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Vorwort

Das Kolloquium iiber Programmiersprachen und Grundlagen der Programmierung
steht in der Tradition einer Reihe von Arbeitstagungen, die urspriinglich von den
Forschungsgruppen unter der Leitung von F.L. Bauer (TU Miinchen), K. Indermark
(RWTH Aachen) und H. Langmaack (CAU Kiel) initiiert wurde und inzwischen
ein breites Interesse gefunden hat. Anfang Oktober 2001 fand es zum elften Mal
statt und wurde vom Lehrstuhl fiir Informatik II der RWTH Aachen ausgerichtet.
Veranstaltungsort war das Hotel Paulushof in Simmerath—Rurberg am Rursee in der
Eifel.

Die folgende Liste gibt eine Ubersicht der vorherigen Tagungsorte sowie der je-
weiligen Veranstalter:

1980: Tannenfelde bei Neumiinster (Universitit Kiel)

1982: Altenahr (RWTH Aachen)

1985: Passau (Universitit Passau)

1987: Midlum auf Fohr (Universitit Kiel)

1989: Hirschegg im Kleinwalsertal (Universitidt Augsburg)

1992: Rothenberge bei Steinfurt (Universitdt Miinster)

1993: Barbarahiitte auf der Kreuzeckalm, bei Garmisch-Partenkirchen (Universitét
der Bundeswehr Miinchen)

1995: Alt-Reichenau im Bayerischen Wald (Universitiit Passau)

1997: Avendorf auf Fehmarn (Universitit Kiel)

1999: Kirchhundem—Heinsberg im Rothaargebirge (FernUniversitit Hagen)

In diesem Jahr trafen sich 44 Informatikerinnen und Informatiker von den Uni-
versititen Augsburg, Dortmund, Freiburg, Kiel, Koéln, Miinster, Ulm, der RWTH
Aachen, den Technischen Universitéiten Berlin, Dresden und Miinchen, der FernUni-
versitit Hagen, der Medizinischen Universitdt Liibeck und der Universitit der Bun-
deswehr Miinchen. Der vorliegende Bericht enthélt die Vortragsausarbeitungen der
Teilnehmer.

Der herzliche Dank der Organisatoren gebiihrt allen Vortragenden und Teilneh-
mern fiir ihre Beitrdge in Wort und Schrift. Frau Elke Ohlenforst und Herrn Arnd
Gehrmann sowie den iibrigen Mitarbeitern des Lehrstuhls fiir Informatik IT danken
wir fiir die Mithilfe bei der Planung und Durchfiihrung des Kolloquiums.

Wiéhrend der Veranstaltung hat sich dankenswerterweise Herr Prof. Peter Thie-
mann von der Universitéit Freiburg bereiterkldrt, das nichste Kolloquium im Jahr
2003 auszurichten.

Aachen, Klaus Indermark
Dezember 2001 Thomas Noll
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Untersuchungen von Algorithmen fiir transitive
Reduktionen und minimale Aquivalenzgraphen

Rudolf Berghammer, Thorsten Hoffmann und Christian Kasper

Institut fiir Informatik und Praktische Mathematik
Christian-Albrechts-Universitit zu Kiel
Olshausenstrafle 40, D-24098 Kiel

1 Einleitung

Viele Problemstellungen der Informatik lassen sich abstrahieren und mit Mitteln an-
derer Disziplinen wie beispielsweise der Graphentheorie 16sen. So konnen z.B. das
Finden von Abhingigkeiten in Datenbanken oder Inkonsistenzen in Ablaufplinen
durch geeignete Abstraktion auf einfache Weise als Erreichbarkeitsprobleme fiir ge-
richteten Graphen formuliert werden. Zu einem gerichteten Graphen g = (V| R)
mit Knotenmenge V und Pfeilrelation R kann diese Erreichbarkeitsinformation an
der reflexiv-transitiven Hiille R* abgelesen werden. Im folgenden werden wir viele
graphentheoretische Sachverhalte mit Hilfe von relationenalgebraischen Formeln be-
schreiben. Wir gehen daher davon aus, dafl der Leser mit den grundlegenden Opera-
tionen auf Relationen, wie Vereinigung (RUS), Durchschnitt (RN S), Negation (R),
Transposition (RT) und Produkt (RS) vertraut ist. Eine gute Einfiihrung in dieses
Themengebiet bietet das Buch [4]. Unser Ziel besteht nun darin, einen Teilgraphen
h = (V,S) von g zu finden, dessen Pfeilrelation S méglichst wenig Eintrige enthélt
und dessen reflexiv-transitive Hiille mit der von g iibereinstimmt. Auf diese Weise
enthilt h dieselbe Erreichbarkeitsinformation wie g, wobei jedoch weniger Platz zur
Speicherung von h benéstigt wird. Einen Teilgraphen h = (V, S) von g mit anzahlmi-
nimaler Pfeilrelation S, so dal R* = S* gilt, bezeichnet man als minimalen Aquiva-
lenzgraphen von g. Da die Berechnung eines solchen minimalen Aquivalenzgraphen
ein NP-hartes Problem ist, kbnnen wir nicht erwarten, einen effizienten Algorithmus
fiir die Losung dieses Problems zu finden. Stattdessen beschiftigen wir uns mit der
Approximation von minimalen Aquivalenzgraphen, indem wir Teilgraphen h = (V, S)
von g betrachten, so daf3 S eine inklusionsminimale Teilmenge von R mit der Eigen-
schaft R* = S* ist. Solche Teilgraphen bezeichnen wir als transitive Reduktionen von
g. Diese sind zwar im allgemeinen nicht eindeutig und auch nicht anzahlminimal,
lassen sich dafiir aber effizient berechnen, was wir im folgenden zeigen werden. Wir
stellen zunéichst in Abschnitt 2 ein generisches Minimierungsverfahren vor, das wir in
Abschnitt 3 durch geeignete Instantiierung zur Berechnung von transitiven Reduk-
tionen stark zusammenhéngender Graphen verwenden. Die Einschrinkung auf diese
Art von Graphen ist dadurch gerechtfertigt, daf} sich eine transitive Reduktion eines
beliebigen Graphen aus den transitiven Reduktionen der starken Zusammenhangs-
komponenten und des kreisfreien reduzierten Graphen, in dem jeder Knoten einer
starken Zusammenhangskomponente entspricht, zusammensetzen 148t, was in [3] ge-
zeigt wurde.
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2 Ein generisches Minimierungsverfahren

Die Berechnung einer transitiven Reduktion stellt einen Spezialfall eines allgemeinen
Minimierungsproblems dar, ndmlich zu einer Menge M, einem Préidikat P auf der
Potenzmenge 2™ und einem Element R dieser Potenzmenge eine inklusionsminimale
Teilmenge von R zu berechnen, die P erfiillt. Nachfolgend geben wir einen Algorith-
mus zur Loésung dieses allgemeineren Problems an, wobei wir voraussetzen, daf3 das
Pridikat P nach oben vererbend ist, d.h. fiir alle X,Y € 2M gilt: Aus X C Y und
P(X) folgt P(Y). Die Nachbedingung kann nun wie folgt formuliert werden, wobei
wir die Variable A dazu verwenden, das Resultat abzuspeichern:

post(R,A) <= P(A) AN ACRAVXe2':P(X)=X=A

Durch Generalisierung der Nachbedingung und Einfiihrung einer neuen Variable B
gelangt man zu folgender Invariante:

inv(R,A,B) <> P(A) N ACR A BCA AVzeA\B:-P(A\{z})

Setzen wir als Vorbedingung voraus, dafl R das Pridikat P erfiillt, so erhilt man
durch Programmentwicklung mit Hilfe der Invariantentechnik nachfolgendes while-
Programm, wobei durch die Operation elem(B) ein Element aus B ausgewihlt wird:

Minimum (R)
DECL S, 4, B, b
BEG A,B:=S5,8S;
WHILE B # () DO
b := elem(B);
IF P(A\ {b}) THEN A4, B := A\ {b}, B\ {b}
ELSE B := B\ {b} FI 0D
RETURN A
END.

Dieses Programm verwenden wir im né#chsten Abschnitt als Grundgeriist, um
transitive Reduktionen von stark zusammenhingenden Graphen zu berechnen.

3 Berechnung transitiver Reduktionen

Ziel dieses Abschnitts ist es, ein effizientes Programm zur Berechnung einer transi-
tiven Reduktion stark zusammenhingender Graphen vorzustellen. Dafiir setzen wir
fiir den Rest des Abschnitts einen stark zusammenhingender Graphen g = (V| R)
voraus, wobei der starke Zusammenhang durch die Formel R* = L beschrieben wird.
Das Pradikat P definieren wir nun auf der Menge aller homogenen Relationen auf
V durch P(X) = X* = L. Dieses Pridikat ist trivialerweise nach oben vererbend, so
dafl das Programm Minimum aus dem letzten Abschnitt mit dieser Instantiierung
eine transitive Reduktion von g berechnet. Die Laufzeit des Programms héingt im we-
sentlichen von zwei Faktoren ab. Zum einen von der Anzahl der Schleifendurchliufe
und zum anderen von der Effizienz der Pradikatauswertung innerhalb der Schleife.
Um die Anzahl der Schleifendurchliufe zu verringern, erscheint es sinnvoll, eine Vor-
berechnung durchzufiihren, so dafl A und B mit einer Relation S initialisiert werden,
die in R enthalten ist, ebenfalls S* = L erfiillt und weniger Eintrige als R enthiilt.
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Zu diesem Zweck fiihren wir den Begriff des gerichteten Baumes ein. Gegeben seien
eine homogene Relation 7" und ein Punkt r. Dann heifit T" ein gerichteter Baum mit
Wurzel r, falls /L C T*, TTT C | und T* C 1 gilt. Das nachfolgende Lemma zeigt,
wie man nun im Fall R* = L aus zwei in R bzw. R enthaltenen gerichteten Biumen
mit gleicher Wurzel eine Relation S gewinnen kann, die in R enthalten ist und S* =L
erfiillt.

Lemma 1. Sind T und Ty zwei gerichtete Biume mit gleicher Wyrzel r und gelten
Ty C R und Ty C R, so gelten auch T) U T»" C R und (T, U TQT) =L.

Initialisieren wir A und B mit einem solchen S so verringert sich die Anzahl der
Schleifendurchliufe von maximal |V |> auf hochstens 2 - [V| — 2.

Eine weitere Laufzeitverbesserung kann erreicht werden, indem wir das Pradikat
P durch ein anderes Pridikat Q ersetzen, das effizienter ausgewertet werden kann.
Wir fordern fiir @ die Aquivalenz P(A \ {b}) <= P(A) A Q(A,b). Setzen wir nun
Q(A,b) 2 b C (AN D)7, so lautet die obige Aquivalenz (ANDb)" = L« A* =
LAbC (AN b)". Da A* = L laut Invariante gilt, kénnen wir folglich in dem Kondi-
tional P(A \ {b}) durch Q(A,b) ersetzen. Auf diese Weise wird der Test auf starken
Zusammenhang durch einen Erreichbarkeitstest ersetzt, wodurch der Aufwand fiir
die Pridikatauswertung von O(|V']?) auf O(|V]) sinkt.

Insgesamt erhalten wir durch diese Modifikationen das nachfolgende relationale
Programm:

TransRed (R)
DECL S, A, B, b, r
BEG 7 := point(L);
S := Tree; (R,7) U TT‘€€2(RT,T')T;

A,B:=8S,S;
WHILE B # O DO
b := atom(B);

IFbC (AN Db)* THEN A,B:=ANb,BNb
ELSE B:= BN b FI 0D
RETURN A
END.

Die Operationen point bzw. atom wéihlen aus einem nicht leeren Vektor bzw.
einer nicht leeren Relation einen beliebigen Eintrag aus, und die Programme Tree;
und Tree, dienen der Berechnung der Bdume 77 und 75 aus Lemma 1. Wihlen wir
fiir diese Programme Standardalgorithmen wie Breiten- oder Tiefensuche, so betrégt
der Aufwand fiir die Vorberechnung O(]V|?). Durch diese Vorberechnung wird die
Schleife weniger als |V'| mal durchlaufen, und die Prédikatauswertung ist ebenfalls in
Laufzeit O(|V|) moglich, so daB sich dieses Programm in einer Programmiersprache
wie C oder Pascal insgesamt in Laufzeit O(|V|?) realisieren 148t.

Interessant fiir die Praxis sind transitive Reduktionen mit moglichst wenig Pfei-
len, da sie platzsparend gespeichert werden kénnen und dieselben Erreichbarkeitsin-
formationen beinhalten wie der urspriingliche Graph. Aufgrund der Vorberechnung
enthilt eine mit dem obigen Programm berechnete transitive Reduktion hochstens
2-|V| — 2 Pfeile und mindestens |V| Pfeile, was dann genau einem Hamiltonschen
Kreis entspricht. Durch Verwendung verschiedener Baumalgorithmen fiir Tree; und
Trees gelangt man zu sehr unterschiedlichen Ergebnissen, wie die nachfolgende Grafik
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zeigt. Dabei haben wir zufillig erzeugte Graphen mit 500 Knoten untersucht und die
Pfeildichte variiert. Fiir die Baumalgorithmen haben wir Breiten- und Tiefensuche in
den vier moglichen Kombinationen verwendet, wobei folgendes Diagramm entstan-
den ist, bei dem die Pfeildichte auf der x-Achse aufgetragen ist, und die Anzahl der
Knoten den Markierungen der y-Achse entspricht:

1000
900 -
800 -7
700 -7
600 -

SOO_T . .I .'D.I n .In.' -ij . -I -Inol o oln .|n.'.n|

10 20 30 40 50 60 70 80 90 100

- ——  DFS/DFS « + + DFS/BFS
——  BFS/BFS s o o BFS/DFS

Dieses Ergebnis mag auf den ersten Blick iiberraschend erscheinen, 148t sich aber
leicht erkldren. Durch die Vorberechnung mit den beiden Baumalgorithmen erhalten
wir zunéichst durch Tree; (R,r) Pfade von der Wurzel r zu jedem iibrigen Knoten von

g. Mit Hilfe von TreeQ(RT,r)T werden Pfade von jedem von r verschiedenen Kno-
ten zu r berechnet. Insgesamt besteht S folglich aus einer Vereinigung von Kreisen.
Verwenden wir fiir die Vorberechnung zweimal die Breitensuche, so besteht S aus
vielen kleinen Kreisen, bei denen mit zunehmender Dichte des Graphen g weniger
Pfeile aus S entfernt werden konnen, ohne den starken Zusammenhang zu verlieren,
was zu dem im Diagramm sichtbaren schlechten Ergebnis fiihrt. Durch zweimaliges
Anwenden der Tiefensuche gelangt man bei geringer Dichte noch zu grofien Krei-
sen und somit zu recht guten Ergebnissen, aber bei zunehmender Dichte besitzen
Ty und 7> mehr gemeinsame Knoten, was die Kreise wiederum verkleinert und so
das Ergebnis verschlechtert. Sehr gute Resultate kénnen mit einer Kombination aus
Breiten- und Tiefensuche erzielt werden, unabhingig von der Dichte des Graphen.
Dies liegt darin begriindet, dafl durch die Tiefensuche lange Pfade von der Wurzel r
zu jedem anderen Knoten von g berechnet werden, wihrend durch die Breitensuche
von diesen Knoten aus der Kreis zur Wurzel mit sehr wenig Pfeilen geschlossen wird.
Insgesamt lassen sich auf diese Weise in der Praxis Ergebnisse berechnen, die sehr
nahe am Optimum liegen, auch wenn dieses Programm nur eine theoretische Giite
von 2 hat, d.h. wenn eine optimale Losung (ein minimaler Aquivalenzgraph) mit n
Pfeilen exisiert, konnen wir eine Approximation berechnen, die maximal 2 -n — 2
Pfeile enthilt.

In der Literatur (vgl. [2]) findet man einen weiteren Algorithmus zur Approxima-
tion eines minimalen Aquivalenzgraphen, der in nahezu linearer Laufzeit, bezogen
auf die Pfeilanzahl, eine solche Approximation mit Giite 1,75 berechnet. Allerdings
haben praktische Tests gezeigt, dafl die berechneten Ergebnisse im allgemeinen kei-
ne transitiven Reduktionen sind und anderthalb mal mehr Pfeile enthalten als eine
optimale Losung. Um nun die bessere theoretische Giite dieses Verfahrens und die
guten praktischen Resultate von unserem Algorithmus auszunutzen, bietet sich eine
Kombination beider Verfahren an. Verwenden wir diesen Algorithmus fiir die Vor-
berechnung in unserem Programm, so verbessern wir die Giite von 2 auf 1,75 und
behalten gleichzeitig die guten praktischen Ergebnisse bei.
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4 Zusammenfassung

In diesem Artikel haben wir ein generisches Programm zur Berechnung inklusions-
minimaler Teilmengen vorgestellt. Durch geeignete Instantiierung kann dieses Pro-
gramm dazu verwendet werden, auf einfache Weise transitive Reduktionen stark zu-
sammenhingender Graphen zu berechnen. Zu diesem Zweck werden in einer Vorbere-
chungsphase zwei Baumalgorithmen verwendet, bei der die Kombination aus Tiefen-
und Breitensuche zu sehr guten praktischen Ergebnissen fiihrt, die im Durchschnitt
nur um wenige Pfeile von einer optimalen Losung abweichen. Allerdings ist die theo-
retische Giite des Verfahrens 2, kann aber durch eine neue Vorberechnungsphase, in
der ein Programm (siehe [2]) zur Approximation eines minimalen Aquivalenzgraphen
verwendet, wird, auf 1,75 verringert werden.
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Abstract We describe the refinement of data structures using the Liibeck Transformation
System as a tool for manipulating algebraic specifications. Apart from two simple refine-
ment steps, we present algebraic implementations as a complex refinement step based on
abstraction and representation functions. We provide sufficient syntactic criteria ensuring
the soundness of the transformations. We describe the user interaction within the life cycle
of a specification in the transformation system.

1 Introduction

Formal methods offer a secure development process for software and hardware sys-
tems. In the transformational approach [7] a behavioural specification is systemati-
cally refined to an efficient implementation following sound transformation rules. The
derived program is correct by construction without a posteriori verification. Since the
formal derivation turns out to be a complex task, transformation systems [2] assist
the programmer with various degrees of interaction. As standard services, they of-
fer the safe manipulation of specifications following elementary transformation rules.
Advanced transformation systems also support larger transformation steps where the
user interaction is restricted to the essential design decisions. Chaining wide-spanned
transformations results in compact derivations with a high degree of mechanization.

In this paper, we describe the refinement of data structures [3,8] as supported by
the Liibeck Transformation System. The system analyses and transforms higher or-
der equational specifications using various logic and algebraic rules. Apart from two
simple refinement steps, we study the tool support for algebraic implementations as a
complex refinement step. For the semantic refinement relation, we provide sufficient
syntactic criteria which can be checked by analysis algorithms. The algebraic imple-
mentation is described using an abstraction and a representation function. Given an
algorithmic description for them, the system attempts to synthesize the functions
operating on the refined sort. The application conditions ensuring the soundness of
the refinement step are inserted into the theory as proof obligations. The user inter-
action for performing the refinement steps arises from the life cycle a specification
undergoes in the transformation system.

2 Theoretical Background

As specification language we use algebraic specifications with loose constructor gen-
erated semantics [13]. The theory is extended to higher order sorts and higher order
terms for expressing advanced concepts of functional programming. The approach,
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similar to [10], additionally imposes a generation constraint for sorts to support
the constructor based definition of data types. We also discriminate basic sorts and
derived sorts.

The refinement of a specification enriches its signature while retaining the prop-
erties of its models. The refinement relation between specifications requires that all
models of the original specification can be retrieved as subalgebras from the models of
the refined specification. This notion of refinement generalizes the usual model inclu-
sion to capture flexible transformations between data structures. Simple refinement
steps are, among others, the enrichment of the signature, the addition of axioms,
term rewriting, and induction.

3 The Liibeck Transformation System

The Liibeck Transformation System LTS supports the stepwise refinement of alge-
braic specifications [6] . The derivations head for algorithmic specifications which can
be compiled into SML code. This section presents an overview of LTS surveying the
life cycle of a specification and the refinement steps.

3.1 Lifecycle of a Specification

Specifications exhibit a characteristic life cycle when they are transformed. After a
specification has been loaded, it resides in the system and is ready for transformation
and code generation; its life cycle is illustrated in Fig. 1.

Analysis  After parsing and context checking, the specification is analysed in
order to inform the user about desirable or critical properties. LTS checks for each
function symbol whether the defining axioms are algorithmic and complete. Orient-
ing the equations from left to right, LTS tests confluence and termination of the
resulting rewrite system. The system investigates further properties of the specifica-
tion that are important for the subsequent development or its compilation into SML
code. These properties assist the programmer in making future design decisions or
in revising previous transformation steps.

Interaction The user starts a refinement process by selecting one of the loaded
specifications as the active specification. The system enters the specification mode
which allows the refinement of entire specifications. LTS also offers a fine tuning
mode for transforming single axioms. The start axiom is a logical consequence of the
derived axioms; the entire specification is refined by replacing the start axiom by
the derived axioms. After each refinement step, the specification is analysed anew to
update its properties.

The user finishes the transformation process of a specification by inserting the re-
fined version into the collection of loaded specifications replacing the original version.
Algorithmic specifications can be compiled into SML code.

3.2 Transformations

The user refines a specification by invoking sound transformations of different gran-
ularity.

In the specification mode, the transformations concern entire specifications. El-
ementary steps are, among others, the extension of the signature and the addition
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Figure 1. Life cycle of a specification

of axioms; dropping an axiom causes a proof obligation. Complex steps with wide-
spanning transformations effect major changes to the entire specification. Here LTS
supports the fold/unfold paradigm of recursive functions and the fusion for catamor-
phisms [5].

In the fine tuning mode, the transformations refer to single axioms; elementary
steps comprise rewriting, induction, generalization and simplification.

4 Refinement of Data Structures

In this section we survey the basic requirements for the refinement of data structures
and study the tool support for various refinement transformations.

4.1 Basic Requirements

When refining a data structure, we realise an abstract sort by a derived sort. The
refinement embeds the carrier set of the abstract sort into the carrier set of the
derived sort. The transformation must not change the behaviour of the correspond-
ing operations operating on the abstract and derived sort. Therefore we constrain
the embedding by a “subalgebra condition” claiming that all models of the refined
specification possess subalgebras in the models of the original specification.

The embedding can be described by a representation function mapping each
element of the abstract carrier to an element of the derived carrier. Vice versa, an
abstraction function maps each element of the derived carrier to an element of the
abstract carrier. The commuting diagram in Fig. 2 shows the abstract sort sc, the
derived sort se, the representation function repr, the abstraction function abstr,
and an inner operation f,;q on the abstract sort sc. The induced operation f on the
derived sort must validate the equation abstr o f = f,;4 o abstr.

4.2 Enriching the Set of Constructors

The signature of a specification can be enriched by adding a function symbol to
the familiy of constructors. The constructors generate the carriers of the models.
So an enrichment of the constructor family will enlarge the carriers of the original
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Figure 2. Algebraic implementation

specification. This embedding is a sound refinement step if it validates the subalgebra
condition. LTS demands that all non-constructors leading into the refined sort are
completely defined by the axioms of the specification. This condition can be checked
by the analysis algorithms of the system using suffcient syntactical criteria.

4.3 Reducing the Set of Constructors

The signature of a specification can be reduced by removing a function symbol from
the family of constructors. In general, this will reduce the carriers of the original
specification. Therefore this transformation does in general not form an embedding
as imposed by the basic requirements. If the generation of the carriers does not
depend on the dropped constructor symbol, the transformation is correct. Again this
condition can by checked by the analysis algorithms of LTS using suffcient syntactical
criteria.

4.4 Algebraic Implementations

A quite general approach to the refinement of data structures is described by the
principle of algebraic implementation. In this refinement step, a constructor sort
of the specification is embedded into a derived sort, and all affected operations are
transformed correspondingly. In the sequel, we describe the transformations realising
this complex refinement step.

Modifications and Enrichments For simplicity, we assume in this paragraph that
exactly one function symbol f operates on the constructor sort sc. To avoid name
clashes, the signature is changed renaming the constructor sort sc into sc,;q and
the operation f into f,;;. Then the signature is enriched by the function symbol
f operating on the derived sort, and the specification is extended by the axiom
(abstrorepr)(z) = x to gain an injective embedding. The refined operation is loosely
defined by the equation abstr o f = f,14 o abstr . The subalgebra property is enforced
by the equation f o repr = repr o fuq -

The procedure for an algebraic implementation in LTS comprises five major user
interactions.

Preparation First the user may enrich the signature or the axioms of the spec-
ification in order to obtain all relevant constituents and properties needed for the
embedding.

Generating the New Specification After invoking the command for an algebraic
implementation, LTS automatically renames the active specification, enlarges the
signature and inserts the required axioms. These modifications establish a sound
refinement step, since the application conditions are explicitly imposed as axioms.
The representation and abstraction functions are just inserted into the signature
postponing their axiomatic definition.
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Putting the Embedding in Concrete Form The user can now insert algorithmic
definitions of the representation and the abstraction functions to fix the concrete
embedding.

Automatic Derivation of the Operations The system provides a strategy for
automatically deriving algorithmic definitions for the new operations using the algo-
rithmic definitions of the representation and abstraction functions. The strategy first
performs a complete case analysis on the argument of the abstraction function. Then
it attempts to rewrite the right-hand side into a term with the abstraction function
as outermost function symbol.

Manual Completion When the strategy fails, the user can manually complete
the derivation introducing additional design decisions or proving suitable proposi-
tions. Moreover, the equations arising from the subalgebra condition constitute proof
obligations to be handled by the user.

5 Conclusion

In the meanwhile, the computer aided synthesis of programs from specifications has
a long history. The transformation system [4] supported fold and unfold transforma-
tions using first order equations for recursively defined functions. The CIP system [1]
dealt with the wide-spectrum language CIP-L supporting a large variety of transfor-
mations. A more generic approach is implemented by the TAS system [9] based on
the Isabelle theorem prover [11]. The sophisticated user interface follows the principle
of direct manipulation. The KIDS system [12] mechanises the synthesis of software
using a knowledge base of algorithmic design principles.

The Liibeck Transformation System LTS was designed at the Institute for Soft-
ware Technology and Programming Languages since 1998 and is still under develop-
ment. The system is completely written in SML using the top-level environment of
Moscow ML as user interface. The system combines the syntactic analysis of specifi-
cations with a transformation engine to provide wide-spanning transformation steps
like data structure refinements or fusion. This leads to compact derivations showing
the essential design decisions. Future work will complete the prototype implementa-
tion and proceed with a JAVA front-end as graphical user interface.
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Zufillig erzeugte BDDs: Algorithmen und
Anwendungen

Ulf Milanese

Institut fiir Informatik und Praktische Mathematik,
Christian- Albrechts-Universitit zu Kiel

Zusammenfassung Wir skizzieren, wie endliche Relationen mit Hilfe von reduzierten,
geordneten bindren Entscheidungsdiagrammen (ROBDDs) représentiert werden koénnen.
Danach présentieren wir zwei Algorithmen zur Erzeugung zufélliger ROBDDs sowie Kom-
plexititsabschatzungen und Verfeinerungen fiir diese Algorithmen. Abschliefend geben wir
zwei Beispielanwendungen fiir die Anwendung zuféllig erzeugter ROBDDs an.

1 DMotivation

Reduzierte, geordnete binédre Entscheidungsdiagramme (Reduced Ordered Binary De-
cision Diagrams, kurz ROBDDs) finden seit Mitte der 80er Jahre verstirkt An-
wendungen in der Informatik [3]. Beispielsweise werden in der Hardwareverifikati-
on Schaltungen durch Zustandsiibergangsrelationen représentiert, die aufgrund ihrer
GroBe intern nur als ROBDDs gespeichert werden kénnen [4]. Dasselbe gilt fiir auto-
matentheoretische Anwendungen, die in der Lage sind, mit sehr groflen Automaten
zu rechnen [8]. Fiir diese Anwendungen ist nur eine relativ kleine Menge von rela-
tionalen Operationen implementiert worden. So werden fiir die Hardwareverifikation
aufler der Darstellung einer Menge von Start- und Fehlerzustinden nur noch die
Komposition eines Vektors mit einer Relation, der Schnitt zweier Vektoren und der
Test auf Leerheit benotigt.

Das Programm RELVIEW [1] wurde mit der Absicht entwickelt, die Operatio-
nen der Relationenalgebra fiir beliebige Relationen zur Verfiigung zu stellen, damit
relationale Programme iiber der Datenstruktur der Relationen ausgewertet werden
konnen. Dabei werden im aktuellen RELVIEW-System Relationen intern als ROBDDs
gespeichert [9]. Als Beispiele fiir relationale Programme seien hier unter anderem
Aquivalenztest, Bisimulation und Zustandsreduzierung von Transitionsrelationssy-
stemen genannt [2].

Die Erstellung von relationalen Programmen erfordert neben der iiblichen Pro-
grammverifikation (auf die in dieser Arbeit nicht eingegangen wird) auch die Durch-
fiihrung von Testlaufen. Dafiir werden zuféllige Testrelationen benétigt. Leider be-
stehen ROBDDs aus stark vernetzten Strukturen, die nicht zufillig zusammengesetzt
werden konnen. Die Erzeugung einer zufilligen Relation mit einer anderen Daten-
struktur und die anschlieBende Umwandlung in ein ROBDD haben sich aber in Tests
als zu zeitaufwéndig erwiesen. Aus diesem Grund war es erforderlich, Algorithmen
fiir die zufillige Erzeugung von ROBDDs zu entwickeln.

2 Bindre Entscheidungsdiagramme

In dieser Arbeit ist nicht der Platz vorhanden, um eine umfassende Ubersicht iiber
BDDs zu geben. Es geniigt fiir das weitere Verstédndnis zu wissen, dass ROBDDs
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zur Représentation von Booleschen Funktionen benutzt werden. Durch die Verwen-
dung einer Variablenordnung und der Anwendung von Reduktionsregeln ist diese
Datenstruktur eine sehr kompakte und speicherplatzsparende Darstellung fiir solche
Funktionen. Die Booleschen Konstanten TRUE und FALSE werden in einer graphi-
schen Darstellung von ROBDDs als Knoten mit Beschriftungen 1 und 0 dargestellt.
Fiir weitere Details siehe [10].

Die Grofle von zufiilligen ROBDDs gibt C. Gropl an [5]. In seiner Arbeit werden
aber keine Verfahren zur effizienten Erzeugung angegeben, sondern nur Erwartungs-
werte fiir die Grofle solcher Diagramme genannt.

3 Darstellung einer Relation als ROBDD

Es wird vorausgesetzt, dass der Leser mit den Grundbegriffen der Relationenalgebra
vertraut ist, wie sie z.B. in [11] angegeben werden. Eine ausfiihrliche Beschreibung,
wie Relationen als ROBDDs représentiert werden kénnen, findet sich in [9]. Hier soll
dies an einem kleinen Beispiel illustriert werden.

Wir betrachten zwei Mengen X = {a,b,c,d} und Y = {r, s}. Eine Relation R :
X <Y, R={(a,r),(c,r),(c,s)} wird in RELVIEW graphisch wie folgt dargestellt:

- ®» O
a 00
b 01
c 10
d 11

Im rechten Bild sind die Elemente des Vor- und Nachbereichs von R durch binére
Kodierungen ersetzt worden.

Die Charakteristische Funktion xg : X x Y — B von R und binire Kodierungen
c1 : X - B2 und ¢ : Y — B liefern eine Boolesche Funktion fg : B? x B — B,
so dass gilt: fr(z1,72,y1) = xr(c; (z1,72),¢5 (y1)). Damit kann jede erfiillende
Belegung der Funktion fr durch ein Element der Relation R interpretiert werden,
denn es ergibt sich fr(z1,z2,y1) = (TTAT2AYD) V (21 AT2ATL) V (21 AT2 Ay1).

Wenn als Variablenordnung z; < z3 < y; gewéhlt wird, erhalten wir das folgende
ROBDD:

o]

Die Repriisentation von Relationen auf diese Weise bedingt, dass ein ROBDD
nicht eindeutig eine einzige Relation darstellt. Aulerdem liefert diese Konstruktion
im allgemeinen nur partielle Boolesche Funktionen, falls Vor- oder Nachbereich ei-
ner Relation nicht exakt als Méachtigkeiten Zweierpotenzen besitzen. Diese Probleme



Zufillig erzeugte BDDs: Algorithmen und Anwendungen 15

konnten wir 16sen, indem die Dimensionen der représentierten Relation explizit ge-
speichert werden und Undefiniertheiten der Funktionen durch Nichterfiillung ersetzt
werden. Diese Vorgehensweisen werden in [9] ausfiihrlich behandelt.

4 Algorithmen zur Erzeugung

Im folgenden gehen wir davon aus, dass zur Kodierung des Vor- und Nachbereichs
einer zu erzeugenden Relation n Variablen bendtigt werden. Die Wahrscheinlichkeit,
dass ein Eintrag in der Relation vorhanden ist, soll p € [0...1] betragen.

Fiir die Erzeugung eines zufilligen ROBDDs bieten sich zwei Vorgehensweisen
an:

1. Es werden p x 2" Belegungen zufillig gewiirfelt und durch V verkniipft.
Falls p < 0,5 ist, werden die erfiillenden Belegungen erzeugt. Ansonsten werden
die nicht-erfiillenden Belegungen mit der Wahrscheinlichkeit 1 — p generiert und
mittels Negation und A verkniipft.

2. Fiir jede mogliche Belegung wird mit Wahrscheinlichkeit p entschieden, ob die
Belegung zu TRUE ausgewertet wird.

Bei der ersten Vorgehensweise konnen wir annehmen, dass nur neue Belegungen
gewiirfelt werden. Falls ndmlich zu der gegebenen Variablenordnung eine Variable z;
existiert, deren Belegung zum ROBDD-Knoten 1 fiihrt, wird diese Variable in der
Belegung negiert. Auflerdem bendtige die Erzeugung einer Belegung O(n) Rechen-
schritte.

Das ROBDD, das eine Belegung reprisentiert, enthilt genau n + 1 Knoten (n
Variablen und eine Konstante). Fiir die Operationen V (bzw. A) wird von der Wurzel
bis zur Konstanten genau ein Pfad im Zwischenresultat verfolgt, von der Konstanten
bis zur Wurzel werden hdchstens n neue Knoten erzeugt und eingebunden. Also ist
der Rechenaufwand fiir das Einfiigen einer Belegung O(n). Damit ergibt sich als
Gesamtaufwand fiir die Erzeugung der zufélligen Funktion O(n % p’ x 2"), wobei p’
das Minimum von p und 1 — p sei.

Die Idee bei der zweiten Methode zur Erzeugung eines zufélligen ROBDDs ist die
Generierung von 2" konstanten ROBDD-Knoten und deren rekursive Verkniipfung.

Falls im rekursiven Aufruf zwei ROBDDs identisch sind, kommt eine Reduktions-
regel zur Anwendung, ansonsten wird ein neuer Knoten mit nichsthéherem Index
erzeugt. Die Generierung eines konstanten Knotens benotigt eine Rechenzeit, die in
O(1) liegt. Die Verkniipfung mit Hilfe eines IFTHENELSE-Operators geschieht eben-
falls in konstanter Zeit. Damit liegt der Gesamtaufwand zur Erzeugung des zufilligen
ROBDDS in O(2").

Es ist ziemlich einfach zu entscheiden, welches Verfahren im Einzelfall anzuwen-
den ist. Bezeichne p' das Minimum von p und 1—p. Dann gilt, dass das erste Verfahren
dem zweiten vorzuziehen ist, falls p' *n < 1 ist, d.h. p’' < %

Bezeichne Bfw die Menge der erfiillenden Belegungen des Resultat-ROBDDs,
welches durch die i-te Methode erzeugt wird. Dann gilt |B,, | = 2"+xpund E(|B;, ,|) =
2" x p. Dies bedeutet, dass wir bei der ersten Vorgehensweise eine exakte Aussage
iiber die Anzahl der erfiillenden Belegungen treffen kénnen, wihrend wir bei der
zweiten Methode nur einen Erwartungswert angeben kénnen.

Fiir den Fall, dass die Grofle des Vor- oder Nachbereichs der zu erzeugenden Rela-
tion keine Zweierpotenz ist, miissen diese beiden Algorithmen verfeinert werden. Das
erste Verfahren lisst sich leicht auf den Definitionsbereich der Relation einschranken.
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Bei der zweiten Methode wird aber ein ROBDD erzeugt, das mit hoher Wahr-
scheinlichkeit erfiillende Belegungen enthilt, die undefinierte Eintrige in der Relati-
on représentieren. Um dies zu verhindern, muss das zweite Verfahren dahingehend
verdndert werden, dass es ohne Rekursion auskommt. Dies wurde von uns realisiert,
indem die Relationsgrofe als Liste von Einsen und Nullen als zusétzliche Parame-
ter angegeben wird. Falls die Bereichsgréflen Zweierpotenzen sind, dndert sich nichts
am Verfahren. Ansonsten werden beim Erreichen des Grenzwertes in dem Zwischen-
ergebnis alle noch nicht vervollstindigten ROBDD-Knoten mit der Konstanten 0
vereinigt.

Die Kodierung der Relationsgrofie konnte mit einer Laufzeit in O(n) implemen-
tiert werden. Die Uberpriifung, ob die Miichtigkeit des Vor- oder Nachbereich eine
Zweierpotenz ist, kann in O(n) erfolgen. Der Test auf Erreichung dieser Werte konnte
bitweise realisiert werden und liegt insgesamt in O(n). Damit ergibt sich trotz der
Verfeinerung weiterhin ein Gesamtaufwand, der unverdndert in O(2") liegt.

5 Anwendungen

Ein Anwendungsgebiet fiir Relationen, die durch zuféllige ROBDDs représentiert
werden, ist das Testen von Invarianten. Dabei liege ein (z.B. relationales) Programm
vor. Fiir den nétigen Korrektheitsbeweis wird eine Invariante vermutet, deren Giiltig-
keit nicht offensichtlich ist. Bevor nun Aufwand in den Beweis dieser Invariante ge-
steckt wird, kann diese zuerst an einer gewissen Zahl von Beispielrelationen getestet
werden. Falls ein Test mifllingt, muf} keine Arbeit in den Beweis gesteckt werden.

Ein Beispiel fiir diese Arbeitsweise findet sich in [2]. Die gefundene (und bewie-
sene) Invariante hat dort den Korrektheitsbeweis erheblich verkiirzt.

Eine weitere Anwendung ist die automatische Generierung von Testgraphen.
Graphen kénnen als homogene (quadratische) Relationen dargestellt werden. Seien
G = (V,E)und R = (V, E') zwei Graphen mit E' C E. R heifit transitive Redukti-
on von G, falls gilt R* = G* und VE" C E' : (V,E")* # R*. Da die Berechnung einer
Losung fiir dieses Problem N P-vollstéindig ist, werden fiir viele Anwendungsbereiche
Ann#herungen berechnet. Wenn zwei Approximations-Algorithmen zur Berechnung
einer transitiven Reduktion vorliegen, stellt sich die Frage, welcher Algorithmus im
allgemeinen schneller ist oder kleinere Losungen als Ergebnis liefert. Diese Algo-
rithmen koénnen an einer reprisentativen Anzahl von Beispielgraphen getestet wer-
den. Dies ermoglicht den Vergleich der Anzahl der Kanten in den Losungen und der
benotigten Rechenzeiten. So konnte z.B. Kasper in [6] nachweisen, dass der Algorith-
mus zur Berechnung einer transitiven Reduktion von Simon [7] aus dem Jahre 1990
fehlerhaft ist.
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1 Introduction

The use of computer based systems for safety-critical applications requires high de-
pendability of the software components. In particular, it justifies and demands the
verification of programs typically written in high-level programming languages. Cor-
rect program execution, however, crucially depends on the correctness of the binary
machine code executable, and therefore, on the correctness of system software, espe-
cially compilers. As already noted in 1986 by Chirica and Martin [2], full compiler cor-
rectness comprises both the correctness of the compiling specification (with respect
to the semantics of the languages involved) as well as the correct implementation of
the specification.

Verifiz [6,9] is a joint German research effort of groups at the universities Karl-
sruhe, Kiel, and Ulm. The project aims at developing innovative methods for con-
structing provably correct compilers which generate efficient code for realistic, practi-
cally relevant programming languages. These realistic compilers are to be constructed
using approved development techniques. In particular, even standard unverified com-
piler generation tools (such as Lex or Yacc) may be used, the correctness of the gen-
erated code being verified at compile time using verified program checkers [7]. Verifiz
assumes hardware to behave correctly as described in the instruction manuals.

In order not to have to write the verified parts of the compiler and checkers
directly in machine code, a fully verified and correctly implemented initial compiler
is required, for which efficiency of the produced code is not a priority. The initial
correct compiler to be constructed in this project transforms ComLisp programs into
binary Transputer code. ComLisp is an imperative proper subset of ANSI-Common
Lisp and serves both as a source and implementation language for the compiler. The
construction process of the initial compiler consists of the following steps:

e define syntax and semantics of appropriate intermediate languages.

e define the compiling specification, a relation between source and target language
programs and prove (with respect to the language semantics) its correctness
according to a suitable correctness criterion.

e construct a correct compiler implementation in the source language itself (a
transformational constructive approach is applied which builds a correct im-
plementation from the specification by stepwise applying correctness-preserving
development steps [5]).

* This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) under
project “Verifiz”.
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e use an existing (unverified) implementation of the source language (here: some
arbitrary Common Lisp compiler) to execute the program. Apply the program
to itself and bootstrap a compiler executable. Check syntactically, that the ex-
ecutable code has been generated according to the compiling specification. For
this last step, a realistic technique for low level compiler verification has been
developed which is based on rigorous a posteriori syntactic code inspection [8,11].
This closes the gap between high-level implementation and executable code.

The size and complexity of the verification task in constructing a correct compiler is
immense. In order to manage it, suitable mechanized support for both specification
and verification is necessary. We have chosen the PVS specification and verifica-
tion system [16] to support the verification of the compiling specification and the
construction process of a compiler implementation in the source language.

In this extended abstract we briefly sketch the mechanical verification of the
compiling specification of the first compilation phase from ComLisp to the stack-
intermediate language SIL, the first of a series of intermediate languages used to
compile ComLisp programs into binary Transputer machine code:

ComLisp — SIL — C®* — TASM — TC

For a detailed description of the formalization and verification of the first compilation
phase consult [4].

2 ComlLisp and SIL

A ComlLisp program consists of a list of global variables, a list of possibly mutual
recursive function definitions, and a main form. ComULisp forms (expressions) include
the abort form, s-expression constants, variables, assignments, sequential composi-
tion (progn), conditional, while loop, call of user defined functions, call of built-in
unary (uwop) and binary (bop) ComLisp operators, local let-blocks, listx operator
(constructing a s-expression list from its evaluated arguments), case-instruction, and
instructions for reading from the input sequence and writing to the output. The Com-
Lisp operators include the standard operators for lists (e.g. length), type predicates
for the different kinds of s-expressions, and the standard arithmetic operations (e.g.
+, %, floor). The only available datatype is the type of s-expressions which are binary
trees built with constructor “cons”, where the leaves are either integers, characters,
strings, or symbols. The abstract syntax of ComLisp is given as follows:

P u= Ti,..., Tk f1,-.., foje

f o= h(m,...,zm) e

e u= abort|c|xz|x:=e|progn(er,...,en) | if(e1,ea, e3) | while(er,es) |
call(h,eq,...,e,) | uop(e) | bop(er,eq2) | let(xy =e1,...,2, = en;e) |
listx(eq,...,en) | cond(pr — e1,...,pn — €n) |

read_char | peek_char | print_char(e)

The static semantics of ComLisp programs (dealing, among other things, with the
declaration of variables), function definitions, and forms is specified by means of
several well-formedness predicates.
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For the intermediate languages occurring in the different compilation phases of
the ComLisp to Transputer compiler, a uniform relational semantics description has
been chosen. The (dynamic) semantics of ComLisp is defined in a structural op-
erational way by a set of inductive rules for the different ComLisp forms (big-step
semantics or evaluation semantics). A ComLisp state is a triple consisting of an (in-
finite) input sequence (stream) of characters, an output list of characters, and the
variable state which is a mapping from identifiers to values (s-expressions). ComULisp
forms are expressions with side-effects, that is, they denote state transformers trans-
forming states to pairs of result value and result state. The semantics of a ComLisp
program is given by the input/output behavior of the program defined by a relation
Piemey, (p)(is, 0l) between input streams is and output lists ol.

SIL, the stack intermediate language, is a language with parameterless procedures
and s-expressions as available datatype. Programs operate on a runtime stack with
frame-pointer relative addresses. A SIL program consists of a list of parameterless
procedure declarations and a main statement. There are no variables, only memory
locations and the machine has statements for copying values from the global to the
local memory and vice versa. For example, copy(i,j) copies the content at stack
relative position ¢ to relative position j.

p = fla"'af’n;s
f == h+s
s u= abort | copyc(c,i) | copy(i,j) | gecopy(g,i) | copyg(g,i) |

itef (i, s1,52) | sq(s1,...,8n) | feall(h,i) | wop(i) | bop(i) |
while(i, s1, $2) | read_char (i) | peek_char(i) | print_char(i) | listx(n,7)

SIL statements denote state transformers, where a SIL state consists of the input
stream, the output list, the global memory (a list of s-expressions), and the local
memory (consisting of the frame pointer base : Nat and the stack, a function from
natural numbers to s-expressions). As for ComLisp, the semantics of a SIL program
is its I/O behavior (predicate Psemey, (p)(i8,0l)).

3 Compiling ComLisp to SIL

The compilation from ComLisp to SIL generates code according to the stack principle
and translates parameter passing to statements which access the data stack. For a
given expression e, a sequence of SIL instructions is generated that computes its value
and stores it at the top of the stack (relative position k in the current frame). The
parameters z1,...,T, of a function are stored at the bottom of the current frame
(at relative positions 0,...,n —1). A SIL function call feall(h,i) increases the frame
pointer base by ¢ which is reset to its old value after the call and local variables
introduced by let are represented within the current frame. For each syntactical
ComLisp category, a compiling function is specified (Cprog(p) denotes the compilation
function for programs).

4 Correctness of the Compilation Process

The notion of correctness used in Verifiz is the preservation of the observable behav-
ior up to resource limitations. In our case correctness of the compilation process is
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stated as follows: for any well-formed ComLisp program p, whenever the semantics
of the compiled program is defined for some input stream is and output list ol, this
is also the case for p for the same is and ol:

Theorem 1 (Correctness of Program Compilation).
Vp, iS7 Ol' wfprogram (p) = (PsemSIL (CprOg (p))(zs)(ol) = PsemCL (p) (7"9) (Ol))

Unfolding Piemgy, and Psemc, , the semantics of forms and corresponding SIL state-
ments have to be compared. In particular, this requires relating source and target
language states. ComLisp forms denote state transformers transforming a state into
a result value and a result state (if defined) o —. (v,0'). On the other hand, SIL
statements denote ordinary state transformers s —, s’. Two relations are required:
one relation p, relates ComLisp input states o with SIL states s, while the other
relation poyt relates ComLisp output states (v, o’) with SIL states s’. The main obli-
gation therefore is to prove the correctness property for forms (illustrated in Figure
1) which includes additional state invariants for the source and target level (omitted
here).

statecy, D o —re » (v,0') € SEzpr x statecy,
Pin Q Pout
—s

statesir, 3 s - s € statest,

Figure 1. Correctness property for the compilation of ComLisp forms

5 PVS Formalization and Verification

The specification language of the PVS verification system is based on classical higher-
order logic with a rich type system including dependent types. In addition, the PVS
system provides support tools and an interactive sequent-calculus based proof checker
that has a reasonable amount of theorem proving capabilities. A strategy language
enables to combine atomic inference steps into more powerful proof strategies allow-
ing to define reusable proof methods.

Abstract syntax, static and dynamic semantics of the languages, the compiling
functions and the compilation theorems have to be formalized. For abstract syntax,
the PVS abstract data type (ADT) construct is used. For the dynamic semantics, a
set of rules is represented as an inductive PVS relation which combines all the rules
in one single definition. The main obligation to prove is the correctness property for
forms which is proved by well-founded induction using a specific termination measure.
To suitably manage this proof, for each kind of form a separate compilation theorem
is introduced. Although strategies for parts of the proofs have been developed, the
number of manual steps is quite high and shows that this verification task is by no
means trivial. All the proofs have been completely accomplished using PVS.

It is hard to give an estimation of the amount of work invested in the final
verification, since we started the verification on a smaller subset of ComLisp in order
to experiment with different styles of semantics and find the necessary invariants, and
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then incrementally extended this subset and tried to rerun and adapt the already
accomplished proofs. A coarse estimation of the total formalization and verification
effort required for the compiling specification for all 4 compilation phases is about 3
person-years.

6 Related Work

Verification of compiler correctness is a much-studied area starting with the work by
McCarthy and Painter in 1967 [13], where a simple compiler for arithmetic expres-
sions has been proved correct. Many different approaches have been taken since then,
usually with mechanized support to manage the complexity of the specifications and
the proofs, for example [1,3,12,14,17]. Most of the approaches only deal with the
correctness of the compiling specification, while the approach taken in the Verifiz
project also takes care of the implementation verification, even on the level of binary
machine code. Another difference of our approach is that we are concerned with the
compilation of “realistic” source languages and target architectures. A ComLisp im-
plementation of the ComLisp compiler as well as a binary Transputer executable is
available.

Notable work in this area with mechanized support is CLInc’s verified stack of
system components ranging from a hardware-processor up to an imperative lan-
guage [14]. Both the compiling verification and the high-level implementation (in
ACL2 logic which is a LISP subset) have been carried out with mechanized support
using the ACL2 prover. Using our compiler, correct binary Transputer code could be
generated.

The impressive VLISP project [10] has focused on a correct translation for Scheme.
However, although the necessity of also verifying the compiler implementation has
been expressed this has explicitly been left out. Proofs were accomplished without
mechanized support.

P. Curzon [3] considers the verification of the compilation of a structured assembly
language, Vista, into code for the VIPER microprocessor using the HOL system.
Vista is a low-level language including arithmetic operators which correspond directly
to those available on the target architecture.

The compilation of PROLOG into WAM has been realized through a series of
refinement steps and has been mechanically verified using the KIV system [18]. A
(small-step) ASM semantics is used for the languages.

7 Concluding Remarks

The formalization and formal verification of the compiling specification for the boot-
strap compiler is an ongoing effort. Besides the verification of the first compilation
phase, the verification of the second phase, the translation from SIL to Ci™, where
s-expressions and their operators are implemented in linear integer memory (clas-
sical data and operation refinement), is also completed. Current work is concerned
with the verification of the compiler back-end, namely, the compilation from C™*
into abstract Transputer assembler code TASM. The standard control structures of
Ci"t must be implemented by conditional and unconditional jumps, and the state
space must be realized on the concrete Transputer memory. The verification of the
last compilation phase, where abstract Transputer assembler is compiled into binary
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Transputer code (TC) has already been accomplished following approved verification
techniques [15]: starting from a (low-level) base model of the Transputer, where pro-
grams are a part of the memory, a series of abstraction levels is constructed allowing
different views on the Transputer’s behavior and the separate treatment of particular
aspects.

We have demonstrated that the formal, mechanized verification of a non-trivial
compiler for a (nearly) realistic programming language into a real target architecture
is feasible with state-of-the-art prover technology.
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1 Introduction and Motivation

Memory management for dynamic data structures is a problem in programming.
While memory allocation is dictated by the problem at hand, there is considerable
freedom in memory deallocation. If deallocation happens too late, the program suf-
fers from memory bloat and space leaks, which impede performance. If deallocation
happens too early, there might be dangling pointers into deallocated memory. Deref-
erencing a dangling pointer is unsafe and can lead to a crash, or worse, to wrong
results.

Some languages (like C or Pascal) leave the deallocation problem entirely to the
programmer, whereas others (like Lisp, Smalltalk, Java, and ML) perform automatic
deallocation by incorporating a trace-based garbage collector into the runtime sys-
tem. While the programmer-based solution is immensely error-prone, programs can
in principle be tuned for optimal memory use. Traditional garbage collection avoids
a large class of errors, but it has some problems, too. Since the garbage collector
is, in general, unaware of the semantics of the running program, it must preserve
all pointers reachable from a given set of root pointers. This set is a conservative
approximation of the set of pointers that will actually be used by the program. As
a consequence, deallocation might happen too late, which can lead to space leaks.
In addition, trace-based garbage collection takes extra, non-productive time and can
cause erratic pauses in the execution of programs, hampering its use for real-time
applications. Finally, inter-operability between garbage collected languages and non-
garbage collected languages is difficult.

The region calculus of Tofte and Talpin [13,14] (which we refer to as TTRC)
provides an alternative method of memory management for the functional language
ML [10]. It is used as an intermediate language in an ML compiler, the ML-kit [2, 3,
12-14]. The basic idea of the region calculus is to split memory into regions that are
allocated in a stack-like manner, directed by a construct of the language. Deallocation
is instantaneous, it just pops the topmost region from the stack. Using this method,
it is possible to implement ML without a trace-based garbage collector. In some
instances, the region calculus can prove that a pointer is semantically dead, even
though it is still reachable by the program. In these cases, the region it points to can
be safely deallocated, something trace-based garbage collectors cannot do.

2 Related Work

The first proof of consistency, or type soundness, for the region calculus as it is
given by Tofte and Talpin [14] is quite complicated and uses rule-based co-induction.

* Extended abstract: details are to be published in Information and Computation [5].
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The source of complication is twofold. First, Tofte and Talpin prove two properties
at the same time: type soundness and translation soundness. The latter property
guarantees that there is some relation between a non-region annotated value and its
region-based counterpart. In this paper, we focus on the problem of type soundness,
ie. the property which guarantees that regions are not deallocated while they are still
in use.

The second source of complication is due to the co-inductive definition of their
consistency relation, required because of the loss of information when deleting a re-
gion from the store in their big-step semantics. Their safety relation not only requires
a co-inductive proof, but is rather complex and lacks intuition of why deallocation
safety is obtained.

Recently, alternative type-soundness proofs for the region calculus have been
proposed.

1. Crary, Walker, and Morrisett [6] provide an indirect soundness proof by translat-
ing the region calculus into their capability calculus. The capability calculus has
a sophisticated type-and-effect system that supports safe allocation and deal-
location of regions in an arbitrary order. This added flexibility may lead to a
better use of memory at runtime, since there are cases where a region may be de-
allocated earlier than in the region calculus. They provide a syntactic soundness
proof for the capability calculus.

2. Banerjee, Heintze, and Riecke [1] translate the region calculus into Fiz, an ex-
tension of the polymorphic lambda calculus with a special type constructor for
encapsulation. They construct an original denotational model for their calculus
and give a semantic soundness proof based on the model.

3. Dal Zilio and Gordon [16] modify the operational semantics of Tofte and Talpin
so that it also keeps track of deallocated regions. This extra information allows
an inductive definition of the consistency relation and an inductive correctness
proof. Then they go on to show that this result is a consequence of a more
general result for a typed w-calculus with name groups. This is shown by using a
translation from the region calculus into the typed m-calculus with name groups.

4. Helsen and Thiemann [9] define a store-less small-step operational semantics
for the region calculus and prove type soundness using the syntactic method of
Wright, Felleisen, and Harper.

5. Calcagno [4] defines a high-level big-step operational semantics and proves type
soundness for it. Calcagno formally relates the high-level semantics to the original
low-level semantics of TTRC.

3 Contribution and Overview

The present research [5] is based on the work of Calcagno, Helsen, and Thiemann [4,
9]. We give a simplified account of a store-less region calculus (abbreviated SRC),
using the reduction-style formulation pioneered by Plotkin [11]. Its syntactic type
soundness is formulated without proofs and without the treatment of polymorphism
and recursion, which can be found elsewhere [9].

While the store-less formulation is extremely simple and elegant, it is desirable
to model a calculus with references and destructive update. Therefore, we introduce
a new calculus with an explicitely passed store: the imperative region calculus or
IRC. This calculus extends SRC (and TTRC) with operations on references, as they
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are actually implemented in the ML-kit [3]. We also give a small-step operational
semantics, similar in spirit to the definition of the store-less region calculus.

Then, using the syntactic approach of Wright and Felleisen [15], in a variation
pioneered by Harper [7], we prove type soundness of IRC without the standard treat-
ment of polymorphism and recursion. Adding polymorphism and recursion makes the
proofs more technical, but it does not require new insights. The resulting proofs all
follow a relatively simple inductive pattern, and are therefore considerably easier
than the co-inductive proofs of Tofte and Talpin.

In previous work, Calcagno [4] proves type soundness of TTRC by defining a
store-less big-step operational semantics, which is parametric in a set of currently
allocated regions. He proves his store-less semantics equivalent to TTRC.

Inspired by this work, we show the equivalence of TTRC with IRC, as well as the
equivalence of IRC and SRC. However, instead of relating two big-step semantics,
we relate a big-step semantics (TTRC) with a small-step semantics (IRC) on the
one hand and two small-step semantics (IRC and SRC) on the other hand. The
former result leads to type-soundness of TTRC. In these equivalences, we ignore the
reference operations of IRC for simplicity of the presentation.
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Abstract In the context of the integrated abstract transformational program development
environment HOPS we introduce the notion of term-graph patterns for easily specifying
powerful transformation strategies, which automatise program transformation as a sequence
of transformation rule applications.

1 Introduction

In many contexts (e. g. [1-3,5,10,12-14]) program transformation is a feasible and
fruitful approch to developing and / or improving programs.

In this paper, we discuss necessities for mechanising program transformation by
applying powerful transformation strategies within the integrated development envi-
ronment HOPS, in which programs are represented as term graphs.

After describing the basic ideas of HOPS we focus on the requirements for easily
specifying expressive transformation strategies. Term-graph patterns will be intro-
duced as the key-component for specifying and controlling mechanised application
of transformation strategies.

2 HOPS

The Higher Object Programming System HOPS is a graphically interactive term
graph programming system designed for transformational program development,
see also [2,8,9,19]. (A prototypical implementation in the programming language
Smalltalk is available.)

In the spirit of Literate Programming [11], HOPS modules are documents con-
taining program fragments. In HOPS, these are mostly declarations, attribution
definitions, further on transformation rules and strategies — declarations and rules
are created and manipulated as term graphs.

HOPS manipulates arbitrary second-order term graphs, where all the structure
usually encoded via name and scope is made explicit. Term graphs in HOPS therefore
feature nameless variables, explicit variable binding (to denote which node binds
which variable), explicit variable identity (to denote which nodes stand for the same
variable) and metavariables with arbitrary arity; for a detailed introduction to this
term graph concept see [7].

Every HOPS term DAG is partitioned into an object and a type layer. The users
build their programs within the object layer using bricks from the module system.
The type layer is automatically calculated on the fly, i. e., during editing. This ensures



32 Frank Derichsweiler

that the user can always inspect the actual typing of a used brick. It is not possible to
construct an untypeable term DAG within HOPS. The type system is deterministic
and similar to the polymorphic type system of ML (c. f. [7]).

All nodes in the term DAG are marked with brick labels, which identify the used
constructors. Further on, the outgoing edges, the cardinality of which corresponds
to the arity of the constructor used, have edge labels to identify the ordering of the
parameters of the constructor.

Only bricks for variables are predefined in the HOPS module system. On top of
these, and within the constraints of the typing system, a wide variety of languages
may be defined by the user. Example languages are provided. The most elaborate
one follows the functional programming paradigm and is close to Haskell [4] in its
spirit.

Having no hard-coded language is considered to be one of the advantages of
HOPS (only the variables are fixed within the implementation): Different languages
for different domains and / or levels of abstraction give flexibility. The HOPS user
declares and uses the bricks which are appropriate for his situation. Therefore HOPS
is intended to be a user-friendly framework for specifying and using different domain
specific languages. For example switching between different levels of abstraction can
be performed by applying transformation operations.

3 Program Transformation

Program transformation in HOPS is an interactive process and not considered as
a “black box” operation, as in in other systems, for instance Stratego/System S
[16-18]. Church-Rosser-properties of the transformation system are not within our
main focus ( [15] discusses the minor importance of these theoretical concepts for
practical applications of program transformation).

In the context of HOPS we use transformation rule application and maximal-

identification as primitive transformation operations. The latter means searching for
common sub-expressions and identifying them within the term graph.
A HOPS transformation rule is a term graph with two explicitly marked nodes, the
left and right rule-side node. In order to apply a transformation rule, we need a
matching homomorphism, which maps the sub-term-graph induced by the left rule
node to the the term graph in question, mapping the left rule node to the node at
which the rule is applied. The result of the application is computed by constructing
the image of the right rule side (i. e., the sub-term-graph induced by the right rule
node) and then replacing the image of the left rule side by this term graph. Details
about the rule mechanism and its theoretical foundation are given in [6].

Mechanised program transformation within HOPS means to specify and apply
a sequence of transformation rule applications and maximal identification steps in
different areas of the term graph under examination. This is done by defining trans-
formation strategies. Another view of a transformation strategy is that of a function
which schedules the application of (different) transformation rules at (different) nodes
of the term graph in question interspersed by maximal identification operations.
The transformation strategy is constructed from the two compontents navigation
and action. The navigation part controls at which node transformation operation(s)
will be performed; the action part determines those transformation operation(s). The
interleaving of the two components during strategy application controls the schedul-

ing.



Program Transformation with Term-Graph Patterns 33
4 Term-Graph Pattern

A naive approach for the navigation component uses generic graph traversal algo-
rithms for scheduling actions at different nodes. Some experiments have shown that
this approach is useful in some cases, but generally speaking not powerful enough.
First of all we need means to detect special contexts and then act accordingly. Further
more it must be possible to exclude some parts of the graph: a possible application
is the exclusion of the optimisation and / or the unfolding of the body of a recursive
function until that case definitely occurs.

Within the action component it should be possible to set up different transfor-
mation actions for different nodes. For instance in the context of the evaluation of
a term graph expression it should be possible to switch between different evaluation
orderings (eager, lazy, etc.) and try to apply only a small set of rules which is tailored
towards the current term graph under transformation. The term-graph pattern ap-
proach enables the user to declare the evaluation order of some constructors as eager
and that of some others as lazy. This declaration can be changed by just switch-
ing between different pattern sets. This is possible because the declaration of a brick
(i- e., specification of name, arity and typing) and the transformation-strategy-related
set-up for that brick are separated from each other.

A term-graph pattern is a rooted term-graph together with a sequence of actions
and a continuation command. An action is a tuple consisting of a node of that
term graph, two transformation expressions pre and post and a recursion statement.
In order to be applicable there must be a matching homomorphism from the term
graph of the pattern into the term graph under examination. An applicable term-
graph pattern is applied by executing the sequence of actions. For every action the
relevant node within the term graph is computed via the matching homomorphism.
At first, the pre-expression is executed. Then the the recursion statement is checked.
It controls an optional recursive call of the strategy which uses the pattern for that
node. After that the post-expression will be evaluated. The recursive call can occur
always ornever or depend on the occurence of a transformation during the pre-
expression evaluation; we distinguish between a transformation within the term graph
and a transformation which changes the relevant node. After executing one action,
the transformation engine checks for the availability of another action within the
sequence of the pattern. If there is no such action the application is finished. If there is
another action the matching homomorphism is recomputed. If such a homomorphism
does not exist any longer, the continuation command describes how to continue. The
options include the termination of the application of the pattern, a reselection of
another pattern from the same (i. e., the set of term-graph patterns controlled by
the applied transformation strategy) or another set of patterns, specified by the
pattern itself.

It is possible to have a pattern with an empty sequence of actions. This is useful in
order to stop a graph traversal in a given context.

5 Example Application

In this section we shortly sketch the automatic generation of interface functions for
data exchange between systems which use different data formats in a small example
context.
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We are interested in merging different book databases. All databases use different
data formats but provide semantically equivalent data: the different formats are
implementations of a common formal specification of a data model. In the concrete
example a book has exactly one title, ISBN, publisher and year of publication and
further on an unrestricted collection of either authors or editors.

The generation process starts with a polymorphic adaptor function. The gener-

ating transformation strategy instantiates this function and therefore produces the
desired adaptor. During this instantiation the strategy distinguishes between gen-
eralised projection (extraction) cases, a change of the type of a collection and an
aggregation case. The strategy is mostly controlled by type-sensitive matchings of
different term-graph patterns. Altogether we use 8 polymorphic (sub-) functions, 41
transformation rules, 20 term-graph patterns and 5 (sub-) strategies.
In order to generate a new adaptor function, the user formally specifies the format
of the source data by definiting a corresponding HOPS brick, inserting this brick
into the generation context term graph and applying the strategy. The result of the
transformation strategy application is a term graph which encodes the appropriate
conversion function and does not include any polymorphic part any more.

6 Conclusion

In this extended abstract we have introduced the notion of a term-graph pattern as
a powerful means for specifying transformation strategies within the Higher Object
Programming System HOPS.
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Abstract This paper shows how to use the transformation of Paterson and Hewitt (P &
H) to derive imperative pointer algorithms. To achieve this we take the recursive pointer
algorithms derived from functional descriptions using the method of Moller. These are
transformed via the P & H transformation scheme into an imperative version. Despite the
inefficient general runtime performance of the scheme that results from P & H, we get well
performing algorithms.

1 Introduction

Algorithms on pointer structures are often used in lower levels of implementation.
Although in modern programming languages (e.g. in Java) they are hidden from
the programmer, they play a significant role at the implementation level due to
their performance. But this advantage is bought at high expense. Pointer algorithms
are very error-prone and so there is a strong demand for a formal treatment and
development process for pointer algorithms. There are some approaches to achieve
this goal:

Several methods [2,11,12] use the wp-calculus to show the correctness of pointer
algorithms. There only properties of the algorithms are proved but the algorithms are
not derived from a specification. So the developer has to provide an implementation.
In these approaches proving trivialities may last several pages. Butler [7] investigates
how to generate imperative procedures from applicative functions on abstract trees.
To achieve this he enriches the trees by paths to eliminate recursion. A recent paper
by Bornat [5] shows that it is possible, but difficult to reason in Hoare logic about
programs that modify data structures defined by pointers. Reynolds [17] also uses
Hoare logic and tries to improve a method described in a former paper of Burstall [6]
to show the correctness of imperative programs that alter linked data structures.

In [14] Méller proposed a framework based on relation algebra to derive pointer
algorithms from a functional specification. He shows that the rules presented also are
capable of handling more difficult multi-linked data structures like doubly-linked lists
or trees. However the derived algorithms are still recursive. Our goal is to improve
this method by showing how to derive imperative algorithms and so achieve a more
complete calculus for transformational derivation of pointer algorithms. Based on
the method by Moller a recent paper by Bird [4] shows how one can derive the
Schorr-Waite marking algorithm in a totally functional way.

2 Pointer structures and operations

We will give a short introduction to pointer structures and how they are used in [14].
In our model a pointer structure P = (s, P) consists of a store P and a list of entries
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s. The entries of a pointer structure are addresses A that form starting points of the
modeled data structures. We assume a distinguished element ¢ € A representing a
terminal node (e.g. null in C or nil in Pascal). A store is a family of relations (more
precisely partial maps) either between addresses or from addresses to node values
N such as Integer or Boolean. Each relation represents a selector on the records like
e.g. head and tail for lists with functionality A — N/ respectively A4 — A.

Each abstract object implemented is represented by a pointer structure (n, P)
with a single entry n € A which represents the entry point of the data structure
such as for example the root node in a tree. The following operations on relations all
are canonically lifted to families of relations. Algorithms on pointer structures stand
out for altering links between elements. Such modification has to be modeled in the
calculus as well. We use an update operator | (pronounced ”onto”) that overwrites
relation S by relation R:

Definition 1. R| S R U dom(R) > S

Here we have used the domain restriction operator > which is defined as L < S =
SN (L x N) to select a particular part of S C P(M x N). The update operator takes
all links defined in R and adds the ones from S that no link starts from in R. To
be able to change exactly one pointer in one explicit selector we define a sort of a
“mini-store” that is a family of partial maps defined by:

k. def [ {(z,y)} for selector k
0 |

Definition 2. (z =y 0 otherwise

To have a more intuitive notation leaned on traditional programming languages, we
introduce the following selective update notation:

Definition 3. For selector k of type A — A
(n, P).ki= (m,Q) = (n,(n 5 m)| Q)

which overwrites (Q with a single link from n to m at selector k.

3 A running example and the problem

As example we will use a functional description of list concatenation (like e.g. (++) in
Haskell [3]). We assume that the two lists are acyclic and do not share any parts. So
the following pointer algorithm can be derived by transformation using the method

of [14]:

catp(m,n, L) =if m # o then (m, L).tail := caty(Liqi(m),n, L)
else (n, L)

The two pointer structures (m, L) and (n, L) are representations of the two lists.
Addresses m and n model the starting points, whereas L is the memory going with
them. In other words m and n form links to the beginning of two lists in memory L.

Note that this is only one candidate of possible implementations for the func-
tionally described specification of (++). Because we are interested in algorithms per-
forming minimal destructive updates we did not derive a persistent variant such as
the standard, partially copying interpretation in functional languages.
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We now have a linear recursive function working on pointer structures. But what
we want is an imperative program that does not use recursion. By investigating the
execution order of cat, we can see, that cat, calculates a term of the following form:

(m, L).tail :== ((Lgu(m), L).tail := ...(n, L))

If you remember the definition of the := operator, this means that updates are
performed from right to left.

(m 4 Liau(m)) | (- | (Loa(m) S n) | L))

This shows that the derived algorithm uses the update operator not only to prop-
erly alter links but also to just pass through the structure after returning from the
recursion.

As we can see, there are several such updates that do not alter the pointer struc-
ture. For example (m tafl Lyii(m)) is already contained in L and does not change
the pointer structure (... | ((L¥,,(m) g n) | L)...) if the previous updates do not
affect this part of L. This is the case for several algorithms on pointer linked data
structures, because most of them first have to scan the structure to find the position
where they have to do the proper changes.

In transformational program design the transformation of a linearly recursive
function to an imperative version always has two steps: First transform the linear
recursion into tail recursion. Then apply a standard transformation scheme [16] to
get a while program. But cat, does not have tail recursive form. So we first have
to find a way to transform cat, into the right form. There are several schemes to
derive a tail recursive variant from a linear recursive function [1]. But the function
K(m,n, L) is not good-natured enough to be able to apply one of these standard
methods. So is there no way to get a tail recursive version of cat, ?

4 The transformation scheme of Paterson/Hewitt

In 1970 Paterson and Hewitt presented a transformation scheme that makes it pos-
sible to transform any linear recursive function to a tail recursive one [1]. This rule
normally is only of theoretical interest because of the bad runtime performance of
the resulting function. P & H applied the idea of using the inverse function K to
make the step from K*! to K%, but exhaustively recalculated K* from the start.
The evolving scheme is:

F(z) =if B(z) then ¢(F(K(z)), E(z))
else H (z)

1 [P&H
F(z) = G(n0, H(m0)) where
(m0,n0) = num(z,0)
num(y,i) = if B(y) thennum(K(y),i+ 1)
else (y, i)

it(y,i) =ifi #0 thenit(K(y),i — 1)

elsey
G(i,z) =ifi #0 thenG(i — 1, ¢(z, E(it(z,i — 1))))

elsez
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The function num calculates the number of iterations that have to be done until the
termination condition is fulfilled as well as the final value. These values are used by
function G to change the evaluation order of the calculated term. For this, G uses
the function it to iterate K to achieve the inverse K of K by doing one iteration less
than had to be done for K. So G can start with the calculations done in the deepest
recursion step first and then ascend from there using the inverse of K.

5 Deriving a general transformation scheme

By investigation of function ¢y ((m, L), (n, L)) = (n, (n LA m) | L) we can see that ¢,
updates the link starting from m via selector k& and simultaneously sets m as the new
starting entry of the resulting pointer structure. It is apparent that such a restricted
function can not provide the simplification we aim to achieve, namely elimination of
effect-less updates. So we use the technique of generalization and introduce a more

flexible function (I, m, (n, L)) = (I, (m A n) | L) that handles the altered address
and the resulting entry independently. With this function we are in the position to
eliminate the quasi-updates that do not alter the structure but are only used for
passing through the pointer structure and get a non-recursive function G. One can
say that v, “eats up” the effect-less updates of ¢;. The scheme that evolves from
some calculations is:

F(z) =if B(z) then ¢(F(K(x)), E(z))
else H (z)

1 [ Conditions

F(z) =varvr:==x
ifaB(:U) then while B(K (vz)) dovz := K (vz)
Vi (ptr(E(z)), ptr(E(vz)), H(K (vz)))
else H(x)

Some more simplification leads us to the imperative algorithm one has in mind:

catp(m,n, L) = varvm :=m
if m # o then while Ly, (vm) # odovm := Ly, (vm)
(m, (om "' n) | L)
else (n,L)

6 Conclusion

We have shown how the transformation of Paterson and Hewitt can be used to achieve
imperative algorithms on pointer-linked data structures. The presented transforma-
tion scheme also can be applied to other algorithms like insert into a list or tree [9].
At these example algorithms it can be seen, that there is a need for more sophis-
ticated schemes based on the presented one. It also seems possible that algorithms
changing more than one link such as deletion from a list can be treated the same
way. For this, one have to divide the job into several parts altering only one link,
applying the scheme and afterwards putting the parts together.

Further research will investigate this and other starting points to complete the
methodology. Also a (semi-)automatic system checking the side-conditions and so
supporting the developer of such algorithms is in work.
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Abstract It is possible to translate code written in Emacs Lisp or another Lisp dialect
which uses dynamic scoping to a more modern programming language with lexical scoping
while largely preserving structure and readability of the code. The biggest obstacle to such
an idiomatic translation from Emacs Lisp is the translation of dynamic binding into suit-
able instances of lexical binding: Many binding constructs in real programs in fact exhibit
identical behavior under both dynamic and lexical binding. An idiomatic translation needs
to detect as many of these binding constructs as possible and convert them into lexical
binding constructs in the target language to achieve readability and efficiency of the target
code.

The basic prerequisite for such an idiomatic translation is thus a dynamic scope analysis
which associates variable occurrences with binding constructs. We present such an analysis.
It is an application of the Nielson/Nielson framework for flow analysis to a semantics for
dynamic binding akin to Moreau’s. Its implementation handles a substantial portion of
Emacs Lisp, has been applied to realistic Emacs Lisp code, and is highly accurate and
reasonably efficient in practice.

1 Migrating Emacs Lisp

Emacs Lisp [2,8] is a popular programming language for a considerable number of
desktop applications which run within the Emacs editor or one of its variants. The
actively maintained code base measures at around 1,000,000 loc!. As the Emacs Lisp
code base is growing, the language is showing its age: It lacks important concepts
from modern functional programming practice as well as provisions for large-scale
modularity. Its implementations are slow compared to mainstream implementations
of other Lisp dialects. Moreover, the development of both Emacs dialects places
comparatively little focus on significant improvements of the Emacs Lisp interpreter.
On the other hand, recent years have seen the advent of a large number of ez-
tension language implementations of full programming languages suitable for the
inclusion in application software. Specifically, several current Scheme implementa-
tions are technologically much better suited as an extension language for Emacs than
Emacs Lisp itself. In fact, the official long-range plan for GNU Emacs is to replace
the Emacs Lisp substrate with Guile, also a Scheme implementation [7]. The work
presented here is part of a different, independent effort to do the same for XEmacs,
a variant of GNU Emacs which also uses Emacs Lisp as its extension language.
Replacing such a central part of an application like XEmacs presents difficult
pragmatic problems: It is not feasible to re-implement the entire Emacs Lisp code
base by hand. Thus, a successful migration requires at least the following ingredients:

! The XEmacs package collection which includes many popular add-ons and applications
currently contains more than 700,000 loc.
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e Emacs Lisp code must continue to run unchanged for a transitory period.
e An automatic tool translates Emacs Lisp code into the language of the new
substrate, and it must produce maintainable code.

Whereas the first of these ingredients is not particularly hard to implement (either
by keeping the old Emacs Lisp implementation around or by re-implementing an
Emacs Lisp engine in the new substrate), the second is more difficult. Even though a
direct one-to-one translation of Emacs Lisp into a modern latently-typed functional
language is straightforward by using dynamic assignment or dynamic-environment
passing to implement dynamic scoping, it does not result in maintainable output
code: Users of modern functional languages use dynamic binding only in very lim-
ited contexts such as exception handling or parameterization. As it turns out, the
situation is not much different for Emacs Lisp users: For many lets and other binding
constructs in real Emacs Lisp code, dynamic scope and lexical scope are identical!
Consequently, a good “idiomatic” translation of Emacs Lisp into, say, Scheme, should
convert these binding constructs into the corresponding lexical binding constructs of
the target substrate.

The only problem is to recognize these binding constructs, or rather, distinguish
those where the programmer “meant” dynamic scope from those where she “meant”
lexical scope. Since with dynamic scope, bindings travel through the program exe-
cution much as values do, this requires a proper flow analysis. We present such an
analysis that we call dynamic scope analysis.

Specifically, our contributions are the following:

e We have formulated a semantics for a subset of Emacs Lisp, called Mini Emacs
Lisp, similar to the sequential evaluation function for Az by Moreau [3].

e We have applied the flow analysis framework of Nielson and Nielson [6] to the
semantics, resulting in an acceptability relation for flow analyses of Mini Emacs
Lisp programs.

e We have used the acceptability relation to formulate and implement a flow anal-
ysis for Emacs Lisp which tracks the flow of bindings in addition to the flow of
values.

e We have applied the analysis to real Emacs Lisp code. More specifically, the
analysis is able to handle medium” =sized real-world examples with high accuracy
and reasonable efficiency.

The work presented here is a part of the el2scm project that works on the migration
from Emacs Lisp to Scheme. However, the analysis could be used for a number of
other purposes, among them the development of an efficient compiler for Emacs Lisp,
or the translation to a different substrate such as Common Lisp. For further technical
details of the dynamic scope analysis, the reader is referred to the author’s thesis
dissertation [4] and to [5].

2 Examples

Consider the Emacs Lisp code shown in Figure 1, taken literally from files.el in
the current XEmacs core. It contains five variable bindings, all introducing tempo-
rary names for intermediate values. The bindings of the variables filename, file,
dir, comp, and newest are all visible in the other functions reachable from the body
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(let* ((filename (expand-file-name filename))
(file (file-name-nondirectory filename))

(dir (file-name-directory filename))
(comp (file-name-all-completions file dir))
newest)

(while comp

(setq file (concat dir (car comp))

comp (cdr comp))
(if (and (backup-file-name-p file)
(or (null newest)
(file-newer-than-file-p file newest)))
(setq newest file)))

newest))

Figure 1. Typical usage of let in Emacs Lisp.

(let ((file-name-handler-alist nil)
(format-alist nil)
(after-insert-file-functions nil)
(coding-system-for-read ’binary)
(coding-system-for-write ’binary)
(find-buffer-file-type-function

(if (fboundp ’find-buffer-file-type)
(symbol-function ’find-buffer-file-type)
nil)))
(unwind-protect
(progn
(fset ’find-buffer-file-type
(lambda (filename) t))
(insert-file-contents
filename visit start end replace))
(if find-buffer-file-type-function
(fset ’find-buffer-file-type
find-buffer-file-type-function)
(fmakunbound ’find-buffer-file-type))))

Figure 2. Parameterizations via dynamic let in Emacs Lisp.

of the let, yet none of them contain occurrences of these names. The only vari-
able occurrences which access the bindings are in the body of the let* itself, and
all are within the lexical scope of the bindings. Hence, translating the let* into a
lexically-scoped counterpart in the target language would preserve the behavior of
this function.

Figure 2 shows an example for idiomatic use of dynamic binding (also taken from
files.el): It is part of the implementation of insert-file-contents-literally
which calls insert-file-contentsin the body of the let. The definition of insert-
file-contents indeed contains occurrences of the variables bound in the let with
the exception of find-buffer-file-type-function. Therefore, it is not permissible
to translate the 1let with a lexically-scoped binding construct.
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For the vast majority of binding constructs in real Emacs Lisp code, dynamic
scope and lexical scope coincide. Thus, the ultimate goal of the analysis is to detect
as many of these bindings constructs as possible.

In general however, value flow and the flow of bindings interact during the eval-
uation of Emacs Lisp programs. Hence, it is not possible to apply standard flow
analyses based on lexical-binding semantics to solve the problem; a new analysis is
necessary.

3 Conclusion and Future Work

We have specified, proved correct and implemented a flow analysis for Emacs Lisp

whose distinguishing feature is its correct handling of dynamic binding. The primary

purpose of the analysis is to aid translation of Emacs Lisp programs into more

modern language substrates with lexical scoping since most binding in real Emacs

Lisp programs behaves identically under lexical and dynamic scoping. Our analysis

is highly accurate in practice. Our prototype implementation is reasonably efficient.
We have two main directions for future research:

e Improving the efficiency of the analysis by ordinary optimization, compilation
code and modularization of the constraints [1], and
e integration of the analysis into a translation suite from Emacs Lisp to Scheme.
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Mit der hoheren, problemorientierten Programmiersprache ALGOLG0 [19] wurde
etwas softwaretechnisch sehr Wichtiges geschaffen, ndmlich das Blockkonzept. K. Sa-
melson brachte es in ALGOLG60 ein, die Niveaustruktur von Blécken und die damit
einhergehende Speicherverteilung gehdren zu den bedeutendsten Beitrigen Samel-
sons zur Programmierungstechnik. Im ALGOL58-Bericht [21] und in FORTRAN [1]
war noch keine Rede von Bindungs- und Giiltigkeits-(Sichtbarkeits-) bereichen von
Identifikatoren, Phinomenen, die in Pradikatenlogik und A-Kalkiilen seit den 1930er
Jahren bekannt waren [8].

Erst das Blockkonzept brachte tragfihige Klirung in den Prozedurbegriff, syn-
taktisch wie semantisch. Die ALGOL60-Prozeduren sind aus den do-Anweisungen
und Prozeduren von ALGOL58 hervorgegangen. Das ALGOL-artige, statische Bin-
den von Identifikatoren wurde zudem dadurch zum Ausdruck gebracht, dafl bei
Prozedurrumpf- und Parameterersetzung (operationelle Kopierregelsemantik) Bin-
dungsverfilschungen durch gebundene Identifikatorumbenennungen zu vermeiden
waren. Die im ALGOLG60-Bericht verwendeten Formulierungen zur Sprachseman-
tik, speziell zur Semantik von Funktions- und eigentlichen Prozeduren, wiren fiir
Programmierer und Ubersetzerkonstrukteure erheblich klarer geworden, wenn der
Bericht explizit auf die damals schon bekannte a- und S-Reduktion in A-Kalkiilen hin-
gewiesen hiitte. Das hiitte manche ungliickliche Programmiersprachen-, Ubersetzer-
und Laufzeitsystementwicklung vermeiden helfen.

Die Idee der Blécke und ihr Datenspeicherverhalten hatte Samelson schon in [24]
vorgezeichnet. Er sprach von Teilprogrammen als offenen Unterprogrammen und Bi-
bliotheksprogrammen als geschlossenen Unterprogrammen. Er beschrieb einerseits,
wie beim Ubersetzen und Auswerten arithmetischer Formeln Zwischenergebnisse
in Hilfsspeicherzellen unterzubringen waren, wobei zuletzt besetzte zuerst wieder
verfiighar wurden. Das lag am Formelabbau von links nach rechts, es wurde im-
mer wieder jeweils die vorderste Abbauméglichkeit ins Auge gefafit, ein berechtigtes
Vorgehen, weil das Auswerten arithmetischer Formeln, auch der schulbekannten in
Infixnotation mit den Klammereinsparungs- und Vorrangregeln, konfluent ist. Die
Bezeichnung Zahlkeller fiir die pulsierend auftretenden Zwischenergebnisse trat erst
in der Patentschrift [2] und 6ffentlich wirksam im Artikel “Sequentielle Formeliiber-
setzung” [23] auf. Andererseits beschrieb Samelson 1955 aber auch, wie sich das
Pulsieren der Zwischenergebnisse zur Laufzeit auf den Datenspeicher fiir Teil- und
Unterprogramme ausdehnen lief3, berechtigt ebenfalls aus Konfluenzgriinden. Teil-
und Unterprogramme hatten mit einer Angabe des fiir Rechnungen jeweils freien
Speichers zu arbeiten, eingetragen unter einem festen Variablennamen Anfang freier
Speicher.
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Unter ausdriicklicher Berufung auf [23] beschrieb Dijkstra in “Recursive Pro-
gramming” [6], wie der Samelson-Bauersche Zahlkeller zum Laufzeitkeller (run time
stack) fir Blocke, Funktions- und eigentliche Prozeduren der Sprache ALGOLG60
auszudehnen war. Die Variable Anfang freier Speicher hiefl da stack pointer; jeder
Prozeduraufruf erzeugte eine Prozedurinkarnation, fiir die eine Informationseinheit
mit, Plitzen fir Koordination (link), fiir lokale Parameter, lokale Variablen und Zwi-
schenresultate in den Laufzeitkeller eingetragen wurde. Im Prozedur-link etablierte
Dijkstra neben der Riickkehradresse und dem dynamischen Zeiger auf die letzte zeit-
lich vorangegangene, aber noch nicht beendete Inkarnation neu den sog. zweiten
Parameterzeiger, den statischen Zeiger auf die jingste (most recent) Inkarnation der
lexikographisch umfassenden Prozedur, um iiber ihn an Informationen zu globalen
Prozedurparametern zu gelangen.

Leider geht Dijkstra’s “most recent’-Festlegung nicht mit der Kopierregel, der
statischen Bindung des ALGOL60-Berichts konform. Denn man kann Programme
konstruieren, die nicht die sog. “most recent”-Eigenschaft haben [7]. Bei Dijkstras Im-
plementierung erfahren Identifikatoren wihrend des Ausfiihrungsprozesses u. U. un-
vermutete Bedeutungsénderungen, die der Programmierer kaum nachvollziehen kann,
so daf} er von seltsamen Endergebnissen iiberrascht wird. Man spricht von Sprach-
semantik mit dynamischer Bindung, wenn derartige Bedeutungsinderungen gewollt
sind. Selbst das aufwendige Programmbeispiel GPS (General Problem Solver) in [22]
zur Demonstration von Namensparameteriibergabe erfiillt die “most recent’-Eigen-
schaft.

Dijkstras “most recent”’-Vorschrift zur Behandlung des statischen Zeigers fand
selbst noch in jiingerer Zeit Eingang in Implementierungen und Ubersetzerbau-
lehrbiicher fiir ALGOL-artige Programmiersprachen. Das fiihrte natiirlich zu Mif3-
helligkeiten zwischen urspriinglicher Sprachsemantik und aktueller Programmausfiih-
rung. Um Enttduschungen aus dem Weg zu gehen, wurden beispielsweise Prozeduren
als Argumente von Prozeduren und im Gefolge formale Proteduraufrufe in Ada [10]
und Prozedurschachtelungen in C [12] nicht mehr erlaubt. Tatséichlich stimmt unter
diesen Spracheinschréinkungen statische und dynamische Bindung in ihren Auswir-
kungen {iiberein.

Das dynamische Binden wurde ungewollt durch eine weitere einflufireiche Verof-
fentlichung ins Programmiererbewufltsein geriickt. 1965 veroffentlichten J. McCarthy
et al. im “Lisp 1.5 Programmer’s Manual” [17] zwei in Lisp geschriebene Interpretie-
rer zur Definition operationeller Kopierregelsemantik der funktionalen Sprache Lisp.
McCarthy hatte Lisp als benutzerfreundliche Fassung des auf Church zuriickgehen-
den (angewandten) A-Kalkiils mit dessen statischer Bindung konzipiert [9]. Aber
Programmierfehler in den Interpretierern fiihrten zu Lisp-Semantik mit dynamischer
Bindung, welche bei blofler gebundener Umbenennung schon unterschiedliche Pro-
grammresultate zeitigte. Langmaack entdeckte die Programmierfehler in [17] im Rah-
men von Vorlesungen zu Ubersetzerbau und Laufzeitsystemen an der Universitit des
Saarlandes 1970/71. Er besserte die Lisp-Interpretierer kurzerhand in Richtung sta-
tischer Bindung aus und sprach von natiirlicher Semantik. Erst spéter kehrte die
Lisp-Gemeinde mit CommonLisp [25] zur Tugend ALGOL-artiger, statischer Bin-
dung zuriick.

Man sollte sich durch die Wortwahl “dynamisches Binden” nicht dahingehend
tduschen lassen, dafl diese Form des Bindens etwa klaren Vorteil oder hohe Méchtig-
keit biete. Denn solches Binden verlangt zur Besetzung statischer Zeiger Suchprozes-
se im Laufzeitkeller, wihrend statisches Binden gezieltes Besetzen gestattet. Auch
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die bei dynamischem Binden beweisbare Existenz relativ vollstindiger Hoarescher
Beweissysteme [20] mufl mit schwierigerem Programmverstehen und umstéindlicher
formulierbaren Prozedurvor- und -nachinvarianten erkauft werden, weil keine glatten
Substitutions- und Umbenennungstheoreme wie bei statischer Semantik gelten.

Das dynamische Binden wurde vor allem in objektorientierter Programmierung
populér, obwohl O.-J. Dahl und K. Nygaard, die Schopfer der Begriffe Objekt,
Klasse, Vererbung und der Sprache Simula67, ausdriicklich auf ALGOL60 mit der
Blockstruktur und dem statischen Binden fufiten [3,5]. Auch die Simula67-Nachfol-
gesprachen BETA [18] und LOGLAN’88 [16] verbinden Objektorientierung konsi-
stent und erfolgreich mit statischer Bindung. Wéhrend unabhéngig entwickelte Pro-
grammteile etwa durch Prozedurkapselung schon in ALGOL60 oder PASCAL [11]
problemlos kombiniert werden konnen, ist solch softwaretechnisches Vorgehen bei
dynamischer Bindung ohne Kenntnis der lokalen Namen in anderen Programmteilen
fehleranfillig oder sogar schon aus syntaktischen Griinden unmdoglich. Wie gesagt,
Simula67 beinhaltete bereits die Vererbungsidee, verlangte aber aus pragmatischen
Griinden Einebenenvererbung, d.h. ererbte Klassen mufiten gleiche Modulschachte-
lungstiefen wie erbende Moduln haben. Fiir LOGLAN wie fiir BETA wurde da-
gegen Mehrebenenvererbung angestrebt, u.a. um Programmierer nicht zu zwingen,
unndétige Klassenkopien per Hand zu schreiben, und um flexiblere Einrichtung von
Klassenbibliotheken zu ermdglichen. Daf} es nicht einfach sein wiirde, fiir Mehrebe-
nenvererbung klare Sprachsemantik mit statischer Bindung zu definieren und effizi-
ente Implementierungen zu erreichen, wurde 1967 noch nicht vorausgesehen [4]. Fiir
LOGLAN’88 1483t sich operationelle Kopierregelsemantik mit statischer Bindung wie
fiir ALGOL-artige Sprachen definieren. Nicht nur Prozeduraufrufe, Funktionsaufrufe
und Objektgenerierungen erwarten Kopierregeln, sondern auch das Eliminieren von
Ererbungen tut es, womit Module wie Klassen, Blocke, eigentliche Prozeduren und
Funktionsprozeduren versehen sein kénnen. Dieser Definitionsstil verbleibt voll und
ganz auf Programmiersprachebene, ohne Bezug zu irgendeiner Implementierung oder
Maschine zu haben [13].

Fiir effiziente Implementierung ist die Idee wegweisend, dal man in semanti-
kerhaltender Weise das Ererben auch dadurch eliminieren kann, dafl man Klassen
in Prozeduren verwandelt und erbende Moduln mit neuen lokalen Prozeduren ver-
sieht, deren formale Parameter gerade diejenigen Identifikatoren sind, die iiber die
Erbungs- (Préfix-)kette des erbenden Moduls erreichbar sind. M.a.W.: Objektorien-
tierte Programme mit Klassen und Vererbung sind angenehm verkiirzende und pa-
rametersparende Notation fiir spezielle ALGOL-Programme.

Effiziente ALGOL-artige Block- und Prozedurimplementierung erreicht man ge-
méif [6] durch statische Zeigerketten und Displayregister. Dabei sind alle angewand-
ten Identifikatorvorkommen, die das gleiche zugehorige definierende Vorkommen ha-
ben und somit bei statischer Bindung semantisch das gleiche Ding bedeuten, an
das gleiche Register gekoppelt, festgelegt durch das Modulschachtelungsniveau des
definierenden Vorkommens. Wegen der Einebenenvererbung bleibt das auch fiir Si-
mula67 richtig, mit der angenehmen Folge, daf} keinerlei Diplayregisterumladungen
erforderlich werden, solange ein Rechnen der Laufzeit in einer Prifixkette verharrt
und diese nicht verldft.

Die ALGOL-Simula67-Displayregisterverteilung wird falsch bei Mehrebenenver-
erbung. Aber die letztgenannte Eigenschaft einer Simula67-Implementierung, Dis-
playregister nicht umladen zu miissen, méchte man im Interesse effektvollen objekt-
orientierten Programmierens bei Mehrebenenvererbung bewahren. Dadurch werden
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u.U. mehr Displayregister notig, als das maximale Modulschachtelungsniveau eines
Programms angibt. Krogdahl [15] schlug daher vor, den BETA-Codegenerator so zu
optimieren, daf er zur Ubersetzungszeit die niedrigst mogliche Displayregisterzahl
bestimmt. [13] beweist durch systematische Displayregisterpermutation, daf§ diese
Zahl grundsitzlich gerade durch die maximale Modulschachtelungstiefe gegeben ist.
Kreczmar und Warpechowski [14] entwickelten dazu eine elegante Theorie statischer
und dynamischer Algebren, woftir LOGLAN’88-Programme Modelle sind. Theorie
und Implementierung sind Ergebnisse von Uberlegungen dariiber, was Programmier-
sprachsemantik mit statischer Bindung eigentlich bedeutet.

Ein- und Mehrebenenvererbung sollten nicht mit den Phénomenen einfache bzw.
multiple Vererbung verwechselt werden. Alle drei Sprachen Simula67, BETA und
LOGLAN’88 erlauben nur einfache Vererbung. Es steht noch aus, wie multiple Ver-
erbung in natiirlicher Weise mit statischer Bindung gekoppelt werden kann.

Meiner Kollegin G. Mirkowska und meinen Kollegen O.-J. Dahl, C.A.R. Hoare
und A. Salwicki danke ich herzlich fiir die Diskussionen um Objektorientierung und
statisches Binden.
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Co-Algebras and Co-Induction
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1 Swinging types

Swinging types (STs) provide a specification and verification formalism for designing
software in terms of many-sorted logic. Current formalisms, be they set- or order-
theoretic, algebraic or coalgebraic, rule- or net-based, handle either static system
components (in terms of functions or relations) or dynamic ones (in terms of transi-
tion systems) and either structural or behavioral aspects, while STs combine equa-
tional, Horn and modal logic for the purpose of applying computation and proof
rules from all three logics.

UML provides a collection of object-oriented pictorial specification techniques,
equipped with an informal semantics, but hardly cares about consistency, i.e. the
guarantee that a specification has models and thus can be implemented. To achieve
this goal and to make verification possible a formal semantics is indispensable. Swing-
ing types have term models that are directly derived from the specifications. We take
first steps towards a translation of class diagrams, OCL constraints and state ma-
chines into STs.

Swinging types are particularly suitable for interpreting UML models because
they integrate static and dynamic components. UML treats them separately, STs
handle them within the same formalism. Hence, one may prove, for instance, that
static operations are correctly refined by local message passing primitives.

A crucial point of a formal semantics of UML models is a reasonable notion of
state. If constraints are considered that involve static data and state transitions, the
modal-logic representation of states as (implicit) predicates is often less adequate
than the ST representation as terms even if a state may have several term repre-
sentations, which denote, for instance, different method sequences that lead to the
state.

Given a system to be analyzed or synthesized, there are two conceptionally and
technically rather different views on the relationship between its static structure on
the one hand and its dynamic behavior on the other: the two-tiered view and the
one-tiered view, respectively. The former is based on temporal and modal logic
where each state has its own interpretation (“world”) of all syntactic entities that
build up the system. Here the formal semantics is given by a Kripke structure, i.e. a
sequence of models each of which describes a single state. The state structure does
not interfere with the transition relation that captures the dynamics and only the
dynamics of the system.

In contrast to the two-tiered view, formal approaches adopting the one-tiered view
regard states not as different models, but as different elements of a single model. This
allows us to keep to—many-sorted—predicate logic: hidden domains of states are dis-
tinguished from wvisible domains such as numbers or finite lists. Visible domains con-
sist of data that are identified by their structure, while the objects of hidden domains
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are identified by their behavior in response to observers. Approaches that favor a one-
tiered view are process algebra [4], dynamic data types [2], hidden algebras [8, 10]
and swinging types. Hidden algebras are closely related to models of behavioral
specifications [3] and subsumed by models of coalgebra specifications [12,13,25,29].
Hidden-algebra specifications axiomatize behavioral equivalence; dynamic data types
specify transition systems; swinging types do both.

Consequently, a swinging type separates visible sorts from hidden ones. ST pred-
icates are interpreted as the least relations satisfying their axioms and thus represent
inductive(ly provable) properties. Dually, copredicates are interpreted as the greatest
relations satisfying their axioms and often represent complementary, “coinductive”
properties.t A coalgebraic ST [21] includes the specification of a final coalgebra, which
can be regarded as a “contracted” Kripke structure: each state model of a Kripke
structure corresponds to an element of the coalgebra.

Since the semantics of an ST is given by a Herbrand structure, swinging types
combine features of model-oriented formal description techniques with those of ax-
iomatic, deduction-oriented ones. This is quite natural, puts powerful proof rules at
our disposal, like unfolding, induction, coinduction and Herbrand-model-based sim-
plifications [18,24], and keeps STs close to the syntax and semantics of functional,
logic and/or constraint languages. The informal models that guide the design of
programs in such languages are in fact the “godfathers” of ST models.

The ST approach evolved from 25 years of research and development in the area
of formal methods for software construction. It aims at keeping the balance between a
wide range of applications and a simple mathematical foundation. To this end bound-
aries between many research communities had to be crossed. STs employ concepts,
results and methods from many-sorted and modal logic, algebraic specification, term
rewriting, automated theorem proving, structural operational semantics, functional
and logic programming, fixpoint and category theory, universal algebra and coal-
gebra. Whatever was adopted from these areas, could be reformulated in terms of
many-sorted logic with equality.

Formally, a swinging type starts out from constructors for visible sorts and object
constructors for hidden sorts. Object constructors are, for instance, the injections
into sorts denoting sums of hidden sorts. Each sort is equipped with a structural and
a behavioral equality. For visible sorts, both equalities coincide. Constructors and
object constructors build up data uniquely w.r.t. structural and behavioral equal-
ity, respectively. An ST defines functions, predicates and copredicates in terms of
generalized Horn clauses and co-Horn clauses, respectively. A predicate is static or
dynamic. Structural equalities are dynamic predicates with axiom expressing their
congruence property. Behavioral equalities are copredicates with axioms expressing
the compatibility with all destructors (which are defined functions or predicates) and
the zigzag compatibility with all transition predicates (which are particular dynamic
predicates). The latter implies that they are bisimulations.

The final model of a swinging type is a term model factored through its be-
havioral equalities. Unfortunately, such a model can only represent countably many
elements even if the domain to be specified consists of uncountably many “infinite”
objects like streams or processes. For representing such a domain an ST is extended
by a cospecification that adds hidden sorts, destructors, copredicates, inductive or

1 Appealing to modal-logic terminology, predicates and copredicates are also called p- resp.
v-predicates.
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coinductive axiomatizations of functions and assertions for defining a subdomain.
The latter provide co-Horn axioms for membership predicates and thus complement
the purpose of the co-Horn axioms for behavioral equalities that define a quotient
domain. The cospecification has a final coalgebra that interprets a hidden sort as a
set of behaviors. A behavior is given by a tuple of interpretations of contezrt terms
consisting of destructors. The construction of the final coalgebra generalizes the con-
struction of the minimal automaton that realizes a fixed input-output behavior. Here
the destructors state transition or output functions.

If a cospecification, say C'SP, which already extends a swinging type, is aug-
mented by further constructors, defined functions and predicates that involve the
hidden sorts of C'SP, the extension is called a coalgebraic swinging type (CST). Weak
requirements ensure that the CST is a conservative extension of C'SP, i.e. CST does
not produce neither “junk” (data that are not already in the final coalgebra of C'SP)
nor “confusion” (theorems that do not already hold in that coalgebra). This prop-
erty allows us to switch between algebraic (inductive) and coalgebraic, (coinductive)
arguments when reasoning about CSTs.

Meeting
Person L title: String
2.* participates * .
name: String ” : start: Date
- participants meetings end: Date
numMeetings(): Nat isConfirmed: Bool
Meetings(): Nat
numConfirmedMeetings() duration(): Time
checkDate()
cancel()

Figure 1. Two associated classes (Figure 3 of [11])

2 Class diagrams

[11] claims a general one-to-one correspondence between a class and a specification
unit. However, a simple look at the graph structure of a class diagram reveals that this
cannot work as soon as the graph involves cycles such as those created by bidirectional
associations (cf. Fig. 1). A class diagram yields a specification, each class provides
a (hidden) sort. The entire specification is built up hierarchically, following the use
relationships between methods that form a, maybe collapsed, tree.

Even the finest specification structure reflecting a class diagram has to encapsu-
late all data and operations involved in a use cycle into a single specification unit. But
this does not mean that the other extreme, recommended in [11], must be adopted,
i.e., translating the entire class diagram into a single specification with a global state
sort. Coalgebraic STs allow us to avoid the introduction of global state sorts that
are not sums or products of sorts representing individual classes.

A UML class diagram can be translated into a CST as follows. A class becomes
a hidden sort, say ¢l, of a cospecification. An attribute of ¢/ with values in s yields
a destructor d : ¢l — s. A method m(xy : s1,...,%, : s,) of ¢l is turned into a
constructor ¢ : ¢l X s1 X ... X 8, — ¢l, while a method m(x1 : s1,...,%, : 8p) : s of
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cl provides a defined function f : ¢l X s; X ... X s, — s. A class-scope operation

m(x1 : 81,...,%, : Sp) becomes a constructor ¢ : s1 X ... X s, — cl. Methods defined
in terms of other methods may be introduced as defined functions.
An association assoc that relates n classes cly,...,cl, to each other can of

course be regarded as an n-ary relation [7,14,28]. Then rolenames attached to
the ends of assoc correspond to attributes or projections in the sense of relational
or algebraic models, respectively, and assoc becomes a further hidden sort with
membership €: (¢ly X ... X cl,) X assoc as the only destructor. Binary and mostly
anonymous associations, which provide the pathways for navigating between objects
of the associated classes, however, should be translated differently. The relational
view would enforce the computation of transitive closures of associations, which was
shown to result in rather tricky and counter-intuitive code [14].

Hence a rolename r attached to the cl-end end of a binary association that relates
cl to cl’ is translated into a destructor d, of the class cl’ at the opposite end. If an
association end lacks a rolename, we introduce one. The range sort s of d, depends
on the multiplicity at the cl-end, which holds r. If the multiplicity is 1, then s =
cl. If the multiplicity is m..n, + or x, then s is a sum sort: % cl?, I,~ocl™ or
el* = I,enel™, respectively. Hence d assigns a list of c¢l-objects to each cl’-object.
Additional constraints may demand another type of collection like a bag or a set. As
long as proving that cl’-objects are behaviorally equivalent is not an issue, the actual
collection type is irrelevant and we may keep to the lists given by the above sum
sorts. Otherwise it is quite easy to turn these lists into bags or sets because finite (!)
sets and bags also provide swinging types, though not coalgebraic ones.

In [27], binary associations are also translated into set-valued functions. But, since
the authors do not give a semantics of objects or their states, it is not clear what
the elements are the sets consist of. Translating a class into a constructor-based type
whose objects are built up of attribute values and rolenames in a hierarchical way
would be inadequate because associations may form cycles as in Fig. 1. Translating
a class into a hidden sort of a CST, however, leads to a behavioral semantics in the
sense described above: object states are interpretations of context expressions built
up of destructors, here: of attributes and rolenames.

Example. The bidirectional association between the classes Person and M eeting
in Fig. 1 suggests a single specification, but two sorts for person states and meeting
states, respectively. The CST given below covers Fig. 1 as well as the following OCL
constraint [30] taken from [11]:

context Meeting :: checkDate()
post : isConfirmed =
self.participants ->
collect(meetings) ->
forAll(m | m <> self and m.isConfirmed implies
(after(self.end,m.start) or (after(m.end,self.start)))

For dealing with object (state) sets we start out from a parameterized specification
FINSET of finite subsets of a set of instances of a class ¢l (cf. [23]). FINSET is an
ST with the only set-destructor in : ¢l x set(cl) — bool that denotes set membership.
FINSET includes a defined function mkset : cI* — set(cl) that transforms sequences
into sets.

PERSON&MEETING = FINSET and STRING and DATE&TIME then
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hidsorts Person Meeting
destructs name : Person — String
meetings : Person — Meeting”™
title : Meeting — String
participants : Meeting — Person”™
start,end : Meeting — Date
isConfirmed : Meeting — bool
;' : Person™ — Person
;' . Meeting™ — Meeting forall1<i<mneN
constructs checkDate : Meeting — Meeting
cancel : Meeting — Meeting
defuncts Meetings : Person — set(Meeting)
Participants : Meeting — set(Person)
numMeetings : Person — nat
num Confirmed Meetings : Person — nat
duration : Meeting — Time
consistent : Meeting X Meeting — bool

vars p: Person m,m': Meeting ms : set(Meeting) ps: set(Person)
Horn axioms Meetings(p) = mbkset(meetings(p))

Participants(m) = mbkset(participants(m))

numMeetings(p) = |Meetings(p)|

num Confirmed Meetings(p) = |filter(isConfirmed, Meetings(p))|

duration(m) = end(m) — start(m)

consistent(m,m’) = not(isConfirmed(m'))

or end(m) < start(m') or end(m') < start(m)
isConfirmed (checkDate(m)) = forall(Am'.consistent(m,m’), remove(m,ms))
< Participants(m) = ps A flatten(map(Meetings,ps)) = ms

isConfirmed (cancel(m)) = false

7 (p1y.. ., pn) = pi

mr(my,...,my) = my foralll1<i<mneN
assertions | Participants(m)| > 2

Basic methods are declared as constructors, whereas derived ones are declared
as defined functions. An element of the final coalgebra of PERSON&MEETING
(informally: a state or behavior of a PERSON&MEETING-object) is the tuple of
values of all PERSON&MEETING-contexts, i.e. non-hidden-sorted terms over the
above destructors. For instance, a meeting with five participants whose third one
is called Henry is represented by a tuple of meeting-context values such that the
context name(n3 (participants(m))) evaluates to Henry. O

More details about the translation of UML classes into CSTs, in particular the
treatment of generalizations (inheritance), can be found in [23] and [20]. The inte-
gration of state machines in terms of transition predicates and the proof of state
reachability or invariance are also topics of [23].

[17] and [18] present the model- and proof-theoretical foundations of non-coalge-
braic STs. [19] and [21] focus on their structured development (including refinements)
and the emdedding of cospecifications, respectively.? For introductions to hidden al-
gebras, coalgebras and coinduction, we recommend [13,25,29] and [10]. For the spec-
ification of coalgebras or transitions systems, see also [6], [5] and [12]. [23] explores
various application areas for STs and attempts to integrate certain traditional formal

2 These two papers are under revision and will probably re-appear under slightly different
titles.
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description and proof techniques into the ST framework. Examples can also be found
in my course notes [22]. [24] provides a survey of proof and computation rules for
reasoning about STs. Our proof and symbolic-computation system Ezpander? [16]
has been designed in particular for the purpose of carrying out and visualizing such
reasoning semi-automatically.
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Abstract While declarative programming languages are based on the idea of specifying
the static relationships of problems, the right modeling of the dynamic behavior is equally
important for many practical applications. To support a high-level specification of both
aspects of computational systems, we propose the embedding of a process-oriented speci-
fication language in a multi-paradigm declarative language. Since this embedding is done
in a seamless way, the features of the declarative base language can be exploited (1) for a
high-level specification of the computational needs in single state transitions of a dynamic
system, and (2) to reuse the abstraction facilities of the base language for the specifica-
tion of the structure of dynamic systems. We show an implementation of these ideas in
the declarative multi-paradigm language Curry. This implementation has been used for a
prototypical implementation of embedded and distributed systems in a high-level manner.

1 Introduction

Declarative programming languages (e.g., functional, logic, or functional logic lan-
guages) aim to support high-level descriptions of software systems, which are eze-
cutable at the same time. Such programming languages have many advantages w.r.t.
the efficient development, reliability, maintenance, analysis, and verification of pro-
grams. The general idea of declarative programming is the specification of the static
relationships of a given problem by well-understood mathematical entities (functions
and/or predicates). However, many real-world applications demand also for an ap-
propriate modeling of the dynamic behavior of a complex software system, which
may be distributed into communicating active parts or embedded in an environment
where they must react on external events.

Processes are an appropriate notion to describe dynamic behavior, and high-level
formalisms [3] have been developed to describe the essence of process behaviors,
like communication, parallelism, process creation, on an abstract level. We want to
keep the advantages of declarative programming but make them applicable also for a
wider range of applications, like distributed or embedded systems. For this purpose,
we propose an embedding of a process-oriented specification language in a declarative
language, where we choose the declarative multi-paradigm language Curry [4,9] as
our base. On the one hand, our proposal is based on a clear separation between
the declarative and dynamic aspects of an application system by making processes a
distinguished data type (this has some similarities to the separation of pure functions
and functions manipulating the external world by the introduction of monads [12]).

* This work has been partially supported by the German Research Council (DFG) under
grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.
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incoming messages outgoing messages
e — global state ! —_—

Figure 1. Component of a dynamic system

On the other hand, our embedding of processes is done in a seamless way by defining
processes as a standard data type so that the features of the base language can be
exploited in two ways: (1) the computational needs in single state transitions of a
dynamic system can be specified in a high-level style, and (2) the abstraction facilities
of the base language can be reused for the specification of the structure of dynamic
systems.

Our objective is to provide a domain-specific language for the description of dy-
namic systems that should react on external events (e.g., embedded systems). The
integration of such a domain-specific language into an existing high-level program-
ming language has the advantage that we can reuse the functionality of the base
language in application programs and we can provide a prototypical implementation
of the entire framework with a limited effort. We have used our implementation for
a prototypical implementation of embedded and distributed systems in a high-level
manner.

This paper is structured as follows. In the next section we provide a basic in-
troduction into our framework. Section 3 sketches the features of Curry as neces-
sary for the understanding of this paper. In Section 4 we show the modeling of our
process-oriented specifications in Curry. Its application is demonstrated in Section 5
by several examples before we make some remarks about the implementation of our
framework in Section 6 and conclude in Section 7.

2 Specification of Process Systems

Our framework is based on the partition of a dynamic system into several com-
ponents that cooperate by exchanging messages. In an embedded system, such a
component could correspond to a controller that reacts on messages received from
external sensors by sending messages to other active components. In a distributed
software system, these components may run on different computers and exchange
messages via the Internet. Our goal is to provide a framework for the high-level
description of such components.

The structure of each component is sketched in Fig. 1. A component consists of
a set of processes (pl,p2,...), a global state (i.e., data visible for all processes inside
a component but not visible from outside) and a mailbox (queue of messages sent
to this component). The behavior of a dynamic system is defined by the behavior of
each process. A process can be activated depending on conditions on the global state
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or the mailbox. If a process is activated (e.g., because a particular message arrives
in the mailbox), it performs actions and may start other processes (since we have an
interleaving semantics, at most one process can perform actions so that actions are
atomic entities).

The reaction of a process to the change of its external context (i.e., mailbox or
global state) consists of a sequence of actions. Currently, possible actions are the
change of the global state, the sending of a message to another component,' or the
removing of a message from the mailbox. (Note that messages are not automatically
removed after reading since there may be several processes that must react on the
same message.) Of course, the set of possible actions can be extended but our current
set is sufficient for our case studies.

The global state of a component can be accessed and manipulated by all processes
of the same component. Thus, it also serves as a facility for process synchronization.
In general, the global state is just a tuple of data items. However, our case studies
have shown that it is quite useful to partition the state into a static part with a fixed
number of items and a dynamic part with an evolving number of items.? Therefore,
we provide different actions to manipulate the static or the dynamic part of the state.
The static part is changed by defining a new value for it (where changes to single items
could be expressed by record updates) (“SetState s”). For the manipulation of the
dynamic part, there are two actions: one for creating a new item (“NewName v ref”),
which can subsequently be accessed via the newly created name ref, and one for
changing the value associated to a dynamic item (“ref := v”). Furthermore, there
is a function get to extract the associated value of a dynamic item in a store. Thus,
the following table summarizes the current set of actions:

Send m send message m

SetState s set static state to s

ref := v set dynamic state object ref to value v

NewName v ref create new dynamic state object ref with initial value v
Deq m remove message m from mailbox

As described above, processes are activated, depending on a particular condition on
the mailbox and/or global state, and perform an action followed by the creation of
new processes. Thus, the behavior of each process is specified by

e a guard (i.e., a condition on the mailbox and/or state),

e asequence of actions (to be performed when the guard is satisfied and the process
is selected for execution), and

e a process term describing the further activities after executing the actions.

! For the sake of simplicity, all outgoing messages are sent via the same channel. If a compo-
nent wants to send messages to different other components, the messages must be tagged
(to identify the receiving component) and it is the purpose of a distributor connecting the
different components to forward the outgoing messages to the right receiver. Of course,
one can extend our model so that a component can send messages directly to different
other components but we have made the experience that our restricted model provides
more modularity.

2 Note that this distinction is not strictly necessary, since the static part can also contain
dynamic data structures like lists, but useful to structure components (see the multiple
counter example in Section 5).
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In order to structure dynamic system specifications in an appropriate manner, we
allow parameterized processes since this supports the distinction between local and
global state: process parameters are only accessible inside a process and, therefore,
they correspond to the local state of a process, whereas the global state is visible to
all processes inside a component. Changes to the local state can simply be obtained
by recursive process calls with new arguments. Thus, the language of process terms
p is very similar to process algebra [3] and defined by the following grammar:

p ::= Terminate successful termination
| L[ai,...,a,] sequence of actions
| pti...ty run process p with parameters t;...t,
| p1 >>> po sequential composition
| p1 <I> po parallel composition
| D1 <+> po nondeterministic choice
| p1 <> po nondeterministic choice with priority
| p1 <> po parallel composition with priority

A sequence of actions is executed from left to right as one atomic operation (having
a sequence of actions instead of one single action is useful to specify larger critical
regions in many applications, e.g., see the dining philosophers example below). The
operators “>>>” “<[>” and “<+>” are standard in process algebra, whereas the last
two operators are not very common but useful in applications where a simple non-
deterministic choice is not appropriate. The meaning of “p; <%> py” is: “If process
p1 can be executed, execute p; (and remove ps), otherwise execute process ps (and
remove py ), if possible.” The meaning of “p; <™> py” is: “Execute processes p; and
p2 in parallel (like “p; <|> py”) but p2 is executed only if p; cannot be executed;
if p; terminates, then also p, terminates.” The latter combinator is useful for idle
background processes like concurrent garbage collectors.

Using this language of process terms, the behavior of a parameterized process is
defined by a process abstraction of the following form:

P Z1...2, | guard, = actions; >>> p;

i guardy = actionsy >>> pg

where guard; is a decidable condition on the mailbox, the global state and the process
parameters, actions; is a sequence of actions, and p; is a process term (i = 1,..., k).
The different guards together with their right-hand sides are considered to be com-
bined with the “<%>” operator, i.e., the first alternative with a valid guard is selected
for execution.

As a first example for the use of our framework, consider the classical “dining
philosophers”. The global state in this example has only a static component, namely
the list (or array) of forks where each fork has either the value Avail (“available”)
or Used. The entire component consists of processes Thinking or Eating that are
parameterized by the number of the philosopher. Then the complete specification is
as follows (forks[i] denotes the value of the i-th fork and forks[i<-v] denotes a
new state identical to forks but with the value v for the i-th component):

Thinking i | forks[i]==Avail A forks[i+l mod n]==Avail

= [SetState forks[i<-Used, i+1 mod n <- Used]]
>>> Eating i
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Eating i = [SetState forks[i<-Avail, i+l mod n <- Availl]
>>> Thinking i

Thus, if philosopher i is thinking (which corresponds to the existence of a process
term “Thinking i”) and both forks are available, then he can use both forks to turn
into the Eating process. Note that the change of the global state, i.e., the use of
both forks, can only be performed (in an atomic manner) if both forks are really
available. Therefore, the classical deadlock situation is avoided without low-level
synchronization (e.g., semaphores) or additional constructions (e.g., room tickets).

An example where a global state with a dynamic part becomes important will
be shown later. Next we will show how this specification language can be embedded
into the declarative multi-paradigm language Curry in order to obtain an executable
specification language for modeling dynamic systems. Before doing so, we review the
basic elements of Curry.

3 Curry

In this section we survey the elements of Curry which are necessary to understand
the design and implementation of our language for specifying processes. More details
about Curry’s computation model and a complete description of all language features
can be found in [4,9].

Curry is a modern multi-paradigm declarative language combining in a seam-
less way features from functional, logic, and concurrent programming and supports
programming-in-the-large with specific features (types, modules, and encapsulated
search). From a syntactic point of view, a Curry program is a functional program?®
extended by the possible inclusion of free (logical) variables in conditions and right-
hand sides of defining rules. Thus, a Curry program consists of the definition of
functions and the data types on which the functions operate. Functions are evalu-
ated in a lazy manner. To provide the full power of logic programming, functions
can be called with partially instantiated arguments and defined by conditional equa-
tions with constraints in the conditions. The behavior of function calls with free
variables depends on the evaluation annotations of functions which can be either
flexible or rigid. Calls to rigid functions are suspended if a demanded argument, i.e.,
an argument whose value is necessary to decide the applicability of a rule, is unin-
stantiated (“residuation”). Calls to flexible functions are evaluated by a possibly
non-deterministic instantiation of the demanded arguments to the required values in
order to apply a rule (“narrowing”).

Ezample 1. The following Curry program defines the data types of Boolean values
and polymorphic lists (first two lines) and a function to compute the concatenation
of two lists:

data Bool = True | False
data List a = [] | a : List a
conc :: [a] -> [a] -> [a]

conc eval flex

3 Curry has a Haskell-like syntax [10], i.e., (type) variables and function names usually
start with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).
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conc [] ys = ys
conc (x:xs) ys = X : conc Xs ys

The data type declarations introduce True and False as constants of type Bool and
[1 (empty list) and : (non-empty list) as the constructors for polymorphic lists (a
is a type variable ranging over all types and the type “List a” is usually written as
[a] for conformity with Haskell).

The (optional) type declaration (“::”) of the function conc specifies that conc
takes two lists as input and produces an output list, where all list elements are
of the same (unspecified) type.* Since conc is explicitly defined as flexible® (by
“eval flex”), an equation “conc ys [x] =:= xs” can be solved by instantiating
the first argument ys to the list xs without the last argument, i.e., for a given xs,
the only solution to this equation satisfies that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form “l | ¢ =¢” wherel
has the form f¢; ...t, with f being a function, ¢y, ..., ¢, data terms and each variable
occurs only once, the condition ¢ (which can be omitted) is a constraint, and e is a
well-formed ezpression which may also contain function calls, lambda abstractions
etc. A conditional rule can be applied if its left-hand side matches the current call
and its condition is satisfiable. A constraint is any expression of the built-in type
Success. Each Curry system provides at least equational constraints of the form
e1 =:=e5 which are satisfiable if both sides e; and e» are reducible to unifiable data
terms (i.e., terms without defined function symbols). In contrast, e; == e2 denotes an
equality test which is successful only if both sides e; and e, are reducible to identical
ground data terms, i.e., the test suspends in the presence of free variables.

The operational semantics of Curry, precisely described in [4,9], is based on an
optimal evaluation strategy [1] and can be considered as a conservative extension of
lazy functional programming (if no free variables occur in the program or the initial
goal) and (concurrent) logic programming. Concurrent programming is supported by
a concurrent conjunction operator “&” on constraints, i.e., a non-primitive constraint
of the form “c; & ¢y is evaluated by solving both constraints ¢; and ¢, concurrently.
Furthermore, distributed programming is supported by ports [5] which allows the
sending of arbitrary data terms (also including logic variables) between different
computation units possibly running on different machines connected via the Internet.
The port concept has been used to integrate object-oriented features into Curry
[8] and for high-level GUI (Graphical User Interface) programming in Curry [6].
Furthermore, it is relevant for the work described in this paper since the different
components of a dynamic system communicate via ports (which is, however, not
directly visible to the programmer).

4 Specification of Process Systems in Curry

Now we are ready to define an implementation of process-oriented specifications, as
introduced in Section 2, in Curry. The implementation is guided by the motivation
to enable the writing of specifications in the high-level style of Section 2. The main

4 Curry uses curried function types where a->3 denotes the type of all functions mapping
elements of type « into elements of type [.
% As a default, all functions except for constraints are rigid.



Embedding Processes in a Declarative Programming Language 67

difference (and advantage!) is the fact that Curry is a typed language (so that we have
a type checker for specifications for free) and allows definitions by pattern matching.

First, we introduce the languages of actions and process terms as data types in
Curry. The following data type declaration defines the possible actions. ObjRef is
an abstract data type denoting references to dynamic objects, and inmsg, outmsg,
static, and dyn are type variables denoting the type of incoming messages, outgoing
messages, the static part and the dynamic items of the global state in a concrete
specifcation.

data Action inmsg outmsg static dyn =

Send outmsg -- send message
| SetState static -- set static state
| Assign ObjRef dyn -- set dynamic state object
| NewName dyn ObjRef -- create new dynamic object
| Deq inmsg -- remove message from mailbox

In order to support the same notation as in Section 2, we define the following function
(infix operator) as a synonym for the Assign action:

ref := cont = Assign ref cont

The data type of process terms has a similar definition but with the type proc of
concrete processes as an additional type parameter:

data ProcExp proc inmsg outmsg static dyn =
Terminate
| Atomic [Action inmsg outmsg static dyn]
| Proc proc
| ParProc  (ProcExp proc inmsg outmsg static dyn)
(ProcExp proc inmsg outmsg static dyn)
| SeqProc  (ProcExp proc inmsg outmsg static dyn)
(ProcExp proc inmsg outmsg static dyn)
| ChProc (ProcExp proc inmsg outmsg static dyn)
(ProcExp proc inmsg outmsg static dyn)
| ChPriProc (ProcExp proc inmsg outmsg static dyn)
(ProcExp proc inmsg outmsg static dyn)
| ParIdle (ProcExp proc inmsg outmsg static dyn)
(ProcExp proc inmsg outmsg static dyn)

Again, we support the same notation as in Section 2 by the following operator defi-
nitions:

pl >>> p2 = SeqProc pl p2
pl <I> p2 = ParProc pl p2
pl <+> p2 = ChProc pl p2
pl <> p2 = ChPriProc pl p2
pl <> p2 = Parldle pl p2

In order to exploit the language features of Curry for the specification of dynamic
systems, we consider a system specification as a mapping which assigns to each pro-
cess, mailbox (list of incoming messages), static and dynamic state (list of dynamic
objects) a process term (similarly to Haskell, a type definition introduces a type
synonym in Curry):
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type Specification proc inmsg outmsg static dyn =
proc => [inmsg]l -> static => [Dyn0Obj dyn]
-> ProcExp proc inmsg outmsg static dyn

This definition has the advantage that one can use standard function definitions by
pattern matching for the specification of systems, i.e., one can define the behavior of
processes in the following form:®

spec (p x1...x,) mailbox state refs
| < condition on zi,...,T,, mailbox, state, refs >
= Atomic [actions] >>> process term

Hence, the guard is just a standard constraint on the parameters x4, ..., x,, nailbox,
state, and refs so that we need no global variables or auxiliary constructs to access
the current global state or mailbox (note that the access to these entities was left
unspecified in Section 2).

As an example we show the complete specification of the dining philosophers of
Section 2. It consists of the definition of data types for the values of forks, the
philosopher processes and the definition of the specification function phil_spec
(“rpl I i v” replaces the i-th element of the list | by v):

data ForkStatus = Avail | Used
data PhiloProc = Eating Int | Thinking Int
n =5 -- here we have five philosophers

phil_spec (Thinking i) _ forks _
| forks!!i == Avail && forks!!((i+1) ‘mod‘n) == Avail
= Atomic [SetState (rpl (rpl forks i Used) ((i+l) ‘mod‘n) Used)]
>>> Proc (Eating i)

phil_spec (Eating i) _ forks _ =
Atomic [SetState (rpl (rpl forks i Avail) ((i+1) ‘mod‘mn) Avail)]
>>> Proc (Thinking i)

Note that neither the mailbox nor the dynamic part of the state is used in this simple
example. Initially, all philosophers are thinking. This can be expressed by a process
term where five philosopher processes are combined in parallel:

phils = foldrl (<[>) (map (\i->Proc (Thinking i)) [0..n-1])

Note that we can use standard higher-order functions like foldr1l or map to create
complex process terms since process terms are first-order objects in our specification
language. Hence, the expression phils reduces to the term

Proc (Thinking 0) <[> --- <[> Proc (Thinking 4)
A system specification is executed by providing

a port name for incoming messages
a port name for outgoing messages
an initial process term

a system specification

an initial (static) state”

Ol o=

6 Since we allow arbitrary Boolean expressions or constraints as conditions, the decidability
of the guard is not automatically given but must be ensured by the programmer.
" The dynamic part of the state is always empty at the beginning.
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This is the purpose of the main function exec_system so that we can execute our
specification as follows:

exec_system "in" "out" phils phil_spec
(take n (repeat Avail)) -- all forks are available

The main advantage of our embedding of a process-oriented language in Curry (rather
than defining a complete new specification language) is the reuse of the features of
Curry for the specification language, in particular:

e The type checker of Curry can also be used to type check specifications and
detect inconsistencies in specifications.

e Functional programming is useful to compute values in actions, process param-
eters, new states etc.

e Constraint programming is useful for checking complex conditions.

e The standard abstraction facilities of Curry (e.g., higher-order functions) are
useful to structure the specification of dynamic systems, in particular, we can
define functions to compute process terms (compare phils above).

5 Examples

Due to lack of space, we can only sketch two further examples that are implemented
using our framework. The first example is a challenge from the Glasgow Research
Festival®, a system of multiple counters.

The application starts be creating a single window, as shown to the right,
that visualizes a counter. This counter can be manually (but- Counter 1: 15
ton “Inc”) or automatically (periodically) incremented (after Inc | Auto |
pressing the button “Auto”). Pressing the “Copy” button cre-
ates a new counter with its own independent state, and press-
ing the “Link” button creates a new view (counter window) to the same counter.

We implement this system by the specification of a counter control system which
is responsible to control all counters and organize the communications with the
different windows. If the user presses a button in a window win, an appropri-
ate message (e.g., (Inc win), (Copy win)) is sent to the counter controller which
must correctly react to this request. The global state of the counter controller has
only a dynamic part since a new counter object is created in the state whenever
the users presses the “Copy” button. The value of a counter object has the form
(Counter wal wins mode) where val is the current value of the counter, wins is a
list of windows where this counter is displayed, and mode is the increment mode of
the counter (Manual or Automatic). As a consequence, the individual processes of
the controller are parameterized with references to counter objects and windows. For
instance, there is a process (Manual_Ctrl c w) for each counter object ¢ and win-
dow w where c is displayed. This process is responsible for processing the messages
received from window w. Using pattern matching, there is one rule for each message
in the specification. For instance, the rule for the message Inc is as follows:

Copy | Link | Exit |

cctrl (Manual Ctrl ¢ w) (Inc win:_) _ store | win==w
= let Counter val windows _ = get c store in
Atomic [c := Counter (val+l) windows Manual, Deq (Inc win)]

8 http://www.cs.chalmers.se/ magnus/GuiFest-95/
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>>> Proc (Refresh_Window c) <|> Proc (Manual_Ctrl c w)

Thus, the guard consists of checking whether the message comes from the window
for which this process is responsible. If this is the case, the value of the counter is
incremented (where the increment mode is set to Manual), the message is removed
from the mailbox, and a new process for refreshing all windows for this counter is
created. The latter process sends update messages to all appropriate windows, where
we apply some standard higher-order functions:

cctrl (Refresh_Window c) _ _ store =
let Counter val windows _ = get c store in
foldr (<|>) Terminate
(map (\w->Atomic [Send (Update w val)]) windows)

The remaining cases are similarly defined. In particular, for each counter object
c there is a process (Automatic_Ctrl b c¢) which is responsible for incrementing
counters in automatic mode. This is done by an external clock which sends clock
ticks as messages to the controller so that the Automatic_Ctrl processes are acti-
vated on these messages. Since there may be many of these processes, the clock tick
message should not be deleted in the mailbox by any of these processes (since all of
them must have the chance to react). This is the purpose of a background process
Delete_Clocks which is simply defined as (each clock signal has a Boolean flag to
distinguish successive signals):

cctrl Delete_Clocks (ClockSignal flag:_ ) _ _ =
Atomic [Deq (ClockSignal flag)] >>> Proc Delete_Clocks

The complete specification of the counter controller, which is omitted due to lack of
space, consists of nine rules (in addition to the three rules above, four further rules
for handling the counter button messages, one rule for the Automatic_Ctrl process
and one rule for the Create_Window process that creates a window together with
a Manual_Ctrl process for it) which specify in a high-level and readable way the
behavior of all processes in the controller. The initial configuration is defined by the
following process term (where c is a free variable denoting the reference to the first
counter object created by NewName):

Atomic [NewName (Counter O [] Manual) c] >>>
((Proc (Create_Window c) <|> Proc (Automatic_Ctrl True c))
<”> Proc Delete_Clocks)

Note that it is important to create the process Delete_Clocks as a background
process with lowest priority so that the clock signals are deleted only if no other
process can be active. The remaining parts of the complete implementation, namely
the counter GUISs, are also only a few lines of code thanks to the use of the Curry
library for high-level GUI programming [6].

Our second example is a lift control system as visualized in Fig. 2. It consists of
a number of request buttons that are inside a lift (left) or outside on the different
floors (right), and a lift that can move up and down as well as open and close the
doors. Instead of controlling a real lift, we simulate the lift also as a dynamic system.
Thus, our implementation consists of two components in the sense of Fig. 1: a lift
controller that accepts requests from the buttons, reacts on sensor messages from
the lift (e.g., arrival at some floor), and sends appropriate control commands to the
lift unit, and a lift simulator which simulates the lift by reacting on commands from
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Where do you want to go today?
9th floor

Select floor: ﬂ
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Figure 2. A lift control system

the lift controller and sending sensor messages to the controller and the GUI (shown
in the middle of Fig. 2).

The specification of the entire system can be appropriately expressed in our frame-
work. For instance, the lift controller consists of two processes running in parallel: a
process Sorting which is responsible to react on user requests by computing a list of
floors where the lift should stop (this list is sorted according to the movement of the
lift), and a second process for controlling the lift. This process can be either Moving
or Stopped according to the state of the lift unit (e.g., Moving waits for sensor mes-
sages from the lift unit about the reached floor, and Stopped waits for floor requests
put in by Sorting in the global state).

Due to lack of space, we cannot show further details from this specification, but
the complete implementation is available from the authors.

6 Implementation

Our process-oriented specification language is implemented as a standard Curry li-
brary so that it can be used in any Curry program. It is freely available as a library
for PAKCS (Portland Aachen Kiel Curry System) [7] and completely implemented
in Curry, using the features for distributed programming [5] to implement the com-
munication between different components of a system. The current implementation
is based on an interpreter for process terms according to the operational semantics
of dynamic systems (see also [2]). Although the interpreter approach is not very
efficient, it is fast enough to run our examples and required only a limited imple-
mentation effort (the complete implementation consists of approximately 200 lines
of Curry code, without the imported standard libraries of Curry).

7 Conclusions

We have presented a domain-specific language for process-oriented programming.
Since this language is embedded in the declarative multi-paradigm language Curry,
we enable process-oriented programming in Curry, which is useful for the implemen-
tation of distributed or embedded systems. On the other hand, we can reuse the
programming language features of Curry for the high-level specification of dynamic
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systems. The specification language is based on process algebras and offers parame-
terized processes and a global store for the exchange of data between processes. Thus,
all internal communication (synchronization) between processes is performed via the
store, whereas the external communication between different dynamic systems is
done by sending messages. Although our language allows high-level specifications as
in other process-oriented specification languages, it is fully erecutable at the same
time. Therefore, it is a useful tool to implement and test dynamic systems in a pro-
totypical manner. We have shown the appropriateness of our framework by several
case studies.

There are many proposals for process-oriented specification languages (for exam-
ple, see [3]). However, as far as we know, our work is the first fully implemented
approach to exploit the high-level features of both functional and logic programming
for process-oriented specifications. The most similar proposal to our approach is [2]
(which is not accidental since our work is inspired by many discussions with the
authors of [2]). Therefore, we refer to [2] for a detailed discussion of related work. [2]
contains a “generic” framework for the extension of declarative (functional, logic,
functional logic) languages to include processes where there is a strict distinction
between the language of processes and the underlying programming language. In
particular, declarative programs are considered as the global state between transi-
tion steps of processes. Thus, the modification of declarative programs are allowed
without restrictions, i.e., arbitrary program clauses can be added or deleted. This
complicates the implementation of their framework. Moreover, when modifying val-
ues associated to names, the evaluation time becomes important, but this is not
clearly specified in their framework. To provide an effective implementation, we have
restricted all modifications to a set of well-defined data items (partitioned into a
static and dynamic part of the global store). As shown by our case studies, this
is sufficient for all examples discussed in [2]. Moreover, we could provide fully exe-
cutable specifications of all examples, which is due to the use of the Curry libraries
for distributed [5] and GUI [6] programming.

For future work we will consider more applications to study the appropriateness
of our approach or necessary extensions (like real-time conditions). Furthermore,
it would be interesting to consider the translation of our specification language into
other existing specification or control languages in order to reuse existing verification
or implementation frameworks. This would enable the use of high-level declarative
programming techniques in new application fields.

Acknowledgements. The authors are grateful to Rachid Echahed and Wendelin
Serwe for fruitful discussions that led to the development described in this paper.

References

1. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the
ACM, Vol. 47, No. 4, pp. 776-822, 2000.

2. R. Echahed and W. Serwe. Combining Mobile Processes and Declarative Programming.

In Proc. of the 1st International Conference on Computation Logic (CL 2000), pp. 300—

314. Springer LNAT 1861, 2000.

W. Fokkink. Introduction to Process Algebra. Springer, 2000.

4. M. Hanus. A Unified Computation Model for Functional and Logic Programming. In
Proc. of the 24th ACM Symposium on Principles of Programming Languages (Paris),
pp. 80-93, 1997.

@



10.

11.

12.

Embedding Processes in a Declarative Programming Language 73

. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language. In

Proc. of the International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’99), pp. 376-395. Springer LNCS 1702, 1999.

M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces.
In International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pp. 47-62. Springer LNCS 1753, 2000.

M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.
PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/"pakcs/, 2000.

M. Hanus, F. Huch, and P. Niederau. An Object-Oriented Extension of the Declara-
tive Multi-Paradigm Language Curry. In Proc. of the 12th International Workshop on
Implementation of Functional Languages (IFL 2000), pp. 89-106. Springer LNCS 2011,
2001.

M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.7). Available
at http://www.informatik.uni-kiel.de/"curry, 2000.

J. Peterson et al. Haskell: A Non-strict, Purely Functional Language (Version 1.4).
Technical Report, Yale University, 1997.

A. Podelski and G. Smolka. Operational Semantics of Constraint Logic Programs with
Coroutining. In Proc. of the Twelfth International Conference on Logic Programming
(ICLP’95), pp. 449-463. MIT Press, 1995.

P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29, No. 3,
pp. 240-263, 1997.






Implementierung von Port-basiertem Distributed
Haskell

Volker Stolz! und Frank Huch?

L RWTH Aachen, 52056 Aachen
2 Christian-Albrechts-Universitit zu Kiel, 24118 Kiel

Zusammenfassung In diesem Artikel wird die Implementierung eines robusten verteilten
und offenen Systems in Haskell unter Zuhilfenahme von Ports vorgestellt. Dieses System
erlaubt einer beliebigen Anzahl von Anwendungen miteinander zu kommunizieren. Eine
Anwendung kann ihre Dienste beliebigen Clients im Netzwerk anbieten, so daf} diese iiber
das Internet darauf zugreifen kénnen. Das Laufzeitsystem bietet einen Namensdienst, wel-
cher symbolische Namen auf die intern verwendeten Kommunikationsstrukturen abbildet.
Mittels einer Stream-Schicht wird von dem eigentlichen Lesen der Nachrichten abstrahiert.
Sie erlaubt es, einen Teil der Kommunikation in einem funktionalen Kontext abzuwickeln.

1 Einfiihrung

Heutzutage erfreuen sich verteilte Systeme in Form der sogenannten peer-to-peer-
Anwendungen immer groferer Beliebtheit. Damit wéchst auf Seiten der Entwickler
der Bedarf an Biliotheken, welche die Entwicklung solcher Systeme unterstiitzen und
erleichtern. Bei der Spezifikation eines Kommunikationsprotokolles miissen die Eigen-
schaften der zugrundeliegenden Netzwerkprotokolle beriicksichtigt werden, sowohl in
der Design- als auch in der Entwicklungsphase. Bibliotheken helfen den Entwick-
lern, ihr Kommunikationsprotokoll mehr oder minder unabhéngig vom Medium zu
implementieren. Auflerdem sollten dem Entwickler high-level Konzepte zur Fehler-
behandlung zur Verfiigung stehen.

Port-based Distributed Haskell [1] [2] bietet solch eine Bibliothek fiir die funk-
tionale Programmiersprache Haskell [4]. Das Laufzeitsystem stellt der Anwendung
sogenannte Ports zur Verfiigung, tiber die &hnlich wie iber Kanile in Concurrent
Haskell [5] getypte Nachrichten in Form von algebraischen Datentypen versendet
werden konnen. Diese Nachrichten werden mittels eines Netzwerkprotokolles (hier
iiber TCP) zwischen den einzelnen Rechnern ausgetauscht. Dabei ist es notwendig,
die Daten von der internen Darstellung in Haskell in einen Strom von Bytes zu kon-
vertieren. Auf der Gegenseite mufl diese Umwandlung wieder riickgéngig gemacht
werden. Fiir grundlegende Datentypen eignet sich Haskells Show bzw. Read-Klasse.
Da Haskell stark getypt ist, miissen einige Besonderheiten in der Implementierung
beachtet werden. Auflerdem sind zur effizienten Verwendung der Bibliothek Optimie-
rungen vor allem auf der Netzwerkebene wichtig.

2 Grundlagen und Concurrent Haskell

Bei der Entwicklung eines verteilten Systems in Haskell sto8t man schnell an die
Grenzen des mit den Standardbibliotheken Moglichen. Haskell verfiigt iiber eine Bi-
bliothek zur nebenldufigen Programmierung in Concurrent Haskell und einer weite-
ren zur Netzwerkprogrammierung notwendigen Bibliothek. Letztere bietet nur die
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Moglichkeit, einen Zeichenstrom als String zu iibertragen. Wir werden zeigen, wie
aus beiden Bestandteilen eine wertvolle Haskell-Bibliothek entsteht.

Wenn wir den Aspekt der Verteiltheit aufler Acht lassen, eignen sich die Kanéle
aus Concurrent Haskell als Implementierung eines Ports {iber einem algebraischen
Datentyp a: Sie bieten eine FIFO-Queue, in die mittels writeChan :: Chan a ->
I0 () Daten geschrieben und mit readChan : Chan a -> I0 a wieder ausgelesen
werden koénnen. Dabei konnen durchaus mehrere schreibende Prozesse vorhanden
sein. Sollte ein Prozef} aus einem leeren Kanal lesen, wird er solange suspendiert, bis
ein anderer Prozef} in diesen Kanal hineinschreibt. Neue Prozesse kénnen mit der
Funktion forkIO erzeugt werden. Es ist zu beachten, dafl alle erzeugten Prozesse
abgesehen von der Synchronisation iiber die Kanile nebenldufig arbeiten. Wir iiber-
nehmen diese Aktionen als newPort, readPort und writePort in unsere Bibliothek.

Eine einfache Client/Server-Anwendung kénnte beispielsweise so aussehen:

main :: I0 ()

main = do
p <- newPort
forkI0 (writer p 1)

reader p
reader p = do writer p i = do
i <- readPort p writePort p i
putStrLn "read:" ++ (show i) writer p (i+1)
reader p
Zwei Ports konnen mit mergePort :: Port a -> Port b -> I0 (Port (Either

a b)) verschmolzen werden. Durch eine einfache Fallunterscheidung 148t sich dann
feststellen, von welchem Port die gelesene Nachricht kam.

Bei einem Zugriff iiber das Netzwerk mufl der Port, an den eine Nachricht gesandt
werden soll, anders spezifiziert werden: Wir méchten dazu den Rechnernamen und
einen symbolischen Dienstnamen verwenden. Deshalb stellt Port-basiertes Distribu-
ted Haskell folgende Funktionen zur Verfiigung:

registerPort :: Port a  -> Portname -> I0 ()

lookupPort :: Hostname -> Portname -> I0 (Port a)
Zusétzlich zu den Kommunikationsprimitiven bietet die Bibliothek zwei Funktio-
nen zur robusten Programmierung: Mittels 1ink :: Port a -> I0 () -> I0 Link
koénnen beliebige I0-Aktionen ausgefiihrt werden, falls der im ersten Parameter ange-
gebene Port nicht mehr erreichbar ist oder eine Nachricht nicht zustellbar war (Feh-
ler im Netzwerk, aufgelegtes Modem). Das Laufzeitsystem iiberwacht diese gelinkten
Ports durch periodisches Polling, bis der Link mit der Funktion unlink :: Link ->
I0 () wieder abgebaut wird.

3 Das Laufzeitsystem

Wie schon erwdhnt liegen der internen Kommunikation vor allem die Kanile Con-
current Haskells zugrunde. Eine weitere wichtige Komponente ist die Netzwerk-
schicht. Fiir jede zu verschickende Nachricht mufl der Benutzer Instanzen der Klasse
Serialize implementieren, welche mittels der Funktionen serialize/deserialize
die Konvertierung der Haskell-Objekte in einen Bytestrom gewihrleisten. Fiir Basi-
stypen und algebraische Datentypen kann ohne zusétzlichen Aufwand die Instantiie-
rung {iber die Klassen Read und Show gewihlt werden, welche direkt seitens Haskell
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zur Verfiigung stehen. Lediglich fiir komplexere Datenstrukturen wie beispielswei-
se Graphen ist eine eiffizientere Implementierung des Marshallings von Haskell in
einen Bytestrom und umgekehrt empfehlenswert. Beim Senden an einen entfernten
Port werden diese Daten dann zusammen mit der Information, fiir welchen Port sie
bestimmt sind, iiber das Netz iibertragen.

Leider fiihrt der intuitive Ansatz, fiir jeden Port einen getypten Kanal zu neh-
men, zu einem Konflikt mit dem Haskell-Typsystem: Auf der annehmenden Seite,
im sogenannten PortListener wiirde dies dazu fiihren, daf§ diese Funktion unter an-
derem eine Datenstruktur, verwalten miite, welche getypt ist iiber alle auf diesem
Knoten vorhandenen Ports resp. Kanile. Da diese aber alle iiber unterschiedliche
Typen (z.B. algebraischen Typen, Strings, Int) gebildet sind und sich somit nicht
in einem einzigen Typen zusammenfassen lassen, miissen wir zu einen Weg finden:
Jedem internen Port ordnen wir nicht nur seinen getypten Kanal, sondern auch einen
Kanal vom Typ String zu, also genau dem Datenformat, indem wir die noch nicht
mit deserialize bearbeiteten Nachrichten erhalten. Zusétzlich starten wir pro Port
einen neuen Prozef, der in einer Schleife Daten aus dem Kanal vom Typ String
liest, mit deserialize konvertiert und dann in den endgiiltigen Kanal schreibt. Der
PortListener braucht somit nur alle Kanéle des Typs String zu verwalten, was
sich ohne Probleme mit dem Typsystem Haskells bewiltigen 148t. Es ergibt sich
somit der in Abbildung 1 gezeigte Verlauf einer eingehenden Nachricht bis hin zur
readPort-Anweisung.

Port Li st ener I-—%%W%W%/%

[
: deserialize;
Chan String- Wi teChan —4 Chan a I—»readPort

Abbildung 1. Uber das Netzwerk eingehende Nachricht

Bei der Kommunikation {iber TCP wird zwischen zwei kommunizierenden Anwen-
dungen eine einzige Verbindung aufgebaut, iber die der gesamte Nachrichtenverkehr
abgewickelt wird. Diese Optimierung ist wichtig, da der Verbindungsaufbau von TCP
sehr zeitaufwendig ist und es somit zu Zeitverzégerungen bei vielen Nachrichten hin-
tereinander kommt. Desweiteren 148t sich bei vielen parallelen Nachrichten auch nur
eine bestimmte Anzahl von Verbindungen benutzen, da das Betriebssystem nur be-
grenzte Ressourcen fiir deren Verwaltung zur Verfiigung hat.

Aufler den Nachrichten an einen Port werden iiber diese auch beispielsweise die
Kontrollinformationen fiir das Linking und den Namensdienst {ibertragen. Um die
verschiedenen Nachrichten auf der Seite des Empfingers wieder an das entsprechende
Subsystem weiterleiten zu kénnen, werden die Nachrichten vor dem Versenden mit
einem Préfix versehen. Im PortListener wird auf der anderen Seite wie in Abbildung
2 dargestellt das Prifix abgestreift und die Nachrichten tiber eine generische Routine
an das Laufzeitsystem iibergeben.

4 Streams

Der bisherige Ansatz zur Kommunikation in der I0-Monade [3] hat jedoch einige
Nachteile. Zum einen lassen sich gewisse Beschréinkungen nicht durch Typsignaturen
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Service prefixes

N

P1 Msg1 — Port P1
Ping [p,...] > link service
Lookup ‘foo* |- name service

Port Li st ener I

Abbildung 2. Verteilung der Nachrichten an die Subsysteme

formulieren. Zum anderen gehen Vorteile der funktionalen Programmierung verloren.
Beispielsweise bietet es sich fiir das Bearbeiten eingehender Nachrichten an, diese in
einer (unendlichen) Liste zu speichern und mit funktionalen Mitteln wie fold und
map abzuarbeiten.

Genau dies ist mit Streams moglich. Statt einem Port bietet die Bibliothek mit
newStream :: I0 (Port a, [al]) einen unendlichen Strom der eingehenden Nach-
richten an diesem Port. Die explizite Referenz auf den Port ist weiterhin fiir Sen-
deoperation nétig, auBlerdem wird sie von den Befehlen register und link be-
nutzt. Als Ersatz fiir mergePort wird nun mergeStreams :: [a] -> [b] -> IO
[Either a b] verwendet. Eine herkommliche Anwendung mit expliziten readPort-
Anweisungen kann nun in einer wesentlich priziseren Form angegeben werden. Als
Beispiel dient ein Fragment aus einem Chat-Server, bei dem ein Client zwei Prozes-
se/Ports benutzt, um Nachrichten vom Server und die Eingaben des Benutzers an

der Tastatur zu behandeln.
client = do

server = do server <- lookup host "Server"
(p,stream) <- newStream (me,s) <- newStream
register p "Server" writePort server (Connect me)
foldM_ work (kport ,kstream) <- newStream
initialState stream forkI0 (readKeyboard kport)
where stream <- mergeStreams kstream s

mapM (loop server) $
takeWhile (/= (Left "")) stream
writePort server (Close me)

work st (Connect him)
work st (Close  him)

5 Zusammenfassung

In dieser Arbeit haben wir einen kleinen Uberblick tiber die Verwendung von Port-
basiertem Distributed Haskell zur Programmierung eines robusten verteilten Systems
in Haskell gegeben. Aufbauend auf Concurrent Haskell bietet die Bibliothek Ports,
iiber die Nachrichten verschickt werden kénnen. Konstrukte zur robusten Program-
mierung stehen zur Verfiigung. Einige Besonderheiten der Implementierung wurden
betrachtet. Abschlieend wurde die Erweiterung der Bibliothek um Streams vorge-
stellt, so daf sich die Kommunikation auch wieder in einem funktionalen Kontext
mittels Stromen von Nachrichten betrachten 1a8t.
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Im Gegensatz zu vielen anderen Implementierung von Bibliotheken zur verteilten
Programmierung in Haskell ist unsere Bibliothek keine Erweiterung eines speziellen
Compilers wie zum Beispiel Glasgow parallel oder distributed Haskell. Die Biblio-
thek 148t sich unabhéngig von der Entwicklung des Compilers warten und weiterent-
wickeln. So kénnen von den Anwendern jeweils die Neuerungen in der Entwicklung
von Haskell direkt iibernommen werden, ohne lange auf eine Portierung des erwei-
terten Systems warten zu miissen.

Zur Zeit benotigt Port-basiertes Distributed Haskell den Glasgow Haskell Compi-
ler ghc ab Version 4.08.1 oder hoher. Die Bibliothek ist verfiigbar unter
http://www-i2.informatik.rwth-aachen.de/Research/distributedHaskell/.

Literatur

1. F. Huch and U. Norbisrath. Distributed Programming in Haskell with Ports. LNCS,
2011, 2000.

2. Frank Huch and Volker Stolz. Implementation of Portbased Distributed Haskell. In
Thomas Arts and Markus Mohnen, editors, IFL 2001, September 2001.

3. S. Peyton Jones. Tackling the Awkward Squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell.
http://research.microsoft.com/\char126simonpj/\#marktoberdorf, January 2001.

4. S. Peyton Jones et al. Haskell 98 report. Technical report, http://www.haskell.org/,
1998.

5. J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel, A. D. Gordon,
J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. Peyton Jones, A. Reid, and
P. Wadler. Report on the Programming Language Haskell (Version 1.4), April 1997.






WASH /CGI: Server-side Web Scripting with
Sessions, Compositional Forms, and Graphics

Peter Thiemann

Universitat Freiburg
thiemannQuni-freiburg.de

Abstract The common gateway interface (CGI) is one of the prevalent methods to provide
dynamic contents on the Web. Since it is cumbersome to use in its raw form, there are many
libraries that make CGI programming easier.

WASH/CGI is a domain specific embedded language for server-side Web scripting. It is
implemented and hosted in Haskell. Its implementation relies on CGI, but it avoids most of
CGTI'’s drawbacks by incorporating the concept of a session and by providing a compositional
approach to constructing interaction elements (forms). From a programmer’s perspective,
programming WASH/CGI is like programming a graphical user interface (GUI). In contrast
to a GUI, the layout is specified using HTML. WASH/CGI generates HTML via a new
monadic interface. Special combinators are available that provide typed input fields and
graphics, which is generated on the fly.

1 Introduction

The common gateway interface (CGI) is one of the oldest methods for deploying
dynamic Web pages based on server-side computations. As such, CGI has a number
of advantages. Virtually every Web server supports CGI. CGI requires no special
functionality from the browser, apart from the standard support for form elements
in HTML. On the programming side, CGI communicates via standard input/output
streams and environment variables. It is not tied to a particular architecture or
implementation language. Hence, CGI is the most portable approach to providing
dynamic contents on the Web.

The basic idea of CGI is straightforward. Whenever the Web server receives a
request for a CGI-enabled URL, it treats the local file determined by the URL as an
executable program and starts it in a new process. This kind of program is called
a CGI script. Tt receives its input through the standard input stream and through
environment variables and delivers the response to its standard output stream. The
CGI standard [4] fixes the format of this communication.

Unfortunately, there are a number of limitations. The most painful one stems
from the fact that the underlying HTTP protocol, which is used for communication
between browser and server, is stateless. Every single request starts a CGI script.
Then the script produces a response page and terminates. Hence, there is no concept
of a session, i.e., a sequence of alternating requests and responses. Usually, CGI
programmers must build such sessions from scratch. They distribute the stages of a
session over a number of CGI scripts and connect them manually through links in the
response pages. To provide a notion of session-wise state they must resort to putting
hidden information in their responses (hidden input fields) or to using cookies, which
is not reliable because browsers can refuse them. Clearly, it is error-prone to manually
maintain links in this way and also to have the code for a single interaction forcibly
spread over many programs.
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Another source of errors lies in the parameter passing scheme between forms and
CGI scripts. A form is an HTML element that contains named input elements. Each
input element implements one particular kind of input behavior (a widget in GUI
terminology). When a special submit button is pressed, the browser sends a list of
pairs of input element names and their string values to the server. Inside of a CGI
script, these argument values can be accessed by their name. Unfortunately, there is
no guarantee that the form uses the names expected by the script and vice versa.

Last but not least, all parameter passing between forms and CGI scripts is com-
pletely untyped. Each script must provide its own decoding functions to convert
strings into whatever type is really required. It is not even possible to specify the
expected type of an input field.

The present work provides a cure for all the issues mentioned above: the DSL
WASH/CGI. WASH/CGI makes CGI programming easy and intuitive. It is imple-
mented as a library for Haskell [7] and provides the following features:

e one program can implement entire sessions;

e the specification of an input field and the collection of the input from this widget
are tied together so that mismatches are not possible; the external name of an
input field does not matter;

e input fields are first-class entities; they may be typed and grouped to compound
input fields (compositionality); each group may be bound to a callback action;

e first-class images as active input fields where each pixel of the image can result
in a different action;

e no explicit URLs need to be constructed in the script, except references to ex-
ternal pages;

e the script is “relocatable”; it can be moved in the directory hierarchy or to
another server without change®.

The library is available through the WASH web page [17]. The web page also pro-
vides some live examples, complete with sources. The implementation of WASH is
documented elsewhere [14].

Familiarity with the Haskell language [7] as well as with the essential HTML
elements is assumed throughout.

2 Example programs

This section demonstrates the use of WASH/CGI with some examples. At first,
the reader may be surprised that the examples have a distinct GUI flavor. But
this is exactly the right impression: CGI programming should feel just like GUI
programming, where the layout is determined by HTML.

The library is based on the monad CGI, which handles all interaction with the
browser.

2.1 Hello world

mainCGI :: CGI ()
mainCGI =
htell (standardPage "Hello World" empty)

L Of course, provided that it can execute at all on the other machine.
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mainCGI :: CGI ()
mainCGI =
counter 0O

counter :: Int -> CGI ()
counter n =
ask (standardPage "Counter" $
makeForm $
do text "Current counter value "
text (show n)
br empty
submitField (counter (n + 1))
(fieldVALUE "Increment"))

Figure 1. The counter example

As customary, the first program just displays Hello World on the screen. The
combinator htell takes an HTML page produced by standardPage and sends it
to the browser. The combinator standardPage takes a title and the contents of the
HTML page (here: empty) and produces the usual combination of html, head, body,
and title tags.

standardPage ttl elems =
html (head (title (text ttl)) ##
body (hl (text ttl) ## elems))

Here, text transforms a string into an HTML element and the operator ## concate-
nates groups of HTML elements. Hence, the browser receives the following response:

<html><head><title>Hello World</title>
</head>

<body><h1>Hello World</hi1>

</body>

</html>

2.2 The counter example

The counter example (Fig. 1) uses the makeForm combinator to start a form. The con-
tents of the form are specified using a monad. Every content element (in fact, every
HTML element) is a value in the monad WithHTML CGI. The text combinator pro-
duces plain text output, the br empty inserts a <br> element, and the submitField
creates a submit-button. The first parameter of submitField is the action to be
taken, when the form is submitted. The second parameter specifies the attributes of
the submit-button. The empty parameter of br can also be replaced by attributes
for <br>.

2.3 Extended counter

counter :: Int -> CGI ()
counter n =
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ask $ standardPage "UpDownCounter" $ makeForm $
do text "Current counter value "
activeInputField counter (£fieldVALUE (show n))
submitField (counter (n + 1)) (fieldVALUE '"++")
submitField (counter (n - 1)) (fieldVALUE "--")

In this example, we consider a replacement for the counter function from the
previous example. It displays the current value in an input field and it has two
submit-buttons. The generated Web page has the following functionality: Clicking
on the ++ and -- button increments or decrements the counter’s value. Alternatively,
a new value may be entered by typing it into the activeInputField and hitting
return to submit the form. The input field is actually typed. It accepts only inputs
that parse as elements of type Int:

activelnputField :: Read a =>
(a => CGI ()) -> HTMLField (InputField a)

2.4 Calculator

A pocket calculator consists of a display and an array of buttons (Fig. 2). The
corresponding code uses a HTML table to specify the layout (Fig. 3). Each button
has an action, specified by calcAction, attached to it. The textInputField is a
specialized input field for Strings. Including it into a form yields a value dsp of type
InputField String. This value is a handle to extract the input from the field using
the function value :: InputField a -> Maybe a.

The table, tr, and td functions construct HTML elements with the same tag.
The argument of each function specifies the list of sub-elements and attributes of
the element. The operator ## serves to concatenate (lists of) HTML elements and
attributes. In the example code,
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mainCGI :: CGI ()
mainCGI =
calc "O" id

calc :: String -> (Integer -> Integer) -> CGI ()
calc dstr f =
ask $ standardPage "Calculator" $ makeForm $ table $
do dsp <- tr (td (textInputField (fieldVALUE dstr)
## attr "colspan" "4"))
let btn ¢ = td (submitField (calcAction dsp c f)
(fieldVALUE [c1))
tr (btn ’1° ## btn ’2’° ## btn ’3° ## btn ’+’)
tr (btn ’4’ ## btn ’5’ ## btn ’6° ## btn ’-’)
tr (btn ’7° ## btn ’8’ ## btn 9’ ## btn ’%’°)
tr (btn ’C’ ## btn ’0’ ## btn ’=’ ## btn °/’)

calcAction :: InputField String ->
Char -> (Integer -> Integer) -> CGI ()
calcAction dsp c £
| isDigit ¢ = calc (dstr ++ [c]) £
| ¢ ==’C” = mainCGI
| ¢ === =
calc (show (f (read dstr :: Integer))) id
| otherwise =
calc "O" (optable c (read dstr :: Integer))
where Just dstr = value dsp
optable ’+’ = (#)
optable ’-’ = (-)
optable ’*’ = (%)
optable ’/’ = div

Figure 3. Calculator

td (textInputField (fieldVALUE dstr) ##
attr '"colspan" "4")

creates the element

<td colspan="4"> <input type="text" value="..."> </td>

2.5 Graphics

mainCGI =
ask $ standardPage "UseGraphics" $ makeForm $
activelmage testImage

canvasRed = newImage (100,100) red

ovalBlue = fillOval canvasRed (20,20) (70,50) blue
background = activate ovalBlue hitNothing
testImage = activateColor background blue hitOval

hitOval = htell (standardPage "Hit the Oval!" empty)

85
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hitNothing = htell (standardPage "Missed." empty)

(255,0,0)
(0,0,255)

red
blue

The connection to GUIs also extends to images where parts of the image may be
bound to certain actions. The example program constructs a red square (canvasRed)
and paints a blue oval in it (ovalBlue). Next it activates the image, so that an action
is triggered when the image is clicked. The image background executes the action
hitNothing everywhere. The image testImage has the action hitOval attached to
each blue pixel in background, and the action hitNothing to any other pixel.

3 User-level concepts

This section presents an application programmer’s view of the concepts and function
of WASH/CGI.

3.1 HTML

Each HTML element is constructed by a function of the same name as shown with
the function table below. Each of these “constructor functions” has a type like

type HTMLCons m a = WithHTML m a -> WithHTML m a
table :: Monad m => HTMLCons m a

There are also constructor functions for attributes that will be attached to the en-
closing element. The generic attribute constructor is attr.

attr :: Monad m => String -> String -> WithHTML m ()

It constructs an attribute instance from an attribute name and an attribute value.
Although a value of type WithHTML m a stands for an ordered collection of HTML

elements and attributes, it is impossible to examine elements and attributes once

they are constructed. Passing such a value to a constructor function incorporates the

elements as sub-elements of the new element and also attaches the attributes to it.
The values

empty :: Monad m => WithHTML m ()
(##) :: Monad m => WithHTML m a —->
WithHTML m b -> WithHTML m a

serve as the empty collection and as the concatenation operation. Since WithHTML m
is a monad (provided that m is), HTML elements may also be combined using the
standard monad operations as well as the do notation.

In most cases, the parameter m will be the monad CGI. But there are exceptions,
as we will see below in 3.4.
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passwordInputField :: HTMLField (InputField String)
checkboxInputField :: HTMLField (InputField Bool)

fileInputField :: HTMLField (InputField String)
resetField :: HTMLField (InputField ())
submitField :: CGI () -> HTMLField ()

Figure 4. Input fields (excerpt)

3.2 Input fields

There are special combinators to construct input fields. They add an input field to
the current collection of HTML elements and return a handle for accessing the input
value. The type of such an input field is

type HTMLField a = WithHTML CGI () -> WithHTML CGI a

That is, it takes a collection of attributes (of type WithHTML CGI ()), attaches them
to a new <input> field, and embeds the new field into another collection. The generic,
typed textual input field is constructed by

inputField :: Read a => HTMLField (InputField a)

The Read a predicate comes from the fact that all communication between browser
and server is through strings. Hence, each value of type a must be converted from a
string.

Once again, the value of type InputField a is merely a handle to access its input
values through the two functions

value :: InputField a -> Maybe a
string :: InputField a -> Maybe String

The value function provides access to the parsed value (if there was a parsable
input), whereas the string function is meant for error analysis and provides access
to the raw input (if the input element was filled in at all).

The remaining input elements are provided in the same manner (see Fig. 4). A
fileInputField returns the contents of the chosen file as a string. A resetField
just clears all input fields, it has no I/O functionality. Radio buttons and selection
boxes have a slightly more complicated interface. They are omitted for brevity.

It remains to discuss the submitField. It takes a CGI action and generates a
button in the HTML page. Clicking such a button executes its action. The action is
similar to a continuation. Since a form may contain more than one submit button,
multiple continuations are possible. In particular, a large form may be composed
from small interaction groups that consist of input fields and one or more submit
buttons.

3.3 Forms

makeForm :: HTMLField ()

The constructor for forms takes a collection of attributes and returns a <form>
element. At least one form is necessary in each page that contains input fields since



88 Peter Thiemann

input fields do not make sense outside of a form. It is not necessary to set the
standard attributes of the form element. The action attribute, which contains the
URL for processing the form’s contents, the enctype attribute, which determines
the encoding of the form’s contents, and the method attribute are all determined
automatically by WASH/CGI.

3.4 Sessions

Programming of interactions is based on just four combinators in the monad CGI.

run :: Translation -> CGI () -> I0 ()
ask :: WithHTML CGI a -> CGI ()

tell :: CGIOutput a => a -> CGI (O

io :: (Read a, Show a) => ID a -> CGI a

The combinator run introduces the CGI monad. The standard main program (for
the examples above) is as follows:

main = run NoTranslation mainCGI

The NoTranslation argument is appropriate for all scripts that do not make use of
graphics generation (see Sec. 3.5).

The combinator ask displays a page on the browser. Its argument of type WithHTML
CGI a constructs a web page, which should contain a form. It returns a CGI action.
This action never produces its value. To extract values from the form, a callback
action must be tied to one of its input elements.

The combinator tell displays a page and terminates the interaction. The argu-
ment of tell can have any type of class CGIOutput. These types are Status (error
message), Location (redirect response to a URL), and WithHTML I0 a (a HTML
page). Actually, tell is a member function of CGIOutput.

class CGIOutput a where
tell :: a -> CGI ()
cgiPut :: a -> I0 ()

The combinator io injects an I0 action into the CGI monad.

3.5 Graphics

Many web pages contain graphics that are prefabricated. The WASH/CGI library
contains facilities to create simple, click-sensitive graphics on the fly. As expected
from a functional language, an image is a first-class value. Images can be created
from scratch (newImage), from text strings (makeText), and from existing GIF images
(gifImage). They can be manipulated in the usual ways by drawing ovals, rectangles,
and lines and by overlaying one image on top of another (see Figure 5 for a summary
of the interface). In addition, CGI actions may be attached to parts of an image using
activate, activateXY, and activateColor. Finally, an image can be inserted into a
web page using activeImage. In principle, it is possible to write interactive graphics
programs, although the interaction is a bit slow.
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-- inserting into HTML

activeImage :: CGIImage -> WithHTML CGI ()

-- creating new images

newlmage :: (Int, Int) -> Pixel -> CGIImage

makeText :: String -> Pixel -> CGIImage

gifImage :: String -> CGIImage

-- drawing

drawOval, fillOval, drawRectangle, fillRectangle,
drawLine :: CGIImage -> (Int, Int) -> (Int, Int) ->

Pixel -> CGIImage
-- composing images
overlay :: CGIImage -> CGIImage -> (Int, Int) ->
Pixel -> CGIImage
-- attaching actions
type ActionFun = Int -> Int -> Maybe (CGI ())
activateXY :: CGIImage -> ActionFun -> CGIImage
activate :: CGIImage -> CGI () -> CGIImage
activateColor :: CGIImage -> Pixel -> CGI () -> CGIImage

Figure 5. Interface for graphics

4 Related work

Meijer’s CGI library [10] implements a low-level facility for accessing the input to a
CGI script and for creating its output. It is nicely engineered and its functionality
is at about the level of our own RawCGI library. However, Meijer’s library offers
additional features like cookies and its own HTML representation, which we felt
should be separated from the functionality of RawCGI.

Hughes [9] has devised the powerful concept of arrows, a generalization of monads.
His motivating application is the design of a CGI library that implements sessions.
Indeed, the functionality of his library was the major source of inspiration for our
work. Our work indicates that monads are sufficient to implement sessions (Hughes
also realized that [8]). Furthermore, it extends the functionality offered by the arrow
CGI-library with a novel representation of HTML, compositional forms, and graphics.
Also, the callback-style of programming advocated here is not encouraged by the
arrow library.

Hanus’s library [6] for server-side scripting in the functional-logic language Curry
comes close to the functionality that we offer. In particular, its design inspired our
switching to a callback-style programming model. While his library uses logical vari-
ables to identify input fields in HTML forms, we are able to make do with a purely
functional approach. Our approach only relies on the concept of a monad, which is
fundamental for a real-world functional programmer.

Bigwig [13] is a system for writing Web applications. It provides a number of do-
main specific customizable languages for composing dynamic documents, specifying
interactions, accessing databases, etc. It compiles these languages into a combination
of standard Web technologies, like HTML, CGI, applets, JavaScript. Like our library,
it implements a session facility, which is more restrictive in that sessions may nei-
ther be backtracked nor forked. Each Bigwig session has a notion of a current state,
which cannot be subverted. However, the implementation of sessions is different and
relies on a special runtime system that improves the efficiency of CGI scripts [2].
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In addition, Bigwig provides a sophisticated facility for generating documents and
typed document templates. Moreover, there is a type system for forms. WASH/CGI
provides typed document template in the weak sense of Bigwig by keeping strings
and values of type Element apart. A special type system for forms is not required
since (typed) field values are directly passed to (typed) callback-actions. Hence, all
necessary type checking is done by the Haskell compiler.

MAWL [1] is a domain specific language for specifying form-based interactions.
It provides a subset of Bigwig’s functionality, but it was the first language to offer a
typing of forms against the code that received its input from the form. In particular,
the facilities for document templates are much more limited.

In comparison to a GUI library [3,5,12,15] a CGI library does not have to deal
with concurrency. All interaction is limited to exchanging messages between Web
browser and Web server, so that nested interactions are not possible. This greatly
simplifies the implementation. However, HTML is an expressive language to specify
layout, even for a GUI, and Web-based user interfaces are ubiquitous, so there is a
market for the kind of library that we are proposing.

5 Conclusions

The WASH/CGI library brings new power to CGI programmers. It offers an easy
and declarative way to implement complicated interactive Web-based user interfaces.
In particular, it treats the display of the Web browser like a graphical user interface
with restricted facilities. This approach results in a natural use of HTML for the
layout and in the use of callback-actions to specify the flow of control.

The WASH/CGI approach is not only suitable for CGI programming, but also
for other kinds of server-side Web scripting. For example, it would be interesting
to investigate a combination with Haskell server pages [11], with Bigwig’s runtime
system [2], or with proprietary APIs.
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Abstract This paper shortly describes a general approach for the integration of arbitrary
declarative languages and constraint systems. Our approach allows to build constraint lan-
guages according to current requirements and, thus, comfortable modelling and solving of
a wide range of problems.

1 Introduction

While constraint languages usually are extensions of an initial programming language
with constraints, where the evaluation mechanism of the initial language is extended
by some special rules for handling constraints, our point of view is different from that.
In our approach we consider a system of cooperating constraint solvers [2,3] which
initially is not equipped with a certain programming language. However, the system
allows the integration of different host languages by treating them as constraint
solvers. This enables to build constraint languages according to current requirements.

2 Constraint Programming and Constraint Solvers

A signature X = (S, F, R; ar) consists of a set S of sorts, a set F of function symbols,
a set R of predicate symbols, and an arity function ar : F U R — S*. A set of
variables appropriate to ¥ is a many sorted set X = (J,.q X*, where Vs € S the
set X is countably infinite. A X-structure D = ({D* | s € S}, {fP | f € F},
{rP | r € R}) consists of an S-sorted family of nonempty carrier sets D*, a family of
functions f7, and a family of predicates r? appropriate to F and R. Let the set of
terms T (F, X) be defined as usually.

Let ¥ = (S, F,R;ar) be a signature, where R contains at least one predicate
symbol =%, for every s € S. Let X be a set of Y-variables. Let D be a X-structure
with equality, i.e. for every predicate symbol =3, there is a predicate =5,C D* x D?,
for which the usual axioms for equality hold. A constraint is a string r(t1,...,tm),
where r € R with ar(r) = s1...s, and t; € T(F, X)%. The set of constraints over X
is denoted by Constraint. It contains, furthermore, the two distinct constraints true
and false with D E true and D ¥ false. The 4-tupel ¢ = (¥, D, X,Cons), where
{true, false} C Cons C Constraint, is a constraint system.

A solution of a disjunction C' of constraint conjunctions in D is a valuation
o0:Y — D, where var(C) CY C X, such that (D, o) E C holds. Solving the disjunc-
tion C' means finding out whether there is a solution for C' or not, i.e. finding out
whether C' is satisfiable in D or not.

Given a constraint system, we need appropriate algorithms for constraint ma-
nipulation. A constraint solver C'S is associated with a constraint system (. It is a
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collection of operations on disjunctive constraints, i.e disjunctions of constraint con-
junctions, of the associated constraint system. Typically a constraint solver consists
of a combination of instantiations of the operations constraint satisfaction, constraint
entailment, projection and simplification.

3 Cooperating Constraint Solvers

While the paradigm of constraint programming offers efficient mechanisms to handle
constraints of various constraint domains, it has been shown to be desirable to com-
bine several constraint solving techniques because this combination makes it possible
to solve problems that none of the single solvers can handle alone. Thus, in [2,3] we
introduced a flexible combination mechanism for constraint solvers. Moreover, using
this mechanism it is possible to integrate different host languages into the system
by considering their evaluation mechanisms as constraint solvers. In this section, we
shortly recall our combination mechanism.

Since we want to solve mixed disjunctive constraints such that every constraint
may contain function symbols and predicate symbols of different constraint systems
it is necessary to convert every such disjunction into a disjunction such that every
constraint is defined by function symbols and predicate symbols of exactly one con-
straint system. This is done by flattening. In [3] we give a definition of the function
Flatten and we show that the set of solutions w.r.t. the common variables is pre-
served. Thus, after flattening we can solve the newly built disjunction instead of the
original mixed one.

Figure 1 shows the architecture of our overall system for cooperating solvers. Let
L be the set of indices of constraint systems, u,v € L. To every individual solver
CS, a constraint store C” is assigned. Let DCCons, denote the set of disjunctive
constraints of (,. A constraint store C¥ € DCStore, C DCCons, is a disjunctive
constraint which is satisfiable in the corresponding structure. The meta constraint
solver coordinates the work of the different individual solvers and it manages the
constraint pool. Initially, the constraint pool contains the constraints of the constraint
conjunction ¢ which we want to solve.

constraint pool
meta constraint solver

constraint
solver CSy

constraint
solver CS1

constraint stores

Figure 1. Architecture of the overall system
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The meta solver takes constraints from the constraint pool and passes them to the
constraint solvers of the corresponding constraint domains (step 1). The individual
solvers propagate the received constraints to their stores (step 2). The meta solver
forces them to extract information from their stores. This information is added by
the meta solver to the constraint pool (step 3). The procedure of steps 1-3 is repeated
until the constraint pool contains either the constraint false or the constraint true
only. If the pool contains false only, then the initially given conjunction @ of con-
straints is unsatisfiable. If it contains ¢rue only, then the system could not find a
contradiction. Solutions of @ can be retrieved from the current stores. Because of
information exchange between the solvers, each individual solver deals in this way
with more information than only that of its associated constraints of &.

3.1 A Uniform Interface for Constraint Solvers

To enable a cooperation, the solvers need to exchange information. Let to every
constraint system a constraint solver be assigned. Consider a constraint solver C'S,,.
Our uniform interface of C'S, consists of a function tell, for constraint propagation
(according to step 2 of the above behaviour description of the system) and a set of
functions proj,_,, for constraint projection (corresponding to the above step 3).

Constraint Propagation The (partial) function tell, is due to constraint satisfaction.
tell, adds a constraint ¢ € Cons, to a constraint store C € DCStore, if the con-
junction of ¢ and C is satisfiable, i.e. if D F 3(C A ¢) holds. Figure 2 shows our
requirements to the function tell,.

tell,: Cons, x DCStore, ——
{truechanged, trueredundant, false} x DCStore, x DCCons, with

(1) if tell, (C, C) = (t?"ueredundant; Cl: C”)a then
C' =C, 0" =true, and D, EVY(C — ¢),
(2) if tell,(c,C) = (truechanged, C',C"), then
(a) D, EV((C Ac) +— (C'AC")), (b) D, EV(c — C"),
(c) D, EV(C' — C) and (d) D, E3C’,
(3) if tell,(c,C) = (false,C’,C"), then
C'=C, C" = false and D, ¥ I(C Ac).

Figure 2. Interface function tell, (requirements)

Giving requirements to the interface function tell, instead of a definition enables
the integration of a high number of existing solvers into our overall system. The
requirements allow to take particular properties of solvers, like their incompleteness
or an existing entailment test, into consideration for cost reduction for our overall
system. For a detailed description see [3].

Fzample 1. The interface function tellgr,;, of a solver CSg,,. for linear constraints
over real numbers could work as follows (an according implementation is possible
using the simplex algorithm):
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tellr,,, (c1,C) = (truechanged, C', true) with

¢ = (z <3), C = true, Dg,,, EV(C' +— (c1 AC)).
tellg,,, (c2,C") = (trueredundant, C', true), where ¢ = (z < 4) holds.
tellg,,, (c3,C") = (false,C’, false), where c3 = (x = 4) holds.

Projection of Constraint Stores Constraint projection is used to enable information
exchange between constraint solvers. The function proj,_,, (see Fig.3) projects a
store C” w.r.t. another constraint system ¢,, p# € L\{r} and a set of common vari-
ables. It provides knowledge which is implied by the store C* of C'S, in the form of
constraints of ¢,,. The projection function proj,_,, must be defined in such a way
that every solution of C” in D, is a solution of the projection proj,_,(Y,C") in D,,
where Y C X, N X,. This ensures that projecting a store w.r.t. another constraint
system, no solutions of the constraints of the store are lost. We call this required
property soundness, its formal description can be found in [3].

proju—u: P(X,,.) x DCStore, — DCCons,, with
X =X, N Xy, var(proju—,(Y,C")) CY.

Figure 3. Interface function proj,—, (requirements)

Ezample 2. Consider the solver C'Sg,,, and a solver CSgp of a finite domain con-
straint system (rp. The projection function projrp—=r,,, of CSrp could be defined
on top of a projection function projrp projecting the store of the finite domain con-
straint solver C'Syp and yielding constraints of DCConspp and a conversion function
CONVFD—R,;, : PCConspp — DCConsg,,, . The function projrp_r,,, could work
as follows:

Let CFP = ((y=rp 3)A(z>rp y) N (x €rp {2,3,4,5,6})) hold.

projrp({z},C*P) = (z €pp {4,5,6}) and

Projrpor,., {x},CTP) = convrpor,,, (projrp({z}, CFP))
=((z>4) A (z L6)).

In the following, we require given computable functions tell, and proj, ., v, pu €
L.

3.2 Description of the System Behaviour

The behaviour of our system is described by means of reduction relations for overall
configurations. An overall configuration H consists of a formal disjunction \/ie{17___7m}gi
of configurations G;. Formal disjunction V is commutative and associative. A con-
figuration G = (P ® A\, C") corresponds to the architecture of the overall system
(Fig.1). It consists of the constraint pool P which is a set of constraints which we want
to solve and the conjunction A, .; C” of constraint stores. In [2] we show elaborately
how to define strategies for cooperating constraint solvers, i.e. reduction systems for
overall configurations using the interface functions of the solvers.

In general, in one derivation step one or more configurations G;, i € {1,...,m},
are rewritten by a formal disjunction HG; of configurations:
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Thus, it is useful, to define first a derivation relation for configurations and, based
on this, to define a derivation relation for overall configurations.

Using such a two-step frame (see [2,3]) different reduction systems which real-
ize different cooperation strategies for the solvers have be described. The reduction
systems allow the derivation of an initial overall configuration Go = Ps © A, . Cf,
where the constraint pool Pg contains the constraints of the conjunction @ which we
want to solve and all constraint stores C§j, v € L, contain the constraint true only.
From the derived normal form we obtain information about the satisfiability of the
initially given disjunction of constraint conjunctions.

4 Declarative Languages as Solvers

Our system of cooperating solvers allows to integrate different host languages by
treating them as constraint solvers. In the following, we consider the integration of a
logic language into our system in detail and we sketch the integration of a functional
logic language. While we extend the languages by constraints, the evaluation mecha-
nisms of the languages are nearly unchanged, they are only extended by a mechanism
for collecting constraints of other constraint systems. The combination of arbitrary
constraint systems and languages allows to build constraint languages matching the
targeted problems and according to current requirements.

4.1 Logic Programming

A logic program P usually consists of a sequence of rules of the form

q(51,---,Sm) R ql(Sl,la"-7S1,7L)7'"7qk(Sk)7la---7sk,T‘)'a

k > 0, where every s;, s;; are terms and g, ¢; are predicate symbols. We also write
Q :— Q1,...,Q. in the following. Q; is called a literal. With @ : — Q1,...,Qk.,
where k = 0, we denote a rule of the form @., i.e. a so called fact. The aim of the
evaluation of a logic program P with a goal G = (?—Ry,...,R;.) (?—Ry,...,R;.
stands for V(=Ry V...V =Ry)) is to find a refutation of G from P (expressed by the
empty clause []) using (SLD-)resolution. If a refutation can be computed, i.e. P E
A(R1 A...AR;) holds, then the computation yields an (so called) answer substitution
o such that P EV o(RyA...AR;) holds. For a detailed description see for example [7].

A substitution o is a function ¢ : X — T(F, X) with o(z) € T(F,X)? for ev-
ery © € X® and dom(o) = {x | o(z) # z} is finite. If dom(o) = {z1,...,2,}

and o(z;) =t;, we write o = {z1/t1,...,2,/tn}. The function o is extended to
6:T(F,X)— T(F,X) by 6(z) = o(z), for every z € X, and 6(f(t1,...,tn)) =
f(&(t1),...,8(t,)). In the following, a substitution o is identified with its extension

. The composition of some substitutions o and ¢ is defined by (o o ¢)(t) = o(H(t))
for every t € T(F,X). A substitution o is a wunifier of two terms or literals ¢y
and Qs if 0(Q1) = 0(Q2). A unifier o is a most general unifier of @1 and Q-, i.e.
o = mgu(Q1,Q2), if for every unifier ¢ of Q; and @, there exists a substitution
such that ¢ = ¢ oo.

A substitution o is idempotent iff 0 o 0 = ¢ holds. The substitutions which we
are handling are usually idempotent. Let the parallel composition 1 of idempotent
substitutions be defined as given in [8].
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4.2 A Logic Language as Constraint Solver

Pure logic programming is convenient for example for working with lists and it allows
to handle problems with natural numbers by representing them via constructors, i.e.
via the 0-ary constructor 0 and the unary constructor s. However, there are problems
which cannot be handled comfortably with a pure logic language. Thus, constraints
have been integrated which led to constraint logic programming. A constraint logic
program P consists of a sequence of rules of the form @ : —Q1,...,Q., kK > 0, where
every Q;, i € {1,...,k}, may be a constraint of an arbitrary constraint system or a
literal. The evaluation mechanism of a constraint logic language handles literals as
before and it collects the constraints to check their satisfiability.

Ezample 8 (logic programs vs. logic programs with constraints). Pure logic languages
are not suitably for modelling and solving usual problems which arise when reasoning
about electric circuits with resistors. First, because statements like 1/R = 1/Ry + 1/Rq
for computing the value of resistors connected in parallel cannot be expressed con-
veniently. Secondly, because to model real world problems we often want to work
with large numbers, for example resistors may have values of some 10%2. Using
numbers built of constructors may cause much overhead, for example, computing
add(s(s(...s(0)...)),X,Y) causes a traversal through the whole first argument
term s(s(...s(0)...)) which may have a large depth.

Given three resistors of 102(2,2 % 1022 and 10 % 102(2, a rule for the sequential
composition of resistors, and rules for addition, an associated pure logic program P
is the following (at this, we work with resistor values of 10%(2.):

res(simple(s(0)),s(0)).

res(simple(s(s(0))),s(s(0))).

res(simple(s(s(s(s(s(s(s(s(s(s(0)))))))))),
s(s(s(s(s(s(s(s(s(s(0)))NINN.

res(seq(X,Y),Z) :- res(X,XV),res(Y,YV),add(XV,YV,Z).

add(0,X,X) .

add(s(X),Y,s(Z)) :- add(X,Y,Z).

The integration of constraints of an adequate constraint system (r for constraints
over real numbers allows to formulate constraints with numbers and even the for-
mulation of a rule for the parallel composition of resistors. An associated constraint
logic program P’ is the following:
resc(simple(10?),10?).
resc(simple(2 x 102),2 % 102).

(simple(10%),10%).
resc(seq(X,Y),Z) : —resc(X,XV),resc(Y,YV),XV+ YV =¢ Z.
resc(par(X,Y),Z) : —resc(X,XV),resc(Y,YV),1/XV+ 1/YV =¢ 1/Z.

Now, we integrate a logic language into our system of cooperating constraint
solvers by considering the language together with its evaluation mechanism as con-
straint solver C'S . for constraints over the herbrand universe. The constraint system
of this solver must contain besides the symbols and predicates introduced by the pro-
gram the symbols, the predicates, and the functions of all other involved constraint
systems. Its constraints are, thus, constraints of Cons,, v € L, or literals according to
the given program or they are of the form (X =, t), where X € X and t is a term. We
define the necessary interface functions tell: . and projcs—., v € L, as given in Fig.4
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and Fig.5, respectively. At this, for a substitution ¢, C(¢) = Axedom(¢)(x =rrd(X))
denotes a constraint store resp. a constraint conjunction which contains the bindings
of a substitution ¢.

tellpp: Let OFF = C(¢) be the current constraint store of C'S¢..

Let P be a constraint logic program, let ¢ = p(t1,...,tm) € Conscc be the constraint
which is to be propagated.

o Let {ri,...,rn} C P be the largest set of rules of P such that for every r;, i €
{1,...,n}, there is a variant r; = Q; : —Qi,1,...,Qik, k > 0, of r; s.t. no variable
occurs in ¢ and 7}, and o; is a most general unifier of ¢(c) and Q;, then
tellze(c, CF2) = (truechanged, C'°F,

Vieti,..n (C(0i) Aoi(d(Qi1)) A ... Aoi($(Qik)))) holds.
The constraint store does not change, i.e. C'** = C** holds.

e If there is no rule in P for which the above item holds, then
telles(c, C*F) = (false, C**, false) holds.

Let ¢ = C(o) € Consce be the constraint which is to be propagated.

o If 1 (0,0) # 0, then tellzc(c, C*F) = (truechanged, C'““ true),
where C'*% = C(1 (0, ¢)).
o If 1 (0,¢) = 0, then tellzr(c, C*F) = (false, C**, false).

Figure 4. Interface function tellz

projcc—,: The projection of a store Crr = C(¢) w.r.t. a constraint system v € L and a
set of variables X = X, N X, makes the substitutions for z € X explicit:

. — [ Neexcaoms)(9(@) =5 @) i 30 € X with §(x) # @
prOJ[,LHV(XaC(()b))_{t,rueeX Edom (@) otherwise.

Figure 5. Interface function projce—.,,v € L

Figure 6 illustrates, how the application of tellg, is used in our framework to
simulate a resolution step. First the constraint pool contains the constraint ¢ =
7(t1,...,7), the constraint store C** contains a substitution ¢, i.e. C*% = C(¢)
holds. The successful propagation of ¢ corresponds to a resolution step on ¢. Accord-
ing to the first item of the tells, description, for the constraint ¢ = r(t1,...,t,)
for every rule r(s1,...,Sn) : — rhs with unifiable left hand side the corresponding
most general unifier o is built. The constraint ¢ in the constraint pool is replaced
by the right hand side of the rule under o and ¢, i.e. by o(é(rhs)), and by a con-
straint conjunction C'(o) which expresses the newly built substitution o. If there is
more than one matching rule we get a number of newly built constraint pools and,
thus, a number of instantiations of the architecture. This is expressed in our overall
framework by an overall configuration consisting of a number of configurations.

The requirements for tell;, and projcr—.,, v € L, according to Fig.2 and Fig.3
are fulfilled, respectively. Notice in particular the first case of the definition of tell.,
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Program:
... C(o),0(¢(rhs)) .. r(s 5 ) Q Q
1ye--38n) — 1, ., m.
———
rhs
7a(sla 7511) — rhs'
with

Figure 6. How the interface function tell,, works

where

P*,D,,v € LEY((C** Ac) +—
(C"* A Vigqr,. .y (C(00) Aai(@(Qin)) A+ Ai(d(Qik))))))

holds (see for example [5] and there in particular Lemma 5.3).

In Example 4 we demonstrate the use of the logic language as constraint solver
by means of a part of a derivation of an initial overall configuration using our defined
interface functions.

Ezxzample 4. Given the constraint logic program P’ of Example 3 using our system
of cooperating constraint solvers with a solver for arithmetic constraints over real
numbers CSg and the solver C'S.. based on the logic language together with P’
we get the following trace (we omit unnecessary parts of substitutions to shorten the
trace):

{resc(par(R1,seq(R2,R3)),75)} ® CFX A CF =
by tell(resc(par(R1, seq(R2,R3)), 75), Cé:‘:) = (truechanged, Cém,
resc(R1,RV1) A resc(seq(R2,R3),RV23) A 1/RV1 + 1/RV23 =% 1/75)
{resc(R1,RV1),resc(seq(R2,R3),RV23),1/RV1 + 1/RV23 =5 1/75}
© CEEACR =
by tell(resc(R1,RV1), CEL) = (truechanged CE-,
(Rl =, simple(10%) ARV =, 10%) V ...)
Obviously, there are five alternatives according to P’. In the following, we only derive
the first alternative and leave the others out (which is marked by ...).
({R1 =, simple(10?),RV1 =, 10% resc(seq(R2,R3),RV23),
1/RV1+ 1/RV23 =¢ 1/75} ® CELEACRIWV ... =
by tell(R1 =;, simple(102), CE~) = (truechanged, CFL, true) and
tell(RV1 = 102, CFL) = (truechanged, CE~, true), where
C££ = C({R1/simple(10?),RV1/10%})
({resc(seq(R2,R3),RV23),1/RV1+ 1/RV23 =5 1/75} @ CEX ACF) V...



How to Integrate Declarative Languages and Constraint Systems 101

This first configuration of our overall configuration corresponds to the situation
in the computation of a constraint logic program, where a resolution step for
resc(par(R1, seq(R2,R3)),75) has been performed and as well a following resolu-
tion step for the newly received goal resc(R1,RV1) with the first rule with unifying
left hand side. The pool describes the goal which is now to be solved and the con-
straint store C£% contains the computed substitution. To distribute this substitution
over the full goal we project C£% w.r.t. (r such that C'Sg gets the information about
the bindings too:
({resc(seq(R2,R3),RV23),1/RV1+ 1/RV23 =5 1/7T5} 0 CEAACR) V... =
by projcc_r ({RVL}, CEX) = convepw (projec ({RVL}, CEL))
= conveesr (RV1 =, 10%) = (RV1 =% 102) and
projec—r ({R1}, CEX) = convepor (projec ({R1}, C5X))
= convgrr (Rl =£, simple(10?)) = true!

({RV1 =g 10?%, true,resc(seq(R2,R3),RV23),1/RV1+ 1/RV23 = 1/75}

© CEENCRY Y ...
The propagation of all constraints of the pool, the projection of the computed bind-
ings, and propagating the newly received projections again yields the following overall
configuration:
({true} ® CEEACR)V...
Projecting ~C**  wur.t. the variables of the initial constraint
resc(par(R1, seq(R2,R3)), 75) yields the valid bindings:
projcc({Ri}, CEE) = (Ri =, simple(10?)), i € {1,2}, and
projcc({R3}, C*X) = (R3 =, simple(2 * 10%)) holds.
The computed bindings for R1, R2, and R3 are as expectedly,
resc(par(simple(10?),seq(simple(10?), simple(2 * 10?))),75) holds.

The correspondence between a resolution sequence and a derivation using our
system of cooperating solvers can be observed. However, using our system, different
configurations of an overall configuration allow to consider all possible resolution
sequences.

4.3 Functional Logic Programs

Now, let us have a short look at a second language: a functional logic one. In contrast
to logic languages which work with predicates functional logic ones allow to work
with functions which may be even arguments of functions. Let ¥ = (S, F, R;ar)
be a signature, where F' is partitioned into a set A of constructors and a set I' of
defined functions. A functional logic program P over X is a finite set of rules of the
form f(t1,...,t,) — 7, where f € I'1*-*sn=s ¢, € T(A, X)%, and r € T(F,X)".
f(t1,...,t,) is linear, i.e. it does not contain multiple occurrences of one variable, and
var(r) Cvar(f(ti,...,ty)) holds. In the usual way, P induces a congruence relation
=p. A typical evaluation mechanism for functional logic programs is narrowing [1].

4.4 A Functional Logic Language as Constraint Solver

The introduction of constraints into the rules of our language yields constraint func-
tional logic programming. A functional logic program P with constraints over X is a

! Since simple ¢ Fr holds, this projection is ‘translated’ to true.
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finite set of rules of the form (f(¢1,...,t,) — r where G), where f € I's1%--Xsn7s
t; € T(A X)), andr € T(F, X)%. f(t1,...,t,) is linear, var(r) C var(f(ti,-..,tn))
holds, and G is a finite set of constraints over Y.

To handle the constraints during the evaluation of a functional logic program we
need to extend narrowing by constraints. A position p in a term t is represented by
a sequence of natural numbers, t|, denotes the subterm of ¢t at position p, and t[r],
denotes the result of replacing the subterm t|, by the term r. A narrowing step with
constraints t ~s, , (t',C"), where t,t' are terms and C' is a set of constraints, is
defined as follows: ¢ is narrowable to (t',C") if there is a nonvariable position p in ¢,
ie. t|, # X, s = (I - r where G) is a new variant of a rule from P, ¢ = mgu(t|p, 1),
and t' = o(t[r],) and C' = A .. 0(c).

Now, we consider a functional logic language together with its evaluation mech-
anism as constraint solver C'Sr, for constraints over functional expressions. As for
the logic language, the constraint system (r, must contain the symbols, the predi-
cates, and the functions of all other involved constraint systems as well. Constraints
of (xr are restricted to be of the form (t =p X), where t € T(F,X) and X € X.
Constraints of the form t; =p tp, where t1,ty € T(F,X), are decomposed into
(t1 =p XAty =p X). Let for a substitution ¢, C(#) = Aycgom(q) (X =7£0(X)) hold.

Instead of giving a formal definition we only sketch what ’propagating constraints’
means in this context and how narrowing steps with constraints are used there.

Program:

1" — r’ where ¢
1” — " where G”

with
¢(t) ~o (t',C") and
B(t) ~on (£7,C").

Figure 7. How the interface function tellr, works

Consider Fig.7 which illustrates, how the application of tell zx works in our frame-
work to simulate a narrowing step with constraints. Initially the constraint pool
contains the constraint ¢ = (+ =p V) and the constraint store C¥* contains a sub-
stitution ¢. The successful propagation of ¢ corresponds to a narrowing step with
constraints on t. For the term ¢ for every matching rule 1 — r where G a narrowing
step with constraints is performed yielding the most general unifier ¢’ and a tuple
(t',C"). The constraint (t =p V') in the constraint pool is replaced by the the con-
straint (¢’ =p Y'), by a constraint conjunction C'(¢') which expresses the newly built
substitution ¢’, and by the newly built constraint conjunction C’ which is arisen from
the narrowing step. If there is more than one matching rule we get a number of newly
built constraint pools and, thus, a number of instantiations of the architecture. This
would be expressed in our overall framework by an overall configuration consisting
of a number of configurations.

Figure 7 illustrates a successful constraint propagation, the cases of
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1. afailing propagation because there is no matching rule for the term to be reduced
— this yields a constraint false which is added to the pool and

2. a propagation, where the term ¢ is already a constructor term, — a binding of YV
to this term is tried to add to the constraint store C'S7* by parallel composition
of substitutions [8]

are left out here.
The definition of projrc—,,,v € L, is the same as that of projc,—, in Fig.5
(where every index LL is replaced by FL).

5 Conclusion

This paper shortly describes a general approach for the integration of arbitrary
declarative languages and constraint systems. After a short reintroduction of a sys-
tem of cooperating solvers of [2,3] we have shown how to integrate host languages,
in particular a logic and a functional logic one, into such a system by treating the
evaluation mechanisms of the languages together with programs as constraint solvers
and defining interface functions for them.

In contrast to several other systems and schemes for the combination of constraint
solvers [4,6,9] which usually have one fixed host language (a logic one), our system
allows to integrate different host languages. Moreover, our system is very flexible,
because we can integrate different solvers and we can define different cooperation
strategies (shown in [2]). Thus, our approach allows to build constraint languages
according to current requirements and, thus, comfortable modelling and solving of a
wide range of problems.
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Abstract This paper describes an implementation of narrowing, an essential component
of implementations of modern functional logic languages. These implementations rely on
narrowing, in particular on some optimal narrowing strategies, to execute functional logic
programs. We translate functional logic programs into imperative (Java) programs without
an intermediate abstract machine. A central idea of our approach is the explicit represen-
tation and processing of narrowing computations as data objects. This enables the imple-
mentation of operationally complete strategies (i.e., without backtracking) or techniques
for search control (e.g., encapsulated search). Thanks to the use of an intermediate and
portable representation of programs, our implementation is general enough to be used as a
common back end for a wide variety of functional logic languages.

1 Introduction

This paper describes an implementation of narrowing for overlapping inductively
sequential rewrite systems [5]. Narrowing is the essential computational engine of
functional logic languages (see [13] for a survey on such languages and their im-
plementations). An implementation of narrowing translates a program consisting
of rewrite rules into executable code. This executable code currently falls into two
categories: Prolog predicates (e.g., [4,11,14,25]) or instructions for an abstract ma-
chine (e.g., [10,18,24,27]). Although these approaches are relatively simple, in both
cases, several layers of interpretation separate the functional logic program from the
hardware intended to execute it. Obviously, this situation does not lead to efficient
execution.

In this paper we investigate a different approach. We translate a functional logic
program into an imperative program. Our target language is Java, but we make lim-
ited use of specific object-oriented features, such as inheritance and dynamic poly-
morphism. Replacing Java with a lower-level target language, such as C or machine
code, would be a simple task.

In Section 2 we briefly introduce the aspects of functional logic programming rel-
evant to our discussion. In Section 3 we describe the elements and the characteristics

* This research has been partially supported by the DAAD/NSF under grant INT-9981317
and the German Research Council (DFG) under grant Ha 2457/1-2. This paper is an
abridgement of a paper to appear in the proceedings of the Third International Conference
on Principles and Practice of Declarative Programming (PPDP 2001), and is copyright
2001 by the Association for Computing Machinery. Extracts of that paper are reproduced
for this purpose by permission of the ACM.
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of our implementation of narrowing. In Section 4 we describe aspects of our compila-
tion process, as well as execution issues such as input, output and tracing/debugging
that may greatly affect the usability of a system. In Section 5 we summarize cur-
rent efforts toward the implementation of functional logic languages, particularly
w.r.t. implementations of narrowing and how they compare to our work. Section 6
offers some conclusions.

2 Functional Logic Programs

Functional logic languages combine the operational principles of two of the most
important declarative programming paradigms, namely functional and logic pro-
gramming (see [13] for a survey). Efficient demand-driven functional computations
are amalgamated with the flexible use of logical variables, providing for function
inversion and search for solutions. Functional logic languages with a sound and com-
plete operational semantics are usually based on narrowing (originally introduced
in automated theorem proving [29]) which combines reduction (from the functional
part) and variable instantiation (from the logic part). A narrowing step instantiates
variables of an expression and applies a reduction step to a redex of the instantiated
expression. The instantiation of variables is usually computed by unifying a subterm
of the entire expression with the left-hand side of some program equation.

Ezxzample 1. Consider the following rules defining the < predicate | eq on natural
numbers which are represented by terms built from zer o and succ:

I eq(zero,Y) = true
| eq(succ(X), zero) = fal se
I eq(succ(X),succ(Y)) =1leq(XY)

The expression | eq(succ(M, Y) can be evaluated (i.e., reduced to a value) by
instantiating Y to succ( N) to apply the third equation, followed by the instantiation
of Mto zer 0 to apply the first equation:

leq(succ(M,Y) ~>1Yssucc(N) leq(MN) ~Mszerop LTue

Narrowing provides completeness in the sense of logic programming (computa-
tion of all answers, i.e., substitutions leading to successful evaluations) as well as
functional programming (computation of values). Since simple narrowing can have
a huge search space, a lot of effort has been made to develop sophisticated narrow-
ing strategies without losing completeness (see [13]). Needed narrowing [7] is based
on the idea of evaluating only subterms which are needed in order to compute a
result. For instance, in a term like | eq( 1, t2) , it is always necessary to evaluate
t; (to some variable or constructor-rooted term) since all three rules in Example 1
have a non-variable first argument. On the other hand, the evaluation of ¢, is only
needed if #; is of the form succ(t). Thus, if t; is a free variable, needed narrow-
ing instantiates it to a constructor term, here zer o or succ(V). Depending on
this instantiation, either the first equation is applied or the second argument ¢, is
evaluated. Needed narrowing is currently the best narrowing strategy for first-order
(inductively sequential) functional logic programs [3] due to its optimality properties
w.r.t. the length of derivations and the independence of computed solutions, and due
to the possibility of efficiently implementing needed narrowing by pattern match-
ing and unification [7]. Moreover, it has been extended in various directions, e.g.,
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higher-order functions and A-terms as data structures [17], overlapping rules [5], and
concurrent computations [15].

Needed narrowing is complete, in the sense that for each solution to a goal there
exists a narrowing derivation computing a more general solution. However, most of
the existing implementations of narrowing lack this property since they are based on
Prolog-style backtracking. Since backtracking is not fair in exploring all derivation
paths, some solutions might not be found in the presence of infinite derivations,
i.e., these implementations are incomplete from an operational point of view. An
important property of our implementation is its operational completeness, i.e., all
computable answers are eventually computed by our implementation.

3 Implementation of Needed Narrowing

In this section we describe the main ideas of our implementation of narrowing. We
implement a strategy, referred to as INS [5], proven sound and complete for the
class of the overlapping inductively sequential rewrite systems. In these systems, the
left-hand sides of the rewrite rules defining an operation can be organized in defi-
nitional trees. However, an operation may have distinct rewrite rules with the same
left-hand side (modulo renaming of variables): operation coi n (Section 3.8), is one
example. To ease the understanding of our work, we first describe the implementation
of rewrite computations in inductively sequential rewrite systems. We then describe
the extensions that lead to narrowing in overlapping inductively sequential rewrite
systems.

3.1 Overview

The overall goals of our implementation are speed of execution and operational com-
pleteness. The following principles guide our implementation and are instrumental
in achieving the goal.

1. A reduction step replaces a redex of a term with its reduct. A term is repre-
sented as a tree-like data structure. The execution of a reduction updates only
the portion of this data structure affected by the replacement. Thus, the cost of
a reduction is independent of its context. We call this principle in-place replace-
ment.

2. Only somewhat needed steps are executed. We use the qualifier “somewhat” be-
cause different notions of need have been proposed for different classes of rewrite
systems. We execute a particular kind of steps that for reductions in orthogonal
systems is known as root-needed [28]. Thus, reductions that are a priori useless
are never performed. We call this principle useful step.

3. Don’t know non-deterministic reductions are executed in parallel. Both narrow-
ing computations (in most rewrite systems) and reductions (in interesting rewrite
systems) are non-deterministic. Without some form of parallel execution, opera-
tional completeness would be lost. We call this principle operational completeness.

In inductively sequential rewrite systems, and when computations are restricted to
rewriting, it is relatively easy to faithfully implement all the above principles. In
fact, our implementation does it. However, our environment is considerably richer.
We execute narrowing computations in overlapping inductively sequential rewrite
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systems. In this situation, two complications arise. The non-determinism of narrowing
and/or of overlapping rules imply that a redex may have several replacements. In
these situations, there cannot be a single in-place replacement. Furthermore, the steps
that we compute in overlapping inductively sequential rewrite systems are needed,
but only modulo non-deterministic choices [5]. Hence, some step may not be needed
in the strict sense of [7,22], but we may not be able to know by feasible means which
steps.

The architecture of our implementation is characterized by terms and compu-
tations. Both terms and computations are organized into tree-like linked (dynamic)
structures. A term consists of a root symbol applied to zero or more arguments which
are themselves terms. A computation consists of a stack of terms that identify re-
duction steps. All the terms in the stack, with the possible exception of the top,
are not yet redexes, but will eventually become redexes, and be reduced, before the
computation is complete. In terms, links go from a parent to its children, whereas in
computations links go from children to their parent.

A graphical representation of these objects is shown in Figure 1. In this figure,
the steps to the left represent the terms in the stack of the computation. Stepg is the
bottom of the stack: it cannot be executed before Step; is executed. Likewise Step;
cannot be executed before Steps is executed.

Stepp ——— > posi tive

Step1 add

7N

Stepo ——coi n t

Figure 1. Snapshot of a computation of term posi ti ve(add(coin, t))

To ease understanding, we begin with an account of our implementation of rewrit-
ing computations in inductively sequential rewrite systems. Although non-trivial, this
implementation is simple enough to inspire confidence in both its correctness and ef-
ficiency. Then, we generalize the discussion to larger classes of rewrite systems and
finally to narrowing computations and argue why both correctness and efficiency of
this initial implementation are preserved by these extensions.

3.2 Symbol representation

Symbols are used to represent terms. A symbol is an object that contains two pieces
of information: a name and a kind. Since there is no good reason to have more than
one instance of a given symbol in a program, each distinct symbol is implemented as
an immutable singleton object. The name is a string. The kind is a tag that classifies
a symbol. For now, the tag is either “defined operation” or “data constructor”. Addi-
tional tags will be defined later to compute with larger classes of rewrite systems. The
tag of a symbol is used to dispatch computations that depend on the classification
of a symbol. Of course, we could dispatch these computations by dynamic polymor-
phism, i.e., by defining an abstract method overridden by subclasses. Often, these
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methods would consist of a few statements that use the environment of the caller.
A tag avoids both a proliferation of small methods and the inefficiency of passing
around the environment. Furthermore, this architecture supports implementations
in objectless target languages as well.

Nevertheless, in our Java architecture, class symbol has subclasses such as opera-
tion and constructor. In particular, there is one subclass of operation for each defined
operation f of a functional logic program. This class, according to our second prin-
ciple, contains the code for the execution of a useful step of any term rooted by f.
Operations are defined by rewrite rules. We use the following rules in the examples
to come.

add (zero, Y) =Y

add (succ (X), Y) = succ (add (X, Y))
positive (zero) = fal se

positive (succ (-)) = true

3.3 Term representation

Terms of user-defined type contain two pieces of information: the root of the term,
which is a symbol, and the arguments of the root, which are terms themselves. Terms
of builtin types contain specialized information, e.g., terms of the builtin type int
contain an int. This situation suggests defining a common base class and a special-
ization of this class for each appropriate type of term. However, this is in conflict
with the fact that according to the first principle of our implementation, a term is a
mutable object. In Java, the class of an object cannot change during execution.
Therefore, we implement a term as a bridge pattern. A term delegates its func-
tionality to a representation. Different types, such as user-defined types, builtin types,
and variables are represented differently. All the representations provide a common
functionality. The representation of a term object can change at run-time and thus
provide mutability of both value and behavior as required by the implementation.

3.4 Computation representation

A computation is an object abstracting the necessity to execute a sequence of specific
reduction steps in a term. Class computation contains two pieces of information:

1. A stack of terms to be contracted (reduced at the root). The terms in the stack
are not redexes except, possibly, the top term. Each term in the stack is a subterm
of the term below it, and must be reduced to a constructor-rooted term in order
to reduce the term below it. Therefore, the elements of the stack in a computation
may be regarded as steps as well. The underpinning theoretical justification of
this stack of steps is in the proof of Th. 24 of the extended version of [5]. We
ensure that every term in the stack eventually will be contracted. To achieve this
aim, if a complete strategy cannot execute a step in an operation-rooted term,
it reduces the term to the special value failure.

2. A set of bookkeeping information. For example, this information includes the
number of steps executed by the computation and the elapsed time. An inter-
esting bookkeeping datum is the state of a computation. Computations being
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executed are in a ready state. A computation’s state becomes exhausted after
the computation has been executed and it has been determined that no more
steps will be executed at the root of the bottom-most term of the stack. Before
becoming exhausted a computation state may be either result or failure. Later,
we will extend our model of computation with residuation. With the introduction
of residuation, a new state of a computation, flounder, is introduced as well.

Loosely speaking, an initial computation is created for an initial top-level expression
to evaluate. This expression is the top and only term of the stack of this computation.
If the top term ¢ is not a redex, a subterm of ¢ needed to contract ¢ is placed on the
stack and so on until a redex is found. A redex on top of the stack is replaced by
its reduct. If the reduct is constructor-rooted, the stack is popped (its top element
is discarded).

3.5 Search space representation

The search space is a queue of computations which are repeatedly selected for pro-
cessing. The machinery of a queue and fair selection is not necessary for rewriting in
inductively sequential rewrite systems. For these systems, computations are strictly
sequential and consequently a single (possibly implicit) stack of steps would suffice.
However, the architecture that we describe not only accommodates the extensions
from rewriting to narrowing and/or from inductively sequential rewrite systems to
the larger classes that are coming later, but it allows us to compute more efficiently.

A computation serves two purposes: (1) finding maximal operation-rooted sub-
terms t of the top-level term to evaluate and (2) reducing each ¢ to head normal
form. The pseudo-code of Figure 2 sketches part (2), which is the most challenging.
Some optimizations would be possible, but we avoid them for the sake of clarity.

Since inductively sequential rewrite systems are confluent, replacing in-place a
subterm v of a term ¢ with u’s reduct does not prevent reaching ¢’s normal form.
When a term has a result this result is found, since repeated contractions of needed
redexes are normalizing.

3.6 Sentinel

The first extension to the previous model is the introduction of a “sentinel” at the
root of the top-level expression being evaluated. For this, we introduce a distin-
guished symbol called sentinel that takes exactly one argument of any kind. If ¢ is
the term to evaluate, our implementation evaluates sentinel(t) instead. Thus, this
is the actual term of the initial computation. Symbol sentinel has characteristics of
both an operation and a constructor. Similar to an operation, the stack of the initial
computation contains sentinel(t), but similar to a constructor, sentinel(t) cannot be
contracted for any ¢. Having a sentinel has several advantages. The strategy works
with the sentinel by means of implicit rewrite rules that always look for an internal
needed redex and never contract the sentinel-rooted term itself. Also, using a sen-
tinel saves frequent tests similar to using a sentinel in many classic algorithms, e.g.,
sorting.
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while the queue is not empty
select a ready computation k from the queue
let ¢t be the term at the top of k’s stack
switch on the root of ¢
| case t is operation-rooted
| switch on the reducibility of ¢
| casetis aredex
| replace t with its reduct
| put k back into the queue
case t is not a redex
| switch on s, a maximal needed subterm of ¢
| | case s exists
| | | push s on k’s stack
| | | put k back into the queue
| | case s does not exist
| | | stop the computation, no result exists
| endswitch
endswitch
ase t is constructor-rooted
pop k’s stack
if k’s stack is not empty
| | | put k back into the queue
endswitch
endwhile

|
|
|
|
|
|1
|||
||
|1
|||
||
||
|||
||
||
|||
||
| c
|||
I |
|

Figure 2. Procedure to evaluate a term to a head normal form

3.7 Failure

The second extension to the previous model is concerned with the possibility of a
“failure” of a computation. A failure occurs when a term has no constructor normal
form. The computation detects a failure when the strategy, which is complete, finds
no useful steps (redexes) in an operation-rooted term.

The pseudo-code presented earlier simply terminates the computation when it
detects a failure. For the extensions discussed later it is more convenient to explicitly
represent failures in a term. This allows us, e.g., to clean up computations that
cannot be completed and to avoid duplicating certain computations. To this purpose
we introduce a new symbol called failure. The failure symbol is treated as a constant
constructor.

Suppose that u is an operation-rooted term. If the strategy finds no step in w, it
evaluates u to failure. A failure symbol is treated as a constructor during the pattern
matching process. Implicit rewrite rules for each defined operation rewrite any term
t to failure when a failure occurs at a needed position of ¢. For example, we perform
the following reduction:

add (failure, v) — failure

With these implicit rewrite rules, an inner occurrence of failure in a term propagates
up to the sentinel, which can thus report that a computation has no result. The
explicit representation of failing computations is also important in performing non-
deterministic computations.
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3.8 Non-determinism

The third extension to the previous model is concerned with non-determinism. In our
work, non-determinism is expressed by rewrite rules with identical left-hand sides,
but distinct right-hand sides. A textbook example of a non-deterministic defined
operation is:
coin
coin

= zero

= succ (zero)

This operation differs from the previous ones in that a given term, say s = coi n,
has two distinct reducts.

The most immediate problem posed by non-deterministic operations is that if s
occurs in some term t and we replace in-place s with one of its replacements, we
may lose a result that could be obtained with another replacement. If a term such
as s becomes the top of the stack of a computation k, we change the state of k
to erhausted and we start two or more new computations. Each new computation,
say k', begins with a stack containing a single term obtained by one of the several
possible reductions of s.

The procedure described above can be optimized in many ways. We mention
only the most important one that we have implemented — the sharing of subterms
disjoint from s. We show this optimization in an example. Suppose that the top-level
term being evaluated is:

add (coin, #t)

The non-determinism of coi n gives rise to the computation of the following two
terms:

add (zero, t)

add (succ (zero), t)
These terms are evaluated concurrently and independently. However, term ¢ in the
above display is shared rather than duplicated. Sharing improves the efficiency of
computations since only one term, rather than several equal copies, is constructed
and possibly evaluated. In some situations, a shared term may occur in the stacks of
two independent computations and be concurrently evaluated by each computation.
This approach avoids a common problem of backtracking-based implementations of
functional logic languages, in which ¢ will be evaluated twice if it is needed during
the evaluation of both add terms shown above.

3.9 Rewrite rules

The final relevant portion of our architecture is the implementation of rewrite rules.
All the rules of an ordinary defined operation f are translated into a single Java
method. This method implicitly uses a definitional tree of f to compare constructor
symbols in inductive positions of the tree with corresponding occurrences in an f-
rooted term t to reduce. Let k; be a computation in the queue, ready the state of
ki, and t the term on the top of k;’s stack. The following case breakdown defines the
code that needs to be generated.

1. If ¢ is a redex with a single reduct, then ¢ is replaced in-place by its reduct.
2. If t is a redex with several reducts, then a new computation is started for each
reduct. The state of k; is changed to exhausted.
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3. If in a needed position of ¢ there is failure, then ¢ is considered a redex as well
and it is replaced in-place by failure.

4. If in a needed position of ¢ there is an operation-rooted ordinary term s, then s
is pushed on the stack of k;.

5. The last case to consider is when operation f is incompletely defined and no
needed subterm is found in ¢. In this case, ¢ is replaced in-place by failure.

3.10 Narrowing

At this point we are ready to discuss the extension of our implementation to nar-
rowing. A narrowing step instantiates variables in a way very similar to a non-
deterministic reduction step. For example, suppose that allnat is an operation defined
by the rules:

all nat = zero

al I nat = succ (allnat)

Narrowing term add( X, t) , where X is an uninstantiated variable and ¢ is any term,
is not much different from reducing add(al | nat , ¢) .

There are two key differences in the handling of variables w.r.t. non-deterministic
reductions: (1) we must keep track of variable bindings to construct the computed
answer at the end of a computation, and (2) if a given variable occurs repeatedly in a
term being evaluated, the replacement of a variable with its binding must replace all
the occurrences. We solve point (1) by storing the binding of a variable in a computa-
tion. Point (2) is simply bookkeeping. We represent substitutions “incrementally.” A
computation computes both a value (for the functional part) and an answer (for the
logic part). The answer is a substitution. In most cases, a narrowing step produces
several distinct bindings for a variable. Each of these bindings increments a previ-
ously computed substitution. For example, suppose that the expression to narrow is:

add (X, Y) = ¢
for some term ¢. Some computation may initially bind X to zer 0. Later on, a narrow-
ing step may bind Y independently to both zer o and succ(Yq). These bindings
will “add” to the previous one. The previous binding is shared, which saves both
memory and execution time.

3.11 Parallelism

Our implementation includes a form of parallelism known as parallel-and. And-
parallel steps do not affect the soundness or completeness of the strategy, INS, un-
derlying our implementation, but in some cases they may significantly reduce the
size of the narrowing space of a computation — possibly from infinite to finite. The
parallel-and operation is handled explicitly by our implementation. If a computation
k leads to the evaluation of ¢t & u, where ¢ and u are terms and “&’ denotes the
parallel-and operation, then steps of both ¢t and u are scheduled. This requires to
change the stack of a computation into a tree-like structure. The set of leaves of this
tree-like structure replaces the top of the stack previously discussed.

As soon as one of these parallel steps has to be removed from the tree, which
means that its term argument has been reduced to a constructor term ¢ (including
failure), the parent of the step is reconsidered. Depending on ¢’s value, either the
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parent term is reduced (to a failure if ¢ = failure) and the other parallel steps are
removed, or (if ¢ = success) the computation of the other parallel steps continues
normally.

3.12 Residuation

Residuation is a computational mechanism that delays the evaluation of a term
containing an uninstantiated variable in a needed position [1]. Similar to narrowing,
it supports the integration of functional programming with logic programming by
allowing uninstantiated variables in functional expressions. However, in contrast to
narrowing it is incomplete, i.e., unable to find all the solutions of some problems.
Residuation is useful for dealing with built-in types such as numbers [9]. Residuation
is meaningful only when a computation has several steps executing in parallel. If a
computation has only one step executing, and this step residuates, the computation
cannot be completed and it is said to flounder.

Operations that residuate are called rigid, whereas operations that narrow are
called flexible. A formal model for the execution of programs defining both rigid and
flexible operations is described in [15]. Our implementation already has the necessary
infrastructure to accommodate this model. When a step s residuates on some variable
V', we store (a reference to) s in V, mark s as residuating and continue the execution
of the other steps. When V' is bound, we remove the residuating mark from s so that
s can be executed as any other step. If all the steps of a computation are residuating,
the computation flounders.

4 The Compilation Process

The main motivation of this new implementation of narrowing is to provide a generic
back end that can be used by functional logic languages based on a lazy evaluation
strategy. Current work [6] shows that any narrowing computation in a left-linear
constructor-based conditional rewrite system can be simulated, with little or no loss
of efficiency, in an overlapping inductively sequential rewrite system, hence by our
implementation. Therefore, our implementation can be used by languages such as
Curry [20], Escher [23] and Toy [26].

To support this idea, our implementation works independently of any concrete
source language. The source programs of our implementation are functional logic
programs where all functions are defined at the top level (i.e., no local declarations)
and the pattern-matching strategy is explicit. This language, called FlatCurry, has
been developed as an intermediate language for the Curry2Prolog compiler [8] in
the Curry development system PAKCS [16] and is used for various other purposes,
e.g., meta-programming and partial evaluation [2]. Basically, a FlatCurry program
is (apart from data type and operator declarations) a list of function declarations
where each function f is defined by a single rule of the form f(x1,...,2,) = e, i.e.,
the left-hand side consists of pairwise different variable arguments and the right-hand
side is an expression containing case expressions for pattern matching.

For instance, the function | eq of Example 1 is represented in FlatCurry as follows
(fease denotes a case expression that is evaluated by narrowing):

leq( X, Y) = fease X of { zero —true;
succ(M — fease Y of {zero — fal se;
succ(N) —1legq(MN) }}
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A detailed description of FlatCurry including constructs for encoding features like
non-deterministic choices (see Section 3.8), residuation (see Section 3.12), higher-
order functions or conditional rules can be found on the Curry web page located at
http://wuw.informatik.uni-kiel.de/ curry/flat/. Any inductively sequential
program can be translated into FlatCurry rules whose right-hand side consists of
only constructor/function applications and case expressions [17].

Although FlatCurry was originally designed as an intermediate language to com-
pile and manipulate Curry programs, it should be clear that it can also be used
for various other declarative languages (e.g., Haskell-like lazy languages with strict
left-to-right pattern matching can be compiled by generating appropriate case expres-
sions). To better accommodate a variety of source languages, our back end accepts a
syntactic representation of FlatCurry programs in XML format so that other func-
tional logic languages can be compiled into this implementation-independent format.
Some examples together with the DTD for the XML FlatCurry representation are
available at http://www.informatik. uni-kiel.de/~curry/flat/.

Our compiler, which is fully implemented in Curry, reads an XML representation
and compiles it into a Java program following the ideas described in Section 3. Recall
that every function is represented by a subclass of operation. For each function, we
define a method ezpand which will expand a function call according to its rules and
depending on its arguments (Sections 3.9, 3.10).

To show the simplicity of our compiled code, we provide an excerpt of the expand
method for | eq in Figure 3 which is generated from the case expression given above.
According to Section 3.9, we must decide whether | eq( ¢1,¢2) is a redex. This ex-
pression is a redex if ¢; is a variable (we must narrow) or zer 0 (we apply the first
rule). If ¢; equals succ(. . ), we must do the same check for the second argument.
If ¢, fails, so does | eq. If #; is a function call, we must evaluate it first. For the sake
of simplicity, we show pseudo-code, which reflects the basic structure and is very
similar to the real Java code.

To use our back end for a functional logic language, it is only necessary to compile
programs from this language to a XML representation according to the FlatCurry
DTD. For instance, our compiler can be used as a back end for Curry since Curry
programs can be translated into this XML representation with PAKCS [16]. Again, it
is worth emphasizing that FlatCurry can encode more than just Curry programs or
needed narrowing, because the evaluation strategy is compiled into the case expres-
sions. For instance, FlatCurry is a superset of TFL, which is used as an intermediate
representation for a Toy-like language based on the CRWL paradigm (Constructor-
based conditional ReWriting Logic) [21].

The computation engine is designed to work with the read-eval-print loop typical
of many functional, logic and functional logic interpreters. In our Java implementa-
tion, the computation engine and the read-eval-print loop are threads that interact
with each other in a producer /consumer pattern. When a computed expression (value
plus answer) becomes available, the computation engine notifies the read-eval-print
loop while preserving the state of the narrowing space. The read-eval-print loop
presents the results to the user and waits. The user may request further results or
terminate the computation. If the user requests a new result, the read-eval-print loop
notifies the computation engine to further search the narrowing space. Otherwise,
the narrowing space is discarded.

Currently we provide a naive trace facility that is useful to debug both user
code and our own implementation. Since the computations originating from a goal
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expand (Computation comp) {

term = comp.getTerm(); // get the term from top of the stack
X = term.getArg(0); // get first argument

Y = term.getArg(1); // get second argument

switch on kind of X // case X of ...

case variable: // do narrowing: bind to patterns

X.bindTo (zero) ;

spawn new computation for leq(zero,Y);
X.bindTo(succ(M));

spawn new computation for leq(succ(M),Y);

comp.setExhausted() ; // this computation is exhausted
case constructor: // argument is constructor-rooted,
switch on kind of constructor // thus do pattern matching
case zero: // apply first rule:
term.update(true) ; // replace term with true
case succ: // case X of succ(M) — case Y of...
recursive case for switching on Y
case failure: // the needed subterm has failed,
term.update (failure) // thus leq fails, too
case operation: // X is a function call, thus
comp.pushOnStack (X) ; // evaluate this call first

Figure 3. Simplified pseudo-code for the expand method of leq

are truly concurrent, as is necessary to ensure operational completeness, and since
some terms are shared between computations, the trace is not always easy to read.
Computations are identified by a unique id. We envision a tool, conceptually and
structurally well separated from the computation engine, that collects the interleaved
traces of all computations, separates them, and presents each trace in a different
window for each computation. This tool may have a graphical user interface to select
which computations to see and/or interact with.

5 Related work

In this section we discuss and compare other approaches to functional logic language
implementation (see [13] for a survey). Our approach provides an operationally com-
plete and efficient architecture for implementing narrowing which can potentially
accommodate sophisticated concepts, e.g., the combination of narrowing and resid-
uation, encapsulated search or committed choice. As some recent narrowing-based
implementations of functional logic languages show, most implementations that in-
clude these concepts lack completeness or are inefficient.

One common approach to implement functional logic languages is the transfor-
mation of source functional logic programs into Prolog programs. This approach is
favored for its simplicity since Prolog has most of the features of functional logic
languages: logical variables, unification, and non-determinism implemented by back-
tracking. However, the challenge in such an implementation is the implementation
of a sophisticated evaluation strategy that exploits the presence of functions in the
source programs. Different implementations of this kind are compared and evaluated
in [14] where it is demonstrated that needed narrowing is efficiently implemented in
a (strict) language such as Prolog and that this implementation is superior to other
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narrowing strategies. Therefore, most of the newer proposals to implement functional
logic languages in Prolog are based on needed narrowing [4,8,14,25]. In contrast to
our implementation of narrowing, all of these efforts are operationally incomplete
(i-e., existing solutions might not be found due to infinite derivation paths) since
they are based on Prolog’s depth-first search mechanism. The same drawback also
occurs in implementations of functional logic languages based on abstract machines
(e.g., [10,21,24,27]) since these abstract machines use backtracking to implement
non-determinism.

An exception is the Curry2Java compiler [18] which is based on an abstract
machine implementation in Java but uses independent threads to implement non-
deterministic choices. If these threads are fairly evaluated (which can be ensured
by specific instructions), infinite derivations in one branch do not prevent finding
solutions in other branches. Our approach is more flexible since it does not depend
on threads, but it can control to any degree of granularity the scheduling of steps
in distinct computations. This eases the implementation of problem-specific search
strategies at the top level, whereas Curry2Java is restricted to encapsulated search
[19].

Our implementation is the subject of active investigation in several directions.
Thus, we are not specifically concerned with its efficiency at this time. Rather, we
are studying architectures that easily integrate concepts and ideas that have been
proposed for functional logic programming. Efficiency is an important issue, though,
and we expect that it will be a strong point of our implementation due to the direct
translation into an imperative language without the additional control layers of an
abstract machine. While we have attempted to select an efficient architecture, we
have not paid much attention to detailed optimization of our implementation, and
we do not expect top speed as long as we compile to Java. We performed only a
limited number of benchmarks to get a feel for where we stand.

For the functional evaluation, we evaluated the naive reverse of a list of 1200
elements (400 only for comparing Curry2Java). To benchmark non-determinism we
evaluated add x y =:= peano300, where peano300 denotes the term encoding
300 in unary notation and the infix operator =: = denotes the strict equality with
unification. This goal is solved by creating 301 parallel computations by narrowing
on the add operation.

The two fastest available implementations of needed narrowing, to the best of our
knowledge, are the Curry2Prolog compiler of the PAKCS system and the Miinster
Curry Compiler (MCC) [27]. The Curry2Java back end (C2J), included in the PAKCS
system, is not as fast, but is the fastest available correct and complete implementation
of needed narrowing. We have also compared our approach to a Java-based imple-
mentation of Prolog: Jinni [30] is the fastest engine in the naive reverse benchmark
among the Java-based Prolog implementations compared in [12]. Table 1 shows exe-
cution times, in seconds, for simple benchmarks on a PIII-900 MHz Linux machine.
These results show that our engine is currently the fastest complete implementation
of narrowing.

In all likelihood, its speed is partially due to the elimination of the overhead paid
by Curry2Java for computing with an abstract machine. In comparison with Jinni,
we perform better in the r evs09 benchmark, where the number of reduction steps is
more or less the same for needed narrowing and SLD-resolution. For the add bench-
mark, we evaluate the goal add( X, Y, peano300) in Jinni. Due to the rules for strict
equality with unification, even an optimized implementation of needed narrowing will
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Table 1. Execution times for simple benchmarks on several FLP engines

Ours| C2JIMCC|PAKCS|Jinni
I €Vago| 0.69 2.6
I €Vizo| 5.5|N/A| 0.69 0.68| 45.9
addseo| 2.1/ 16.2] 0.12 0.09( 2.5

perform at least twice as many reduction steps for add x y =:= peano300 as a
SLD-resolution of add( X, Y, peano300) . However, we are still faster than Jinni in
this benchmark, too. Curry2Prolog and MCC are faster than our approach by a fac-
tor 8 for r ev and by factor 20 for add. This is to be expected. Backtracking-based
implementations are simpler and faster because they sacrifice completeness. Addi-
tionally, Curry2Prolog is executed by the highly optimized SICStus Prolog compiler,
and the abstract machine of MCC is written in C, while our implementation is ex-
ecuted by the JVM. We expect that if our implementation were optimized and/or
coded in C, it would offer performance competitive with these incomplete systems
while retaining completeness.

A factor of 8-20 speedup over Java for a C implementation is reasonable and
supported by the results of [18]. The authors have shown that a C++ implementation
of the Curry2Java abstract machine was more than 50 times faster than the same
implementation in Java. We do not expect a similar improvement because we have
already eliminated the interpretation layer of the abstract machine, and because the
results of [18] were obtained with JDK 1.1 while we use JDK 1.3. The latter is more
efficient. However, we are confident that there are still considerable opportunities for
improving the efficiency of our implementation. We plan to work on this aspect, but
only after resolving the architectural issues related to the inclusion of encapsulated
search, which is a very interesting feature for modern functional logic languages
[19]. Its integration could cause some changes in our backend, e.g., to distinguish
between local and global variables, which is one important issue of encapsulated
search. However, most of the structures needed (nested computations, fair scheduling,
explicit control of computations etc.) are already available in our backend. Thus,
we expect the integration of encapsulated search to cause only minor changes or
extensions.

6 Conclusion

We described the architecture of an engine for functional logic computations. Our
engine implements an efficient, sound and complete narrowing strategy, INS, and
integrates this strategy with other features, e.g., residuation and and-parallelism,
desirable in functional logic programming. Our implementation is operationally com-
plete, easy to extend (e.g., by external resources like constraint libraries) and general
enough to be used as a back end for a variety of languages. Although our work is
still evolving, simple benchmarks show that it is the fastest complete implementation
of narrowing currently available: it has strong potential for further improvement in
both performance and functionality.

Our implementation and supporting material is available under the GNU Public
License at http://nmind.cs.pdx.edu.
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Abstract The semantical foundations of Java [9] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [2,6,19]). The research concerning Java’s
proof theory mainly concentrated on various aspects of sequential sublanguages (see e.g. [14,
18,21]). This paper presents a proof system for multithreaded Java programs. Concentrating
on the issues of concurrency, we introduce an abstract programming language JavayT, a
subset of Java featuring object creation, method invocation, object references with aliasing,
and specifically concurrency.

The assertional proof system for verifying safety properties of Javayp is formulated in
terms of proof outlines [17], i.e., of annotated programs where Hoare-style assertions [8,12]
are associated with every control point.

1 The programming language Javap T

Javayris a multithreaded well-typed sublanguage of Java. Programs, as in Java, are
given by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate via
method invocation, i.e., synchronous message passing. As we focus on a proof system
for the concurrency aspects of Java, all classes in Javayp are thread classes in the
sense of Java: Each class contains a start-method that can be invoked only once
for each object, resulting in a new thread of execution. The new thread starts to
execute the run-method of the given object while the initiating thread continues its
own execution.

For variables, we notationally distinguish between instance and temporary vari-
ables, where instance variables are always private in Javayp. Instance variables x
hold the state of an object and exist throughout the object’s lifetime. Temporary vari-
ables u play the role of formal parameters and local variables of method definitions
and only exist during the execution of the method to which they belong. Therefore
these temporary variables represent the local state of a thread of execution. Table 1
contains the abstract syntax of Javayp.

For the semantics, we only highlight a few salient aspects. The formalization as
structural operational semantics is given in [1].

The behaviour of a program results from the concurrent execution of threads,
each described by the call-chain of its method invocations, given as a stack of local
configurations. Threads can be created via new and started by (the first) invocation of
the start-method. The invocation of a method extends the call chain by creating a new
local configuration. It is removed from the stack when returning from the method.
Java offers a synchronization mechanism for the mutually exclusive execution of
methods: Synchronized methods of an object can be invoked only if no other threads
are currently executing any synchronized methods of the same object.
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exp = x | u | this | nil | f(ezp, ... ,ezp) e € Exp! expressions
sezp 1= new’ | exp.m(exp, ..., exp) | exp.start() sexp € SEzp’  side-effect exp.
stm = sexp | © := exp | u:= exp | u := sexp
| €| stm;stm | if exp then stm else stm
| whileezpdostm ... stm € Stm. statements
modif ::= nsync | sync modifiers
rezp ::= return | return ezp
meth ::= modif m(u,...,u){ stm;rezp} meth € Meth, methods
methwn ::= modif run(){ stm; return } methwn € Meth. run-method
methmain ::= nsync main(){ stm;return } methmain € Meth, main-method
class = c{meth ... meth methwun} class € Class  class defn’s
classmain ::= c{meth ... meth methwn methmain} classmain € Class main-class
prog ::= (class ... class classmain) programs

Table 1. Javay T abstract syntax

2 The proof system

This section sketches the assertional proof system formulated in terms of proof out-
lines [7,17], i.e., where Hoare-style pre- and postconditions [8,12] are associated with
each program statement. The proof system has to accommodate for shared-variable
concurrency, aliasing, method invocation, and dynamic object creation.

2.1 The assertion language

The underlying assertion language consists of two different levels: The local assertion
language specifies the behaviour on the level of method execution, and is used to
annotate programs. The global behaviour, including the communication topology of
the objects, is expressed in the global language used in the cooperation test.

In the language of assertions, we introduce as usual a countably infinite set of log-
ical variables with typical element z disjoint from the instance and the local variables
occurring in programs. Logical variables are used as bound variables in quantifica-
tions and, on the global level, to represent the values of local variables.

Table 2 defines the syntax of the assertion language. Local expressions are ex-
pressions of the programming language possibly containing logical variables. Local
assertions are standard logical formulas over local expressions, where unrestricted
quantification is allowed for integer and boolean domains only. Quantification over
objects is only allowed in a restricted form asserting the existence of an element or
a subsequence of a given sequence. Restricted quantification involving objects en-
sures that the evaluation of a local assertion indeed only depends on the values of
the instance and temporary variables. In deference to the local assertion language,
quantification on the global level is allowed for all types. Quantifications over objects
range over the set of ezxisting objects only.

2.2 Proof outlines

To be able to reason about the communication mechanism of method invocations, we
split each method invocation statement into the sequential composition of an output
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exp; == z | x| w| this| nil | f(ezp,,..., exp;) e € LEzp!  local expressions
ass; == exp; | —ass; | ass; A\ ass;

| Jz(ass;) | 3z € exp,(ass;) | Iz C exp,(ass;) p € LAss.  local assertions
exp, == z | nil [ f(ezp,, ..., ezp,) | ezp,.x E € GEzpt global expressions
assg = exp, | ~assg | assg A assy | Iz(assg) P € GAss global assertions

Table 2. Syntax of assertions

and an input statement representing the invocation of the method and the reception
of the return value.

Next, we augment the program by fresh auziliary variables. Assignments can be
extended to multiple assignments, and additional multiple assignments to auxiliary
variables can be inserted at any point. We introduce three specific auxiliary variables
id, lock, and started to represent information about the global configuration at the
proof-theoretical level. The temporary variable id of type Object x Int stores the
identity of the object in which the corresponding thread has begun its execution,
together with the current depth of its stack. The auxiliary instance variable lock of
the same type is used to reason about thread synchronization: The value L states
that no threads are currently executing any synchronized methods of the given object;
otherwise, the value (a,n) identifies the thread which acquired the lock, together with
the stack depth n, at which it has gotten the lock. The boolean instance variable
started states whether the object’s start-method has already been invoked.

Finally, we extend programs by critical sections, a conceptual notion, which is
introduced for the purpose of proof and, therefore, does not influence the control
flow. Semantically, a critical section expresses that the statements inside are executed
without interleaving with other threads.

To specify invariant properties of the system, the transformed programs are an-
notated by attaching pre- and postconditions, formulated in the local assertion lan-
guage, to all occurrences of statements. Besides that, for each class ¢, the annotation
defines a local assertion I. called class invariant, which refers only to instance vari-
ables, and expresses invariant properties of the instances of the class. Finally, the
global invariant GI € GAss specifies properties of communication between objects.
We require that for all qualified references E.x in GI, all assignments to x in class ¢
are enclosed in critical sections.

2.3 Proof system

The global behaviour of a Java program results from the concurrent execution of
method bodies, that can interact by

e shared-variable concurrency,
e synchronous message passing for method calls, and
e object creation.

Apart from the initial correctness, meaning that the annotation is correct with
respect to the initial configuration, the proof system is split into three parts. The



124 Erika Abrahdm-Mumm et al.

execution of a single method body in isolation is captured by local correctness con-
ditions that show the inductiveness of the annotated method bodies and which are
standard.

Interaction via synchronous message passing and via object creation cannot be
established locally but only relative to assumptions about the communicated values.
These assumptions are verified in the cooperation test. The communication can take
place within a single object or between different objects. As these two cases cannot
be distinguished syntactically, our cooperation test combines elements from similar
rules used in [5] and in [15] for CSP.

Finally, the effect of shared-variable concurrency is handled, as usual, by the
interference freedom test, which is modeled after the corresponding tests in the proof
systems for shared-variable concurrency in [17] and in [15]. In the case of Java it
additionally has to accommodate for reentrant code and the specific synchronization
mechanism.

Local correctness A proof outline is locally correct, if the usual verification con-
ditions [4] for standard sequential constructs hold: The precondition of a multiple
assignment to instance and local variables must imply the postcondition after exe-
cution of the assignment. As output and return statements do not affect the state of
the executing thread, their preconditions must directly imply their postconditions.
Finally, the pre- and postconditions of all statements of a class are required to imply
the class invariant.

The interference freedom test The conditions of the interference freedom test
ensure the invariance of local properties of a thread under the activities of other
threads. Since we disallow public instance variables in Javayp, we only have to deal
with the invariance of properties under the execution of statements within the same
object. Containing only temporary variables, communication and object creation
statements do not change the state of the executing object. Thus we only have to
take assignments y := e into account.

Satisfaction of a local property of a thread may clearly be affected by the execution
of assignments by a different thread in the same object. If, otherwise, the property
describes the same thread that executes the assignment, the only control points
endangered are those waiting for a return value earlier in the current execution
stack, i.e., we have to show the invariance of preconditions of receive statements.
Especially, the interference freedom test has to take care of reentrant method calls.

The cooperation test Whereas the verification conditions associated with local
correctness and interference freedom cover the effects of assigning side-effect-free ex-
pressions to variables, the cooperation test deals with method invocation and object
creation. Since different objects may be involved, it is formulated in the global as-
sertion language. Besides defining verification conditions that ensure the invariance
of the global invariant, it specifies conditions under which properties, whose evalu-
ation depend on communicated values, are satisfied. Those properties are given by
the preconditions of method bodies, and by the postconditions of receive and object
creation statements.
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3 Conclusion

In this extended abstract we sketched an assertional proof method for a multi-
threaded sublanguage of Java. The soundness of our method is shown by a standard
albeit tedious induction on the length of the computation. Proving its complete-
ness involves the introduction of appropriate assertions expressing reachability and
auxiliary history variables. The details of the proofs can be found in [1].

Currently we are developing in the context of the European Fifth Framework
RTD project Omega and the bilateral NWO/DFG project MobiJ a front-end tool
for the computer-aided specification and verification of Java programs based on our
proof method. Such a front-end tool consists of an editor and a parser for annotating
Java programs, and of a compiler which translates these annotated Java programs
into corresponding verification conditions. A theorem prover (HOL or PVS) is used
for verifying the validity of these verifications conditions. Of particular interest in
this context is an integration of our method with related approaches like the Loop
project [11,16].

More in general, our future work focusses on the formalization of full-featured
multithreading, inheritance, and polymorphic extensions involving behavioral sub-

typing [3].

Acknowledgements We thank Ulrich Hannemann for discussions and comments on
an earlier version of the paper.
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Abstract Since induction is the essential proof method for program verification, several
induction theorem provers [2,3,9,12,13] have been developed which support mechanized
program verification. However, these systems are mainly designed for verifying functional
programs. This represents a major problem for their application in practice where imperative
programs are used almost exclusively.

Therefore, we suggest a new methodology in order to use the existing induction theorem
provers for verification of imperative programs: First, imperative programs are transformed
automatically into the functional input language of the induction prover [7]. Compared
to standard translation techniques, the programs resulting from our transformation are
significantly easier to verify. Then, existing induction provers should be applied in order to
verify the resulting functions.

However, in general the resulting functions are partial, even if the imperative program
terminates for every input. Unfortunately, most techniques for induction theorem proving
are unsound when dealing with partial functions. However, we show that by slightly restrict-
ing the application of these techniques, they can still prove partial correctness of partial
functions [8]. This means that the existing induction theorem provers can also be used for
imperative programs without major changes.

1 Imperative Programs and Induction Provers

To handle imperative programs, they first have to be translated into the functional
input language of existing induction provers. As an example consider the following
imperative program which computes the division of z and y in its result variable z.
(Before the statement “z := 0;” the program ensures that y > 0 and that y divides
z.) It uses a data type nat whose objects are built with the constructors 0 and
s : nat — nat (for the successor function). Moreover, it calls a subtraction function
“—” which is implemented by an auxiliary algorithm.

z:=0;
while z #0 do z:=z —y; 2 :=s(z); od,;

To translate this program into a functional one, every while-loop is transformed
into a separate function, cf. [14]. The function while corresponding to the loop above
checks if the loop-condition is satisfied (i.e., if  # 0). In this case, while is called
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recursively with the new values of z, y, and z. Otherwise, while returns the result
variable z. The program consisting of both statements above corresponds to the
function div.

function while : nat x nat x nat — nat function div : nat x nat — nat
while(z,y,z) =if = #0 div(z,y) = while(z,y,0)
then while(z — y,y,s(z))
else =z

We use a functional language with eager (call-by-value) evaluation strategy. Then
the semantics of the original imperative program is equivalent to the semantics of
the translated functional one.

The functions resulting from this translation are always tail recursive. However,
verifying tail recursive functions is difficult, because their accumulator parameter is
usually initialized with a fixed value, but this value is changed in recursive calls.
For example, while’s accumulator z is initialized with 0 in the function div, but it
changes during the execution of while. Hence, to verify div we would like to prove
statements about while(z,y,0), but in order to succeed with the proof, these state-
ments have to be generalized to conjectures about while(x,y, z) [10,11]. To avoid the
need for generalizations we developed a technique that transforms functions like div
and while, which are difficult to verify, into algorithms which are much more suitable
for automated induction proofs.

This is a novel application area for program transformations, because classical
transformations [1,4,15] aim to increase efficiency. Such transformations are unsuit-
able for our purpose, since a more efficient algorithm is often harder to verify than
a less efficient easier algorithm. As the goals of the existing transformations are op-
posite to ours, a promising starting approach was to use classical transformations
in the reverse direction. Such an application of transformations for the purpose of
verification has rarely been investigated before.

Starting from this idea, we extended and modified the transformations substan-
tially in [7], which resulted in an automatic transformation procedure to increase
verifiability. While of course our transformations are not always applicable, they
proved successful on a representative collection of tail recursive functions. In this
way, correctness of many imperative programs can be proved automatically without
loop invariants or generalizations.

The basic idea of our transformations is to move away the context around re-
cursive accumulator arguments such that the accumulator is no longer changed
in recursive calls. For example, the result while(z — y,y,s(z)) can be replaced by
s(while(z — y,y,2)) by moving the context s(...) of the accumulator z outside of
while’s recursive call. Then while’s accumulator z is no longer changed, and thus,
it can be eliminated by replacing all its occurrences by 0. So finally, we obtain the
following transformed algorithm where we renamed while to div and where we used
a formulation with pattern matching instead of “if”.

function div : nat x nat — nat
div(0,y) =10
div(s(z),y) = s(div(s(z) —y,y))
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2 Induction Proving for Partial Functions

The translation of imperative into functional programs often generates partial func-
tions, even if the imperative program is defined for all inputs. The reason is that
termination of while-loops may depend on their contexts. In our example, the while-
loop is only entered if y > 0 and if y divides z. However, this restriction on x and y
is not present in the functions while and div. Therefore although the function corre-
sponding to the whole imperative program will be total, its auxiliary function div is
partial (e.g., div(s(0),0) is not terminating).

For partial functions we can at most verify their partial correctness. For instance,
suppose that the specification for div is

Vn,m :nat div(n,m)*m =n.

Then div is in fact partially correct, i.e., for all n and m, if evaluation of div(n,m) is
defined, then div(n,m) *m = n. To express partial correctness, we use a definedness
function def, where for any ground term ¢, def(t) is true iff evaluation of ¢ is defined.
Otherwise, def(¢) is not defined either. So the partial correctness statement for div is

def(div(n,m)) — div(n,m)*m =mn, (1)

where all formulas are implicitly universally quantified. Our aim is to show that such
statements are inductively true, i.e., that they hold for all data objects n, m, where
the semantics of the functions is given by their algorithms.

In the following we present the three basic rules usually applied in induction
theorem provers. We demonstrate that unfortunately, these rules are only sound if
all occurring functions are total. However, we show that by slightly modifying their
prerequisites, it is also possible to use them for partial functions.

2.1 Induction

When proving a conjecture about an algorithm f, one of the main ideas used in
induction theorem proving is to perform an induction according to the recursion
structure of this algorithm f [2,16,17]. Since (1) contains occurrences of div(n,m)
this suggests an induction w.r.t. the recursions of the algorithm div where n and m are
used as induction variables. For that purpose we perform a case analysis according
to the defining equations of div (i.e., n and m are instantiated by 0 and y and by s(z)
and y, respectively). Moreover, in the recursive case of div one may assume that (1)
already holds for the arguments s(z) —y and y of div’s recursive call. So instead of (1)
it is sufficient to prove the following induction base formula (IB) and the induction
step formula (IH) — (IC) which states that the induction hypothesis (IH) implies
the induction conclusion (IC).

def(div(0, y)) — div(0,y)*xy =0 (IB)
def(div(s(z),y)) — div(s(z),y) xy = s(x) (1C)
def(div(s(z) —y,y)) — div(s(z) —y,y) xy =s(z) —y (IH)
Thus, in this proof one uses an induction relation i q where (t1,t2) =ina (r1,72)

holds iff evaluation of div(¢1,%2) leads to the recursive call div(rq, ).
However, induction proofs are only sound if the induction relation used is well
founded (i.e., if there exists no infinite descending chain ¢ >ind ¢5 >ing - .. W.r.t. the
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induction relation »inq, where ¢ are tuples of terms). Here, the well-foundedness of
the induction relation corresponds to the termination of the algorithm div. But as
we already noticed, div is not always terminating!

Indeed, inductions w.r.t. non-terminating algorithms like div must not be used in
an unrestricted way. For example, by induction w.r.t. the non-terminating algorithm
f with the defining equation f(z) = f(x) one could prove any formula, e.g., false
conjectures like -z = .

Hence, in the existing induction theorem provers, totality of all functions is re-
quired. However, it turns out that for (1) an induction w.r.t. the recursions of div
is nevertheless possible. For that purpose we modify the former non-well-founded
induction relation >i,q by only defining (¢1,t2) =ina (r1,72) if div(¢;,t2) leads to
the recursive call div(ry,r2) and evaluation of div(t1,t2) is defined. This restricted
relation is well founded although div is not always terminating.

With this modified induction relation we still get the formulas (IB) and (TH) —
(IC), but in addition we also obtain a formula for the case where div(¢1,t2) is not
defined. (This is an additional base case of the induction.)

=def(div(n,m)) — (1) (PC)

In other words, an induction w.r.t. div only proves Conjecture (1) for those inputs
where div is defined. Hence, we have to prove the additional permissibility conjecture
(PC) to show that the conjecture also holds for inputs where div is not defined. If
(PC) is true, then the induction proof w.r.t. the partial function div is permitted.
In most examples, the permissibility conjecture is a tautology (e.g., —def(div(n, m))
contradicts the premise of (1)).

Hence, the successful rule for induction w.r.t. an algorithm f can now be extended
to partial functions. The only modification needed is that for every application of the
rule one has to prove an additional permissibility conjecture which checks whether
the conjecture also holds if the algorithm f is not defined. Apart from inductions
w.r.t. algorithms there is also a similar rule for structural inductions according to
the definitions of data types.

2.2 Symbolic Evaluation

To continue our proof of (1), terms can be symbolically evaluated (i.e., defining equa-
tions of algorithms can be used as rewrite rules). For example, the first equation of
div can be used to rewrite div(0,y) to 0 in the induction base formula (IB), which
yields def(0) — 0%y = 0.

However, unrestricted symbolic evaluation would be unsound for partial func-
tions. Due to the eager evaluation strategy of the functional language, a defining
equation f(t) = r can only be applied to evaluate the term o(f(t)) for some sub-
stitution o if the argument o(t) is defined, i.e., if def(o(¢)) holds. For example, the
term div(0, div(s(0),0)) has an undefined argument div(s(0),0) and thus, it may not
be evaluated to 0. Hence, when rewriting the term o(f(¢)) in a formula ¢, one also
has to prove the permissibility conjecture —def(o(t)) — ¢. (For functions with sev-
eral parameters, the definedness function def is extended to tuples of arguments
where def(t1,...,t,) stands for def(¢t;) A...Adef(¢y,).) So in our example, in order to
evaluate div(0,y) in the induction base (IB) one also has to prove the permissibility
conjecture —def(0,y) — (IB).
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2.3 First-Order Consequence

The last rule performs inferences in standard first-order logic. It states that it is
sufficient to prove lemmata 1, ...,, instead of the original conjecture ¢, if Az U
{t1,...,¥n} F @ can be shown by a first-order calculus. Here, one may also use
suitable axioms Az about the data structures (which state that different constructors
yield different data objects, etc.).

However, when regarding partial functions, it is recommendable to extend Az
by additional axioms which describe how the definedness function def operates on
algorithms and constructors. Thus, one should add the axioms def(f(z1,...,z,))
— def(zq,...,z,) for all algorithms f and def(c(zy,...,x,)) = def(zy,...,z,) for
all constructors c.

In our example, one can now prove all proof obligations in the induction base
case and in the induction step, the proof obligations can be reduced to

def(u —v) = (u—v)+v=u,

which can be proved analogously by induction w.r.t. the partial algorithm “—”.

3 Conclusion

The rules in Sect. 2.1-2.3 constitute a calculus which is also sound for partial func-
tions. The only difference between this calculus and the rules typically used for in-
duction theorem proving (with total functions) is the function def and an additional
permissibility conjecture which has to be proved whenever induction or symbolic
evaluation are applied. Hence, the existing induction provers can easily be extended
to this calculus and in this way, these systems can be directly used to reason about
partial functions. So the restriction of induction provers to total functions is unnec-
essary, because in order to perform partial correctness proofs one does not need any
information about the termination behavior. Further refinements, details, and exten-
sions of this result as well as a thorough comparison with related work on partiality
can be found in [8].

Our extension of induction proving to partial functions can be used for programs
where the domain cannot be determined automatically as well as for programs with
undecidable domains (e.g., interpreters or theorem provers), cf. [6]. Partial functions
also occur frequently in program schemes and specifications (see [5] for an adaptation
of our approach in order to reason about Z-specifications).

But in particular, the extension of induction theorem proving to partial functions
is necessary in order to apply induction provers for the verification of imperative pro-
grams. Building on this extension, we developed a new methodology for mechanized
verification of imperative programs: First, imperative programs are automatically
transformed into the functional input language of the existing induction provers
(which often yields partial functions). Then the existing induction provers are ap-
plied for their verification.
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Abstract We present an approach for the formal verification of Erlang programs using
abstract interpretation and model checking. In previous work we defined a framework for
the verification of Erlang programs using abstract interpretation and LTL model checking.
The application of LTL model checking yields some problems in the verification of state
propositions, because propositions are abstracted too. In dependence of the number of
negations in front of a propositions in a formula they must be satisfied or refuted. We show
how this can automatically be decided by means of the abstract domain.

The approach is implemented as a prototype and we are able to prove properties like
mutual exclusion or the absence of deadlocks and lifelocks for some Erlang programs.

1 Introduction

Growing requirements of industry and society impose greater complexity of software
development. Consequently understandability, maintenance and reliability cannot
be warranted. This gets even harder when we leave the sequential territory and
develop distributed systems. Here many processes run concurrently and interact via
communication. This can e.g. yield problems like deadlocks or lifelocks. To guarantee
the correctness of software formal verifiaction is needed.

In industry the programming language Erlang [1] is used for the implementation of
distributed systems. In [7] we have developed a framework for abstract interpretations
[4,10,14] for a core fragment of Erlang. This framework gurantees that the transition
system defined by the abstract operational semantics (AOS) includes all paths of
the standard operational semantics (SOS). Because the AOS can sometimes have
more paths than the SOS, it is only possible to prove properties that have to be
satisfied on all paths, like in linear time logic (LTL). If the abstraction satisfies a
property expressed in LTL, then also the program satisfies it, but not vice versa.
If the AOS is a finite transition system, then model checking is decidable [12,15].
For finite domain abstract interpretations and an additional flow-abstraction [9] this
finite state property can be guaranteed for Erlang programs which do not create an
unbound number of processes and use only mailboxes of restricted size.

However, the application of LTL model checking to the AOS is not that straight
forward, as the following example shows: We assume the abstract domain A =
{even,odd,num, ?}, in which even and odd represent all even respectively odd
numbers, num represents all numbers and ? represents all values. LTL is usually
defined over state propositions. For convenient specification of system properties, we
allow arbitrary values of Erlang as possible propositions. Hence, in the abstraction
possible state propositions are values of A.
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Then we may ask in which states does the proposition num hold? As a matter of
course in states containing the proposition num. The values even and odd are more
precise than num and in states with these propositions num also holds. The abstract
value ? also represents other values (e.g. lists). For safeness of the abstraction, in a
state of the AOS only containing the proposition 7 the proposition num must not
hold. Although some concretizations of 7 are numbers.

LTL formulas can also contain negation, which makes the verification more com-
plicated: In which states does the property —num hold? Although num does not
hold in a state only containing the proposition ? the property -num does not hold
in this state either. ? represents arbitrary values including numbers. For safeness of
our approach non of the values may fulfill this property.

In Section 5 of this paper we discuss how it can be decided if an abstract proposi-
tion holds in a state. Furthermore, we formalize the semantics of abstract propositions
in Section 6 and show how there verification can be integrated in standard model
checkers in Section 7. Therefore, we first define the syntax and sketch the semantics
of a core fragment of Erlang in Section 2. The framework for the abstract interpreta-
tion is shortly introduced in Section 3 and LTL is introduced inn Section 4. Finally,
we present a concrete verification in Section 8 and conclude in Section 9.

2 Core Erlang

2.1 Syntax and Informal Semantics

Let X be a set of predefined function symbols with arity. For example +/2 € X. Let
Var = {X,Y,Z,...} be a set of variables and Atoms a set of atoms, e.g. 1, 2, fail,
succ, ... Let C be the set of Erlang constructor functions with arity:

C={L1.1/2,11/0}U{{...}/n|n €N} U{a/0]|ac Atoms), (1)

a constructor for building lists, a constructor for the empty list, constructors for
building tuples of any arity and the atoms as constructors with arity 0.
The set of constructor terms is defined as the smallest set T¢(S) such that:

SCTe(S) and e¢/neC,ty,...,tn € Te(S) = c(t1,...,tn) € Te(S)

The syntax of Core Erlang programs is defined as follows:

p u=f(Xy,...,Xp) >e.|pp

e u=a¢ler,...,en) | X |pat = e|self |ej,es|erles |
case e of m end | receive m end | spawn(f,e)

m = p1=>€1;...;:Pn—>€n

pat = c(P1, ... ,pn) | X

All defined functions of a program, extended with their arity, built the set F.S(p).
¢/n is an abbreviation for f/n € FS(p), F/n € X and ¢/n € C. In every Core Erlang
program a main function is defined: main/0 € F'S(p).

We call the set of Core Erlang terms e ET' (). The set ET'(S) is defined by adding
the grammar rule e ::= v € S for Core Erlang terms.

Erlang is a strict functional programming language. It is extended with pro-
cesses, that are executed concurrently. With spawn(f, [ai,...,a,]) a new process
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can be created anywhere in the program. The process starts with the evaluation of
fla1, ..., ay). If the second argument of spawn is not ground, then it is evaluated be-
fore the new process is created. The functional result of spawn is the process identifier
(pid) of the newly created process.

With p!v arbitrary values (including pids) can be sent to other processes. The
processes are addressed by their pids (p). A process can access its own pid with the
Erlang function self/0. The messages sent to a process are stored in a mailbox
and the process can access them conveniently with pattern matching in a receive-
statement. Especially, it is possible to ignore some messages and fetch messages from
further behind. For more details see [1].

Ezxzample 1. We consider the following Core Erlang program:

main() -> DB = spawn(dataBase,[[]]), spawn(client,[DB]),
client (DB).

dataBase(L) -> prop(top)
receive
{allocate,Key,P} ->
prop({allocate,P}),
case lookup(Key,L) of
fail -> P!free,
receive
{value,V,P} -> prop({value,P}),
dataBase ([{Key,V}IL])
end;
{succ,V} -> P!prop(allocated), dataBase(L)
end;
{lookup,Key,P} -> prop(lookup),
P!lookup(Key,L), dataBase(L)
end.

All applications of the function prop introduce state propositions, which will be
used for the formal verification of the database. At this point, they can be ignored.
There semantics will be discussed in Section 3.1.

The program creates a database process holding a state in which the key-value
pairs are stored. This database is represented by a list of tuples, each consisting of a
key and a corresponding value. The interface of the database is given by the messages
{allocate,Key,P} and {lookup,Key,P}. Allocation is done in two steps. First the
key is received and checked. If there is no conflict, then the corresponding value can
be received and stored in the database. This exchange of messages in more than
one step has to guarantee mutual exclusion on the database, because otherwise it
could be possible that two client processes send keys and values to the database and
they are stored in the wrong combination. A client can be defined accordingly [7].
In Section 8 we will prove that the database combined with two accessing clients
satisfies this property.

2.2 Formal Semantics

In [7] we presented a formal semantics for Core Erlang. In the following we will refer
to it as standard operational semantics (SOS). It is an interleaving semantics over a



136 Frank Huch

set of processes IT. Formally, a process consists of a pid (7 € Pid:= {@n | n € IN}), a
Core Erlang evaluation term (e € ET (T¢(Pid))) and a word over constructor terms,
representing the mailbox (u € T¢(Pid)*). For the definition of the leftmost innermost
evaluation strategy, we use the technique of evaluation contexts [5]:

E:=[]|¢Wis...,v;sE,€i42,...56,) | Ese|p=FE
spawn(f,E) | E'e |v!E | case FE of m end

Here v denotes an evaluated expression, F the subterm the redex is in and e and
m the parts which cannot be evaluated. [] is called the hole and marks the point
for the next evaluation. We shall then write Efe] for the context E with the hole
replaced by e. The next step of the evaluation takes place here. Analogously to the
Core Erlang Terms ET'(S) over a set S, we name the Core Erlang contexts EC(S).
The set S defines, the set of values: v € T¢(S). In the SOS this is S = Te(Pid) and
will be replaced by the abstract domain in the abstraction.

The semantics is a non-confluent transition system. The evaluations of the pro-
cesses are interleaved. Only communication and process creation have side effects to
other processes. For the modeling of these actions two processes are involved. To give
an impression of the semantics, we present the rule for sending a value to another

process:
v = ' € Pid

T, (7, E[or tws], 1) (2 €, 1) =2 17, (, Evs], p) (', €, 1" = 2)

The value is added to the mailbox of the process 7’ and the functional result of the
send action is the sent value.

3 Abstract Interpretation of Core Erlang Programs

In [7] we developed a framework for abstract interpretations of Core Erlang pro-
grams. The abstract operational semantics (A0S) yields a transition system which
includes all paths of the SOS. In an abstract interpretation A= (E,T, C,a) for Core
Erlang programs A is the abstract domain, which should be finite for our applica-
tion in model checking. The abstract interpretation function 7 defines the semantics
of predefined function symbols and constructors. Its codomain is A. Therefore it is
for example not possible to interpret constructors freely in a finite domain abstrac-
tion. 7 also defines the abstract behaviour of pattern matching in equations, case,
and receive. Here the abstraction can yield additional non-determinism, because
branches can get undecidable in the abstraction. Hence, 7 yields a set of results,
which defines possible successors. Furthermore, an abstract interpretation contains
a partial order C, describing which elements of A are more precise than other ones.
We do not need a complete partial order or a lattice, because we do not compute any
fixed point. We just evaluate the operational semantics with this abstract interpre-
tation. An example for an abstraction of numbers with an ordering of the abstract
representations is: IN C {v | v < 10} C {v | v < 5}. It is more precise to know, that a
value is <5, than <10 than any number. The last component of A is the abstraction
function. a : T¢(Pid) — A maps every concrete value to its most precise abstract
representation. Finally, the abstract interpretation has to fulfill five properties, which
relate an abstract interpretation to the standard interpretation [7]. They also guar-
antee that all paths of the SOS are represented in the AOS, for example in branching.
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An example for these properties is the following:

(P1) For all ¢/n € X UC,vq,...,v, € Tc(Pid) and
v; C a(v;) it holds that ¢ 2(v1,...,0n) E a(pa(vi,---,vn)).

It postulates, that evaluating a predefined function or a constructor on abstract
values, which are representations of some concrete values yields abstractions of the
evaluation of the same function on the concrete values. The other properties pos-
tulate correlating properties for pattern matching in equations, case, and receive,
and the pids represented by an abstract value. More details and some example ab-
stractions can be found in [7,8].

3.1 Semantics of Propositions

We defined the semantics of Core Erlang as a labeled transition system. We want to
prove properties of the system with model checking. It would be possible to specify
properties using the labels. Nevertheless, it is more convenient to add propositions
to the states of this transition system. With these state propositions properties can
be expressed more easily. We use Core Erlang constructor terms as possible state
propositions, which is very natural for Erlang programmers.

For the definition of propositions we assume a predefined Core Erlang function
prop/1. The operational semantics of the function prop is the identity. Hence, adding
applications of prop does not effect the SOS nor the AOS. Nevertheless, as a kind
of side—effect the state in which prop is evaluated has the argument of prop as state
proposition. We mark this with the label prop in the AOS:

1, (x, Elprop(v)], u) ¥ 111, (r, E[v], u)

The valid propositions of a process and a state can be evaluated with the function
prop:
Definition 1. (Proposition of processes and states)

~

The proposition of a process is defined with the function prop ; : Proc i P(A):

v}, ife= 0) and % € A
prop 7((m, Ele], ) := { év} ;tﬁervgzgp(v) and ©

The propositions of a state prop z : State i P(ﬁ) are defined as the union of all
propositions of its processes:

prop 7(11) = | J prop 4()
rell
For both functions we use the name prop 7. The concrete instance of this over-
loading will be clear from the application of prop 7. We will also omit the abstract
interpretation in the index, if it is clear from the context.
In Example 1 we have added four propositions to the database, which have the
following meanings:

top marks the main state of the database process
{allocate,P}|marks that the process with the pid P tries to allocate a key
{value,P} marks that the process with the pid P enters a value into

the database
lookup marks a reading access to the database
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In most cases propositions will be added in a sequence, as for example the proposition
top. Defining propositions with the function prop it is also possible to mark existing
(sub—)expressions as propositions. As an example we use the atom allocated, which
is sent to a requesting client, as a proposition.

4 Linear Time Logic

The abstract operational semantics defines a transition system. We want to prove
properties of this transition system using model checking. The properties are de-
scribed in a temporal logic. We use linear time logic (LTL) [6] in which properties
have to be satisfied on every path of a given transition system.

Definition 2. (Syntax of Linear Time Logic (LTL)) Let Props be a set of state
propositions. The set of LTL—formulas is defined as the smallest set with:

e Props CLTL state propositions

e p,p e LTL = — —-p € LTL negation
— oAy e LTL conjunction
— XpelTL in the next state ¢ holds
— Uy eLTL © holds until  holds

An LTL—formula is interpreted with respect to an infinite path. The propositional
formulas are satisfied, if the first state of a path satisfies them. The next modality
X holds if ¢ holds in the continuation of the path. Finally, LTL contains a strong
until: If ¢ holds until ¢ holds and ¥ finally holds, then ¢ U % holds. Formally, the
semantics is defined as:

Definition 3. (Path Semantics of LTL) An infinite word over sets of propositions
T = pop1P2 - -. € P(Props)¥ is called a path. A path 7 satisfiess an LTL—formula ¢
(7 E ¢) in the following cases:

PoT ': P iff P € po
TE o iffmiEe
T E oAy ffrEpandr =9y
prm = Xp iffnlE=e
PopP1 - - - ': (pU’QZJ iffEiE]N:pipiH...|:¢ande<i:pjpj+1...|:<p

Formulas are not only interpreted with respect to a single path. Their semantics
is extended to Kripke Structures:

Definition 4. (Kripke Structure) K = (S, Props,—,T,so) with S a set of states,
Props a set of propositions, —C S x S the transition relation, 7 : S — P(Props)
a labeling function for the states, and sqg € S the initial state is called a Kripke
Structure. Instead of (s, s") €— we usually write s — s'.

A state path of K is an infinite word sgs1 ... € S“ with s; — s;41 and sg the
initial state of K. If sps; ... is a state path of K and p; = 7(s;) for all i € IN, then
the infinite word pop; ... € P(Props)¥ is a path of K.

Definition 5. (Kripke-Structure-Semantics of LTL) Let K = (S, Props, —, T, so)
be a Kripke structure. It satisfies an LTL—formula ¢ (K [= ¢) iff for all paths = of
K: 7.
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The technique of model checking automatically decides, if a given Kripke struc-
ture satisfies a given formula. For finite Kripke structures and the logic LTL model
checking is decidable [12].

For the convenient specification of properties in LTL we define some abbrevia-
tions:

Definition 6. (Abbreviations in LTL)

ff = -PAP the boolean value true
tt = —ff the boolean value false
eV = =(—p A ) disjunction
=Y = VY implication
Fo = tUdep finally ¢ holds
Gy = -F-p globally ¢ holds
F>*p .= GFy infinitely often ¢ holds
G®p = FGy only finally often ¢ does not hold

The propositional abbreviations are standard. Fp is satisfied if there exists a position
in the path, where ¢ holds. If in every position of the path ¢ holds, then Gy is
satisfied. The formulas ¢, which have to be satisfied in these positions of the path
are not restricted to propositional formulas. They can express properties of the whole
remaining path. This fact is used in the definition of F*°¢ and G*°¢. The weaker
property F>°¢ postulates, that ¢ holds infinitely often on a path. Whereas G*¢ is
satisfied, if ¢ is satisfied with only finitely many exceptions. In other words there is
a position, from where on ¢ always holds.

For the verification of Core Erlang programs we use the AOS respectively the
SOS of a Core Erlang program as a Kripke structure. We use the transition system,
which is spawned from the initial state (@0,main(),()). As labeling function for the
states we use the function prop from the previous section.

5 Abstraction of Propositions

We want to verify Core Erlang programs with model checking. The framework for
abstract interpretations of Core Erlang programs guarantees, that every path of the
SOS is also represented in the AOS. If the resulting AOS is finite, then we can use
simple model checking algorithms to check, if it satisfies a property ¢ expressed in
LTL. If ¢ is satisfied in the AOS, then ¢ also holds in the SOS. In the other case
model checking yields a counter example which is a path in the AOS on which ¢ is
not satisfied. Due to the fact that the AOS contains more paths than the SOS, the
counter example must not be a counter example for the SOS. The counter path can
be a valid path in the abstraction but not in the SOS. Therefore, in this case it only
yields a hint, that the chosen abstraction is too coarse and must be refined.

The application of model checking seems to be easy, but proving state propositions
some problems appear, as the following example shows:
Example 2. main() -> prop(42).

A possible property of the program could be F 42 (finally 42). To prove this
property we use the AOS with an abstract interpretation, for instance the even—odd
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interpretation, which only contains the values even (representing all even numbers),
odd (representing all odd numbers), and ? (representing all values). With this ab-
straction the AOS yields the following transition system:

(@0,main(),()) — (@0, prop(42),()) — (@0, prop(even),())

Pro (@0, even, ())

Only the state (@0, prop(even),()) has a property, namely even. 42 is an even
number, but it is not the only even number. Therefore, this property cannot be
proven, because of safeness. For example, we could otherwise also prove the property
F 40.

It is only possible to prove properties, for which the corresponding abstract value
exclusively represents this value. But it does not make much sense, to abstract from
special values and express properties for these values afterwards. Therefore, we only
use propositions of the abstract domain, like

F even (finally even)

In the AOS the state (@0,prop(even),()) has the property even. Therefore, the
program satisfies this property. Now we consider a more complicated example:

Example 3. main() -> prop(84 div 2).

This system satisfies the property too, because (84 + 2) = 42. But in the even—odd
abstraction we only get:

(@0,main(),())
(@0,prop(84 div 2),())
(@0,prop(even div 2),())

(@0,prop(even div even),())

(@0, prop(?),())
Lprop

(0,7,())

with prop((@0,prop(?),()))= {?} and 0 as propositions of the other states. The result
of the division of two even values must not be even. In a safe abstraction we cannot
be sure, that the property F' even is satisfied. Hence, model checking must yield,
that it does not hold. For instance, for the program

main() -> prop(42 div 2).

the AOS is similar, but the property is not satisfied (42 + 2 = 21).
Therefore, a property is satisfied in a state, if the property of the state is at least
as precise, as the expected property:

popl...|:5iffﬂﬁ'€p0 Wlthﬁgﬁl
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But this is not correct in all cases, as the following example shows. We want to
prove that the program satisfies the property

1 = G-even (always not even)

Therefore, one point is to check that the state (@0,prop(?),()) models —even. With
the definition from above we can conclude:

(@0,prop(?),()) [~ even and hence  (@0,prop(?),()) |E —even.

But that is wrong, because in Example 3 the property is not satisfied. The SOS has
the property 42, which is an even value.

The problem is the non—monotonic operation —. Considering abstraction, the
equivalence

TEopiff e
does not hold! 7 }£ ¢ only means that 7 = ¢ is not safe. In other words, there can
be a concretization, which satisfies , but we cannot be sure that it holds for all
concretizations. Therefore, negation has to be handled carefully.

Which value of our abstract domain would fulfill the negated proposition —even?
Only the proposition odd does. The values even and odd are incomparable and no
value exists, which is more precise than these two abstract values. This connection
can be generalized as follows:

pop1 ... = 0 if V0’ € pp holds ¥ LD’ does not exist

Note, that this is no equivalence anymore. The non—existence of 7U7" does only imply
that pop1 ... = —0. It does not give any information for the negation pop ... = v.
This (double) negation holds, if 30" € pg with v C ¥'.

On a first sight refuting a proposition seems not to be correct for arbitrary ab-
stract interpretations. Consider the abstract domain

<0 >0

N\ /

num

where the abstract values represent the following concrete values

labstract value|represented concrete values|

<0 {0,-1,-2,...}
>0 {0,1,2,...}
num /4

The represented concrete values of <0 and >0 overlap. Both represent the value 0.
Therefore, it would be incorrect that a state with the proposition <0 satisfies the
formula =>0. R

But this abstract domain is not possible. The abstraction function o« : A — A
can only yield one abstract representation for a concrete value. Without loss of
generality let «(0) = >0. Abstract values, which represent the concrete value 0 can
only be the result of the use of the abstract interpretation function 7. But all these
results v must be less precise: v C a(0) = >0, because of the properties claimed
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by our framework. Hence, this abstract domain can be defined, but the value <0
does only represent the values {—1,—2,...}. The name of the abstract value is not
relevant, but for understandability it should be renamed to <0.

Alternatively, the abstract domain can be refined. The two overlapping abstract
values can be distinguished by a more precise abstract value:

<0 0 >0 0
N/ N/ /N
<0 >0 or <0 >0
¥4 il
In both cases we must define a(0) = 0, because otherwise we have the same situation

as before and the concrete value 0 is not represented by both abstract values <0
and >0.

6 Concretization of Propositions

With the advisement of the previous section we can now formalize, whether a propo-
sition is satisfied respectively refuted. Similar results have been found in by Clark,
Grumberg, and Long [3] and Knesten and Pnueli [11]. The result of Knesten and
Pnueli introduces a solution to the problem informally, without any formalization.
The paper of Clark et. al. formalizes a solution, but their framework differs from ours
and the result cannot easily be transferd to our framework.

First we define the concretization of an abstract value. This is the set of all
concrete values, which abstract to the value, or a more precise value.

Definition 7. (Concretization of Abstract Values)
Let A = (A,1,C,a) be an abstract interpretation. The concretization function ~ :
A — P(T¢(Pid)) is defined as

7(0) ={v | v E afv)}.

For the last example we get the following concretizations:

7(0) = {0}

’Y(SO) = {07_17_27"'}
7(=0) = {0,1,2,...}
v(num) = 7Z

The following connections between the abstraction and the concretization function
hold:

Lemma 1. (Connections between v and o)

Let A = (2’ 1, C, ) be an abstract interpretation and vy the corresponding concretiza-
tion function. Then the following properties hold:

1. Yo e y([®): 0 C a(v)

2. THa) [ven(@} =20
Proof.
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l.vey@) iffve {v |9 a()} iff 7 C a(v)
2. [Ha(v) [ver(@)} =Ha() |ve{d |1 Ea)}} =
[Ha(v) [vE alv)} =v

With the concretization function we can define, whether a proposition of a state
satisfies a proposition in the formula or refutes it.

Definition 8. (Semantics of a Proposition)
Let A = (4,1,C, ) be an abstract interpretation. A set of abstract state propositions
satisfies or refutes a proposition of a formula in the following cases:

plEv if F' € p with y(@¥") C v(D)
pEV if Vo' € pholds y(¥) Ny (') =0

With these definitions for the concretization we can define a corresponding definition
for the abstract values. For finite domain abstractions they can be decided automat-
ically.

Lemma 2. (Deciding Propositions in the abstract domain)

Let A = (/T, 1, C, ) be an abstract interpretation. A set of abstract state propositions
satisfies or refutes a proposition of a formula in the following cases:

pEU if W epwithv TV
pFETU if YU € p holds UUTD does not exist

Proof. We show: ¥ C ¥" implies y(?") C v(v) and the non—existence of ' LI?9" implies
7(@) Ny (@) =0

e ¥V

(@) ={v|vC a(v)} and y(v") = {v | ' T a(v)}.

(/T, C) is a partial order. Hence, it is transitive. This implies v(v") C v(?)
e U U does not exist = y(@UV) =0 = {v| (@UD) Calv)} =0

= {v |V Ca@ andvCa(w)} =0=~@)Ny@) =0

Note, that we only show an implication. We can define unnatural abstract domains,
in which a property is satisfied or refuted with respect to Definition 8, but using
only the abstract domain, we cannot show this. We consider the following abstract
domain:

0

| ) 0 ,ifv=0
ze|r0 with a(v) = { num otherwise
num

The abstract value zero is superfluous, because it represents exactly the same values,
as the abstract value 0. But this abstract domain is valid. Using the definition of the
semantics of a proposition from Definition 8, we can show that {zero} |= 0, because
v(zero) = v(0) = {0}. But zero C 0 and we cannot show that {zero} = 0 just
using the abstract domain.
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The same holds for refuting a proposition.

0
<0 >0

num

>0,ifv>0
<0 otherwise

with a(v) = {

In this domain the abstract value 0 is superfluous. Its concretization is empty. Hence,
Y(<0) = {=1,-2,...} and 7(>0) = {0,1,2,...}. (<0) N 7(>0) = § and <0 |
=>0. But this proposition cannot be refuted with this abstract domain, because
<0 U >0 = 0 exists.

These examples are unnatural, because the domains contain superfluous abstract
values. Nobody will define domains like these. Usually, the concretization of an ab-
stract value is nonempty and differs from the concretizations of all other abstract
values. In this case deciding propositions in the abstract domain is complete with
respect to the semantics of propositions. Although it is not complete in general, it is
safe. If we can prove a property with the abstract values, then it is also correct for
its concretizations.

7 Proving LTL Formulas

So fare we have discussed, whether a proposition is satisfied or refuted. But in LTL
negation is not only allowed in front of a proposition. Arbitrary sub—formulas can
be negated. To solve this problem two different approaches are possible: In the first
approach, all negations can be pushed inside the formula, until they only occur in
front of the propositions. Therefore, we must extend LTL with the release modal-
ity @R, because there exists no equivalent representation of —=(pU1)), which uses
negation only in front of ¢ and 1. Release is the dual modality of until:

=(pUt) ~ ~pR—~¢

Therefore, its semantics is defined as

pop1 .- EeRYITVi € N:ipipip1 ... EorIj<i:pipjt1...Fo

There is no intuitive semantics of release, except that it can be used for the negation
of until. However, it can also be automatically verified in model checking.
Furthermore, we must add V to LTL and use the following equivalences:

e~y A(pAY)~apV oy and (X)) ~ X

With these equivalences we can push all negations into a formula and get an equiv-
alent formula, in which negation only occurs directly in front of propositions. Then
these formulas can be used for model checking. Positive and negative propositions
can be checked with Lemma 2. Standard model checking algorithms work with a

similar idea, but they do not need the release modality. For example, in [15] an alter-
nating automaton is constructed, that represents the maximal model which satisfies
the formula. The states correspond to the possible sub—formulas and their negations.
For every negation in the formula the automaton switches to the corresponding state,
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which represents the positive respectively negative sub—formula. With this alterna-
tion the negations are pushed into the automaton representing the formula, like in
the first approach. This leads to the second approach, in which a proposition has to
be valued as a positive proposition, if it is used after an even number of negations.
In the other case it is valued as a negative proposition. It has to be refuted.

We can use the same idea and distinguish two different kinds of propositions. The
number of negations in front of a proposition are counted. In dependency of an even
or an odd number of negations the propositions must be satisfied or refuted. It is
possible, that the same property occurs more than ones in a formula. The different
occurrences must be considered separately, because there can be different numbers
of negations in front of them.

The advantage of this approach is, that we do not need the non—intuitive release
modality. The formulas can be left as they are. The semantics of the propositions
only depends on the number of negations in front.

The number of negations in front of a proposition can easily be computed with
the following algorithm. We decent the formula inductively with a function mark. In
a second argument mark accumulates if the number of negations in front of the actual
sub—formula is even (+) or odd (—). If mark reaches a proposition, this proposition is
annotated with the actual accumulated sign. If a negation occurs the algorithm flips
+ and —.All other operators in the formula are just copied, without any modification.
In the first call of mark no negations must be considered. Therefore, it is initially
called with the sign +: For the two kinds of propositions we can now define

Ppop1 - - ':+5 if ' € Do with ’Q\J/E v
pop1 --- U if V' € pp holds LU does not exist

8 Verification of the Database

Now we want to verify the system of Example 1. A database process and two clients
are executed. We want to guarantee, that the process which allocates a key also sets
the corresponding value:

If a process 7 allocates a key, then no other process 7’ sets a value before 7
sets a value, or the key is already allocated.

This can for arbitrary processes be expressed in LTL as follows:

/\ G (“{allocate, 7} — (= {value,n'}) U (*{value,7} Vv Tallocated))
",relijrd
In our system only a finite number of pids occurs. Therefore, this formula can be
translated into a pure LTL—formula as a conjunction of all possible permutations of
possible pids, which satisfy the condition. This is

(m,7") € {(0,01), (€0, @2), (e1,02), (@1,@0), (€2, @0), (02,01)}.

We have already applied the function mark to the formula. With respect to this
marking the proposition ~{allocate, 7} must be refuted. This is for example the
case for the abstract values top and {lookup,?}. But ? and {allocate,p} with p



146 Frank Huch

the pid of the accessing client do not refute the proposition. The right side of the
implication must be satisfied. Similar conditions must hold for the other propositions.

We can automatically verify this property using a finite domain abstraction, in
which only the top—parts of depth 2 of the constructor terms are considered. The
deeper parts of a constructor term are cut off and replaced by ?. For more details
see [8]. Our framework guarantees that the property also holds in the SOS and we
have proven mutual exclusion for the database program.

9 Related Work and Conclusion

There exist two other approaches for the formal verification of Erlang: EVT [13]
is a theorem prover especially tailored for Erlang. The main disadvantage of this
approach is the complexity of proves. Especially, induction on infinite calculations
is very complicated and automatization is not support yet. Therefore, a user must
be an expert in theorem proving and EVT to prove system properties. We think for
the practical verification of distributed systems push-button techniques are needed.
Such a technique is model checking, which we use for the automatic verification of
Erlang programs. This approach is also pursued by part of the EVT group in [2].
They verified a distributed resource locker written in Erlang with a standard model
checker. The disadvantage of this approach is that they can only verify finite state
systems. However, in practice many systems have an infinite (or for model checkers
too large) state space. As a solution, we think abstraction is needed to verify larger
distributed systems implemented in Erlang. Our approach for the formal verification
of Erlang programs uses abstract interpretation and LTL model checking. The main
idea is the construction of a finite abstract operational semantics with the use of a
finite domain abstract interpretation. The abstraction is safe in the sense, that all
path of the SOS are also represented in the AOS.

For convenient verification we have added propositions to the states of the AOS.
Considering the abstract interpretation, problems in the semantics of these propo-
sitions arise. In this paper we solved these problems by distinguishing positive and
negative propositions of the formula. For these we can decide, if a state satisfies
or refutes it by means of the abstract domain. Finally, we used this technique in
the formal verification of the database process: we proved mutual exclusion for two
accessing clients.
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1 System-Level Testing of Complex Telephony Systems

The world of telecommunications has rapidly evolved during the last 15 years, modify-
ing in this process its focus. In 1985 a telephone switch was 'only’ used as a telephone
switch. Additional components, either hardware or software, were gradually devel-
oped to bring additional functionality and flexibility to the traditional switch, e.g.
in the initial days voice mail or billing systems. Today not only single functionalities
are added at a quick pace, but the switch is mutating its role into the central element
of complex heterogeneous and multivendor systems: it is nowadays integrated into
whole business solutions, e.g. in the field of hotel solutions, call center and unified
messaging applications. As a consequence, whereas in the earlier days the interac-
tion between the switch and the applications was almost exclusively implemented
via proprietary interfaces, the definition of open standards like e.g. CSTA or TAPI
pushed the field towards the development of new, system level, applications. The left
diagram in figure 1 documents the trend towards a growing product integration in
terms of the increase in the number of value-added applications that work in average
on or with a switch. As one can see, the integration factor is rapidly increasing since
1995, and the trend points in the direction of even larger value-added product ranges.

A parallel but concurring aspect is the increasing number of major switch re-
leases per year (cf. figure 1 right). This trend is driven mainly by the convergence
between the classical telecommunication technology and the modern IP technology,
e.g. "Voice-over-IP’: modern switches are themselves complete complex systems, and
they experience the accelerating evolution pace of hardware and software in combi-
nation!

A typical example of an integrated Computer-Telephony Integrated (briefly CTI)
platfom is illustrated in figure 2, showing a midrange telephone switch and its envi-
ronment. The switch is connected to the ISDN telephone network or, more generally,
to the public switched telephone network (PSTN), and acts as a 'normal’ telephone
switch to the phones. Additionally, it communicates directly via a LAN or indirectly
via an application server with CTI applications that are executed on PCs. Like the
phones, CTT applications are active components: they may stimulate the switch (e.g.
initiate calls), and they also react to stimuli sent by the switch (e.g. notify incom-
ing calls). Therefore in a system-level test scenario it is necessary to investigate the
interaction between such subsystems.

In the rapidly evolving scenario depicted above, the need for efficient automated
regression testing is evident: whenever a release arises, either of the switch or of (a
subset of) the application programs that cooperate with it,- singularly or, increas-
ingly more often, in collaborative combinations - the correct functioning of the new
configurations must be certified again.
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Figure 1. Trends in the development of CTI systems: (left) growing product integration
and (right) faster paced switch releases
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Figure 2. Example of an integrated CTI platform

Even the relatively simple scenario of figure 2 demonstrates the complexity of CTI
platforms from the communication point of view, because there are several (internal)
protocols involved. E.g. the telephones communicate via the Corporate Network Pro-
tocol' with the Private Branch Exchange (PBX), whereas the PBX communicates
via CSTA Phase II/III protocol [1,2] with the application server. On the applica-
tion server, a TAPI service provider performs a mapping of the CSTA protocol to
the TAPI protocol [8], which is the communication protocol between the application
server and its clients.

This complex interplay between protocols must be considered when testing CTI
systems, and it is clearly unfeasible to do this at the level of customary, fine grained
protocol analysis.

! ECMA and CCITT Q.930/931 oriented D-channel layer 3 protocol for private IPABX
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Additional scale complexity is introduced by the test tools themselves: for each
significant interface (in the most convenient case covering a full participating sub-
system, but more often for each device in a distributed setting) a specific, dedicated
test tool participates in the regression test. Concretely, the simple scenario shown in
figure 2 grows in the test laboratory to the dimensions shown in figure 4, whereby
each of the devices and applications must be set up, steered, and reset during system
level regression test.

Altogether, testing complex telephony solutions is a multidimensional task, which
demands automation via adequate system level tool support. The complexity lies in
the interaction between the components as well as in the short innovation cycles
and the great number of possible combinations between the PBX and the value-
added applications. Therefore an adequate environment must focus on structuring,
efficiency and abstraction.

The paper is organized as follows: Section 2 describes our integrated test environ-
ment for system level regression testing of telephony systems. The successive sections
describe the main features of our test environment: easy library-based design of test
cases (section 3), reliable design of test cases (section 4), and the execution of test
cases (section 5). Section 6 discusses the improvement of the usage of the integrated
test environment while section 7 draws some conclusions.

2 The Integrated Test Environment

Test Coordination

Test
Coordinator
Corba/RMI Corba/RMI
Test- Test-
. Test Context

System, oo System, System under Test

Figure 3. Architectural overview of the test environment

In summary systems-under-test have become composite (e.g. including Computer
Telephony Integrated (CTI) platform aspects), embedded (due to hardware/software
codesign practices), reactive, and run on distributed architectures (e.g. client/server
architectures). Complex subsystems affect each other in a variety of complex ways, so
mastering today’s testing scenarios for telephony systems demands for an integrated,
open and flexible approach to support the management of the overall test process,
i.e. specification of tests, execution of tests and analysis of test results.

To handle the structural complexity, our approach offers a coarse grained testing
environment, realized in terms of a component-based test design on top of a library
of elementary but intuitively understandable test case fragments. The relations be-
tween the fragments are treated orthogonally, delivering a test design and execution
environment enhanced by means of lightweight formal verification methods. This
establishes a coarse-granular ‘meta-level’, on which
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Figure 4. Concrete test setting

test engineers are used to think,

test cases can be easily composed,

test suites can be configured and initialized,

critical consistency requirements including version compatibility and frame con-
ditions for executability are easily formulated, and

e consistency of test cases is fully automatically enforced via model checking and
error diagnosis.

The Integrated Test Environment (ITE) is based on an existing general purpose
environment for the management of complex workflows, METAFrame Technologies’
Agent Building Center (ABC) [11], which contains built in features concerning test
coordination and test organization. The currently available Test Coordinator (fig-
ure 3) constitutes the test management layer of our environment, and includes an
application-specific specialization of the ABC for the domain of system level regres-
sion testing of telephony systems.

To communicate with different test tools, a flexible CORBA /RMI-based archi-
tecture has been designed for the ITE, cf. figure 3. The Test Coordinator executes
integrated test cases by controlling several test tools, each managing its own subsys-
tem. The extensibility of the environment by additional test tools is the key of the
approach.

A concrete test scenario is shown in figure 4, which is used to test a complex
call center solution. The call center consists of a switch with telephones of different
kinds connected to a call center server, which controls several call center clients. In
the considered scenario three different kind of test tools are supported by the test
coordinator:

1. A proprietary protocol analyser (Hipermon [4]) which is connected to a telephone
simulator (Husim) and to the connection between the switch and the application
server.

2. A GUI test tool (Rational Robot [9]), which is used in several instances, i.e. for
every considered call center client.
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Additionally the test coordinator has access to the telephone switch itself, e.g. to
perform an initialization at the beginning of a test case execution.

We now examine the main features of the environment, concerning easy, library-
based design of test cases, the support for reliable design, and the support for test
case execution in a heterogeneous distributed environment.

3 Design Support Features

System testing is characterized by focussing on inter-components cooperation. For the
design of appropriate system-level test cases it is necessary to know what features the
system provides, how to operate the system in order to stimulate a feature, and how
to determine if features work. This information is gathered and after identification
of the system’s controllable and observable interfaces it is transformed into a set
of stimuli (inputs) and verification actions (inspection of outputs, investigation of
components’ states). For each action a test block is prepared: a name and a class
characterizing the block are specified and a set of formal parameters is defined to
enable a more general usage of the block. In this way, for the CTI system to be tested
a library of test blocks has been issued that includes test blocks representing and
implementing, e.g.

Common actions Initialization of test tools, system components, test cases and
general reporting functions,

Switch-specific actions Initialization of switches with different extensions,

Call-related actions Initiation and pick up of calls via a PBX-network or a local
switch,

CTI application-related actions Miscellaneous actions to operate a CTI appli-
cation via its graphical user interface, e.g., log-on/log-off of an agent, establish a
conference party, initiate a call via a GUI, or check labels of GUI-elements.

The library of test blocks grows dynamically whenever new actions are made avail-
able.

The design of test cases consists in the behaviour-oriented combination of test blocks.
This combination is done graphically, i.e., icons representing test blocks are graph-
ically stuck together to yield test graph structures that embody the test behaviour
in terms of control, see figure 5.

4 Verification Support Features

In our environment, the design of test cases is constantly accompanied by online
verification of the global correctness and consistency of the test cases’ control flow
logic [6]. During the design phase, vital properties concerning the usage of parameters
(local properties) and concerning the interplay between the stimuli and verification
actions of a test case (global properties) can be verified. Design decisions that conflict
with the constraints and consistency conditions of the intended system are thus
immediately detected.

Local properties specified imperatively are used to check that the parameters are
set, correctly. Global properties concerning the interplay between arbitrarily distant
test blocks of a test graph are expressed in a user-friendly specification language based
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Figure 5. Test execution

on the Semantic Linear-time Temporal Logic [5], and are gathered in a constraint
library accessed by the environment’s model checker during verification. Typical
constraints for the testing of CTI systems refer to the resource management, i.e.
ensure that all used resources are freed after the test case execution?.

If the model checker detects an inconsistency, a plain text explanation of the
violated constraint appears. In addition, test blocks violating a local property as
well as paths violating a global property are marked.

5 Execution Support Features

In the Test Coordinator, test cases can be executed immediately by means of ABC’s
tracer. Starting at a dedicated test block of a test graph the tracer proceeds from
test block to test block. The actions represented by a test block are performed, i.e.,
stimuli and inspection requests are sent to the corresponding system’s component,
responses are received, evaluated, and the evaluation result is used to select one of
the possibilities to pass control flow to a succeeding test block.

Figure 5 illustrates these features on a concrete test session snapshot. Here, the
system-under-test is a call center application, in this case a client-server CTI applica-
tion called “ACD Agent” which runs on different computers than the Test Coordina-
tor. In this test we emulate a human call center agent with identifier AGENT 500 and
handle some actions via the agent’s GUI of the PC application. The main window

% E.g. every hook-off for a device must be followed by a hook-on for this device.
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of the Test Coordinator shows the actual executed test graph, where the execution
path is highlighted. The execution can be controlled via the Tracer Window, e.g. a
test graph can be executed either automatically or in a single step manner. The C'TT
Agent Screen shows the desktop of a call center agent, which is now controlled via
the Rational Robot. The actions of the phones are controlled through the Husim and
managed/observed through the Hipermon.

In general, the implementation of this execution scheme requires two activities
during set-up of the ITE:

1. The actions referenced via test blocks have to be implemented by means of test
tools. This task is performed by test engineers which are familiar with test tools,
their handling and programming. For each action, the test engineers has to specify
instructions to be executed by the test tool determined to support the specific
action, e.g., via recording GUI-activities.

2. Specific tracer code has to be developed, that is assigned to the action’s test
block and that will be executed by the tracer. Experience with the CTI system
shows that this code can be generated automatically for most actions. Manual
development is necessary only if the test block shall initiate the execution of
multiple actions in order to meet real-time requirements or if more complex
evaluation of information about a component’s state or reaction is required.

Finally, when executing a test graph, a detailed protocol is prepared. For each
test block the tracer executes, all relevant data (its execution time, its name, the
version of the files associated with the test block, the block’s parameter values, and
the processed data) are written to the protocol.

6 Evaluation

Table 1. Regression Test Cost factors

|Task |manual|with ITE|frequency
Test planning Vv Vv once
Test specification| / Vv once
Test scripts W) Vv once
Test execution Vv - recurrent
Test protocol V4 - recurrent
Test analysis V4 (v/) |recurrent

To evaluate the economic impact of the ITF introduction, we must first identify
the cost factors that pertain to testing CTI systems. Table 1 identifies the macro-
scopic cost factors that arise along the lifecycle. They are listed togehter with their
frequency of occurrence and with a qualitative indication of their relevance in a man-
ual testing and an automated testing scenario. Test planning and specification and
the definition and setup of test scripts occur only initially, when an experimental
scenario (i.e. the testing of a specific CTI system) is set up. The planning and speci-
fication phases are not affected by the ITE. The usual collection or programming of
test scripts that in a manual setting directly constitute the elementary test blocks
is in the ITFE additionally supported by a largely automated generation of reusable
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test blocks that fit with the overall ITE architecture. The additional effort required
by this wrapping is compensated by the increased reusal and ease of test design, but
it requires in principle some additional effort.

The main focus of the ITE is however the reduction of costs for the repetitive,
recurrent phases of CTI testing: primarily we address the test execution (cf. table 2),
in combination with the automatic creation of test reports and (in near future)
advanced support of the analysis of test results.

Table 2 documents the measured improvement of the test execution costs due
to the introduction of ITE. The systems under tests considered in each row are
composed by the PC client-server application listed in Col. 1 cooperating with the
HICOM switch along the configuration pattern illustrated in figure 4. The second
and third column report the measured effort (in man hours) of one regression cycle
for the system under test when performed manually (Col. 2) or with the ITE (Col.
3). The improvement is dramatic: factors between 20 and 50 for each regression
cycle execution. The full automation is for the moment not yet feasible since some
manual steps like system setup and configuration (e.g. physical connection of the
components, installation of the software on the machines) are still needed. These
initial results are indeed representative for the average behaviour. Concerning the
next applications that are joining the ITE, the conservative expectations shown in
the last rows of table 2 indicate also a factor of about 40.

A global cost-benefit calculation shows that the additional investement for ITE
is well able to pay off in a short period of time, if extensively adopted. ITFE in fact
dramatically reduces the recurring cost factors, without significatively increasing the
remaining positions, that concern the basic effort that still has to be spent along the
whole test lifecycle (test planning, manual configuration of the test settings, ...) and
the necessary upfront investments (e.g. licence fees for test tools, hardware, ...).

Table 2. Test execution effort in hours per regression

|System—under—test |manual|with ITE|
Hotel Solutions 10,0 0,5
Call Center Solutions 43,0 1,0
Analog Voice Mail 23,0 0,5"
Digital Voice Mail 20,0 0,5"
Call Charge Computer| 19,0 0,5*
Total 115,0 3,0

* Estimated values, since these systems are not
yet fully integrated into the ITE.

7 Conclusion

We have implemented a formal methods-controlled, component-based test environ-
ment on top of a library of elementary but intuitively understandable test case frag-
ments, in order to manage the increasing complexity of today’s testing scenarios for
telephony systems. The coarse-granular ‘meta-level’ established this way has proven
to be adequate wrt. the way test engineers are used to think: Already after a few
months of cooperation this coarse-granular test management support was success-
fully put into practice, drastically strengthening the pre-existing test environment.



Automated Regression Testing of CTI-Systems 157

We are not aware of any other test environment systematically addressing the needs
of coordinating the highly heterogeneous test process, let alone on the basis of formal
methods.

Being able to build on the Agent Building Center, which already contains features
for the management of complex workflows, was a clear implementational advantage:
we were able to demonstrate in a short time the practical satisfiability of the kernel
requirements concerning test coordination and test organization. The Test Coordina-
tor, which constitutes the test management layer of our environment, is already used
in its current version in the test laboratories, and the test management has already
proved to be capable of coordinating the different control and inspection activities
of integrated system-level tests. Extensive use in the field has just begun and shows
efficiency improvement of factors.
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1 Moderated Regular Extrapolation

Moderated regular extrapolation aims at providing a posteriori descriptions of
complex, typically evolving systems or system aspects in a largely automatic way.
These descriptions come in the form of extended finite automata tailored for mechan-
ically producing system tests, grading test suites and monitoring running systems.
Regular extrapolation builds models from observations via techniques from machine
learning and finite automata theory. These automatic steps are steered by applica-
tion experts who observe the interaction between the model and the running system.
This way, structural design decision are imposed on the model in response to the
diagnostic information provided by the model generation tool in cases where the
current version of the model and the system are in conflict.

Moderated regular extrapolation is particularly suited for change management,
i.e. in cases where the considered system is steadily evolving, which requires contin-
uous update of the system “s specification as well.

We will illustrate our method using a regression testing scenario for system level
Computer Telephony Integration (CTI) [1]: Here, previous versions of the system
serve as reference for the validation of future releases. A new release is required to
support any unchanged feature and to enhance it with new or modified features. The
iterative process of moderated regular extrapolation (Sec. 3) supports this system
evolution, by incrementally building a model comprising the current spectrum of
functionality on the basis of concise diagnostic feedback highlighting locations and
sources of system/model mismatches.

2 The Computer/Telephony Scenario

Fig. 1 shows the considered scenario, a complex Computer telephony integrated (CTI)
system, concretely a Call center solution. A midrange telephone switch is connected
to the ISDN telephone network or, more generally, to the public switched telephone
network (PSTN), and acts as a 'normal’ telephone switch to the phones. Additionally,
it communicates directly via a LAN or indirectly via an application server with CTI
applications that are executed on PCs. Like the phones, CTTI applications are active
components: they may stimulate the switch (e.g. initiate calls), and they also react
to stimuli sent by the switch (e.g. notify incoming calls).

The model generator is a novel part of the Integrated Test Environment (ITE for
short) [2,3], in particular the Test Coordinator, an environment for the management
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Figure 1. Overview of the Computer-Telephony Scenario

of the overall test process for complex systems, i.e. test specification, execution, and
analysis of test runs.

3 Regular Extrapolation in Practice

In this section we sketch the approach, which will successively address the five steps
of the model generation by regular extrapolation process by one simple example each.

3.1 Trace Collection

To build a model, the system is stimulated by means of test cases and the effects are
traced and collected to form an initial model. Fig. 2 shows a simple test case as it is
specified in the ITE by a test engineer. Here, three users pick up and hang up the
handset of their telephones in arbitrary order. Test case executions are automatically
protocolled in form of traces by the ITE’s tracer (see e.g. Fig. 3). In a trace, both
states and transitions are labeled with rich labels that describe portions of the system
state and protocol messages respectively.

3.2 Abstraction

Here, we generalize observed traces to sequential behavioural patterns. The paper
will illustrate the effect of abstracting from concrete components to actors playing
specific roles. Fig. 3 shows an observed trace coming from the execution of the test
case of Fig. 2 where this abstraction has taken place.

3.3 Folding

Folding a trace to a trace automaton allows a further powerful generalization of all
possible interleaved combinations of actor-set traces. In the folding step, stable states
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Figure 3. Example of an Observation Trace

that are considered equivalent are identified and can then be merged. For example,
typically all observed devices are classified according to the status of display messages
and LEDs. In this step extrapolation takes place: the behavior of the system observed
so far is extrapolated to an automaton, which typically, due to cycle introduction,
has infinite behavior.
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Figure 4. Adding a New Trace to the Model

The model shown in Fig. 4(left) has been generated via folding from a set of
independent traces. It represents the behavior of two users picking-up and hanging-
up handsets independently.

3.4 Refinement

With new observations, we can refine the model by adding further trace automata
to a model. Again, each refinement step is based on the identification of behaviorally
equivalent states. In Fig. 4 we show how the trace of Fig. 3, on the right, is added to
the previous model on the left and leads to the model of Fig. 5 with four stable system
states. Here, a system state is extremely abstract: it is characterized by the number
of phones currently picked up. As a comparison, the observations on the original
executable test cases were fully instantiated (e.g. they referred to single concrete
device names).

3.5 Validation

Temporal properties of the models, reflecting expert knowledge, can be checked at
any stage by means of standard model checking algorithms. This establishes an in-
dependent control instance: vital application-specific frame conditions, like safety
criteria guaranteeing that nothing bad happens, or liveness properties guaranteeing
a certain progress can automatically checked on the model. In case of failure, diag-
nostic information in terms of error traces reveals the source of trouble on the model
level. The application then has to examine whether the revealed problem is just due
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to the inaccuracies of the model obtained so far, or whether there must be a problem
in the underlying system as well.

Validation typically initiates the next iteration of the extrapolation process, which
may now also involve technically more involved updating steps, like, e.g., model
reduction, in cases where the model contained too many paths. Our system provides
a number of automata theoretic operations and temporal synthesis procedures for
the various updating steps. Moreover, it comprises algorithms for fighting the state
explosion problem. This is very important, as already comparatively small sets of
traces lead to quite big automata. E.g. Fig. 6 shows part of a model describing
two very simple independent calls. For each call the model describes the correct
interplay of the following actions: caller pick-ups handset, dials number, callee pick-
ups handset, caller and callee hang-up their handsets. Already this simple scenario
leads to a model with 369 states and 441 transitions.
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Abstract A black box specification of a deterministic software or hardware component
refers to the function mapping input histories to output histories. An important refinement
step amounts to designing a state-based component correctly implementing the specified
behaviour. We present a formal method for refining stream transformers to state transition
machines whose states arise from an abstraction of the input histories.

1 Introduction

Distributed systems are networks of components that communicate asynchronously
via unidirectional channels. Streams model communication histories by recording the
succession of messages on a channel. The input/output behaviour of a deterministic
component is described by a stream processing function mapping input histories to
output histories [5] . Stream processing functions, for a survey see [7], allow simple op-
erators for serial composition, parallel composition, and feedback. The stream-based
approach also supports modular refinement techniques, among others behavioural
refinement, interface refinement, and communication refinement.

The top-down design starts with a black box specification which fixes the interface
and the input/output behaviour without referring to the internal structure. The
development process visualized in Fig. 1 leads to a network of elementary components
suitable for a direct implementation.

An important design step consists in introducing a component’s state space and
in implementing the specified behaviour by a state transition system. The state-based
description of a component prepares further refinement steps based on the structure
and on the properties of the internal state.

In this paper, we present a formal method for transforming stream transformers
into state-based components. In general, the output of the component will not only
depend on the current input, but also on the previous input history. Therefore the
state of the component must record the input history to the extent to which it
influences the future output history. The state space results from an abstraction of
the input histories; the functions operating on the state space can systematically be
derived from the stream transformer. In summary, the state refinement of a stream
transformer provides a correct implementation as a state-based component.

2 Streams and Stream Processing Functions

Streams model the temporal succession of messages on the channels between com-
municating components. The set of finite streams forms a partial order under the
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Figure 1. Refinement of distributed systems

prefix relation. It models operational progress in time: the shorter stream forms an
initial part of the communication history.

A stream processing function maps an input stream to an output stream. It
models a communicating component with one input and one output channel. The
generalization to stream processing functions with several arguments and results is
straightforward.

In the sequel, we concentrate on monotonic functions where further input leads to
further output. A stream processing function is called (prefix) monotonic, for short a
stream transformer, if any extension of the input history will result in an extension
of the output history. Stream transformers incorporate a notion of causality since
future input cannot cancel nor change previous output.

3 State Transition Machines with Input and Output

State transition machines with input and output are an abstract device modelling
discrete state-based systems generating output driven by input.

A state transition machine with input and output, for short a state transition
machine, consists of a nonempty set of states, an input alphabet, an output alpha-
bet, a one-step state transition function, and a one-step output function mapping a
state and an input to the successor state resp. to the finite output sequence. This
type of state transition machine is useful for the high-level design of communicating
components.

We extend the machine functions from a single input datum to a finite stream
of input data. The multi-step state tramsition function yields the state transition
effected by a finite input history. The multi-step output function yields the output
history for a finite input history. For each state, the multi-step output function is
prefix monotonic; so it describes a stream transformer. Two states of the machine
are called output equivalent iff they generate the same stream transformer [4].

4 State Refinement

In this section, we present a formal method for refining stream transformers to state-
based components. For simplicity, we confine ourselves to strict stream transformers
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generating no output for the empty input history. Given a suitable abstraction of the
input history, we construct a state transition machine correctly implementing the
stream transformer. Altogether, a state refinement associates with a stream trans-
former a state transition machine together with an initial state such that the original
stream transformer agrees with the multi-step output function applied to the initial
state.

4.1 Abstractions of the Input History

First we isolate the effect of the current input wrt. a previous input history. The
output extension of a stream transformer denotes the prolongation of the output
history effected by the current input after processing the input history. The output
extension is well-defined, since the stream transformer is monotonic.

The state of a state transition machine collects relevant information from the
input history that may influence the output on future input. An abstraction function
associates with every input history a state representing the information needed. Two
input histories may be identified under an abstraction function iff the stream trans-
former generates the same output for every future input stream no matter which of
the two input histories has been processed before.

An abstraction function of input histories is required to be transition closed:
if two input histories are identified, then their prolongations with the same input
datum must be identified as well. Moreover, an abstraction function is called output
compatible wrt. a stream transfomer, if it identifies at most input histories with the
same output extension.

4.2 Constructing a State Transition Machine

Given a stream transformer and an output compatible abstraction function, we sys-
tematically construct a state transition machine correctly implementing the stream
transformer, cf. Fig. 2.

stream transformer f: A= B
output extension e: A" x A— B*
abstraction function a: A" —=Q

state transition machine M = (Q, A, B, d, p)
initial state qo = a({))
state transition function|d(a(X),z) = a(X & (z))
output function ola(X),z) = (X, z)

Figure 2. State refinement of a stream transformer

The input and output alphabet A resp. B coincide with the types of the input
and output streams of the stream transformer f. The set @) of states is the range
of the abstraction function «. The initial state qo is the abstraction of the empty
stream (). The state transition function § associates with a state a(X) abstracting
an input history X and a current input x the state respresenting the extended input
history X & (z) . For a state a(X), the output function ¢ yields the output extension
¢ of the input history X and the current input x .
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The state refinement is well defined, since the abstraction function is transition
closed and assumed to be output compatible wrt. the stream transformer. The cor-
rectness of the state refinement is based on the following proposition: the multi-step
output function of the constructed state transition machine applied to the initial
state agrees with the original stream transformer.

For every stream transformer, the canonical state refinement uses the identity
function as the abstraction of input histories. Then each state records the entire input
history, and a state transition simply extends the input history. On the contrary, a
mazimally reduced state refinement identifies all output equivalent input histories.

5 Applications

We presented a formal method for systematically refining stream transformers to
state-based components. The crucial design step consists in discovering useful ab-
stractions of the input histories generating the state refinement.

As a first application, we consider an iterator component that repeatedly applies a
basic function to all elements of the input stream. The iterator component processes
the input datum by datum. The output only depends on the current input, but not on
the previous input history. Therefore the iterator is a history independent component.
The state refinement allows a maximally reduced state transition machine with a
singleton state space.

As a second application, we consider a scan component having one input and
one output port. The component produces the stream of proper prefixes of the input
stream reduced under a binary operation. Two input histories are output equivalent
iff their values reduced under the binary operation agree. An abstraction function
leading to the maximally reduced state refinement reduces the input histories under
the binary operation. The maximally reduced state transition machine of a history
sensitive component manages with simple data values as states.

As a final application, we consider an input driven shift register which delays
an input stream for a fixed number of steps. For sufficiently long input histories,
the output history depends only on a fixed number of elements at the rear of the
stream. Therefore the abstraction function that generates the maximally reduced
state transition machine identifies all input histories which agree in the final segment
of the specified length.

Further applications like memory components, control components or transmis-
sion components can be treated in quite a similar way.

6 Related Work

The approach is based on a general type of state transition machine with input and
output. As related work, [1] investigate output equivalent states in Mealy machines
which are specializations of generalized sequential machines. Lynch and Stark’s port
input/output automata [6] perform input, internal and output actions where in each
state each input action is enabled. The w-automata [8] are accepting devices for infi-
nite streams having a finite number of states. Broy’s group [2,3] uses state transition
diagrams for verifying components of distributed systems. Here the transitions may
depend on attributes of the previous and the successor state and also on the com-
plete content of the input and output channels of the component before and after
the transition.
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Abstract Goguen categories were introduced as a suitable calculus for £-fuzzy relations,
i.e., for relations taking values from an arbitrary completely distributive lattice £ instead of
the unit interval [0, 1] of the real numbers. In this paper we want to present three applications
of such structures in computer science.

1 Introduction

One important application in computer science is the treatment of uncertain or
incomplete information. To handle such kind of information, Zadeh [12] introduced
the concept of fuzzy sets. Later on, Goguen [3] generalized this concept to L-fuzzy
sets and relations for an arbitrary completely distributive lattice £ (or complete
Brouwerian lattice) instead of the unit interval [0, 1] of the real numbers.

Definition 1. Let (£,M,U,0,1) be a completely distributive lattice with meet M,
union LI, least element 0 and greatest element 1. Then the structure of L-fuzzy
relations is defined as follows:

1. A relation @ : A — B between sets A and B is function from A x B to L.
2. For Q@ : A — B and R: B — C composition is defined by

(Q;R)(w,2) = | | (Q(z,y) N R(y,2)).

yeB

3. For Q : A — B conversion defined by Q™ (z,y) := Q(y, z).
4. For Q,S : A — B join and meet are defined by

(QUS)(z,y) :==Q(z,y) US(z,y), (QNS)(z,y):=Q(z,y)NS(z,y).
5. The identity, the least and the greatest element are defined by

O:z#y W ag(z,y)

y) =0,
l:zx= Y, TrAB(way) =1

Lo |

An L-fuzzy relation is called crisp iff R(z,y) = 0 or R(z,y) = 1 holds for all
z and y. The structure defined above constitutes a Dedekind category introduced
in [7].

Definition 2. A Dedekind category R is a category satisfying the following:
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1. For all objects A and B the collection R[A, B] is a completely distributive lattice.
Meet, join, the induced ordering, the least and the greatest element are denoted
by MU, C, 1l 45, T 4B, respectively.

2. There is a monotone operation ~ (called conversion) such that for all relations
Q: A — Band R: B — C the following holds: (Q;R)” = R”;Q~ and
@) =@

3. For all relations Q : A - B,R: B — C and S : A — C the modular law
Q;RNSCQ;(RNQ;S) holds.

4. For all relations R : B — C and S : A — C there is a relation S/R: A — B
(called the left residual of S and R) such that for all X : A — B the following
holds: X;RC S <= X C S/R.

Corresponding to the left residual, we define the right residual by

Q\R:= (R7/Q7) .

This relation is characterized by ;Y C R <= Y C Q\R.

We will use some basic properties of relations in a Dedekind category throughout
the paper without mentioning. These properties and their proofs may be found in
[1,2,8-10].

In some sense a relation of a Dedekind category may be seen as an L-relation.
The lattice £ may equivalently be characterized by the ideal relations, i.e., a relation
J : A — B satisfying T 44;J; T = J, or by the scalar relations. A relation
a:A— Ais called a scalar on A iff @ T T4 and T a4;a = a; T g44. The set of all
scalars on A is denoted by Scr(A4). For £-fuzzy relations the scalars are of the form

k0O
0 k0 ] for an element k € L.
00k

The notion of ideal elements was introduced by Jénsson and Tarski [4] and the
notion of scalars by Furusawa and Kawahara [5].

In [11] it was shown that a suitable algebraic formalisation for arbitrary L£-fuzzy
relations demands an extra operator. In particular, it was shown that there is no
formula in the theory of Dedekind categories expressing the fact that a given L-
fuzzy relation is crisp. Therefore, the concept of Goguen categories was introduced.
Our approach introduces two operations mapping every relation to the greatest crisp
relation it contains resp. to the least crisp relation it is included in.

Definition 3. A Goguen category G is a Dedekind category together with two op-
erations T and ¥ satisfying the following:

1. R",RV: A - Bforall R: A — B.

(T,4) is a Galois correspondence, i.e., S J R" < RLC S*forall R,S: A — B.
(R=;SY' =R';St forall R: B— Aand S: B — C.

If o # Il 54 is a nonzero scalar then ot =1 4.

For all antimorphisms' f : Scg(A) — G[A, B] that f(a)" = f(a) for all a €
Scg(A) and all R: A — B the following equivalence holds

Rl e

RC || af(a) < (a\R)'C f(a) for all a € Scg(A).

a:A— A
a scalar

! f is called an antimorphism iff f(| | M) = [] f(«) for all subsets M of Scg(A)
aEM
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The obvious definition of T and + for £-fuzzy relations

_ [1iff R(z,y) #0 _ J1iff R(z,y) =1
R'(z,y) = {0 iff R(z,y)=0" Ri(z,y) = {0 iff R(z,y) #1°

shows that this structure is a Goguen category.

According to the definitions above we call a relation R of an arbitrary Goguen
category crisp iff RT = R (or equivalently R* = R).

In [11] it was shown that the sets Scg(A) of scalars on A are isomorphic via the
mapping a — T pa;a; Tap MNlp.

The relation («\R)" is called the a-cut of R. For £-fuzzy relation it is character-
ized by (a\R)i(:U,y) iff R(z,y) 3 a.

2 Fuzzy Controller

As a first application we want to show that fuzzy controller may be described by a
simple term in the language of Goguen categories. This may be used to prove prop-
erties of the controller. A system like RelView developed at the Christian-Albrechts-
University of Kiel or RATH developed at the Univesity of the Federal Armed Forces
Munich is able to compute relational terms. Using such a system one easily gets a
prototype of the controller.

We want to concentrate on the method of Mamdani (cf. [6]) for constructing a
fuzzy controller. In this method a fuzzy controller consists of a rulebase, a decision
module, a fuzzification and a defuzzification. This may be visualized by the following
picture.

Fuzzy Controller

Fuzzy Values |Rulebase

L

| Fuzzy- Decision Defuzzy- |
fication Module fication
Process

Crisp Values

The rulebase is formulated using so-called linguistic variables, i.e.,abstract notions
represented by common words from every day language (like: high speed, hot water,
very heavy rain etc.). These linguistic variables are understood as meaning suitable
fuzzy sets. Finally, a control rule is formulated as a conditional expression using the
linguistic variables, e.g. there could be a rule like

if z is hot then y = negative small,

where z is a temperature and y is the input of a heating.
Such a fuzzy controller may be described within a Goguen category using the
following picture.
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Linguistic ~ Linguistic
Variables Variables
(Input) (Output)

Q1 1 1 S1
+ +

Q2 1 1 SQ

/+ + \
A Qs 1 Recrispr1 Ss B

\+ + /

Q4 1 1 54

P+ +

The linguistic variables are modelled by a disjoint union of several copies of a one-
element set. The relation R corresponds to the rulebase of the controller, and the
relations ; and S; are the fuzzy sets corresponding to every linguistic variable. The
controller itself is described by the relational term

D | Q75w R (| ] 57350,
il jeJ
where ¢; denotes the injection into the disjoined union, followed by a suitable de-
fuzzification D. The decision module is hidden in the composition operation ;. One
may choose another composition operation induced by some ¢-norm like function on
the underlying lattice.

As an example we want to construct a temperature controller. The input of the
controller are temperatures taken from the intervall [0, 100] C Q and the output is a
value from [—20, 20] C 7Z, the adjusting values of the heating. The linguistic variables
are given by

LV;, = {EC = extrem cold, LV, = {NB = negative big,

VC = very cold, NS = negative small,
C = cold, 70 = zero,

M = medium, PS = positive small,
W = warm, PB = positive big}
H = hot,

VH = very hot}.
The following set of rules describes the behaviour of the controller

if z is EC then y = PB, if z is W then y = NS,
if z is VC then y = PS, if z is H then y = NS,
if z is C then y = PS, if z is VH then y = NB,
if z is M then y = ZO.

This rule base leads to the following relation R written as a matrix with rows corre-
sponding to LV;, and columns corresponding to LV 4.

=

I
HFOOOOOOo
O, OOOOo
oOoOoOrRrOO0O
(=N ool ol o]
[N N NN Nl ol



Some Applications of Goguen Categories in Computer Science 175

The fuzzy sets Q; and S; corresponding to the linguistic variables may be choosen as
usual by some convenient membership relation. As a defuzzification we take D(X) =
glbp((X; TN H)\X)i), where E is the ordering on [—20, 20]. The cut within D selects
the maximal values in every row of X . Afterwards, in every row we choose the greatest
lower bound in respect to E, such that we get a function and hence for every input
temperature exactly one output value.

3 Optimization Problems

The underlying lattice £ may be interpreted as a partial order of degrees of optimality
for a problem. A vector V : 1 — A, i.e.,a relation from a singleton set to set A, may
describe all possible solutions of the problem. If V is an L-fuzzy relation it also
describes the degree of optimality of every solution. As in the last section we may
take a suitable cut of V to get an optimal solution.

The problem has an optimal solution <= ((V;Ta)\V)* # dLi4.

Notice, that we take a cut with V; T 41 instead of V; T 41 M1y since Iy = T ;. If the
problem has an optimal solution we get the following statements:

1. Any crisp point z, i.e., z vector, 2T = 2,2 # 1,4 and 27;2 C [, with 2 C
(V3T 41)\V)* is an optimal solution.
2. The degree of an optimal solution is given by the scalar V; T 4;.

As an example we want to describe a common situation in a shopping mall. One has
to select a set of products which fulfil some optimality criteria. In our example this
would be

¢ £ Product is cheap. t £ Product tastes very well.
q £ Product has a great quality.  a = Product is accepted by the family.

As the lattice £ we take the Boolean lattice with atoms {c,q,t,a}. Suppose P is the
following L-fuzzy vector of products {Py, Py, P, Py} with their properties.

H, Bg <& P4
P = ({q,t} {c,q,t} {a,t,a} {c,q})

Let &9 the crisp membership relation of nonempty sets of products, i.e., eo(P;, M)
holds iff P; is an element of the nonempty set M of products. This relation may be
visualized by the matrix with rows corresponding to the set {P;, P», P5, Py} and the
columns corresponding to the nonempty sets of products

where 1 is a shorthand for {c,q,t,a} and 0 for (. Furthermore, suppose f is the
following subobject of legal sets of products (a crisp injective mapping), i.e., the
subobjects of those sets of products which we are able to buy.

[=R=je)o)o)ole)
[=R=le)oNoel
[=R=lele)olole)
[=R=jelo)olole)
[=R=le)o)olle)
[=R=je)o)olole)
[=R=le)o)o)ole)
COoO0OO~ROO
OO~ OOO
CO—ROOOO
OO0 O0OO
[=R=le)o)o)ole)

0
0
0
0
0
0
1

~
I
coocococoo
coocococoo
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f expresses the fact that we are not allowed to buy just one product and P, and
P, together. Now, the L-fuzzy vector V of possible solutions is given by the term
syQ(P~,e0); (e0\eo); f~ and as matrix by

{Ps3,Py} {P>,P3} {Py, Py} {P\,P3} {P\,P3, Py} {P\, P2} {P, P, P3}
( {at Aat} {a} {at} {a} {a,t} {a,t} )

Therefore, the optimal solutions ((V; T 41)\V)* are characterized by the (crisp) vec-
tor (010101 1) corresponding to the product sets {P», Ps},{Py, P3},{Pi, P} and
{Py, Py, P;}. The degree of such an optimal solution may be computed as V;T 44
corresponding to the lattice element {q,t}.

4 Games

As shown in [8] a strategy of a game corresponds to the kernel of the graph belonging
to the game. Such a kernel can be computed by relational methods (cf. [8]).

We want to study a variant of the well-kown two person NIM game. The rules of
this game are as follows. At the beginning there is a fixed number of matches on a
table (in our expample 21). Every player is allowed to remove 1 or 2 matches. There
are two special moves. Once in the game one player is allowed to remove 3 matches
and once in the game one player is allowed to remove 4 matches. If there is no match
left the player who is on move loses.

We model this game using the Boolean lattice £ with atoms {3, 4} for the special
moves. An element of £ describes which special move is still available. The graph
of the game is a relation R between the number of matches left on the table. It is
defined by
R(n,m)=10 iff n—m >50rn=m,

R(n,m)= {4} iff n—m =3,
R(n,m)= {3} iff n—m =4,
R(n,m)= {3,4} iff n —m € {1,2},

corresponding to the interpretation of £ indicated above. The kernel of this relation
is L-fuzzy vector on the set {0,...,21} of the number of matches left on the table.
Its matrix representation looks like

0123456789101112131415161718192021
(1003403043 001003403043)

where 0,3, 4,1 are shorthands for 0, {3}, {4}, {3,4}, respectively. This kernel may be
interpreted as follows. If at least the special move 3 is left state 9 is a winning state
for the player who is on move. He takes 3 matches and the game is in state 6. The
other player may switch to state 5,4 or to state 2 by using the special move 4. In
the second case the first player can go immediately to state 0 and win, in the first
case he can go to state 3 such that the second player just may switch to state 1 or 2
where he will lose agin. Analogously, state 12 is a winning state for the player who
is on move if both special moves are still available, and state 10 is a winning state
if both special moves are not available. The kernel above shows that the player who
starts will win the game. But he will lose if the special move 3 is forbidden. In this
case he may switch to state 20,19 or 17. In all cases the second player can go to a

state which is labelled by 3 (state 15 or 18).
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Abstract This paper gives an overview of the Electronic Tool Integration (ETT) platform
(see also [9] and [2]), a platform for the interactive experimentation with heterogeneous
software tools via the Internet. This platform enables even newcomers to master the wealth
of existing software tools in a short timespan, and to identify the most appropriate collection
of tools to solve their own application-specific tasks.

1 The Goals

Modern software engineering is more and more dependent on automation and good
tool support. However, faced with a problem, it is hard to identify the appropriate
tools. In particular, since generic tools are often not adequate, (different) tools having
a specific focus are needed to tackle the task. Of course, the Internet is a good resource
for information. But the advantage of the available information-variety is extenuated
by the fact that the right software tool is difficult to find. Though, there is generic
support for each step of the tool evaluation process, in form of

searching the Web,

reading the available documentation,
installing the software tool and finally
experimenting with the tool, tool-evaluation

- =

specific support and overlapping assistance is still missing.
The Electronic Tool Integration (ETI) platform overcomes this problem by pro-
viding Internet-based access to software tools with the ability to

e retrieve information on each available tool,

e execute single tool features, and

e combine features coming from different tools within the repository and run the
corresponding programs.

These features are offered to the public via moderated Internet sites, called ETI
Sites, which give access to a collection of pre-installed software tools using the ETI
platform.

This paper presents the user’s view of the ETI platform in form of the ToolZone
Software. For this, we first give a short overview to this Internet-based client/server
application in Sect. 2. This introduces terms like Activities (see Sect. 3), Taxonomies
(see Sect. 4) and Coordination Programs (see Sect. 5 and Sect. 6) which are afterwards
explained in the subsequent sections.
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2 Introducing the ToolZone Software

A user can experiment with the tools hosted by an ETI site using the ToolZone
Software. This client/server application gives access to a tool repository in which
tool features are represented as functional entities called ETI Activities (see Sect.
3). Additionally, the tool repository comprises the data types the activities work
on. The activities and the associated data types are classified for ease of retrieval
according to behavioral and interfacing criteria via ETD’s Type and Activity Taxon-
omy, respectively (see Sect. 4). Using the ToolZone software, the end user can get
information on each activity and type contained in the tool repository via ETI’s tax-
onomy browsers (see Fig. 1) beside others, in form of a link to the underlying tool’s
home page or contact address. Whereas links to tools having a specific focus are also
available via other Web sites like the Petri Nets Tool Database [3] or the Formal
Methods Europe [1] database, the key feature of the ToolZone software is its unique
Internet-based experimentation facility. This means, that via the ToolZone software
end users can execute single activities as well as combine activities to coordination
programs and finally execute the programs via the Internet.

To combine (coordinate) the activities contained in the tool repository, experi-
enced users can make use of ETT’s procedural coordination language HLL (High-Level
Language) [6] to manually implement the intended coordination task on the basis of
the available activities (see Sect. 5). Unexperienced users are supported by means
of ETI’s Synthesis Component [10] which generates sequences of activities out of
abstract specifications (see Sect. 6). Single activities or combinations of them can be
run via the Internet on libraries of examples, case studies, and benchmarks which
are also available in the tool repository. Additionally, the user can experiment with
own sets of data, to be deployed in user-specific, protected home areas.

3 Activities

In general, tools are not integrated into the tool repository as monolithic blocks.
Rather, single tool features are identified and prepared to be accessible by the plat-
form. Within the tool repository, a distinct tool feature is represented by an ETI
Activity which is the elementary functional component of the ETI platform. An
activity definition comprises

e the name that is beside others required to reference the activity in a coordi-
nation-task description (see Sect. 6).

e the classification constituent in terms of predicates which characterizes the activ-
ity within the tool repository. This information can be used to specify an activity
using abstract properties instead of its name in a coordination-task description.

e the implementation constituent which implements the activity on the basis of the
corresponding tool feature.

After an activity has been made available within the tool repository, it can be
combined with other activities. For this, the end user can write an HLL-program
implementing the intended coordination task. Alternatively, the glue-code coordi-
nating the activities can be generated automatically on the basis of an abstract
coordination-task description, called Loose Specification (see Sect. 6).
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In contrast to HLL-based coordination which can be used to combine arbitrary
activities contained in the tool repository, only activities having a certain profile can
be used for program synthesis. These synthesis-compliant activities look at a tool
feature as a ”"transformational” entity. This means that a tool feature is seen as a
component taking an object of type T as input and delivering an object of type T5
as output.

As an example, Table 1 shows the names and the interface constituent of the
definition of synthesis-compliant activities identified within the CADP toolkit [5]. It
presents the name of the activities, their input and output types as well as the tools
their implementation is based on.

|Activity Name |Input Type|0utput Type|Tool |Description |
openAUTFile ETINone |AUTFile aldebaran|Loads an AUT-
File object.
aldebaran_MIN_STD_I|AUTFile |AUTFile aldebaran|Minimizes an LTS.
autF2bcgF AUTFile |BCGFile aldebaran |Transforms a file
in the aut format
into the BCG

file format.
bcgEVAL BCGFile |ETIFile beg-open |A model checker

based on bcg_open.
xtl BCGFile |ETIFile xtl Evaluation of value-

based temporal
logic formulas.

Table 1. Activities Based on the CADP Toolkit

4 Taxonomies

For a flexible handling (retrieval, loose object specification, abstract views), activities
and the data types they work on are classified by means of the Activity Taxonomy and
Type Taxonomy, respectively. A taxonomy is a hierarchical structure of predicates
over a set of atomic elements, here the activities and types respectively. Formally, a
taxonomy (defined over a set of atomic objects S) is a sub-lattice of the power-set
lattice over S which comprises elements with a particular profile which are identified
by names. Taxonomies can be represented as directed acyclic graphs (DAGs) where
each leaf represents an atomic entity (here activity or type) and each intermediate
node represents a set of entities, called group. Conceptually, edges reflect an ”is-a” re-
lation between their target and source nodes. The semantics of an intermediate node
is the set of all atomic entities which are reachable within the taxonomy DAG from
this node. With respect to this semantics, edges reflect the standard set inclusion.

Fig. 1 shows a simple classification of the types introduced in Table 1 within
ETT’s taxonomy browser. Here, the type group CADPFile represents beside others
the types LOTOSFile, SEQFile, BCGFile, AUTFile, and EXPFile. The activities are
organized within the activity taxonomy analogously.
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w (The ETI Type Tamonomy 1= ]
File Edit Layout

& BCGFile AUTFile EXPFile

ile SFile CTLFile

[ ¥

Type ATGFile

Description:
The type ATGFlerepresents afile in the Autograph form at.

File-Suffmx:
.atg

File Form at:
File form at description currently not available.

Associated Tool/ Actitity:
open ATGFile , saveATGFile | atgF2h oF

Figure 1. A simple Type Taxonomy

5 HLL Programming

Once an activity is available in the tool repository, it can be accessed via the HLL
(High-Level Language) function defined by the activity’s implementation constituent
(see Sect. 3). On the basis of this HLL function, HLL programs are used to manually
combine activities representing heterogeneous functionalities coming from different
tools in order to perform complex tasks.

The HLL-based coordination program presented in Fig. 2 minimizes a labelled
transition system (LTS) stored in the aut-format, a file format defined by the Cae-
sar/Aldebaran Development Package (CADP). After that, the xt1 model checker, a
tool contained in the CADP toolkit, is invoked on the minimized labelled transition
system. In detail, this is done by requesting from the user the files storing the la-
belled transitions system and the formula to be checked via the fsBoxLoad function
of the ETI HLL-library (see (1) and (2) of Fig. 2). Then the model is minimized
with respect to observational equivalence [8] using the aldebaranMIN_STD_I function
contained in the HLL-library CADP (see (3)). Since the xt1 model checker requires
the model to be provided in the bcg file format, the aut-representation of the mini-
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mized labelled transition system is transformed into this format by the HLL function
autF2bcgF (see (4)). Finally, the xt1 model checker is called using the xt1 function
of the HLL-library CADP getting the model and the formula as arguments (see (5)).

var String: aut_model;

var String: min_aut_model;

var String: bcg_model;

var String: formula;

var ETIResult: result;

aut_model := ETI.fsBoxLoad ("Select Model", "x.aut"); (1)

formula := ETI.fsBoxLoad ("Select Formula", "#.xtl"); (2)

result := CADP.aldebaranMIN_STD_I (aut_model, min_aut_model); (3)
result := CADP.autF2bcgF (min_aut_model, bcg_model); (4)

CADP.xtl (bcg_model, formula); (5)

result :

Figure 2. A HLL-based Coordination Program

6 Program Synthesis

In addition to the HLL-based coordination, the ETI platform provides automated
coordination support by means of its synthesis component. Here, the glue-code com-
bining the activities is automatically generated. For this, the user specifies a coor-
dination task via an abstract description called Loose Specification (see Fig. 3 as an
example), instead of programming it using the HLL. Using loose specifications, the
user characterizes what he wants to achieve instead of how to achieve it. This goal-
oriented approach is the main difference between ETI’s synthesis-based coordination
facility and other coordination approaches like UNIX piped commands, scripting
languages (e.g. Perl [11], Python [7]) or the ToolBus [4]: there the user is forced to
precisely specify the coordination process like in HLL programs.

w CETI Sunthesis Editor o=
Fila Edit Options

((AUTFile < minimizer) < model_checker) < display)

Submit

Figure 3. A Loose Specification

These abstract descriptions which are based on the Semantic Linear-time Tem-
poral Logic [10] are loose in two orthogonal dimensions:

Local Looseness : The characterization of types and activities is done at the ab-
stract level of the taxonomies, instead of enumerating them explicitly. Here names
contained in the taxonomies are interpreted as propositional predicates (see e.g.
the activity groups minimizer, model _checker, and display in Fig. 3). They
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can be combined by the Boolean operators & (and), | (or) and ~ (not) to specify
sets of activities and types.

Global/Temporal Looseness : The characterization of whole coordination sequen-
ces is done in terms of abstract constraints specifying precedences, eventuality,
and conditional occurrence of single taxonomy entities, rather than specifying
the precise occurrence of the types and activities (see e.g. the before operator <
in Fig. 3).

From the coordination-task description, the synthesis component then generates
sequences of activities (called Coordination Sequences) each implementing the spec-
ified task. Coordination sequences are finite paths of the form

An—1

Ty 25Ty 22Ty Ty 25T,

where Tj is a type and a; is a synthesis-compliant activity which transforms an object
of type T; into an object of Tj4.

As result of the synthesis process all coordination sequences which satisfy a given
loose specification are presented to the user as directed graph called the Synthesis
Solution Graph (see Fig. 4).

Using the ToolZone software, the user can graphically select his favored sequence
within the synthesis solution graph and then run the corresponding program via the
Internet.

w (ETI Solution Graph ((C(AUTFI] /& %)
File Layout

& ETINone

openAUTFile

UTFile

@ AuTrile

RutFZbcgF

howTextFile

ETIResult

Figure 4. A Synthesis Solution Graph

7 Conclusion

Within this paper we have presented the user’s view of the Electronic Tool Integration
platform which allows the experimentation with heterogeneous software tools via the
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Internet. On the basis of a set of activities, which represent distinct features of pre-
installed software tools, the user can build coordination programs manually using
the HLL. Additionally, sequential compositions of activities can be generated out of
goal-oriented abstract specifications. Coordination programs can then be run via the
Internet.

We are optimistic that this platform will help overcoming the typical hesitation
to try out new technologies: serious hurdles, like installation of the tools, getting
acquainted with new user interfaces, lack of direct comparability of the results and
of performances, are eliminated.
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Zusammenfassung Im Rahmen von TEMPLUS entsteht eine internetbasierte, persona-
lisierte Plattform, die es den verschiedenen universitiaren Nutzergruppen ermdoglichen soll,
effizient zu kooperieren. Dies beinhaltet insbesondere eine uniforme Integration der angebo-
tenen Dienstleistungen (kurz: Dienste) in einer Form, die eine rollen- und profilspezifische
Zugangskontrolle und Nutzerfithrung erlaubt.

1 Motivation

Universitéirer Lehrbetrieb beinhaltet Organisation und Durchfiihrung von Ubungen.
Die Organisation umfasst die Beriicksichtigung verschiedener universitirer Ubungs-
formen, die Anmeldung der Studierenden zu den Ubungen, die Verteilung der Stu-
dierenden auf die einzelnen Ubungsgruppen, die Schulung der Tutoren, sowie das
Erstellen von Statistiken. Bei der Durchfiihrung von Ubungen sind zentrale Punkte
das Erstellen und Verteilen von Ubungsblittern und Musterlsungen, die Korrek-
tur von Abgaben, die Priisentation von Lerninhalten und -materialien, sowie die
Feedback-Erfassung.

Dabei sind hohe Studierendenzahlen, stark wachsende Studienzeiten, hohe Abbruch-
quoten, eine unzureichende Betreuungssituation, hohe Belastung des Lehrpersonals
und komplexe, sich hiufig &ndernde Workflows unsere téglichen Herausforderungen.
An der Universitdt Dortmund wurde aufgrund dieser Problematik ein WIS-Projekt
(Sofortprogramm zur Weiterentwicklung des Informatikstudiums) ins Leben geru-
fen. Mehrere Lehrstiihle des Fachbereichs Informatik arbeiten im Rahmen dieses
Projektes an der Verbesserung der Lehre im Grundstudium. Eines der Teilprojekte
ist TEMPLUS.

2 Ziele

Die Ziele des TEMPLUS—-Projekts sind die Entlastung des Lehrpersonals von admi-
nistrativen Aufgaben und eine Verbesserung der Betreuung der Studierenden. Dies
soll erreicht werden durch eine proaktive Workflow-Steuerung, die Ergidnzung der
Kommunikation durch elektronische Medien, sowie das automatische Erfassen und
Auswerten statistischer Informationen.

Anforderungen an das zu entwickelnde System und unser Losungsansatz dafiir sind:

e Flexibilitit: Anderungen in den komplexen Workflows miissen einfach und
schnell im System umzusetzen sein. Eine komponentenbasierte, graphische Kon-
figuration der Workflows bietet dabei viele Vorteile.



188 Claudia Gsottberger

e hohe Verfiigbarkeit: Viele Nutzer arbeiten von unterschiedlichen Orten und
unterschiedlichen Betriebssystemen aus mit dem System. Es bietet sich daher an,
eine webbasierte Plattform zu entwickeln.

e Personalisierbarkeit: Die verschiedenen Nutzergruppen (z.B. Studenten, Do-
zenten, Tutoren, etc.) haben unterschiedliche Rechte und Pflichten in Bezug auf
Dateneinsicht und -&nderung. Ein flexibles Nutzer- und Rollenmanagement bietet
die notwendige Kontrolle.

e Zuverlassigkeit: Sicherheitskritische Workflows erfordern die Korrektheit der
Ablaufe. Es ist also notwendig, die entworfenen Workflows in Bezug auf bestimm-
te Kriterien zu validieren.

3 Technologie

Das Agent Building Center (ABC) ist eine generische graphische Entwicklungsum-
gebung fiir anwendungsspezifisches, komponentenbasiertes Softwaredesign [5]. Dabei
wird der Workflow als Graph (Service Logic Graph, kurz SLG) modelliert. Dieser
besteht aus Knoten, den funktionalen Einheiten (sog. SIBs, d.h. Service Independent
Building Blocks), und Kanten, die den Kontrollfluss reprisentieren (vgl. Abb. 1).
Die Trennung der Daten (Implementierung der SIBs) von dem konkreten Work-
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der Dienstentwicklung. Der zugehérige Software-Entwicklungsprozess ist in [1,3] be-
schrieben.

Die graphische Konfiguration der Workflows in Form der SLGs liefert die nétige
Flexibilitéit, um die Workflows an Anderungen anzupassen.

Zusétzliche Module innerhalb des ABC garantieren die Korrektheit und Zuverléssig-
keit der entwickelten Dienste und vereinfachen die Dienst-Entwicklung:

e Workflow-Validierung in Form von Uberpriifung lokaler und globaler Constraints,
sowie symbolische Ausfiihrung [2,6].

¢ Automatische Generierung der Applikation, d.h. der Ubergang von der Spezifika-
tion (SLG) zur Implementierung (konkreter Dienst) wird durch einen Compile-
Schritt realisiert.

e Einsatz vorgefertigter Komponenten (SIBs) fiir bestimmte Aufgabenbereiche,
z.B. Nutzer- und Rollenmanagement [4]

e Makros machen komplexe Workflows beherrschbar und unterstiitzen die Aufga-
benteilung wihrend der Dienst-Entwicklung (vgl. Abb. 2).
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Abbildung 2. Makros im ABC

4 Der TEMPLUS-Dienst

Der TEMPLUS-Dienst ist ein personalisierter, webbasierter Internetdienst fiir die
Organisation und Durchfiihrung von Lehrveranstaltungen an der Universitit.
Folgende Teilfunktionalitéten sind zur Zeit im TEMPLUS-Dienst umgesetzt;:

e Flexibles Nutzer- und Rollenmanagement angepasst an die Bediirfnisse und Rech-
te der universitdren Nutzergruppen

e Finsatz von Personalisierung als Filtermechanismus fiir Daten und Funktiona-
litdten

e Verwaltung von Vorlesungen und Ubungen
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e Anmeldung zu Vorlesungen und Ubungen
e Automatische Verteilung auf Ubungsgruppen, sowie die Moglichkeit, per Hand
Studierende nachtréglich einzuteilen bzw. zu verschieben.

e Importfilter fiir Studierendendaten zum Einrichten von Default-Accounts fiir den
TEMPLUS-Dienst

Zentral fiir alle Teilbereiche des TEMPLUS-Dienstes sind Personalisierung und
Proaktivitit.

Die Personalisierung erlaubt eine adiquate Behandlung von Rollen im univer-
sitdren Alltag (z.B. Student, Dozent, Tutor, etc.). Zugang zum Dienst und damit zu
den dariiber angebotenen Funktionalititen und erreichbaren Daten erfolgt nur mit-
tels eines personlichen Logins und Passworts. Nachdem sich ein Benutzer eingeloggt
hat, werden ihm abhéngig von seiner Rolle verschiedene Funktionalitdten angeboten
(vgl. Abb.3). Die personliche Navigationsleiste zeigt den Benutzernamen, die Rol-
len des Benutzers, sowie seine aktive Rolle und je einen Button fiir eine Klasse von
Funktionalititen, die fiir diese Rolle erlaubt sind.
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Abbildung 3. Rollenspezifisches Anbieten von Funktionalitdten

Durch die Proaktivitdt des TEMPLUS-Dienstes werden dariiberhinaus, rollen-
und zeitspezifisch Funktionalitéiten aktiviert oder deaktiviert bzw. unterscheiden sich
im Ablauf.

Der Button Verteilung fiihrt z.B. zu allen Aktivititen, die mit der Einteilung von
Ubungsgruppen zu tun haben. Dabei werden die Aktivitéiten rollenabhingig aktiviert
bzw. deaktiviert (vgl. Abb.3).
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Aktivititen kénnen je nach Rolle unterschiedlich ablaufen, d.h. unterschiedliche Sich-
ten auf die darunterliegende Datenmenge bieten. Beispielsweise hat der Organisator
die Teilnehmerlisten der Ubungsgruppen inklusive der persénlichen Daten der Studie-
renden, wie z.B. Studiengang, Fachsemester, Matrikelnummer, wihrend die Tutoren
nur die Namen der Teilnehmer in ihren Ubungsgruppen kennen, und die Studierenden
nur wissen miissen, fiir welche Ubungsgruppe sie selbst eingeteilt sind.

Die zeitspezifische Aktivierung bzw. Deaktivierung von Funktionalititen ist appli-
kationsabhiingig. Im Rahmen der Anmeldung zu Ubungsgruppen ist ein Anmelde-
zeitraum fiir eine Veranstaltung definiert. Studierende diirfen das Anmeldeformular
nur wihrend dieses Zeitraums editieren. Nach Ablauf der Anmeldefrist kénnen Stu-
dierende lediglich ihre eingegebenen Daten einsehen, der Organisator kann jedoch
erst danach den Verteilungsalgorithmus anstoflen, sowie dessen Ergebnisse versffent-
lichen, nachbessern und Konflikte beheben. Studierende und Tutoren kénnen die
Ergebnisse erst nach der Vertffentlichung einsehen.

5 Zusammenfassung und Ausblick

Der TEMPLUS-Dienst ist ein personalisierter, webbasierter Internetdienst zur Or-
ganisation und Durchfiihrung von Lehrveranstaltungen an der Universitit. Zentral
dabei sind die adiquate Handhabbarkeit der Rollen des universitiren Alltags, sowie
die Zuverlissigkeit der entwickelten Workflows, um die Datensicherheit im Rahmen
der sicherheitskritischen Abliufe zu gew#hrleisten.

Das Agent Building Center (ABC) [5] ist die ideale Entwicklungsumgebung fiir eine
derartige Webapplikation, denn es bietet

e Komponentenbasierte, graphische Entwicklung workflow-zentrierter Software: So-
mit ist Flexibilitét in Design, Wartung und Weiterentwicklung gewéhrleistet.

e Flexibles Nutzer- und Rollenmanagement in Form einer Bibliothek von Kom-
ponenten: Es ist z.B. auch moglich, zur Laufzeit neue Nutzer einzurichten und
Rollen zu definieren bzw. zu modifizieren.

e Workflow-Validierung auf dem Ablaufniveau (SLG): Dabei werden die Kompo-
nenten (SIBs) als korrekt funktionierende atomare Bausteine betrachtet. Die
Validierung der Workflows ist der Schliissel zu zuverlissigen Webapplikationen.
Symbolische Ausfithrung der Applikation, lokale Checks bzgl. der Konfiguration
einzelner SIBs und globale Checks, d.h. Uberpriifen der Interaktion zwischen ver-
schiedenen SIBs innerhalb des Workflows mittels Modelchecking, erméglichen es
dem Benutzer zur Designzeit (d.h. bevor die konkrete Applikation generiert und
getestet wird) die Konsistenz seiner Applikation priifen. So werden viele Fehler
bereits in einer sehr frithen Phase des Softwareentwicklungsprozesses gefunden,
was die Kosten und die Entwicklungszeit der Webapplikationen reduziert.

Unmittelbare Feuerprobe fiir den Dienst ist der Einsatz bei der Organisation und
Durchfiihrung der Erstsemestervorlesung Datenstrukturen, Algorithmen und Pro-
grammierung 1 im WS 2001/02 an der Universitdt Dortmund. An dieser Stelle
mochte ich Bernhard Steffen und Volker Braun fiir ihre inhaltlichen Beitréige, dem
TEMPLUS-Entwicklerteam fiir die gute Zusammenarbeit, sowie dem METAFrame-
Team fiir die technische Unterstiitzung danken. Ohne ihre Mitarbeit wire es nicht
moglich gewesen, den TEMPLUS-Dienst innerhalb weniger Monate zu entwickeln.
Geplante Erweiterungen fiir TEMPLUS, die zum Teil noch wihrend des WS 2001/02
zum Einsatz kommen sollen, sind
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eine Statistik-Komponente

— zur Verwaltung der Anwesenheit in den Ubungen und den bei der Abgabe

von Losungen zu Ubungsaufgaben erreichten Punkten

— mit automatischer Uberpriifung von Scheinkriterien
ein Nutzerprofil-Generator fiir Studierende, um den Wissensstand und den Lern-
fortschritt bewerten zu kénnen, sowie die Ursachen fiir Probleme benennen zu
konnen
Verwaltung von Ubungsaufgaben
Online-Abgabe und Korrekturunterstiitzung (z.B. automatische Compilierung
bei Programmieraufgaben als Priprozess)
profilabhingige Aufbereitung von Lerninhalten bzw. Generierung personlicher
Lerneinheiten zur Nachbereitung der Vorlesungsinhalte bzw. zur Priifungsvorbe-
reitung

bis hin zu

Li

1.

Notebook-Klausur, bei der alle Studierenden ihre persénlichen, parametrisierten
Aufgaben bekommen [7]

flexiblem Ubungsbetrieb mit themenspezifischen Ubungsgruppen und Schwer-
punkttutorien
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von Komponenten anhand eines Lernkurses aus
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FernUniversitdt Hagen, Feithstrale 142, D-58084 Hagen

1 Einfiihrung und Motivation

Die Erwartungen an eine hohe Wiederverwendbarkeit von Software beim Einsatz
objektorientierter Sprachen hat sich nicht erfiillt. Obwohl diese Sprachen gute Me-
chanismen fiir Datenabstraktion und Datenkapselung bereitstellen, haben sie nicht
zur vermehrten Entwicklung unabhéngiger, wiederverwendbarer Einheiten gefiihrt.
Statt dessen sind hiufig grofle, monolithische Programme entstanden.

Es hat sich gezeigt, dass Klassen zu fein granular sind, um weitgehend unabhéngi-
ge, wiederverwendbare Komponenten mit komplexerer Funktionalitét zu bilden. Zur
Bereitstellung solcher Funktionalitéiten wird eine Menge von kooperierenden Klassen
benétigt. Gute Konzepte zur Bildung gréflerer Einheiten fehlen aber in den meisten
objektorientierten Sprachen.

AuBlerdem fiihrt Vererbung -der Mechanismus zur Wiederverwendung in objek-
torientierten Sprachen- zum sogenannten fragile base class-Problem [12,17]. Ande-
rungen an einer Superklasse kénnen unvorhersehbare Folgen fiir die Subklassen nach
sich ziehen (Anpassungen, Neukompilierung, Sematikéinderungen...).

Diese Probleme fiihrten zur Entwicklung von Konzepten fiir besser wiederver-
wendbare Softwarebausteine, sogenannte Komponenten [9,13,17]. Komponenten sind
(binédre) Einheiten bei denen Entwicklung, Erwerb und Einsatz unabhingig von-
einander erfolgen und die interagieren, um ein funktionierendes System zu bilden.
Komponenten kommunizieren iiber wohldefinierte Schnittstellen. Thre Implementie-
rung bleibt verborgen. Sie kénnen sowohl objektorientiert mit Hilfe mehrerer Klassen
implementiert werden als auch prozedural (siehe z.B. DCOM [7,9,17]).

Der Einsatz von Komponenten verspricht folgende Vorteile:

e Bessere Erweiterbarkeit von Applikationen durch Hinzufiigen neuer Komponen-
ten

e Bessere Anpassbarkeit von Applikationen an geéinderte Bediirfnisse durch Aus-

tauschbarkeit von Komponenten (Beispiel: Komponente zur Rechtschreibpriifung

fiir verschiedene Sprachen, von verschiedenen Anbietern)

Hoherer Grad an Wiederverwendbarkeit fiir andere Applikationen

Moglichkeit zum Zukauf von Komponenten

Reduzierung der Entwicklungskosten durch Zukauf oder Wiederverwendung

Verteilung von Komponenten auf verschiedene Rechner

Programmiersprachen- und Plattformunabhéngigkeit

Hohes Abstraktionsniveau (Bereitstellen von Geschéftskomponenten)

Reduzierung der Komplexitit bei der Erstellung einer neuen Applikation aus

bestehenden Komponenten (Unterstiitzung nicht spezialisierter Entwickler)

e Niedrige externe Kopplung zwischen verschiedenen Komponenten
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Wesentlich fiir die Akzeptanz von Komponenten ist, dass der Kompositionsvorgang
(das ist das Zusammensetzen von Komponenten zu einem Gesamtsystem -auch As-
sembly genannt-) einfach ist und auch von Nicht-Programmierern durchgefiihrt wer-
den kann. Dazu geho6ren u.a. eine grafische Unterstiitzung durch geeignete Werkzeu-
ge, eine weitgehend automatische Anpassung von Komponenten an die Bediirfnisse
ihrer Klienten sowie die Uberpriifung der Gesamtkonfiguration auf Konsistenz.

Um zu sehen, welche Schwierigkeiten beim Zusammensetzen von Komponenten
mit gingigen Werkzeugen auftreten, wurden an der FernUniversitit Hagen Multi-
media-Komponenten zum Aufbau von Fernstudienkursen entwickelt.

2 Multimedia-Komponenten fiir Studienzwecke

Fiir die Implementierung der Multimedia-Komponenten wurde das JavaBeans - Kom-
ponentenmodell [9,17] gewihlt.

Die entwickelten Komponenten sind eingeteilt in atomare und Containerkom-
ponenten. Containerkomponenten dienen im wesentlichen dazu, atomare und an-
dere Containerkomponenten aufzunehmen, zu gruppieren und zu verwalten sowie
gef. Konsistenzpriifungen durchzufiihren. Zu atomaren Komponenten kénnen keine
anderen Komponenten hinzugefiigt werden. Sie dienen zum Laden, Speichern und
Darstellen von Informationen wie Texten, Bildern, Grafiken etc. und zum Steuern
von Aktionen wie z.B. dem Starten eines Applets oder dem Starten einer Entwick-
lungsumgebung zum Bearbeiten von Programmierbeispielen.

Ein Fernstudienkurs setzt sich aus mehreren Kurseinheiten zusammen. Jede Kurs-
einheit kann ein Inhaltsverzeichnis, mehrere Kapitel, ein Stichwortverzeichnis, Litera-
turverzeichnis sowie Ubungen und zugehorige Losungen enthalten. Jedes Kapitel wie-
derum kann aus anderen Kapiteln sowie Paragraphen und atomaren Komponenten
wie Text-, Bild-, Applet-, Programmierbeispiel- und Rechenkomponenten bestehen.

Kurseinheiten, Kapitel und Paragraphen sind Containerkomponenten. Die ato-
maren Komponenten sind eingeteilt in aktive und inaktive Komponenten. Beispiele
fiir aktive Komponenten sind Komponenten, die Applets steuern, zur Bearbeitung
von Programmierbeispielen dienen oder Taschenrechnerfunktionalitdten implemen-
tieren. Inaktive Komponenten sind z.B. Komponenten zum Anzeigen von Texten,
Bildern und Grafiken.

Das Zusammensetzen der Komponenten zu einem Kurs erfolgte mit Hilfe der
Beanbox [11], ihre Entwicklung mit Hilfe des JBuilders [8,18].

3 Probleme und Lésungsansitze

Bei der Entwicklung und dem Einsatz der Multimedia-Komponenten wurden Pro-
bleme erkannt, die grob in zwei Kategorien eingeteilt werden kénnen:

1. Probleme zwischen Buildertool und Komponenten
2. Probleme bei der Verbindung von Komponenten untereinander

Probleme der ersten Kategorie ergeben sich im wesentlichen daraus, daf3 das Buil-
dertool Eigenschaften der Komponenten auswertet, die iiber die durch das Kom-
ponentenmodell festgelegten Eigenschaften hinausgehen. Dadurch kénnen manche
Komponenten in einem bestimmten Tool nicht oder nur bedingt verwendet werden.

Probleme der zweiten Kategorie haben u.a. folgende Ursachen:
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e Der Entwickler (Autor) muss wissen, welche Komponenten verwendet werden
kénnen, um Applikationen eines bestimmten Typs (z.B. einen Fernstudienkurs)
zu erstellen und wie sie zu verbinden sind. Das Buildertool unterstiitzt ihn dabei
nicht.

e Er muss wissen, welche Verbindungen nicht erlaubt sind. Zum Beispiel darf eine
Kurseinheit nicht zu einem Kapitel hinzugefiigt werden. Das Buildertool fiihrt
eine solche Fehlkonfiguration ohne Warnung durch.

e Dem Entwickler muss bekannt sein, ob eine Komponente andere Komponenten
bendtigt, um ihre Aufgabe erfiillen zu kénnen und wie die Verbindung zwischen
diesen Komponenten einzurichten ist. Wird eine benétigte Verbindung zwischen
zwei Komponenten nicht oder falsch hergestellt, duflert sich dies spéter in ei-
nem Fehlverhalten. Das Buildertool gibt keinen Warnhinweis aus. Beispielsweise
benétigt die entwickelte Rechenkomponente eine Priifkomponenten, die das Er-
gebnis der Rechenkomponente iiberpriift und zuriickmeldet, ob das {ibergebene
Ergebnis korrekt war oder nicht. Damit die Komponente fiir Programmierbei-
spiele korrekt arbeitet, muss die angegebene IDE verfiigbar sein und gestartet
werden konnen u.s.w.

e Einige Buildertools (z.B. Beanbox) bieten keine Moglichkeit, neue (wiederver-
wendbare) Komponenten aus bestehenden Komponenten zusammenzusetzen. An-
dere Buildertools (z.B. JBuilder) verfiigen zwar iiber diese Option, setzen hierfiir
aber die Fahigkeiten eines professionellen Entwicklers voraus. Gerade im Bereich
der Autorensysteme wire es aber wiinschenswert, schnell und einfach immer wie-
der benotigte Einheiten wie z.B. ein Video zusammen mit Buttons zum Starten
und Anhalten erstellen und spiiter beliebig wieder verwenden zu kénnen.

e Nicht speziell fiir einen bestimmten Anwendungsbereich entwickelte Komponen-
ten konnen hiufig nicht in anderen Bereichen eingesetzt werden. Hier fehlen au-
tomatische Adaptionsmechanismen, mit denen eine Komponente an ein geinder-
tes Umfeld angepasst werden kann. Beispielsweise wéire es wiinschenswert, eine
Button-Komponente in einem Fernstudienkurs verwenden zu kénnen, die nicht
speziell dafiir entworfen wurde.

Ziel ist es, ein Buildertool in die Lage zu versetzen, den Entwickler besser als bis-
her beim Kompositionsvorgang unterstiitzen zu kénnen und dadurch auch ungeiibten
Benutzern zu ermoglichen, Applikationen aus Komponenten zusammenzusetzen. Ins-
besondere soll es ihn auf bestehende Fehler aufmerksam machen und automatische
Adaptionen durchfithren konnen. Dafiir miissen die Komponenten zusétzlich zu den
durch das Komponentenmodell vorgeschriebenen Informationen -wie z.B. die un-
terstiitzten Schnittstellen, Methodensignaturen etc.- weitere Informationen bereit-
stellen. Dazu gehoren z.B. Angaben iiber benotigte Schnittstellen anderer Kompo-
nenten, ggf. wechselseitige Verbindungen zweier Komponenten, nicht erlaubte Ver-
bindungen zwischen Komponenten, die verwendete Architektur usw.

Hier liegt das aktuelle Forschungsgebiet des Projekts EASYCOMP, an dem das
Lehrgebiet ”Praktische Informatik V” der FernUniversitdt Hagen beteiligt ist. Im
Lehrgebiet werden Spezifikationstechniken gesucht, die die oben genannten zusitzli-
chen Informationen in geeigneter Weise beschreiben und die eine automatische Aus-
wertung von Seiten eines Buildertools erméglichen.
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