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Chapter 1

Introduction

SATIrE (Static Analysis Tool Integration Engine) is a framework for com-
bining various tools for static analysis of computer programs. Its aim is to
support a wide range of source-level analyses and transformations (including
annotations and instrumentation) for C and C++ programs.

SATIrE is being developed at Vienna University of Technology! and Univer-
sity of Applied Sciences Technikum Wien?. It lives at:

http://www.complang.tuwien.ac.at/satire/
Major software products integrated in SATIrE are:
e the Program Analyzer Generator (PAG)

e relevant parts of the ROSE source-to-source infrastructure and its bind-
ing to the EDG C and C++ frontend

e Termite

Additionally, SATIrE comes with a number of standard analyses that can be
used as building blocks when implementing custom program analyzers and
transformers.

Development of SATIrE has been funded within the ARTIST2 Network of
Excellence on Embedded Systems Design® and the ALL-TIMES project?.

http://www.tuwien.ac.at
2http://www.technikum-wien.at
3http://www.artist-embedded.org
‘http://www.all-times.org



Chapter 2

SATIrE Tool Integration
Architecture

2.1 Architecture - Conceptual View

The architecture of the Static Analysis Tool Integration Engine (SATIrE) for
combining different analysis tools is shown at a conceptual level in Fig. 2.1.
A central aspect of the SATIrE approach is that information gathered about
an input program can be generated as annotation in the output program,
and that the output program can again serve as input program. This allows
to make analysis results persistent as generated source-code annotations.
Utilizing such annotations can also support whole program optimization.
The architecture shown in Fig. 2.1 consists of the following kinds of compo-
nents

Front End. The (possibly annotated) program, P, is translated to a high-
level intermediate representation (HL-IR).

Annotation Mapper. The annotations in P are translated to annotations
of the HL-IR.

Tool IR Builder. Each tool may require its own IR. The Tool-IR Builder
creates the required Tool-IR by translating the HL-IR to the Tool-IR.

Tool. A tool analyzes or transforms its respective Tool-IR.

Tool IR Mapper. The Tool-IR mapper either maps the Tool’s IR back to
High-Level IR or maps the computed information or results back to
locations in the HL-IR.
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Figure 2.1: Static Analysis Tool Integration Engine Architecture
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Program Annotator. The HL-IR annotations are translated to a repre-
sentation in the source code. This can be comments, pragmas, or some
specific language extension.

Back End. From the HL-IR an annotated program P’ (or an annotation
file in ARAL format) is generated.

To allow a seamless integration of the tools, the Annotation Mapper, Program
Annotator, the Tool-IR Builders and Tool-IR Mappers are offered by SATIrE.
In Fig. 2.1 the solid back-edge represents an iterative application of the tools
within SATIrE.

2.2 Architecture - Concrete View

To date we have integrated the Program Analyzer Generator PAG [1], which
generates analyzers from high-level specifications, the LLNL-ROSE infras-
tructure for source-to-source transformation of C++ programs [3], and the
term-based analyzer and transformation tool Termite, into SATIrE. In the
following sections we describe each integrated tool and give a short overview
of its integrated components.
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Figure 2.2: SATIrE Architecture - Integrated Tools

2.2.1 LLNL-ROSE Integration

The LLNL-ROSE infrastructure offers several components to build a source-
to-source translator. The ROSE components integrated into SATIrE are

C/C++ Front End. ROSE uses the Edison Design Group C++ Front End
(EDG) [2] to parse C++ programs. The EDG Front End generates an
abstract syntax tree (AST) and performs a full type evaluation of the
C++ program. The AST is represented as a C data structure. ROSE
translates this data structure into a decorated object-oriented AST

(ROSE-AST).

Abstract Syntax Tree (ROSE-AST). The ROSE-AST represents the struc-
ture of the input program. It holds additional information such as the
type information for every expression, exact line and column informa-
tion, instantiated templates, the class hierarchy (as it can be computed
from the input files), an interface that permits querying the AST, an
an attribute mechanism for attaching user-defined information to AST
nodes.

C/C++ Back End. The Back End unparses the AST and generates C++
source code. It can be specified to unparse all included (header) files or
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the source file(s) specified on the command line with include-directives.
This feature is important when transforming user-defined data types.

2.2.2 Program Analyzer Generator Integration

The Program Analyzer Generator (PAG) from AbsInt, takes as input a spec-
ification of a program analysis and generates an analyzer that implements
the analysis. The analyzer operates on an inter-procedural control flow graph
(ICFG) and provides the computed analysis results as C data structure as
well as a visualization of the ICFG and the analysis results. The components
necessary for a seamless integration of PAG into SATIrE are

ICFG Builder. Creates the inter-procedural control flow graph (ICFG) for
a given ROSE-AST.

PAG Analyzer. Generated by the Program Analyzer Generator (PAG)
from a user-defined analysis specification using the OPTLA language.

Analysis Results Mapper. Maps the analysis results back to locations in
the ROSE-AST and makes them accessible as ROSE-AST annotations.

Various types of ICFG attributes (for example numeric labels for statements)
and support functions are provided to the analyzer by appropriate functions.
Thus, the high-level analysis specification can access any information the
ROSE-AST provides, such as types of expressions, the class hierarchy, etc.

2.2.3 Termite and Prolog Integration

The integration of the tool Termite (i.e. Prolog) allows to specify a manipu-
lation of the AST as term manipulation. The SATIrE components necessary
for integration are

Term builder. Creates a term representation for a given AST. The term
representation is complete, meaning that it contains all information
available in the AST. The term representation is stored in an external

file.

Termite - Prolog term manipulator The term manipulation is specified
as Prolog rules.

Term-AST Mapper. The transformed term is read in and translated to a
ROSE-AST.

More information on Termite can be found in the document termite.pdf.



Chapter 3
SATIrE Analyzer Architecture

This chapter describes the general structure of analyzers and their interac-
tions with the infrastructure provided by the SATIrE framework.

Note: Most of the identifiers described in this chapter live in the SATITE C++
namespace. They can be accessed by including the <satire.h> header.

3.1 Command Line Flags

SATIrE contains a command line parser that reads options and input file
names and encapsulates them in an instance of the AnalyzerOptions class.
The command line can be parsed using the

AnalyzerOptions *extractOptions(int argc, char **argv);

function. A list of all the flags understood by the command line parser, and
information on how to access this information from SATIrE analyzers, is
given in Appendix B.

3.2 Program Input and Output

For each of the different program representations supported by SATIrE (see
Chapter 4), there is a corresponding function to build that representation
from appropriate inputs. Each of these functions takes an AnalyzerOptions
object; besides specifying input file names, this object contains additional
options such as user requests for sanity checks on the program representation,
or for visualizations (of the ICFG).

The ROSE AST (Section 4.1) can be built by calling:

SgProject *createRoseAst(AnalyzerOptions *options);

10



CHAPTER 3. SATIRE ANALYZER ARCHITECTURE 11

Note that this either reads source code, or a binary representation of a pre-
viously constructed ROSE AST, depending on flags passed on the command
line.

The SATIYE ICFG (Section 4.2) is built from a ROSE AST by calling:
CFG *createICFG(SgProject *astRoot, AnalyzerOptions *opts);

Despite there being special functions for explicit creation of various spe-
cialized program representations, it is often best to use SATIrE’s general
high-level Program (Section 4.3) class. Building a Program is performed by
calling its

Program(AnalyzerQOptions *o);

constructor.
Annotated or transformed programs can be output by calling the

void outputProgramRepresentation(Program *program,
AnalyzerOptions *options);

function. This function will output the program as source code, as a binary
AST representation, or as a Termite term, depending on the command line
options. It will also output a visualization of the ICFG if requested.

Using these parts, one can build a very small SATIrE program that already
allows various forms of program analysis, visualization, and transformation:

#include <satire.h>
using namespace SATIrE;

int main(int argc, char **argv)

{
AnalyzerOptions *options = extractOptions(argc, argv);
Program *program = new Program(options);
outputProgramRepresentation(program, options);

+

The tasks this program performs depend on the command line flags passed
to it by the user. Despite its power, this program is probably shorter than
the compiler command line you need to build and run it correctly :-) The
satire_driver executable provided by SATIrE is just this program.
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3.3 Analyzer Interface

This section describes the general interface SATIrE analyzers are expected
to implement. This interface is the public interface of the abstract Analysis
class, from which all analyzers should be derived. There is a more elaborate
DataFlowAnalysis subclass for data-flow analyzers generated using SATIrE
and PAG; this class is described in more detail in Chapter 5.

The analyzer interface consists of several parts; first, there is a part for meta
information about the analyzer:

virtual std::string identifier() const = O;
virtual std::string description() const = 0;

The identifier is expected to be a single word naming the analyzer, while the
description is a brief human-readable summary of what the analyzer does.
The second part of the interface comprises methods for running the analy-
sis itself, and for performing actions depending on the results the analysis
computed:

virtual void run(Program *program) = O;
virtual void processResults(Program *program) = O;

Note that these methods take as argument an instance of the general Program
class. This enables SATIrE to use a single analyzer interface, while each
analyzer can still decide which part of this program representation (AST,
ICFG, etc.) to run on. See Chapter 4 for details on this issue.
Conceptually, the run method is meant to be a read-only analyzer run that
only collects information about the program and leaves the program rep-
resentation unchanged; the processResults method can then annotate or
transform the program as appropriate given those results. This structure
encourages modular analysis and transformation, but the separation is not
enforced by SATIrE.

The third part of the analyzer interface concerns dependencies between ana-
lyzers. One of SATIrE’s goals is modular construction of program analyzers
by combining, and building on, results from supporting analyses. Where an
analysis relies on results from other analyses, it must be ensured that the
supporting analyses are run before the client analysis. This is the aim of the
methods related to analyzer dependencies:

void dependsOnAnalysis(Analysis *analysis);
std::vector<Analysis *> &dependencies() const;
void clearDependencies();
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The dependsOnAnalysis method is used to declare that the receiver of the
method call depends on results from the analyzer passed in the method argu-
ment; the other two methods can be used to query the dependencies declared
so far, or to remove all of these dependencies.

3.4 Running an Analyzer

To run an analyzer with (or without) dependencies, rather than calling its run
method directly, SATIrE’s analysis scheduler should be used. As far as users
are concerned, this amounts to calling a single method on the global scheduler
object provided by SATIrE:

analysisScheduler.runAnalysisWithDependencies(analysis,
program) ;

This call is like calling
analysis->run(program) ;

except that the scheduler is aware of the dependencies between analyzers,
and ensures that they are satisfied.

If analyzer A depends on analyzers B and C, SATIrE’s analysis scheduler
will thus ensure that B and C will be run—in some unspecified order that is
consistent with all the dependencies in the system—before A’s run method
is finally called by the scheduler.



Chapter 4

Program Representation in
SATIrE

This chapter describes the various ways SATIrE can represent programs
under analysis. The major representations are the ROSE abstract syntax
tree (AST), SATIrE’s interprocedural control flow graph (ICFG), and the
Termite term representation of the AST. The Program class provides a uni-
fied container for these representations.

4.1 The ROSE AST

SATIrE uses the EDG C and C++ frontend provided with ROSE for parsing
programs. Thus, the AST used by ROSE is an important form of program
representation in SATIrE.!

The ROSE AST is an object-oriented AST modeling the abstract syntax of
a given C or C++ program in great detail. ROSE programs can be traversed
and transformed in various ways; the reader is referred to the ROSE doc-
umentation for details?. ROSE’s program transformation capabilities and
its unparser are used by SATIrE to annotate ASTs and unparse them to
annotated source code.

"'When support for clang is nearing completion, SATIrE will offer the possibility to
use clang instead of EDG as the frontend. However, the representation built using this
alternative frontend will still use the ROSE AST classes.

Zhttp://www.rosecompiler.org

14
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4.2 The SATIrE ICFG

SATIrE provides a representation of the program under analysis as an inter-
procedural control flow graph (ICFG). The ICFG is designed to support
data-flow analysis using PAG, but it can also be used for other types of
analysis. The traversal mechanism provided by SATIrE (described below)
makes it possible to use the ICFG for flow-insensitive analysis in a way that
is similar to ROSE’s AST traversals.

4.2.1 Structure of the ICFG

The ICFG is a directed graph consisting of nodes connected by labeled edges.
Each node contains a single statement, which can be a statement from the
original program, a transformed version of some original program statement,
or a new statement that does not directly correspond to a program state-
ment, but rather to a program point. Statements are represented using ROSE
classes as far as possible; statement types not occurring in ROSE are imple-
mented by subclassing ROSE’s SgStatement class (via SATIrE’s IcfgStmt
class).

Edges model (all) possible control flow, with labels providing information
on the type of flow: normal_edge for regular flow; jump_edge for uncon-
ditional jumps; true_edge and false_edge for branches (including loops);
call_edge, return_edge, and local_edge for function calls, returns, and
for connecting call and return site in the caller, respectively. There are no
interprocedural edges except for calls and returns.

The following paragraphs list SATIrE’s ICFG statements grouped by topic.

Variable scopes The ICFG represents not only variable declarations, but
also ‘undeclarations’ where variables go out of scope. The corresponding
statements are DeclareStmt and UndeclareStmt. Compared to the ROSE
AST, variable declarations are normalized such that each DeclareStmt de-
clares exactly one variable; any initializers are modeled using subsequent
assignments.

Function boundaries Functions (also called ‘procedures’) in the ICFG
have explicit FunctionEntry and FunctionExit statements. All calls and
returns pass through these statements.

Function arguments The ICFG makes argument passing explicit. It in-
troduces special global variables, collectively referred to as ‘tmpvars’, which
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behave similarly to argument registers in machine code. In particular, be-
fore each function call node (see below), the ICFG contains a series of nodes
with ArgumentAssignment statements. Each of these assigns the value of
some argument expression to a tmpvar. Within each function, the entry
node is followed by a sequence of ParamAssignment statements that assign
each argument tmpvar to the corresponding parameter variable inside the
function.

Function return values Returning values from functions is similar to the
handling of function arguments. Each return statement in the original pro-
gram introduces an assignment to the global return tmpvar. After the return
from a function call, the ICFG introduces a ReturnAssignment statement
that assigns the tmpvar’s value to another tmpvar specific to this call site.
The original expression containing the function call is rewritten in the ICFG
to refer to the function’s return value through this tmpvar.

Function calls Calls to functions that can be resolved statically by the
ICFG builder are represented by FunctionCall and FunctionReturn ICFG
statements. From the call node, there is a call_edge to the called function’s
entry node; that function’s exit node is connected to the caller’s return node
by a return_edge. The call and return nodes in the caller are also con-
nected by a local_edge. Calls that the ICFG builder cannot resolve by itself
are modeled similarly, but using ExternalCall and ExternalReturn state-
ments; some analyzers may be able to discover call targets and add appropri-
ate edges to the ICFG (SATIrE’s points-to analysis does this, see Section 6.2).
Constructor and destructor calls are modeled like normal function calls if
they can be resolved; otherwise, they are modeled using ConstructorCall
and DestructorCall statements, respectively.

Loops and branches All for loops are normalized to while loops with
the same semantics. The point just after the loop exit is marked with a
WhileJoin statement; the point where the paths from an if statement con-
verge is marked with IfJoin.

Short-circuiting operators The control flow related to operators that do
not necessarily evaluate all of their arguments—the &&, ||, ?7: operators—
must be modeled explicitly in the ICFG. This is done using the LogicalIf
statement. This statement is like a regular if statement; the node containing
it has outgoing true_edge and false_edge edges to nodes modeling eval-
uation of subexpressions as appropriate. Intermediate results are stored in
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tmpvars.

4.2.2 Accessing ICFG Information

The SATIrE ICFG is represented by an instance of SATIrE’s CFG class. The
members of this class provide a lot of information about the ICFG, but there
is no nice public interface yet. The header file cfg_support.h provides access
to the definition of this class and its helpers.

As the ICFG was implemented to support data-flow analysis using PAG,
SATIrE provides a complete implementation of the ICFG query functions
required by PAG and documented in Chapter 9 of the PAG manual®. The
KFG type required by PAG is defined to be the CFG * pointer type.

4.2.3 Traversing the ICFG

SATIrE provides an ICFG traversal mechanism similar in spirit to ROSE’s
AST traversals. This traversal is an efficient way to visit all statements in the
ICFG to perform flow-insensitive analysis. Note that statements are visited
in no particular order; in fact, even visits to statements in different functions
may be intermingled.

The traversal mechanism is implemented in the abstract IcfgTraversal class
in CFGTraversal.h. Users must define a derived class and provide a defini-
tion for at least this pure virtual method:

virtual void icfgVisit(SgNode *node) = 0;

This method will be invoked by the traversal mechanism on each statement
of the ICFG. Additionally, it is also invoked for each initializer expression
provided for a global variable in the program. The ICFG traversal only
touches the roots of initializer expressions and ICFG statements; if you wish
to descend deeper into expressions and statements, you will need to use some
additional mechanism (e.g., ROSE’s AST traversals).

In addition to the visit method, the following methods may also be overrid-
den:

virtual void atIcfgTraversalStart();
virtual void atIcfgTraversalEnd();

3PAG is not available to the general public. You might be able to get a copy
of PAG, or at least its manual, by asking AbsInt nicely. PAG’s homepage is at
http://www.absint.de/pag/.
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These methods are called before the first time the visit method is called, and
after the last time the visit method has been called, respectively. The default
implementations do nothing.

As noted above, the order in which parts of the ICFG are visited may appear
chaotic. The traversal mechanism provides a number of member functions
to help in finding out what is being visited. The

bool is_icfg_statement() const;

function can be called from within the visit method to determine whether
the node being visited is a global initializer expression or a statement in the
ICFG. When visiting ICFG statements, the following methods may also be
called:

int get_node_id() const;
int get_node_procnum() const;

These provide unique numeric identifiers for the current ICFG node, and for

the procedure the current node is part of.

The traversal itself is started by calling the following method of the IcfgTraversal
class on an ICFG:

void traverse(CFG *icfg);

4.3 SATIrE’s Program class

The Program class defined by SATITE encapsulates the various forms of pro-
gram representation mentioned above. Program enables SATIYE to use a
single interface for all analyzers, even though internally they may prefer dif-
ferent program representations. It has public members corresponding to the
options associated with the program, and the representations that have been
computed for it:

AnalyzerOptions *options;
SgProject *astRoot;

CFG *icfg;

PrologTerm *prologTerm;

The options member is initialized by Program’s constructor, which takes a
mandatory AnalyzerOptions * argument. This constructor typically also
ensures that the ROSE AST member is initialized. However, the ICFG mem-
ber will typically be NULL until it is needed; analyzers that run on the ICFG
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should check this pointer and initialize it using the createICFG function

(Section 3.2) if necessary.

The prologTerm member can point to a Termite term representing the pro-
gram. It is initialized by the outputProgramRepresentation function if the
option to output a Termite term is set.



Chapter 5

Writing Data-Flow Analyzers

This chapter describes how to implement data-flow analyzers using PAG and
SATIrE. In this connection, PAG is used to generate a data-flow analyzer
from a functional specification, while SATIrE provides the program repre-
sentation (the ICFG) the analyzer runs on, as well as a number of useful
support functions, supporting types, and supporting analyses.

5.1 Implementing an Analyzer

Implementation of a new data-flow analyzer starts with initializing an an-
alyzer directory using SATIrE’s newanalysis script. newanalysis can be
called with an analyzer name provided on the command line, in which case
it will create a new directory with that name; otherwise, it will use the cur-
rent directory as the analyzer directory. In any case, newanalysis creates a
number of C++ code and header files as well as some additional files.
newanalysis is also meant to create a Makefile for the analyzer. However,
this can only be done if it knows the name of the carrier type of the analy-
sis. This name can either be passed on the command line, or newanalysis
attempts to find it in the .optla file of the analysis. If no .optla file has
been written yet, the script will not create a Makefile; you can invoke it again
later, once the .optla file is there.

How to implement the analysis specification itself is covered in detail in the
PAG manual. SATIrE supports both separate .set and .optla files, as well
as a single .optla file that also contains all type information, as described in
the PAG manual. Once (a rudimentary version of) the analysis specification
exists, and a Makefile has been generated (possibly by a repeated invocation
of newanalysis), simply type make. This will call PAG to generate C code
from the specification, compile that code and SATIrE’s support code, and

20
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build an executable with the same name as the analyzer directory.

This executable is your analyzer program: It takes file names and additional
options on the command line and performs the analysis on the input pro-
grams. The options determine how analysis results are visualized or made
permanent. See Appendix B on the command line flags you can pass to the
analyzer.

5.2 SATIrE Support Features

This section lists all CFG attributes, types, and auxiliary functions accessible
from PAG analysis specifications when using the SATIrE system. Declara-
tions for all of these features are provided by SATIrE; the user need not
repeat these declarations.

5.2.1 Attributes

A CFG attribute is accessible from the analysis specification by name, es-
sentially like a variable that may have different values in different places.
See Chapter 12 of the PAG manual for details on the general concept. The
attributes are presented in a way that is similar to the syntax used in the
.optla file.

GLOBAL Attributes

globals: *VariableSymbolNT #
A list of the global variables in the program. Types and initializers of
global variables can be accessed via auxiliary functions, see below.

numtypes: unum #
The number of different data types in the program. Types are asso-
ciated with unique numbers that can be manipulated using auxiliary
functions, see below.

numexprs: unum #
The number of lexically different expressions in the program. Each
expression is associated with a unique integer that can be manipulated
using auxiliary functions, see below.

ROUTINE Attributes
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procnum: snum #
A unique numerical identifier for the current procedure. Procedure
numbers are never negative.

BLOCK Attributes

label: snum #
A unique numerical label for the block; as each block in SATIrE consists
of exactly one statement, this can also be considered a unique label for
each statement. Labels are never negative.

POSITION Attributes

position: snum #
A numerical label for what PAG calls the ‘position’ of the analysis
information: The pair (procnum, position) is a unique (opaque) identi-
fier for the interprocedural analysis context at the current point in the
analysis.

context: ContextInfo #
A ContextInfo object identifying the current interprocedural analysis
context.

5.2.2 Types

SATIrE defines a number of data types that can be used in PAG analysis
specifications. In contrast to the AST types defined in the syn file, the types
listed here behave more like built-in PAG types. In particular, they can be
used in the analyzer’s carrier type.

The following types are provided as opaque identifiers for important data:

Variableld
A unique identifier for each variable in the program. Two variables
have the same identifier iff they are in fact the same variable. That is,
variables with the same name, but in different scopes, have different
VariableIds. There are conversion functions described below that con-
vert VariableSymbolNTs or VarRefExps to the variable’s VariableId.

Expressionld
A unique identifier for each expression in the program. Expressions
are identified iff they are structurally equivalent, that is, they consist
of identical operators applied to identical operands. Leaf variables are
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compared as VariableIds are, so two occurrences of a + b in the pro-
gram text will get the same ExpressionId iff they refer to the same
variables a and b.

Typeld
A unique identifier for each type in the program. Types are identical
if they are the same basic type or the same class type (i.e., have the
same definition, structural equivalence does not suffice) or are derived
from the same basic/class type using exactly the same specifiers and
modifiers (pointer, const, etc.).

Location
An abstract ‘memory region’ computed by points-to analysis for ev-
ery program variable and other expression that refers to an object in
memory, such as a pointer dereference, structure field access, etc. Two
expressions may be aliases iff they correspond to the same Location;
conversely, expressions that have different Locations are definitely not
aliases.

See Section 6.2 for more information on SATIrE’s points-to analysis.

ContextInfo
An abstract object representing the current interprocedural analysis
context. This is meant mainly to be passed to support functions that
can provide context-sensitive information.

Comparisons for equality and total ordering relations for these types are
provided by SATIrE.

5.2.3 Functions

Auxiliary functions are functions provided by the SATIrE library to support
some common operations that would be impossible or very complicated to
implement in FULA. The definitions for these functions are automatically
linked against the generated analyzer. The declarations below are automat-
ically included in any analyzer created with SATIrE.

is_unary :: Expression —> bool;
test whether an Expression is a unary expression

is_binary :: Expression -> bool;
test whether an Expression is a binary expression
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is_value :: Expression —> bool;
test whether an Expression is a value expression (a constant appearing
in the source code)

unary_get_child :: Expression -> Expression;
get the operand expression of a unary expression

unary_is_prefix :: Expression -> bool;
determine whether the unary expression is a prefix expression

binary get_left_child :: Expression -> Expression;
get left child of a binary expression

binary get_right_child :: Expression -> Expression;
get right child of a binary expression

is_subtype_of :: Type, Type —> bool;
test whether typel is a subtype of type2 (in the object oriented class
hierarchy)

expr_type :: Expression -> Type;
get the type of an expression

global get_type :: VariableSymbolNT -> Type;
get the type of the global variable

global has_initializer :: VariableSymbolNT -> bool;
test whether the global variable has an initializer expression

global _get_initializer :: VariableSymbolNT -> Expression;
get the initializer expression of the global variable

global_has_defining declaration :: VariableSymbolNT -> bool;
determine whether a global variable has a defining declaration in the
program, or all declarations are extern

varsym_varid :: VariableSymbolNT -> Variableld;
maps a variable symbol to its Variableld

varref_varid :: Expression —> Variableld;
maps a VarRefExp to its Variableld; it is an error to call this with any
other subtype of Expression!

expr_exprid :: Expression -> Expressionld;
maps the expression to its Expressionld
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exprid_expr :: Expressionld -> Expression;
maps the expression identifier to the actual expression it represents

is_tmpvarid :: VariableId -> bool;
determines whether the variable identifier refers to a temporary variable
introduced by SATIrE (for logical values, function return values, etc.)

is_heapvarid :: Variableld -> bool;
determines whether the variable identifier refers to a heap variable in-
troduced by SATIrE’s points-to analysis (to name heap allocation sites)

varid_str :: VariableId -> str;
gives the name of the variable with the given identifier

exprid_str :: Expressionld -> str;
gives the string representation of the expression with the given identifier

varid_exprid :: Variableld -> Expressionld;
maps a variable identifier to an expression identifier which denotes a
VarRefExp for that variable

type_typeid :: Type -> Typeld;
convert a type to its corresponding Typeld

typeid_type :: Typeld -> Type;
convert a type identifier to the actual type it represents

typeid_str :: Typeld -> str;
convert a type identifier to a string representation of the type

exprid_typeid :: Expressionld -> Typeld;
get the type identifier for a given expression identifier

add_tmpvarid :: Typeld -> Variableld;
creates a new, unique temporary variable of the given type; this func-
tion returns different values for each call

is_integer_type :: Type -> bool;
determine whether the given type is some integer type

stmt_asttext :: Statement -> str;
returns a string representing the structure of the given statement in a
format very similar to PAG’s pattern syntax
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expr_asttext :: Expression -> str;
returns a string representing the structure of the given expression in a
format very similar to PAG’s pattern syntax

varid_has_location :: VariablelId -> bool;

varid_location :: VariableId -> Location;
determine the abstract memory location corresponding to a variable;
program variables have locations, SATIrE’s temporary variables do not

varid_has_location_cs :: VariableId, ContextInfo -> bool;
determine whether the variable has a location in a given context

exprid_has_location :: Expressionld -> bool;

exprid_location :: Expressionld -> Location;
determine the abstract memory location corresponding to an expres-
sion, this can be a simple variable reference, but also a pointer deref-
erence or other more complex expression; expressions that denote one
of SATIrE’s temporary variables, or expressions that do not denote an
object in memory (an ”lvalue”) do not have locations

varid_location_cs :: VariableId, ContextInfo -> Location;

exprid_location.cs :: :: ExpressionIld, ContextInfo -> Location;

context-sensitive variants of points-to support functions; the ContextInfo
argument must be the current value of the context attribute (which
is not directly available from support functions and must be passed as
an argument if needed)

location_varsyms :: Location -> *VariableSymbolNT;
returns the list of program variables stored in the given location

location_funcsyms :: Location -> *FunctionSymbolNT;
returns the list of function symbols associated with the given function
location

may_be_aliased :: Location -> bool;

determines whether the given location may be ”aliased”, i.e., whether
some other location may hold a pointer to it

is_array_location :: Location -> bool;
determines whether the given location is an array
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is_ptr_location :: Location —> bool;
determines whether the given location contains a pointer to some other
location

dereference :: Location -> Location;
returns the pointed-to location of a given location that holds a pointer

5.3 Abstract Syntax of SATIrE ICFG State-
ments

The tree grammar describing the abstract syntax of the statements in the
ICFG is defined in the syn file in the SATIrE distribution. This is the file
PAG uses to generate its pattern matching code.

5.4 Access to Call Strings

SATIrE provides access to the call strings computed by PAG during context-
sensitive interprocedural analysis. After a PAG analysis has completed, con-
text information is added to the ICFG in its contexts member. This is a
container of Context objects as defined in Context.h. Each Context con-
tains the corresponding procedure and position identifiers as well as the call
string itself: a sequence of calls.

This feature is work in progress. In the future, it will be more powerful; in
particular, it will provide a way to access the caller’s Context from a given
Context.

The --output-call-strings command line flag instructs SATIrE data-flow
analyzers to print call string information. This call string information looks
something like this (the format is not set in stone):

my_abs/0/0: main/613 -> my_abs
my_abs/0/1: main/613 -> encode/233 -> my_abs
main/16/0: <spontaneous>

Each line represents a context and the associated call string. The line starts
with the identifier of the context: the name of the current function, its
number, and the number of the context within this function. The call string
is a sequence of call sites leading to this function. Each call site is identified
by the name of the function containing the call, and the identifier of the
ICFG node containing the call statement. This ensures that call sites can be
uniquely identified even in functions that contain more than one call to the
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same callee. Some contexts are identified as ‘spontaneous’; this is typically
the case for functions that are not called from other functions in the program.



Chapter 6
Analyzers Provided by SATIrE

This appendix lists the analyzers that come with SATIrE to provide support
for other analyzers you wish to build.

6.1 Data-Flow Analyzers

SATIrE comes with a number of data-flow analyzers implemented using PAG.
Currently, these are:

Name Carrier Description

constprop cp_LiftedState sketch of a constant folding/constant
propagation analysis for integers

interval itvl_State integer interval analysis

sl2rd s12rd_VarLabPairSetLifted reaching definitions analysis

6.1.1 Using Provided Data-Flow Analyzers

The predefined data-flow analyzers are included in the libsatiredfa library,
and the declarations of the corresponding C++ classes can be included with
the satiredfa.h header file. SATIrE’s newanalysis script will generate
Makefiles and code skeletons that use these automatically.

To run some predefined analyzer before your analysis, use SATIrE’s analysis
scheduler (see Section 3.4). At some point before the run method of your
analysis is called, you can declare a dependency on the predefined analyzer
using the dependsOnAnalysis method.

For instance, to use SATIrE’s constprop analyzer before another data-flow
analyzer implemented using SATIrE, add the following statement before the
call to run in your analyzer’s main.C file:

29
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analysis->dependsOnAnalysis(new DataFlowAnalysis(
new SATIrE::constprop::Implementation()));

The analysis scheduler will take care of running all analyzers in an order that
satisfies their dependencies.

You can access another analyzer’s analysis data as described in the PAG
manual in the chapter entitled ‘Advanced Usage: Multiple Analyses’. Es-
sentially, each analysis has certain associated NODE and POSITION attributes
that another analysis can access from its transfer functions.

Note that the exchange of analysis data is only guaranteed to work if all
involved analyzers use the same fixed-point iteration scheme. By default, all
analyzers generated with SATIrE use the same iterator (iteratel.t).

6.1.2 SATIrE Developers: Adding Analyzers
To add a data-flow analyzer to the SATIrE library, follow these steps:

1. Add the analyzer specification in its own subdirectory under SATIrE’s
examples directory. The analyzer must have an analysis prefiz declared
using prefix: in the problem description.

2. Add the type declarations for the analyzer’s carrier type, and all of the
types it is constructed from, to the pagoptions.set file in SATIrE’s
src/analyzer/astaccess/satire directory. To avoid name clashes,
you should add the analyzer’s prefix to these type names.

3. Add the analyzer name to the definition of the ANALYZERS variable
in src/analyzer/provided/dataflow/Makefile.am. You can ignore
the rest o the Makefile; it will take care of building the analyzer, in-
cluding it in 1ibsatiredfa, and installing the result.

4. Add a brief summary describing the analysis in the table above.

5. Do a wery thorough cleaning and rebuild of SATIrE, and test whether
other analyzers can access your analysis data.

If all you are adding is a data-flow analyzer without any external support
functions (except those provided by SATIrE), this should work.
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6.2 Points-to Analysis

SATIrE comes with a flow-insensitive unification-based points-to analysis in
the spirit of Steensgaard [cite. ..]|. The analysis computes points-to informa-
tion for complete C programs, i.e., programs that do not call any external
functions. The analysis supports all C language features, including type-
casts, structures, arrays, pointer arithmetic, and function pointers. It does
not compute alias pairs; however, a client analysis could in principle compute
may-alias pairs from the points-to representation.

The basic analysis is context-insensitive; however, a context-sensitive variant
can be used with context-sensitive data-flow analyzers generated using PAG.

6.2.1 General Description of the Analysis

The basic abstraction computed by the points-to analysis is the Location, an
abstract memory region. Variables and functions (identified by their respec-
tive symbols) live in Locations. Pointers are modeled by points-to relations
between Locations: Each Location may have at most one ‘base location’,
which is what it may point to. In this unification-based analysis, Locations
are merged when the same pointer may point to each of them; that is, if the
program contains the assignments

p = &a;
p = &b;

then p’s Location will point to a Location that contains both variables a
and b.

Each array is treated as a single object, i.e., all members live in the same
Location. It is assumed that array indexing and pointer arithmetic always
stay in the same object (as required by the Standard), so these are safely
ignored. In contrast, structures are treated field-sensitively: Each struct in-
stance corresponds to a Location, and each of its fields has its own Location
as well. Such structures are collapsed when needed (if pointer arithmetic is
performed on a pointer to the structure or one of its members).
Steensgaard’s basic analysis is almost linear in the program size, taking
O(Na(N)), where N is some reasonable measure of the program size and
« is an inverse of Ackermann’s function. The SATIrE implementation is a
little more complex because of its more sophisticated handling of structures.
In practice, it is still very fast, however.

The points-to analysis runs on the ICFG, using the traversal mechanism
described in Section 4.2.3. It is most easily activated by invoking the analyzer
with the -—run-pointsto-analysis command line flag.
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The CFG class contains a member that may be instantiated to a points-to
analyzer object:

SATIrE: :Analyses::PointsToAnalysis *pointsToAnalysis;

The PointsToAnalysis class is defined in the pointsto.h header file. It
implements the general analyzer interface described in Section 3.3. The most
important methods for accessing points-to analysis results are:

Location *expressionLocation(SgExpression *expr);
Location *symbol_location(SgSymbol *sym) ;

for access to Locations for expressions or variable/function symbols, where
two expressions/symbols may be aliases iff they are associated with the same
Location pointer;

const std::1list<SgSymbol *> &
location_symbols(Location *loc) const;

for access to all the symbols that are associated with a given Location;
bool mayBeAliased(Location *loc) const;

to find out whether there might be a pointer pointing to a given Location;
and

Location *base_location(Location *loc);
bool valid_location(Location *loc) const;

to check what (if anything) a given Location may point to.

While the points-to analysis works fine, there is work in progress on making
it more precise and applicable to a wider range of programs. Precision can be
improved by adding context-sensitive elements; it will be possible to use the
analysis even for incomplete programs by providing summaries for external
functions. Using such summaries for allocation functions, the latter will also
allow analysis of points-to relationships on the heap.

6.2.2 Context-Sensitive Extension

SATIrE includes a context-sensitive variant of the points-to analysis de-
scribed above. In this variant, each function in the program is associated
with a number of interprocedural contexts, and is essentially analyzed several
times, once for each context. Argument and return locations of function con-
texts are linked according to calling information between contexts—distinct
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call sites of a function typically give rise to distinct contexts, thus informa-
tion from one call site of a function will usually not be propagated to other
call sites.

The context-sensitive points-to analysis is only availabe in conjunction with
data-flow analyzers generated using PAG, because SATIrE uses the interpro-
cedural contexts and call strings computed by PAG. This also means that
the degree of context sensitivity depends directly on the call string length
setting for PAG. The context-sensitive analysis is run automatically if points-
to analysis is enabled (using the --run-pointsto-analysis command line
flag, for instance) and a context-sensitive data-flow analysis attempts to use
points-to information.

Due to this tight connection to PAG data-flow analyzers, the best way to ac-
cess context-sensitive points-to analysis data is by using the appropriate sup-
port functions varid_location_cs and exprid_location_cs (Section 5.2.3)
from within a data-flow analyzer.

6.3 Loop Bounds Analysis

See termite.pdf for more Information on the provided loop bound analysis.



Chapter 7

ARAL: Analysis Results
Annotation Language

7.1 Introduction

The analysis results annotation language (ARAL) is designed to be suitable
for annotating flow-sensitive and context-sensitive analysis results. It allows
to represent computed data of analysis tools, but without putting restrictions
on the semantics of an analysis. Clearly, the annotations allow to represent
analysis result data, but the semantics of the data are defined for each anal-
ysis separately. For example, the language is general enough to represent
analysis information specified in PAG’s DATLA language [1]. Since PAG is
integrated into SATIrE this is a requirement for reusing any analysis infor-
mation computed with a PAG generated analyzer. ARAL consists of sets,
lists, tuples, maps, and some primitive data types. Additionally each analy-
sis information has an Analysis Identifier. This identifier allows to associate
semantics with the analysis information.

ARAL is designed to be a general format that allows to exchange analysis
information between SATIrEand other tools.

ARAL is suitable for annotating flow-insensitive as well as flow-sensitive and
context-insensitive as well as context-sensitive analysis results. It allows to
represent computed data of analysis tools, but without putting restrictions
on the semantics of an analysis. Clearly, the annotations allow to repre-
sent analysis result data, but the semantics of the data are defined for each
analysis separately. For example, the language is general enough to represent
analysis information specified in AbsInt’s PAG DATLA language. Since PAG
is integrated into SATIrE this is a requirement for reusing any analysis in-
formation computed with a PAG generated analyzer. ARAL consists of sets,

34
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lists, tuples, maps, and some primitive data types. Additionally each analy-
sis information has an Analysis Identifier. This identifier allows to associate
semantics with the analysis information.

7.2 Language

ARAL is a strictly typed language. A data element can only have exactly
one type and there is no void type. For a proper use of the language it is
important to be aware of the concept of the mapping section and the result
section(s). In a result section analysis data is represented independent from
the intermediate representation on which is was computed. The mapping
section defines how the analysis information of a result section is associated
with locations in a source code of a program and similarly, how it is asso-
ciated with locations in an intermediate representation. The two different
kinds of sectionos support a separation of concerns: the analysis data itself
and how it is associated with locations in a program. The locations are la-
beled, and those labels are used in the data section. For expressions (and
its subexpressions) IDs are computed that those IDs are used in the DATA
section. A mapping section can provide information on how to map the IDs
to source code constructs.

7.2.1 ARAL Grammar

This subsection gives a precise definition of the ARAL syntax. The gram-
mar is specified in the usual notation for context-free grammars, plus some
convenient abbreviations:

e Non terminals start with a capital letter.

e Terminals are underlined.

e Optional constructs are enclosed in square brackets: [ Optional |
e Alternatives are separated by |: A | B

e Zero or more occurrences are enclosed in curly braces with a star: { zero
or more }*

e One or more occurrences take a '+’: { one or more }+
e Sequences of constructs are separated by spaces.

e Ranges are written with a dash, e.g. 0-9.
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e Braces indicate grouping, e.g. { A|B } C
e Some productions are explained with comments: % comment.

Primitive tokens are 'Number’ ({ 0-9 }T) and identifiers, 'Id’ ({ A-Z|a-
the end of the current line. Whitespace may be inserted anywhere between
tokens.

The grammar productions can be found in Fig. 7.1,7.2, 7.3.

7.2.2 Operator Precedence

Logical, relational, and numerical operators ordered from lower to higher
precedence:

] Precedence \ Operator ‘

right not
left or
left and
left = <>
left <> >= <=
left + -
left x /%
left -

The operators (except for % and ~ ) conform to the UML2 object constraint
language.

7.2.3 Type System (not implemented yet)

ARAL will provide also a type system. The type system ensures that the
mappings provided in the mapping section conform to the specified type and
that the data represented in the DATA subsection of a result section conforms
to the type(s) defined in the respective TYPE section of that result section.
The type system is based on name equivalence of types, and two types are
equivalent if one of the following conditions holds

e They are the same basic type.

e They are formed by applying the same constructor on to structurally
equivalent types (this only applies to pre-defined types).

e They have the same name.
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Predefined types are set, list, map, tuple, and basic types. New types can
be introduced by combining other types and associating names with those
types. For example, in a TYPE section for the results of a reaching definition
analysis we can define the type as

TYPE
T = tuple(label,varid);
RD = lift(set(T));

This defines a type RD to be a lifted type of T which is a tuple of a label and
a variable-idnumber. In the corresponding DATA section information such
as

DATA
{(@2,#5), (02,#6)}

can be represented. This DATA section represents the fact that at label 2,
two variables with id-numbers 5 and 6 may be defined.

A mapping section may define a type that is also defined in a DATA section.
The type checker ensures that if the same name is used for a type in the
mapping section and in a data section, or in multiple data sections, that
the types are indeed equivalent. This allows to include mapping sections in
different ARAL files without the need to have a DATA section around that
produces DATA for which this mapping is indeed required. It also permits
that different DATA sections can define the same types of the same name.
This allows to easily merge different ARAL files.

The type of an analysis result can be defined by introducing new type names
or without doing so. Here are examples of 2 different TYPE sections that
define types for the same type of analysis results:

TYPE
MyLiftedSet = lift(set(tuple(label,varid)));

TYPE

MyLab = Label;

MyTuple = tuple(MyLab,varid);
MySet = set(MyTuple);
MyLiftedSet = lift(MySet);

The type for this analysis can also be defined as

TYPE
lift(set(tuple(label,varid)));
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This type is not equivalent with the type MyLiftedSet. It is structurally
equivalent but not name equivalent - combined types that are not associated
with a name are anonymous types. It is ensured that structurally equivalent
anonymous types in different TYPE sections are equivalent.

7.3 File Format

An ARAL file consists of three sections where some have several subsections.
The grammar for the ARAL file is shown in Fig. 7.1. In the file information
is provided about the configuration of the analyzer and the system level
parameters that were taken into account by the analysis, the type of the
analysis data, and the data that was computed for each program point. The
three sections are:

Configuration Section. In this section the values of system level parame-
ters and configuration options of the analyzer are provided.

Mapping Section. If an analyzer uses unique identifiers for program con-
structs such as functions, statements, expressions, variables a mapping
to some readable representation can be provided in this section. For
example, the unique identifier for an expression can be E22, but the
better readable representation is the expression as used in the source
code, “a + b”. The mapping section allows to provide such informa-
tion. Alternatively the readable information can be represented in the
analysis information itself, but usually the unique identifiers are better
suitable for tools, but the readable form is only used in visualization
or output that is presented to the user. Therefore this important indi-
rection is supported in ARAL.

Result Section. An arbitrary number of results sections are allowed. Each
result section consists of three sub sections.

Name Section. An identifier is provided for the name of the analysis
that was performed.

Type Section. An analysis Data Type Definition must be provided.
The Type Definition allows to define exactly what kind of analysis
information is used in the annotations, such as whether a set is
lifted or not (i.e. whether it may contain a special element for the
top and bottom element of a lattice), value ranges of numbers,
or whether constraints are reported as annotations. This section
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allows to specify the type of the data that is provided in the DATA
section.

Data Section. In the data section the actual analysis data is pro-
vided. The grammar for the annotation data is shown in Fig. 7.2
and Fig. 7.3. The DATA section may hold arbitrary many ele-
ments of annotation data. An element of annotation data consists
of the following three entities:

Location Specifier. Each analysis information is associated with
a program location and its corresponding program fragment.
The program location is represented by an optional Location
Reference and a unique label. The label is represented by
a unique number. The Location Reference allows to specify
with which part of a program fragment an annotation is asso-
ciated with. This allows to annotate multiple subexpressions
of an expression without breaking up the expression. An ex-
ample is 'param(N):12’ for specifying that an annotation of
the Nth formal parameter of a function is associated with
label 12.

Flow Specifier. A Flow Specifier allows to define whether an
analysis information is a pre or post information in a flow-
sensitive information. If the information is flow-insensitive it
is denoted as 'noflow’.

List of Data Elements. A data element consists of

Context. For a context-sensitive analysis each context is rep-
resented in the annotations by an identifier which allows
to keep context sensitive information separate. For a
context-insensitive analysis the context identifier is the
same for all analysis results computed for a program or
function.

Data. The analysis data represents the analysis information
computed at a location in a program. A location can be
associated with a function, a statement, an expression, or
with a scope.

Analysis data can consist of a set, list, tuple, map, string, int, float,
constraint, or specific program information: numeric Variablelds, Ex-
pressionlds, Statementlds, Functionlds and Labels. Two special sym-
bols exist for the top and bottom element of lattices, "top’ and "bot’.
Sets, lists, and maps can only contain data elements of the same type,



CHAPTER 7. ARAL: ANALYSIS RESULTS ANNOTATION LANGUAGE40

whereas tuples can contain elements of different type. In an con-
straint (in)equations on program locations can be provided (e.g. flow-
constraints). In a data element the types of data can be arbitrarily
nested and combined.

7.4 API

The ARAL API allows to read, access, manipulate, and write ARAL files.

7.5 Front End

To create the ARAL-IR from an ARAL file the parser must be invoked with
Aral::Translator::frontEnd () ; If no parse-error occurred, the Front End
returns a pointer to the root of the ARAL-IR of type Aral::Filex. The
ARAL-IR, once available in memory, can be deleted by calling the destructor
of the root object. The destructors are implemented to perform a deep-
destruct.

7.6 ARAL-IR

Every IR node has a method accept(AbstractVisitor& v) that can be
used to invoke a traversal on the ARAL-IR. Three pre-defined Visitors exist.

e AbstractDataVisitor (only pure abstract methods)
e EmptyDataVisitor

e DataToStringVisitor;
7.6.1 AbstractDataVisitor
Each method has 2-3 visit methods.

e preVisitX

e inVisitX

e postVisitX

where X is the name of the resepective ARAL class.
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e [f a node is a leaf node or has only one child it has a pre and post visit
methods.

e If a node is a container node or has at least two children it also has an
inVisit method.

The Visitor performs a combined pre/in/post order traversal in one pass.

7.6.2 EmptyDataVisitor

Is a visitor that has only empty methods. If you are writing your own Visitor,
you have to implemented a number of visit-methods. In this case it is best to
start with EmptyVisitor and override those methods where certain actions
are to be defined to certain ARAL-IR nodes. An example is the generation of
the DATA section in some specific custom format. The DataToStringVisitor
is an example, where the entire ARAL-IR is tranlated to the ARAL syntax
representation. It overrides several methods of the EmptyDataVisitor.

7.6.3 DataToStringVisitor

This is the pre-defined Visitor that generates ARAL, i.e. the ARAL Back
End implementation. It also servers as an example to see how the Visitor
can be used to translate the ARAL-IR to some other format. For example,
instead of generating a string you could map ARAL to your own internal

representation.
All Aral nodes (of type Aral::Data) have the following methods:
std::string toString() . translates the ARAL-IR subtree to Aral-
Syntax and returns it as a std::string.
Aral::Data™ deepCopy/() : clones the ARAL-IR subtree and returns
a pointer to the cloned sub tree.
void : accepts any Visitor class that inher-

accept(Aral::AbstractDataVisitor&) its from AbstractDataVisitor, or Emp-
tyDataVisitor, or DataToStringVisitor.
See above for details.
Data* getParent() . returns the parent of an ARAL-IR node.
The parents are always automatically set
internally by operations on the ARAL-

IR.

void autoLinkParent(Data*) : for internal use of maintaining parent
pointers.

virtual bool isEqual(Data*) : for internal use (not finished yet)

bool isLessThan(Data*) : for internal use (not finished yet)
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7.7 ARAL Back End

The Back End can be invoked by calling Aral::Translator::backEnd(root)
where root is the root node of the ARAL-IR. The Back End is implemented
by calling the toString function on the root object. The toString function
is implemented by using the DataToStringVisitor. The Back End generates
the ARAL file in a fixed layout and returns a std::string’

LCurrently generating the std::string representation and a file are synonymous. This
may be further diversified in future.
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AralFile

_)

ResultSection —

NameSection

%

ConfigSection —

MappingSection

FromType

TypeSection
DataSection
Analysisldent
ConfigType
ConfigData
AnnotType
ContextType

TypeDef

Type

Label

IdNumber

—

_)

—

ANALYSIS

[ ConfigSection ]

[ MappingSection ]
[ ResultSection |
END

RESULT
NameSection
TypeSection
DataSection
END

NAME AnalaysisIdent
CONFIG ConfigType : ConfigData ;

— MAPPING { map( FromType, Type ): Map ; }*

% keyword IDMAP is deprecated

Label
| Progld

TYPE { TypeDef }* [ ( ContextType ) | AnnotType

DATA { AnnotData }*

Id

Type
Data

Type )

string
| int( Number )
| IdNumber
| Basic

| Progld

@Number

#Number
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AnnotData —

LocationSpec —

LocSpecTarget—
ExpPath —
FlowSpec —

InfoElement —

Basic —
Progld —
Context —

NumRange —

NumExp —

NumOperator —

LocationSpec FlowSpec InfoElement ;
[ ExpPath | LocSpecTarget

Label
| ( Label , Label ) % not implemented

| program
| file ( String )
| function ( String )

call £ Number ) : [ param £ Number 2; ] % not implemented
pre | post | noflow

[ <Context> | Data { , <Context> Data }*

bool | string | real | NumRange

funcid | declid | stmtid | exprid | varid

Data

[ NumExp .. NumExp ] % not implemented

NumExp NumOperator NumExp
[] ( NumExp )

[-] Number
|
|

bl [ ol IR (7

Figure 7.2: ARAL Grammar (Part 2)
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Data — Set
| List
| Tuple
| Map
| $§ Constraint $
| Primitive
Set — { ElementSeq }
List — [ ElementSeq ]
Tuple — ( ElementSeq )
Map — { default — DefaultElem [ \ MapElemSeq | }

DefaultElem — Data
MapElemSeq — Data — Data { , Data = Data }*
ElementSeq — [ Data { , Data }* ]

Constraint — Number
| Label
| Constraint LogOperator Constraint
| Constraint RelOperator Constraint
| Constraint NumOperator Constraint
| ( Constraint )

Primitive — Number
| String
| true % not implemented
| false % not implemented
| top
| bot

RelOperator — <|<=|=]<>|>=|>

LogOperator — and | or | not

Figure 7.3: ARAL Grammar (Part 3)



Chapter 8

Termite: Symbolic Program
Analysis and Transformation

The TERM Iteration and Transformation Environment (Termite) is a Prolog
library that allows easy manipulation and analysis of C++ programs. It is
particularly well suited to specify source-to-source program transformations,
static program analyses and program visualizations. Termite builds upon
the intermediate representation of SATIrE.

See the document termite.pdf for information on Termite.
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Appendix A
Installing SATIrE

For details see the README file in the SATIrE distribution.

You can use the -—without-pag configure flag if you wish to install SATIrE
without PAG support.

You can use the -—-without-swi-prolog configure flag if you wish to install
SATIrE without SWI-Prolog support (i.e. this deactivates Termite and its
features).
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Appendix B

SATIrE Driver and Analyzer
Command Line Flags

SATIrE analyzers take a number of command line flags, arbitrarily inter-

mingled with input file names. This appendix lists these flags grouped by

topic.

The provided SATIrE driver (satire_driver) provides several analyzers and

thus, provides the same command line options. The only difference is that the

SATIrE driver also offers the option -—analysis=<identifier> where iden-

tifier is the name of an analysis (where identifier=pointsto|constprop|interval|sl2rd).

B.1 General Flags

The flags listed in this section are available for use with all analyzers that
use the AnalyzerOptions object (see Section 3.1).

B.1.1 Front End Options

The following options control various issues related to reading input pro-
grams:

--language=c++|c99|c89 select input language [default=c89]

--frontend-warnings show Front End warnings when parsing file(s)

--no-frontend-warnings do not show Front End warnings when parsing
file(s) [default]

-I<path> specify path for include files

--input-binary-ast=<FILENAME> read AST from binary file instead of a
source file

--verbatim-args trailing arguments passed to front end verbatim
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B.1.2 General Analysis Options

These options mostly deal with what sanity checks and provided analysis
steps should be performed by SATIrE.

--check-ast run all ROSE tests for checking
whether ROSE-AST is correct
--no-check-ast do not run ROSE AST tests [default]
--check-icfg run PAG’s ICFG consistency checks
--no-check-icfg do not run ICFG checks [default]

--analysis-files=all|cl analyse all source files or only those
specified on the command line [default=cl]

--analysis-annotation annotate analysis results in AST and output
[default]

--no-analysis-annotation do not annotate analysis results in AST

--number-expressions number expressions and types in the ICFG [default]

--no-number-expressions do not number expressions and types in the ICFG
--resolve-funcptr-calls resolve indirect calls using pointer analysis
--output-pointsto-graph=<name> create <name>.dot and <name>.eps files
showing points-to analysis results (requires DOT)
--—analysis=<identifier> run SATIrE’s analysis <identifier> on the ICFG
identifier=pointsto|constprop|interval|sl2rd

The default setting is not to run points-to analysis (Section 6.2), and thus
also not to attempt to resolve function pointer calls.

B.1.3 Output Options

These flags control the amount and type of output—informational messages,
annotated programs, analysis results—from the analyzer.

--statistics output analyzer statistics on stdout
--no-statistics do not show analyzer statistics on stdout
--verbose output analyzer info on stdout
--no-verbose do not print analyzer info on stdout
--output-text print analysis results for each statement

--output-collectedfuncs print all functions that are collected for
the icfg generation

--output-source=<FILENAME> generate source file with annotated
analysis results for each statement

--output-term=<FILENAME> generate Prolog term representation of input
program AST

--output-gdl-icfg=<FILENAME> output icfg as gdl file

--output-dot-icfg=<FILENAME> output icfg as dot file

--output-binary-ast=<FILENAME> write AST to binary file

--warn-deprecated warn about the use of deprecated features
--no-warn-deprecated do not warn about the use of deprecated features
--help print this help message on stdout

--help-rose print the ROSE help message on stdout
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The default output settings are as if the ~—no-statistics --verbose --warn-deprecated
flags had been specified.

B.1.4 Multiple Input/Output Files Options

This option can be used to set a file name prefix for output of several source
files for several input files.

--output-sourceprefix=<PREFIX> generate for each input file one output file
with prefixed name

B.2 PAG-Specific Flags

The flags listed in this section are only available if SATIrE has been built
with PAG support (see Appendix A).

B.2.1 PAG-Specific Analysis Options

These flags control options mostly related to PAG’s fixed point search: The
maximal call string length to use for context-sensitive interprocedural analy-
sis, whether to compute SATIrE’s context information (see Section 5.4) from
PAG’s representation, the CFG ordering to use, and issues related to trading
memory against execution time.

--callstringlength=<num> set callstring length to <num> [default=0]
--callstringinfinite select infinite callstring (for non-recursive
programs only)
--compute-call-strings compute representation of call strings [default]
--no-compute-call-strings do not compute call strings
--output-call-strings experimental: print call strings used by PAG
--no-output-call-strings do not attempt to output call strings [default]
programs only)
--output-context-graph=<FILENAME> output DOT graph of calling contexts
--cfgordering=<num> set ordering that is used by the iteration
algorithm where
<num> = 1 : dfs preorder [default]
: bfs preorder
: reversed dfs postorder
: bfs postorder
: topsort scc dfs preorder
: topsort scc bfs preorder
: topsort scc reversed bfs
dfs postorder
8 : topsort scc bfs postorder
--pag-memsize-mb=<num> allocate <num> MB of memory for PAG analysis

~N O O W N
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--pag-memsize-perc=<num> allocate <num>}, of system memory (autodetected)
--pag-memsize-grow=<num> grow memory if less than <num>), are free after GC

The default settings in addition to the defaults indicated above are: --pag-memsize-mb=5
--pag-memsize-grow=30.

B.2.2 GDL Output Options

These options control the GDL visualization that PAG can generate for use
with the aiSee program. The most interesting flag is ~—gdl-nodeformat,
which can be used multiple times to specify a combination of formatting
options. These formats control whether SATIrE’s supporting Id types (see
Section 5.2.2) are to be printed as numeric identifiers, as variable names/-
source code, or as both, in the analysis information. The asttext setting
controls whether ICFG statements are to be shown as source code or as a
structural representation of the AST (similar to PAG’s patterns).

--gdl-preinfo output analysis info before cfg nodes
--no-gdl-preinfo do not output analysis info before cfg nodes
--gdl-postinfo output analysis info after cfg nodes
--no-gdl-postinfo do not output analysis info after cfg nodes

--gdl-nodeformat=FORMAT where FORMAT=varid|varname|exprid]|exprsource
|asttext |no-varid|no-varname
|no-exprid|no-exprsource|no-asttext

the format can be specified multiple times to
have different formats printed at the same node
The output is only affected if VariableId
and/or ExpressionId is used in the carrier type

--output-gdl=<FILENAME> output program as gdl graph

--output-gdlanim=<DIRNAME> output animation gdl files in

directory <dirname>

The default settings are as if the following flags were specified on the com-
mand line:

--no-gdl-preinfo --gdl-postinfo
--gdl-nodeformat=no-asttext

--gdl-nodeformat=no-varid --gdl-nodeformat=varname
--gdl-nodeformat=no-exprid --gdl-nodeformat=exprsource

That is, statements, variables, and expressions are printed only as they would
be represented in source code. Analysis information is associated with the
outgoing edges of ICFG nodes.



Appendix C

Construction of a PAG-ICFG
from a ROSE-AST

Author: Gergé Barany

C.1 Introduction

The analyzers generated by PAG require the program under analysis to
be represented as an explicit control-flow graph (CFG). The frontend used
by ROSE represents whole programs as abstract syntax trees (ASTs). For
programs represented in ROSE’s intermediate representation, a CFG must
therefore explicitly be computed. This document describes a concrete im-
plementation of this computation. The information given is partly generally
applicable to PAG, but mostly specific to our code.

As the ROSE ASTs closely match the original source code, they contain se-
mantic ambiguities; for instance, the C++ standard does not prescribe the
order of evaluation of function arguments, thus the control flow inside a func-
tion call expression is not completely determined. Because of the constraints
posed on the CFG by PAG, the transforming code must in such cases choose
some fixed control flow. That is, the transformation chooses one of possi-
bly several different semantics, which might be different from the semantics
chosen by a given compiler.
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C.2 Structure of the CFG

C.2.1 General structure

The CFG consists of procedures (which we might also call functions), which
in turn consist of basic blocks, each of which may contain one or more state-
ments. In our implementation, however, each basic block contains exactly
one statement. Therefore this document might sloppily use the terms ‘block’,
‘node’ and ‘statement’ almost interchangeably. The statements in the CFG
are partly the statements that occur in the original source code, partly trans-
formed versions of these statements, and partly special statements that do
not have an explicit representation in the source code.

Blocks are connected by directed edges, each of which has a certain edge type
(which can be used for pattern matching in the PAG analysis specification).
The type of most edges is normal_edge. Blocks may in general have several
successors and several predecessors (but non-branching statements will not
have more than one successor). There is never more than one edge from one
block to another.

C.2.2 Procedures and variable scope

Procedures correspond to the functions (also member functions, including
constructors, destructors and overloaded operators) in the C++ source code.
Each procedure has an entry or start node marked by the statement

FunctionEntry ( funcname:aststring )

giving access to the name of the procedure, and an exit or end node which
is marked by

FunctionExit ( funcname:aststring, params:VariableSymbolNTx

containing also the name of the procedure and a list of variables local to this
function. (The intention of the latter being that these local variables are ir-
relevant outside of this function, thus the corresponding analysis information
can be killed when the analysis reaches the function’s exit node.)

There is no explicit representation of compound statements (‘blocks’ of C++
code), variable scopes are represented instead. Variable declarations occur
in the CFG as:

DeclareStmt ( var:VariableSymbolNT, type:Type )

Initialization of a variable is represented as an assignment to that variable
after the DeclareStmt. Where local variables go out of scope at the end of
a compound statement, this is marked by
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UndeclareStmt ( vars:VariableSymbolNTx* )

C.2.3 Control-flow statements

Branching constructs are in general represented in the natural way. An
exception are for loops, which are always transformed from the general form

for (initializations; condition; increment)

{
}

into the equivalent of

body

initializations;
while (condition)
{

body

increment ;

If the body contains continue statements, their outgoing edges are con-
nected to the block representing the (beginning of) the increment expression
statement. Loop heads and if statements use the edge types true_edge and
false_edge to represent the two paths that can be taken.

C.2.4 Short-circuit operators

The logical operators && and || as well as the ternary operator 7: are special
in that their operands must be evaluated in a certain order, and not neces-
sarily all operands are evaluated. This must be reflected in the control-flow
graph. A special statement

Logicallf ( condition:Expression )

is used for this purpose, which has the same semantics as a normal if state-
ment. It is introduced into the CFG in conjunction with temporary variables;
the names of these always start with a $ sign. The transformation is designed
such that each of these temporaries is only read at one point in the program;
it is irrelevant afterwards, the corresponding analysis information can be
killed if a temporary variable is evaluated.

Consider a statement S containing the subexpression A && B somewhere;
denote this by S[A && B] (abusing array subscript syntax for want of a
better representation). The code
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S[A & BJ;
is transformed to the equivalent of

Logicallf (A)
{

}

else

{

}
S[$logical_42 ];

This first evaluates A; if the result is true, B is evaluated and the temporary
variable set to its value. Otherwise, since A was false, the overall result is
false. Thus the temporary variable is nonzero iff A && B evaluates to true.
(The CFG should enforce that the logical variable only takes one of the values
true or false. This is not implemented yet.) The statement S| $logical 42 |
is meant to represent that inside the statement the occurrence of the logical
expression is replaced by a reference to the temporary variable.

Expressions using the || operator are transformed in an analogous way, and

S[(A?B : C)l;
as if it had been written

Logicallf (A)
{

}

else

{

}
S[$logical _37];

These transformations apply recursively for nested logical expressions; note
that the resulting code does not contain the original operator at all.

The number in the name of the temporary variable varies, of course, and you
shouldn’t rely on the fact that the name of the variable is of this exact form.
You may, however, safely assume that it will always start with the dollar
sign.

Finally, while the comma operator forces order of evaluation, it does not
short-circuit. Therefore it is not treated specially in the CFG, the correct

$logical_42 = B;

$logical 42 = 0;

$logical 37 = B;

$logical_37 = C;
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order of evaluation of its arguments must be considered in the analysis spec-
ification.

C.2.5 Function calls

Function calls require somewhat complicated code because while PAG has
support for the concept of procedures and calls between them, it does not
provide for any way to perform passing of argument and return values. The
approach taken to model these is therefore to pass arguments by assigning the
values of a function call expression’s argument expressions to (conceptually)
global temporary variables, and similarly to pass the return value back via
such a temporary variable.

That is, the statement

S[func(A, B)];
is treated as if it were written roughly like

$funcSarg 0 = A;

$func$arg_1 = B;

func ();

$funcSreturn_84 = $funcSreturn;
S[$funcreturn_84 |;

There are many things to note here. The variables associated with a function
call contain the function’s name between dollar signs, but there are three
different numbering schemes: The variables for the argument expressions are
always numbered from 0, these same names are used at every site where
this function is called. There are ‘return’ variables without numbers and
there are return variables with unique numbers for each call. As always with
temporaries, the exact name should not matter for the analysis, and the
temporaries can be killed at the point they are read.

In reality, the assignments shown above are not really normal assignments but
special statements. The assignments of argument expressions to argument
variables, and the assignment of the general return variable to the the return
variable specific to this call site are denoted, respectively, by:

ArgumentAssignment ( lhs:Expression, rhs:Expression )
ReturnAssignment ( lhs:VariableSymbolNT,
rhs:VariableSymbolNT )

The special statement

ParamAssignment ( lhs:VariableSymbolNT,
rhs:VariableSymbolNT )
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is inserted at the beginning of each procedure for each parameter. This
assigns the argument variables to the formal parameters. All three of these
special assignment statements are semantically simple assignments which just
have special names.

The actual call to the function is modelled by a pair of special statements:

FunctionCall ( funcname:aststring,
params:VariableSymbolNT* )

FunctionReturn ( funcname:aststring,
params:VariableSymbolNT* )

The ArgumentAssignment nodes are placed before the call node, while the
ReturnAssignment is after the return node. An edge of type local_edge
connects the call to the return node; additionally, there is an edge of type
call_edge to the entry node of the called function, and an edge of type
return_edge from the exit node of the called function to the return node.
These edges make it possible to propagate analysis information to the called
function and back.

Every return statement in a function is represented by assigning the expres-
sion in the return statement (if any) to the function’s return variable and
an immediate jump to the function’s exit node. This bypasses the undeclare
statements in the enclosing compound statements, which is not good and
will be fixed some time.

Calls to overloaded functions are resolved statically. Default function argu-
ments are inserted as ArgumentAssignments if not explicitly present in the
call. Functions without known implementations, either because only a dec-
laration but not a definition is known or because they go through function
pointers, are represented by a single node of type:

ExternalCall ( function:Expression,
params:VariableSymbolNT*,

type:Type )
Note that such calls can at the very least arbitrarily change all global vari-
ables, and potentially any local variable whose address was ever taken. Thus

parts of the analysis information have to be eliminated when such nodes are
encountered.

C.2.6 Member function calls

Member functions are treated as normal function calls, but with a special
implicit argument for the this pointer. The address of the object on which
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the member function is invoked is assigned to this variable inside the called
function using the ArgumentAssignment /ParamAssignment mechanism.

If a function call is virtual, there are call_edges from the call node to the
entry node of every potential implementation of the called member function.
Virtual calls to overloaded functions are not yet handled correctly (too many
potential implementations for the function are identified; thus analysis will
be safe, but less exact).

The use of an overloaded operator is treated as a member function call to an
appropriately named function.

C.2.7 Constructors and destructors

Constructor calls are handled like member function calls, the this pointer
being initialized either with the new expression or the address of the object
being constructed. The constructors of superclasses are called automatically,
if they are not explicitly called in the source code.

There is no support for copy constructors yet. Overloaded constructors are
not yet handled correctly.

Destructors are also called similarly to normal member functions, virtual
destructors are also supported. If a destructor was invoked because of a
delete statement, that statement appears in the CFG after the return from
the destructor. Destructors are called automatically for objects of class type
that go out of scope.

The two special statements

ConstructorCall ( name:c_str, type:Type )
DestructorCall ( name:c_str, type:Type )

are used to denote calls to constructors and destructors whose implementa-
tion is not known. The type referred to is the class type to which the called
constructor or destructor belongs.



Appendix D

Interfacing Compilers with

PAG

Author: Gergé Barany

D.1 Introduction

D.1.1 Overview

PAG is a tool for generating program analyzers that can be used with existing
compilers or built into new ones. The analyses themselves are specified in
the high-level functional language FULA, which is compiled into a C library
performing the analysis.

Since the analyzer needs access to the program’s control flow graph (CFG)
and the abstract syntax tree (AST) for each statement, some sort of interface
between the compiler and the analyzer must be implemented. A tool called
GON can automatically generate this interface, but only for compilers that
are written from scratch.

The purpose of this document is to describe the glue code that must be
written in order to connect an existing compiler with PAG. It also investi-
gates which parts of the interface can be generated automatically. These are
exactly those parts which are generated automatically by SATIrE’s internal
tool PIG (PAG Interface Generator).

D.1.2 Required files

The interface must provide the following files, each of which is explained in
more detail below:
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e edges: defines the edge types that may occur in the CFG
e syn: a tree grammar describing the abstract syntax of the language

e pagoptions: describes which access functions for syntactic lists are
implemented

e syntree.h: defines all types for the abstract syntax tree
e iface.h: defines all types that must be provided by the interface

e syntree.c: contains the code for access functions (or macros) to the
CFG and the AST

The rest of the document gives detailed information on what each of these
files should contain. It considers the CFG part first, then the AST.

D.2 The CFG Interface

This section describes the files, types and functions for CFG access that the
interface must provide.

The CFG consists of a set of nodes, each numbered with a unique id starting
from 0. Every node represents a basic block, possibly containing several
instructions. Interprocedural edges are only allowed from Call to Start and
back from End to Return nodes.

D.2.1 The edges file

The edges file lists all edge types occurring in the CFG. Each type name must
be listed on a separate line, line comments beginning with // are allowed.
The first edge type must be the type for local edges, called for instance
local_edge; these are the edges from a function call nodes to the corre-
sponding return nodes. The second type is the type bb_intern of edges
connecting statements inside a basic block.

PAG turns this specification into an enum called o_edges, defining the enu-
meration constant o_n;=i—1 for the i-th edge type (i > 1).

D.2.2 Required types
The following types must be defined in iface.h:
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’ Name \ Description \ Type Restrictions
KFG The CFG itself must be a pointer
KFG_NODE_TYPE | Type of node classes enumeration type or int
KFG_NODE_ID Type of node identifiers | must be int
KFG_NODE Type of CFG nodes must be a pointer type
KFG_NODE_LIST | Type of node lists must be a pointer type
KFG_EDGE_TYPE | Type of edge classes enumeration type or int

The type KFG_NODE_TYPE must at least contain the enumeration constants
RETURN, CALL, START, END, and INNER with values 0...4. It may support

further constants with larger values.

Further, KFG_EDGE_TYPE must contain constants for local and basic-block-
internal edges with values 0 and 1; the rest of the contants should also be

analogous to those declared in the edges file.

D.2.3 Required functions

PAG requires the front end to implement a number of functions for accessing,

and traversing the CFG in numerous ways.

| Prototype

| Description |

KFG kfg_create (KFG)

initialize the CFG

int kfg_num_nodes (KFG)

number of nodes in the CFG

KFG_NODE_TYPE kfg_node_type (
KFG, KFG_NODE)

type of the node

KFG_NODE_ID kfg_get_id (KFG,
KFG_NODE)

identifier of the node

KFG_NODE kfg_get_node (KFG,
KFG_NODE_ID)

node with the given identitier

int kfg_get_bbsize (KFG, KFG_NODE)

number of instructions in the
node

t kfg_get_bbelem(KFG, KFG_NODE, int)

the n-th instruction of the
node, starting with 0; ¢ is the
AST type

void kfg_node_infolabel_print_fp
(FILE *, KFG, KFG_NODE, int)

write a textual description of
the n-th instruction of the
node to the file (used for vi-
sualization)

KFG_NODE_LIST kfg_predecessors (KFG,
KFG_NODE)

list of predecessors of the
node
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| Prototype

|

Description

KFG_NODE_LIST kfg_successors (KFG,
KFG_NODE)

list of successors of the node

KFG_NODE kfg_get_call(KFG,
KFG_NODE)

the call node belonging to the
given return node

KFG_NODE kfg_get_return(KFG,
KFG_NODE)

the return node belonging to
the given call node

KFG_NODE kfg_get_start (KFG,
KFG_NODE)

the start node belonging to
the given end node

KFG_NODE kfg_get_end(KFG, KFG_NODE)

the end node belonging to the
given start node

const int *kfg_get_beginnings (KFG)

Returns a pointer to an array
of procedure numbers, termi-
nated by —1, to start the
analysis with. If the function
returns an empty list (con-
tains only —1) then the an-
alyzer selects entry point au-
tomatically.

int kfg_replace_beginnings (KFG,
const int *)

replaces the beginnings list
of the front end, can be
called after initialization of
the CFG before the analysis;
returns 1 for success, 0 if the
feature is not supported, —1
for an error

’ Prototype

Description

KFG_NODE kfg_node_list_head
(KFG_NODE_LIST)

head of list

KFG_NODE_LIST kfg_node_list_tail
(KFG_NODE_LIST)

list without the first element

int kfg _node_list_is_empty
(KFG_NODE_LIST)

1 if the list is empty, 0 other-
wise

int kfg _node_list_length
(KFG_NODE_LIST)

length of node list
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] Prototype ‘ Description ‘
unsigned int kfg_edge_type_max(KFG) | number of different edge

types

KFG_EDGE_TYPE kfg_edge_type
(KFG_NODE, KFG_NODE)

type of the edge from the first
node to the second; runtime
error if there is no such edge

int kfg_which_in_edges (KFG_NODE)

returns a bitmask with a
bit corresponding to an edge
type set if there is an incom-
ing edge of that type

int kfg_which_out_edges (KFG_NODE)

as kfg_which_in_edges but
for outgoing edges

Prototype

Description

|

int kfg_num_procs(KFG)

number of procedures in the
CFG

char *kfg_proc_name(KFG, int)

static pointer to the name of
a procedure

KFG_NODE kfg_numproc(KFG, int)

entry node of a procedure

int kfg_procnumnode (KFG, KFG_NODE)

number of the procedure the
node belongs to

int kfg_procnum(KFG, KFG_NODE_ID)

number of the procedure the
node with the given id be-
longs to

] Prototype

|

Description

KFG_NODE_LIST kfg_all_nodes(KFG)

list of all nodes

KFG_NODE_LIST kfg_entrys(KFG)

list of all entry nodes

KFG_NODE_LIST kfg_calls(KFG)

list of all call nodes

KFG_NODE_LIST kfg_returns (KFG)

list of all return nodes

KFG_NODE_LIST kfg_exits(KFG)

list of all exit nodes

All of these functions may optionally be implemented as C macros. They

must be declared in iface.h.

D.2.4 Data structures for the CFG

Given the specifications of the access functions, designing an appropriate data
structure is easy: KFG_NODE can be implemented as a pointer to a structure
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containing an id, a type, a list of statements (the basic block represented
by this node) and the size of this list, lists of predecessors and successors
(possibly with the appropriate edge types), the number of the procedure the
node belongs to, and precomputed bitmasks for the kfg_which_in_edges
and kfg_which_out_edges functions.

Depending on the underlying language, it might not be necessary to explicitly
store the types of the edges connecting two nodes, since this can often be
determined from the types of the nodes alone. For instance, the edge from a
‘normal” node will be a normal edge, the edge from a return node will be a
return edge; for an if node, the edge will be a true or false edge depending on
whether the successor is stored as the ‘true’ or ‘false’ successor of this node.
Also, the list of successors will usually have at most two elements (one for
the true case, one for false).

KFG_NODE_LIST can be defined as KFG_NODE *. Lists of nodes are then im-
plemented as null-terminated arrays of KFG_NODE, ensuring fast direct access
and traversal. Since the CFG is required to be constant once it has been cre-
ated, one need not worry about the possible costs of modifying such arrays
at runtime.

The KFG itself can just be a pointer to a structure containing a list of all
nodes, lists of special nodes (procedure entry nodes, calls, returns and exits),
a list of (procedure number, procedure name) pairs and a list of procedure
numbers to start the analysis with. In the list of all nodes, each node can
be stored at the index corresponding to its id, ensuring fast lookups and
technically eliminating the need for storing the id explicitly.

These types should be made available to PAG through the iface.h file.

D.2.5 Implementation of the CFG functions

For a data structure as described above, implementing the CFG access func-
tions required by PAG is rather straightforward; most functions just return
a certain structure field or array element. All operations except kfg_create
and the procedure name or number lookups can be implemented to run in
constant time.

Automatic conversion of an existing CFG or other intermediate representa-
tion from a compiler front end might be possible in principle, especially if the
data structures are similar enough to the ones described above. Conversely,
it should be possible to generate the required access functions and leave the
existing CFG completely unchanged. The problem with these approaches is
the difficulty of specifying just what should be converted in which way; the
specification for the conversion tool would in general have to be very com-
plicated. Therefore it appears more reasonable to write the necessary code
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SYNTAX
START: mirStmt

mirStmt: CFGCall(exp: mirExpr)
| CFGEndCall(exp: mirExpr, sym: mirSymbolsx)

mirExpr: mirChar(str: CHAR, type: mirType)

CHAR == chr;
INT == snum;

Figure D.1: An example syn file

by hand.

The main part of this work consists of collecting all statements to basic
blocks, linking these with each other and computing the auxiliary informa-
tion. Note that the requirement that a node represent a whole basic block is
not enforced by PAG, it is merely strongly suggested for efficiency reasons.
It is possible to store exactly one statement per node, making creation of the
CFG somewhat simpler. The example C compiler front end that is shipped
with PAG uses this approach.

The code described in this section should reside in syntree.c (possibly
#included from other files).

D.3 The AST Interface

The AST interface consists of a tree grammar describing the structure of
the tree, the corresponding C type declarations, and C functions implement-
ing syntax tree access, type tests and type conversions, and syntactic list
traversal.

D.3.1 The syn file

The syn file describes the abstract syntax of the language under consideration
by a tree grammar. Figure D.1, taken from [1], shows a brief excerpt of an
example syn file.
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START specifies the start symbol of the grammar, every instruction inside a
CFG node must be associated with an AST of this type. Alternatives for a
production are grouped together. For instance, a mirStmt is either a node
of type CFGCall with a child node exp of type mirExpr or a node of type
CFGEndCall with two child nodes exp as above and sym of type mirSymbolx.
The * indicates that this type is a syntactic list of mirSymbol terms. This
abbreviation is provided by PAG since lists are so common.

The production for mirExpr contains a reference to the type CHAR. There
is no grammar rule for this type; rather, it is an alias type defined by the
equivalence CHAR == chr. This means that it corresponds to the built-in
FULA type chr. The interface needs to provide conversion functions for
each such alias type to enable the analysis to use values of these types.

D.3.2 Required types

For each type (including alias types) defined in the syn file, a C type with
the same name must be declared. For each syntactic list over a type 1" used
in the tree grammar, a type named LIST_T must be defined.

Further, it is possible to define cursors for syntactic lists. These are abstract
data types for traversing syntactic lists, enabling them to be used in ZF
expressions in the FULA language. For each list over a type T, the types
_LIST_T _cur and LIST_T'_cur must be defined, where the latter is a pointer
to the former.

The types described in this section must be declared in syntree.h.

D.3.3 Required functions

For every type constructor c(ny:ty, ... ,ng:t;) of type t in the syn file, PAG
requires functions for element access and for type testing.

The access functions are t; t_c_get_n;(t) for accessing the child named n;
of type constructor ¢ for type t. The functions take a node of type t as their
sole argument and return a node of type t;.

The test functions are int is_op_t_c(¢). These return 1 if the tree node of
type t passed in is labeled with the constructor ¢, 0 otherwise.

Alias types, declared as t == p in the syn file, need special treatment.
They are internally represented as C types but need the ability to be con-
verted to FULA types. This must be realized by functions of the form
char *t_get_value(t) returning a string representation of the value of ¢.
PAG can then convert this string to the primitive FULA type p.

For each syntactic list over a type T the following functions must be defined:
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] Prototype ‘ Description

int LIST_T _empty(LIST_T)

1 if the list is empty, 0 otherwise

T LIST_T_hd(LIST_T)

head of the list

LIST_T LIST_T_t1(LIST_T)

tail of the list

As explained above, it is possible to define syntactic list cursors. The cursor
functions for lists over a type T are given in the following table:

] Prototype ‘ Description

void LIST_7T _cur_reset(LIST_T_d
LIST_T)

umjtialize the cursor

void LIST_T _cur_is_empty
(LIST_T _cur)

1 if the list is empty, 0 otherwise

T LIST_T _cur_get (LIST_T _cur)

current element of the list

void LIST_7 _cur_next(LIST_7 _cu

radvance the cursor by one element

void LIST_T _cur_destroy(LIST_T|

_destyuctor of the cursor (optional)

All of the AST functions must be defined via syntree.c.

D.3.4 The pagoptions file

The pagoptions file tells PAG which features respecting syntactic lists are
supported by the front end. The contents of this file should almost always

be the following:

LIST_is_empty 1
LIST_hd 01
LIST_tl 01
LIST_cursor 01
LIST_cursor_destroy : 1

The first three lines indicate that the basic syntactic list features are sup-
ported. Since these are always required if syntactic lists are used, there is
not much choice in whether to define them.
The last two lines indicate that support for list cursors and for list cursor
destructors is present. Implementing cursors efficiently should not be very
difficult either once lists are supported at all, so these can be defined as well.
If the implementor should decide not to support a certain feature, the indi-

cator in the corresponding line can be

set to 0 to reflect this.
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D.3.5 Additional requirements

The PAG manual lists a few other functions that must be present if a front
end is written from scratch. See page 89 of [1] for details.

D.3.6 Automatic AST interface generation

The syn file alone is enough to generate an implementation of almost all of
the abstract syntax tree data types and functions automatically.

This is not possible for alias types, however: The converter cannot know
which C type should be used as the internal representation for the type. Thus,
the user must provide an appropriate type definition and an implementation
of the corresponding get_value function for each alias type.

The problem with this approach is that it would create a completely new
AST which will in general not be identical to the one already implemented
in the compiler front end. The obvious solution to this is just using the
existing AST and only generating appropriate access and test functions.
For this idea to work, it is possible to write a simple tool that parses the
syn file and another file provided by the user, describing the functions to be
generated with a simple macro language.

Consider a production cj(n;:t;, ...,ng:t;) for a type t in the syn file.
It is reasonable to assume that most AST nodes share a basic structure,
making accesses to their fields all very similar, depending only on some of
the following;:

e the type name ¢ of the node itself
e an expression denoting the particular node object
e the name c; of the type constructor

e the index j of the constructor, denoting that this is the j-th alternative
for type t in the syn file

e the name n; of the requested field
e the index ¢ of the requested field

e the type name t; of the requested field (this might be useful for type
casts)

If the code is the same up to these details, it is rather simple to create it as an
instance of a macro description with these parameters. These macros would
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be provided by the user, an interface generation tool would then turn them
into code for all AST functions required by PAG. The accesses are expected
to be uniform in most, but not in all cases, so special cases (for certain types)
must be handled as well.

Here is a fictional example of the possible syntax of such a specification:

get("mirStmt", NODE, CONSTR, CONSTR_IDX,
FIELD, FIELD_IDX, FIELD_TYPE)
{
return NODE->children[CONSTR_IDX] [FIELD_IDX];

get (TYPE, NODE, CONSTR, CONSTR_IDX,
FIELD, FIELD_IDX, FIELD_TYPE)
{
return NODE->children.f_##CONSTR.FIELD;
}

The indended meaning of this snippet is the following: Functions for type
mirStmt are created by the first rule because the head matches just this type.
All functions for the other types are matched by the second rule.

Children of a node of type mirStmt are accessed by indexing a two-dimensional
array of child nodes. Thus, to access the first child (expr) of the second pro-
duction (CFGEndCall), the function

mirExpr mirStmt_CFGEndCall_get_exp(mirStmt node)
{
return node->children[1] [0];

}

would be generated.
For all other types the second rule would apply, producing for instance the
code

mirType mirExpr_mirChar_get_type(mirExpr node)
{
return node->children.f_mirChar.type;

¥

for accessing the second child node in the first production for the mirExpr
type. Notice the use of the C preprocessor’s token pasting operator ## to
construct the field name f_mirChar from the constant prefix f_ and the
constructor’s name.
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Things are a bit more complicated for the test functions: The AST pre-
sumably already has some sort of type test using integer constants (or even
strings). However, the numbering or naming for these might be different
from the one that the conversion tool would create by itself. In this case, the
user would have to specify some sort of mapping between the constructor
names in the syn file and the actual constants used in the AST.

For the alias types defined in the syn file, an interface generation tool cannot
know which C type was intended to implement this alias type. Thus the tool
cannot generate code for alias types, the user must provide this code himself.

D.3.7 Comparison to the CFG interface

The difference to the CFG interface is the following: While the CFG uses
comparatively few different functions, the AST calls for a quite large number
of functions, all of which are instances of just one of two patterns (assuming
that all AST nodes have the same basic structure).

Thus generating the AST functions from a simple description should be
rather easy, while in the CFG case much more detailed specifications would
be needed. This would in many cases lead to descriptions that are just as
complex as a manual implementation of the function, thus losing the advan-
tages of automatic code generation.

D.4 Summary

It is possible to write a tool which generates large parts of the interface
between an existing compiler front end and PAG automatically. The input
to this tool would consist of a syn file describing the AST structure in the
compiler, and a second file of macros describing the way fields of the AST
are accessed.

The tool creates from these the complete AST interface implementation and
stubs for the alias type conversion functions as well as the CFG access func-
tions. The programmer must then fill in the function definitions and provide
the necessary type definitions.

The automatically generated AST saves the programmer time if the specifi-
cation is significantly shorter than the resulting program, i.e. if writing the
specification is less tedious than writing the access code by hand. This should
be the case if access to the AST nodes is similar in most cases, subsuming
many functions under one macro specification.



