
The TERMITE library

Adrian Prantl
Institut für Computersprachen
Technische Universität Wien

E-Mail: adrian@complang.tuwien.ac.at

January 11, 2012

Contents

1 Introduction 4
1.1 Using Termite . 4

1.1.1 Using Termite for a standalone process . 4
1.1.2 As part of a SATIrE analyzer . 6

2 The Termite term representation 8
2.1 Grammar of TERMITE terms . 8

2.1.1 statements . 8
2.1.2 expressions . 11
2.1.3 annotations . 13
2.1.4 other stuff . 14

3 Library Reference 16
3.1 asttransform.pl – Properties of abstract syntax trees 16
3.2 astproperties.pl – Properties of abstract syntax trees 18
3.3 astwalk.pl – Flexible traversals of abstract syntax trees 20
3.4 callgraph.pl – Create a call graph from an AST . 21
3.5 utils.pl – A collection of useful general-purpose predicates. 22
3.6 loops.pl – Properties of loops . 24
3.7 markers.pl – Properties of abstract syntax trees . 25
3.8 loopbounds.pl . 26
3.9 termlint.pl – Term type checker . 27

3

Introduction 1
The TERM Iteration and Transformation Environment (Termite) is a Prolog library that allows
easy manipulation and analysis of C++ programs. It is particularly well suited to specify source-
to-source program transformations, static program analyses and program visualizations. Termite
builds upon the intermediate representation of SATIrE. More information on SATIrE can be found
at http://www.complang.tuwien.ac.at/satire.

1.1 Using Termite

Depending on the desired architecture there are several ways to integrate Termite into the work
flow of a larger tool. For a flexible recombination of several analyses and/or transformations
it is best to treat Termite programs as interpreted scripts that read/write AST terms from the
standard input an output. If performance and stability are sought for, it is also possible to call
Termite programs transparently from a SATIrE analyzer.

1.1.1 Using Termite for a standalone process

The most flexible and convenient way to work with the Termite library is by using it to define
filter operations on streams of source code. This way one can follow the UNIX tradition of having
a collection of small self-contained programs that can be combined to create larger work flows.
Depending on the expected input and generated output, several types of Termite programs can
be distinguished. Typical examples are:

A source-to-source transformer is a program that reads in an AST, then performs some trans-
formation and outputs the transformed AST. (Example: loop unrolling)

An analyzer is a program that reads in an AST, performs some analysis and outputs the analysis
result as attributes of the AST. (Example: loop bound analysis)

A visualization is a program that reads in an AST and outputs a visualization, e. g., in a GUI
window or a PostScript file. (Example: Call-graph → Graphviz (DOT))

A source generator is a program that reads in a specification and outputs an AST in termite
format.

A compiler is a program that translates an AST into a different language, e. g., melmac1 or wcetcc.

In order to generate a Termite term from one or more source files a compiler front end must be
invoked. Two possibilities are supported and available in the SATIrE distribution:

EDG C/C++ front end from the ROSE compiler

If SATIrE was configured with the ROSE connection enabled2, conversion tools are available to
translate source code to term files and vice versa. To translate source code into a Termite term
the program c2term is available:

1http://www.complang.tuwien.ac.at/gergo/melmac/
2ROSE must be installed separately beforehand and is available at http://www.rosecompiler.org

4

> c2term

Usage: c2term [FRONTEND OPTIONS] [--dot] [--pdf] src1.c src2.cpp ... [-o termfile.pl]

Parse one or more source files and convert them into a TERMITE file.

Header files will be included in the term representation.

Options:

[FRONTENT OPTIONS] will be passed to the C/C++ frontend.

--rose-help

Display the help for the C/C++ frontend.

-o, --output <termfile.pl>

Write the output to <termifile.pl> instead of stdout.

--dot

Create a dotty graph of the syntax tree.

--pdf

Create a PDF printout of the syntax tree.

This program was built against SATIrE 0.9.0,

please report bugs to <schordan@technikum-wien.at or adrian@llnl.gov>.

The c2term program invokes the commercial EDG C++ front end embedded into the ROSE
compiler to parse one or more source files. The abstract syntax tree (AST) is then translated into
the ROSE immediate representation which in turn is converted into the textual term serialization.
The program passes additional options to the EDG front end.

The opposite direction is managed by the term2c conversion utility. It works by reading in a
term file and then rebuilding the ROSE intermediate representation. Finally, this data structure
is passed to the ROSE unparser. The EDG front end is not involved in this step any more.

> term2c

Usage: term2c [OPTION]... [FILE.term]

Unparse a term file to its original source representation.

Options:

-o, --output sourcefile.c

If specified, the contents of all files will be concatenated

into the sourcefile.

-s, --suffix ’.suffix’ Default: ’.unparsed’

Use the original file names with the additional suffix.

-d, --dir DIRECTORY

Create the unparsed files in DIRECTORY.

--dot

Create a dotty graph of the syntax tree.

--pdf

Create a PDF printout of the syntax tree.

This program was built against SATIrE 0.9.0,

5

please report bugs to <schordan@technikum-wien.at or adrian@llnl.gov>.

Since both converters use standard input and output per default it is possible to concatenate
multiple Termite programs with the help of UNIX pipes. This way it is possible to build new
chains of program transformations or analyzers on the fly without having to recompile the whole
project.

Example:

c2term a.c b.c | ./transform1.pl | term2c -s ’.transformed’

In this example pipeline, two C source file are joined into one project which is dumped to a stream
in the Termite format. The stream is then transformed by a Prolog program. Finally the two
source files are unparsed by the term2c converter with the new suffix “.transformed” attached to
the file names.

Using the Clang C/Objective C front end

While the commercial EDG front end offers a high-quality C++ parser, license restrictions encum-
ber its free distribution together with other tools. Most notably, the ROSE compiler redistributes
only a 32-bit precompiled binary version of the EDG front end. It is, however, possible to buy
other licenses from the Edison Design Group.

If C++ support is not needed, there is a free alternative available from the LLVM com-
piler project. Designed especially for use with LLVM a front end for C-like languages called
clang is published under a BSD-style license. The clang front end can be downloaded at
http://clang.llvm.org/. The front end is written in C++ and creates an intermediate rep-
resentation very similar to that of ROSE and therefore makes a good candidate to replace the
EDG front end in SATIrE. The C99 and Objective C languages are supported very well by clang,
whereas C++ support is still under development.

In order to connect SATIrE with the clang front end, we decided to take the route via the
Termite representation. This way, the front end is cleanly decoupled from the rest of the system
and uses the Termite terms as a stable interface. The Termite term generator is implemented as
a pass over the clang intermediate representation and is available via the -emit-term command
line option. The term generator is not integrated with upstream clang, but distributed as a patch
against a current SVN version together with SATIrE.

To build the clang front end for use with SATIrE a special make clang target is available at
the toplevel which fetches the needed version of clang from the subversion repository, applies the
patch, and compiles and installs the patched front end to $prefix/bin.

Uparsing Termite terms without SATIrE

Invoking the term2c program is sometimes too cumbersome, for example, when only a few expres-
sions should be unparsed for debugging purposes. For these occasions an independent term→C
converter is implemented in pure Prolog and available both in the Termite library and as a stand-
alone script. The predicate is called unparse/1 and expects a Termite term as argument.

1.1.2 As part of a SATIrE analyzer

If execution speed is an issue, the steps of writing the Termite representation to disk (or a pipe)
and parsing the terms (which, when output as a text, are significantly larger than the original
source files) can be optimized away. If SATIrE was configured with SWI-Prolog support enabled,
the term representation will be built in memory using the external interface of an embedded
SWI-Prolog interpreter. Using this in-memory term, a Termite program can be executed without
leaving the current process. The resulting term can again be translated to the ROSE intermediate
representation directly from memory using the SWI-Prolog interface.

6

Using this work flow, the whole analyzer (or transformer, ...) can be distributed as a single
self-contained executable.

7

The Termite term
representation 2
SATIrE can export an external term representation of the abstract syntax tree (AST) of a C++
program. This term representation contains all information that is necessary to correctly unparse
the program, including line and column information of every expression. The terms are also
annotated with the results of any preceding PAG analysis. The syntax of the term representation
was designed to match the syntax of Prolog terms. This allows it to be manipulated by Prolog
programs very naturally.

2.1 Grammar of TERMITE terms

The following section gives a formal definition of the grammar of Termite terms as it is used by
the program termite_lint which can be used to verify the validity of arbitrary terms.

termite ::=

project.

project ::=

project([source_file], default_annotation, analysis_info, file_info).

source_file ::=

source_file(global, default_annotation, analysis_info, file_info).

initialized_name ::=

initialized_name(initializer?, initialized_name_annotation,

analysis_info, file_info).

2.1.1 statements

statement ::=

break_stmt

| case_option_stmt

| continue_stmt

| declaration_statement

| default_option_stmt

| expr_statement

| for_init_statement

| goto_statement

| label_statement

| null_statement

| return_stmt

| scope_statement.

break_stmt ::=

break_stmt(default_annotation, analysis_info, file_info).

8

case_option_stmt ::=

case_option_stmt(expression, statement, expression? /* key_range_end */,

default_annotation, analysis_info, file_info).

continue_stmt ::=

continue_stmt(default_annotation, analysis_info, file_info).

declaration_statement ::=

class_declaration

| enum_declaration

| function_declaration

| function_parameter_list

| pragma_declaration

| program_header_statement

| typedef_declaration

| variable_declaration

| variable_definition.

class_declaration ::=

class_declaration(class_definition?, class_declaration_annotation,

analysis_info, file_info).

enum_declaration ::=

enum_declaration([initialized_name], enum_declaration_annotation,

analysis_info, file_info).

function_declaration ::=

function_declaration(function_parameter_list, {null}, function_definition?,

function_declaration_annotation,

analysis_info, file_info).

function_parameter_list ::=

function_parameter_list([initialized_name],

default_annotation, analysis_info, file_info).

program_header_statement ::=

program_header_statement(function_parameter_list, {null}, function_definition?,

function_declaration_annotation,

analysis_info, file_info).

pragma_declaration ::=

pragma_declaration(todo).

typedef_declaration ::=

typedef_declaration(declaration_statement? /* base type definition */,

typedef_annotation, analysis_info, file_info).

variable_declaration ::=

variable_declaration([initialized_name], variable_declaration_specific,

analysis_info, file_info).

variable_definition ::=

variable_definition(todo).

default_option_stmt ::=

default_option_stmt(statement,

default_annotation, analysis_info, file_info).

9

expr_statement ::=

expr_statement(expression, default_annotation, analysis_info, file_info).

for_init_statement ::=

for_init_statement([statement],

default_annotation, analysis_info, file_info).

goto_statement ::=

goto_statement(label_annotation, analysis_info, file_info).

label_statement ::=

label_statement(label_annotation, analysis_info, file_info).

null_statement ::=

null_statement(default_annotation, analysis_info, file_info). /* really? */

return_stmt ::=

return_stmt(expression, default_annotation, analysis_info, file_info).

scope_statement ::=

basic_block

| class_definition

| do_while_stmt

| for_statement

| function_definition

| global

| if_stmt

| switch_statement

| while_stmt.

basic_block ::=

basic_block([statement], default_annotation, analysis_info, file_info).

class_definition ::=

class_definition([variable_declaration], class_definition_annotation,

analysis_info, file_info).

do_while_stmt ::=

do_while_stmt(statement /* body */, statement /* condition */,

default_annotation, analysis_info, file_info).

for_statement ::=

for_statement(for_init_statement, statement /* test */,

expression /* increment */, statement /* body */,

default_annotation, analysis_info, file_info).

function_definition ::=

function_definition(basic_block,

default_annotation, analysis_info, file_info).

global ::=

global([declaration_statement],

default_annotation, analysis_info, file_info).

if_stmt ::=

if_stmt(statement /* condition */, statement /* true */,

statement? /* else */,

default_annotation, analysis_info, file_info).

10

switch_statement ::=

switch_statement(statement /* key */, statement /* body */,

default_annotation, analysis_info, file_info).

while_stmt ::=

while_stmt(statement /* condition */, statement /* body */,

default_annotation, analysis_info, file_info).

2.1.2 expressions

expression ::=

binary_op

| cast_exp(expression, /*expression? * original expression tree ,*/

unary_op_annotation, analysis_info, file_info)

| conditional_exp

| expr_list_exp

| function_call_exp

| function_ref_exp

| initializer

| new_exp

| null_expression

| size_of_op

| unary_op

| var_arg_copy_op

| var_arg_end_op

| var_arg_op

| var_arg_start_one_operand_op

| var_arg_start_op

| var_ref_exp

| functors [long_long_int_val, unsigned_long_long_int_val, long_int_val,

unsigned_long_val, int_val, unsigned_int_val, short_val,

unsigned_short_val, char_val, unsigned_char_val, float_val,

double_val, long_double_val, string_val, enum_val]

with (/*expression? original expression tree ,*/

value_annotation, analysis_info, file_info).

binary_op ::=

functors [add_op, and_assign_op, and_op, arrow_exp, assign_op,

bit_and_op, bit_or_op, bit_xor_op, comma_op_exp, div_assign_op,

divide_op, dot_exp, equality_op, greater_or_equal_op,

greater_than_op, ior_assign_op, less_or_equal_op, less_than_op,

lshift_assign_op, lshift_op, minus_assign_op, mod_assign_op, mod_op,

mult_assign_op, multiply_op, not_equal_op, or_op, plus_assign_op,

pntr_arr_ref_exp, rshift_assign_op, rshift_op, subtract_op,

xor_assign_op]

with (expression /* lhs */, expression /* rhs */,

binary_op_annotation, analysis_info, file_info).

conditional_exp ::=

conditional_exp(expression /* condition */,

expression /* true */, expression /* false */,

conditional_exp_annotation, analysis_info, file_info).

expr_list_exp ::=

expr_list_exp([expression], default_annotation, analysis_info, file_info).

11

function_call_exp ::=

function_call_exp(expression /* function */, expr_list_exp /* args */,

function_call_exp_annotation, analysis_info, file_info).

function_ref_exp ::=

function_ref_exp(function_ref_exp_annotation, analysis_info, file_info).

new_exp ::=

new_exp({null}, constructor_initializer?, {null},

new_exp_annotation, analysis_info, file_info).

new_exp_annotation ::=

new_exp_annotation(type, preprocessing_info).

constructor_initializer ::=

constructor_initializer(expr_list_exp,

constructor_initializer_annotation,

analysis_info, file_info).

constructor_initializer_annotation ::=

constructor_initializer_annotation(name, type,

name, name, name, name,

preprocessing_info).

initializer ::=

aggregate_initializer

| assign_initializer.

aggregate_initializer ::=

aggregate_initializer(expr_list_exp,

default_annotation, analysis_info, file_info).

assign_initializer ::=

assign_initializer(expression, assign_initializer_annotation,

analysis_info, file_info).

null_expression ::=

null_expression(default_annotation, analysis_info, file_info).

size_of_op ::=

size_of_op(expression?, size_of_op_annotation, analysis_info, file_info).

unary_op ::=

functors [address_of_op, bit_complement_op, minus_minus_op,

minus_op, not_op, plus_plus_op, pointer_deref_exp, unary_add_op]

with (expression, unary_op_annotation, analysis_info, file_info).

var_arg_copy_op ::=

var_arg_copy_op(todo).

var_arg_end_op ::=

var_arg_end_op(todo).

var_arg_op ::=

var_arg_op(todo).

var_arg_start_one_operand_op ::=

var_arg_start_one_operand_op(todo).

12

var_arg_start_op ::=

var_arg_start_op(todo).

var_ref_exp ::=

var_ref_exp(var_ref_exp_annotation, analysis_info, file_info).

2.1.3 annotations

default_annotation ::=

default_annotation({null})

| default_annotation({null}, preprocessing_info).

initialized_name_annotation ::=

initialized_name_annotation(type, name, todo /* storage modifier */,

scope_name?, preprocessing_info).

function_declaration_annotation ::=

function_declaration_annotation(type, name, declaration_modifier,

preprocessing_info).

class_declaration_annotation ::=

class_declaration_annotation(name, todo /* class kind */, type,

preprocessing_info).

enum_declaration_annotation ::=

enum_declaration_annotation(name, todo, todo, preprocessing_info).

class_definition_annotation ::=

class_definition_annotation(file_info, preprocessing_info).

variable_declaration_specific ::=

variable_declaration_specific(todo /* declaration modifier */,

declaration_statement? /* base type decl */,

preprocessing_info).

label_annotation ::=

label_annotation(name, preprocessing_info).

size_of_op_annotation ::=

size_of_op_annotation(type? /* operand */, type /* sizeof expression */,

preprocessing_info).

value_annotation ::=

value_annotation(number_or_string, name, type, preprocessing_info) /* enum */

| value_annotation(number_or_string, preprocessing_info).

binary_op_annotation ::=

binary_op_annotation(type, preprocessing_info).

unary_op_annotation ::=

unary_op_annotation(fixity, type, todo /* cast type */,

todo /* throw kind */, preprocessing_info).

var_ref_exp_annotation ::=

var_ref_exp_annotation(type, name, todo /* storage modifier */,

scope_name?, preprocessing_info).

13

typedef_annotation ::=

typedef_annotation(name, type, preprocessing_info).

function_ref_exp_annotation ::=

function_ref_exp_annotation(name, type, preprocessing_info).

function_call_exp_annotation ::=

function_call_exp_annotation(type, preprocessing_info).

assign_initializer_annotation ::=

assign_initializer_annotation(type, preprocessing_info).

conditional_exp_annotation ::=

conditional_exp_annotation(type, preprocessing_info).

2.1.4 other stuff

analysis_info ::=

analysis_info([_]).

file_info ::=

file_info({_}, {_}, {_}).

preprocessing_info ::=

preprocessing_info([_]).

type ::=

basic_type

| array_type(type, expression?)

| function_type(type /* return */, todo /* ellipses */, [type] /* args */)

| modifier_type(type, type_modifier)

| named_type

| type_default

| pointer_type(type).

basic_type ::=

atoms [type_bool, type_char, type_double, type_ellipse, type_float,

type_int, type_long, type_long_double, type_long_long, type_short,

type_signed_char, type_string, type_unsigned_char,

type_unsigned_int, type_unsigned_long, type_unsigned_long_long,

type_unsigned_short, type_void].

type_default ::= atoms [type_default].

named_type ::=

class_type(name, todo, todo)

| enum_type(todo)

| typedef_type(name, type).

type_modifier ::=

type_modifier([todo], todo, todo, todo).

name ::=

{Name} where atom(Name).

14

scope_name ::= % name of a scope

{::}

| class_scope(name, class_kind, preprocessing_info)

| name.

class_kind ::=

{class}

| {struct}

| {union}.

number_or_string ::=

{It} where (numberatom(It) ; number(It) ; string(It) ; atom(It)).

fixity ::= % fixity of unary operators

{prefix}

| {postfix}.

declaration_modifier ::=

declaration_modifier(todo, todo, todo, todo).

todo ::=

{_}.

For an optional argument A? , this predicate is tried first.

missing(null).

Test whether the atom A can be interpreted as a number.

numberatom(A) :-

atom(A),

catch(atom_number(A, _N), _, fail).

15

Library Reference 3
3.1 asttransform.pl – Properties of abstract syntax trees

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2007-2010 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

This module defines commonly-used transformation utilities for C/C++/Objective C ASTs
given in the TERMITE term representation as exported by SATIrE.

simple form of(?Term, ?SimpleTerm)
This function is obsoleted, since SATIrE>0.7 defaults to the compact representation.

simple form of/2 is used to convert the verbose *nary node() terms to a more compact
representation

Example:

unary_node(int_val, foo ...) <-> int_val(foo, ...)

[(o)
ndet]ast node6?Node, ?Type, ?Children, ?Annot, ?Ai, ?Fi ast node/6 (de)construct an AST
node

Since all AST nodes follow the same structure, this predicate can be used to quickly compose
or decompse a node.

[(e)
t]is ast node6+Node, -Type, -Children, -Annot, -Ai, -Fi Faster, uni-directional version of
ast node/6.

transformed with(+Node, +Transformation, +Info, -Info1, -NodeT)
Backwards compatibile version of transformed with/5:

• if it is used with arity 4, default to preorder

collate ast(Map, Reduce, A0, Node, A)
Perform a postorder traversal on the AST Node. For every Node visited call Map = f(Node,
A Children, A). For child nodes in the same hierarchy call foldl1(As, Reduce, A).

[(e)
t]unparse1+Term This predicate prints the original textual (source code) representation of
the program encoded in Term. Output is written on stdout.

This predicate is especially useful for debugging purposes.

[(e)
t]needs semicolon1+Node Succeeds if Node needs a semicolon ’;’ after itself during unparsing.

16

[(e)
t]needs comma1+Node Succeeds if Node needs a comma ’,’ after itself during unparsing.

[(e)
t]replace types3+InitializedNames, +FuncDecl, -InitializedNames1 Replace the instantiated
types with the original types from the function declaration.

Needed during unparsing.

[(e)
t]indent1+FileInfo Output the indentation that is encoded in FileInfo.

[(e)
t]unparse ppi2+Location, +PPIs Print all preprocessing information(s) PPIs at Location.

Location must be one of [before, after, inside].

17

3.2 astproperties.pl – Properties of abstract syntax trees

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2008-2009 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

This module defines commonly-used queries about C/C++/Objective C ASTs given in the
TERMITE term representation as exported by SATIrE.

Depenedencies:
The user has to define the type predicates [type info/3, type interval/2]

[(e)
midet]ast equiv2+Expr1, +Expr2 Compare two expressions disregarding the file information
Expects compact form.

Todo: rewrite this!

is transp(+Expr, +Var, +Scope)
Goal succeeds if Var is not written to by Expr.

• Expr must be an Expression.

• Scope specifies whether Var is global or local.

is complex statement(+Node)
Goal succeeds if Node introduces new edges into the control flow graph (CFG).

guarantee(+Node, +Pred)
guarantee(+List, +Pred)

Recursively test a predicate Pred on an AST Node or List of AST Nodes, respectively.

strip file info(, , , +Term1, -Term2)
Replace file info(...) with null in all VarRefExps. This facilitates the comparison of AST
nodes.

Use this with transformed with/4

var stripped(+VarRefExp, -VarRefExpStripped)
Non-traversal version of strip file info/5.

get variable id(+AnalysisInfo, -Id)
Extract the numerical variable Id from the Analysis Information

var interval(+AnalysisInfo, +VarRefExp, -Interval)
Employ the analysis result/type info to yield an interval for the VarRefExp.

term stripped(+Term, -StrippedTerm)
Recursively strip all VarRefExps in Term

[(o)
ned]isIntVal2?IntVal, ?Value Convert between int val nodes and integer values.

new intval(+Value, -IntVal)
Create a new int val(Value, ...) data structure with default annotations.

[(o)
ndet]isVar2?VarRefExp, ?Name True if VarRefExp is a var ref exp or a cast exp. Name is
the name of the variable.

18

[(o)
ndet]var type2?VarRefExp, ?Type Allows access to the Type of VarRefExp.

[(o)
ndet]var typemod2?VarRefExp, ?ConstVolatile Allows access to the ConstVolatile modifier
of VarRefExp. Values for ConstVolatile are ’const’ and ’volatil’ (sic!).

[(e)
midet]isBinNode7+Node, -Name, -E1, -E2, -Annot, -Ai, -Fi Decompose a binary node Node.
% isBinNode(-Node, +Name, +E1, +E2, +Annot, +Ai, +Fi) is det. Compose a binary node
Node.

isBinOpLhs(?BinOp, ?Lhs)
Bind Lhs to the left-hand-side (1) operator of BinOp.

isBinOpRhs(?BinOp, ?Rhs)
Bind Rhs to the right-hand-side (2) operator of BinOp.

scope statement(+Node)
True, if Node is a scope statement.

Scope statements are basic block, catch option stmt, class definition, do while stmt,
for statement,function definition, global, if stmt, namespace definition statment,
switch statement, while stmt

analysis info(+Term, -Ai)
Extract the analysis info Ai from Term.

file info(+Term, -Fi)
Extract the file info Fi from Term.

function signature(?FunctionDecl, ?Type, ?Name, ?Modifier)
Convert between signatures and terms.

is function call(?Term, ?Name, ?Type)
(De-)construct a function call.

is function call exp(?Term, -Name, -Type)
(De-)construct a function call expression.

function body(?FuncDecl, ?Body)
Get the function body Body from a function declaration FuncDecl.

pragma text(?Pragma, ?Text)
pragma text/2 defines the relation between a pragma statement and the String Text inside
the ”#pragma Text” Statement.

get annot(+Stmts, -Annotterm, -Pragma)
Find Pragma in Stmts and treat its contents as a Prolog term. If successuful, unify Annot-
Term with the parsed term.

get annot term(?Stmts, ?Annotterm, ?Pragma)
Quicker version of get annot/3 without term parsing.

get preprocessing infos(+Node, -PPIs)
Todo: move to annot.pl!

type interval(+Type, -Interval)
Use the user-defined type info/2 to return an Interval (Min..Max) denoting the maximum
value range of Type

19

3.3 astwalk.pl – Flexible traversals of abstract syntax trees

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2008-2009 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

This module defines commonly-used transformation utilities for the AST exported by SATIrE.
It represents an more flexible alternative to the transformation interface provided by module
ast transform.

[(e)
t]zip2+Tree, -Zipper Creates a new Zipper from Tree.

How to move around a tree and replace subtrees=branches?

At each node, we cut out a branch and replace it with a free variable <Gap>. The original
branch is given as a separate argument, allowing us to bind the new branch to <Gap>.

In a way, this works just like Huet’s zipper!

[(e)
t]unzip3?Zipper, ?Tree, ?Context Converts between the Zipper data structure and its con-
tents.

[(e)
midet]walk to3+Zipper, +Context, -Zipper1

[(e)
midet]down3+Zipper, +BranchNum, -Zipper1 Navigate downwards in the tree to child
#BranchNum.

• Works also with lists.

[(e)
midet]up2+Zipper, -Zipper1 Navigate upwards in the tree.

[(e)
midet]right2+Zipper, -Zipper1 Navigate to the next sibling in a tree or a list.

[(e)
midet]top2+Zipper, -Zipper1 Navigate back to the root of our tree.

To be done Could be implemented more efficiently, too

[(o)
ndet]goto function3+Zipper, ?Template, +Zipper1 find a function like Template in a project
or file and return its body if there is only a declaration available, the declaration will be
returned

[(e)
t]distance from root2+Zipper, -Distance Return the current distance from the root node

next preorder(+Zipper, -Zipper)

To be done change name to next tdlr Return the “next” node in a left-to-right traversal fashion.
Algorithm: (rechtssucher) try down(1) else while not try right() do up()

20

3.4 callgraph.pl – Create a call graph from an AST

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2008 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

[(e)
t]callgraph2+P, -Graph Construct a call graph from an AST. Graph is in library(ugraphs)
form. The nodes in the graph have the form Name/Type

To be done NO function pointers or virtual methods yet!

21

3.5 utils.pl – A collection of useful general-purpose predicates.

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2007-2009 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

The predicates drop/3, foldl/4, foldl1/3, last/2, replicate/3, split at/4 and take/3 are
inspired by the Haskell Prelude, but are implemented declaratively: They can be used to generate
as well as test.

drop(?N, ?List, ?Tail)
Drop N elements from List, yielding Tail.

drop(N, List, Tail) :-

length(Head, N),

append(Head, Tail, List).

last(?List, ?Elem)
Elem is the last element of List.

last(List, Elem) :-

reverse(List, [Elem|_]).

replicate(?A, ?Num, ?As)
Replicate A Num times yielding As.

replicate(A, Num, As) :-

length(As, Num),

maplist(=(A),As).

split at(?N, ?List, ?Head, ?Tail)
Split List at element N yielding Head, Tail

split_at(N, List, Head, Tail) :-

length(Head, N),

append(Head, Tail, List).

take(?N, ?List, ?Head)
Head is unified with the first N elements of List

take(N, List, Head) :-

length(Head, N),

append(Head, _Tail, List).

foldl1(?List, ?Pred, ?Result)
Fold List left-to-right using Pred, starting with the first element of List.

foldl(?List, ?Pred, ?Start, ?Result)
Fold a list left-to-right using Pred, just as you would do in Haskell.

pred(LHS, RHS, Result)

22

Thanks to Markus Triska for the definition.

[(e)
t]string to term2+Text, -Term Convert a String to a Term, stripping whitespaces

[(e)
t]atom to string2+Atom, -String Convert an Atom to a String

[(e)
t]term to string2+Term, -String

[(e)
t]list from to3+Start, +End, -List Create a list of integers [Start..End]

[(e)
t]repeat string3+S, +N, -Res

[(e)
t]replace nth5+Xs, +N, +E, +R, -Ys replace the nth element of a list with R and return it
in E

[(o)
ndet]term mod3+Term, +M, -ModTerm Try to apply M on Term recursively

23

3.6 loops.pl – Properties of loops

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2008-2009 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

[(e)
midet]is const val2+Term, -Val[(o)
ndet]is const val2-Term, +Val

To be done implement constant analysis result for VarRefExp

[(e)
midet]isStepsize3+Term, -InductionVar, -Val[(o)
ndet]isStepsize3-Term, +InductionVar, +Val

is fortran multicond for loop(+ForStatement, +I, ForInit, ForTest, ForStep, Body)
generate multiple ForTest on backtracking if multiple conditions are combined with logical
and operators

is fortran for loop(+ForStatement, -I, -ForInit, -ForTest, -ForStep, -Body)

[(e)
midet]isSimpleForInit3+InitStatement, -InductionVar, -InitVal Extracts the induction vari-
able and the initial value from InitStatement

[(e)
midet]isEmptyForInit1+InitStatement

[(e)
midet]isForTestLE2+TestOp, -LeOp Any < test will be converted into a =<

[(e)
midet]isForTestGE2+TestOp, -GeOp Any > test will be converted into a >=

[(o)
ndet]isForTestOp2+TestOp, -TestOp removes the sourrounding expression statement

[(e)
midet]isWhileStatement7+WhileStmt, -Condition, -Var, -Body, -Annot, -Ai, -Fi[(e)
t]isWhileStatement7-WhileStmt, +Condition, +Var, +Body, +Annot, +Ai, +Fi FIXME
rename this!

[(e)
midet]isDoWhileStatement7+DoWhileStmt, -Condition, -Var, -Body, -Annot, -Ai, -Fi[(e)
t]isDoWhileStatement7-DoWhileStmt, +Condition, +Var, +Body, +Annot, +Ai, +Fi

[(e)
midet]isMin2Func3+MinFunc, -Expr1, -Expr2[(e)
t]isMin2Func3-MinFunc, +Expr1, +Expr2 FIXME move to annot.pl

max nesting level(+Loop, -N)
return the maximum number of loops nested inside Loop

24

3.7 markers.pl – Properties of abstract syntax trees

author Adrian Prantl <adrian@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2007-2009 Adrian Prantl

license See COPYING in the root folder of the SATIrE project

This module defines commonly-used transformation utilities for C/C++/Objective C ASTs
given in the TERMITE term representation as exported by SATIrE.

25

3.8 loopbounds.pl

loop bounds(+Info, -InfoInner, -InfoPost, +Fs, -Fs Annot)

[(e)
t]expr constr3+Expr, +AM, -Expr1 AM is (Analysisresult-Map)

loop constraints(+Fs, -Fs Annot, +RootMarker, +Map)

26

3.9 termlint.pl – Term type checker

author Gergo Barany <gergo@complang.tuwien.ac.at>

version 0.9.0

copyright Copyright (C) 2009 Gergo Barany

license See COPYING in the root folder of the SATIrE project

This is term_lint.pl, a small tool for checking terms against a tree grammar (abstract syntax).

term match(+Term, +NonterminalSymbol)
OK. Here is the semantics to the structures defined above:

The grammar is a sequence of grammar rules. Each rule is of the form Nonterminal ::=
Body. There should be no two rules for the same nonterminal (use | instead), but this is
not checked.

Body has the following meaning:

atom
a nonterminal, references another rule to be used

A | B
match A; if that fails, match B

A where C
match A; if that succeeds, call Prolog goal C

{}(A)
unify with term A; { } means ”any term”, {foo} is terminal foo

atoms As
match one of the atoms in As

functors Fs with Fs
match term F(A1,...,An) where F is a functor in Fs

f(A1, ..., An)
match a term with functor f, where arguments match A1,...,An

Argument expressions (in argument tuples) can be:

atom
a nonterminal

A ?

term is ”missing” (see below) or matches argument expression A

{}(A)
unify with term A

.(A,)
list of terms matching argument expression A

As a special case, [_] means ”list of any type”.

Options (A?) are resolved as follows: If the term under consideration is a solution of predicate
missing/1 (to be defined along with the grammar rules), there is a match; otherwise a term
of type A must be matched.

Predicates to be defined along with the grammar rules are:

missing() / 1
defines what A? can match except for A

27

start symbol() / 1
single solution is the start symbol of the grammar

Here are a few example grammars to illustrate the explanations above.

Arithmetic expressions, simple verbose version:

var ::= {VarName} where atom(VarName).

num ::= {Number} where number(Number).

expr ::=

var

| num

| expr + expr

| expr - expr

| expr * expr

| expr / expr.

Arithmetic expressions, more condensed version:

expr ::=

{Leaf} where (atom(Leaf) ; number(Leaf))

| functors [+, -, *, /] with (expr, expr).

Simple type system:

type ::=

atoms [number, character, string]

| function_type([type] /* argument types */, type? /* return type if any */).

missing(none). /* what to match if no return type is given */

Partial specification (some parts are not constrained):

allowed ::=

lst([_]) /* argument is list of some unknown things */

| opt(allowed?) /* argument is missing, or of type allowed */

| any({_}). /* argument is any term (anything unifies with _) */

missing(nothing).

In this last example, some allowed terms are:

lst([]), lst([f(f)]), lst([x,y]), ...

opt(nothing), opt(lst([])), opt(opt(nothing)), ...

any(foo), any(g(f(x))), ...

One more thing, which might not be explicit from the stuff above: The anonymous variable
(free variables in general) may appear in the grammar, but only inside [] or {}:

.(Arg1,)
(list of any type) or

{}(Arg1)
(any term) or

28

{}(foo(G1433))
(any term with functor foo)

but:

foo() ::= foo(Arg1)
is not allowed; use foo ::= foo({_})

foo() ::= X where X
is not allowed; use foo ::= {X} where cond(X)

The interpreter does not check these things at the moment. Which means that grammars
containing variables in weird places will misbehave in weird ways.

29

Index

[/d, 16, 17, 20, 21, 23, 24, 26
[/n, 16, 18–20, 23, 24
[/s, 18–20, 24

analysis info/2, 19

collate ast/5, 16

drop/3, 22

file info/2, 19
foldl/4, 22
foldl1/3, 22
function body/2, 19
function signature/4, 19

get annot/3, 19
get annot term/3, 19
get preprocessing infos/2, 19
get variable id/2, 18
guarantee/2, 18

is complex statement/1, 18
is fortran for loop/6, 24
is fortran multicond for loop/6, 24
is function call/3, 19
is function call exp/3, 19
is transp/3, 18
isBinOpLhs/2, 19
isBinOpRhs/2, 19

last/2, 22
loop bounds/5, 26
loop constraints/4, 26

max nesting level/2, 24

new intval/2, 18
next preorder/2, 20

pragma text/2, 19

replicate/3, 22

scope statement/1, 19
simple form of/2, 16
split at/4, 22
strip file info/5, 18

take/3, 22
term match/2, 27

term stripped/2, 18
transformed with/5, 16
type interval/2, 19

var interval/3, 18
var stripped/2, 18

30

	Introduction
	Using Termite
	Using Termite for a standalone process
	As part of a SATIrE analyzer

	The Termite term representation
	Grammar of TERMITE terms
	 statements
	 expressions
	 annotations
	 other stuff

	Library Reference
	asttransform.pl – Properties of abstract syntax trees
	astproperties.pl – Properties of abstract syntax trees
	astwalk.pl – Flexible traversals of abstract syntax trees
	callgraph.pl – Create a call graph from an AST
	utils.pl – A collection of useful general-purpose predicates.
	loops.pl – Properties of loops
	markers.pl – Properties of abstract syntax trees
	loopbounds.pl
	termlint.pl – Term type checker

