
A Unified Processor Model for Compiler
Verification and Simulation using ASM

Roland Lezuo, Andreas Krall

Institute of Computer Languages
Vienna University of Technology

Argentinierstr.8
A-1040 Wien Austria

rlezuo,andi@complang.tuwien.ac.at

Abstract. For safety critical embedded systems the correctness of the
processor, toolchain and compiler is an important issue. Translation val-
idation is one approach for compiler verification. A common semantic
framework to represent source and target language is needed and Ab-
stract State Machines (ASMs) are a well suited and established method.
In this paper we present a method to show correctness of instruction
selection by performing fully automated simulation proofs over symbolic
execution traces of state transformations using an automated first-order
theorem prover. We applied this approach to an industrial-strength com-
piler and created the ASM models in such a way that we are able to reuse
them to create a cycle-accurate simulator. To achieve fast simulation we
compile the ASM models to C++ and present the compilation scheme
in this paper. Finally we present our preliminary results which indicate
that a unified ASM model is sufficient for proving correct instruction
selection and generating efficient cycle-accurate simulators.

1 Introduction

Todays safety critical systems often require application specific processors to
fulfill the demanding performance and efficiency requirements. Correct behav-
ior of the processor and the corresponding toolchain is an absolute requirement
making formal specification and verification necessary. We are interested in us-
ing the same formal methods for compiler verification and simulation. Abstract
State Machines are a well established method for specification and analysis of
programming languages and systems providing a simple practical framework
offering important features for industrial usage like decomposability and are
readily understood [1].

Section 2 describes the generation of (first-order logic) proof scripts using
symbolic execution of ASM models to perform translation validation [6] of in-
struction selection [3]. Section 3 describes our approach to generate an high-
performance simulator using compilation to C++. Section 4 presents our pre-
liminary results and concludes the paper.



2 Correctness of instruction selection

Zimmermann and Gaul [9] describe constructing correct compiler backends for
DEC Alpha using ASMs. DEC Alpha has some nice properties making it very
suitable for formal description [4]. The processor used in our project is a very
long instruction word (VLIW) architecture with digital signal processor fea-
tures and a non-interlocking pipeline. It supports wrap-around and saturation
arithmetics, single instruction multiple data instructions, predicated execution,
hardware loops and store/load with updates to the address register.

During instruction selection a (sub)tree of intermediate representation (IR)
nodes is matched with a sequence of machine instructions, IR variables and
temporaries (operand) are mapped to registers (regmap). We assume an infinite
number of registers at this stage and allocate real registers later.

Such a translation is correct if the transformation described by the IR tree
(resulttree) and the transformation induced by execution of the machine instruc-
tions (resultinstr) is semantically equivalent. Semiformal this can be stated in
first-order logic as: ∀ operand : regmap(operand) ≡ operand ⇒ regmap(resulttree)
≡ resultinstr. Some trees and instructions may however have side-effects (e.g. a
modified memory cell) which are modeled as updates to ASM functions. For
correctness the IR tree and the machine instructions must induce the same side-
effects, semiformal this can be stated as ∀ updatestree ⇒ ∃ updateinstr : updatetree
≡ updateinstr and vice versa.

To determine whether resulttree and resultinstr are equivalent, ASM models
(see next section for more details) using a common semantic vocabulary defining
IR tree operations and machine instructions have been developed. The common
semantic vocabulary is modeled as external functions in the ASM models. To
generate a proof script the ASM execution engine logs an invocation of the
external function f with arguments a returning result r as predicate f(a, r). As
concrete values for the operands are not known at instruction selection time the
ASM has to be evaluated symbolically. The ASM execution engine performs the
following steps when evaluation of a function f at location l results in undef.
First create a new symbolic value s for f at l, then directly modify the definition
of f(l) so each evaluation of f(l) returns s. The value undef is preserved when
set explicitly, so evaluating f(l) after a f(l) := undef will result in undef and
not in a new symbol s. Finally log the creation of the new symbol as predicate
f(l, s).

The resulting log is a sequence of predicates stating facts about (symbolic)
values of dynamic functions (e.g. contents of registers) and invoked external
functions (i.e. the common semantic vocabulary). Given a set of axioms describ-
ing relations of the semantic vocabulary and the a priori known mapping of IR
operands to registers a theorem prover can now show semantic equivalence of
the state transformation described by the IR tree and the machine instruction
induced state transformation.



3 Fast cycle-accurate simulation

Teich et al [8] have shown that ASM models can be used to generate a simu-
lator for a processor. What they call bit-true arithmetic functions is equivalent
to our common semantic vocabulary. Our simulator core is itself described in
ASM notation (approx. 200 LOC). In contrast to [8] we are interested in effi-
cient industrial-strength simulators. We initially tried the CoreASM execution
engine [2] but simulating 50 CPU cycles took around 13 seconds. We considered
compiling the CoreASM language to C++, but efficient compilation is difficult
due to the dynamic type system (i.e. its List background). By adding type an-
notations to lists and restricting ourselves to a statically typed subset of the
CoreASM language we were able to develop an efficient compiler.

Our compilation scheme preserves the static structure of the ASM model, and
we follow the formal definition of ASM very closely. Each evaluated rule produces
an update set, which is aggregated and composed as described in [2]. We support
a (static) subset of the following CoreASM language elements: seqblock, par, let,
ifthenelse, :=, debuginfo, push, pop, forall, call, case, enum, derived, static, cons,
nth, peek, tail, program, self and lists with the restriction of all elements being
of the same type (may be another list type). As we support the P seq Q rule
we may need a (local) copy of the state to apply P ’s updates before evaluating
Q. Such a copy however would be very expensive as the state contains huge
functions (e.g. system main memory). That is why we introduced a so called
PseudoState which only contains updates which should have been applied to
the state already. When querying the PseudoState for a function f at location
l a hashmap containing the pending updates is searched for f(l) and if such an
update is found its value is returned, if no such update can be found the global
state is queried for f(l).

It turned out that handling of the update sets is crucial to the performance
of the simulator. As updates can not be stack allocated, and dynamic memory
allocation using malloc/new would be too expensive a memory pool allocator
is used. Memory management overhead is minimal as just the pointer to the
next free memory cell needs to be incremented after each allocation. As soon as
evaluation of the top level rules terminates (called a step in [2]) the resulting
updates are applied to the global state and the memory pool is reset. This enables
efficient simulation but large update sets are still troublesome for the simulator
performance.

4 Preliminary results and Conclusion

The proof generation system is capable of compiling the ANSI C Rijndael ref-
erence implementation v2.2 resulting in approx. 1650 proof scripts. About 700
scripts are successfully proven as correct. Most of the other scripts can’t be
proven due to missing semantic description of the involved IR nodes and ma-
chine instructions. We currently are able to handle basic copying and converting
instructions (e.g. register moves), basic arithmetic operations (e.g. addition),



memory access (load and store), memory access with pointer increment, but
also conditional branches with symbolically evaluated conditions.

We are able to correctly simulate all fundamental features of the CPU like
instruction fetch, bundling decoding, predicated execution, hardware loops and
the pipeline. Due to missing ASM models of the instruction set only one test
program is executed correctly. For this case our simulator is slightly better than
the manually coded simulator provided by the hardware vendor. The compiled
models execute approx. 3000 times faster compared to interpretation by the
CoreASM execution engine.

We have presented an approach to translation validation using ASMs and
theorem proving targeting a processor architecture with many difficult to model
features. We then used the very same semantic models to generate a fast cycle-
accurate simulator with performance comparable to a manually coded vendor
provided simulator. To achieve efficient simulation we restrained ourselves to a
static subset of the CoreASM language but nonetheless found creation of the
models easy.

Ongoing work is creating the missing ASM models to show the verification
method is suited to prove industrial strength programs and increase the number
of applications which can be simulated.
Acknowledgment: This work is supported in part by the Austrian Research
Promotion Agency (FFG) and by Catena DSP GmbH. We would also like to
thank Laura Kovács for her valuable help with the vampire [7, 5] theorem prover.

References

1. Börger, E.: Abstract state machines: A method for high-level system design and
analysis (2003)

2. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. In: Proc. of the 12th International Workshop on Abstract State Machines.
pp. 153–165 (2005)

3. Fraser, C.W., Henry, R.R., Proebsting, T.A.: BURG: fast optimal instruction selec-
tion and tree parsing. ACM Sigplan Notices 27(4), 68–76 (1992)

4. Gaul, T.S.: An abstract state macine specification of the DEC-alpha processor fam-
ily (1995), ftp://www.jair.org/groups/Ealgebras/alpha.pdf

5. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vam-
pire. In: Proc. of IJCAR. LNCS, vol. 6173, pp. 188–195 (2010)

6. Pnueli, A., Siegel, M., Singerman, F.: Translation validation. pp. 151–166. Springer
(1998)

7. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Com-
mun. 15, 91–110 (Aug 2002)

8. Teich, J., Kutter, P.W., Weper, R.: Description and simulation of microprocessor
instruction sets using ASMs. In: Proceedings of the International Workshop on
Abstract State Machines, Theory and Applications. pp. 266–286. ASM ’00, Springer-
Verlag, London, UK (2000)

9. Zimmermann, W., Gaul, T.: On the construction of correct compiler back-ends: An
ASM approach. Journal of Universal Computer Science 3, 504–567 (1997)


