
User Manual Christoph Bonitz

Term Representation Generator for C Files +
Unparser

User and Extension Manual
(with Test Report)

©2006 Christoph Bonitz

1 of 9

User Manual Christoph Bonitz

IMPORTANT:
This software is provided as is, with no warranty of any kind.
The entire risk of using the program is with the user.

Table of Contents
Usage.. 2

Creating the term representation..2
Transforming the term representation back to source code...2
Inspecting a term representation.. 2
An example transformation... 3

Extension.. 3
Process... 4

Term Creation, a little more detail... 5
Term unparsing, a little more detail.. 5

Change Howto... 5
Inspecting the Term Representation... 5
New IR class... 6
Modify the way an existing node is treated.. 7

Test Report... 7

Usage

Creating the term representation
To create a first order term representing a C/C++ program call
generatePrologTerm input
to read the C/C++ file input and write the output to stdout
OR
c2term input output
to read teh C/C++ file input and write the output to file output. If output exists previously, it is
overwritten

Transforming the term representation back to source code
To create source code from the term representation
EITHER pipe a term representation followed by EOF to
termparser
OR call
term2c prologfile newsourcefile
to read the term representation from prologfile and write the created source code

Inspecting a term representation
As terms get pretty large (about 40 times the size of the source program), they are useless to the
human reader in their pure form. An experimental prettyprinter called termpretty is provided. It
does indentaion and adds vertical lines consisting of ':' symbols. It reads from stdin and writes to

2 of 9

User Manual Christoph Bonitz

stdout.

An example transformation
in the folder prolog/ there is a PROLOG file called
transformer.pl
When the program is consulted and the predicate testrun/0 is called, the program reads a term from
input.pl and writes the transformed term to output.pl It consists of some rewriting infrastructure and
two example transformations. (tested with SWI-PROLOG)

Extension
ntroduction
This document is an overview of the term generation and term parsing as well as unparsing process,
which is illustrated in this figure.

All of the classes and member functions are documented (with doxygen) as well as inline
documentation about what is going on. The aim of this document, therefore, is only to give an
overview about the process and give pointers to where to find, add or some specific behaviour.

3 of 9

User Manual Christoph Bonitz

Process
The following steps are executed when creating the term representation.

● The C++ source code is parsed by the rose frontend

● The ROSE-IR is traversed by subtyping an AstBottomUpProcessing class, using a class
called PrologTraversal.

● The result of the traversal is a C++-object-representation of the PROLOG term that
corresponds to the C++ source (using class PrologTerm and subclasses)

● The PrologTerm classes come with a method getRepresentation() that, recursively, creates
their textual representation. Note that this step is completely independent of the generation
of the term representation.

When creating source code again, this is what happens:

● a lex/yacc parser (written in C++) parses the PROLOG term and creates a PrologTerm
object representing it.

● The object is passed to the static member function toRose(PrologTerm*) of class
PrologToRose. This function recurses into the term structure and creates a ROSE-IR
bottom-up.

● The ROSE-IR is unparsed, resulting in C++ code again.

Term Creation, a little more detail
● The C++ file toProlog.C creates the ROSE-IR for some file, creates a

PrologTraversal-object (see PrologTraversal.h/PrologTraversal.c) on
them, runs its the traverseInputFiles method, gets the PrologTerm-class
representation by running the traversal's getTerm method and then outsputs the result of
the PrologTerm's getRepresentation method.

● Every node term consists of a generic part, created in the PrologTraversal and a node
specific part, depending on the node type. The PrologTraversal uses
PrologSupport::addSpecific to create the latter and add it to the generic term.
This method, then, depending of the node types, calls the private static member function
corresponding to the type, that returns a node specific PrologCompTerm, which is then
added to the generic node term.

Term unparsing, a little more detail
● main.C calls the yylex() function created from

termplerxer.l++/termparser.y++, which, after parsing the PROLOG term, saves
a PrologTerm* object in the global varialbe prote.

● main.C then calls the static member function SgNode*
PrologToRose::toRose(PrologTerm*) which is a factory method creating the
corresponding ROSE-ir

● toRose, depending on the node arity, calls leafToRose, unaryToRose etc., which
then call the class specific factory methods. This is where the actual node creatoin happens.

4 of 9

User Manual Christoph Bonitz

● When a SgGlobal node is encountered and was created, its
unparseToCompleteString method is called and the result (C++ source code) written
to stdout.

Change Howto

Inspecting the Term Representation
The make-target termpretty (automatically called by make all) creates an executable file with the
same name, which reads a PROLOG term from stdin and writes an indented version of it to stdout.
To improve readability, vertical dotted lines (made of „:“-symbols) are added. Therefore, this
representation is just for human reading, it is no longer valit PROLOG.

New IR class
● Create a C/C++ file containing the corresponding Construct.

● Create PROLOG term with current version, use it to determine the arity of the construct
(termpretty may be useful here.).

● Determine which information, apart from a Sg_File_Info and the children that are
automatically added to the term by the PrologTraversal will be necessary to call the class'
constructor.

● In class PrologSupport, write a static member function (assuming class name
SgExampleClass here).
static PrologTerm getExampleClassSpecific(SgExampleClass*);

● The function should create a PrologCompTerm* of name
exampe_class_annotation(...)
that contains the necessary information in any desired form.

● Document the Function:
class: SgExampleClass
term: [term structure here]
arg something: explain what subterm somthing represents

● in Function PrologSupport::addSpecific, there is a long if/then/else sequence
that attempts to cast the current SgNode* to more specific types and, if successful, calls the
specific functions. Add such a cast and subroutine call there.

This is all that's necessary to create the annnotation term. Now the Node has to be recreated in the
unparser section:

● define a private static member function SgExampleClass*
PrologToRose::createExampleClass(Sg_File_Info*,[children],Pro
logCompTerm*)

● Depending on the node terms arity, add a call to it in PrologToRose::leafToRose,
PrologToRose::unaryToRose etc.

● create the actual node. This very much depends on the class that should be created, the

5 of 9

User Manual Christoph Bonitz

following things are noteworthy, though

○ The children come as SgNode* pointers, therefore they will have to be casted and, if
they are necessary, tested for not being NULL.

○ The PrologCompTerm* points to the complete node term, to get the annotation and cast
it to PrologCompTerm*, just call
PrologToRose::retrieveAnnotation(PrologCompTerm*)

○ If the class you want to implement contains references to previous declarations, the
current way of doing things is creating a dummy declaration, not traversing the new
ROSE-IR to finde the declaration. Note that such a declaration usually needs to be in
some parent scope or unparsing will fail. Therfore,
PrologTORose::fakeParentScope(SgDeclarationStatement*) was
created to fix this for dummy nodes.

Modify the way an existing node is treated
The process described in the previous section was followed for all the nodes already implemented.
To change anything about the way a class SgExampleClass is unparsed, one has to change either
one or both of

● PrologSupport::getExampleClassSpecific(SgExampleClass*)
● PrologToRose::createExampleClass(...)

There are three exceptions to this: SgBinaryOp, SgUnaryOp and SgValueExp for which all the term
creation / node creation of their subtypes is getBinaryOpSpecific/createBinaryOp etc..

Test Report
All the tests can be called via
make check
in the src/ directory. It is a phony target which calls the script test.sh. This tranforms all files with
the suffix .C in the directory src/tests/ to their term representation. The term representation
for src/tests/X.C is named src/tests/results/X.C.pl. The term representation is
then, by using the term parser, transormed back to source code. src/tests/X.C is unparsed to
src/tests/results/X.C.unparsed.C. Furthermore, the result of ROSE unparsing the
original file's ROSE-IR is saved as src/tests/results/X.C.rose.C.

X.C = generatePrologTerm => results/X.C.pl =termparser=>results/X.C.unparsed.C

Furthermore, the .pdf and .dot representation as well as the output to stderr of each file is moved to
the src/tests/results/ directory.

A diff-output of the .rose.C and the .unparsed.C-Files is saved as src/test.log

To remove all test output, call
make clean_check

6 of 9

User Manual Christoph Bonitz

Tested Language Features

C
● Structures

● Unions

● Enums

● Typedefs

● Function declarations and calls

● unary and binary operators

● control structures (including goto and labels)

C++
● Class Declarations

● Member function delarations and calls

● try/catch

● new

● delete

● namespace declarations

Test files
This section contains the list of C and C++ files tested. „identical“ means that there are no
differences except comments (which aren't preserved). Correct means semantically equal (see
Peculiarities). Typedef means that the

C
File name identical correct typedef differnces

tests/test_control. + -

tests/test_enum.C + + -

tests/test_minimal.C + + -

tests/test_struct.C + + -

tests/test_transformme.C - + - parentheses

tests/test_typedef.C - - + Typedefs not unparsed correctly

tests/test_control.C - + - parentheses, booleans

7 of 9

User Manual Christoph Bonitz

File name identical correct typedef differnces

 tests/test_enum.C + + -

tests/test_minimal.C + + -

tests/test_struct.C + + -

C++
Filename Identical Correct Contains

„new“
differences

tests/test[1-9].C - - + New not unparsed
correctly, typedefs

tests/test_class1.C - - + New not unparsed
correctly

tests/test_class1.C - - + New not unparsed
correctly

What works

C
● Control structures (including goto and labels)

● Variables (declarations, calls etc)

● Unary and binary operators

● Types

● Unions

● Enums

● Typedefs with no nested declarations

C++
The above plus

● Variables in global scope

● Classes with global scope, their member functions (including calls) and variables

● try/catch

● delete

8 of 9

User Manual Christoph Bonitz

Peculiarities
This section documents the language features where unparsing differs between the term
representation and the original ROSE-IR but that don't change the semantics. The bullets illustrate
what's different in the term representation's unparsed code.

Both C and C++
● Comments are not preserved

● Enums: member names are in parentheses: enum x {(a),(b)};
● Enums: foo(x) is replaced by its value

● Booleans: 1/0 instead of true/false

● Assignments: outermost parentheses ommited (x = 3 + 2 instead of x = (3 + 2)).

Problematic Language Features

C
● Typedefs with nested declarations (declarations aren't unparsed)

C++
● New-operator (new foo(x) becomes ::new foo foo(x))

● Classes: no inheritance

● Member functions: no „throws“ declarations

● No scope information except in class declarations and member function declarations

Test summary
Transformation from and to C works well with the given restriction of typedefs that are nested.
Some language features of C++ (mentioned above) work too.

9 of 9

	Usage
	Creating the term representation
	Transforming the term representation back to source code
	Inspecting a term representation
	An example transformation

	Extension
	Process
	Term Creation, a little more detail
	Term unparsing, a little more detail

	Change Howto
	Inspecting the Term Representation
	New IR class
	Modify the way an existing node is treated

	Test Report
	Tested Language Features
	C
	C++

	Test files
	C
	C++

	What works
	C
	C++

	Peculiarities
	Both C and C++

	Problematic Language Features
	C
	C++

	Test summary

