‘The last few entries in the description file are useful maintenance sequences. The “print”
entry prints only the files that have been changed since the last "make print” command. A
zera-length file print is maintained to keep track of the time of the printing; the $7 macro
In the command line then picks up only the names of the files changed since print was

make

touched. The printed output can be sent to a different printer or 10 a file by changing the
delinition of the P macro:

$ make print "P = opr ~s5p"

or

$ make print "P= cat »zap”

9.5 Suggestions and Warnings

The most common difficulties arise from make’s specific understanding of what constitutes
a dependency. If file x.c has a #include "defs" line, then the object file x.0 depends
on defs; the source file x.c does not. (If defs is changed, It {5 not necessary to do any-
thing 10 the file x.¢, while it is necessary to recreate x.0.)

To discover what make would do, the ~n option is very useful, The command

$ make -n

orders make to print out the commands it would issue without actually taking the time to

execute them. If a change 10 a file is absolutely certain to be benign (e.g., adding a new

definition to an Include file), the ~t (touch) option can save a lot of time, instead of Issu-
ing a large number of superfluous recompilations, make updates the modification times on
the affected file. Thus, the command

% make -ts

(“touch silently”} causes the relevant [iles to appear up-t0-date. Be careful, though, be-
cause this mode of operation subveris the intention of make and destroys all memory of

the previous relallonships.

The -d {debugging) optlon causes make to print a very detailed description of its activities,
including file times. The output is verbose, and recommended only as a last resort.

W g Jawel’m ;

swizibols Suiueiuisyy 5o
Boig B :aye

9.6 Summary of Suffixes and Rules

The make program itseff does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with anather suffix. This informadoen is stored in
an internal table that has the form of & description file. If the =r option is used, this 1able

Is not used.

make 9-11

e

9-12

The list of sufflxes is acually the dependency lst for the name “.SUFFIXES"; make looks
for a Mle with any of the sufixes on the list. If such a lile exists, and if there {5 a transfor-
matlen rule for that combination, make acts as described earlier. The transformation rule .
names are the concatenation of the 1wo suffixes.

The name of the rule to transform a .r file to a .o [ile Is thus r.o. If the rule is present
and no explicit command sequence has been given In your description flles, the command
sequonce for the rule r.0 Is used. Hf a command Is generated by using one of these suffix-
ing rules, the macro §° Is glven the value of the stem {everything but the sufifix)} of the
name of the file to be made, and the macro $< Is the name of the dependent that caused

the action.

The order of the sufflx list Is slgnificant, since it Is scanned from left to right, and the first
name that Is formed that has both a flle and a rule associated with it is used. If new names
are 1o be appended, you can just add an emtry for “.SUFFIXES" In its own description
lile; the dependents are added Lo the usual list. A “ SUFFIXES” Jine without any depend-
ents deletes the current list. (It Is nccessary to clear the current Hst if the order of names

{s to be changed.}
The [ollowlng Is an excerpt from the default rules iile:

 SUFFIXES: .0 .¢c .8 ,r .f .y .¥r .ye .1 .3
YACCeyace

YACCRuyace -1

YACCE=yaca -a

YFLAGSw

LEX=lax
LFLAGSw
CCanp

AS=as -
CFLAGS=
RCoocC

RFLAQS«
ECefiC

EFLAGS=~
FFLAGS™

N H
$(CC) 3(CFLAGS) -c ¥«

8.0 .r.0 .f.0:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c 8<

.8,01
$(AS) -0 $@ 3<

muake

¢

¥.0
S(YACC) S(YFLAGS) $<
$(CC) S(CFLAGS) -c y.teb.c
rm y.teb.o
mv y.tab.o %@

¥.c

S{YACC) ${YFLAGS) §
mv y.tab.c $@ .

9.7 Extensions to make

NOTE: The lollpwing sections describe extenslons to make that were
added afier the preceeding documentation was written.

While make is an excellent program administration taol, it had a number of limitatlons that
hindered its use lor large-scale software development:

s Handling of libraries was tedious.

¢ Handling of the Source Code Control System (SCCS) filename lormat was difficult
or impossible,

¢ Environment varlables were completely Ignored.
.
o Ability to maintain {lles I a remote directory was inadequate.
The augmented version of make eliminates these problems, The additional leawres are

within the original syntactic framework of make and few, {f any, new syntactical entitied
are introduced, A nolable exception is the include file capability.

| gy

9.8 Environment Variables

Environment variables are read and added to the macro deflnitions each time make exe-
cutes, Precedence is a prime consideraton in doing this preperly. The following describes
make's interaction with the environment. A new macro, MAKEFLAGS, Is maintained by
make and defined as the coltection of all Input flag argumonts [nto a string (without minus
signs). The new macro Is exported and thus accessible to further invocations of make.
Command line flags and assignments in the mokefile update MAKEFLAGS. Thus, to de-
scribe how the environment interacts with make, consider the MAKEFLAGS macro (envi-
Fonment variable).

make 9-13

swizibosy Bunmurly o}

l wwibald e eew g seideyn

>

lex — a Lexical Analyzer Generator

lex is a program generator designed for lexical processing of character input
streams. Lex accepts & high-Ievel, problem-ariented speclfication for character
string matching, and produces a program in a general-purpose language which
recognizes regular expressions. ‘The reguiar expressions are specified by the pro-
grammer in the source specifications given 1o Lax. The 1ex written code recog-
nizes these expresslons in an input stream and partitions the input stream into
strings matching the expressions, At the boundaries between strings, program
sections provided by the programmer are executed. The Leax source flle assacl-
ates the reguiar expressions and the program fragments. As each expression
appears in the input to the program written by lex, the comesponding fragment
Is executed,

The programmer supplies the additional code beyond expression matching
needed Lo complete his tasks, possibly Including code wrilten by other genera-
tors. The program that recognizes the expressions Is generated in the general-
purpose programming languzge employed for the programmer's program frag-
ments. ‘Thus, a high-level expression language is provided to write the stiing
expressions 1o be matched while the programmer’s freedom to write actions Is
unimpaired. This avoids forcing the programmer who wish@s Lo use a string
manipulation language for input analysis to write pmceessing programs inthe
same and often inappropriate string handling language.

Lex source is a table of regular expressions and corresponding program frag-
ments. ‘The table Is translated to a program which reads an input stream, copying
it 10 an output stream and pertitioning the Input into strings which match the
given expressions. As each such string is recognized the comesponding program
fragment is executed. The recognition of the expressions Is performed by a

" deterministic finite zutomaton generated by lex, The program fragments writ-

ten by the programmter are exccuted in e order in which the comesponding reg-
ular expressions oceur in the input stream.

The lexical analysis programs written with leac accept ambiguous spectfications
and choose the longest match possible at ench input point. If necessary, substan-
tial lookahead ts performed on the inpat, but the input stream is then backed up
1o the end of the carrent partition, so that the programmer has gencral freedom 0

manipulate it.
lex is designed to simptify interfacing with yace, whichis described in the
next chapter.

SUn 203 Revision A of 27 Mesc) 1990
ity am

204

Programming Utllities snd Librasies

Figuee 9-1

4ysun

1ex Is not a complete language, but tather a generator representing a new
language feature which can be added to different programming languages, called
*host languages.” Just as general-purpose languages can produce code to run on
different computer hardware, lex can write code in different host languages.
The host language is used for the output code generated by Lex and also for the
program fragments added by the programmer. Compatible run-time libraries for
the different host languages are also provided. This makes Lex adaptable to dif-
ferent environments and different programmer. Each apptication may be directed
10 the combination of hardware and host language appropriate 1o the task, the
programmer's background, and the propenties of Tocal implementations,

lex tums the programmer’s expressions and actions {called source in this
document) into the host generat-purpose language; the generated program is
named yylex. The yylex program recognlzes expressions in a stream (called
input in this document) and performs the specified actions for each expression:
as it is detected — see Figure 9-1 below.

An overview of lex

lex
Sonrce yylex
Input Cuiput
Source

For a tvial example, constder a prograrm to delete from the inpul all blanks or
abs at the ends of lines{ Jelfow el By st iq@ iy,

5%
[\tI+$ ¢

i5 all that is required. The program contains a %% delimiter to mark the begin-
ning of the rules, and one rule. This rule contains a regular expression which
matches one or more instances of the characters blank or tab (written \t for visi-
bility, in accordance with the C convention) just prior to the end of aline. The
brackets indicate the character class made of blank and tab; the + indicates ‘one
ormore ... ; and the § indicates +end-of-line"No action is specified, so the pro-
gram generated by lex (yylex) ignores these characters. Everything else is

f N g I
aw Bllow 4 .
HeW]

Revision A of 27 March 1998

risroayiems

Chepter § — 1ex — a Loxical Anatyzer Qeneraior 205

1ex can also be used with a parser
genarator to perform the Texlcal
analysls phase,

Figure 9-2

4psun

copied to the cuipul stream. To change any rematning string of blanks ot tabs 10
a single blank, add another rule:

%%
[\L3+$
[\g]l+ pxintf(" u};

‘The finite automaton generated for this source scans for both rules at once,
observing at the termination of the string of blanks or tabs whether or 70t there is
a newline character, and execuling the desired rule action, The first rule matches
all strings of blanks or tabs at the ends of lines, and the second rule all remaining
strings of blanks or tabs.

1lex can be used alone for simple (ransformattons, or for analysis and statlstlcs
gathering on a lexical levet, lex can also be used with a parser gencrator to per-
form the lexical analysis phase; it i particularly easy to interfnce lex and yace
lex programs recognize only regular expressions; yace writes parsers that
gccept alarge class of context-free grammars, but require a lower-level analyzer
to recopnize Input tokens. Thus, 2 combination of Lex and yacc is ofien
appropriate. When used a8 2 preprocessor for a later parser generator, lexis
used to partition the nput stream, and the parser gencrator assigns structure to
the resulting pieces. The flow of control In such a case {which might be the first
falf of a complle, for example) is shown in Figure 9-2. Additional programs,
written by other generators o by hand, can be added easily to programs wrilten

by Lex.

lex with yace

texical granmar
rules rules

Input . @

yacc progrimmers will realize that the name yyles is what yacc expaets its
lexical analyzer to be named, 50 that the use of this nazme by lex simplifies

interfacing.

Revision A of 27 March 1980

206 Programeming Usilities and Libraries

9,1. lex Source

)
Fan

lex generates a deterministic finlte automaton from the regular expressions in
the source. The automaton Is interpreted, rather than compiled, in order to save
space, The result is still a fast analyzer. In particular, the time taken by a lex
program 1o recognize and partitlon an input stream is proportional to the length
of the input. The number of 1ex rules or the complexity of the rules is not
important in determining speed, uniless rules which include forward context
requirc a significant amount of rescanning. What doas increage with the number
and complexity of rules is the size of the finlte automaton, and therefore the size
of the program generated by Lex.

In the program written by lex, the programmer's fragments {representing the
actions to be performed as each regular expression Is found) are gathered as cases
of 2 switch. ‘The automaton interpreter directs the control flow. Opportunity fs
provided for the programmer to insest elther declarations or additional statements
in the routine contalning the actions, or to add subroutines outslde this action

routine,
1ex is not limited to source which can be interpreted on the basls of one charag-
ter lookahead. Forexample, If there are two rules, onc Iooking for ab and

another for abcde£g, and the Input steam is abedefh, Lex recognizes ab
and leave the Input pointer just before "ed..." Such backup 15 more costly than

processing stmpler fanguages.

The general format of Lex source is:

{definitions }

A%

{rules}

5%

{programmer subroutines)

where the definitions and the programmer subroutines are often omitted. The
second %% is optional, but the first is required to mark the beginning of the rules,
The absolute minimum lex program is thus

[)

(no definitions, no rules) which translates into a program which coples the input

_lo the output unchanged.

In the outline of Lex programs shown above, the rules represent the
programmier’s control decitions; they aie a table, in which the left column con-
tans regular expressions (see section 9.2) and the right column contalns actions,
program fragments to be executed when the expressions

integar printf (®found kayword INT");

to ook for the string {nteger in the Input stream and print the message 'found

keyword INT" whenever it appears. In this example the host procedurat language
is C and the C library function print£ () isused lo print the string. The end of
the expresslon is indicated by the first blank or tab character. If the action is

Sun Revition A of 27 March 1950

erderoayatons.
b
é £ 00

Chepter 9 «— 1ax — n Lexienl Analyzer Goneratar 207

9.2, lex Regular
Expressions

Operators

metely a single C expression, it can just be given on the right side of the line; ifit
Is compound, or takes more than & line, it should be enclosed in braces. Asa
slightly more useful example, suppose it is desired to change a number of words
from British to Amercan spelling, Lex rules such as

colour printf{“color");
machanise printf {"mechanlze");
patrol printf{’gaa®);

would be a start. These rules are not guite enough, since the word pet.roleum
would become gaseum; a way of dealing with this is described later.

Tiwe definitions of regular expresslons are very similar to thase In the editors
ax(1) and vi(1). A regular expression specifies a set of strings to be matched. It
contuins text characters (which match the corresponding characters irt the strings
being compared) and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text charac-
ters; thus the regular expression

integer
matches the siring integer wherever it appears and the ¢xpression

as7D

looks for the string a57D.

The operator characters are
A 35 IR SR R I - I A B B

and if they are 10 be used as text characters, an escape must be used. 'The quota-
tion mark operator (") indicates that whatever is contained between a pairof
quoles is to be taken as text charactess. Thus

xyZ -t

matches the string sy z++ when it appears. Note that 2 part of a siing may be
quoted. It is harmless but unnecessary 1o quole an ordinary text character; the
expression

Tayzt”
5 the same as the one ebove. Thus by quoting every non-alphanumeric chatacter

being used &s a lext character, the programmer ¢an avold remembering the list
above of current operator characters, and is safe should further extensions fo lex

lengthen the Hst.
An operator character may also be tumed into a text character by preceding it
with\ as in

ryz v+

which is another, less readable, equivalent of the above expressions. Another use
of the quoting mecharism is to get a blank into an expression; normally, as

S Revislon A of 27 March 1990
CIOAYS IS

208 Programuming Utikities and Libraries

Chaprer 9 — Lex — e Lexicol Analyzer Generatar 200

Character Classes

Arbitrary Character

@
#A

i
:

explained above, blanks or tabs end & rule. Any blank character not contained
within [] {see below) must be quoted, Several nommal C escapes with \are
recognized: \n is newline, \t is tab, and b Is backspace. To enter\itself, use™
Since newline is Hlegal in an expression, \n must be used: it Is not required to
cscape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

Classes of characters can be specified using the operator pair {]. The construc-
tion [abec) matches a single character, which may be a, b, or ¢. Within square
Drackets, most eperator meanings are ignored. Only three chamacters are special:
\,— and . The - character indicates ranges. For example,

fa—z0~9<>_]
indicates the character class contalning all the lower case letters, the digits, the
nngle brackets, and underline. Ranges may be given in either order. Using —
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation-dependent and generates a warning
message. Forexample, [0—2] in ASCI is many more characters than it is in
EBCDIC. Ifit is desired to Include the character — in a cheracter class, it should
be first or last, thus:

[—+0-9]
matches all the digits and the two signs.

In charzcter classes, the ™ operator must appear as the first character after the left
bracket: it indicates that the resulting string is 1o be complemented with respect
to the system's character set. Thus

[abe]

matches all characters except a, b, or ¢, including all special or control charac-
ters; and

{"a~zA-2]

is any character which is not a letter. The\ character provides the usual escapes
within character class brackets,

To match almost any character, the operator charagter

(period) is the ctass of all characters cxcept newline. Escaping into octal is possi-
ble although non-portable:

[V40-\1T76}

matches all printable characters in the ASCII character set, from octat 40 {blank)
to octal 176 (lilde).

Revision A of 27 March 1990

Optional Expressions

Repeated Expressions

Altemation and Grouping

Context Sensttivity

The operator ? indicates an optional element of an expression. Thus
ab?c

matches either ac or abe.

Repetitions of classes are indicated by the operators * and +.
ae
is any number of consecutive a chardclers, including zero; while
a+
is one or more instances of a, For example,
{a-z]+
{5 all strings of lower case letters. And
[A-Za-z] [A—Za—z0-9]%
indicates all alphanumeric strings with a leading alphabetic character. Thisisa
typical expression for recognizing identifiers in computer Janguages.
The operator | indicates attemation:
{ab | cd)
matches elther ab or cd . Note that parenthieses are used for grouping, although
they arc not necessary on the outside level;
ab|cd
would have sufficed. Parentheses can be used for more complex expressions:

{ab | cd+} ? (ef)*

matches such strings as abefef, efefef, cdef, or cddd; but ot abe,
abcd, or abedef.

lex recognizes a small amount of surrounding context. The two simplest opera-
tors for this are ~ and §. If the first character of an expression is ~, the expres-
ston is only be matched at the beginning of a line This can never conflict with the
ather meaning of ~, complementation of character classes, since that only
applies within the [) operators, If the very last character is $. the expression i8
anly be matched at the end of a line (when immediately followed by newline).

SUn Rovisicn A of 27 March 1990

210 Programming Utilities and Libraries

Repetitions and Definitions

>
"a

9.3, lex Actions

The latter operator is a special case of the / operator character, which indicates
trailing context, The expression

abh/cd

matches the string ab, but only if it is followed by cd. Thus
abs

is the same as
ab/\n.

Left context Is handled in Lex by start conditions as explained in section 9.9 —
Left Context-Sensitivity, If a rule is only to be executed when the lex automa-
ton interpreter is in start conditlon ;, the rule should be prefixed by

<>

using the angle bracket operator characters. If we considered ‘being at the begin-
ning of aline’ to be start condition ONE, then the ™ operator would be equivalent
to

<GNE> .

Start conditions are explained more fully below.

The operators { } specify either repetitions (if they enclose numbers} or
definition expansion (if they enclose 2 name). Forexample

{digit)

looks for 2 predefined string named digit and insents it at that point in the
expression, The definitions are given in the first part of the Lex input, before the
rules, [n contrast,

ali, 3}
looks for 1 to 5 occurrences of a.
Finally, initial % it special, belng the separator for Las source segments.

When an expression writien as above 1s matched, Lex executes the comrespond-
ing action. This section describes some features of Lex which ald in writing
actions. Note that there is & default actlon, which consists of copying the inpul to
the output. This is performed on all strings not otherwise maiched, Thus the
lex programmer who wishes to absorb the entire input, without preducing any
output, must provide rules to maich everything. When Lex is being used with
yace, this is the nomal situation. One may consider that actions are what is
done instead of copying the input ta the output; thus, in general, a Fle which
merely coples can be omitted. Also, a character combination which is omitted
from the rules and which appears as input Is likely to be printed on the output,
thus calling attention to the gap in the rules.

SUn Revision A of 27 March 1990

—at

Chaplet 9 — Lax =~ i Lexical Anslyzer Generator 21t

Actual Text that Marched

Length of Matched Text

One of the simplest things that can be done is to ignore the Input. Specifying 4
C null statemnent, ; a3 an action does this. A frequent rule is

[\t\n}
which ignores the three spacing characters (biank, tab, and newline).

Another easy way to avoid writing actions is the action character |, which indl-
cates that the action 1o be used for this rule is the action given for the next nide.
The previous example could also have been written

woar i

Il\tll I
LAY :

with the same result, The quotes around \n and M are not required.

In more complex actions, the programmer often wanis to know the actual fext
that matched some expression like {a—z)+. lex leaves this text in an external
chatacter arvay named yytext.

Thus, to print the name found, rule like

la~z]+ printf{"$a", yytext);

prints the string in yytext. “The C function print$ accepts a format atgument
and data to be printed; in this case, the format is *print string’ (% indicating data
conversion, and s Indteating string type), and the data are the characters in
yytext. So this just places the matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ BCHO;

is the same as the above. Since the default action is just to print the characters
found, one might ask why give a rule, like this one, which mierely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not destred. For example, if there is a rule which matches read {) It
normally matches the instances of read contalned in bread or xead just; 10
avoid this, a nile of the form {a-~-z]+is needed. ‘This is explained further
below.

Spmetimes it i3 more convenient to know the end of what has been found; hence
lex also provides a count yyleng of the number of characters matched. 'To
count both the number of words and the number of chasacters in words in the
input, the programmer might write

[a~zh=Z]+ {words++; chars += yyleng;!}
which secumulates in chazrs the number of characters in the words recognized.
The Iast character in the string matched can be accessed by

yytext[yyl&nq—l].'

u n Rovision A of 27 March 1990

HCroaysl e

212 Programming Unilisics and Libwaries

Chiaptsr © — 1ox ~-a Lesloat Analyzer Gerernior 213

yymore and yyless

L

Occasionally, a Lex action may decide that a rule has not recognized the correct
span of charncters, Two routines are provided to ald with this situation. First,
yymorae () can be calted to indicate that the next input expression recognized Is
16 be tacked o (o the end of this input. Normatly, the next input string would
overwrite the current entry In yytext. Sccond, yyless {n) may be called to
indicate that not all the characters matched by the currently successful expression
are wanted right now, The argument n indicates the number of characters to be
retainied in yytext. Further characters previously matched are retumed to the
input, This provides the same sort of lookahead offered by the / operator, but in
a different form.

Example: Consider a language which defines a string as a set of characters
hetween guotation (") marks, and provides that to include & " in g string it must
he preceded by a\. The regular expression which matches that s somewhat
confusing, so that it might be preferable 1o write:

AN s LA
1f (yvtextlyyleng-1} == "\
yymore (}
alae
.. normal programmer processing
)

which, when faced with a sting such as “abc\"def " first matches the five
characters "abgc\ ; then the call to yymore () tacks the next part of the strng,

ndef , onto the end. Note that the finat quote terminating the string should be
picked up in the code labeled ‘normal processing’.

The funiction yyless (} might be used to reprocess text in various cir-
cumstances. Consider the problem of resolving (in old-style C) the ambiguity of
‘=—a'. Suppose it is desired to treat this a5 ‘== a' but print a message. A rule
might be

an [a—zh~0} {
printf{"Operater (=—) ambiguoualn");
yyleas (yykeng-1) ;
.. action for =— ...
]

which prints a message, retums the letter after the operator to the input stream,
and treats the operator as '=—". Allemnatively it might be desired to treat this ag
‘= —a', To do (his, just return the minus sign as well as the Ietter to the input:

n—{a—zh—2) {
printf {"Operator {=—} amblguousin");
yylessa{yyleng-2};
... actienfor= ...
H

@ S 1] n Revision A of 27 March 1980
mERyalems

performs the other interpretation. Note that the expressions for the two cases
might more easily be written:

o/ [A-Za-z]
in the first case and
=/—[A~Za-z]

in the second: no backup would be required in the rule action. It is NoL nEcessary
to recogmize the whole identifier to observe the ambiguity. The possibility of
=-3', iowever, makes

/{7 \t\n]
a still better rule.

In addition to these routines, Lex also permits access (o the I/ routines it uses.
They ate:

1. input () which retums the next input character;
2. output (¢} which writes the character ¢ on the outpul; and

3, unput (¢} pushes the characicr o back onto the Input streant 10 be read
later by input ().

By default these routines are provided as macro definitions, bui the programmer
can override them and supply private versions. These routines define the rela-
tionship between external files and internal characters, and must all be retained or
modified consistently. They may be redefined, to transmit input or output to or
from strange places, including other programs ot intemal memory; but the char-
acter set used must be conslgtent in all routines; & value of zero retumed by
input must mean end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work, lex does not look ahead
at all if it does not have 1o, but cvery rule ending in + » 2 or 5 or contuining /
implies lookahead. Lookahead is also necessary to match an expression that is 2
prefix of another expression. See section 9.10 [or a discussion of the character
setused by lex. The standard Lex library imposes a 100-character limit cn
backup.

Another Lex library toutine that the programrmer will sometimes want Lo
redefine is yywrap () which is catled whenever 1ex reaches an end-of-file. 1f
yywrap relurnsal, lex contimtes with the nprmat wrapup on end of inpul.
Sometimes, however, it is convenicnt 1o arrange for more input to arrive from i
new source. In this case, the programmer shoutd provide a yywrap which
arranges for new input and returns 0. This instructs Lex (o continue processing.
The defaull yywrap dways retums 1,

“T'his rowtine is also a convenient place to print tables, summaries, etc. at the end
of a program, Note that it {5 not possible to writz a nommat rule which recognizes
enid-of-file; the only access 1o this conditlon is through yywrap.

In fact, unless a private version of Lnput () 18 supplied a file comaining nulls
carnot be handled, since a value of O returned by 1nput is talen to be end-of-
file.

.

sun Revision A of 27 March 1990

MCROLYBAETE

214 Programming titities and Libreries

Chspiet # w 1ox — 8 Lexical Anslyzer Genevator 215

9.4, Ambiguous Source
Rules

30

lex can handle ambiguous specifications. When more than one expresston can
match the current Input, lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matchied the same number of characters, the rule given
first is preferred.

‘Fhus, suppose the rules

intager kayword action ... s
{a~z}+ identifier action ... ;

to be given in that order. Ifthe input is integers, it is taken os an identifier,
because [a—z]+ maiches 8 characters, while integex matches onty 7. If the
fuput is integex, both niles match 7 characters, and the keyword rule is
selected because it was given first, Anyihing shorier (for example, int) will not
match the expression integer, and so the identifier interpretation Is used.

The principle of preferring the longest match makes rales containing expressions
fike .+ dangerous. Forexample,

[

might seem a good way of recognizing a string in single quotes. But itis an invi-
tatfon for the program to read far ahead, looking for a distant single quote,
Presented with the input

'¢1rst’ quoted string here, ‘second’ here

the above expression matches
’#irst’ quoted string hare, "second’

whicli is probably not what was wanted. A better rule iz of the form
*("\n]+’

which, on the above input, stops after ‘£4xst’, The consequences of errors like
this are mitigated by the fuct that the . operator does not match newline, Thus
expressions like ,* stop on the cument line. Don't try to defeat this with expres-
sions like [. \n]+ or equivalents; the lex generated program will iry 1o read
the entire input file, eausing internal buffer overflows.

Note that Lex is normally partiloning the input stream, not searching for all pos-
sible matches of each expresston, ‘This means that each character is accounted
for once and only once. For example, suppose it is desired to count occurrences
of both she and he in an input text. Some Lest rules to do this might be

she at+;

he It

\n]
sun Revislon A of 27 Merch 1930
microsyaloma

‘-

whera the last two rules ignore everything besides he and she. Remember that
* 7 does not include newllne. Since she includes he, Lex will normally not.
recognize the instances of he included in she, since once it has passed a she
those characiers gre gone,

Sometimes the programmer would like to override this chotce. The action
REJECT means ‘go do the next allemative,” It executes whatever rule was
second choice after the current rule, ‘The position of the input pointer is adjusted
accordingly. Suppose the programmer reatly wants to count the included
{ustanees of he:

aha {s++; REJECT;]
he {h++; REJECT;]
\n I

. 7

these rules are one way of changing the previous example to do just that, After
counting each expression, it is refceted; whenever appropriate, the other expres-
gion Is then counted. In this example, of course, the programmer could note that
she includes he but not vice versa, and omit the REJECT action on he; in ether
cases, however, it would not be possible a priori 10 tell which input charactess
were in both classes.

Consider the two mles

albel4 | ... 5 REJECT:}
aled)+ { ... ;r REJECT;)

If the fnput is ab, only the first rle matches, and on ad only, the second matches.
The input string aech matches the first rule for four characters and then the
second rule for three characters, In contrast, the input accd agrees with the
second rule for four characters and the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partidon the
Input stream but to detect all examples of same ltems in the input, and the
instances of these items may overdap or include ench other. Suppose a digram
table of the input s desired; normaily the digrams overlap, that is the word the
is considered to contain both th and he. Assuming a two-dimensional array
named digram to be incremented, the appropriate sousce is shown below.

[13 Revigion A of 27 Marcl 1950

216 Programming Utititles and Libraries

9,5. lex Source Definitions

5%
la-z] [a~z] {digram[yytext[0]} fyytext (L]]++; REJECT;}
. H

\n H

where the REJECT is necessary to pick up a Ietter pair beginning at every char-
acter, rather than at every other character,

Remember the format of the Lex source;

{definiiions]

%%

{rules}

%%

{programmer roufines)

So far only the rules have been described. The programmer needs additional
options, though, to define variables for use in his program and for use by lex.
These can go cither in the definitions section or it the rules section,

Remember that Lex ls turning the rules into a program, Any source not inter-
cepted by Lex is copied into the generated program, There ae three classes of

sucl things.

1. Any line which Is not part of 2 1ex rule or sction which beging with a blank
or tab is copled into the lex-gencrated program, Such source input prior to
the first 9% detimiter is extermal to any function in the code; if it appears
immediately after the first %%, it appears in an appropriate place for
declarations in the function written by Lex which contains the actions. This
matertal must look like program fragments, and should precede the first 1ex

rule.

As 4 side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated program.
‘This can be used to include comments in either the 1ex source o the gen-
erated code. ‘The comments should follow the host language conventlon.

2. Anything included between lines containing only the delimiters % { and %}
is copied out as above. The detimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column 1, or
copying lines that do not ook like programs.

3. Auything after the third %% delimiter, regardless of formats, etc., is copied
out after the e output.

Definitions intended for 1ax are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define Lex substitation strings. The format of such lines is

name translation

and it associates the string given as a translation with the name. The name and

SURn Revision A of 27 March 1990

ke ysiam

Chapter 9 — 1ax =& Lexical Analyzer Genezstor 217

9.6, Using lex

tranglation must be separated by at least one blank or tab, and the name must
begin with a letter, The transiation can then be invoked by the {name) syntax in
amle. Using {D] for the digits and {E) for an cxponent field, for cxample,
might abbreviate rules to recognize numbers:

a] {0-91
B [DEde] [~} 7{D}+
%%

{b}+ printf {"integer"};
(D" " (D}*{(E}}?]
{D}e". " (D)+({E1} D !
DI+ (E] printf ("real%):

Note the first two rules for real numbers; both require a decimal point and con-
tain an optional exponent field, but the first requites at least one digit before the
decimal point and the second requires at least one digit after the decimal polnt,
To correcily handle the problem posed by a FORTRAN expression such as

15 , EQ. I, which does not contain a real number, a context-sensitive rule such as

[0-91+/"."EQ printf{"integer");
could be used In additton to the normai rute for integers.

The definitions section may also contain other commands, including the selection
of a host language, a charmacter set table, a list of start conditions, or adjustments
10 the default size of arrays within Lex itself for larger source programs. These
possibitities are discussed below under section 9.11 ~ Swnmary of Source For-
mat.

There are two steps in compiling a 1ex sonrce program. Fiist, the lesc source
must be tumed into a generaled program in the host general-purpose language.
"Fhen this program must be compiled and loaded, usually with a library of kex
subroutings. The generated program is on a file named lex . yy.c. The {0
library is defined in terms of the C standard library in section 3 of the Sun0S
Reference Manuai.

The Lex library is accessed by the loader flag -11.
So an appropriate sct of commands is:

tutorialt lex souxce

tutoriald ce lex.yy.c -11
The resulting program is placed on the usual file a . out for later execulion, To
use lex with yacc see below. Although the default lex /O routines use the C
standard library, the 1ex automata themselves do not do so; if private versions

of input, output, and unput are given, the library can be avoided. lex has
several options which are described in the lex(l) manual page.

sSU i] Revision A of 27 March 1990

218 Programming Unititios and Libraries

9.7, lex and yace

9.8. Examples

If you want to use Lex with yace, note that what Lex writes is a program
nemed yylex (), the name required by yacc forits analyzer. Normally, the
default main program in the lex library calls this routine, but if yace is loaded,
and its main program is used, yace calls yylex{}.

In this case each Lex rule should end with
return {token};
to retum the appropriate token value,

An easy way to get access 1o yacc's names for tokens is to compile the lex
output file as part of the yacc output file by placing the line

include “lex.yy.c"

in the last section of yacc input. Supposing the grammar to be named ‘gaod’
and the lexical rules to be named "beter* the command sequence cap just be:

f_Ztutéuial@“yagé:gbmi-
Ctutorialt lex Battar -
tutorial% cc ¥.tab.g -1l

‘tutokiald VS Tt R f}i

The lex and yacc programs can be generated in either order.

As a irivial problem, consider copying an input file while adding 3 to every non-
negative number divisible by 7. Here is a suitable 1ex source program

o)
%%

int k;
[¢~91+ |
k = atol{yytext};
i€ (k%7 == 0}
print€ ("%d", k+3);
else

printf {("%d", k);
}

L)
to do just that, Fhe rute (0-9]+ recognizes strings of dights; atod (} convens
the digits to binary and stores the result in k.

The operator & {remainder) is used to check whether k is divisible by 7; ifitis, it
is incremented by 3 as it Is written out. It may be objected that thls progrant will
alter such input items as 49 . 63 or X7. Furthcrmore, it increments the absolute
value of all negalive numbers divisible by 7. To avoid this, just add a few more
rules after the active one, as shown below.

@ S ll Il Revition A of 27 March 1990
oyl

‘&

e

Chepter 3 — Lax — n Loxical Analyzer Qenerator 219

@
'@

%%
int k;
=7{0-9)+(
% = atol(yytaxt};
printf ("4, k%7 == 0 ? k43 : K);
}
~1[0-9.]1+ ECHO;
[A~Za-z] [A-Za~-z0~91+ ECHO;
.
J

Numerical strings contzining a *.* or preceded by a letter arc picked up by one of
the last two rules, and not changed, The i f~else has been replaged by a €

conditlonal expression to save space; the form a?b: ¢ means ‘ifa then b else
c’.,

For an example of statistics gathering, here s a program which constructs a his-
togram of the lengths of words, where a word is defined as a string of letters,

~

int lengs(100]:
5%
{a~z]+ lengs(yylengl++;
.]
\n H
%%
1 s,
yyurap{)
{
int i;
printf{"Length No. woxds\n");
for(i=0; 1<100; 1++)
if (lenga{i) > 0)

printf{"*%5d%10d\n", L, lengs{i)) ;-
raturn{l};
}

o

\

This program sccumulates the histogram, while producing no cutput. At the end
of the inpul it prints the table, The final statement retuxn {1) ; indicates that
lex Is to perform wrapup, If yywrap retums zero (false) it implies that further
input is available and the progtam is to continue reading and processing. To pro-
vide a yywrap that never reiumns trie causes an infinite loop. .

As a larger example, here are some parts of a program written by N. L, Schryer
to convert double-precision FORTRAN to single-precision FORTRAN. Because
FORTRAN does nat distingnish upper and fower case letters, this routine begins
by defining a set of classes including both cases of each Jetter:

a [aR]

b bR}

[} [eC)

z [z2)
S ll n Revision A of 27 March 1990
i yEtoT

Chapter 8 — Lax — a Lexical Analyzer Generator 221

220 Programming Utilities and Libraries
An additional class recognizes white space:
W [\t1*
The first rule changes double precisionto real, or DOUBLE PRECI-
STOM 10 REAL,
{dl o) {ul L) {1l (W) ip}ir) ta}ictiit(alidito)in) |
printf (yytext {0]=="d"? "real™ : “REAL");
H
Care is taken throughout this program Lo preserve the case (upper ot lower) of the
original program, The conditional operator ls used to select the proper form of
the keyword. The next rule copies continuation card Indications to avoid confus-
ing them with constants:
. w1t 0] ECHO;
Inn the regular expression, the quotes surround the blanks, It s interpreted as
*peginning of line, then five blanks, then anything but blank or zero.” Note the
two different meanings of ~. There follow some rules to change doubte-
precision constants to ordinary floating constants.
gl
[0-97+{w} (d} (W} [+=]12{W}(0-02+ 1
[0-8]+ (W} "." (W] {d] (W) [+ 7 (W} {03+ 1
Lann W, n] (0=914{W) [d] (W) (4=} 7UH) [0-9]+ {
e /* convert conatants */

4
i

for {puyytexnt; *p != 0; p++)

|
£ we '’ 4y D
Lf (*p [) 9,9, Left Context-

sp=it ‘g~ 'ds e e
. P Sensitivity
}

L
After the floating point constant is recognized, it is scanned by the fox loop to
find the letier d or b. The program then adds ta’'of, which converts it to the
next lettar of the alphabet. The modifted constant, now single-precision, is writ-
ten out again, There follow a seties of names which must be respelled to remove
their injtial d. By using the array yytext (he same action suffices for all the
names (only a sample of a rather long list is given here).

[CIREIRETRLY |
{d}icl{o) (s} L
(di(stigi{sriel |
{ditalttiiatin} |

{d}{£111) (o} (a}it] printf (‘38" yyeextil)s

Revision A of 27 March 19!

Another list of names must have initlal d changed to initial a:
-
{d1{l)to) (g} t ‘
{diil) o} (g}l |
{)imj {1} (n}l 1
{diimifal {=x}1 {
yytent (0] =+ ‘&’ - ‘d;
ECHO;
}

L.

And one routine must have Initial ¢ changed to initial r:
-

{dll{m}{aliciih] fyytext [¢] =+ ‘&' - 'd;

ECHO;

}

L J

Ta avoid such names as dsinx being detected as instances of dsin, some finat
rules pick up longer words as identificrs and copy some surviving charcters:

[A-2Za—-z] [A—2a-20-8]* I
[0-8)4 |
\n 1

ECHO;

Note .lhnt this program is not complete; it does not deal with the spacing prob-
lems in FORTRAN or with the use of keywords as identifiers,

Sometimes it is desirable to have scverat sets of lexical rules to be applied at dil-
fcr.tzm times in the input. For example, a compiler preprocessor might distin-
guish preprocessor statements and analyze them differently from ordinary state-
mems‘. This requires sensiivity to prior context, and there are several ways of
handling st,ch problems, The ~ operator, for example, is a prior context opera-
tor, recognizing immediately preceding lefi context just as § recognizes immedi-
ately follewing right contexi. Adjacent left context could be extended, 10 pro-
duce a facility similar to that for adjacent right context, but it is ualikely to be as
useful, since often the relevant left context appeared some time earlier, such as at
the beginning of a line.

This section describes three means of dealing with different environments: a sim-
ple use of Mlags, when only a few nules change from one environment (o another,
the use of start conditions on mies, and the possibitity of making multiple lexicat
anatyzers all run together, In cach case, there are rules which recognize the need
to change the environment In which the following input text is analyzed, and set
some parameter to 1eflect tie change. This may be a flag explicitly tested by the
pmgramme_:r‘s action code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may bhe more convenient, however,
1o have Tex remember the Rags as initial conditions on the rules. Any rule may
be associated with a start condition. It i5 only be recognized when lex is in that
start condition. ‘The current slart condition may be changed at any time. Finafly,

%% SUI Revision A of 27 March 1990

mistosys e

Programming Utilities end Libraries

if the sets of rules for the differsnt environments are very dissimilar, clarity may
be best achieved by writing sevesal distinet lexical analyzers, and switching from
one to another as desired.

Consider the following problem: copy the input to the output, changing the word
maglc lo £1xst on every line which begins with the letter a, changing magic
1o second on every line which begins with the letier b, and changing magic to
third on every line which begins with the letter c. All other words and all
other lines are left unchanged.

These rules are so slmple that the easlest way 1o do this job 1s with a flag:

" h'
int f£lag;
%%
“a (£lag = ‘a’; ECHO;)
“b {£lag = b'; ECHO;)
~a {£lag = "¢’; ECHO;)
\n {flag = 0 ; ECHO|}
magic {
switch (flag)
{
case ‘&'t printf("firac"); break;
case ‘b’: printf("second"); break;
case ‘c’: printf("thizd"}; break;
default: ECHO; break;
t
}
\ J
should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to Lex in the definitions sectlon with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Staxt may be
gbbrovinted to s of S, The conditions may be referenced at the heed of a mle

with the <> brackets:
<pamel>aexprasaion

is & rule which is only recognized when lex is in the start condition namel. To
enter a start condilion, execute the action statement

BEGIN namel;
whicl: changes the start condition to namel. To resume the normal state,
BEGIN 0;

which resets to the initial condition of the 1ex automaton interpreter. A rule
may be active in several start conditions:

<namel, name2, nama3>
iz a legal prefix. Any rule not beginning with the < prefix operator is always
aclive,

S |1] 1 Revision A of 27 March 1990
rrictoLyalonT

Chapter 9 — Lex - Lexical Analyzer Genesator 223

9.10. Character Set

Figure 2-3

T

it
1

The same example ag before can be written:

4 ™y
$START RA BB CC
2% '
“a {ECHO; BEGIN AA;)
“b {ECHO; BEGIN BB;}
- {ECHO; BEGIN CC;}
\n {ECHO: BEGIN 0:}
<an>magle printf{vfirat?);
<BB>maglc printf ("aecond™);
<CCrmaglc printf{"thircd™);
A

\.

where the logic is exacily the same a5 in the previous method of handling the
problem, but Lex does the work rather than the programmer’s code,

“The programs generated by Lex handle character I/0 only through the rontines
input, output, andunput. Thus the chamcter representation provided in
these routines is accepted by 1ex and employed to retum values in yytext.

For internal usc a character is represented as & small Integer which, If the stan-
dard library is used, hns a value equal to the Integer value of the bit pattern
representing the character on the host computer. Nommally, the Jetter a fs
represented in the same form as the character constant ‘a’.

If this interpretation ia changed, by providing 1/O routines which transtate the
characters, Lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by two lines containing
only *%T". The table contains lines of the form

{integer} (character string]
which indicate the value associated with each character. Thus the next example

Sample character table.
-)
T
1 Aa
2 Bk
26 2z
27 \n
28 +
29 -
30 0
31 1
39 g
&7
L J

maps the lower and upper case letters together into the inlegers 1 through 26,
newline into 27, + and ~ into 28 and 29, and the digits into 30 through 39. Note
the escape for newline. If a table is supplied, every character that is to appear

Sun Revision A of 27 March 1950
mloroay 15mS

E)

224 Programming Utilities and Libearies

Chaprer @ — Lex — p Lexicat Analyzes Generator 225

9.11, Summary of Source
Format

either in the rules orin any valid input must be included in the table, No charac- 6. Changes to intemal array sizes, in the form

ter may be assigned the number 0, and no cheracter may be assigned a bigger

rumber than the size of the hardware character set.

The general form of & Lex source file is:

%x ann

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

tdefinitions)

5% .

{rules)

%

{programmer subroutines}

Table 9-1 Changlrg Interpal Array Sizes in lex

Letter Paramelfer

positions

The definitions seclion contains a combination of

1. Definitions, in the form ‘name space translation’”.
2 Included code, in the form 'space code’.

3. Tncluded code, in the form

states

tree nodes

transitions

packed character ¢lasses
output amay size

o XS O0DT

L1
code
%]

Lines in the rules section have the form "expression action’ where the action
may be continued on succeeding lines by using braces to delimit it.

Repular expressions in Lex use the following operators:

Table 9-2 Regular Expression Operators in lex

4. Start condition declaratlong, given in the form
Operator Meaning
%S namel nameZ ...
E the character "x"
5. Character set tables, in the form g an "x", even If x i an operator
\x an "x", even if x §s an operator
5T (xy] the character x or y
number space character-string {x-2] the characters X, y orz
[~x] any character but x
37 . any character but newline
% an x at the beginning of & line
<y>x an x when Lex is In start condition y i
x5 an x at the end of a line fﬂ(ﬁf:{:; # Jf}/ ST
x? an optional x
x* 0,1,2, ... Instances of x
st 1,2,3, ... Instances of x
®xly snxoray
{x) an x
x/y an x but ondy if followed by ¥
{xx} the translation of xx from the definitions section
xi{m,n} mthrough i occurrences of x
ﬁ@ sSun Revision A of 27 Mazch 195 @ sSun Revisian A of 27 Mrach 1990
& micrarysterss PRETGLY NS

226 Programming Utitiles and Librarics

0,12. Caveats and Bugs

There are pathological expressions which preduce exponential growth of the
tables when converted to deterministic automata; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previ-
ous scan, This means that if a rule with trailing context is found, and REJECT is
executed, the programmer must not have used unput to change the characiers
forthcoming from the input stream. This is the only restriction on the
programmer's ability to manipulate the not-yet-processed input.

@ Sun Revision A of 27 March 199

N

L 4

vacc — Yet Another Compiler-
Compiler

Computer program lnput generally has some structure; in fact, every computer
program that does input can be thought of as defining an "input language’ which
it accepts, An Input language may be as complex #5 & programming langeage, or
as simple as a sequence of numbers. Unfortenately, usual input facilitics are 1im-
{ted, difftcult to use, and often are lax about checking their inputs for vatidity.

yacc provides a general tool for describing the input to a computer program.
The yace programmer spectiies the structure of the input, together with code to
be Invoked as each item is recognized. yacc tums such a specification into a
subroutine that handies the Input process; frequently, kt is conventent and
appropriate to have most of the flow of control in the programsmer’s application
handled by this subroutine,

The input subroutine produced by yace calls a programmer-supplied routine to
return the next basic input ltem. Thus, the programmer can specify his input in
terms of Individual Input characters, or irterms of higher-level constructs such as
names and numbers, The programmer-supplied routine may also handle
idiomatic features such as comment and continuation conventions, which typl-
cally defy easy grammatical specification.

The class of specifications that yacc accepls is a very general one: LALR(I}
grammars with disambiguating rules.

In addition to compiters for C, FORTRAN, APL, Pascal, Ratfor, etc., yacc has
also been used for less conventional languages, including & phototypesetier
Tanguage, several desk calculator languages, a document retrleval system, and a
FORTRAN debugging system,

yacc provides a general tool for imposing structare on the input to & compiter
program. The yace programmer prepares a specification of the input process;
this ineludes rules describing the input structure, code to be invoked when these
rules are recognized, and a Iow-level routine to do the basic input. yace then
generates a function to control the Input process. This function, called a parser,
calls the programmer-supplied tow-levet input routine (the lexical analyzer) to
pick up the basic items (called tokens) from the input stream. These tokens arc
organized according to the input structure rules, called grammar rules: whenone
of these rules has been recognized, then programmer code supplied for this rule,
an action, is invoked; actions have the ability to return values and make use of
the values of other aclions.

SHD 237 Revision A of 27 Masch 1990
s yeienms

228

Programming Utllitles pnd Librarles

yacc generates l(s actions and output subroutines in C. Morcover, many of the
syntaetic conventions of yace follow C.

The heart of the yace input specification is a collection of grammar rules, Each
rule describes an aliowable structure and gives it a name. For example, one
grammar role might be:

date : moenth name day .- year 7

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma ', is enclosed In single quotes — jmplyling that the comma is 10
appear lterally in the input. The colon and semicolon merely serve as punctua-
tion in the nule, and have no significance in controlling the input. Thus, with

proper defiriitions, the input
July 4, 1776
might be matched by the above mle.

An important part of the input process is carred out by the lexical analyzer. This
routine reads the input stream, recognizing the lower-level structures, and com-
municates these tokens to the parser. For historical reasons, a stracture recog-
nized by the lexical analyzer is called a terminal symbol, while the structure
recopgnized by the parser is cailed 2 nonterminal symbol. To avoid confusion, ter-
minal symbols are refecred to as tokens.

‘There is considerable leeway in deciding whether 0 recognize struciures using
the lexical analyzer or grammar rules. For example, the fufes

.

month_pame : ‘J° ‘a’ 'n H
month_name : ‘F’ ‘e’ ‘b’ H

.

month_name : ‘D7 ‘e’ e H

might be used in the above example. The lexical analyzer would onty need to
recognize individual letiers, and month_name would be 2 nonicrminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer
would recogaize the month names, and return an indication that o month_name
was seen; in this case, month_name would be a token,

Literal characters such as *,* must also be passed through the lexical analyzer,
and are also considered tokens.

@@ SUn Revision A of 27 Mesch 1950

Chepter 10 — yace — Yet Another Compiler-Compiler 220

s

Specification files are very flexible. It is realively easy to add to the above exam-
ple the rule

date : month ‘/° day ‘/’ year H
allowing

7/ 4/ 1776
a5 a synonym for

July 4, 1776

In most eases, this new rule could be “slipped in’ to a working system with
minimal effort and little danger of disrupting existing irput.

The Input being rcad may not conform to the specifications, These input errors
are detected as early as is theoretically possible with a lefi-to-right scan; thus, not
only is the chance of reading and computing with bad input data substantlally
reduced, but the bad data can usually be quickly found. Emor handling, provided
25 part of the input specifications, permits the reentry of bad data, or the con-
tinuation of the input process after skipping over the bad data.

In some cases, yace fails to produce a parser when given a set of specifications.
For example, the specifications may be self-contradictory, or they may require &
more powerful recognition mechanism than that available to yace. The former
cases represent deslgn errors; the latter cases can often be corrected by making
the lexical analyzer more powerful, or by rewriting some of the grammar rules.
While yace cannot handle all possible specificadons, its power compares favor-
ably with simllar systems; moreover, the constructions which are difficult for
yace 1o handle are also frequently difficult for human beings to handle, Some
users have reparted that the disciptine of formulating valid yacc specifications
for their input reveated errors of conception or design eaily in the program
development.

The next several sections describe the basic process of preparing a yace
specification; Section 10.1 deseribes the preparation of grammar rules, Section
10.2 the preparation of the programmer-supplied actions agsociated with these
rules, and Section 10.3 the preparation of lexical analyzers. Section 10.4
deseribes the operation of Lhe parser. Section 10.5 discugses various reasons why
yace may be unable to produce a parser from a specification, and what 1o do
about it. Section 10.6 describes a simple mechanism for handling operator pre-
codences in arithmetic expressions, Section 10.7 discusses eqor detection and
recovery. Section 10.8 discusses the operating eavironment and special features
of the parsers yace produces. Section 10.9 gives some suggestions which
should improve the style and efficiency of the specifications. Section 10.10
discusses some advanced toples. Section 10.11 has a brief example, and sccrion
10.12 gives a summary of the yacc input syntax. Section 10,13 gives an exam-
ple using some of the more advanced features of yacc, and, finally, seetion
10.14 describes mechanisms and syntax no longer actively supported, but pro-
vided for historical continuity with older versions of yacc.

UL Revision A of 27 Murch 1990

icranyd | ars

230 Programming Utilitics and Librerles

1.1, Basic Specifications

Names refer to either tokens or nonterminal symbols, yace requires token
names to be declared as such. In additon, for reasons discussed in Section 10.3,
it is often desirable to Include the lexical analyzer as part of the specification file;
it may be useful to include other programs as well, Thus, every specification file
consists of three secifons: the declarations, (grammar) rules, and programs. The
seclions are separatzd by double percent $% marks. The percent % is generally
used in yacc specifications as an escape character.

In other words, a full specification file looks like

declarations
E 1

rules

%%
programs

The declaratlon section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omftted also; thus, the smallest legal yacc

specification is

%%
rules

Spaces (also called blanks), 1abs, and newtines are ignored except that they may
not appear in names or multi-character reserved symbols, Comments may appear
wherever a name is legal — they are enclosed in /¢ . . . #/,asin C and

PLA.
The rules sectlon is made up of one or more grammar rules. A prammar rule has
the form:

(A:BODY.’ J

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. ‘The colon and the semicolon are yace punctuation,

Mames may be of arbitrary length, and may be made up of leters, dot *.*, under-
score '_*, and non-inltial digits. Upper and lower case letters are distingt. The -

names used in the body of & grammar rule may represent tokens or nonterminal
symbols.

@ S ll n Revision A of 27 March 19%

FRCIOF I

W,
0\

-

Cluapter 10— yaca — Yet Another Campiler-Complicr 231

A literal consists of a character enclosed in single quotes ', Asin C, the
backslash *\' is an escape character within literals, and all the C escapes arc

recognized:

[N\
‘An” newline
\x return

N single quot.e '
AV backslash *\/

‘AL’ tab
Ak’ backspace
AR form feed
‘\xxx' C‘mxx’ ln octal
- J

For a number of technical reasons, the (NUL) character (07 or 03 should never
be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ‘I’
can be used 1o avold rewriting the left hand side. In addition, the semlcolon at
the end of a rule can be dropped before a vertical bar, Thus the grammar rules

()
A H R C D H
A H B F H
A o3 G H
~ J
can be givento yace as
(™
A H B &£ D
I E ¥
I G

y ‘ J

1t is not necessary that alt grammar mles with the same left side appear together
in the grammar rules section, although it makes the input much more readable,
and easier to change.

If 2 nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty : H
Names rcpresenting fokens must be declared; this is most simply done by writing
*taken namel name2 ., ., ,

in the declarations section. See Sections 3, 5, and 6 for much more discussion.
Every name not defined in the declarations section is assumed to represcnt a non-
terminal symbol, Every nonterminal symbol must appear on the left side of at
least one rule.

pf ail the nonterminal symbols, one, called the srarr symbol, has particular
importance, The parser is designed (o recognize the start symbol; thus, this

SUun Revision A of 27 March 1990

mizesysiena

932 Programming Utilities and Librasics &

P

10.2. Actions

Y

symbol represents the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left hand side of the first
grammar rule in the rules section. Itis possible, and in fact desirable, to declare
the start symbol explicilly in the declarations szction using the %start keyword:

$atart aymbol

The end of the input to the parser is signated by a special token, called the end-
marker. 1f the tokens up to, but not including, the endmarker form a structure
which matches the start symbol, the parser function retums 1o fts caller after the
endmarker is seen; it accepts the input. 1fthe endmarker is seen in any other
context, it is an error.

1t is the job of the programmer-supplied lexical analyzer to retom the endmarker
when appropriate -— see Section 10.3, pelow. Usually the endmarker represents
some reasonably abvious /O status, such as ‘end-of-file’ or *end-of-record’.

With each grammar rule, the progranuner may assoclate actions to be performed
each time the rele is recognized in the input process. These actions may return
values, and may obtain the values retumed by previous actions. Moreover, the
lexical analyzer can return vatues for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, cal
subprograms, and alter external vectors and variables. An action is specified by
one or more statements, enclosed in curly braces *{' and '}'. For example,

—

A : e B
L { hallo{ 1, “abe® }: 1}
and
—
KX H YYY 222
{ print£{"a megsaga\n™);
flag = 25;)

\.

are prammar rules with actions,
“To facilitate easy communication between the aclions and the passer, the action
statements are altered stightly. The dollar sign symbol "$' s used as a signal to
yacc in this context.
To return 2 value, the action normally sets the pseudo-variable '$3" to sume
value, For example, an actlon that does notiing but retum the vaiue 1 is

1 $5 =1)

“To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1,3$2, . . ., which refer to the values
returned by the components of the right side of a rule, reading from Ieft to right.
Thus, if the rule is

(v« econ j

' "%@ SUI Revision A of 27 Masch 1990

MirOLysEns

Chaptar 10 — yace — Yet Another Compiler-Compiler 233

for example, then $2 has the value retumned by C, and $ 3 the value retumed by
D.

Ag 2 more concrete example, consider the tule

(exXpr H ‘L expr T} H J

The value retumed by this rule is usually the value of the expr in parentheses.
This can be indicated by

(axpr ' “t* axpr)’ { §5 = 82 ; lJ

By default, the value of a nule is the value of §1 (the first element in it). Thus,
grammar rules of the form

o 3

frequently need not hiave an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable 1o get control before & rule is fully parsed. yace pemits an action
1o be written in the middie of a rule as well ag at the end. ‘Fhis rule is agsumed to
retumn a value, accessible through the usual $ mechanism by the actions to ihe
right of it. In tumn, it may access the vatues retumed by the symbols to its left,
Thus, In the nule

A H B
{ 85 =1; |

{ ® = 525 y = $3;)

the effect 1s to set x 10 1, and y to the value retumed by C.

Actions that do not terminate a rule are actuatly handled by yacc by manufac-
turing a new nonterminat symbol name, and a new rule matching this name to the

empty string. The interior action is the action tripgered off by recognizing this
added rule. yace actually treats the above example as if it had been wriiten:

SACT : /+ empty */
{ $§ = 1;)

Y H B $acT C
{ x o= §2: y = §3;: |}

In many applications, cutput is not done direcity by the actions; rather, a data
structure, such as a parse tree, 15 constructed in memory, and transformations are
apptied to it before output is generated. Parse Lrees are patticularly casy (0

S Revision A of 27 March 1990

microay e

234 Progtamming Utilitles end Librarles

<
P

10.3. Lexical Analysis

construct, given routines 1o bultd and maintain the tree structure deslred. For
example, suppose there Is & C funclion node, written so that the call

[node{ L, nl, n2 } . }

crentes a node with labet L, and descendants nl and n2, and retums the index of
the newly created node. The parse iree can e built by supplying actions such as:

expr : expr “+° expr
{ %5 = node{ “+°, %1, %3 }; |

in the specification,

The programimer may define other variables to be used by the actions. Declara-
tions and definitions can appear in the dectarations section, enclosed in the marks
5 {* and *%)". These declaratlons and definitfons have global scope, so they are
known (o the action statements and the lexical analyzer. For example,

(%{ int variable = 0; %)]

could be placed in the declaratlons section, making variable accessible to all
of the actions, The yacc parser uses only names beginning in ‘yy'; the pro-
grammer should avold such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in Section 10.10.

The progremmer must supply a loxical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical anaiyzer
is an integer-valued function calied yylex (). The function retums an integer,
the token mimber, representing the kind of token read. If there is a value associ-
ated with that token, it should be assigned to the extemal vatisble yylval ().

The parser and the lexicat analyzer must agree on these token numbers in order
for communication between them to take place. The numbers may be chosen by
yace, or chosen by the programmet. In either case, the ‘# define’ mechanism of
C is used to allow the lexicat analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the declura-
tions section of the yacc specification file, The relevant portion of the Jexical
analyzer might look like:

SUEn Revision A af 27 March 1950

@

e

Chapier 1 — yace — Yet Another Campiler-Compiler 235

yylex(}{
extern int yylval;
int c;
c = getchar(}:
awltcohi ¢ } [
case ‘07:
case ‘1l°:
[E-3-1-T
yylval = ¢=-"0";

raturn{ DEGIT);

\ J

The initent is to Tetern the token number of DIGIT, and g value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIGIT will be
defined as ths token number associated with the token DIGIT.

“This mechanism leads to clear, easily modified lexical anntyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; for example, the use of 1.£ or while as token
numes will almost centainty cause severe difficulties when the lexical analyzer is
complicd. The token name exrox is reserved for emor handling, and should not
be used naively (see Sccilon 10.7).

As mentioned above, the token numbers may be chosen by yace or by the pro-
grammer. Inthe default situation, the numbers are chosen by yace. The default
token numbes for a Titeral chatacter is the numerical value of the choracter in the
local character set. Other names are assigned token numbers starting at 257,

To assign a token number to a token (including Hicrals), e flrst appearance of
the token name of literal {n the declarations section cun be immediately followed
by a nomnegative integer. This integer is taken to be the token number of the
name or lteral. Names and titerals not defined by this mechanism retaln their
default definition. It is importent that all token numbers be distinct,

For historical reasons, the endmarker must have token number (or negative.
Thls token number cannot be redefined by the programmer, thus, all lexical
analyzers should be prepared to retumn O or negative as a token mnber upon
reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program developed
by Mike LeskB and described in the previous chapter on Lex. These lexdeal
analyzers are designed to work In close harmony with yacc parsets. The
specifications use regular expressions instead of grmmar rules. lexcanbe
casily used to produce quite complicated lexical analyzers, put there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, anc

SUuil Reviston A of 27 March 1930
micrpyslans

236 Programming Usilitles and Libraries

Chapter 10 — yace — Yet Another Compiler-Compiler 237

10.4. How the Parser
Works

shift Action

reduce Action

whose lexicat analyzers must be crafted by hand.

yacc tums the specification file into a C program, which parses the Input
according to the specification given, The alporithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is refatively simple,
and understanding how it works, while not strictty necessary, will nevertheless
make treatment of eror recovery and ambiguities much more comprehensible.

The parser produced by yace consists of a finite-state machine with a stack.
The parser can read and remember the next input token {called the Jookahead
token). The current state Is always the one on the top of the stack, The states of
the finite-state machine ate given small Integer labels; inittalty, the machine is in
state 0, the stack containg only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, aceept,
and error. A move of the parseris done as follows:

1. Based on lts cument state, the parser decides whether it needs a lookahead
1oken to decide what action should be done; if it needs one, and does not
have one, it calls yylex{) to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser decides
on its next action, and carrles it out. This may result In states being pushed
onto the stack, or popped off the stack, and in the lookahead token being
processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action Is taken, tiere is always a lookahead token, For example, in state 56 there
may he an action:

[IF shift 34]

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the Lop of
the stack). The lookahead token is cleared.

The reduce actlon keeps the stack from growing without bound. Reduce actions
are appropriate when the parser has seen the rght hand side of 2 grammar rule,
and Is prepared to announce that it has seen an instance of the rule, replacing the
right hand side by the left hand side, It may be necessary (0 consult the looka-
head token to decide whether to reduce, but usually it is not; in fact, the default
action (represented by a *.") Is often a reduce actien,

Reduce actons are associated with individual grammar mules. Grammar rules are
also given small integer numbers, leading to some confusion. The action

(. reduce 18 J

refers to grammar ride 18, while the action

S Revision A of 27 March 1990

micrasyalemy

accept and error Actions

(iF shift 34]

refers to state 34.

Suppose the rule being reduced is

fn oy oz j

The reditee action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (threc in (his case). ‘To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing x, y, and 2, and no
longer serve any useful purpose. After popping these states, o stale is uncovered
which was the state the parser was in before beginning to process the ule. Using
this uncovered state, and the symbot on the left side of the rule, perform what is
in effect & shift of A, A new slate is cbtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the left
hand symbol and an ordinary shift of a token, fiowever, 50 this action Is calied a
goto action. In particular, the lookahead token is cleared by a shift, and is not
affected by a goto. In any case, the uncovered state contains an enwy such as:

‘ A gota 20 J

which pushes state 20 onto the stack, and becomes the current state,

in effect. the reduce actlon *tuems back the clock’ in the parse, popping the states
off the stack to go back to the stats where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the 1eft side at that time. 1f the
right hand side of the rule is empty, no states are poppe off the stack: the
uncovered state is in fact the current state.

The reduce action is also imporant in the treatment of pregrammer-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack Is adjusted. In addidon to the stack holding the states,
another stack, running in paratlel with it, holds the vatues retumed from the lexi-
cal analyzer and the actions. When a shift 1akes place, the extemnal variable yyl-
val () is copied onto the value stack. After the return from the programmer's
code, the reduction is carried out. When the goto action is done, the extemal
variable yyval () is copied onto the value stack. The pseudo-variables $1, 52,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matchies the specification.
This action appears anly when the lookahead token is the endmarker, and indi-
cates that the parser g successfully done its job. The ervor action, on the other
hand, represents a place where the paser can 1o longer continue parsing accord-
ing to the specification, The input tokens it has seen, together with the lookahead
1oken, cannot be followed by anything that would result in 2 legal input. The

Sun Revisfon A of 27 March 1990

mierjesome

238 Programuming Utilities and Libraries

Chapter 10 — yaee — Yet Another Compiler-Compller 239

0%

parsar reports an ermor, and attempts to recover the situation and resnme parsing:
the error recovery (as opposed to the detection of error) will be covered in Sec-
tion 10.7.

11 is time for an example! Consider the specification

-
%token DING DONG DELL

%3

rhyma : sound place
H

sound H DING DONG
H

place H DELL
;

\.

When yacc is invoked with the —v option, 2 Rle catled y.oufput 18 produced,
with a human-readable description of the parser. The y.output file comespond-
ing to the above grammar (with some statistics atripped off the end) is:

Sun Ravision A of 27 March 1990

ricroyRla

state

state

state

state

state

atate

atate

Saccept : _rhyme Send

DING shift 3
. error

rhyme goto 1
sound goto 2

Saccept rhyme_Send

Send accept

errox
chyme : pound place
DELL shift 5

arror

place goto 4

gound H DING_PONG
DONG shift €

errox

rhyme @ sound place {1}
reduce 1

place : DELL {33
raduce 3

sound : DING DOMG {2)
reduce 2

Notfce that, in addtion to the actions for each state, there s a description of the
parsing rales being processed in ench state. The _ character is used to indicate
what has been sesn, and what is yet to come, in each nile, Suppose the input is

DING DONG DELL
It js instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0, The parser needs to refer 1o the input in
order to decide between the actions avallable in state 0, so the first token, DING,
I read, becoming the lookshead token. The action in state 0 on DING ig ‘shift
3", 5o state 3 is pushed onto the stack, and the lookahead token 1s cleared. State 3
becomes the current state. ‘The next token, DONG, is read, becoming the looka-
head token. ‘The action in stale 3 on the token DONG is ‘shift §, so state 615
pushed onto the stack, and the lookahead is clcared. The stack now contains 0, 3,

SN Revision A of 27 March 1990
Mg paines

240 Programming Udlities and Libraries

10.5. Ambignity and
Contlicts

and 6. In state 6, without even consulting the lookahead, the parser reduces by
nule 2,

[sound ¢ DING DONG J

“F'his rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off the stack, uncovering state 0. Consulting the description of state 0,
looking for a goto an sound,

(sound goto 2 J

is obtained; thus state 2 Is pushed onto the stack, pbecoming the current state.

In state 2, the next joken, DELL, must be read. The action is “shift 5°, so state 5
is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead
{oken 15 cleared. In state 5, the only action s to reduce by rute 3. This has one
symbotl on the right hand slde, so one state, 5, is popped off, and state 2is
uncovered. ‘The goto in state 2 on place, the left side of rule 3, Is state 4. Now,
the stack contains 0, 2, and 4. In state 4, the only action is to reduce by mule 1.
There are two symbols on the right, 50 the top two states arc popped off, uncov-
ering state 0 again, In state 0, there is a goto on riyme causing the parser to enter
state 1. In state 1, the input is read; the endmarker is obtalncd, indicated by
*$end’ In the y.outpue file. ‘The acton in state 1 when the endmarker Is seen is
to accept, successfully ending the parse.

The reader |5 urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL
DELE, and 50 on. A few minutes spend with this and other simple examples will
probably be repaid when problems arise in more complicated contexts.

A set of grammar rules is ambiguots if there is some input string that can be
structured in two or more different ways. For example, the grammar rufe

expr H expr '—' expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with 2 minus sign between
them. Unfortunately, this grammar nule docs not unambiguously specify the way
that all complex inputs should be structured. For example, if the input is

@xpr ~— @xpr — 8Xpr
the rule allows this Input 1o be structured a8 either
{ expr -— &xpx y = expr
or as
expr = | @xpr = exXpr }
The first is called Jaft association, the second right assoclation.

yace detecls such ambiguities when it is atiempting to build the parser. Itis
instructive 10 consider the problem that confronts the parser when it is given an

Su 1} Revision A of 27 Mneeh 1990

micmeyaiomd

Chapter 10 — yace — Yet Another Compiler-Compiler 241

input such as
axpr -~ expr - expr
‘When the parser has read the second expr, the input that it has seen:
axpr — expr
matches the right side of the grammar rule above. The parser could rednce the

[nput by a.pplying this nile; afier applylng the rule; the input s reduced to expr
(the left side of the rule). The parser would then renad the final part of the nput:

- BAPE
and again reduce. The effect of 1his s 1o take the lefi-associative Interpretation.

Alternatively, when the parser has seen

expr — expr
it conld defer the immediate application of the rule, and continue reading the
input wntil it had seen

expx — @Xpr — eXpr
It could then apply the rule to the rightmost three symbols, reducing them to expr
and leaving

expr - expr
Now the nie can be reduced once more; the effect is to take the right assogiative
interpretation. Thus, having read

. @Xpr -— axpr

the parser can do two legal things, ashift ora reduction, and has no way of
deciding between them. Thds s called a shift / reduce conflice. 1t may afso hap-
pen that the parser has a ehivice of lwo legal reductions; this is called a reduce/
reduce conflict. Note that there are never any ‘shift/shift’ conflicts,

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by sclecting one of the vaid steps wherever it as a choice.
A rule describing which choice to make in & given situatlon is called a disambi-
grating rufe.

yacc invokes two disambiguating rules by default;
1. Inashift/reduce confiict, the default is to do the shilt.

2. Ina reducefreduce conflict, the defult is to reduce by the earfier grammar
rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of
shifis. Rule 2 gives the programmer rather crude control over the behavior of tlie
parser in this situation, but reduce/reduce conflicts should be avoided whenever
possible.

Conflicts may arise because of mistakes in input or logic, or because the gram-
mar rules, while consistent, require a more complex passer than yacc can cofl-
struct. The use of aclions within nides can also cause confliets, if the action must

m lﬁ Revision A of 27 March 1390

242 Progeamming Utilitics and Libzerics

W
TJ

be done before the parser can be sare which rule is being recognized. In these
cases, ihe application of disambiguating rules is inappropriete, and leads to an
incomect parser. For this reason, yacc always reports the number of shift/reduce
and reducefreduce conflicts resolved by Rule 1 and Rule 2,

In general, whenver it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules 5o that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered confllcis to be fatal enors. Cur experience has sug-
gested that this rewriting 1s somewhat unnatural, and produces slower parsers;
thus, yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an 'if-then-else’ consiruction:

atat : IF {" cond ‘) stat
I IF “{° w¢ond ‘)’ atat ELSE astat
I

”

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (loglcal) expressions, and stat is a nonterminal symbot describing
statements. The first rule will be called the simple-if rule, and the second the i

else rule.
These two rules form an ambiguous construction, since input of the form:

[IF [condition-1) IF { condition=-2) staiement-1 ELSE stafement =2

can be structured according to these rules in two ways:

4

IF (condition-1) |

IF { econditon-2) stalement-1
1
ELSE siatemeni -2

or

IF { condition-1) |
¢ (conditlon-2)} statement-1
ELSE slatement~2

1

\, —

The second interpretation is the one given in most programming languages hav-
ing this construct. Each ELSE is associated with the last preceding ‘un-ELSE"d’
IF. Inthis exampte, consider the situation whers the parser has seen

IF { condiion=1) IF (condilen-2) statement-1

and is Iooking at the ELSE. It can Immediately reduce by the simple-if rule to
get

sun Revision A of 27 March 19%¢
Irderos patama

"

et

Chapter 10— yaca — Yet Another Compiler-Compller 243

IF { cendition-1l) stat
and then read the remaining input,
ELSE slatement—-2
and reduce
I8 (condition-l) stat ELSE stetemeni—2
by the if-else nule, This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, statenrene-2 read, and then the right
hand portion of

[IF { condition-1 } IF

(condition-2) statemenr-1 ELSE siatement-2 }

¢

can be reduced by the if-else rule to get

IF { conditfon~1) stat
which can be reduced by the simple-if rule, This leads to the second of the shove
groupings of the input, which Is usually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift In this case,
which leads to the destred grouping,

This shift/reduce confict arises only when there is a particutar cirrent input sym-
hol, ELSE, and particular Inputs alrepdy seen, such as

IF { condition-1) IF (condiion-2) statement—-1

In general, there may be many conflicts, and each one will be assoctated with an
input symbot and a set of previously read inputs. The previously read inputs arc
characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verhuse
(~-v) option output file. For example, the outpat correspanding o the above
conflict state might be:

23: shift/reduce conflict {ahift 45, reduce 18) on ELSE
atate 23
stat : I { cond) stat {18)
stat : IF (cond) stat ELSE stat
ELSE shift 45
reduca 18
\ ot

The first line describes the condlict, giving the state and the input symbel. The

ordinary state description follows, giving the grammar niles active In the state,

and the parser actions. Recall that the underline marks the portion of the gram-
mar niles which has been seen, Thus in the example, in state 23 the parser has

seeti input corresponding to

SN Rovision A of 27 March 1990
micresyiieTs

244 Programming Usiities and Libreries &

-
J:)

10.6. Precedence

iIF (cond)} stat

and the two grammar rules shown ane active at this time. ‘The parser can do two
posslble things. If the input symbol is ELSE, itis possible to shift into state 45.
State 45 whil have, as part of its description, the line

stat : IF (cond) satat ELSE_stat

since the ELSE will have been shifted in this state. Back In state 23, the aliema-
tive action, described by ., is to be done if the tnput symbot Is not mentioned
explicidy in the above actions; thus, in this case, if the input symbaol i5 not ELSE,
the parser reduces by grammar rule 18: ’

atat : IF °{° cond 7)° stat

Once agaln, notice that the numbers following ‘shift’ commands refer to other
states, while the rumbers following sreduce’ commands refer 1o grammar rule
numbers. In the y.oufpat fils, the nile numbers are printed after those rules
which can be reduced. In most states, there will be at most one reduce action
possible in the state, and this will be the default command. Programmers who
encounter unexpected shifi/reduce conflicts will prabably want to look at the ver-
bose output to decide whether the default actions are appropriate. In really tough
cases, the programmer might need to know more about the behavior and con-
struction of the parser than can be covered here. In this case, one of the theoreti-
cal references cited in Chapler T might be consulted.

There is one common sltuation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonty used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, logether with infor-
mmation about Ieft or vight associatlvity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create parsers that are faster
and easier 10 write than parsers construcied from unamblguous grammars. The
pasic notion is to write grammar rules of the form

expr : expr OF expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous gram-
mar, with many parsing conflicts, As disamblguating rules, the programmer
specifies the precedence, or binding strength, of all the operators, and the associa-
tivity of the binary operators. This information is sufficient to allow yacc 10
resolve the parsing confiicts in accordance with these mules, and construct a
parset that realizes the desired precedences and associativities.

The precedences and associativitles are aitached to tokens In the declarations sec-
tion. ‘This Is done by a series of lines beginning with a yacc keyword: 3left,
%right,or fnonassoc, foliowed by a list of tokens. All of the tokens on the
same line are assumed 1o have the same precedence level and associativity; the
tines are listed in order of increasing precedence or binding strength, Thus,

@ S [1§1] Revision A of 27 March 19%
micicsyrlens

Chapter 10— yace — Yet Another Compiler-Compiler 245

Tleft 47 =
tlafr e’ C/°

describes the precedence and associativity of the four arithmetic operators. Plus
and minus are lefi-associative, and have lower precedence than star and slash,
which are also left-associative. The keyword $right is used to describe fght-
associative operators, and the keyword fnonasscc is used to describe opera-
tors, like the . 1F. operator in FORTRAN, that may not associate with them-
selves; thus,

[A .LT. B ,LT. C _]

is illegal in FORTRAN, and such an operator would be described with the key-
word 3nonassoc in yace. As an example of the behavior of these declara-
tions, the description

- ™
sright ‘=7
$left ‘+° -7
sleft ¢/
%
expr : expr ‘=’ expr
1 axpr ‘+° expr
1 expr —" expr
] expr ‘*° expr
| expr ‘/° expr
] HNAME
\ .,
might be used to structure the input
a w b = ctd -~ e — fL*g

as follows:
am (b= (((ctd)—e) = (£¢g) })

When this mechanism 1s used, vnary operators must, in general, be glven a pre-
cedence. Sometimes a untary operator and a binary operator have the same sym-
bolic representation, but different precedences. An example is unary and blnary
“~* unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength then multiplication. The key-
word $prec changes the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the grammar mle, before the
action or closing semicolon, and is followed by a token name orliteral. It
changes the precedence of the grammar rute to become that of the following
token name or literal, For example, to make unary minus have the same pre-
cedence as multiplication the rules might resemble:

Sun Revisian A of 27 Masch 1990

46 Programming Utlitles and Libraries

W,

(|
fleft +° =7
sleft ‘+° /7
%%
exXpr H axpr +° eHpr

| axpr = expr
} expr ‘%’ expr

| expr ‘/° expr

] ~* expr gprec ‘¥’
| HAME

L B}

A token declared by $left, Sright, and $nonas soc need not be, but may
be, declared by $token as well.

The precedences and associativitles are used by yace to resolve parsing
conflicts: they give rise to disamblguating rutes. Formally, the rules work as fol-
fows:

i. The precedences and associativities are recorded for those tokens and literals
that have them.

9. A precedence and assoclativity is associated with each grammar rule; It is
the precedence and asgociativity of the Jast token or fiterat in the bedy of the
rule. If the %prec construction Is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them,

3, 'When there is a reduce/reduce conflict, or there is a shift/freduce conflict and
glther the input symbol or the grammar rule has no precedence and associa-
tivity, then the two dlsambiguating mies given at the begirning of the sec-
fion are used, and the conflicts are reported.

4. Ifthere is a shift/reduce conflict, and both the grammar rule and the input
character have precedence and assoclativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) nssociated with the
higher precedence, If the precedences are the same, then the associativity is
used:; left-assoclative implies reduce, right-associative implies shift, and
nonassocinting implies eror.

Conflicts resolved by precedence gre not counted In the number of shiﬁfrc.ducc
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedences may disguise errors in the input grammar, it.is a
good Idea to be sparing wilth precedences, and use them in an essentially *cook-
book’ Fashion, until some experience has been gained. The y.ontput fite is very
useful in deciding whether the parser is actually doing what was intended.

@ Sun Revision A of 21 March 1990

-

it

Chepter 10 — yacc — et Anather Compler-Compiler 247

10.7. Error Handling

Ervor handling Is an extremely difficult arca, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary (o
reclaim parse tree storage, delete or alter symbol table entries, and, typleally, set
switches to avoid generating any further output,

1t is seldom acceptable to stop 8l processing when an error is found; it iz more
useful 1o continue scanning the input to find further syntax emors. This leads to
the problem of geiting the parser 'restarted” after an eror, A pgencral class of

» glgorithms to do this involves discarding a number of tokens from the input

string, and attemptlng to adjust the parser so that input can continue,

To allow the programmer some control over this process, yace provides a sim-
ple, but reasonably general, feature. The token name *error’ 15 reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack urtti] it enters & state where the token ‘error” is legal. It then behaves as if
the token ‘error’ were the current lookahead token, and performs the actlon
encountered. The lookahead token Is then rezet to the token that caused the error.
If no special error mtes have been specificd, the processing halts when an eror is
detected,

In order to prevent & cascade of error messages, the parser, ufter detecting an
error, remalns in ermor state until three tokens have been successfully read and
shifted. If an erroris detected when the parser is already in esror state, no mes-
sage is given, and the input token is quictly deleted.

Ag an example, a mile of the form
atat : BrIor

would, in effect, mean that on a $yntax error the parser would attempt 10 skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legaily follow 2 statement, and
start processing at the first of these; If the beginnings of statements are not
sufflclently distinetive, it may make a false start in the middie of & statement, and
end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt
1o reinitialize tables, rectaim symbaol table space, etc.

Erior rules such as the above are very general, but difficult to contral. Somewhat
easier are rules such as :

-

atat : errox i

Here, when there Is an error, the parser attempts 1o skip over the statement, but
will do so by skipping to the next 3", All tokens after the error and before the
next *3” cannot be shifted, and are discarded. When the %7 is seen, thls rule will
Be reduced, and any ‘cleanup’ action associated with it performed.

Another form of error rule atises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

Revislon A of 27 March 1990

248 Progremming Utilisfes and Libraries

input : arrer

‘An’ { printf("Reenter jast line: ");) loput
{ §8 = 547)

There Is one potential difficulty with thls approach; the parser must comectly pro-
cess three input tokens before it admits that it has correctly resynchronized after
the error. If the reentered line contains an error in the first two tokens, the parser
deletes the offending tokens, and gives no message; this is clearly unacceptable.
For thig reason, there 13 3 mechanism that can be used to force the parser to
believe that an ervor has been fully recovered from. The statement

yyerrok ;

in an action resets the parser o its normal mode. The last example is better writ-
ten

input H error

input

“An*
] yyerrok;
printf{ “Reenter last line: ™ }:]

{ $5 = 8543]

4sun

As mentioned above, the token seen immediately after the ‘error’ symbol is the
input token at which the error was discovered. Sometimes, this is inappropriate;
for example, an eTror 1ECOVELY action might take upon itself the job of finding the
corvect place to resume input. In this case, the previous Iookohead token must be
cleared. The statement

yyclearin ;

in sn action will have this effect. For example, suppose the actlon after emor
were to call some sophisticated resynchronization rontine, supplied by the pro-
grammer, that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex ()
would presumably be the first ioken in a legal statement; the old, illegat token
must be discarded, and the error state reset. This could be done by a rule like

stat H arror
{ resynch{};
yyarxok ;
yyclearin : }

H

“Phese mechanisms are admittedly crude, but do allow for a simple, fairly effec-
live recovery of the parser from many eITOts; MOTEOVCL, the programmer can gel
control to degt with the error actions required by other portions of the program.

Reviston A of 27 March 1950

10.8. The yacc
Environment

10.9. Hints for Preparing
Specifications

Chapter 10 — yaca -~ Yet Another Compiler-Compiles 249

When the programmer inputs a specification to yace, the cutput is a file of C
programs, catled y.tab.c on most systems (due to locat file system conventions,
the name may diffar from installation to instaltation). yacc produces an
integer-valued function called yyparse (). When yyparse () is called, it in
tum repeatedly calls yylex () — the lexlcal analyzer supplied by the program-
mer (sce Section 10.3) to obtain input tokens. Eventually, either an ermor is
detected, In which case {if no error recovery is possible) yyparse () retums the
value 1, or the lexical analyzer retumns fhe endmarker token and the parser
fnceepts, Inils case, yyparae () rétums the value Q.

The programmer must provide a cetain amount of environment for this parser in
arder 1o obtain 2 working program. For example, as with every C program, a
program called main must be defined, that eventualiy calls yyparse {}. In
addition, a routine called yyerrox (} prints a message when a syntax error is
detected.

The programmer must supply (hese two routines in one form or another. They
can be as simple as the following example, of they can be as complex as necded.
o

main{) {
raturn{ yyparse(})}
}
_ P—
and
-)

§ include <stdio.h>

yyerror{s) char *s; [
fprintf{ stderr, vha\nt, =)i
1

L o

Tiie argument to yyerxor () isa string containing an erroy, message, usaally
the string ‘synlax error’, ‘The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print it
alang with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected: this may be of some interest in giving better diagnostics.

The extermal Integer variable yydebug is normally set to 0. Ifitissetioa
nonzero value, the parser gencrates a verbose description of its actions, including
a discussion of which input symbols have been read, and what the parser actions
are, Depending ont the operating environment, it may be possible to set this vavi-
able by using a debugging systent.

"This section contains miscellaneous hirts on preparing efficient, casy to change,

and clear specifications. The individual subsections are reore or less indepen-
dent,

SUn Revision A of 27 March 1950

250 Programming UtHitles end Libraries

Chaptar 10 — yace ~- Yot Anather Compiler-Compiter 251

Input Style

Left Recursion

-
do,

Tt is difficult to provide rules with substantial actions and still have a readable
specification file, The following style hints owe much to Brian Kemighan.

1. Use ali capital letters for token names, all lower case letters for nonterminal
names. This rale comes under the heading of ‘knowing who to blame when
things go wrong.’

2. Put grammar rules and actions on separate lines. This allows either to be
changed without an automatic need 1o change the other.

3, Put all rules with the same left hand side together. Put the left hand side in
only once, and let all following rles begin with a verticat bar.

4, Put a semicolon only afier the 1ast rule with s glven left hend side, and put
the semicolon on a seperate line, This allows new rules to be added easity,
5. Indent rule bodles by 1wo tats stops, and action bodies by three tab stops.

The example in section 10.11 is written following this style, ag are the examples
in the text of this paper (where space permits). The programmer must make up
his own mind about these siylistic questions; the central problem, however, isto
make the rules visible through the morass of action code.

The algorithm used by the yace parser encourages so called ‘left-recursive’
grammar rufes: rules of the form

name : name rest_of rula 7

These rules frequently arise when writlng specifications of sequences and lists:
-

list H item
{ list °,° item
:
\ J
and
- N
aeq H item
| seq item
H
\, -

In each of these cases, the first nule will be reduced for the first item only, and the
second rule will be reduced for the second and afl succeeding items.

With right-recursive mles, such as

seq : item
| item seq

H

the parser would be a bit bigger, and the jtems would be seen, and reduced, from
vight to left, More seriously, an internal stack In the parset would be in dangerof
overflowing if a very long sequence were read. Thus, the programmer should use
left recursion wherever reasonable.

33191 Revision A of 27 Merch 1990

risraaystard

R

Lexical Tle-ins

It is worth considering whtether a sequence with zero elements has any meaning,
and if so, consider wriling the sequence specification with an empty rule:

sagq H /* empty */
i seq ltem

Once again, the first rule would always be reduced exactly once, before the first
{sem was read, and then the second rule would be reduced once for each item
read. Pemilting empty sequences often feads to increased generality. However,
conflicts might arise If yace I8 asked to declde which empty sequence it has
seen, when it hasn’t seen enough to know!

Some lexical decisions depend on context. For example, the lexical anatyzer
might want to delete blanks nomally, but not wittin guoted strings. Or names
might be entered into a symbol table in declarations, hut not in expressions,

One way of handing this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions, Forexample, suppose & program consists
0F 0 or more declarations, followed by 0 or more statements, Consider:

-~

"

L1
int dflag;
%)
ather declarations
£
prog H decls stata
H
dacls : /% empty ¢/
{ dflag = 1; 1}
| decls declaration
stats : /% empty */

[dflag = 0; |
f astacts statement
i

other rules

-
The Nlag dffag is now 0 when reading statements, and 1 when reading declara-
tlons, except for the fisst token in the first slatement, This token must be seen by
the parser before it can tell that the declaration seciion has ended and the state-
menis have begun, Inmany cases, this single-loken exception does not affect the

fexical scan.

This kind of *backdoor' approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficuit, If not
jmpossible, to do otherwise.

Sumn Revision A of 27 Merch 1990
rrRcTesystem

¢

252 Progsamming Udlliljes end Libraries

Reserved Words

10.10. Advanced Topics

Simulsiing Error and Accept
in Actlons

Accessing Vatuoes in Enclosing
Rules.

—
¥

Some programming languages permit the progrmmer {0 use words like "if',
which are normally reserved, as label or variable names, provided that such use
does nat confitct with the legal use of these names In the programming language.
“T'his is extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it *this instance of 1£ is akeyword,
and that instance is a variable', The programmer ¢an make a stab at it, using the
mechanism described in the last subsection, but it is difficolt.

A number of ways of making this easier an under advisement. Until then, it is
petter that the keywords be reserved; that i, be forbidden for use as variable
names. There are powerful stylistic reasons for preferring this, anyway.

This section discusses a number of advanced features of yace.

The parsing actions of ersor and accept canl be simulated in an action by use of
macros YYACCEPT and YYERROR. YYACCEPT makes yyparse retum the
value 0; YYERROR makes the parser behave as if the current input symbol results
in 8 syntax eforn; yyerxor) is called, and error recovery takes place. These
mechanisms can be used o simulate parsers with muitiple endmarkers or
context-sensitive syntax checking.

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, & dollar sign fol-

. lowed by a digit, but In this case the dlgit may be 0 or negative, Conslder

()
sent : ady noun verb adj noun
{ lookatihe sentence . . . '}

adj ¢ THE [$5 = THE; |
| YOQUNG f $8 = YOUNG:)
noun H poG
{ 5% = DOG; |}
i CRONE

{ 1F(§0 == YOUNG }{
printf{ "what?\n")
3
5§ = CRONE:
)

o

L O

Chnpter 10 — yacc — Yet Ancther Compiler-Compiter 253

L .
In the action following the word CRONE, a check i3 made that the preceding
token shifted was not YOUNG. Obviously, this is only possible when a great deal
{s kniown about what might precede the symbol noun in the input. There is also 4
distinctly unstrctured flavor about this. Neveriheless, at times this mechanism
witl save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwiss regular structure.

Revision A of 27 Murch 1930

sun

ticrorysteT

Suppert for Arbitrary Value
Types

By default, the valucs remumed by actions and the lexical analyzer are integers.
yace can also support values of other types, including structutes, Inaddition,
yace keeps track of the types, and inseris appropriate union member names so
that the resulting parser will be strictly type checked. The yace value stack (see
Section 10.4) is declared to be a union of the various types of values desired,
The programmer declares the union, artd associates a union member name 1o
each token and nonterminal symbol having a value. When the value is refer-
enced through a $$ ot $n construction, yacc automatically inserts the appropri-
ate union name, so that no unwanted converstons will take place. In addition,
type-checking commands such as 1int(1} will be far more silent.

"Fhere are three mechanisms used 1o provide for this typing, First, there is a way
of defining the unlon; this must be done by the programmer since other pro-
grams, notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating 2 union member name with tokens and non-
terminals, Finally, there is a mechanism for describing the type of those few
values wherc yacc eannot easily determine the type.

Ta declare the union, the programmer includes in the declaration sectlon:

Sunion {
bedy of union ...
i

This declares the yaec value stack, and the external variables yylval and
yyval, to have type equal to this union, If yace was invoked with the ~d
option, the union declaration is copied onto the y.tab.h file. Alternatively, the
union may be declared in a header file, and a typedef used to define the variable
YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union |{
body of unien ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%).

Once YYS$TYPE is defined, the union member names must be assoctated with the
various terminal and nonterminal names. The construction

< pname >

is used to indicate 2 union member name, If this follows one of the keywords
$tokern, $left, ¥right, and %nonassoc, the union member name is 4550~
clated with the tokens listed. Thus, saying

F%left <optype> ‘+° =7

will tag any refercnce to values returned by these Lwo lokens with the union
member name opiype. Another keyword, $type, is used similarly to associate
union member names with nonterminals. Thus, one might say

SULIL

MEreEyH T

Revision A of 27 March 1930

254

Programming Uhitities and Libearies

10.11. A Simple Example

[7 stype <nodetype> axpr stat J

There remain & couple of cases where these mechenisms are insufficlent. If there
is an action within a rule, the value retumed by this action has no a priori type.
Similarly, reference to lefi-context valuee (such as $0 — see the previous subsec-
tion) leaves yacc with no easy way of knowing ihe type. In this case, a type can
be imposed on the reference by inserting a union member name, between < and
>, immedtately afier the first $. An example of this usage Is

rule H aaa { S<intval»$ = 3; | bbb
| fun{ $<intval>2, $9<othec>d }; |}

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is glven in 10.13. The facilities in this subsectlon are not
triggered until they are used: in particular, the use of %type witl turn on these
mechanisms. When they are used, there 15 & fairly strict level of checking, For
example, use of $n or $5 10 refer to something with no defined type s diagnosed,
If these Facilities are not triggered, the yacc value stack Is used 10 hold int’s,
as was true historically, This paper is reprinted in this manual.

This example gives the complete yacc specification for a smali desk calculator;
the desk calculator has 26 registers, labeled *a’ throtgh ‘2", and accepis arith-
melic expressions made up of thie operators +, —, *, /, % (mod operaton), & (bit-
wise and), | (bitwise o), and assignment. If an expresslon at the top level is an
pssignment, the value 1s not printed; otherwise itis. AsinC, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yace specification, the desk calculator does a reasonable job
of showing how precedences and amblguities are used, and demonstrating simple
error recovery. The major oversimplifications are that the Jexical analysis phase
i mueh simpter than for most applications, and the output {5 produced immedi-
ately, line-by-line. Note the way that decimal and octal integers are read in by
the grammar rules; This job is probably better done by the lexical analyzer.

B include <stdio.h>
dinclude <ctypa.h>

int base;

tatart list
$token DIGIT LETTER

rogs [26]1;

aE
g

w

@ 5 ll)1 Revision A of 27 March 1990

Chapier 10 — yace — Yet Another Compiler-Compiler 255

%left
$left
tleft UMINUS /% suppliea precedence for unary minua ¢/

%% /+ beginning of rules section */
1list /* ampty */
i list stat ‘\n’
] list earror ‘\n’
{ yyarrok; |
stat axpr
{ print£{ “%d\n", $1 };]
] LETTER ‘=’ axpr
{ regsi$i1] = $3;)
|rpr ‘{" expx ")’
f $$ = §2;)
] expr TF7 expy
{ 56 = §1 + $3; }
t expr ‘—° expy
f $3 = 31 - §3;r 1}
[expr ‘¢° eaexpr
{ § = $1 ¢ §3;5)
] expr °/° expr
{ $§ = $1 /7 $3;)
] expr ‘%’ anxpr
{ $8 = $1 % 837 1}
| axpr ‘& enpr
{ $8 = 51 & §3:)
| axpr |’ expr
{ §8 = S | §3: |
] ‘-’ astpr Bprec UMINUS
f 56 = - $2; |
i LETTER
{ $8 = vrega[$l]l: |
i number
H
number DIGIT
{ 58 w §1; hase = ($k==Q) 7 8 : 18; 1
I nunbar DIGIT
[$5 = base ¢ 51 + $52; |}
3% /* atart of programs ¢/
yylex({} /* laxical analysis routine =/

{

/* returns LETTER for lowar case letter, yylval=0 thru 25 +/
/% return DIGIT for digit, yylval=0 thru 9 */
/* all other characters are returnad immediately */

gt v

Y S %

int c;
while({(c = gatchar{)) == ° °} { /* skip blanks LY

—

SILE Rovision A of 27 March 1990
fricroayiens

256 Progremming Utilitics and Librarfes

LE (iaslowarich)
yylval = ¢ - ‘a’;
return {LETTER) J

I

if (Ladigitic))
yylval = ¢ — 07
return {DIGIT);

}

roturnichi

/¢ ¢ 1a now nonblank +f
{

t

10.12. yacc Input Syntax

This seclion describes the yacc input syalax, 8s a yacc specification. Context
dependencles, etc., are not considercd, Tronically, the yacc input speci fication
language is most naturally specified as an LR(2) gramemar, the sticky past comes
when an identifier is seen in a rule, immediately following an action, If this
identifier is followed by a colon, it Is the start of the next rule; otherwise it is a
continuation of the current rule, which just happens to have an action embedded

Chapter 10 - yage — Yot Arother Compiler-Compilee 257

def

rword

tag

.

nliat

nmno :
|

i

rules H
|
H

rule

rbody

act

prec

.;—';‘——
T init. Asimplemented, the fexical anatyzer looks ahead after seelng an idenmtifier,
and decide whether the next token (skipping blanks, newlines, comments, etc.) is
acolon. I so, It Tetums the token C_TIDENTEFIER. Otherwise, it retums
IDENTIFIER. Literals (quoted strings) are also retumed as IDENTIFIERS,
but never as part of C_IDENTIFLERS.
T ™
/¢ grammax for the lnput to yacc ./
/+ basic entitlas o/
stoken IDENTIFIER » includes identiflers and literals */
$token C IDENTIFIER /+ identifier (not litexal) followed by : */
$token NUMBER J* 10-91+ &/
/# reserved words: itype =¥ TYPE, %left => LEFT, etc. s/
ttoken LEFT RIGHT NONASSCC TOKEN PREC TYPE START UNIOHW
ttoken MARK /+ the %% mark */
ftoken LCURL /# the 3| mark */
ttoken RCURL /* the %} mark */
7+ aacili character ilteralas stand foxr themselves of
Sstart 3pec
(31
spec [MARK rules taill
tall : { In this action, eat up the rest of the file }
| /% empty: the second MARK is optional */
defs t f+ empty */
] defs def
N _J
Sun Roviston A of 27 Macch 1990

START

UNION { Copyunion definition to owiptl
LCURL (Copy C code 1o owpnt filte } WRCURL

dafs

TOKEN
LEFT
RIGHT
NONAS
TYPR

/* empty: union tag is optional */

et

nmne
nlist
nlist

IDENT
IDENT

/+ rules sectlon w/

¢_IDENTIFIER rhody prec

rules

C_IDENTIFIER rbody prec

Ty

/+ ampty */ -

rbody
rhody

/* empty */

PREC
PREC
prec

IDENTIFIER]

rword tag nlist

50C

IDENTIFIER ">

nmne

PR

nmno

IFIER /o WOTE: Literal illegal with %type ¢/
IFIER NUMBER /* NOTE: illegal with $type */

xrule

rhody prec

IDENTIFIER
act

{ Copy action, ranslare §3, ete. } "}’

IDENTIFIER
TDENTIFIER act

i

10.13. An Advanced
Example

This section gives an example of a grammar using some of the advanced features
discussed in Section 10,10, The desk calculator example in section 10.11 is
modified to provide a desk calculator that does floaling polnt interval arithmetic.
The calculator understands foating point constants, the arithmetic operations +,
~, %, f, unary —, and = (assignment), and has 26 floating potnt varables, 'a’
through ‘z’. Moreover, it also understands intervals, writien

Revision A of 27 Much 1890

SUun

rcrosYstama

258

Programming Usilites and Libraries

{x, v}

where is less than or equal to y. There arc 26 interval-valued variables ‘A’
through *Z' that may also be used. Theusage is simitar to that in section 10.11
— assignments retrn no value, and print nothing, while expressions print the
(Roating or interval) value.

This example explores a number of interesting features of yacc and C, Intervals
are represented by a structure, consisting of the left and right endpoint values,
stored a5 donble's. This structure is given & type name, INTERVAL, by using
typedef.

The yace value stack can also cortain floating polnt scalars, and Integers (used
to index into the arrays holding the variable vaiues). Motice that this entire stra-
tegy depends strongly on belng able to asstgn structures and unions in C. In fact,
many of the detlans call functions that retum structures as well.

It is also worth noting the use of YYERROR 10 handie error conditions: division
by an interval containing 0, and an interval presented In the wrong order. In
effect, Lhe error recovery mechanism of yacc is used to throw away the rest of
the offending line.

In additlon to the mixing of types on the velue stack, this grammar also demon-
strates an interesting use of syniax to keep track of the rype {for example, scalar
or interval) of intenmedlate expressions. Note that a scafar can be automatically
promoted to an Interval if the context demands an interval-value. This causes a
L) large number of conflicis when the grammar {5 run ilrough yacc: 18
<y Shify/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at the
two input lines:

2.5+ (3.5~ 4.}
and
2.5+ { 3.5, 4.}

Notice that the 2.5 Is to be used in an interval-valued expression in the second
cxample, but this fact is not known until the *,' is read; by this time, 2.5 is
finished, and the parser cannot go back and change its mind, More generally, it
might be necessary to ook ahead an arbitrary number of tokens to decide
whether to convert a scaler to an interval, This problem s evaded by having two
rutes for cach binary interval-valued operator: one when she left operand is a
scalar, and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the conversion may be
applied or not, leading ta the above conflicts, They are resolved by listing the
mules that yleld scalars first In the specification file; in this way, the conflicts wiil
be resolved in the direction of keeping scalar-valued expressions scalar-valued
until they are forced 1o become intervals,

This way of handting multiple Lypes is very Instructive, but not very general, If
there were many kinds of expression types, instead of just two, the number of
riles nieeded would increase dramatically, and the confiicts even more dramati-
cally, Thus, while this example ts instructive, it is belter practice in a more

Rovision A of 27 March 1990

Y
(:\

 STLEL

micsaayatonis

Chapler 10— yace — Yel Another Compiler-Compiter 259

normal programming language environment to keep the type information as part
of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treat-
ment of Aoating polnt constants. The C library routine ataf is used to do the
actual conversion from a character string to a double-precision value. Ifthe lexi-
cal analyzer detects an error, it responds by retuming a token that Is illegal in the
grammar, provoking a syntax error in the parser, and thence error recovery.

&{

¢ include <otdio.h>
¢ include <otype.h>

typodef struct interval
double lo, hi;

} INTERVALs

INTERVAL wvmul(}, wvdiv{};

double atef{);

doybla dreg(26 1;
INTERVAL vreg[26 1J

L1
dotaxt linan

funion {
int ival;
double dval;
INTERVAL wvvalj}
}

ttoken <ival> DREG VREG
$token <dval> CONST
$type <dval> daxp

stypa <vvall> vaxp

/* precadance information about the opsxators #/

sleft M
\left AN
tleft UMIHUS

/* pracedenca for un&ary minua #/

/+ indicens into dregq, vrag arrays o/
/¢ floating point conatant /
/¢ expression */

/¢ intarval exprasalon +f

%
1inoa 1 /4 ompky ¢/
[lines line
line i doxp ‘\n°
{ printfd [T AV LS S |
| vexp “n”
{ peintf (w(%15.8f , ®l15.8f% Y\av, $l.lo, s1.hi }:
I DREG ‘=" dexp “\n’
{ drag{5t] = §3;)
! VREG ‘=" wexp “\n’
{ vrag($1l = 53; }
{ error ‘Ao’
[yyareoks |
N—
sun Revislon A of 27 March 1990
rzcayutoma

-

360 Programming Utilities and Librarles Cluepter 10 — yace — Yet Another Compiler-Compiler 261

"~
f b (‘ T %% l

daxp H CORST t dofine BSZ 50 /* buffer alze for floating polnt numbars */
! oree { 55 = dreg[$i}:] /% lexical mnalysis */
i dexp “+° dexp vylex{}{
{ §% = 51+ 53) raglster of
t doxe { dexe 55 = 81 -~ §3; 1} while{ {e=getchax{}) =~ ~ 7 }{ /¢ akip over blanks &/ }
| dexp ‘¢ doxp A£{ isuppoc(e) }I
{ $8 = $1 = 537 1} yylval.ival = < — b7
3 dexp “/° dexp roturn{ VREG 1} .
{ 88 = S1 [/ §3; | 1
i ‘= daxp Sprec OMINUS . if({ dislower{ c } I
{ $§ = = 52; } yylval.ival = ¢ = “a%;
| *{* dexp)" return{ DREG };
{ $5 = 52; 1})
’ i£{ dladigie{ c } 1} e~="." }{

vaxp : dexp /* gobble up digits, points, exponents w/
vt 4 { s g Ss.hi' = $.do = #) char buf [BSZ+1], *cp ~ buf}
i { oxp . oxp 7} int dot w 0, axp = O
for{ ; (cp-buf)<BSz ; +¥ep, eegetchar({))i

;

{
$5.1o = 52;

$6.n1 ~ $4: oop = ot
1F{ $%.lo > $$.hi I 1f(isdigit{ < }) econtinue;
printf{ "interval out of oxder\n")i 12y c om= .7
YYERROR; (iIfl dot#+ [] exp) xetuxn{ ‘.7 }7
1 /% will cmuac nyntax orror */
| wnEe H contlnua;
‘\ { §5 = wvreg{$l]; ¥ !
- | vexp ‘+° Vexp 1£(& = ‘o7 M
{ ss.ni = §i.hi + 53.hi: L£{ expt+ } xaturnl e’):
$§5.10 = $1.le + $3.los } /* will cause syntay errar &/
| doxp ‘4+° vexrp continue;
($$.ni = $1 + $3.hi; ! -
$5.10 = $1 + $3.1o; } /% and of number */
i voxp '—" vexp break;
{ $.hi = 51.hi - $3.lo; 1
.16 = §1.la - $3.hi; } wop = ‘N0
| dexp -7 vaxp 1£{ (ep-buf} >~ BSZ }
{ $%.hi = $§1 - §3.1o; printf["constant toa lapng: truacatedin");
$5.10 =~ $1 -~ $3.hiy } olse ungetc(¢, stdin }; /¢ push back last char read */
| vaxp *7 vexp yylval.dval = atof(buf }s
t $9 = vml{ $t.le, $i.hi, §3 i) return(CONST)i
| dexp "7 vexp }
K §5 = wveoul{ $1, $1, 53); } cotuznl € }s
] vaxp f vexp }
{ 1f{ dchock{ 3)}) YYERRCRA;

INTERVAL hilo{ a, b, ¢ d) doubla &, b, o, <
/+ returns the smallest interval containlng a, b, c, and & “/

/+ used by *, / routines +/

56 = wdiv({ $l.lo, $1.hi, §3)]
I dexp ‘77 wexp

[1f{ dchack(%3)}) YYERROR;
§5 = vdiv(§L, $1, 53)i } INTERVAL Vi
1 ‘=’ vaxp kprac UMINUS 1F(axb) | v.hi = a; v.lo = h;)
t $8.mi = ~52.1o $8.10 - -f2.hi;) ;o alsa ([v.hi = b; v.lo = a; 1}

I {7 waxp T}
1f(o»d ¥ |

{ §% = $2;)
7 if{ e>v.hi) wv.hi = o
. J \
@ S Revision A of 27 March 1990 SUn Revision A of 27 March 1990
I esyRIwTY miresyalaTa

262 Programming Utilitles and Libyasics

Chapter 10 — yace — Yet Another Compller-Compiler 263

[it
}
olse |
18
if{
1
ratuxn{ v }}
}
INTERVAL wmul{ a, b,
return{ hilol(

1

1ft v.hi >=

}
return{ 0 }i
}
THTERVAL vdiv(a, b,
raturn(hilo{
]

Ao) v.ie -)

dr=v. hi } w.,hi = d;
edv.le } v.lo w a7

v } doubls a, by INYERVAL vr |
a*y.hi, a*tv,lo, bev.hi, brv.lo) };

dehack(v) INTERVAL vy

o, && v.le <= 0.){
printf(
ratuxn {

ngiviser interval contafins Q.\n")7
1 3

v) douwble a, b; INTERVAL v; |
afv.hi, a/v.lo, b/v.hi, b/v.le })i

10.14. Old Features
Supported but not
Encouraged

This section mentlons synonyms and features wihich are supported for historical
continuity, but, for varipus reasons, are not encouraged.

1. Literals may also be delimited by double quotes e,

2. Literals may be more than one character Jong, If all the characters are alpha-
betic, numesic, of _, the type number of the Hieral is defined, just as if the
Titeral did not have the quotes around ft. Otherwise, it) difcult to find the
value for such literals,

The use of multl-character Hterals is likely to mislend those unfamiliar with
yacc, since it suggests that yace Is doing a job which must be sctually
done by the lexical analyzer.

3. Most places where % is fegal, backstash "\ may be used. In parzicutar,\\is
the same as 959, \eft the same as Fleft, etc.

4. 'There are a number of other synonyms:

%< is the same as %left

%> is the same 23 %xight

$binary and %2 are the same as fnonassoc
$0 and %term are the same as %ttoken

§= i3 the same as Sprec

5. Actions may also have the form
s ., . .}
and the curly braces can be dropped if the action Is a single C statement.

SILID Revision A of 27 March 1990

récroty s
‘@
o

6. C code between %f and %2} used to be permitted at the hesd of the rules sec-
tion, as well as in the declaration section.

S Revision A of 27 March 1950

