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ABSTRACT

Providing vectors of run-time determined length as opaque value
types is a good interface between the machine-level SIMD instruc-
tions and portable application-oriented programming languages.
Implementing vector operations requires a loop that breaks the
vector into SIMD-register-sized chunks. A compiler can fuse the
loops of several vector operations together. However, during nor-
mal compilation this is only easy if no other control structures
are involved. This paper explores an alternative: collect a trace
of vector operations at run-time (following the program control
flow during this collecting step), and then perform the combined
vector loop. This arrangement has a certain run-time overhead, but
its implementation is simpler and can happen independently, in a
library. Preliminary performance results indicate that the overhead
makes this approach beneficial only for long vectors (> 1KB). For
shorter vectors, unfused loops should be used in a library setting.
Fortunately, this choice can be made at run time, individually for
each vector operation.
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1 INTRODUCTION

Hardware provides SIMD instruction set extensions such as AVX
(Intel, AMD) to support data-parallel processing within a single
thread.

Many programming languages do not have language-level sup-
port for SIMD instructions, and instead rely on auto-vectorization
by the implementation. While auto-vectorization promises to work
for legacy code, its success is unreliable, and it generally requires
quite a bit of compile time, and is therefore not a good choice for
JIT compilers. Auto-vectorization is also relatively complex, and is
therefore rarely implemented in non-HPC compilers.

Another approach is to provide language features that allow
expressing operations at the SIMD instruction level, such as the
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recent Java Vector API draft [ILSV18]. This is simple to implement,
but puts the onus of not just vectorization, but also of optimizing the
vector operations completely on the shoulders of the programmers.

The approach we look at in this paper uses a slightly higher-
level interface: application-sized vectors in opaque value types
(Section 2). This interface is abstract enough to allow a variety of
implementation approaches and optimizations.

A simple implementation of this interface performs a loop per
vector operation. In otherwise straight-line code several vector op-
erations can be combined into a single loop, reducing the necessary
loads and stores, and the loop overhead. However, extending this
optimization across program-level control structures is complicated.

Instead, in this paper we propose to collect a trace (or chain) of
vector operations at run-time, even across control-structures. Once
such a trace is complete, code for it is generated, and executed.
Actually, in the usual case, the same trace will have occured before,
and instead of generating the code again, the previously generated
code is used.

There are certain similarities of this optimization to the hardware
chaining of vector operations on the Cray-1, hence the title of this
paper.

For long vectors, this optimization technique gives a speedup
over having a separate loop for each vector operation. It can be
implemented as a library, and therefore without change to the
existing JIT compiler.

This technique is the main contribution of this paper and we
present it in more detail in Section 3, discuss its implementation
in Section 4 and evaluate it in Section 5. Section 2 discusses the
background of SIMD and vectors.

1.1 Potential misunderstandings

Manual vectorization. This paper is not about automatic vec-
torization, but about an optimization for manually vectorized
code.

Vector traces every time. Our optimization builds a trace of
vector operations every time it executes the vector opera-
tions, not just when the rest of the code is JIT-compiled.

Code generation only for unique traces. Our optimization
uses a hash table to avoid having to re-generate the native
code every time.

2 BACKGROUND

This section gives an overview of SIMD instructions and program-
ming language approaches for making use of them.

2.1 SIMD instructions

In many applications one has to perform the same operations on a
lot of data, mostly independently, sometimes combining the results.
This is known as data parallelism.
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vmulpd %ymm2, %ymm3, Y%oymm-

ymmf

ymm3

Figure 1: A SIMD instruction: vmulpd (AVX)

Data parallelism is obvious for many scientific applications, but
can also be found in other applications, e.g., in the Traveling Sales-
man Problem’. So introducing a wordset for expressing data paral-
lelism may be useful in more applications than one might think at
first.

Computer architects provide SIMD (single instruction multiple
data) instructions that allow to express some of this data parallelism
to the hardware. The Cray-1 [Cra77] was an early machine with
SIMD instructions, but starting in the 1990s, microprocessor manu-
facturers for general-purpose CPUs incorporated SIMD instructions
in their architectures. E.g., Intel/AMD incorportated MMX, 3DNow,
SSE, AVX etc. and ARM incorporated Neon, and has presented SVE.

These instruction set extensions typically provide registers with
a given number of bits (e.g., 256 bits for the YMM registers of AVX),
and pack as many items of a basic data type in there as fit; e.g.,
you can pack 16 16-bit integers or 4 64-bit FP values in a YMM
register. A SIMD instruction typically performs the same opera-
tion on all the items in a SIMD register. E.g., the AVX instruction
vmulpd %ymm2, %ymm3, %ymm12 multiplies each of the elements
of ymm2 with the corresponding element in ymm3, and puts the
result in the corresponding place in ymm1 (Fig. 1).

2.2 Automatic or manual vectorization?

Ever since the Cray-1 there has been the hope of auto-vectorization:
Programmers would write scalar code oblivious of SIMD instruc-
tions, and the compiler would find out by itself how to make use of
these instructions for that code [AK87].

While auto-vectorization occasionally succeeds in vectorizing a
piece of code (especially benchmarks), it is an unreliable method;
there are often obstacles that make it hard or impossible for the com-
piler to vectorize the code, e.g., the possibility of overlap between
memory accesses in the loop; and if you ask the programmer to
change his program to remove these obstacles, why stick with scalar
code? If the programmer thinks in terms of vectorizing the program,
the way to go is to directly express vector operations rather than
expressing them through scalar operations and then hoping that
the compiler will auto-vectorize them. Compiling language-level

! <news:b2aed821-2b7e-456d-9a6d- c2ealfdedd55@googlegroups.com>
2In this paper, we use the AT&T syntax for the AMD64 architecture; in contrast to Intel
syntax, the destination of an instruction is the rightmost operand in AT&T syntax.
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vector operations> to SIMD code also requires much less compiler
complexity and compile time than auto-vectorization.

2.3 Hardware or application vectors?

For vectors as language features, one design decision is which vector
length to support. GCC and the Java Vector API draft [ILSV18] de-
cided to expose the SIMD granularity at the programming language
level, while APL, Fortran, and a Forth extension [Ert17] support
vector or array operations of arbitrary, dynamically determined
size. Programming at SIMD granularity means that the program-
mer has to perform significantly more work when vectorizing the
application, and it also puts all the responsibility (but also the op-
portunity) for optimizing vector operations on the shoulders of the
programmer.

In particular, the program has to process the application data in
SIMD-sized parts in a loop, with an extra loop for the extra elements,
a transformation called strip-mining. Figure 2 shows a vectorizable
scalar loop, Fig. 3 shows the same computation using the Vector
API, with manually applied strip-mining; and Fig. 4 shows the same
computation using dynamically-sized vectors.

2.4 Arrays or opaque vectors?

Another design decision is whether vector operations access the
normal arrays of the programming language (as the Fortran 90
array operations do), or work on special vector types; and if the
latter, what the properties of these vector types should be. Figure 5
shows the example in Fortran 90, with direct accesses to the arrays,
while the variant in Fig. 4 first copies the data from arrays into
a FloatVect, and copies the result back into an array. Directly
accessing the existing arrays appears more natural, but it has a
number of disadvantages:

e The operands of array operations often do not have a size
that is a multiple of the SIMD granularity. This makes it
necessary to have special treatment for the last elements,
e.g., as in Fig. 3.

e The operands of array operations are often not aligned to

SIMD granularity. Different operands may have different

offsets from SIMD alignment. The program therefore has to

perform unaligned SIMD accesses, which are less efficient
than aligned accesses.

Fortran 90 array slices (which can be operands of array op-

erations) may contain elements that are not consecutive in

memory, and accessing such array slices is several times
more expensive than for arrays of consecutive elements.

Operands of vector operations may overlap the result, so the

parts of the vector operation may need to be performed in a

special order, or one may need an intermediate copy.

o The operands of vector operations may may-alias with array
accesses for control-flow, indexing or addressing purposes.
As a consequence, the compiler may be unable to combine
vector operations.

3You may wonder about what vector operations to support; we have discussed this
in our earlier work [Ert17], but do not have a final answer yet; there may also be
additional vector operations as the result of new hardware features, such as AVX512’s
masked instructions.
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void scalarComputation(float[] a, float[] b, float[] c) {
for (int i = 0; i < a.length; i++) {
c[i] = (alil * ali] + b[i] * b[il) * -1.0f;
}

Figure 2: A vector computation expressed as ordinary scalar Java code [ILSV18]

static final FloatVector.FloatSpecies<Shapes.S256Bit> SPECIES =
FloatVector.speciesInstance(Shapes.S_256_BIT);

void vectorComputation(float[] a, float[] b, float[] c) {
int i = 9;
for (; i < (a.length & ~(SPECIES.length() - 1));
i += SPECIES.length()) {
//FloatVector<Shapes.S256Bit> va, vb, vc;
var va = SPECIES.fromArray(a, i);
var vb = SPECIES.fromArray(b, i);
var vc = va.mul(va).
add(vb.mul(vb)).
neg();
vc.intoArray(c, 1);

for (; i < a.length; i++) {
c[i]l = (alil * al[i] + b[i] * b[i]) * -1.0f;

Figure 3: The same vector computation expressed using the Vector API [ILSV18]

void VectComputation(float[] a, float[] b, float[] c) {
FloatVect va = new FloatVect(a);
FloatVect vb = new FloatVect(b);
va.mul(va).add(vb.mul(vb)).neg().intoArray(c);

}
Figure 4: The same vector computation expressed with dynamically-sized vectors
subroutine ArrayComputation(a,b,c,n) Separate, opaque types with value semantics for vectors [Ert17]
integer n solve several of these problems:

real a(n), b(n), c(n)
c(1:n) = =(a(1:n)*a(1:n) + b(1:n)xb(1:n))
end subroutine

e Vector data can be padded to SIMD granularity, eliminating
the special treatment for the last elements in many cases.

o Vector data can be aligned to SIMD granularity, so all operands
of SIMD instructions are aligned.

e Results do not overlap input operands, thanks to value se-
mantics.

e Operands of vector operations do not alias with array ac-
cesses or anything else from the scalar and array world. In-
deed, vectors live in their own separate world, and data flow
between these two worlds is always explicit, and often in
one direction (towards vectors), see Fig. 6. This makes vector
Dealing with dependencies for SIMD and other parallelization operations relatively loosely connected to the scalar/array

purposes fills many papers and books [Wol96]. world, and that is the basis of software vector chaining.

Figure 5: The same vector computation expressed using
Fortran 90 array operations. This example uses the array
slice notation instead of the shorter whole-array notation
to demonstrate that these operations can be performed on
parts of arrays.
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Figure 6: Separate vectors divide the system into a
scalar/array world (with aliasing) and a vector world (with
only explicit dependencies)

simple:

vmovaps (%rdi,%r1e,1),%ymmo
vaddps  (%rsi,%r1e,1),%ymmo, %ymmo
vmovaps %ymm@, (%rdx,%r1e,1)

add $0x20,%r10
cmp %r10,%rcx
ja simple

Figure 7: A loop of SIMD instructions that implements a
FloatVect add

e Overall, with these vector types the compiler has a lot of
freedom for (re)arranging the computations. And making
good use of this freedom does not take heroic efforts.

You pay for these advantages by making explicit conversions
between arrays and vectors (new FloatVect and intoArray in
Fig. 4). But note that these explicit conversions can be optimized
away in cases where they cost more than they buy. Conversely, an
array-based approach could copy the slices under consideration to
an aligned and padded intermediate area.

So is there a difference between using separate vectors and just
using arrays? And in particular, is there an advantage to separate
vectors? Yes: Separate vectors do not alias with array accesses,
making various transformations much easier.

Also, the programmer can keep the data much longer in the
vector world, than a compiler can keep array slices in an interme-
diate area, considerably reducing the amount of copying necessary.
E.g., in n X n matrix multiplication, the programmer can convert
an input matrix from n X n array to n vectors at the start, and reuse
these vectors n times, and in the end convert the result back. This
amortizes the conversion over many uses.

fused:

vmovaps (%rdi,%r10,1),%ymmo
vmulps  %ymm@,%ymm@, %ymm1
vmovaps (%rsi,%r10,1),%ymm2
vmulps %ymm2,%ymm2, %ymm3
vaddps  %ymm1,%ymm3, %ymm1
vxorps %ymml,%ymm4, %ymm1
vmovaps %ymm@, (%rdx,%r10,1)

add $0x20,%r10
cmp %r10,%r9
ja fused

Figure 8: A fused loop for the vector-world parts of Fig. 4 (no
new or intoArray)

3 SOFTWARE VECTOR CHAINING

3.1 Vector loop fusion

A simple way to implement the vector operations is to translate
each one into a loop of SIMD instructions. E.g., Fig. 7 shows such a
vector loop for FloatVect add.

If you have several consecutive vector operations with same-
length vectors, the compiler can fuse these vector loops. The criteria
for “consecutive” are relatively easy to meet, thanks to the nice
properties of our separate vectors.

If a vector operation reads a vector produced by a previous vector
operation in the fused loop, the compiler can avoid the loads of the
intermediate vector and instead use the results directly from the
SIMD register. If the result of a vector operation has no other users
except those in the fused loop, the store of the result of this vector
operation can be eliminated. E.g., the loop in Fig. 8 performs the
four vector operations of Fig. 4 (32 FLOPs per vector-loop iteration)
in 10 instructions per loop iteration, compared to 24 instructions
for the same work using 4 simple loops.

On a modern CPU with out-of-order execution, these loops tend
to run as fast as hardware resource constraints permit: they exhibit
data parallelism, so each iteration is almost independent from earlier
iterations (apart from the loop-counting add, which causes only
one cycle of delay between iterations). For CPUs with in-order
execution, the compiler can employ software pipelining [Cha81,
Rau94] to reorder the instructions.

For a reduction operation like sum that adds up all the elements
in the vector, the intermediate result of each iteration depends on
the result of the previous iteration, resulting in 4 cycles/iteration on
recent Intel CPUs for a FloatVect sum. Loop fusion is even more
beneficial in the presence of reductions, because you can add a lot
of instructions to an iteration before it needs more cycles due to
resource constraints.

A problem for compile-time loop fusion is that even with all
the benefits of separate vectors, things become difficult once the
basic block ends. Then you have to combine the control structure
of the surrounding program with the vector loop, or limit yourself
to combining vector operations within basic blocks.
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static FloatVect[] matmul(float a[J[], FloatVect[] vb)
{
FloatVect[] vc=new FloatVect[a.lengthl];
for (int i=0; i<a.length; i++) {
FloatVect vci = new FloatVect(vb[0].size());
for (int k=0; k<vb.length; k++)
vci = vb[k].mul(alil[k]).add(vci);
ve[i] = vci;
}

return vc;

Figure 9: Matrix multiplication using dynamically-sized vec-
tors

As an example, consider matrix multiplication (Fig. 9). There
are only two vector operations in the inner loop*. By unrolling
the inner loop, we can get around this problem in this case. But
what if, on average, half of the elements of a are 0? A programmer
can modify the inner loop as follows to exploit this knowledge for
improving performance:
for (int k=0; k<vb.length; k++)

if (alillk]!=0.0@)

vei = vbl[k].mul(alil[k]1).add(vci);

In such a loop, unrolling does not increase the number of vector
operations in a basic block. More complex loop transformations
[Wol96] can help, but they require substantial compiler complex-
ity that most implementors of general-purpose compilers will not
invest in vector implementation.

A trace-based compiler [BDB00, GPF06] extends the boundaries
for moving vector operations as far as the scalar+vector traces go.
A variant of the technique presented in this paper could be used in
a trace-based compiler to increase vector processing performance
with relatively low implementation effort, see Section 6.

3.2 Software vector chaining: Run-time fusion

However, in this paper we focus on a variant that can be imple-
mented as a library. In this way we do not limit ourselves to trace-
based compilation. Instead, we can implement the technique in all
kinds of implementations, even in an interpreter.

Software vector chaining collects only the vector operations
into a trace at run-time, instead of trying to combine them during
compilation. Once the trace ends, a fused vector loop encompassing
all the vector operations in the trace is invoked; if necessary, this
loop is generated first, but in the usual case, this loop will already
have been generated earlier in the execution, and is just looked up.

Collecting vector operations into a trace is possible, because the
vectors live in a separate world from the rest of the computation,
and so all the vector-only operations can be delayed until we need
to deliver a result to the rest of the computation, as shown in Fig. 6.

This approach costs some overhead for collecting the trace and
finally looking its code up, but the hope is that this will be made up
by the possibility to combine more vector operations into one loop,

4Inner loop refers to the programmer-written inner loop; we refer to the loop that
implements a vector operation as vector loop.
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reducing the cost of the vector computations by more than the ad-
ditional overhead. For long vectors, vector operations are relatively
heavy-weight, and loop fusion saves quite a bit of execution time,
so this approach of generating a trace every time can pay off here.

For shorter vectors, the overhead of collecting a trace will not
pay off. Instead of always collecting a trace, the behaviour can be
made to depend on the vector length: For short vectors, perform
the operation right away (i.e., use a simple vector loop per vector
operation); for long vectors, add the operation to the current trace.
This is possible because software vector chaining works at run time,
and the operands and their vector lengths are known.

3.3 Trace end
There are several reasons for ending a trace:

e When a vector operation with a different length has to be
performed. It needs a different controlling loop.

e When a vector operation produces a result for the scalar/array
world, e.g., intoArray or sum.

e When the trace becomes too long. The benefits of combining
more operations diminish, while the costs, in particular, the
number of different loops that have to be generated and
stored, increases. Also, the resulting loops might run into
hardware limits, and that could reduce performance. These
issues are best determined by measuring performance with
different trace length limits.

e When the number of SIMD or general-purpose registers
that need to be alive in the fused loop exceeds the available
registers. This is another form of a too-long trace, but it is
easier for the compiler to determine whether this limit has
been reached, and it depends more on the data flow in the
trace than on the raw length.

3.4 Avoiding dead stores

One issue is whether we can avoid storing all the computed vec-
tors, including all intermediate results. In the matrix multiplication
example (Fig. 9), in principle only the value of vci at the end of the
inner loop is really needed. In software vector chaining, we need
to store the result of last add; if the trace ends with a mul, we also
need the result of that.

One way to achieve this would be if the vector representation
has reference counters that represent the number of references to
the vector; after ending a trace, if a vector only has references from
the trace (such as all the vectors produced by add except the last
one in the trace), we do not need to store the result to memory, but
can just pass them along through SIMD registers.

While vector operations as presented in this paper, including
software vector chaining, can be implemented as a library, this
store-eliminating optimization would require VM cooperation in a
garbage-collected VM, and it is probably hard to adapt such a VM
to keep reference counters up-to-date.

An alternative is to enlist programmer help. E.g., the programmer
could mark the last, consuming use of a vector with .c, as in the
following variant of the loop above:

for (int k=0; k<vb.length; k++)
if (alillk]1!=0.9)
vci = vb[k].mul(ali][k]).c.add(vci.c);
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The example from Fig. 4 would look as follows:
va.mul(va).c.add(vb.mul(vb).c).c.neg().c.intoArray(c);

.c does not conform to the value semantics that we otherwise
maintain for vectors: If the program uses the resulting vector more
than once, the result will be a null pointer exception on second use.
We think that this price is acceptable given the benefit.

What is not covered by . c is if there are multiple uses of a vector
in an expression, but none afterwards. One can introduce special
methods for covering that case, but it is unclear if this is useful
enough to be worth the implementation effort.

3.5 Hardware vector chaining

The parallels with hardware vector chaining are: In hardware chain-
ing, each vector element® flows directly from one functional unit to
the next, without having to wait for the first operation to complete
on the whole vector, like in our fused loops. And like in our software
chaining, hardware chaining performs this combining on its own,
without intervention from the compiler, including across control
flow [Cra77]. A difference is that software chaining also combines
independent vector operations, while hardware chaining combines
vector operations where the data flows from one operation to the
next. Vector hardware also performs independent vector operations
in parallel, if the hardware resources are available, but in hardware
this is not called chaining.

4 IMPLEMENTATION

This section describes the implementation of software vector chain-
ing. These code generation techniques are not original, and can
be found in ancient compiler textbooks [ASU86], but they are de-
scribed here to demonstrate that implementing software vector
chaining is simple, especially when compared with auto-vectorization,
or dependence analysis and loop transformations used in classical
(function-level) compilation [Wol96].

4.1 Vector representation

A simple implementation of vectors (without chaining) stores the
vector data, and a little bit of metadata, in particular the length.

With vector chaining, the implementation of vectors becomes
slightly more sophisticated. Some vectors may never have any data
stored in memory; their data only exists temporarily, as SIMD-sized
pieces in SIMD registers, so only the metadata exists, while the
data part is represented by a null pointer. The meta-data now also
contains a flag that indicates whether the next use will be the last
use, and information used in the compilation of the current trace:
a SIMD register number, and an address register number (with a
special value indicating that the vector is not to be stored).

The trace generation and vector loop generation works mostly
like a simple basic-block-level compiler:

4.2 Trace construction

The trace is represented by an array of quadruples: the operation,
the two source vectors, and the result vector.

>In contrast to current SIMD implementations, classical vector processors process
vectors not completely in parallel, but in a pipelined fashion, one element per cycle.
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Calling a vector operation method creates a result vector, and
assigns a free SIMD and address register to it. The method also adds
a quadruple for this operation to the current trace. If an operand
of the vector operation has no earlier occurence in the trace, a
load operation for it is added to the trace first. If an operand has
its last-use flag set, its SIMD register is added to the pool of free
registers; and if it is the result of a non-load operation, its address
register is set to the don’t-store value, and the address register is
freed.

A more sophisticated register allocator could use fewer SIMD
registers in the presence of non-. c vectors; while it would be rel-
atively cheap (in both implementation effort and run-time), it is
unclear whether the benefits are worth even these modest costs.
The address registers live in the whole vector loop, so for them no
better register allocation is possible.

4.3 Code generation

Once a trace ends, we may have to generate code for it. That is
relatively easy: The loop control flow and loop counting are boil-
erplate code. For a load operation, a load from the address given
by the address register plus the counter is generated. For other
operations the appropriate operation is generated; if the address
register indicates a store, the compiler then generates a store to the
address given by the address register plus the counter. Figure 10
shows an example.

Before executing the code, memory for vector data is allocated
for those vectors that have their data stored. The addresses of both
the loaded and the stored vector data are then loaded into the
appropriate address registers, and the code is invoked.

This works nicely for vector-parallel operations. Other opera-
tions have some deviations from this scheme:

The code generator treats a scalar operand of a vector operation
(e.g., mul(alillk]) in the matrix multiplication example) as fol-
lows: Like the input vector addresses, the code passes the scalar as
parameter to the resulting code (allowing to use the same code with
different scalars). Just before the loop, the generated code copies the
scalar to all lanes of a SIMD register (e.g., the first two instructions
in Fig. 11), and it then uses that SIMD register as operand inside
the loop. This SIMD register is alive throughout the loop.

When the program copies data from an array to a vector (e.g.,
new FloatVect(b)), the vector library has to perform that copy
immediately (the array could be changed right afterwards), so it is
not incorporated into the trace. It does not end the current trace,
though.

The vector library also has to copy data from a vector to an array
(e.g., intoArray) immediately. The vector will usually depend on
vector operations the trace, so this copy ends the trace and executes
the operations in the trace. The vector loop could also include the
copying to the array, but that would require special-casing the last
iteration (if fewer array elements are to be stored than fit in a SIMD
register), so we may prefer to do the copying separately.

For implementing reducing operations (e.g., sum), the compiler
needs to fill the padded elements with the neutral element of the
operation (e.g, 0 for sum) in front of the loop. In the vector loop,
every iteration combines (e.g., adds) the operand SIMD register
with the result SIMD register. Finally, after the vector loop, the
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va.mul(va).c.add(vb.mul(vb).c).c.neg().c

fused:

vmovaps (%rdi,%r10,1),%ymmo

va rdli |ymm0| data vmulps %ymm@, %ymm@, %ymm1
opl op2 res rsi l[ymm2] —}—data vmovaps (%rsi,%r10,1),%ymm2

load — vmulps  %ymm2,%ymm2, %ymm3
mul_float ——F c | no lymmi] _—] vaddps  %ymm1,%ymm3, %ymm1
load — vxorps %ymm1,%ymmé4 ,%ymm1
mul_float — [ no [ymm3] _—| vmovaps %ymm@, (%rdx,%r10,1)
add_float — | no |ymm1 |/| add $0x20,%r10
neg_float — — cmp %r10,%r9

— ¢ [ rdx [ymmi] —}—data ia Fused

Figure 10: Source code and the corresponding quadruple representation and machine code. The neg gets an address register
and data despite being marked with c, because the consumption of the resulting vector does not happen inside the trace.

for (k=0; k<m; k++)
if (a[i][k]!=0.0)
vcli] = vb[K].mul(a[i][k]).c.add(vc][i].c);

vbroadcastsd %xmm1,%ymm1
vbroadcastsd %xmm4,%ymm4
loop:

rdi [ymmO0] —F}— data vb[k] vmovaps (%rdi,%r10,1),%ymme
— /‘/‘ no |ymm1| 53 | a[ilk] vmulps ("/o/ymmp,/%y;n@m11,)%y/mm23
oa vmovaps (%rsi,%r10,1),%ymm
mul_float — T 1 — c [ no lymma] 7] vaddpps %ymm2, %ymm3, %yn?lmz
load — c [ rsi lymm3] —f— data vci vmovaps (%rdx,%r10,1),%ymm3
add_float ———F ¢ [ no [ymm2]_—] vei’ vmulps %ymm3,%ymmé4 , %ymm5
load — rdx [ymm3] —}— data vblk] vaddps %ymm5,%ymm2,%ymm2
mduc;_fflloat ”’:‘: no lymm4] 4.6 | afijlk] vmovaps %ymm2, (%rex, %r1e,1)
add_float ——t s T no ymmo]_—] add $0x20,%r10

\/‘ . cmp %r10,%r9
rex [ymm2]  —J— data vci ja Loop

Figure 11: A loop, the trace from several iterations of the loop with two taken ifs, and the resulting code

elements of the result SIMD register have to be combined to form a
single scalar. The result of the reduction has to become available to
the scalar world immediately, so a reduction ends the trace.

4.4 Caching

We do not want to perform complete compilation (with I-cache
synchronization etc.) every time we perform a number of vector
operations, so we cache the code produced for a trace in a hash
table.

Building the trace and then looking it up in the hash table are
time-critical, because they are performed on every execution, so
can we reduce the effort necessary? We can delay register allocation
(cheap as it is in our settig) until compilation, and record only on
which erlier operations in the trace an operation depends, or if it
depends on an input vector or a scalar, and whether the result is
stored. A dependency is best represented by an index into the trace
for ease of hashing and comparison.

5 EVALUATION

We added software vector chaining to the Forth vector library®. The
implementation currently takes 386 lines of code. It does not gener-
ate machine code directly, but instead uses C (with GNU C’s SIMD
vector extension) as intermediate language. Still, the compilation to
C is performed along the lines presented in Section 4. The resulting
machine code is also pretty similar to what has been presented
here, except that gcc often combines loads and operations into load-
and-op instructions. The C code generation time is included in the
results, the time for running gcc is not: code compiled earlier is
reused through a file-caching mechanism.

We evaluate the performance using matrix multiplication: We
multiply a 50 X 50 matrix with a 50 X n matrix for n varying from
1-12000. This matrix multiplication is performed 500 times in or-
der to reduce the influence of startup overheads. As a result, this
benchmark performs 1,250,000 iterations of the inner loop (a vector-
scalar multiplication, and a vector-vector addition, both with vector
length n). By varying n, we can see what the startup overhead is,
where one approach surpasses the other, and what the performance

Chttps://github.com/AntonErtl/vectors,
commit 4d060c16531ebd94e7556c49473f868134691ach used for the results


https://github.com/AntonErtl/vectors
https://github.com/AntonErtl/vectors/tree/4d060c16531ebd94e7556c49473f868134691acb
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Figure 12: Instructions for 2.5M vector operations using AVX
instructions
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Figure 13: Cycles for 2.5M vector operations using AVX in-
structions

for long vectors is. In contrast to the examples in this paper, we use
64-bit FP numbers, though.

M. Anton Ertl

We compared the following variants:

simple Each vector operation gets its own vector loop, as in
Fig. 7.

fused We manually fused the vector operations of one iteration
of the inner loop in the source code of the matrix multiplica-
tion code, and use a special multiply-add vector operation.
This simulates vector-loop fusion by the compiler within a
basic block.

unrolled We manually unrolled the inner loop by a factor of 2
in the source code, and used a special multiply-add-multiply-
add vector operation (with code similar to Fig. 11) in it to
simulate the combination of inner-loop unrolling and vector-
loop fusion.

chaining This employs our chaining implementation, includ-
ing its overheads. For this benchmark, 16 vector operations
(e.g., 8 inner loop iterations, but possibly also the last itera-
tions of one instance of the inner loop, and the next iterations
of the next one) are chained together.

We don’t expect our implementation language to make a signifi-
cant difference for fused and unrolled, but for the other two, there
can be one:

In simple, every iteration allocates a vector and later frees one
(and this takes a considerable proportion of the time); our imple-
mentation uses the malloc/free of glibc-2.19, which may perform
differently from memory allocation and reclamation in a managed
language, and different from other malloc/free implementations.
Fused and unrolled avoid this overhead by storing the result of
the operation into the memory no longer needed by one of the
operands.

For chaining, the whole trace-collection and hash table mecha-
nism is programmed in Forth, and run on Gforth?, which is not the
fastest Forth system around. We expect a slowdown by maybe a
factor of five compared to implementing this functionality in C. We
expect that the chaining overhead would be lower and the crossing
points would be reached earlier with a faster implementation, and
we discuss below how that would affect the conclusions.

The benchmarks were run on a Core i5-6600K (Skylake) running
Debian 8.

Figure 12 shows the instructions needed with AVX, Figure 13
the cycles. In our implementation, chaining has 748 instructions
(199 cycles) more overhead per vector operation than simple, and it
takes until vector length > 500 (4KB) before the crossing point is
reached. This is also reflected in the cycles result (Fig. 13), where
the crossing is also at vector length > 500. For very long vectors,
chaining saves two thirds of the instructions and half of the cycles
compared to simple.

When comparing with fused and unrolled, we see that the cross-
ing points are reached even later, and the benefit of chaining after
the crossing point is much smaller, especially in terms of cycles.

The benefits of chaining are less pronounced when looking at
the cycles than when looking at the instructions. Our explanation is
that, for this benchmark, machine resource limits make themselves
felt.®

7Commit c9dal1b544b25491e8e29ca94dfcd5830a7abf1ef, engine gforth-fast.
80ne seemingly obvious resource is L3 cache bandwidth; we tried to address that by
implementing some kind of cache-blocking; but while we achieved a reduction in


http://git.savannah.gnu.org/cgit/gforth.git/tree/?id=c9da1b544b25491e8e29ca94dfcd5830a7abf1ef
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6 PRELIMINARY RECOMMENDATIONS

Recommendations based on a single benchmark are not very trust-
worthy, so take the following with a large grain of salt. But based
on the data above, our recommendations are:

The overhead of trace collection and hash table lookup for chain-
ing is big. Even if we manage to reduce the overhead by a factor of
4, chaining is attractive only for long vectors (> 1KB). However, if
you have long vectors, the speedups over simple can be substantial
(factor 2).

If you are implementing vectors as a library, you should first
implement simple. If you then want better performance for long
vectors, implement chaining, but use it only for vectors beyond
a certain length; you will have to determine the switching point
empirically for your implementation.

If you can afford to integrate vector-loop fusion within basic
blocks into your JIT compiler, this option is preferable over chaining.
If you can afford to unroll loops or perform other control-flow
transformations to extend the scope of loop fusion, even more so.

If you have a tracing JIT compiler, you use a simple implementa-
tion in the interpretive part. When recording the trace, ideally you
record the vector operations instead of the loops that implement
them, and you record the vector lengths for these vector operations.
Once you have a complete trace, you can compile vector opera-
tions with the same length (relative to each other) into a a loop
as outlined in Section 4. The length of the input vectors is then
compared on every execution as one of the guards of the trace. Such
a compiler could provide the benefits of chaining (combining many
vector operations in one loop) without the overhead of having to
build a trace on every execution.

7 CONCLUSION

Software vector chaining collects a trace of vector operations at
run-time and then performs a fused loop for these vector operations.
This loop is generated on first execution, using relatively simple
compiler techniques; for later executions of traces with the same
structure, the code is looked up in a hash table.

Software vector chaining does not attempt to compete with
HPC compilers, but is instead a relatively simple technique that
can be implemented in a vector library for any kind of language
implementation. It offers substantial performance benefits over
simple vector loops when dealing with long vectors.

However, software vector chaining incurs quite a bit of overhead
per vector operation, and therefore is not beneficial when dealing
with short vectors. Fortunately, the decision whether to use simple
vector loops or chaining can be made based on the actual vector
length encountered at run-time, separatly for each vector operation.

The basis for being able to use software vector chaining is opaque
vector types. They provide the abstraction and isolation (in particu-
lar from non-vector memory accesses) that is necessary to rearrange
the computations as software vectory chaining does.

ACKNOWLEDGMENTS
The reviewers provided valuable feedback on the paper.

L3 cache accesses, our attempts produced slowdowns. Apparently the bottleneck is
elsewhere.
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