
The Essence of Closures
A language design perspective

M. Anton Ertl
anton@mips.complang.tuwien.ac.at

TU Wien

Abstract
Closures are originally associated with lexically scoped name binding. However, in the
course of implementing closures in Gforth, it turned out that the actual function (the
essence) of closures is to communicate data between closure creation and the closure
execution (with the closure call usually being far from the closure creation). This paper
presents a simple language extension for C: two-stage parameter passing, implemented
with flat closures; the first stage creates a closure, the second stage calls it. Nested functions
and access to outer locals are not needed.

1 Introduction

In the summer of 2018 I worked with Bernd Paysan on adding “closures” to
Gforth [Ertl and Paysan, 2018]. At the time Gforth had local variables and nested
definitions (known as quotations), but outer local variables were (and are) not
visible inside quotations, in order to avoid the implementation complications of
closures. But we wanted to allow programmers to do in Gforth what they do
with closures in other languages.

I started out with the lexical scoping idea with some adaptions to avoid garbage
collection and with explicit capture of outer locals for simpler implementation
in terms of flat closures, and wrote a draft version of a paper about that [Ertl,
2018]. Then Bernd Paysan set out to implement these ideas, came up with further
simplifications, and after a lot of back-and-forth we arrived at the final design
and implementation. As a result, the paper had to be almost completely rewritten
[Ertl and Paysan, 2018].

One interesting aspect is that the result is not just easier to implement, but also
often more convenient to use than the original lexical-scoping-inspired syntax.
As an example, here is a definition of +field using the draft syntax:

The Essence of Closures M. Anton Ertl

: +field (u1 u "name" -- u2)

create over {: u1 :} +

[’] alloth <[{: : u1 :} drop u1 + ;] set-does> ;

and the syntax of the final paper:

: +field (u1 u "name" -- u2)

create

over [{: u1 :}d drop u1 + ;] set-does>

+ ;

I will not explain the syntax in detail here, but just explain the decisive
difference: In the draft version is was necessary to create a local u1 with {: u1 :}

that could then be passed (explicitly) into the closure (with : u1), while in the
final version the value is passed as a parameter at closure creation and only
turned into a local in the closure ([{: u1 :}d). Since then we have added a variant
that does not require defining a local and expresses the same functionality as:

: +field (u1 u "name" -- u2)

create

over [n:d nip + ;] set-does>

+ ;

In this variant closure creation takes one item from the stack and stores it in
the closure, and the closure call pushes this item.

Of course, these examples and the examples in the papers are hard to under-
stand for a non-Forth audience, so I wrote this paper with a wider audience in
mind, and use C with appropriate (unimplemented) extensions in the rest of this
paper.

The main point of this paper is that it can be (and, in our experience, is) better
for the implementation complexity, for the language, and for the programmers
to provide what programmers want to do with closures more directly than by
accessing outer locals in nested functions.

This paper may be of little interest to well-versed implementors of functional
languages, but it may inspire language designers of other languages to widen
their perspective, looking for other solutions than just implementing nested
functions with access to outer locals. It may help them to find a better solution,
without a detour as long as the one I have taken.

Section 2 gives an example where closures are useful. Section 3 introduces
functions with two-stage parameter passing as a language-level way to build flat

The Essence of Closures M. Anton Ertl

closures directly. Section 4 shows how to implement the equivalent of writing to
an outer local variable. Section 5 discusses how to manage the memory needed
for closures. Finally, Section 6 describes related work.

A note on terminology: The term closure has been originally used for a lambda
expression with (not really) free variables where these variables are bound by
the lexically-scoped environment, then by language implementors for the data
structure that implements this concept, and by programmers when they create
such a thing, pass it around, or call it. It has seen quite a bit of expansion in
meaning in that process, and this paper continues with that expansion, by using
closure to mean any function/procedure/method that has a parameter that is
determined at run-time1, but is not in the parameter list of calls to the closure.

2 Motivation

When a function g takes another function f as parameter, g typically calls f
with a certain number of arguments, and normally the argument is generated
by f according to its internal logic. A classical example is a numeric integration
function, which in C would go something like this:

double numint(double l, double h, double (*f)(double))

{

... (*f)(x);

...

return result;

}

numint() calls (*f)(x) repeatedly with different x in order to approximate∫ h
l f (x)dx. Now consider the case that we want to compute

∫ h
l x´ydx, where y

is a run-time parameter that is not changed inside numint. We would have to
implement

double numint2(double l, double h,

double (*f)(double,double), double y)

{

... (*f)(x,y);

...

return result;

}

1This excludes passing through a global variable, which is bound at compile time, and makes the whole thing
non-reentrant.

The Essence of Closures M. Anton Ertl

And additional versions of numint would be necessary for passing more
parameters or parameters with other types.

Instead, we would like to bind y to a function at run-time and pass a function
pointer to numint() that can be called with only an x argument. Closures provide
this capability.

3 Two-stage parameter passing

A way to define such a closure is to pass parameters in two stages: In the first
stage we pass y, creating the closure; we can then pass the closure to numint(),
where it is called (repeatedly) with various x parameters. A C syntax extension
for this might look as follows:

double g(double y)(double x) {

return pow(x,-y);

}

/* inside a different function */

r1 = numint(a, b, g(2.0));

r2 = numint(a, b, g(3.0));

r3 = numint(a, b, g(2.5));

The first numint() call contains a call to g(), which is evaluated first, and
produces a closure where y = 2.0. Inside numint() the closure is then called with
various values for x.

One benefit of this approach is that we can pass a value directly instead of
having to assign it to an outer local first. Admittedly, with outer locals a function
g() can be constructed that is called in a very similar way, but that function would
pass a closure outwards (which requires explicit deallocation in a language like
C), whereas at least in the numint() case stack allocation is sufficient for a closure
created by the first-stage call to g().

Implementationwise, the closure consists of the code address of g and the value
of y. This kind of representation comes out of flat-closure-conversion [Dybvig,
1987], one possible way to implement a language with nested functions with
access to outer locals.2 So what we do here is to write the code such that flat
closures are created directly.

2The mechanical conversion from nested functions to flat closures also shows that two-stage parameter passing is
as powerful as nested functions.

The Essence of Closures M. Anton Ertl

This means that we cannot directly add a third stage, but (if we need that) have
to do it by having a two-stage function that calls another two-stage function and
passes the arguments of the first two stages to the second function as arguments:

int f1(int i1, int i2)(int i3) {

return i1*i2*i3;

}

int(*)(int) f2(int i1)(int i2) {

return f1(i1,i2);

}

Of course, if it turns out that this kind of extension is used a lot in your
language, it could be extended into something more sophisticated, along the
lines of what functional programming languages like ML do with currying and
a more sophisticated compiler.

4 Changeable data

Until now these closures only allow passing data by value. What if we want to
have read and write access to shared data? Well, the C way is to pass a pointer
to the data. A simple example of that is:

int counter(int *p)(void) {

return (*p)++;

}

/* inside a different function */

int *c1p = malloc(sizeof(int));

int *c2p = malloc(sizeof(int));

c1p = 5; / initialize counters */

*c2p = 0;

int (*c1)() = counter(c1p);

int (*c2)() = counter(c2p);

int (*c1a)() = counter(c1p);

printf("%d %d\n",(*c1)(),(*c2)()); // 5 0

printf("%d\n",(*c1a)()); // 6

printf("%d %d\n",(*c1)(),(*c2)()); // 7 1

In this example memory for two counters is created with malloc(), and two
closures (c1 and c1a) access one of the counters, while a third closure (c2) accesses

The Essence of Closures M. Anton Ertl

the other one. Each call to one of the closures increases the corresponding counter
and returns its previous value.

When implementing languages with nested functions with access to outer
locals and flat-closure conversion, this kind of code comes out of assignment
conversion [Dybvig, 1987]. Again, here we write this code directly.

Explicitly allocating the memory for the counters is a bit cumbersome, and
depending on the language you are designing, you may or may not want to
provide a more convenient way to write this.

Moreover, your base language may not allow to pass pointers to memory
around or another way may be preferable. E.g., in C++ it would be more conve-
nient to use references rather than pointers to the memory. In Pascal, Modula-2, or
Oberon I would probably use the VAR parameter syntax (and its pass-by-reference
semantics) for this purpose.

5 Closure memory

Closures need memory at run-time, at least for storing (in our example) y,
possibly also a pointer to the code for computing x´y, and possibly some native
code (called a trampoline) so that the closure can be involved like a regular
function pointer.

In many languages closures are garbage-collected; others, like Algol 60, Pascal,
and C++ only allow calling closures in a way that allows them to be stack-
allocated.3 In both cases the programmer does not have to deal with allocation
and deallocation of the memory.

C (and Forth) does not have garbage collection, but instead uses either stack
allocation and deallocation or malloc() and free() (or user-constructed memory
management, such as region-based allocation or reference-counting). We could
require the same restrictions as C++ to get by with stack allocation, but that is
insufficient in many usage cases.

Therefore, closure memory is managed by the programmer, just like other
memory. The programmer decides whether closures are allocated on the stack,
or with which allocator they are allocated and destroyed.

In Gforth we have the general closure constructor that takes the allocator as
parameter, and also shorthands for the common cases: stack, heap (allocate (like
malloc()) and free), and dictionary (essentially allocation until the end of the
process). I leave it to you to find a nice syntax for C or the language you are
designing.

3One usually does not call closures in languages with this restriction “closures”, but here I do.

The Essence of Closures M. Anton Ertl

6 Related work

Our earlier work [Ertl and Paysan, 2018] describes a similar Forth extension in
more detail, including performance results, and implementation data. At the
time of that paper the closure implementation in Gforth cost 78 source lines of
code (it has grown a little since then).

A number of other languages provide similar features, some through nested
functions with access to outer locals, others with more special syntax. Of par-
ticular note are the C++11 lambdas4, which inspired my first (too-complicated)
approach: They are based on accessing outer locals, but allow capturing the outer
locals explicitly, and allow to control whether a variable is captured by-value
or by-reference. One major difference is that we need to assign the value to the
outer local first rather than passing it as parameter as in the present approach.
Interestingly, C++ does not offer explicit memory management of closures, and
restricts its programmers to stack-related limitations.

Our implementation ideas were based on flat-closure conversion approach
[Dybvig, 1987, Section 4.4] in combination with assignment conversion [Dybvig,
1987, Section 4.5]. A later work [Keep, Hearn, and Dybvig, 2012] discusses the
kinds of optimizations that implementors of nested functions should perform.
But the basic implementation ideas inspired the language side of the Gforth
extension, and eventually the present paper, and there such optimizations are
unnecessary (or left to the programmer).

However, there are also other ways to implement access to outer locals. Static
link chains and the display [Fischer and LeBlanc, 1988] are particularly well-
known. They keep each local in only one place, but have relatively complex and
sometimes slow ways to access them.

7 Conclusion

It is not necessary to implement nested function with access to outer locals in
order to provide the features to programmers that they want. Instead, functions
with two-stage parameter passing allow a direct implementation in terms of flat
closures, and this can even be nicer to use than accessing outer locals.

4https://en.wikipedia.org/wiki/Anonymous_function#C++_%28since_C++11%29

https://en.wikipedia.org/wiki/Anonymous_function#C++_%28since_C++11%29

The Essence of Closures M. Anton Ertl

References

Dybvig, R. Kent (Apr. 1987). “Three implementation models for scheme”. PhD
thesis. University of North Carolina at Chapel Hill. url: http://agl.cs.unm.edu/

~williams/cs491/three-imp.pdf.
Ertl, M. Anton (2018). “General locals”. Draft version of the published paper

[Ertl and Paysan, 2018] that was mostly rewritten. url: http://www.euroforth.org/
ef18/drafts/ertl.pdf.

Ertl, M. Anton and Bernd Paysan (2018). “Closures — the Forth way”. In: 34th
EuroForth Conference, pp. 17–30. url: http://www.complang.tuwien.ac.at/papers/ertl%

26paysan.pdf.
Fischer, Charles N. and Richard J. LeBlanc (1988). Crafting a compiler. Menlo Park,

CA: Benjamin/Cummings.
Keep, Andrew W., Alex Hearn, and R. Kent Dybvig (2012). “Optimizing clo-

sures in O(0) time”. In: Proceedings of the 2012 Annual Workshop on Scheme
and Functional Programming, Scheme 2012, Copenhagen, Denmark, September 9-15,
2012. Ed. by Olivier Danvy. ACM, pp. 30–35. isbn: 978-1-4503-1895-2. url:
http://doi.acm.org/10.1145/2661103.

http://agl.cs.unm.edu/~williams/cs491/three-imp.pdf
http://agl.cs.unm.edu/~williams/cs491/three-imp.pdf
http://www.euroforth.org/ef18/drafts/ertl.pdf
http://www.euroforth.org/ef18/drafts/ertl.pdf
http://www.complang.tuwien.ac.at/papers/ertl%26paysan.pdf
http://www.complang.tuwien.ac.at/papers/ertl%26paysan.pdf
http://doi.acm.org/10.1145/2661103

	Introduction
	Motivation
	Two-stage parameter passing
	Changeable data
	Closure memory
	Related work
	Conclusion
	References

