
Ox:
An Attribute-Grammar Compiling System

based on Yacc, Lex, and C:

Tutorial Introduction

November 5, 1993
©1992, 1993 Kurt M. Bischoff

Revised: January 7, 2022

1 Introduction

Ox is an attribute-grammar compiling system based on Yacc, Lex, and C. Ox1 gener-
alizes the function of Yacc in the way that attribute grammars generalize context-free
grammars. Ordinary Yacc and Lex specifications can be augmented with definitions
of synthesized and inherited attributes written in C/C++ syntax. From these spec-
ifications, Ox generates a program that builds and decorates attributed parse trees.
Ox accepts a most general class of attribute grammars. The user can specify parse-
tree traversals for easy ordering of side effects such as code generation. Ox handles
the tedious and error-prone details of writing code for parse-tree management, so
its use eases problems of security and maintainability associated with that aspect of
translator development.

Ox is a Yacc/Lex/C/C++ preprocessor, and is designed to bring attribute gram-
mars to the mainstream of Unix-based language development. Ox inherits all of the
familiar syntax and semantics of Yacc, Lex, and C/C++. This makes Ox easily
accessible to language designers, developers, and experimenters who use those tools.
It also provides a ready “escape hatch” in case it is desired to return to an ordinary
Yacc implementation.

This paper gives an overview of Ox by emphasizing examples. It quickly famil-
iarizes you with the Ox features that are most immediately useful. A more complete
reference, the Ox User Reference Manual, accompanies the Ox electronic distribu-
tion.

Familiarity with the use of Yacc, Lex, C, and Make is sufficient to understand
this tutorial and to begin using Ox. Some prior exposure to attribute grammars is

1The name “Ox” comes from an attempt to pronounce an acronym for “An Attribute-Grammar
Compiling System”

1

helpful. Readers with an urge for details and hands-on experience should use the
index of the reference manual and should have access to a system on which Ox is
installed. The examples herein (in machine-readable form) are included with the Ox
distribution.

2 Converting a Yacc/Lex program for use with Ox

Probably the easiest way to get started with Ox is to convert an existing Yacc/Lex2

parser or translator. This can usually be done without changing the Yacc and Lex
code. Ox can also be used with Yacc-only translators, i.e., those with lexical analyzers
hand-coded in C (see section 9.3).

2.1 A parser of arithmetic expressions

As a running example, we start with a Yacc/Lex parser for integer arithmetic ex-
pressions.

The Lex file is named scan.l, and specifies the tokens of the language as digit
strings, parentheses, and four binary operators:

%{

#include "y.tab.h"

%}

%%

[\n\t\f]+ ;

[0-9]+ return(ICONST);

[()*/+\-] return(yytext[0]);

%%

2Ox is designed to work also with Yacc and Lex workalikes and C++. Throughout this paper,
“Yacc”, “Lex”, and “C” can generally be taken to mean “Yacc, BYacc, BtYacc, Bison, or Msta”,
“Lex or Flex”, and “C or C++”, respectively.

2

The Yacc file (named gram.y) specifies the syntax. The grammar is disam-
biguated by use of the %left reserved word:

%token ICONST

%left '+' '-'

%left '*' '/'

%%

expr : expr '*' expr

| expr '/' expr

| expr '+' expr

| expr '-' expr

| '(' expr ')'

| ICONST

;

%%

main()

{return(yyparse());

}

The following Make file is used to build and maintain the parser, which is named
gc:

gc: y.tab.o lex.yy.o

cc -o gc y.tab.o lex.yy.o -ly -ll

y.tab.c y.tab.h: gram.y

yacc -d gram.y

lex.yy.c: scan.l

lex scan.l

y.tab.o: y.tab.c

cc -c y.tab.c

lex.yy.o: lex.yy.c y.tab.h

cc -c lex.yy.c

3

2.2 A parser that builds a parse tree

The above parser does no semantic analysis. To get ready for Ox implementation of
semantics, we need merely replace the following lines in the Make file:

y.tab.c y.tab.h: gram.y

yacc -d gram.y

lex.yy.c: scan.l

lex scan.l

with these:

oxout.y oxout.l: gram.y scan.l

ox gram.y scan.l

y.tab.c y.tab.h: oxout.y

yacc -d oxout.y

lex.yy.c: oxout.l

lex oxout.l

The command:

ox gram.y scan.l

transforms gram.y (called the Y-file) into oxout.y, and transforms scan.l (called
the L-file) into oxout.l. These Ox outputs replace gram.y and scan.l in the
remaining steps of parser construction.

The user-observed behaviors of the original program and the one preprocessed
by Ox are the same. The difference is that the version made using Ox and the new
Make file builds a dummy (attribute-less) parse tree, while the original builds no
parse tree. The original code in the example lacks Yacc actions, but had it contained
such actions, their effects would have been undisturbed by the Ox preprocessing.

Having modified our Make file, we are ready to augment the Y-file and L-file with
Ox constructs.

4

3 Adding Ox-generated semantics

This section introduces the form and meaning of Ox-specific constructs, by way of
converting our parse-tree-building parser into a calculator.

Each parse tree has leaves labeled by the ICONST token. Let us endow this token
with an attribute string: a character pointer that for each ICONST node is to point
to a copy of the lexeme corresponding to the node. This is done by placing the
attribute declaration:

@attributes {char *string;} ICONST

before the first %% mark in the Y-file. The above-mentioned storage location created
for each ICONST node is called an attribute instance (concisely: an instance). It is
an instance of the string attribute of ICONST.

We supply a C macro (named lexeme) that constructs a copy of the lexeme.
For brevity of the example, lexeme unsafely neglects to check for return of NULL by
malloc. Here is the modified L-file:

%{

#include "y.tab.h"

#include <string.h>

#define lexeme strcpy((char *)malloc(yyleng+1),yytext)

%}

%%

[\n\t\f]+ ;

[0-9]+ return(ICONST); @{ @ICONST.string@ = lexeme; @}

"(" return('(');

")" return(')');

"*" return('*');

"/" return('/');

"+" return('+');

"-" return('-');

%%

To the right of the lexical rule for ICONST, there is between @{ and @} an attribute
definition that causes the string attribute instance in each ICONST node to get a
pointer to a copy of the constant’s lexeme.

Notice that we have replaced the single lexical rule:

[()*/+\-] return(yytext[0]);

with six rules that are together equivalent to that single rule. Ox would have been un-
able to determine from the object of the single return statement (namely yytext[0])
the specific token that would be returned. By replacing the rule, we make the
returned tokens explicit, and avoid a warning from Ox.

5

Each parse-tree node labeled by expr is the root of a subtree corresponding to a
subexpression. Placing the attribute declaration:

@attributes {long val;} expr

in the Y-file causes the Ox-generated translator to allocate space (an attribute in-
stance) for a long named val each time it creates a node labeled by expr.

The body (the part between curly braces) of an attribute declaration resembles
that of a C structure declaration, except that curly braces cannot be nested.3

The definitions for the val attribute of expr are seen in the attribute reference
sections (code fragments delimited by @{ and @}) in the modified Y-file. Each of the
attribute definitions starts with the implicit-mode annunciator @i, whose meaning
is explained in section 4.1. In this example, each attribute reference section contains
exactly one attribute definition.

%token ICONST

%left '+' '-'

%left '*' '/'

@attributes {char *string; } ICONST

@attributes {long val;} expr

%%

expr : expr '*' expr

@{ @i @expr.0.val@ = @expr.1.val@ * @expr.2.val@; @}

| expr '/' expr

@{ @i @expr.0.val@ = @expr.1.val@ / @expr.2.val@; @}

| expr '+' expr

@{ @i @expr.val@ = @expr.1.val@ + @expr.2.val@; @}

| expr '-' expr

@{ @i @expr.0.val@ = @expr.1.val@ - @expr.2.val@; @}

| '(' expr ')'

@{ @i @expr.0.val@ = @expr.1.val@; @}

| ICONST

@{ @i @expr.val@ = atoi(@ICONST.string@); @}

;

%%

main()

{return(yyparse());

}

3Attributes can be of any C fundamental or derived type. The Ox code in section 8 uses an
attribute that is a C structure.

6

The grammar symbol expr has three grammar-symbol occurrences (namely expr.0,
expr.1, and expr.2) in the grammar rule:

expr : expr '*' expr

An attribute occurrence (concisely: an occurrence) is a grammar-symbol occurrence
together with an attribute of the symbol. An attribute reference takes the form:

@grammar-symbol.[integer.]attribute-name@

where attribute-name appears as an identifier in the body of the attribute declaration
for grammar-symbol. If integer is n, the reference is to the nth occurrence of grammar-
symbol counting from the left of the rule (the leftmost occurrence being the 0th).
The square brackets above denote that integer and the second . are optional (the
default value for integer being 0).

Attribute definitions are basically C code fragments containing attribute refer-
ences. In general, an attribute definition section contains zero to many attribute
definitions. Each attribute definition is announced by a mode annunciator, and ter-
minated by @} or by the next mode annunciator.

4 Order of Attribute-Instance Evaluation

Attribute grammars specify semantics in a declarative or functional (rather than
sequential or imperative) style. When a parse tree is created, the tree’s attribute
instances are evaluated in an order constrained (but not fully determined) by the
attribute grammar. It is clear that in the example of section 3, all val instances in
the leaf nodes must be evaluated before the val instance of the root node.

Ox (rather than the compiler designer) generates code that causes instances to
be evaluated in a correct order.

4.1 Dependency relations in the Y-file

There is a constraint for each grammar rule in the Y-file: a dependency relation on
the attribute occurrences in that rule. For the rule:

expr : expr '*' expr

@{ @i @expr.0.val@ = @expr.1.val@ * @expr.2.val@;

@}

there is the constraint that instances corresponding to expr.1.val and
expr.2.val in sibling parse-tree nodes must be evaluated before the one correspond-
ing to expr.0.val in their parent node.

Each rule’s dependency relation is determined by its individual attribute defini-
tions. There are several modes for communicating dependency information to Ox.

7

The implicit mode is, for most Ox translators, the only such mode needed. The
explicit mode is described briefly in section 9.7.

The implicit-mode annunciator @i (see the example in section 3) signals to Ox
the beginning of an attribute definition. Further, it informs Ox that an instance
corresponding to the definition’s leftmost attribute reference is to be evaluated after
those corresponding to other attribute references in the definition. This is to say that
the occurrence corresponding to the leftmost reference depends on the occurrences
corresponding to the other references in the definition.

4.2 Dependency relations in the L-file

Note that the mode annunciator @i does not appear in the L-file of the example
in section 3. Mode annunciators are not used in L-files. An attribute reference
section in an L-file is executed as a whole whenever the corresponding lexical rule is
matched. In the example, this is done whenever the Lex-generated scanner matches
a digit string. Executing an attribute reference section may involve the evaluation of
several attribute instances. An attribute reference section in the L-file must contain
exactly one attribute reference for each attribute occurrence defined there (in the
previous example, that for ICONST.string).

5 Using global variables

Attribute reference sections can contain any C code, including references to global
variables.

In our running example, we haven’t yet shown how to print the main result of
the semantic analysis (i.e., the value of the expression). The approach is to copy
the val attribute instance of the root node into a global variable, then print it after
termination of yyparse(). We introduce a unique start production for this purpose.
The L-file need not be changed. Here is shown the new Y-file, with changed or added
lines marked by empty C comments:

8

%token ICONST

%left '+' '-'

%left '*' '/'

%{ /* */

long globVal; /* */

%} /* */

@attributes {char *string;} ICONST

@attributes {long val;} s expr /* */

%%

s : expr /* */

@{ @i globVal = @s.val@ = @expr.val@; @} /* */

; /* */

expr : expr '*' expr

@{ @i @expr.0.val@ = @expr.1.val@ * @expr.2.val@; @}

| expr '/' expr

@{ @i @expr.0.val@ = @expr.1.val@ / @expr.2.val@; @}

| expr '+' expr

@{ @i @expr.val@ = @expr.1.val@ + @expr.2.val@; @}

| expr '-' expr

@{ @i @expr.0.val@ = @expr.1.val@ - @expr.2.val@; @}

| '(' expr ')'

@{ @i @expr.0.val@ = @expr.1.val@; @}

| ICONST

@{ @i @expr.val@ = atoi(@ICONST.string@); @}

;

%%

main()

{yyparse(); /* */

printf("%d\n",globVal); /* */

}

Upon completion of the call to yyparse, the tree’s attribute instances have all
been evaluated. The evaluation of @s.val@ entails an assignment to globVal. The
printing of globVal is the last thing done by the calculator.

6 Parse-tree traversals

A parse tree is much more useful if it can be traversed, and if its attribute instances
can be accessed during traversals. Such traversals are particularly useful for code
generation. Ox can be instructed to generate a translator that performs various
kinds of traversals after evaluation of all of the tree’s attribute instances.

9

6.1 Application: translation to prefix

The following Y-file specifies an expression parser that translates its (infix) input to
prefix form. The L-file is the same as that of the previous example.

%token ICONST

%left '+' '-'

%left '*' '/'

@traversal @preorder yourTrav

@traversal @preorder yoursToo

@attributes {char *string;} ICONST

@attributes {long val;} s expr

%%

s : expr

@{ @i @s.val@ = @expr.val@;

@yoursToo printf("\n%d\n",@s.val@);

@}

;

expr : expr '*' expr

@{ @i @expr.0.val@ = @expr.1.val@ * @expr.2.val@;

@yourTrav printf(" * ");

@}

| expr '/' expr

@{ @i @expr.0.val@ = @expr.1.val@ / @expr.2.val@;

@yourTrav printf(" / ");

@}

| expr '+' expr

@{ @i @expr.val@ = @expr.1.val@ + @expr.2.val@;

@yourTrav printf(" + ");

@}

| expr '-' expr

@{ @i @expr.0.val@ = @expr.1.val@ - @expr.2.val@;

@yourTrav printf(" - ");

@}

| '(' expr ')'

@{ @i @expr.0.val@ = @expr.1.val@;

@}

| ICONST

@{ @i @expr.val@ = atoi(@ICONST.string@);

@yourTrav printf(" %s ",@ICONST.string@);

@}

;

%%

main()

{return(yyparse());

}

10

The line

@traversal @preorder yourTrav

declares a left-to-right preorder traversal named yourTrav. Suppose that in our ex-
ample, the yourTrav traversal has reached a node at which a grammar rule R is
applied. If the attribute reference section of R contains the traversal-mode annunci-
ator @yourTrav (which was given meaning by its @traversal declaration), then the
printf statement following @yourTrav is executed, and the traversal is continued for
the subtree rooted at the node in question. Using @postorder instead of @preorder
would cause a traversal that executes the printf after completing the traversal of
that subtree, resulting in a postfix translation.

A traversal that accesses the val instance in the root node is an alternative to
using the global variable globVal of section 5. Placing the line:

@traversal @preorder yoursToo

in the declarations section, and the line:

@yoursToo printf("%d\n",@s.val@);

in the attribute reference section for the start production accomplishes the same
thing as the use of globVal.

One traversal is done for each traversal declaration, the traversals being done
one after another, in the order in which the declarations appear. In the example,
the declaration of yoursToo appears after that of yourTrav, so the value of the
expression is printed after the preorder translation is printed.

7 Inherited vs. Synthesized Attributes

It is useful to think of the lexical rules (i.e., the rules in the L-file) as virtual grammar
rules (productions) whose right-hand sides are the empty string and whose left-hand
sides, while actual Yacc tokens, are virtual nonterminals. This generic concept of rule
is consistent with usual concepts of attribute grammar, and leads to the following
definitions:

An attribute occurrence o in a rule R is synthesized if and only if

• o is on the left-hand side (LHS) of R and the attribute reference section of R
contains a definition of o, or

• o is on the right-hand side (RHS) of R and the attribute reference section of
R contains no definition of o.

11

An attribute occurrence o in a rule R is inherited if and only if

• o is on the LHS of R and the attribute reference section of R contains no
definition of o, or

• o is on the RHS of R and the attribute reference section of R contains a
definition of o.

Ox issues an error message if it finds an attribute that has both synthesized and
inherited occurrences in the grammar. An attribute is synthesized if and only if it
has at least one occurrence, and its every occurrence is synthesized. An attribute
is inherited if and only if it has at least one occurrence, and its every occurrence
is inherited. It follows from the above that the grammar’s start symbol can have
only synthesized attributes. Referring to returned tokens as rules emphasizes the
equal status of tokens and nonterminals, inasmuch as each kind of symbol (except
the start symbol) can have both synthesized and inherited attributes. Each symbol
has a distinct name space, so same-named attributes of different symbols are distinct
attributes, and can differ as to whether they are inherited or synthesized.

For each parse-tree node except the root node, two rules of the Ox input specifi-
cation are of particular interest. The home rule is the rule applied at the node, i.e.,
the rule whose LHS is the label of the given node, and whose RHS symbols are the
labels of the children of the node. The parent rule is the rule applied at the node’s
parent. The attribute definition of a synthesized attribute instance of a given node
is associated with the node’s home rule (i.e., it appears in the attribute reference
section for that rule), and definitions of inherited attribute instances are similarly
associated with the parent rule.

In a legal input specification, each attribute of a symbol appearing in a rule is
either synthesized or inherited, but not both, so the definitions of all attributes “fit
together” completely and without contradiction.

8 Using inherited attributes

This section gives an example indicating the use of inherited attributes for semantic
analysis involving right context. The example also gives a better idea of how Ox
code is used together with C code.

In many languages, for instance Pascal, each variable declaration is essentially a
list of identifiers followed by a type specifier. Here we show a simple language whose
every sentence consists of such a variable declaration. Our translator parses the
input, recording in a symbol object the identifier and type of each variable declared.
Then the symbol objects are printed during a postorder traversal.

12

Here is the L-file:

%{

#include "y.tab.h"

#include <string.h>

#define lexeme strcpy((char *)malloc(yyleng+1),yytext)

%}

%%

[\n\t\f]+ ;

real return(REAL);

integer return(INT);

boolean return(BOOL);

[a-zA-Z]+ return(IDENT); @{ @IDENT.string@ = lexeme; @}

"," return(',');

";" return(';');

":" return(':');

. {fprintf(stderr,"illegal character\n"); exit(-1);}

%%

The definitions in section 7 together with the following Y-file imply that:

• string is a synthesized attribute of IDENT.

• sym is an inherited attribute of IDENT.

• tMark is an inherited attribute of varList.

• varDecl has no attributes.

13

%token REAL INT BOOL IDENT

%{

#include <stdlib.h>

struct sym {char *str,*typeMark;};

struct sym *allocSym(cp,t)

char *cp,*t;

{struct sym *pSym;

pSym = (struct sym *) malloc(sizeof (struct sym));

pSym->str = cp; pSym->typeMark = t;

return pSym;

}

%}

@attributes {char *string; struct sym *sym; } IDENT

@attributes {char *tMark; } varList

@traversal @postorder myT /* my Traversal */

%%

varDecl : varList ':' REAL ';'

@{ @i @varList.tMark@ = "real"; @}

| varList ':' INT ';'

@{ @i @varList.tMark@ = "integer"; @}

| varList ':' BOOL ';'

@{ @i @varList.tMark@ = "boolean"; @}

;

varList : IDENT

@{ @i @IDENT.sym@ =

allocSym(@IDENT.string@,@varList.tMark@);

@myT printf("%s: %s;\n",@IDENT.sym@->typeMark,

@IDENT.sym@->str);

@}

| varList ',' IDENT

@{ @i @varList.1.tMark@ = @varList.tMark@;

@i @IDENT.sym@ =

allocSym(@IDENT.string@,@varList.tMark@);

@myT printf("%s: %s;\n",@IDENT.sym@->typeMark,

@IDENT.sym@->str);

@}

;

%%

main()

{return(yyparse()); }

14

9 Overview of other features

This section briefly describes some Ox features that are provided for convenience or
for advanced or specialized use. Detailed descriptions of these features appear in the
Ox User Reference Manual.

9.1 Macro facility

Ox’s input specification may be such that the same or similar text appears in more
than one place in attribute reference sections. Ox has a macro substitution feature
that can be used to decrease verbosity in such cases.

9.2 Automatic generation of copy rules

Often a Y-file has attribute definitions that function only to copy an instance be-
longing to one node to a like-named instance belonging to the node’s parent or child.
Large attribute grammars tend to have many such definitions, which are sometimes
called copy rules. The situation is conspicuous when contextual information is moved
leafward via inherited attributes. Ox syntax provides ways of specifying that a copy
rule is global to the attribute grammar, obviating repetition of attribute definitions
in many grammar rules.

9.3 Using Ox with scanners not based on Lex

By default, Ox provides preprocessing for Lex files augmented with Ox constructs.
By using a command line option, Ox can be informed that the L-file contains Ox-
augmented C code rather than the usual Ox-augmented Lex code.

9.4 Use of multiple scanners

Some translators contain several scanners. Such a translator is designed so that at
any moment, it is using one scanner or another, and switches to a different one when
there is a change in context. An Ox translator that uses more than one scanner can
be constructed by submitting to Ox more than one L-file.

9.5 Stripping Ox constructs

Occasionally, the Ox user may desire copies of the Y-file and L-file(s) stripped of Ox-
specific constructs. By a command-line option, the Ox user can filter all Ox-specific
constructs from the inputs, to obtain files acceptable to Yacc and Lex. The origi-
nal copies of the Y-file and L-file(s) are unchanged, but Ox’s outputs on oxout*.*

contain neither Ox constructs nor the usual Ox-generated parse-tree-management
code.

15

9.6 Accessing Yacc pseudo variables

Attribute definitions that refer to the Yacc pseudo variables $$, $1, $2, etc. are
permitted in various forms, including:

@i @grammar-symbol.[integer.]attribute-name@ = $n;

where $n denotes a Yacc pseudo variable. It is also possible to copy attribute in-
stances into pseudo variables.

9.7 Expressing dependencies explicitly

Suppose that you have a C function fun in a library, and that you want to use it
to define an attribute occurrence, say sym.attrb, in terms of some other occurrence
othersym.otherAttrb. Further suppose that the first formal parameter of fun is of
the same type as othersym.otherAttrb, and that fun’s second formal parameter is
a pointer to something of the same type as sym.attrb. A call to fun changes the
contents of the location indicated by its second argument.

It wouldn’t work to write:

@i fun(@otherSym.otherAttrb@, &@sym.attrb@);

since the mode annunciator @i (see section 4.1) implies that the occurrence appearing
first (otherSym.otherAttrb) is the occurrence being defined, and that it depends
on sym.attrb. Actually you intend the opposite.

One solution would be to modify the definition of fun (reversing the order of its
formal parameter list). If you don’t want to disturb the library, however, it would
be best to use Ox’s explicit mode annunciator @e as follows:

@e sym.attrb : otherSym.otherAttrb ;

fun(@otherSym.otherAttrb@, &@sym.attrb@);

In the first line above, Ox is explicitly given dependency information using a Make-
like syntax: it is declared that sym.attrb depends on
otherSym.otherAttrb. Use of the explicit mode makes the order of the occurrences
in the second line’s call to fun irrelevant to Ox’s understanding of the dependencies.

10 Acknowledgements

This is to thank Terry Dineen, Carolyn Giberson, Markus Klingspor, John Levine,
Carla Marceau, and Michael Seager for their helpful reviews of early versions of this
paper.

16

