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A code-copying compiler implements a programming language by concatenating code snippets produced by

a different compiler. This technique has been used in Gforth since 2003, with code snippets generated by

GCC. We have solved various challenges: in particular, which code snippets can be copied and what to do

about the others; and challenges posed by changes in compilers. The performance of Gforth is similar to that

of SwiftForth, a commercial system with a conventional compiler; the implementation effort is comparable

to 1–2 targets for SwiftForth.

1 INTRODUCTION

Code copying is a programming language implementation technique where the compiler of the
implemented languate A concatenates code snippets coming out of the compiler for language B.
While there have been a number of research papers about this topic (see Section 8), we know of
only one production language implementation that has used this approach for a long time: Gforth.
The present work is an experience report about the use of code copying in Gforth: How does

it compare to a conventional compiler (Section 2)? Section 3 explains the concepts of code copy-
ing, while Section 4 discusses various implementation aspects. We also discuss the problems from
changes in compilers (Section 5) and operating systems (Section 6) and how we overcame them.
In addition to this experience report, this paper also discusses alternative approaches (Section 7)

and related work (Section 8).
The present work also appears in the EuroForth 2025 proceedings, with the same content and

different formatting.

1.1 Is Gforth a production system?

Gforth is free software that has been developed since 1992 and first released in 1996. As it is free
software, everybody can use it without contacting us, and few people do, so we do not know that
much about who uses it for what purpose. However, we know that it has been used by IBM and
Apple in their work onOpen Firmware, and Forth, Inc. (who develop SwiftForth, but also give Forth
courses) have given courses using Gforth, also in the Open Firmware context. So: Yes, Gforth is a
production system.

2 WHY NOT JUST WRITE A CONVENTIONAL COMPILER?

One reason why people may have avoided going for a code-copying compiler is the assumption
that writing a conventional compiler will produce better code, or require less effort. By “conven-
tional” we mean that there is a large amount of hand-written architecture-specific code for each
target architecture in the compiler. So before we go into details about code copying, wewill address
this concern.

2.1 Performance

Figure 1 shows the performance of the gforth-fast engine of Gforth1 with various optimizations,
of two commercial conventional Forth compilers (SwiftForth and VFX Forth), and, for of GCC-12.2

1Gforth also has an engine gforth intended for debugging. All referenences to Gforth performance refer to gforth-fast.
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Fig. 1. Speedup factor of various systems over Gforth with code copying, on a Core i5-1135G7 (Tiger Lake)

gcc -O0, -O1, and -O3. All Forth systems use load-and-go compilers (compile time is included in
the results), while GCC uses ahead-of-time compilation (only the run-time is shown in the results).
Not all benchmarks are available in C, and not all benchmarks run on all Forth systems, and the

missing cases are reflected by missing bars.
The data shown is the median of 30 runs for each benchmark/system combination on a Core

i5-1135G7 (Tiger Lake); each bar represents the number of cycles of Gforth with only code copy-
ing divided by the number of cycles of the system represented by the bar, i.e., the speedup of that
system over Gforth with only code copying. The Gforth version used is 0.7.9_20250817, com-
mit 4224ab5fafea970dade64b04493ef690da8b3c32compiledwith gcc-11.4. The benchmarks are
from the Forth appbench suite (benchgc–fcp), Gforth’s small (and mostly loop-dominated) bench-
marks (siev–fib), and two additional ones.
As can be seen, the performance of Gforth with all optimizations is similar to that of SwiftForth,

which uses a conventional compiler, and typically around half of the performance of VFX Forth,
which also uses a conventional compiler.

Before comparing Gforth with the others, let’s first take a look at the variants of Gforth, starting
with the one with the best performance/effort:

Threaded code This is a fast interpretation technique for virtual-machine (VM) code, with-
out any machine-code generation (see Section 3.1).

Code copying This method concatenates code snippets from the threaded code engine (see
Section 3). It requires an estimated 500 lines of code in the Gforth source code. With this
method Gforth still accesses literal data and performs control flow by accessing the VM
code; it therefore also maintains a VM instruction pointer (IP), and updates it once for
every VM instruction.

IP-update optimization This optimizaton reduces these IP updates. It was added by insert-
ing 864 lines and deleting 316 lines in the Gforth source code [EP24].
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Stack caching (actually static multi-state stack caching) eliminates many memory accesses
to stack items and stack-pointer updates [EG04a, EG05]. The way this optimization as im-
plemented in Gforth requires code copying to work.

Static superinstructions replace a sequence of Forth words with an optimized sequence
[EGKP02]. Many of the benefits that static superinstructions have originally provided are
now provided by code copying, the IP-update optimization and static stack caching; there
are still cases where static superinstructions result in shorter code, but this has not led to
consistent speedups in these measurements.

The code implementing stack caching and static superinstructions is quite interweaved with the
rest of the code, so it is hard to give precise numbers for their size, but we estimate [Ert24] that all
four optimizations combined require an estimated total of 5000 lines of code.
SwiftForth’s compiler can be seen as a copy-and-patch compiler, but with the code snippets

written by hand in assembly language and better resulting code than when patching using object
file linkage imformation (see Section 7.3). SwiftForth does not have a VM interpreter substrate, and
therefore does not have IP updates, so it gains the benefits of the IP update optimization without
having to do anything. It deals with literal values and control flow by patching the code. SwiftForth
does not perform multi-state stack caching, but it makes extensive use of static superinstructions
(346 rules in 1819 lines). Overall each of the IA-32 and AMD64 targets of SwiftForth has about 7000
lines of architecture-specific code [Ert24].
Gforth with all optimizations is competetive in speed with SwiftForth, so apparently Gforth’s

stack caching provides enough speedup to compensate the costs that Gforth incurs for literals and
control flow.
VFX Forth performs register allocation of data-stack items within a basic block, and inlines

aggressively; inlining is very helpful for idiomatic Forth code, where calls and returns are the
most frequent basic block boundaries. Therefore inlining also enhances the effectiveness of VFX’s
register allocator. The speed advantage of VFX over Gforth and SwiftForth is a result of these
optimizations. In particular, for the cd16sim benchmark there is one call site that calls an empty
definition and that is responsible for 2/3 of Gforth’s run-time on this benchmark,while VFX inlines
it away. We have no source code for VFX and therefore cannot report numbers about the size of
its compiler. When asked about the effort to port VFX to ARM A64 (a currently ongoing project),
Stephen Pelc gave the qualitative statement “far too much”.
VFX is faster than Gforth by typically around a factor of 2. However, it is possible to perform

inlining in Gforth, too, with direct performance benefits as well as indirect benefits from better
stack caching. It will be interesting to see how far Gforth (and code copying) can close the gap.
Gforth’s performance with all optimizations is roughly comparable to that of gcc -O0 on those

benchmarks that are also available in C. gcc -O1 and gcc -O3 often produce significantly faster
code; sometimes they don’t, but the reasons for that are beyond the scope of this paper.

2.2 Portability

A major reason to avoid implementing a conventional compiler is portability/retargetability.
Gforth has supported as many architectures as we could get our hands on, as long as gcc and

something Unix-like (e.g., Cygwin for Windows) is available on the architecture. Gforth has sup-
ported the following architectures with a code copying compiler: Alpha, ARM A32/T32, ARMA64,
HPPA, IA-32, IA-64, Loongarch, SPARC, PowerPC, PowerPC64 (but we no longer can check for
all architectures that they still work). Gforth supports all architectures it does not know about by
falling back to threaded code, which is slower, but still works.
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lit
0
i
c!
dup
(+loop)
loophead

VM code
threaded code

RISC-V machine code

i implementation

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
       ld   a4,0(ip)
       jr   a4

(+loop) implementation

c! implementation
dup implementation

C Code

I_lit:
  ip += 2;
  dsp[0]=tos;
  tos=ip[-8];
  dsp--;
  goto *ip[0];

Fig. 2. Threaded-code representation of VM code. Each box is a machine word. Slanted light blue indicates

an immediate operand of the preceding VM instruction.

In particular, when IA-64 (launched 2001) and AMD64 (launched 2003) became available to us
in 2003, Gforth worked out of the box on these architectures2 using the unknown-architecture
support, likewise for ARM A64 in 2014 and RISC-V in 2017. A few small changes enabled code
copying3, and a one-line change for configuring the number of registers for stack caching.
The benefit of code copying is that it reuses the retargeting efforts of the compiler it is based on

(GCC or Clang in case of Gforth).
By contrast, SwiftForth has supported only IA-32 until the 2020s, when they started working on

an AMD64 port (released on 2025-10-22). VFX has supported IA-32 initially, later ARM A32, and,
also starting in the 2020s, AMD64. Both systems have interactive cross-compilers for a number of
embedded targets.
The low number of desktop ports and the late support for AMD64 may be due to lack of com-

mercial interest, but we think that the larger effort required to retarget and maintain the compiler
for another architecture has something to do with it. iForth, another conventional Forth compiler,
got an AMD64 port in 2009, but the IA-32 port was subsequently dropped (last release with IA-32
support in 2011).

2.3 Incremental development

Another benefit of code copying over writing a conventional compiler is that it can be done step-
by-step: First add code copying, then add one optimization (e.g., IP-update optimization), then the
next, etc., always with the fallback options of disabling the optimization or completely falling back
on threaded-code interpretation.
By contrast, when coming from an interpreter, the conventional model requires a big-bang ap-

proach where a complete code generator for one target has to be developed without reusing much
from an existing interpreter; and as long as you do not develop code generators for all targets, you
still need to maintain the interpreter, as well as all the compiler targets. The latter will hopefully
be helped by designing the compiler for retargetability, but that increases the complexity of the
compiler framework.

2We added 64-bit support in 1996 while doing the Alpha port.
3For RISC-V, this was our first encounter with gcc-7 and its more aggressive code duplication (Section 5.4); we needed a

little longer to find a workaround for that, but that’s not specific to the architecture.
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3 WHAT IS CODE COPYING COMPILATION?

3.1 Threaded Code

The basis for Gforth’s code-copying implementation is a threaded-code interpreter [Bel73] for
Gforth’s virtual machine (VM).
As a running example, we look at the VM code in Fig. 2. The first VM instruction in the example

is lit, which has an immediate operand 0. This VM instruction pushes its immediate operand
on the data stack. It is represented by the address of the machine code that implements it; in
direct-threaded code, every VM instruction is represented by the address of the machine code that
implements it. In the case of lit, the implementation for RISC-V (RV64G) is:

# //C code

addi ip,ip,16 # ip += 2;

sd tos,0(dsp) # dsp[0] = tos;

ld tos,-8(ip) # tos = ip[-1];

addi dsp,dsp,-8 # dsp--;

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

This code uses register names that reflect their roles: ip is the VM instruction pointer; tos is
the top of the data stack; dsp is the data stack pointer; ca is the code address (of the next VM
instruction).
The slanted blue instructions are the payload which perform the actual work of the VM instruc-

tion as far as code copying is concerned. Other optimizations reduce that part further; e.g. the first
instruction updates IP, and the IP-update optimization often optimizes it away.
The third instruction loads the immediate operand (0) from the VM code by accessing it through

IP. This access of immediate operands and control-flow operations through IP is still in Gforth with
all optimizations applied, and is the difference between an interpreter-based code-copying system
and a copy-and-patch system (Section 7.3).
The bottom two (black) instructions perform the dispatch to the next VM instruction. The first

instruction loads the machine code address of the next VM instruction, and the second instruction
jumps to it.
This assembly-language code can be generated from the C code shown in the comments of the

assembly language. It uses the GNU C extension “Labels as Values”,4 which allows jumping to the
address in ca with goto *ca5; this extension is also supported by Clang, tcc, and icc.
The other VM instruction implementations have the same pattern of payload, and dispatch. The

last VM instruction in our example, (+loop) is notable: it is a VM-level conditional branch that
branches back to loophead (given as immediate operand) or falls through to the next instruction.
It is implemented with the following code

4https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
5The GCC maintainers call this a computed goto, although it is more like a Fortran assigned goto.

https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
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lit addr
0
i addr
c! addr
dup addr
(+loop) addr
loophead

VM code
threaded code

VM instruction implementations
static machine code

i payload
rest of threaded-code dispatch

I_lit: addi ip,ip,16
       sd   tos,0(dsp)
       ld   tos,-8(ip)
       addi dsp,dsp,-8
K_lit: ld   a4,0(ip)
       jr   a4
J_Lit:

(+loop) payload
threaded-code dispatch

c! payload
threaded-code dispatch

dup payload
threaded-code dispatch

addi ip,ip,16
sd   tos,0(dsp)
ld   tos,-8(ip)
addi dsp,dsp,-8
i payload
c! payload
dup implementation
(+loop) payload
threaded-code dispatch

copied machine code

Fig. 3. Code copying.

addi ip,ip,16 # ip += 2;

...compute condition...

blt a5,zero,fallthrough # if (taken) {

ld ip, -8(ip) # ip = ip[-1];

ld ca, 0(ip) # ca = ip[0];

jr ca # goto *ca;

fallthrough: # }

ld ca,0(ip) # ca = ip[0];

jr ca # goto *ca;

If the conditional branch is taken, the new IP is loaded from the immediate operand and a
dispatch is performed. It is better to have separate dispatches for the taken and the fallthrough
cases for branch prediction6 and because it allows to leave away the fallthrough dispatch in code-
copying.

3.2 Code copying

Most VM instructions do not perform VM-level control flow, but just continue with the next VM
instruction. Code copying copies and concatenates the machine code implementing the VM in-
structions, but in most cases without the dispatch code at the end. Only taken branches (i.e. VM
instructions that change IP to point to some other VM instruction than the next one) need to
perform a dispatch.
Figure 3 shows this for our running example. The VM code is conceptually the same as before,

but for each VM instruction the machine word now points to the copied machine code instead of
the original.

6Even with history-based indirect-branch prediction, branch predictors have an easier time if there are fewer targets for

each indirect branch
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In particular, the copied code still has the IP, which points to the threaded (VM) code, and it
accesses the immediate operands 0 and loophead through it. The threaded code is also used on
control flow: the VM-level conditional branch (+loop) is taken, loads the target threaded-code
address loophead into IP, and then performs a threaded-code dispatch, which loads the code ad-
dress at loophead, which points to the start of the concatenated code. All control flow in Gforth is
performed with threaded-code dispatches in this way.
The threaded-code slots for instructions other than lit in this example are not accessed during

execution. Gforth keeps them around to simplify the implementation.
At the end of the shown sequence the threaded-code dispatch is copied. While this is necessary

for unconditional branches, it is not generally necessary for conditional branches such as (+loop)
(as discussed above). However, the following VM instruction may make it necessary to perform a
dispatch after the (+loop).
Code copying has also been called the memcpy()method [RS96], selective inlining [PR98] and

(especially in Gforth) dynamic superinstructions [EG03a].

3.3 Benefits over threaded code

The obvious benefit of code copying is that it eliminates most threaded-code dispatches and results
in straight-line execution of VM-level straight-line code, avoiding the limit of typically one taken
branch per cycle. Another benefit is that the indirect branches in most of the remaining dispatches
have only one target, vastly improving branch prediction accuracy in CPUs without sophisticated
indirect-branch predictors, and still making life easier (and faster) for hardware with such branch
predictors.
Another benefit is that code copying enables additional optimizations that require code snippets

that are not represented as VM instructions (and where introducing additional VM instructions
with threaded-code dispatch would make the optimization unprofitable).

E.g., the IP update optimization [EP24] leaves the IP update in front of most VM instruction
implementations away and replaces it with an IP update by a larger amount for VM instructions
that actually use the IP.
As another example, stack caching as implemented in Gforth inserts transitions between stack-

cache states where necessary. These transitions do not have a VM instruction slot and therefore
can only be inserted when code-copying is enabled. Gforth’s stack-caching implementation relies
on being able to insert the transitions, so stack caching is disabled when code copying is disabled
[EG04a].

3.4 When is code copying appropriate?

The shorter the VM instruction implementations are, the larger the benefit of code copying over
threaded code, because the overhead of threaded-code dispatch is relatively larger then.
Conversely, with long VM instruction implementations as in Tcl, whose VM instructions “can

average hundreds of [machine] instructions” [VA04] the benefit is small, and often does not amor-
tize the cost of copying the code or of increased I-cache misses [VA04].
Another aspect is that a compiler (to VM code) that uses more VM instructions, with each doing

less, has more opportunities to optimize the VM code. This has been done for CPython recently7.
With expensive VM instruction dispatch, splitting an existing VM instruction into several simpler
ones increases the cost, and the opimization must be very good and must be applicable often to
amortize this cost. With code-copying, the dispatch cost approaches 0, and such transformations
become less of a gamble.

7https://github.com/faster-cpython/

https://github.com/faster-cpython/
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4 IMPLEMENTATION OF CODE COPYING

4.1 Code organization

Gforth has a big function engine() that contains all the code snippets (implementations of all VM
instructions, and additional snippets used by optimizations), and little else.
Every code snippet has a label in front of it and behind it:

L_before:

code snippet in C;

L_after:

threaded-code dispatch;

You can see that more concretely in Fig. 3.
The label before it obviously points to the start of the code snippet.
Getting the right label for the end of the code snippet was initially straightforward (up to gcc-

3.1), but later required extra work. If the source code falls through to the label (i.e., it does not end
in an unconditional branch), like for the payload of most VM instructions in Gforth, with some
extra help (see Section 5.4), the following label points right behind the code snippet, but if the code
snippet cannot reach the label (e.g., because it ends in an unconditional branch, e.g, in a threaded
code dispatch), gcc-3.2 and following have reordered code. We solved this problem by taking the
values of all the labels, sorting them, and searching for the first label behind the label at the start
of the snippet. This might include some unrelated code in cases where the code snippet does not
fall through to the label, but in that case this is not a problem for correctness (but possibly for
relocatability, see Section 4.5).
The function engine() has two code paths: the first just returns a table containing all the labels,

for use in threaded-code generation and code-copying; the second starts the execution of the code
by performing a threaded-code dispatch.
If code copying is disabled,8 the threaded code address for each VM instruction just points to

the implementation of that instruction inside engine(), and every threaded-code dispatch jumps
around within this function.
With code copying, the first threaded code dispatch in engine() jumps to the copy of the VM in-

struction implementation and continues running there, with control-flow changes by performing
a threaded-code dispatch.

4.2 Why does it work?

Why can we concatenate the code snippets produced in the way described above, and get code
that works?
In particular, won’t the register allocator have different register allocations for the different code

snippets? Actually, at the start and, for fallthrough snippets, the end of the snippet, the register
allocation has to be the same as at the start of every other snippet, because the compiler has to
consider the possibility that every goto * jumps to every label whose address is taken. And the
addresses of all labels before and after all code snippets are taken (to determine the code snippet
address and length).
The code snippets that do not fall through end in a goto * in Gforth. And the register allocation

at the goto * has to be compatible with that of all the labels whose address is taken, or it would
not work even in ordinary use.

8Gforth option --no-dynamic.
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More precisely, engine() is compiled separately from the code dealing with the threaded code,
so the C compiler has to assume that every goto * in engine() can jump to any label whose
address is taken.
Therefore, at a goto * all variables are alive (i.e., read before being overwritten) that are alive

at any label whose address is taken, and each variable has to be in the same location at all those
labels and all the instances of goto *. The code snippets that fall through to their second label are
followed by a threaded-code dispatch:

ca = ip[0];

goto *ca;

so at the label between the code snippet and the dispatch, all the same variables are alive as
at the goto *, except possibly ca, but that is not alive before the threaded-code dispatch, either.
These variables also all have to reside at the same locations, because the goto * could jump to
them.

4.3 Fallback

There are cases where certain code snippets cannot be copied (usually because they are not relo-
catable, see Section 4.5). How does Gforth deal with that?
Gforth falls back to plain threaded code in these cases: Append a threaded-code dispatch to the

previous copied code snippet (unless the code snippet already ends with a threaded-code dispatch),
and let the machine word representing the current VM instruction point to the original implemen-
tation of the VM instruction (inside engine()) rather than a copy). At run-time, the code performs
the threaded-code dispatch, which then jumps to the original; that ends in another threaded-code
dispatch, which may jump to code coming out of code-copying, or to another original implemen-
tation.
If other optimizations are active, the preparation for the fallback may require appending addi-

tional code. E.g., the IP needs to be up-to-date before the threaded-code dispatch, so in the presence
of IP-update optimization, an IP update may be inserted before the threaded-code dispatch. Also,
in Gforth the plain threaded code always expects the stack in the canonical state, so in the presence
of stack caching, a transition from the current stack state to the canonical stack state may need to
be inserted before the threaded-code dispatch.
Gforth may also find that it cannot copy the threaded-code dispatch. In that case it disables code

copying completely and falls back to threaded code not just for individual VM instructions, but for
all of them.
The option to fall back to threaded code has helped in various cases where things did not work

according to our expectations (e.g., see Section 5.4). It means we always have a way to make Gforth
work, albeit not as fast as we would like.

4.4 Instruction sets

Code copying is based on the assumption that the code snippets are independent and concatenable.
At the instruction-set level this is satisfied if individual instructions are independent and concaten-
able. Some instruction sets have restrictions between groups of instructions. In this case a code
snippet must not contain a partial group, i.e., there must not be a label within a group.
There are a few cases of such instruction-set restrictions:

Branch delay slots This is amisfeature of some early RISC architectures, in particular, HPPA,
MIPS and SPARC: The branch instruction performs the instruction behind it before con-
tinuing at the target. This does not work with code copying if the compiler puts a label
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between the branch and the instruction behind it. However, the compilers we have used
(most recently gcc-14.2) do not do that.

Load delay slots This is a restriction of the MIPS I instruction set (eliminated in MIPS II).
The instruction behind a load instruction is not allowed to read the register written by
the load instruction. MIPS I also has some placement restrictions on reading and writing
the hi and lo registers. Having labels right after the load or in the shadow of hi/lo reads
can result in violating these restrictions in code copying. We have not tested if compilers
actually place labels in a way that would lead to such violations. Instead, these concerns
along with the relocatability problems (Section 4.5) and the lack of relevance of MIPS in
Unix systems around 2003 were the reasons why we just configured Gforth to fall back to
threaded code on MIPS (including the 64-bit MIPS port).

Instruction groups This is an IA-64 (aka Itanium processor family) property. Instructions
within a group have restrictions on register usage that are intended to ensure that the
instructions can be performed in one cycle without register renaming.9 If a compiler put a
label inside a group, code copying could violate these restrictions. Apparently the compilers
we used (gcc-3.3, gcc-4.1.3, gcc-4.3.2) put stops (group boundaries) at labels, because in our
testing IA-64 has always worked fine. If they did not, an easy fix would be to insert the
stops using asm statements or at the assembly-language stage.

Based on the experiences with branch delay slots and instruction groups, it seems that gcc
developers also avoid splitting groups of instructions with interdependencies by inserting a label
inside these groups, but if these instruction sets still were important targets, that might change.
The problematic restrictions/features have not spread to newer architectures and all the archi-

tectures with these restrictions in general-purpose computers have been canceled in the meantime,
while older or contemporary architectures without these restrictions thrive. So apparently the idea
of independent, concatenable instructions has some merit, and we can expect that future instruc-
tion sets will also exhibit this property and thus support code copying.

4.5 Relocatability

A code snippet must be relocatable in order to be used in code copying, i.e., it must behave the
same way in the original place and when copied.

Non-relocatable code. Themain problems here are references to addresses: The code in the snippet
must refer to addresses inside the snippet in a PC-relative way, and must not refer to addresses
outside the snippet in a PC-relative way. Most architectures refer to other code addresses in a
PC-relative way, so the most common reason for non-relocatability is when the VM instruction
implementation performs a call to some function (e.g., for performing I/O).
Accesses to global constants or to global variables in a PC-relative way can also cause non-

relocatability. Gforth avoids global variables for that reason and because of multi-threading; it
stores some formerly global variables in a struct whose address is stored in a local variable inside
engine(). However, computing the FP negation and the FP absolute value implicitly involve a
constant that resides in memory on AMD64 (with SSE2 FP), making the implementations of these
VM instructions (fnegate and fabs) non-relocatable on this architecture.

The pointer-to-struct approach could also be used for invoking functions without making the
calling code non-relocatable, but for now we have not done that.
Note that asking the C compiler for position-independent code does not mean that individual

code snippets are relocatable, even though the binary as a whole is, because position-independent

9Groups are often confused with bundles, which are IA-64’s encoding of three instructions in 128 bits. By contrast, groups

can be arbitrarily long, and can start and end somewhere in the middle of a bundle.
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code may refer to code or data outside the code snippet in a PC-relative way (and usually does),
while a relocatable code snippet must not do this.

Determining relocatability. How do we find out if a code snippet is relocatable or not? The imple-
mentations of the VM instructions actually look as follows:
L_skip:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

L_before:

code snippet in C

L_after:

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

asm("SKIP4");

threaded-code dispatch

We compile engine() with these pieces to assembly language. Then we assemble the result
twice: Once with SKIP4 defined as empty string, so the SKIP4s assemble to nothing, and the re-
sult is as discussed earlier; and once with SKIP4 defined as .skip 4, and with engine defined as
engine2, so as a result the object file contains a function engine2() that has 16 bytes of padding
before and after each code snippet.10 We link both object files into the final executable. The ad-
dresses of the L_skip labels are taken and passed outside engine(), so gcc cannot optimize the
initial skip away as dead code, and also because that usually is the next label after a threaded-code
dispatch.
We now have a function engine()without the skips before and after the code snippets, and a

function engine2() that has 16-byte skips before and after each code snippet. We extract the labels
from each of the functions, and then compare the code snippets: If a code snippet from engine()

contains exactly the same bytes as the corresponding code snippet from engine2(), then the code
snippet is relocatable, otherwise it is not.
How does this work? If code from inside the code snippet references a code or data address out-

side the code snippet through a PC-relative address, the offset of the relative address will be differ-
ent between engine() and engine2(), because the target label will be farther away in engine2()

thanks to the skips. If there is an absolute reference (e.g., MIPS j instruction) to inside the code
snippet, it will be different between engine() and engine2(), because the respective targets are
at different addresses.
Even if the code snippet ends in an unconditional branch and the C compiler puts some other

code behind that unconditional branch,11 this scheme works: If the two code snippets compare
equal, the code is relocatable. When used in a code-copying system, the code snippet may have
some unused code behind the unconditional jump, but the generated code is still correct.
The reason for skipping 16 bytes is that this is a common code-alignment value, so the skips

would not result in altered alignment (these dayswe ask the compiler to align to 1-byte boundaries,
so skipping less might be sufficient). The reason for performing the 16-byte skip as 4 4-byte skips

10In earlier times we compiled twice rather than assembling twice, but compiling once is faster, and we do not need to

worry if the two compilation runs introduce unintended differences in addition to the intended ones.
11We have not seen such an occurence yet.



12 M. Anton Ertl and Bernd Paysan

is that for some targets gcc counts the number of instructions in asm statements, assumes that
each instruction takes at most 4 bytes, and generates code that relies on this assumption.
The absolute target addresses for the MIPS j and jal instructions have a catch: They work only

for targets in the same 256MB segment of the address space. When we last looked, the functions
engine() and engine2()were linked in the same 256MB segment as the functions called by some
of the code snippets, and the code snippets would have been classified as relocatable. However, they
were only relocatable within this 256MB segment. This is another reason why we disabled code
copying for MIPS. An alternative would have been to allocate the memory for the copied code in
the same 256MB segment as the original. Fortunately, among the architectures we have looked at,
only MIPS has this property.

5 COMPILER ISSUES

In the previous section we have already mentioned a few caveats about how compilers have in-
terfered with our initial assumptions about the generated code, and what we do about that. This
section discusses additional issues.
We had quite a few problems with various gcc versions in the 2000s, and for some we found

ways to deal with them, while some others were eventually fixed (after reappearing for several
years). Also, the rethoric about undefined behaviour started at around that time and has spread
and become more aggressive since then,12, so at some point we expected to have to switch from
using GNU C to assembly language as a more reliable foundation at some point [Ert14], essen-
tially switching to a conventional compiler. But this has not happened (yet?), and actually, in the
2010s and 2020s only few new problems have appeared, and we found ways to deal with them.
So GNU C seems to be a relatively stable foundation after all, once one has implemented various
workarounds.

5.1 Code reordering

When we started, gcc arranged the basic blocks in source order. This changed with gcc-3.2. This
has an effect on how we find the next label (Section 4.1). But we also saw cases where the compiler
moved basic blocks from between L_before and L_after to outside these labels, which caused
problems.
To avoid such problems, we tried to have only straight-line code in the VM instruction implemen-

tations. We extracted loops and most if-statements into functions that are compiled separately,
and the VM instruction implementation only contains a call to this function. This costs a little
performance (from the function call as well as turning the VM instruction implementation into
non-relocatable code on most architectures), but fortunately the VM instruction affected by this
are executed relatively rarely.
However, conditional VM branches are executed frequently, and in the ideal case they contain

a conditional branch, in the following form (also seen for (+loop) in Section 3):

12http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
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... skips ...

L_before:

... stack handling etc. ...

if (VM_branch_taken)

ip = ip[-1]; /*VM-branch target*/

threaded-code dispatch;

L_after:

... skips ...

threaded-code dispatch;

Ideally such VM-instruction implementations are compiled such that the basic blocks in the
machine code are in the same order as in the source code, so that the code controled by the if is
between L_before and L_after, and the second threaded-code dispatch can be left away by code-
copying in the usual case. For now, gcc does it that way for our code. But if gcc ever started chang-
ing this, a possible way to steer it back on the right pathmay be to use __builtin_expect(VM_branch_taken,1
instead of just VM_branch_taken.

5.2 Code alignment

Compilers insert padding to align branch targets to instruction-fetch boundaries or cache-line
boundaries. In particular, they do this for branch targets behind unconditional branches and loop
heads.
When code copying, the padding inserted for the original code is often inappropriate for the tar-

get code. Therefore, we suppress this padding by compiling engine()with the options -falign-labels=1 -falign-loops

-falign-jumps=1.
Instead, our code-copying implementation performs its own alignment (but on 2007-era proces-

sors where we measured the effects, the effects were in the noise).

5.3 Code deduplication

Starting with gcc-3.0, gcc started to compile all the goto * instances to an unconditional jump to
one instance of an indirect branch. The reason for this probably was to reduce the control-flow
edges in the data-flow analysis, for< goto * and = labels from =< to = +<.
In a number of gcc versions (up to the early gcc-4.x releases), gcc then did not eliminate the un-

conditional jump afterwards, with some versions eliminating them and some versions regressing,
but eventually the gcc maintainers managed to make the unconditional-branch elimination stick,
for our code.
So if that is a solved problem, why do we mention it here? We occasionally see this problem

reappear in some form, so it’s not completely gone.
E.g., when we managed to extend stack-caching support on AMD64 to three registers, we found

that onAMD64 gcc compiled the goto * to an unconditional branch to common code that contains
a lot of register shuffling (with no overall effect) and finally the indirect branch. Apparently the
register shuffling made the common code so long that the branch-elimination heuristic decided
not to eliminate the branch.
Fortunately, we found out that the register shuffling (and, consequently, the unconditional branch)

go away with the compilation option -fno-tree-vectorize. Apparently without this option gcc
tries to vectorize loads and stores of adjacent values, and is less precise in the data flow analysis
for that than for individual values, leading to the register shuffling.
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For the problems in the gcc-3.x and 4.x era, Gforth contains a workaround that has just one
threaded-code dispatch and jumps there from all the VM instruction implementations. Gforth has
labels before and after this dispatch, and because there is only one, gcc does not deduplicate it;
this allows Gforth to use it as a code snippet that is appended whenever a threaded-code dispatch
is needed.
In order to work with this workaround and still be relocatable, we implemented conditional VM

branches to just set the IP on a taken branch, and then continue through L_after to the dispatch
code. This results in worse code than we would have liked, but it was the best that was possible
on these compiler versions. This approach remains an option when building Gforth,

5.4 Code duplication

On our first encounter with gcc-7, we found that the generated code looked as a straightforward
compiler would generate for:
L_skip:

... skipping ...

code snippet in C;

threaded-code dispatch;

L_before:

code snippet in C;

threaded-code dispatch;

L_after:

threaded-code dispatch;

I.e., gcc-7 duplicated code reached by jumping to a label and the same code being reached in
a straight-line way. This may be a useful optimization, but it means that our code snippets now
contain the dispatch code, which is contrary to our intentions.
We found the following workaround: In order to convince gcc that this code duplication does

not pay off, after each label we insert 8 asm statements, each containing a comment with a text
unique to that label (so gcc hopefully will not try to deduplicate the code). Currently this is enough
to convince gcc to avoid the code duplication

5.5 Register allocation

Virtual machines have a number of “registers”, which are implemented in C code as C (local) vari-
ables. At least for the frequently-used variables, it would help performance if they were allocated
to real-machine registers.
Up to and including gcc-9, we explicitly assigned registers to several of these variables on many

platforms with GNU C’s feature “Explicit Register Variables”. In gcc-10 and later, disabling the
explicit register variables produced better results than enabling them.
With either approach, we have the following problem: In the Gforth engine, gcc only used callee-

saved registers for these variables. With explicit register variables, because gcc does not accept
caller-saved registers for those. But if left to itself, gcc does not use caller-saved variables, either,
because engine() contains about 100 VM instruction implementations that perform calls, and
these calls apparently cause the compiler to avoid using caller-saved registers for these variables,
especially for those that are used in < 100 VM instructions, such as the return-stack pointer of
Gforth. A problem here is that gcc does not know that VM instructions that access the return
stack are used frequently, while VM instructions that perform calls tend to be used rarely. This is
a problem even for architectures like Alpha that have a lot of registers in principle, but a calling
convention with relatively few callee-saved registers.
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For being able to use additional registers for stack caching without spilling other VM registers,
we use the following observation: All VM instruction implementations that contain a call only
use the canonical state with one stack item in a register, due to non-relocatability. So additional
stack cache registers are dead at the end of these VM instruction implementations, and there is no
reason to preserve these registers across the calls. But how do we tell gcc about that?
L_skip:

... skipping ...

L_before:

code snippet containing a call;

asm("":"=X"(spb));

asm("":"=X"(spc));

L_after:

threaded-code dispatch;

The empty asm statements right before L_after claim to overwrite spb and sbc (the variables
holding the additional stack-cache items in some stack-cache states). Therefore, these variables
are dead at the call and do not need to be preserved. This means that this VM instruction imple-
mentation is no hindrance to allocating spb and spc in a caller-saved register. And indeed, one of
these variables is allocated by gcc in a caller-saved register.
Another way to influence the register allocator that we have not used is the GNU C extension

“Label Attributes” (available since gcc-5).We can declare the VM instruction implementations with
calls as being cold, and/or declare frequently-used VM instruction implementations to be hot by
following the label with an attribute:
L_skip:

... skipping ...

L_before: __attribute__((cold));

code snippet containing a call;

L_after:

threaded-code dispatch;

With that, the register allocator is hopefully more willing to use caller-saved registers for local
variables of the VM.

5.6 Cache consistency

Many architectures do not guarantee cache consistency between data and instruction caches,
and require a special piece of code between generating code and executing code; this incanta-
tion typically consists of a few lines of architecture-specific (or, on some architectures worse,
implementation-specific or OS-specific) code, and for a long time has been the only non-portable
part of Gforth’s code copying implementation. Gcc-4.3 introduced __builtin___clear_cache(),
which would eliminate this last piece of non-portability. We use __builtin___clear_cache()on
RISC-V.
Unfortunately, __builtin___clear_cache() is not implemented correctly on at least Pow-

erPC64.13 We have switched Gforth back to using architecture-specific implementations of this
functionality (except on RISC-V). When implementing your own code-copying compiler, check if
__builtin___clear_cache() is compiled to non-empty code on each architecture that requires
special code to make the caches consistent. If it compiles to non-empty code, that code will hope-
fully be correct.

13https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93811
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Another problem with such architectures is multi-threading: The code-generating thread must
ensure that the D-cache lines are written to a common memory, and then the code-executing
threadsmust invalidate these regions in the I-cache (to get rid of stale I-cache lines); due to prefetch-
ing and branch prediction, this may even be necessary if code in the address range has never been
executed.
Until nowwe have ignored this problem, and relied on our luck. Typically Gforth programs only

start subthreads after finishing compiling the source code (and thus code generation), which may
explain why we have not seen any problems from that. A system with on-demand code generation
(the narrow meaning of JIT) may be more likely to encounter such problems, however.

5.7 Spectre

GCC offers mitigations against Spectre v2 [KHF+19]. While all of these mitigations are expensive,
because they disable indirect-branch prediction, the option -mindirect-branch=thunk-inline

is less expensive than -mindirect-branch=thunk, because the latter makes the code snippets non-
relocatable, so every VM instruction performs an indirect branch, while with the former option
the relocatability of the code snippets is not affected, resulting in fewer indirect branches and
therefore less slowdown.
On a Ryzen 3900X, we see slowdowns by a factor of 2.1–7.6 from using

-mindirect-branch=thunk-inline and slowdown factors of 7.5–18.1 from using
-mindirect-branch=thunk.

However, if you want to implement your programming language with Spectre mitigations, you
will prefer approaches such as copy-and-patch compilation that avoid performing somany indirect
branches. You will also want to use mitigations against other Spectre vulnerabilities (e.g., specula-
tive load hardening [ZBC+23] against Spectre v1), which will introduce additional slowdowns for
any approach, but unfortunately, these other mitigations require more work than just setting a C
compiler flag.

5.8 Control-flow protection

There are exploit techniques such as return-oriented and jump-oriented programming that work
by returning or jumping to arbitrary code. To make it more difficult to use these techniques, ar-
chitectures and compilers offer ways to check that branches and returns only jump to targets that
the compiler had in mind. E.g., gcc with the option -fcf-protection=full inserts an endbr64

instruction at every indirect-branch target (i.e., every label in engine()), and the CPU can be told
to report an error on an indirect branch to some other code. Endbr64 is an AMD64 instruction,
some other architectures have similar features.
This workswith code copying: It copies the endbr64 instruction to those places that the dispatch

code will later indirect-branch to (and to additional places).
We use -fcf-protection=none in Gforth, however, because Gforth offers enough gadgets14

already at the intended targets of indirect branches: All the VM instructios; moreover, Gforth and
its VM is a low-level language that allows arbitrary memory access within the process. So a Gforth
program that is exposed to untrusted input has to successfully defend against an attacker at the
front line (source-level bounds checks etc.) and cannot make life harder for the attacker who has
breached the front-line defense.
However, if your language is better suited to defense-in-depth, you can enable

-fcf-protection=full, and they will work with code copying. This feature may cost a little

14In the context of return-oriented and jump-oriented programming, a gadget is a machine-code sequence that an attacker

may want to return/jump to.
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performance, though: All the endbr64 instructions need to be decoded and executed. In a small
experiment with Gforth on a Ryzen 8700G (Zen4), we saw an increase in instruction count by a
factor 1.45 and an increase in cycle count by a factor 1.04 from -fcf-protection=full. Narrower
processors may see a bigger slowdown (the instructions per cycle on Zen4 increased from 3.83 to
5.34). VM implementations with more machine instructions per VM instruction will see a smaller
effect.

5.9 Clang

Clang supports “Labels as Values”, and Gforth is built with clang on platforms where GCC is not
available. However, using Clang poses a number of problems:

• Clang wants to understand the assembly language in asm statements, and stops compiling
when it sees asm("SKIP4"). One can work around that, and that is done in the ports that
need clang, but we have not done that for the experiments on Debian Linux in the following.

• Clang takes much longer than gcc to compile Gforth’s engine() and also needs more
memory. As an example, for gforth-itc (an indirect-threaded-code Gforth without code
copying nor other optimizations, and therefore without SKIP4), on a Ryzen 5800X gcc-
12.2 takes 3s and 346MB to compile engine(), while clang-14.0.6 takes 699s and 5603MB.
For engine() for gforth-fast (with all optimizations enabled), clang takes 3399s and
18264MB before it stops compiling because of SKIP4 (gcc takes 26s and 1804MB).

• Clang generates a lot of register and memory shuffling code, similar to what we have seen
with gcc-3.0. As a result, runnung the small benchmarks on Clang-compiled gforth-itc

executes 6.4 times more AMD64 instructions than on GCC-compiled gforth-itc and con-
sumes 4.2 times more Ryzen 5800X cycles.

As a result, Gforth selects GCCwhenever it can.We expect that the clang compilation speedwill
be a problem for other code-copying compilers. The bad code generation may be less pronounced
in language implementations that rely less on copy propagation than Gforth. Clang may be more
viable when using tail calls instead of using one function and “Labels as Values” (see Section 7.1).

6 OS ISSUES

Over the years operating systems have restricted executing dynamically-generated code more and
more. In the beginning, all memorywas allocatedwith read, write, and execute (RWX) permissions;
later, malloc() only allocated RW memory, and one has to use mmap() to get RWX memory.
Recently, some operating systems (in partcular MacOS on Apple silicon) do not serve mmap()

calls that ask for RWX memory (this restriction is also known as W^X). This is a problem for all
systems with run-time code generation, not just code-copying compilers, but, e.g., Java JITs as
well. For a single-threaded language implementation, one can mprotect() the memory toWwhen
generating the code, and to X when executing it, but that does not work for multi-threaded code,
unless you want to start a new page whenever you generate a new piece of code.
MacOS provides a MacOS-specific API for JIT compilers that supports switching the memory

into W in the code-generating thread and keeping it X in the other threads, and Bernd Paysan has
actually invested the time to use this API.
Several of the BSDs also has W^X by default, but allows to mark binaries such that RWX works.

The command for marking the binary is short, but specific to the BSD variant.15

An approach that may work without special APIs is to have the code generation in one pro-
cess and the execution in a different process, both mapping the same memory, but with different
permissions. Another option may be to map the same memory within one process twice, at one

15https://www.reddit.com/r/BSD/comments/10isrl3/notes_about_mmap_mprotect_and_wx_on_different_bsd/

https://www.reddit.com/r/BSD/comments/10isrl3/notes_about_mmap_mprotect_and_wx_on_different_bsd/
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address range with W permission, and at the other address range with X permission. We have not
tried either approach.
If all else fails or you don’t want to jump through the hoops that these operating systems put

up, code-copying based on threaded code always allows you to fall back to plain threaded code,
which works fine on operating systems with the W^X restriction. E.g., Gforth-0.7 (which was not
specifically designed for this circumstance) automatically falls back to plain threaded code on
MacOS on Apple silicon: the mmap() call for allocating the code memory fails, so Gforth-0.7 falls
back to using malloc(), and because that does not produce executable memory on modern OSs,
Gforth-0.7 turns off dynamic code generation.

7 ALTERNATIVE APPROACHES

In this section we describe approaches that are interesting but that are not implemented in pro-
duction Gforth.

7.1 Tail calls

Instead of putting all VM-instruction implementations in one function and using goto * for threaded-
code dispatch, one can also put each VM instruction implementation in a separate function and
use optimized tail-calls for threaded-code dispatch, as follows:

typedef void (*vm_inst)(void **ip, long *dsp, long tos);

void lit(void **ip, long *dsp, long tos)

{

... payload including ip update ...;

(*(((vm_inst *)ip)[0]))(ip,dsp,tos);

}

The last line of the function performs the threaded-code dispatch. The tail-call must be optimized
into a jump, otherwise the C stack grows and eventually overflows. When we first considered this
approach [Ert95], GCC did not tail-call optimize such code, but in the meantime it does, as does
Clang [XK21]; Clang even provides a way to require that a call is tail-call-optimized, and will
report an error if it cannot meet this requirement.
The VM registers are passed as parameters, at least as long as the calling convention supports

passing them in machine registers. With gcc, additional VM registers could be stored in global
explicit register variables; on AMD64 this results in 12 general-purpose and 8 floating-point regis-
ters available for VM registers. Clang does not support explicit register variables, but it supports
using a calling convention for these functions and calls that uses as many registers as possible for
parameter-passing.
So for dealing with VM registers efficiently, one has to pass VM-registers in parameters or keep

them in global register variables with compiler-dependent and ABI-dependent code, but that is a
relatively small effort.
With the tail-calling approach, there is a fixed allocation of VM registers to machine registers,

either coming from the position in the parameter list, or from the explicit register allocation.
We expect that the VM instruction implementations can be compiled faster and with less mem-

ory with the tail-calling approach, because the compiler will hopefully not try to perform data-flow
analysis between the functions, while it tries to do it when the implementations are all contained in
one function.We can then squander the compilation speed gain on introducingmore code snippets,
for various optimization purposes (Xu and Kjolstad report using 98831 code snippets [XK21]).
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Another benefit is that we should see no or little of the register-and-memory shuffling that we
see with Clang, or with gcc without -fno-tree-vectorize.
So far you have only seen how tail calls can be used to implement threaded code. How can it be

used for code-copying compilation?
In order to do that, we need a way to get rid of the dispatch part of the implementation. Unfortu-

nately, compilers tend to mix the instructions from the payload part with those from the dispatch
part; just inserting a label between them will not work, because there is nothing that jumps to this
label. Maybe an asm statement can be made to act as a barrier, but preliminary experiments failed
to produce satisfying results.
One way that may be more promising is to have, in addition to functions that end in a threaded-

code dispatch (to have a fallback option), variants intended only for code copying that end in a
direct [XK21]) or indirect tail-call without threaded-code dispatch. On many architectures this is
just one instruction, that must be last in the function. However, there are exceptions: Some archi-
tectures have delayed branches (HPPA,MIPS, SPARC); some architectures require two instructions
for indirect branches (PowerPC, IA-64). In some programming models, a direct jump to a function
is expressed as an indirect jump to a target loaded from the global offset table (GOT), and as a
result the direct jump also is expressed with more than one instruction.
Once we have solved the problem of keeping the payload separate from the tail call, how do we

know where the tail call starts so that we can use the code between the start of the function and
this instruction as code snippet? Xu and Kjolstad extract the function size (and the code) from the
object file (see Section 7.2), and apparently use their own architecture-specific knowledge about
the size of the last instruction to determine where it starts. A way to determine the size of this last
instruction may be to have a function that performs only this tail-call, and look at its size.

7.2 Snippets from object files

Gforth extracts code snipets from the executable at run-time and has some startup overhead while
it examines all the code snippets for relocatability and performs its table setup.
An alternative is to extract code snippets from object files [NHCL98, XK21] at system build time

using the Binary File Descriptor library (GNU BFD). One advantage of this approach is that the
object file contains additional information, such as the function size, or linkage information for
symbols external to the object file.

7.3 Copy-and-patch compilation

Gforth accesses immediate operands and control-flow information through IP. This requires a
register for IP, results in less efficient accesses to immediate operands and less efficient control
flow than with ordinary compilers, and requires keeping the VM code around.
An alternative is to have code snippets that contain dummy immediate arguments and perform

control flow directly to dummy targets, and then patch the constants or target addresses in these
code snippets with the actual values, resulting in copy-and-patch compilation.
One approach for copy-and-patch compilation has been based on using the linkage information

in object files [NHCL98, TCL+00, XK21]. References to external symbols are used for patchable
immediate operands and patchable control-flow targets. The linkage information describes where
to patch and how to patch (e.g., absolute or relative address). This requires some architecture/ABI-
specificwork, but ABIs have a finite number of relocation types (e.g., 52 in theAMD64ABI [LMG+])
and only a few are actually used in the code snippets.
However, by refering to an external symbol the copy-and-patch compiler usually cannot patch

the immediate operand of instructions like RISC-V’s addi. The external symbol is a 64-bit (or
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32-bit) value, while the immediate operand of addi is 12 bits long, so the addition of a constant
(whatever its size) is compiled to several instructions.

Another approach is to start with code snippets delimited by labels in one C function, like
Gforth’s code copying uses, but perform patching in addition [VA04, EG04b].
We implemented copy-and-patch compilation for Gforth in a prototype for IA-32 and PowerPC

using the latter approach [EG04b]. This work was based on Gforth’s approach of extracting code
snippets from the executable at system startup time. The engine() function was compiled thrice,
twice with the same immediate arguments, and once with different immediate arguments. The
first two versions were compared to determine relocatability, the third version was compared to
find out the placeholders of the immediate arguments.
This approach can make use of the RISC-V addi instruction, but needs to fall back to code that

uses several instructions when the immediate operand becomes too large. It needs quite a bit of
knowledge about the instruction encodings, in particular, the sizes of the immediate-operand fields.
We considered determining the encoding and size by varying the immediate operands a lot more,
but did not implement that idea; dealing with each architecture manually is probably less work.
We originally intended to turn this copy-and-patch compiler into a production engine for Gforth,

but in those years several GCC releases resulted in falling back to threaded code, so the copy-and-
patch approach looked too brittle, and we let it bit-rot. Later, the rethoric by the advocates of C
code without undefined behaviour kept the distrust in GCC high. If we had continued to maintain
this engine, maybe we could now report on its success and the hurdles we had to overcome. Or
maybe it would have been a bridge to far.

8 RELATED WORK

GCC-2.0 (released February 1992) introduced “Labels as Values”, which not only proved useful
for implementing threaded code (we started the Gforth project[Ert93] in July 1992), but also for
compiling by copying compiler-generated code snippets between two labels, with all the code
snippets being within a function. This method was first outlined by Rossi and Sivalingam [RS96,
Section 2.5], who refer to an unpublished discussion between Xavier Leroy and Kenneth Oksanen.
Piumarta and Riccardi provided a more elaborate treatment [PR98], with deduplication of code
sequences.
Ertl and Gregg implemented code-copying in Gforth, and in the beginning the main benefit was

in indirect branch prediction accuracy [EG03a, EG03b, CEG07]; it turned out that leaving away
deduplication (or conversely, introducing replication, as we framed it) helped the branch predictors
at the time. Indirect branch predictors have improved a lot in general-purpose processors [RSS15],
but code copying still provides a good speedup.16

Once you have code copying, you can eliminate instruction-pointer (IP) updates, either by leav-
ing away the unneeded VM instruction slots [PR98], or by replacing several IP updates with a
combined one [EP24]. While IP updates play a minor role for performance on CPUs from the
2000s, they can be the decisive bottleneck on loop-dominated benchmarks in the 2020s.
Another optimization that was facilitated by code copying is multi-state stack caching [Ert95,

EG04a, EG05].
Tempo is a partial evaluator that uses code copying and patching by extracting information from

object files [NHCL98]; Tempo was later used to specialize an interpreter into a compiler [TCL+00].
Iliasov [Ili03] describes a copy-and-patch compiler with a minimal patching component: Only

literals need to be patched; control flow is performed by performing indirect jumps to addresses
provided as literals.

16See Section 2.1 and http://www.complang.tuwien.ac.at/anton/interpreter-branch-pred.txt.

http://www.complang.tuwien.ac.at/anton/interpreter-branch-pred.txt
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QEMU is a full-system emulator. It is a production system with a long history, and has many
more users than Gforth. QEMU can emulate machines with a different instruction set than the host
machine. It uses dynamic translation techniques for that, originally implemented in its Dyngen
component [Bel05] using code-copying and patching, similar to what we described in Section 7.2
and 7.3. But Dyngen uses ordinary functions, not tail-calling functions, and has to get rid of the
function prologue and epilogue. Dyngen is gcc-3.x-specific, and it apparently was too difficult to
adapt it to newer gcc versions or other compilers, so it was replaced with TCG in QEMU-0.10.0
released in 2009. TCG is based on QOP by Paul Brook, who described it as “Hand written code
generator”17, so TCG probably is not based on copying and pasting compiler-generated code.
In Gforth we have dealt with changes in GCC by finding workarounds, or, for versions where

we were not successful, by falling back to threaded code. Another approach is to actually define
the properties that a compiler’s code generation should have to support code copying; then modify
a compiler to provide those properties (when asked for it), and report an error if it fails to provide
the properties. This approach has been explored by Prokopski and Verbrugge [PV07, PV08], but
their patches have not been integrated into GCC.
Several code-copying JavaVM implementations have been implemented, among them SableVM

[GH03] and the Cacao interpreter [ETK06]. A particular challenge solved by these implementa-
tions was quickening of VM instructions, where VM instructions rewrite themselves into faster
code on first execution. SableVM stopped being maintained after the research project ended (last
release 2007). The Cacao interpreter bit-rotted while the main thrust of Cacao continued to use
conventional code generation technology.
Maxine is a Java VM implementation with two-level compilation (baseline and optimizing com-

piler), where the baseline compiler is a copy-and-patch compiler that uses templates written in Java
and where the code is generated by the optimizing compiler (which uses conventional compiler
techniques) or by HotSpot [WHV+13].
Xu and Kjolstad implement two copy-and-patch compilers: One that directly compiles from the

abstract syntax tree (AST)without going through a VM and one forWebAssembly. Their technique
works by having each code snippet (called stencil in the paper) in a tail-calling function with
references to external symbols as placeholders for patching, and extracting the code snippets from
object files. They use 1666 code snippets for the WebAssembly compiler, and 98831 code snippets
for the AST compiler; the latter is notable, because it is beyond practical for the technique where
all code snippets are in one function.

9 CONCLUSION

Code-copying compilers make retargeting of the compiler much easier by using code snippets
coming from a different compiler. Gforth demonstrates that code-copying without patching can
produce code with similar performance as a compiler with a hand-written architecture-specific
code generator. Gforth has used code copying since 2003, on many architectures, and has dealt
with many GCC versions in those years. If all else fails, Gforth can fall back to threaded code, but
it usually does not have to.
Copy-and-patch compilation promise an improvement in performance over copying without

patching (as in Gforth) at a moderate increase in architecture-specific code. However, while there
have been a number of publications about this technology, no production system is known to us
that currently uses it.

17https://qemu-devel.nongnu.narkive.com/bCtjCaPs/hand-written-code-generator-2

https://qemu-devel.nongnu.narkive.com/bCtjCaPs/hand-written-code-generator-2
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