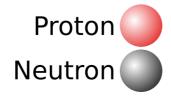

Kernfusion Zurück in die Zukunft II?


M. Anton Ertl, TU Wien

Qualifikation und Quellen

- Wie qualifiziert bin ich zu diesem Thema?
 Kein Experte, aber besser informiert als die meisten
- englische und deutsche Wikipedia
- Referenzen in Kommentaren in https://www.complang.tuwien.ac.at/anton/fusion/slides.tex

Grundlagen: Kernfusion

Meilensteine

- Gewinnfaktor Q: Fusionsenergie/Startenergie Scientific breakeven: Q=1
- Engineering breakeven
 Reaktor liefert mehr Strom als er braucht
 Umwandlungsverluste Q = 5...100
- Zündung
 Aus der Fusion kommende Energie verursacht weitere Fusion
- Commercial breakeven
 Wenn das Fusionskraftwerk Strom zu konkurrenzfähigen Preisen erzeugt
- ullet Nach 70 Jahren Q<1 Engineering breakeven immer 20—50 Jahre entfernt Noch kein Reaktor hat Stromerzeugungseinrichtungen

Ist Kernfusion sauber?

- ◆ 80% der Energie in Form von Neutronen (3% bei Kernspaltung)
 ≈ 5× mehr Neutronen pro erzeugter Energie
 Hochenergieneutronen (14MeV) machen Strukturmaterialien radioaktiv
 Strukturmaterialien kann man sich aussuchen
 ideal: geringer Wirkungsquerschnitt, kurze Halbwertszeit
 Versprechung: schon nach 500 Jahren kaum mehr radioaktiv
- Tritium (³H) ist radioaktiv, bioaktiv, und sehr mobil

Ist Kernfusion sicher?

- + Zündung ist schwer aufrechtzuerhalten Davonlaufen kaum möglich
- + wenig Treibstoff im Reaktor
- + kaum Nachwärme
- Beträchtliche Energie im Reaktor
- Radioaktivität kann entweichen

Wie bekommt man den Treibstoff?

- Deuterium aus Wasser gewinnbar
- Tritium: ${}^{6}\text{Li}+n \rightarrow {}^{4}\text{He}+{}^{3}\text{H}+4,8\text{MeV}$
- benötigt 1 n/³H
- Neutronenvermehrung, z.B.: ⁹Be+n+1,57MeV→ 2⁴He+2n aber reicht das, um Verluste auszugleichen?
- Ansonsten: Herstellung in Kernreaktoren
 Wozu dann überhaupt Fusionsreaktoren?
- Beispiel: Fusionsreaktor kann 80% seines Tritiums selbst herstellen
 20% des Tritiums müssen von Kernreaktoren kommen
 0,5n/Kernspaltung für Tritium (erfordert mehr Anreicherung)
 dann kommen 18% der Energie aus der Kernfusion, 82% aus der Kernspaltung

Alternative Reaktionen

temperature

 10^1

10⁰

ي المحتوان المحتوان

10⁻²⁶

[keV]

D-T

D-D

D-He3

 10^{2}

10³

- ${}^{2}H+{}^{2}H\rightarrow{}^{3}H+{}^{1}H+4,03MeV$ und dann ${}^{2}H+{}^{3}H$ $^{2}H+^{2}H\rightarrow^{3}He+n+3,27MeV$ kein Tritium als Treibstoff 30× höhere Anforderungen für Zündung
- ${}^{2}H+{}^{3}He\rightarrow{}^{4}He+{}^{1}H+18,3MeV$ > 5% der Energie in Neutronen 0.002% ³He im Helium 16× höhere Anforderungen für Zündung
- 10⁻¹ 10⁰ • ${}^{1}H+{}^{11}B \rightarrow 3{}^{4}He+8,7MeV$ temperature [billion kelvins] < 0,2% der Energie in Neutronen ("aneutronisch") $500 \times$ höhere Anforderungen für Zündung, $9 \times$ höhere Temperatur

Zusammenfassung

- Kernfusion wird in absehbarer Zeit nur Geld und Energie verbrauchen
- wird vermutlich nie wirtschaftlich
- weniger schmutzig als Kernspaltung, aber nicht sauber
- weniger gefährlich als Kernspaltung
- Benötigt Tritium. Herstellung ohne Kernspaltung?
- Reaktionen ohne Tritium-Treibstoff noch weiter weg von Praktikabilität