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Abstract. Spectre can be fixed in hardware by treating speculative mi-
croarchitectural state in the same way as speculative architectural state:
On mis-speculation throw away all the speculatively-performed changes.
The resource-contention side channel needs to be closed, too. This po-
sition paper also explains how Spectre works, why software mitigations
are not sufficient.

1 Introduction

Spectre [SSLG18] is a hardware vulnerability that has been reported to hardware
manufacturers such as AMD and Intel in June 2017, and to the general public
on January 3, 2018. Unlike Meltdown, which has been published at the same
time and has been fixed in hardware relatively quickly1 (or, in the case of AMD,
not built into the hardware from the start), even the latest CPUs with specula-
tive execution from all manufacturers are vulnerable to Spectre, and hardware
manufacturers leave it to software to “mitigate” these vulnerabilities.

New Spectre variations that bypass existing mitigations are discovered reg-
ularly, e.g., the recent discoveries of Intel’s DownFall [Mog23] and AMD’s In-
ception [TWR23] vulnerabilities. Intel lists2 6 “transient execution attacks” pub-
lished in 2018–2021, and, as of this writing (August 2023), 5 published in 2022-
2023 that require software mitigations (sometimes with hardware support) even
on Intel’s most recent Sapphire Rapids server CPU. This includes the original
two Spectre variants (v1 and v2) reported to Intel in June 2017.

In this position paper I present a general approach to fix Spectre in hardware
(Section 9) that would fix not only Spectre v1 and v2, but also, e.g., the recently-
discovered Downfall and Inception vulnerabilities. In order to make this work
understandable to a wide audience, Section 2 explains architecture and microar-
chitecture, Section 3 side channels, Section 4 speculative execution, Section 5
Spectre and Section 6 its relevance. Section 7 argues why we should not seek
the solution to the problem in software mitigations. One possible hardware fix
for Spectre is to eliminate speculative execution, but the performance impact
is unacceptably big (Section 8). Instead, a better fix is to eliminate the side

1 https://www.anandtech.com/show/13450/intels-new-core-and-xeon-w-processors-
fixes-for-spectre-meltdown

2 https://www.intel.com/content/www/us/en/developer/topic-technology/software-
security-guidance/processors-affected-consolidated-product-cpu-model.html
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#r8=0x1000 r9=0xff8
mov (%r9), %r10
add 1, r10
mov %r10, (%r8)

PC=0x200a
...
r8=0x1000
r9=0xff8
r10=5
...

0xff8
0x1000

4
5

registers memory
0x2000
0x2003
0x2007
0x200a

Fig. 1. Architectural state: register and memory contents; this example shows the
architectural state right after the instrucion at 0x2007

#r8=0x1000 r9=0xff8
mov (%r9), %r10
add 1, r10
mov %r10, (%r8)

PC=0x200a
...
r8=0x1000
r9=0xff8
r10=5
...
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Fig. 2. Microarchitecture (yellow background) is normally invisible to software, apart
from its performance effects

channels back from the speculative world into the committed world (Section 9).
Section 10 discusses the costs of this fix. Finally, Section 11 is a call to action
for computer buyers, researchers and CPU manufacturers.

2 What is architecture and microarchitecture?

The architecture (aka instruction-set architecture, ISA) is the interface between
the hardware and the software. Software sees main memory and registers, and
instructions that work on them (see Fig. 1).

On the hardware side of this interface the highest design level is called mi-
croarchitecture. Microarchitecture is generally not visible in the functionality
presented to the software, only through the performance. I.e., instructions gen-
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erally deal only with architectural features such as memory and registers, not
with microarchitectural features such as caches.3

E.g., the cache is a microarchitectural feature, and the CPU works function-
ally in the same way with the cache as without it (or with caches with different
sizes); the only difference is that CPUs with caches run faster. While an access to
main memory takes several hundred cycles on a modern general-purpose CPU,
accessing the level-1 (L1) data (D) cache costs 3–5 cycles. However, the (L1)
D-cache is much smaller (32-128KB on recent CPU cores), and contains only
recently-accessed data.

Speculative execution is another microarchitectural feature and is discussed
in Section 4.

3 What are side channels?

A side channel (aka covert channel) reveals data not directly by letting attacker
read the secret data, but through ancillary properties of data processing.

E.g., if the run-time a program takes depends on the secret, an attacker can
often use this fact to extract the secret (this kind of attack is known as a tim-
ing attack). E.g., a program could contain an if-statement where the condition
depends on the secret, and the run-time of the two branches differs. For pro-
gram code that deals with the dearest secrets (encryption keys and passwords),
avoiding secret-dependent branches has long been best practice.

More generally, the best practice has been to write code that runs in constant
time with respect to the secret.

The timing of memory accesses depends on the input address, thanks to
caches. Caches provide such a big performance boost that we prefer to keep
them and deal with the security implications in some other way rather than use
CPUs without caches.

One case where memory access timing has played a role is AES encryption.
It has been designed in a way that is hard to implement without loads from an
address that depends on the secret key. While that dependence is quite convo-
luted, Bernstein has found a way to use the timing variation due to loads in such
AES implementations to extract the key [Ber05].

3.1 Defending against side-channel attacks

The defense against side-channel attacks first requires realizing that there is
a side-channel, and then taking measures that eliminate the leakage of secret
information through that side channel.

3 There are a few cases where microarchitectural features are managed by software,
and there are instructions for that, e.g., instructions for fetching data into caches
(prefetch), instruction-cache management, or for draining the pipeline to ensure
strictly in-order execution, but these instructions are not relevant for the rest of this
paper.
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As mentioned above, for timing side channels this has usually been done by
writing the pieces of code that deal with the dearest secrets as constant-time
code. These pieces of code tend to be miniscule (hundreds of lines) compared to
the huge amounts of code (millions of lines) for complete programs like a web
browser or an operating system.

While this makes the defense sound like being the responsibility of the soft-
ware people alone (and this perception may have contributed to the lack of
efforts on hardware fixes for Spectre), the software people cannot do it without
support from hardware manufacturers.

In order to write constant-time code, the programmer needs guarantees that
the timing of the used instructions does not depend on the input. Such guarantees
have been historically hard to come by (and were only specified for specific
implementations rather than the architecture), but recently Intel has guaranteed
the input-independence of a subset of instructions for all of its implementations.4

In the AES case, the hardware manufacturers helped, not by making load
timing address-independent (which would be impractical, as mentioned above),
but by providing instructions that perform the problematic steps of AES in
constant time without needing loads.

The discipline of writing constant-time code is used only for cryptographic
and password-handling code, because it requires additional effort and specialized
competencies, because it often results in slower run-time, but also because it is
too limiting and impractical for implementing the requirements of most code.
E.g., while the contents of spreadsheets of big companies and intelligence agencies
may be considered by their users to be at least as secret as the encryption keys
of ordinary citizens, to my knowledge nobody has tried to write a spreadsheet
program with content-independent timing.

4 What is speculative execution?

Most modern general-purpose CPU core use speculative execution, a microar-
chitectural technique that works as follows:

The core’s branch predictor predicts a likely future execution path and then
executes (but does not commit) instructions on that path. The catch is that
the prediction may turn out to be incorrect. In that case the architectural state
(registers and memory) must not be changed in the way indicated by the mis-
prediction prediction. If the speculation turns out to be correct, the changes can
be committed (see Fig. 3).

Modern CPUs with speculative execution do this by conceptually dividing
the core into a speculative part, which contains architectural results-to-be of un-
confirmed speculative execution, and a committed part which contains the actual
architectural state at the current architectural program counter (PC). So when
the core architecturally processes an instruction (by committing (aka retiring)

4 https://www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/best-practices/data-operand-independent-timing-isa-
guidance.html
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# r8=0x1000 r9=2 r11=0x1080
# m[0x1010]=5 
# m[0x10a8]=10
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=2
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=2
r10=5
r11=0x1080
r12=10
...

0xff8

0x1010
...

0x10a8
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5
...
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registers memory

speculative architectural state

# r8=0x1000 r9=-1 r11=0x1080
# m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010
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5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

Fig. 3. Two examples of speculative execution, in both cases the ja instruction is
predicted as being not taken. Above: The prediction is correct, and the speculative
architectural state is eventually committed. Below: The prediction is incorrect, and
the speculative architectural state is squashed.

it in the reorder buffer), that instruction has often been speculatively executed
some time earlier, and its result is lying around, waiting to be committed; and
the commit takes this result and turns it into committed architectural state.

However, when a branch turns out to be mispredicted, and this branch is
committed, all the speculative results after the branch (i.e., on the wrong path)
are thrown away, and the processor starts executing on the correct path.

Note that this speculative execution not only contains register updates, but
also stores to memory, possibly including several stores to the same memory
location, and (speculative) loads from that location in between.

There have been many speculative-execution implementations of various ar-
chitectures since the 1990s, and almost5 all of them implemented the handling
of architectural state correctly, both for correctly predicted branches and for
mispredictions, for various kinds of registers, and for memory.

5 What is Spectre?

For microarchitectural state, e.g., the contents of the cache, existing processor
cores do not discern between speculative and committed changes. After all, the

5 The recently-published Zenbleed bug in AMD’s Zen2 core
(https://lock.cmpxchg8b.com/zenbleed.html) is the exception that proves the
rule.
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addr dataI-Cache

Branch Predictor

L2 cache

...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

S4

Attacker’s architectural state

Fig. 4. A Spectre v1 attack starts with a misprediction (S1), loads the secret (in 0xff8)
into speculative architectural state (S2), changes the cache state in a secret-dependent
way (S3), and finally uses cache timing to extract the secret into the architectural state
of the attacker (S4).

idea is that microarchitectural state is invisible anyway. If a speculative load puts
a line in the D-cache (and evicts another line), this has no architectural signifi-
cance, so the hardware designers have had no qualms at performing this change
speculatively, without a mechanism that cancels it in case of a misprediction.

Unfortunately, this approach opens a side channel that allows to leak data
from the otherwise ephemeral world of misspeculation.

Figure 4 shows an example: The cmp and ja instructions architecturally pre-
vent an out-of-bounds access to the array in r8, but if the branch is mispredicted
to be not-taken, the following code is speculatively executed, and it reads the
address 0xff8 speculatively; by using any other index, any other 64-bit value in
the address space of the process could be accessed, including, e.g., secret keys
or passwords that are there for cryptographic or authentication purposes. Let
us assume that the secret is in memory location 0xff8. In itself the load of the
secret value into the speculative r10 does not appear a problem, because this is
still the ephemeral world of misspeculation, and it cannot get out, right?

Unfortunately, on current hardware it can get out through a cache-based
side channel: The second mov instruction loads a value into the D-cache, and
the address of this load depends on the secret. The loaded cache line replaces a
line that used to be in the cache, and which cache line is replaced depends on
the address. An attacker can repeatedly access a number of memory locations
in order to prime the cache, and can see from the timing of the cache accesses
whether a cache line has been replaced, and in this way learn something about
the secret.

There are a number of steps involved in Spectre attacks:
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S1 The speculation itself: In this example (which is a Spectre v1 attack) a
conditional branch causes speculative execution, but there are others. E.g.,
Spectre V2 uses indirect branches. There are also other speculative mecha-
nisms in modern cores, such as speculating whether a memory load is to a
different or the same address as an earlier store, and this has also been used
in a number of attacks.

S2 The mechanism for getting the secret data into speculative architectural
state. In the example above it is the load from a[i]. In the recently-published
Downfall vulnerability [Mog23], it’s gather instructions as implemented on
some Intel microarchitectures.

S3 The sending side of the side channel for getting the data out of the misspec-
ulation realm. In the example above it’s the access to b[j] that channels
information about j through the cache side channel. But other microarchi-
tectural state can also be used, such as the power state of the AVX unit
[SSLG18].

S4 The receiving side of that side channel. For a cache side-channel this consists
of the attacker priming the cache and monitoring through timing which lines
are replaced by the victim.

There is a lot of variation on all of these steps, leading to the stream of
vulnerabilities that have been found up to now and continue to be found. For
more details (and more aspects) there is a survey of the Spectre and Meltdown
attacks until December 2020 [XS21]. A term that has been used to cover all
these vulnerabilities and attacks against them is “transient execution vulnera-
bilities/attacks”, but in this paper I just use “Spectre” in the same meaning as
referring to all of these speculation-based side-channel attacks.

6 How relevant is Spectre?

Has Spectre been used in the wild? It’s hard to know. Consider the case where
attackers use Spectre to determine your password or encryption key. If they use
that to decrypt your files, you may never know; maybe it was bad luck that
your competitor undercut you by a narrow margin. But even if somebody does
something very blatant like publish your documents on the Internet or encrypt
your files and demand ransom, you usually don’t know how the attacker got at
your password or your encryption key.

However, a working exploit for reading normally unaccessible files on Linux
has been discovered by Julien Voisin.6 There is no proof that this exploit has
been used for an actual attack, but given that it is widely available, it would be
surprising if it has not.

Some people argue that Spectre is not relevant because there are many soft-
ware vulnerabilities that may be used for subverting your system; so why, they
argue, should an attacker bother with Spectre, which is supposedly harder to
use. On the other hand, software vulnerabilities may be discovered and fixed at

6 https://dustri.org/b/spectre-exploits-in-the-wild.html
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any moment, while Spectre exists unfixed on all desktop and server hardware,
and is not even mitigated against in most software. So Spectre may be more
attractive to attackers than some people give it credit for.

7 Why is software mitigation not a good way to deal

with Spectre?

The mitigation of non-speculative timing attacks is to write the few hundred
lines of code that deals with keys and passwords in a constant-time way. Can we
not just deal with Spectre in the same way?

Unfortunately, for Spectre all the software that has the secret in its address
space can potentially be used for an attack, and consequently would have to be
hardened. For a web browser or an OS kernel that is typically millions of lines
of code.

As an example of a mitigation, for the Sprectre V1 example in Fig. 4, spec-
ulative load hardening has been proposed. A simple variant would change the
code as follows:

cmp 15,%r9

ja end

mov $0x0,%rax

cmova %rax, %r9

mov (%r8,%r9,8),%r10

mov (%r11,%r10,8),%r12

end:

Here the cmova hardens the following load, by setting r9 to 0 if r9>15. While
this condition cannot architecturally be true at that place, it can be true during
misspeculation. The cmova instruction uses the same flags as the ja branch, but
the mitigation assumes that cmova does not speculate.

In reality speculative load hardening is substantially more complicated, be-
cause it also has to also deal with possible speculation on earlier branches
[ZBC+23].

Software mitigations have apparently led to the impression that Spectre is
under control and no hardware fix is necessary, but they have a number of
problems:

7.1 Still vulnerable

It has often turned out that many mitigations do not even completely close the
vulnerability for which they are designed.

One reason for that is that the mitigation defends against a too-narrow attack
scenario. E.g., speculative load hardening (SLH) has been implemented in the
LLVM compiler and is intended to close the Spectre V1 vulnerability presented
above, but it still has some leakage; this was then improved in Strong SLH [GP19]
and recently Ultimate SLH [ZBC+23].
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Another reason is that the mitigation relies on assumptions about microar-
chitectural mechanisms that turn out to be wrong; e.g., earlier Spectre V2 miti-
gations assumed that returns would only be predicted from the return stack, but
there are some microarchitectures that use the general indirect-branch predictor
to predict returns when the return stack is empty (so returns can also be used
in Spectre V2 attacks).

Also, these mitigations tend to work only against a specific variant, but new
variants are discovered all the time.

7.2 Performance

These mitigations cost performance, for the whole program (because with Spec-
tre the whole program can be used to reveal the secret). E.g., Zhang et al. report
a factor of around 2.5 slowdown (compared to no mitigation) for SPEC CPU
2017 (int and fp, rate and speed) [ZBC+23]. I saw a slowdown (compared to
using no mitigation) by a factor 2–9.5 from compiling Gforth with the fastest
retpoline mitigation against Spectre V27.

7.3 Effort

Because the slowdowns that you get from applying compiler-based mitigations
across the board are often considered to be unacceptable, there is the idea that
programmers should be more selective and analyse whether each specific place
in a program can actually be used by an attacker, and only harden those places,
lowering the performance cost.

However, this requires a huge amount of effort, and it takes only one place in
the potential attack surface that the programmer mistakenly has not hardened,
and the program is still vulnerable.

And when the next vulnerability and mitigation shows up, you have to do
it all again. And when the program is changed (due to, e.g., new requirements),
you have to analyse more than just the changed lines.8

8 Why is the first idea for a fix not so great?

The first idea many people have for fixing Spectre is to eliminate speculative
execution. While this certainly fixes Spectre by preventing step 1 of the exploits,
the performance impact of this measure is pretty bad: E.g., the core without
speculation that shows the best performance on our LATEXbenchmark9 is the
1800MHz Cortex-A55 on the Rock 5B single-board computer. The Cortex-A76
core (with speculative execution) running at 2275MHz on the same computer is

7 news:<2023Jan15.105348@mips.complang.tuwien.ac.at>
8 The idea that you do not have to reanalyse code when the requirements change

resulted in the Ariane 501 explosion.
9 https://www.complang.tuwien.ac.at/franz/latex-bench
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25
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D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory
...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

speculative microarchitectural state

inst333: mem[0xff8]=14
inst334: mem[0x10f0]=11

Fig. 5. Separating speculative microarchitectural state from committed microarchitec-
tural state eliminates the S3 part (and therefore also S4) of a Spectre attack, as far as
microarchitectural state is concerned; resource-limitation side channels also need to be
addressed, see text.

3.3× as fast for this benchmark, and the 3000MHz Apple Firestorm is 7.8× as
fast.

Given the performance impact, it’s no surprise that we have not seen a resur-
gence of microarchitectures without speculation. The number of customers that
would exchange this much performance for security against Spectre is small. The
customers’ reasoning is as follows: There are lots of vulnerabilities in the soft-
ware we use, so fixing Spectre is not going to make our computers that much
safer. Therefore we are not willing to sacrifice that much performance for this
benefit.

9 How to fix Spectre in hardware?

The less costly and therefore better way to fix Spectre is to prevent step S3.

9.1 Side channels based on microarchitectural state

In particular, for the side channels through microarchitectural state, we can use
the same approach for microarchitectural state as for architectural state: keep
the speculative state separate from the committed state, and squash it when
it turns out that the speculation is wrong. This goes for all microarchitectural
state: D-cache, I-cache, branch predictor, TLBs, etc.

In the case of D-cache, several papers [YCS+18,KKS+19,AJ20] have already
proposed ways of doing that, probably because the cache side channel has been
the most popular one for Spectre-type attacks. But of course, the other state-
based side channels need to be closed, too.
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Some attempts at fixes for state-based side channels have tried to undo the
changes when a speculation turns out to be false, e.g., CleanupSpec [SQ19].
However, I think that it is better to keep the speculative changes separate until
commit time, for the following reasons:

– The microarchitectural state is changed, albeit only for a short time, and
this is visible to potential attackers, given enough effort.

– It is harder to reason about the correctness of an undoing approach than
about an approach that never speculatively changes the non-speculative
state.

– Undoing approaches have been tried for architectural state [DA92], but com-
mitting approaches have won. It is likely that the same reasons will make
undoing of microarchitectural state unattractive.

9.2 Side channels based on resource contention

Apart from the popular state-based side channels, another kind of side channel
is contention for resources such as execution ports, functional units, or cache
ports. SMoTherSpectre [BSN+19] attacks another SMT thread on the same core
by using execution port contention by the speculatively executing victim as a
side channel. Even worse, speculative interference attacks [BSP+21] use resource
contention to affect the timing of an older (eventually committing) instruction
in the same thread.

For the SMT side channel, a solution is to have a fixed partitioning of re-
sources between the threads, so that no thread can use resource contention as
a side channel. This means that resources that exist only once have to be time-
shared. E.g., if there is an non-pipelined divider that takes 20 cycles for the
division, there are fixed 20-cycle time slots for each thread, and when a thread
does not have a division ready at the start of its time slot, that time slot goes
unused. This fixed partitioning will cost some performance; it could be made op-
tional, allowing the full benefit of SMT to be used in settings where the sibling
threads are believed to not spy on each other.

For the same-thread problem, Behnia et al. [BSP+21] describe the high-level
principle: “a speculative instruction must not influence the execution of a non-
speculative instruction”. And they describe two rules that ensure that:

– “No instruction ever influences the execution time of an older instruction.”
They propose to achieve this by giving priority to older instructions in case
of resource contention. They discuss several options how to deal with non-
pipelined execution units. The slot idea above is another way to deal with
that: If a thread can start using the execution unit only at the start of a
slot, the priority approach works for non-pipelined units (although one might
wish for better performance).

– “Any resources allocated to an instruction at the front end and the execution
engine are not deallocated until the instruction becomes non-speculative”.
This rule ensures that misspeculated code cannot produce timing variations
by congesting the front end.
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9.3 Other side channels

Another known side channel is energy consumption. In particular, Meltdown-
Power [KJG+23] uses speculation for S1 and S2, and then a power-based side
channel for S3 and S4. However, it requires that the speculative load updates
the cache, which does not happen with the fix for speculative microarchitectural
state outlined above, so fixed hardware would be immune against this particular
attack.

Still, one can imagine that the energy consumption of e.g., functional units
working on mis-speculatively loaded data could reveal something about the data.
At the moment I have no good hardware answer for that. On the other hand, the
question is if such an attacks can be made practical (i.e., leak relevant amounts
of data in realistic time frames).

10 How much does the fix cost?

The fixes certainly cost design complexity. Hardware architects have been re-
markably good at handling the increasing complexity of modern high-performance
CPUs, and I expect them to rise to the challenge of designing fixed hardware, if
they are given the task.

The resulting CPU cores will require more area, for the speculative state.
E.g., if we want to be able to buffer, say, 30 cache lines loaded from outer cache
levels in speculative microarchitectural state, the memory for these 30 cache
lines is needed, as well as the infrastructure to look up data in them and deal
with snoop messages. Compared to the 224 physical ZMM registers (each with
64 bytes) in Intel’s Sunny Cove core, this does not seem to add that much area;
and I expect that the area for other microarchitectural features will be even
smaller.

Concerning performance, the additional buffers can even help, and for Muon-
Trap [AJ20] the Parsec benchmarks indeed see a speedup by a factor 1.05. How-
ever, SPEC 2006 sees a slowdown by a factor 1.04 compared to vulnerable hard-
ware. And then there is the question of how much speed the additional area
could have produced if it was invested just in performance. On the other hand,
compared to applying software mitigations to all software (e.g., a factor 2.5 for
defending only against Spectre v1), even the SPEC slowdown and the opportu-
nity performance cost of the additional area are small.

One may want to compare with the more selective hardening approach that
is used in, e.g., the Linux kernel. This kind of hardening has not been applied to
the SPEC benchmarks, and the hardware fixes have not been measured on the
benchmarks that are typically used for measuring the Linux kernel performance,
so a direct comparison is not possible. Looking at Michael Larabel’s results for
how the kernel mitigation of just Inception10 and the firmware mitigation of
just Downfall 11 slows down applications, the slowdowns are often larger than

10 https://www.phoronix.com/review/amd-inception-benchmarks
11 https://www.phoronix.com/review/intel-downfall-benchmarks
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what has been reported as slowdown from hardware fixes for the cache side
channel. While these are numbers for different programs and mitigations/fixes
for different vulnerabilities, and both comprehensive software mitigations and
comprehensive hardware fixes will have higher cost, I expect that the majority
of the performance cost of a hardware fix is in dealing with the cache (because
of stuff like cache coherence), so I don’t expect the cost of a comprehensive
hardware fix to be that much higher than the cache-only approaches we have seen
yet, while on the software mitigation side, every vulnerability seems to require
its own mitigation, with a program-dependent performance impact, sometimes
very expensive, as discussed above.

11 What should I do?

As computer customers, we should keep asking the CPU manufacturers when
they will finally fix Spectre in hardware; we should tell them that software mit-
igations are not good enough.

And when one of the manufacturers comes out with a CPU with a Spectre
fix, we should prefer these CPUs in our buying decisions even if they are a little
slower at running unmitigated software (or software with mitigations that are
unnecessary for the fixed CPUs). After all, such a CPU will be safer than an
unfixed CPU when both run unmitigated software (the usual case). And such
a CPU will be faster and at least as safe (probably safer) when the fixed CPU
runs software without mitigations and the unfixed hardware runs software with
mitigations.

When CPU manufacturers claim that they have fixed Spectre, only believe
them when they explain how they did it (and only if that explanation does not
have holes); don’t accept hand-waving along the lines of “Differences in AMD
architecture mean there is a near zero risk of exploitation”12.

As computer architecture researcher, you can work at designing and
evaluating mechanisms for fixing Spectre. Even if there is already some work in
that direction, there is probably still some microarchitectural state or other side
channels that have not been covered yet. And even for the microarchitectural
state that has been covered, there are probably ways to improve on it, i.e., a
solution that costs less area and/or less performance.

If your research leans more towards theory, you could work out a formal
description of speculative side channels, and a way how computer architects
could prove that they have closed these side channels. I do not know if they
worked out such an approach to make sure that speculation works correctly for
architectural state; it may be (usually) good enough to validate the architectural
design by running test programs, but for microarchitectural state and other side
channels, such an approach is needed, because the side channel does not show
up in the usual architectural validation.

12 https://web.archive.org/web/20180104014617/https://www.amd.com/en/corporate/speculative-
execution
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If you work at a CPU manufacturer (or CPU design house), you have
the best opportunity to fix this problem. If the decision is up to you, go ahead
and decide that you will make a Spectre-immune high-performance CPU core.
If the decision is up to someone else, make a case that convinces them that
the fix is worth the development and manufacturing costs by making your CPU
safer than the competition, and to put a stop to the constant stream of new
Spectre- and Meltdown-type vulnerabilities (and the slowdowns from firmware
and software mitigations). Also, imagine what happens if your competition is
first at presenting a Spectre-immune CPU.

12 Conclusion

Attacks like Spectre that extract speculative state through a side channel are
different from earlier side-channel attacks in being impractical to mitigate in
software: not just the small piece of code that deals with the secret, but all
software in the same address space as the secret (including libraries) needs to
mitigate these attacks; E.g., an automatic compiler approach against Spectre v1
alone costs a factor 2.5 in performance, and that does not defend against all
Spectre attacks (e.g., not against Spectre v2). One way to reduce this cost taken
in, e.g., the Linux kernel, is to try to identify places that can be attacked and
only harden those; this costs a lot of programmer effort, has the potential danger
of leaving a hole open, and when another attack is discovered, this effort often
has to be repeated.

Therefore the right way to deal with Spectre is to fix it in hardware. For
speculative microarchitectural state, it should be treated just like speculative
architectural state: During speculation, keep it separate from the committed
state; and when the speculation turns out to be wrong, just squash the specula-
tive state (including speculative microarchitectural state). When the speculation
is correct, turn the speculative state into commited state (e.g., during instruction
commit).

In addition to state-based side channels, resource contention can also provide
a side channel. This can be addressed with a fixed partitioning of resources in
an SMT setting, by always prioritizing older instructions in resource conflicts,
and by managing front-end resources in a specific way.

A hardware fix for Spectre costs some chip area and often also performance
compared to a vulnerable core, but much less than applying a software mitigation
against just Spectre v1 across the board.
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