Construction of a PAG control-flow graph
from a ROSE abstract syntax tree

Gergd Barany, e0026139@student . tuwien.ac.at

October 16, 2007

1 Introduction

The analyzers generated by PAG require the program under analysis to
be represented as an explicit control-flow graph (CFG). The frontend used
by ROSE represents whole programs as abstract syntax trees (ASTs). For
programs represented in ROSE’s intermediate representation, a CFG must
therefore explicitly be computed. This document describes a concrete im-
plementation of this computation. The information given is partly generally
applicable to PAG, but mostly specific to our code.

As the ROSE ASTs closely match the original source code, they contain
semantic ambiguities; for instance, the C++ standard does not prescribe the
order of evaluation of function arguments, thus the control flow inside a func-
tion call expression is not completely determined. Because of the constraints
posed on the CFG by PAG, the transforming code must in such cases choose
some fixed control flow. That is, the transformation chooses one of possi-
bly several different semantics, which might be different from the semantics
chosen by a given compiler.

2 Structure of the CFG

2.1 General structure

The CFG consists of procedures (which we might also call functions), which
in turn consist of basic blocks, each of which may contain one or more state-
ments. In our implementation, however, each basic block contains exactly

1

one statement. Therefore this document might sloppily use the terms ‘block’,
‘node’ and ‘statement’ almost interchangeably. The statements in the CFG
are partly the statements that occur in the original source code, partly trans-
formed versions of these statements, and partly special statements that do
not have an explicit representation in the source code.

Blocks are connected by directed edges, each of which has a certain edge
type (which can be used for pattern matching in the PAG analysis specifica-
tion). The type of most edges is normal_edge. Blocks may in general have
several successors and several predecessors (but non-branching statements
will not have more than one successor). There is never more than one edge
from one block to another.

2.2 Procedures and variable scope

Procedures correspond to the functions (also member functions, including
constructors, destructors and overloaded operators) in the C++ source code.
Each procedure has an entry or start node marked by the statement

FunctionEntry (funcname:c_str)

giving access to the name of the procedure, and an ezit or end node which
is marked by

FunctionExit (funcname:c_str, vars:VariableSymbolNT*)

containing also the name of the procedure and a list of variables local to this
function. (The intention of the latter being that these local variables are ir-
relevant outside of this function, thus the corresponding analysis information
can be killed when the analysis reaches the function’s exit node.)

There is no explicit representation of compound statements (‘blocks’ of
C++ code), variable scopes are represented instead. Variable declarations
occur in the CFG as:

DeclareStmt (var:VariableSymbolNT, type:Type)

Initialization of a variable is represented as an assignment to that variable
after the DeclareStmt. Where local variables go out of scope at the end of
a compound statement, this is marked by

UndeclareStmt (vars:VariableSymbolNT*)

2.3 Control-flow statements

Branching constructs are in general represented in the natural way. An
exception are for loops, which are always transformed from the general form

for (initializations; condition; increment)

{
}

into the equivalent of

body

initializations
while (condition)
{

body

increment ;

If the body contains continue statements, their outgoing edges are con-
nected to the block representing the (beginning of) the increment expression
statement. Loop heads and if statements use the edge types true_edge and
false_edge to represent the two paths that can be taken.

2.4 Short-circuit operators

The logical operators && and || as well as the ternary operator ?: are special
in that their operands must be evaluated in a certain order, and not neces-
sarily all operands are evaluated. This must be reflected in the control-flow
graph. A special statement

Logicallf (condition:Expression)

is used for this purpose, which has the same semantics as a normal if state-
ment. It is introduced into the CFG in conjunction with temporary variables;
the names of these always start with a $ sign. The transformation is designed
such that each of these temporaries is only read at one point in the program;
it is irrelevant afterwards, the corresponding analysis information can be
killed if a temporary variable is evaluated.

Consider a statement S containing the subexpression A && B somewhere;
denote this by S[A && B] (abusing array subscript syntax for want of a better
representation). The code

S[A & BJ;
is transformed to the equivalent of

Logicallf (A)
{

}

else

{

}
S[$logical_42];

This first evaluates A; if the result is true, B is evaluated and the temporary
variable set to its value. Otherwise, since A was false, the overall result is
false. Thus the temporary variable is nonzero iff A && B evaluates to true.
(The CFG should enforce that the logical variable only takes one of the values
true or false. This is not implemented yet.) The statement S| $logical 42]
is meant to represent that inside the statement the occurrence of the logical
expression is replaced by a reference to the temporary variable.

Expressions using the || operator are transformed in an analogous way,
and

$logical 42 = B;

$logical 42 = 0;

S[(A? B : C)l;
as if it had been written

Logicallf (A)
{

}

else

{

}
S[$logical 37];

These transformations apply recursively for nested logical expressions;
note that the resulting code does not contain the original operator at all.

The number in the name of the temporary variable varies, of course, and
you shouldn’t rely on the fact that the name of the variable is of this exact

$logical_37 = B;

$logical 37 = C;

4

form. You may, however, safely assume that it will always start with the
dollar sign.

Finally, while the comma operator forces order of evaluation, it does not
short-circuit. Therefore it is not treated specially in the CFG, the correct
order of evaluation of its arguments must be considered in the analysis spec-
ification.

2.5 Function calls

Function calls require somewhat complicated code because while PAG has
support for the concept of procedures and calls between them, it does not
provide for any way to perform passing of argument and return values. The
approach taken to model these is therefore to pass arguments by assigning the
values of a function call expression’s argument expressions to (conceptually)
global temporary variables, and similarly to pass the return value back via
such a temporary variable.

That is, the statement

S[func(A, B)];
is treated as if it were written roughly like

$func$arg_ 0 = A;

$func$arg_ 1 = B;

func ();

$func¥return_84 = $funcreturn;
S[$func$return_84];

There are many things to note here. The variables associated with a function
call contain the function’s name between dollar signs, but there are three
different numbering schemes: The variables for the argument expressions are
always numbered from 0, these same names are used at every site where
this function is called. There are ‘return’ variables without numbers and
there are return variables with unique numbers for each call. As always with
temporaries, the exact name should not matter for the analysis, and the
temporaries can be killed at the point they are read.

In reality, the assignments shown above are not really normal assignments
but special statements. The assignments of argument expressions to argu-
ment variables, and the assignment of the general return variable to the the
return variable specific to this call site are denoted, respectively, by:

ArgumentAssignment (lhs:Expression, rhs:Expression)
ReturnAssignment (lhs:VariableSymbolNT,
rhs:VariableSymbolNT)

The special statement

ParamAssignment (lhs:VariableSymbolNT,
rhs:VariableSymbolNT)

is inserted at the beginning of each procedure for each parameter. This
assigns the argument variables to the formal parameters. All three of these
special assignment statements are semantically simple assignments which just
have special names.

The actual call to the function is modelled by a pair of special statements:

FunctionCall (funcname:c_str)
FunctionReturn (funcname:c_str)

The ArgumentAssignment nodes are placed before the call node, while the
ReturnAssignment is after the return node. An edge of type local_edge
connects the call to the return node; additionally, there is an edge of type
call_edge to the entry node of the called function, and an edge of type
return_edge from the exit node of the called function to the return node.
These edges make it possible to propagate analysis information to the called
function and back.

Every return statement in a function is represented by assigning the ex-
pression in the return statement (if any) to the function’s return variable and
an immediate jump to the function’s exit node. This bypasses the undeclare
statements in the enclosing compound statements, which is not good and
will be fixed some time.

Calls to overloaded functions are resolved statically. Default function
arguments are inserted as ArgumentAssignments if not explicitly present in
the call. Functions without known implementations, either because only a
declaration but not a definition is known or because they go through function
pointers, are represented by a single node of type:

ExternalCall (type:Type)

Note that such calls can at the very least arbitrarily change all global vari-
ables, and potentially any local variable whose address was ever taken. Thus
parts of the analysis information have to be eliminated when such nodes are
encountered.

2.6 Member function calls

Member functions are treated as normal function calls, but with a special
implicit argument for the this pointer. The address of the object on which
the member function is invoked is assigned to this variable inside the called
function using the ArgumentAssignment/ParamAssignment mechanism.

If a function call is virtual, there are call_edges from the call node to the
entry node of every potential implementation of the called member function.
Virtual calls to overloaded functions are not yet handled correctly (too many
potential implementations for the function are identified; thus analysis will
be safe, but less exact).

The use of an overloaded operator is treated as a member function call
to an appropriately named function.

2.7 Constructors and destructors

Constructor calls are handled like member function calls, the this pointer
being initialized either with the new expression or the address of the object
being constructed. The constructors of superclasses are called automatically,
if they are not explicitly called in the source code.

There is no support for copy constructors yet. Overloaded constructors
are not yet handled correctly.

Destructors are also called similarly to normal member functions, virtual
destructors are also supported. If a destructor was invoked because of a
delete statement, that statement appears in the CFG after the return from
the destructor. Destructors are called automatically for objects of class type
that go out of scope.

The two special statements

ConstructorCall (name:c_str, type:Type)
DestructorCall (name:c_str, type:Type)

are used to denote calls to constructors and destructors whose implementa-
tion is not known. The type referred to is the class type to which the called
constructor or destructor belongs.

