Combining Tools and Languages for
Static Analysis and Optimization of
High-Level Abstractions!

Markus Schordan

Vienna University of Technology, Austria
markus@complang.tuwien.ac.at

Abstract. We present an approach for combining different analysis and
transformation tools that enables their application to popular program-
ming languages without extending existing compilers. Analysis results
are made available as annotations of a common high-level intermediate
representation and as generated source code annotations. We also sup-
port an external file format. The presented Static Analysis Integration
Engine allows the selection of an arbitrary tool chain from the pool of
integrated tools, most suitable for a certain program analysis or manip-
ulation task. The architecture is evaluated with an implementation tar-
geting full C++, considering templates, object-oriented features, as well
as low-level features. The integrated tools are the LLNL-ROSE source-
to-source infrastructure, the Program Analyzer Generator from Abslnt,
and the language Prolog for manipulating terms representing C/C++
programs.

1 Motivation

For instrumentation tools, source-to-source optimizers, slicing tools,
refactoring tools, and tools for enabling code comprehension, it is
important to keep the source-code structure available for present-
ing the results of source code manipulating operations to the user.
It is important that the results can be easily put into relation to
the original program. This aids the user of such a tool, but com-
plicates the internal handling of the source program during analysis
and transformation because the results must be mapped back to the
original program. Compilers usually translate the input programs
to a lower-level representation for reducing the number of different
language constructs, allowing to keep a program analysis more com-
pact. The presented approach aims at utilizing compiler technology

1 To appear in Post-Workshop Proceedings of the 24th Workshop of GI Fachgruppe
Programmiersprachen und Rechenkonzepte, 2007.

2

but without losing syntactic or semantic information about the orig-
inal input program. Therefore all tools are integrated to operate on,
or map forth and back to a high-level intermediate representation.
The goal is to permit building arbitrary tool chains from the pool of
integrated tools.

In Section 2 we present the architecture of our Static Analysis Tool
Integration Engine (SATIrE) allowing a seamless integration of pow-
erful tools. The concrete implementation is presented in Section 3,
also describing each tool and how it is integrated in SATIYE. In Sec-
tion 4 we discuss related tool-based infrastructures and in in Section
5 we provide a short overview of the perspectives that we anticipate
for the extensibility of our approach.

2 Architecture

The architecture of the Static Analysis Tool Integration Engine
(SATIrE) is shown in Fig. 1. An essential aspect is that information
gathered about an input program can be generated as annotation in
the output program, and that the output program can again serve
as input program. This allows to make analysis results persistent
as generated source-code annotations. Utilizing such annotations, it
allows to perform whole program optimization.

The architecture shown in Fig. 1 consists of the following kinds of
components

Front End. The input language, L, is translated to a high-level
intermediate representation (HL-IR).

Annotation Mapper. The annotations in L are translated to an-
notations of the HL-IR.

Tool TR Builder. Each tool may require its own IR. The Tool-IR
Builder creates the required Tool-IR by translating the HL-IR to
the Tool-IR.

Tool. A tool analyzes or transforms its respective Tool-IR.

Tool IR Mapper. The Tool-IR mapper either maps the Tool’s IR
back to High-Level IR or maps the computed information or re-
sults back to locations in the HL-IR.

Program Annotator. The HL-IR annotations are translated to a
representation in the source code. This can be comments, prag-
mas, or some specific language extension.

Annotated Annotation High-Level

Front
T
End

Program WEoEr IR
A
Tool IR Tool IR o Tool IR
Builder 1 Builder 2 Builder n

-

SATIrE Tool 1 Tool 2 o Tooln

#

Tool IR Tool IR o Tool IR
Mapper 1 Mapper 2 Mapper n

- Back Program
End Annotator

Fig. 1. Static Analysis Tool Integration Engine Architecture

Annotated
Program’

Back End. From the HL-IR a program in language L is generated
(including annotations).

To allow a seamless integration of the tools, the Annotation Map-
per, Program Annotator, the Tool-IR Builders and Tool-IR Mappers
are offered by SATIrE. In Fig. 1 the solid back-edge represents an
iterative application of the tools within SATIrE.

For example, library source codes can be analyzed and the library’s
interface source code can be annotated with analysis results. When
the library is used by an application, the library annotations can
then be utilized by the application optimizer. We have demonstrated
the optimization of the use of a parallel C++ array abstraction and
achieved similar performance as with an equivalent Fortran imple-
mentation [9].

3 Integrated Tools and Languages

To date we have integrated the Program Analyzer Generator
PAG [7], which generates analyzers from high-level specifications,

the LLNL-ROSE infrastructure for source-to-source transformation
of C++ programs [12], and a term representation of programs suit-
able for a Prolog interpreter, into SATIrE. In the following sections
we describe each integrated tool and give a short overview of its
integrated components.

Annotated
Program

Annotation
Mapper

e

EDG
C/C++
Front End

ICFG Term
Builder Builder
ROSE PAG Prolog
SATIrE Loop Term
Optimizer Analyzer Manipulator

' '

Analysis | |1erm-AsT]
Results Mapper

Mapper

.

Annotated
ROSE
AST’

Back End

Annotated Program
Program Annotator

Fig. 2. Static Analysis Tool Integration Engine Implementation

ROSE
<# CIC++

3.1 LLNL-ROSE Integration

The LLNL-ROSE infrastructure offers several components to build a

source-to-source translator. The ROSE components integrated into
SATIrE are

C/C++ Front End. ROSE uses the Edison Design Group C++
Front End (EDG) [3] to parse C++ programs. The EDG Front
End generates an abstract syntax tree (AST) and performs a full
type evaluation of the C++ program. The AST is represented as
a C data structure. ROSE translates this data structure into a
decorated object-oriented AST (ROSE-AST).

5

Abstract Syntax Tree (ROSE-AST). The ROSE-AST repre-
sents the structure of the input program. It holds additional infor-
mation such as the type information for every expression, exact
line and column information, instantiated templates, the class hi-
erarchy (as it can be computed from the input files), an interface
that permits querying the AST, an an attribute mechanism for
attaching user-defined information to AST nodes.

C/C++ Back End. The Back End unparses the AST and gener-
ates C++ source code. It can be specified to unparse all included
(header) files or the source file(s) specified on the command line
with include-directives. This feature is important when trans-
forming user-defined data types.

Loop Optimizer. The loop optimizer was ported by Qing Yi from
the Fortran-D compiler to directly operate on the ROSE-AST.
It supports a wide range of loop transformations such as loop
fusion, loop fission, loop skewing, loop interchange and blocking
that can be applied to a given ROSE-AST.

3.2 Program Analyzer Generator Integration

The Program Analyzer Generator (PAG) from Abslnt, takes as in-
put a specification of a program analysis and generates an analyzer
that implements the analysis. The analyzer operates on an inter-
procedural control flow graph (ICFG) and provides the computed
analysis results as C data structure as well as a visualization of
the ICFG and the analysis results. The components necessary for a
seamless integration of PAG into SATIrE are

ICFG Builder. Creates the inter-procedural control flow graph
(ICFG) for a given ROSE-AST.

PAG Analyzer. Generated by the Program Analyzer Genera-
tor (PAG) from a user-defined analysis specification using the
OPTLA language.

Analysis Results Mapper. Maps the analysis results back to lo-
cations in the ROSE-AST and makes them accessible as ROSE-
AST annotations.

Various types of ICFG attributes (for example numeric labels for
statements) and support functions are provided to the analyzer by

6

appropriate functions. Thus, the high-level analysis specification can
access any information the ROSE-AST provides, such as types of
expressions, the class hierarchy, etc.

3.3 Example

A short example output of an automatically annotated program is
shown for the post-processed results of a shape analysis [10] in Fig. 3.
The shape analysis is specified using PAG, the input program is a
C++ program implementing a list reversal (and other list opera-
tions). After translating the C++ program to the corresponding
ROSE-AST, SATIrE’s ICFG builder creates the ICFG. Then the
PAG analyzer performs the shape analysis and the Analysis Results
Mapper maps the results back to the ROSE-AST. A post-processing
of the computed shapes generates may and must alias information.
The aliasing results are attached to the ROSE-AST nodes as must/-
may alias annotations. The Program Annotator generates from the
AST the annotations as source code comments, and the ROSE Back
End generates the annotated C++ code.

The actual parameter in the call to the function reverseList is
1, and is therefore aliased with the formal parameter x. When post
analysis information (after a statement) and pre analysis information
(before a statement) is the same, it is shown in the same line and
preceded with post,pre.

3.4 Prolog Integration

The integration of Prolog allows to specify a manipulation of the
AST as term manipulation. The SATIrE components necessary for
integration are

Term builder. Creates a term representation for a given AST. The
term representation is complete, meaning that it contains all in-
formation available in the AST. The term representation is stored
in an external file.

Prolog term manipulator. The term manipulation is specified as
Prolog rules.

Term-AST Mapper. The transformed term is read in and trans-
lated to a ROSE-AST.

class List* reverselList(class List* x)
{
// pre must_aliases : {(1,x)}
// pre may_aliases : {(1,x)}
class List* y;
// pre,post must_aliases : {(1,x)}
// pre,post may_aliases : {(1,x)}
class Listx* t;
// post,pre must_aliases : {(1,x)}
// post,pre may_aliases : {(1,x)}
y = ((0));
// post must_aliases : {(1,x)}
// post may_aliases : {(1,x)}
// pre must_aliases : {}
// pre may_aliases : {(1,t),(1,x),(1,y),(1,y->next), (t,y->next)}
while(x != ((0))) {
// pre must_aliases : {}
// pre may_aliases : {(1,t),(1,x),(1,y),(1,y->next), (t,y->next)}
t=7;
// post,pre must_aliases : {(t,y)}
// post,pre may_aliases : {(1,t),(1,x),(1,y),(1,y->next),(t,y)}
y = x5
// post,pre must_aliases : {(x,y)}
// post,pre may_aliases : {(1,t),(1,x),(1,y),(x,y}
x = (x -> next);
// post,pre must_aliases : {(x,y -> next)}
// post,pre may_aliases : {(1,t),(1,y),(x,y->next)}
y -> next = t;
// post must_aliases : {}
// post may_aliases : {(1,t),(1,y),(1,y->next), (t,y->next)}
}
// post,pre must_aliases : {}
// post,pre may_aliases : {(1,t),(1,x),(1,y),(1,y->next), (t,y->next)}
t = ((0));
// post,pre must_aliases : {}
// post,pre may_aliases : {(1,x),(1,y),(1,y->next)}
return y;
// post must_aliases : {}
// post may_aliases : {(1,x),(1,y),(1,y->next)}

Fig. 3. Example of a C++ program, annotated automatically with must/may aliasing
information which is computed by a post-processing phase from the results of a shape
analysis [10]. We extended the shape analysis to an inter-procedural analysis. The
analysis is specified by using PAG’s specification language.

8

This approach has been successfully adopted within the COSTA
project for performing Worst-Case Execution Time Analysis for a
given C program. A detailed description can be found in [8].

4 Related Work

Glynn et al. show that support for program understanding in devel-
opment and maintenance tasks can be facilitated by program anal-
ysis techniques [4]. They outline the addition of generic program
analysis support to a generic, language-based software development
environment.

Harrold and Rothermel present a technique for separate analysis
of modules [5]. The work focuses on one particular analysis, inter-
procedural may alias analysis, but the design of the analyzer is gen-
eral and similar to our setting. For inter-procedural analysis an ICFG
is created. The separation in control flow and intermediate represen-
tation of statements and expressions is the same as in our approach.
The analysis is a modular analysis, meaning that a module is a set of
interacting procedures or a single procedure that has a single entry
point. The approach allows to reuse the analysis results after ana-
lyzing a module and thus, is applicable to large scale software and
real world applications. In our approach we can add analysis results
as annotations to source-code, allowing to reuse analysis results in a
subsequent analysis step. This can either be done on the IR-level or
the annotated source code is read in again.

For optimizing compilers the automatic generation of data flow anal-
yses and optimizations out of concise specifications has been a trend
for several years. The systems of [1,2] concentrate on “classical”
inter-procedural optimizations, whereas the system of [13] is partic-
ularly well suited for local transformations based on data dependency
information. We integrated PAG because it is a tool that allows to
generate analyzers from specifications for similar analysis problems.
In our infrastructure the transformation of the program is performed
by utilizing the AST rewrite capabilities of ROSE and by using Pro-
log for term manipulation.

In [6] a technique is presented for automatically proving compiler
optimizations sound, meaning that their transformations are always
semantics-preserving. The domain specific-language Cobalt allows

9

to specify optimizations to operate on a C-like intermediate repre-
sentation. The implemented correctness checker interfaces with the
automatic theorem prover Simplify. A similar setting could be added
to our infrastructure by integrating also tools for checking and auto-
matic proving into our current PAG-ROSE environment. Addressing
the additional needs of such tools and leveraging its benefits is a
driving force in the development of SATIrE.

5 Conclusions and Perspectives

We have presented SATIrE that allows to combine tools for anal-
ysis and transformation. The Front End translates the possibly an-
notated input program to a high-level representation (HL-IR). This
HL-IR is translated to an appropriate Tool-IR for each integrated
tool. The results computed by the respective tool are always mapped
back to the common HL-IR. The HL-IR can be unparsed to anno-
tated source code.

The applicability of our approach was demonstrated by integrating
into SATIrE the program analyzer generator PAG, the LLNL-ROSE
source-to-source translator, and by generating an external represen-
tation of the ROSE-AST as Prolog term. We are using SATIrE [11]
in a lecture on optimizing compilers at TU Vienna since 2006. Cur-
rently we focus on specifying different kinds of pointer analyses for
evaluation with respect to scalability, WCET analyses, and on design
pattern detection and extraction. Other tools that we are presently
integrating are Stratego and iburg. Tools of interest to be integrated
in future are model checking tools and automatic theorem provers.

We aim at providing a platform of integrated tools for program anal-
ysis research of multi-million line applications. We hope that the use
of high-level specification languages permits a qualitative comparison
of analyses and that the analysis and transformation of real-world
application codes permits a quantitative evaluation of program anal-
yses at a broad range in future.

Acknowledgements. This work has been funded in part by the
ARTIST2 Network of Excellence (http://www.artist-embedded.org).
I wish to thank Dan Quinlan for the cooperation and fruitful joint
work on LLNL-ROSE;, Florian Martin for the support in integrating

10

PAG, Adrian Prantl for his work on maintaining the Prolog term
representation, Jens Knoop for his support in integrating SATIYE
in various research projects, and all students who have contributed
in several SATIrE projects: Gergo Barany, Viktor Pavlu, Christoph
Bonitz.

References

1.

10.

11.

12.

13.

U. Almann. How to uniformly specify program analysis and transformation with
graph rewrite systems. In Proceedings of the 6th International Conference on
Compiler Construction (CC’96) (Linkdping, Sweden), Lecture Notes in Computer
Science, vol. 1060, pages 121 — 135. Springer-Verlag, Heidelberg, Germany, 1996.

. U. ABmann. On edge addition rewrite systems and their relevance to program

analysis. In Proceedings of the 5th International Workshop on Graph Grammars
and Their Application to Computer Science (GGTA’94) (Williamsburg), Lecture
Notes in Computer Science, vol. 1073, pages 321 — 335. Springer-Verlag, Heidelberg,
Germany, 1996.

Edison Design Group. http://www.edg.com.

E. Glynn, I. Hayes, and A. MacDonald. Integration of generic program analy-
sis tools into a software development environment. In ACSC ’05: Proceedings of
the Twenty-eighth Australasian conference on Computer Science, pages 249-257,
Darlinghurst, Australia, Australia, 2005. Australian Computer Society, Inc.

. M. J. Harrold and G. Rothermel. Separate computation of alias information for

reuse. IEEE Trans. Softw. Eng., 22(7):442-460, 1996.

S. Lerner, T. Millstein, and C. Chambers. Automatically proving the correctness
of compiler optimizations. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 220-231,
New York, NY, USA, 2003. ACM Press.

F. Martin. PAG — an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer, 2(1):46—67, 1998.

A. Prantl. Source-to-source transformations for WCET analysis: The COSTA
approach. In 24. Workshop der GI-Frachgruppe Programmiersprachen und
Rechenkonzepte, 2007.

. D. Quinlan, M. Schordan, B. Miller, and M. Kowarschik. Parallel object-oriented

framework optimization. Concurrency and Computation: Practice and Experience,
16, Issue 2-3:293-302, 2004.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1-50, Jan. 1998.

SATIrE. http://www.complang.tuwien.ac.at/markus/satire. Static Analysis Tool
Integration Engine.

M. Schordan and D. Quinlan. Specifying transformation sequences as computation
on program fragments with an abstract attribute grammar. In Proceedings of the
Fifth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 97-106. IEEE Computer Society Press, 2005.

D. Whitfield and M. L. Soffa. An approach for exploring code-improving transfor-
mations. ACM Transactions on Programming Languages and Systems, 19(6):1053
— 1084, 1997.

