
Can Logic Programming Be Liberated
from Predicates and Backtracking?

Michael Hanus

Kiel University

Programming Languages and Compiler Construction

Bad Honnef 4/2025

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 1

Logic Programming

The ideal view
write problem specification with Horn clauses
use SLD-resolution to compute problem solutions

The practice: Prolog
use backtracking (due to memory limitations in the ’70s)
loss of completeness

Prolog program

app([],Ys,Ys).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

app3(Xs,Ys,Zs,Ts) :- app(Xs,Ys,Rs), app(Rs,Zs,Ts)

?- app3(Xs,Ys,Zs,[]). ⇝ Xs=[], Ys=[], Zs=[] ; no termination!
?- app3(Xs,[1],Zs,[]). ⇝ no termination!

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 2

Predicates vs. Functions

Functional logic programming
program: set of functions defined by equations
nice compact notation and exploit functional dependencies
Curry (www.curry-lang.org, extension of Haskell):

demand-driven reduction of function calls (⇝ FP)
non-deterministic rule application (⇝ LP)

Curry program

app [] ys = ys
app (x:xs) ys = x : app xs ys

app3 xs ys zs = app (app xs ys) zs

> app3 xs ys zs =:= [] ⇝ xs=[], ys=[], zs=[] (finite evaluation!)
> app3 xs [1] zs =:= [] ⇝ no result (finite evaluation!)

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 3

From Logic to Functional Logic Programs

Approach: Functional transformation [TPLP 2022]

fix some predicate argument(s) as result(s) (default: last argument)
map n-ary predicates into m-ary functions (m ≤ n)
source and target programs are operationally equivalent

Prolog program

app([],Ys,Ys).
app([X|Xs],Ys,[X|Zs]) :- app(Xs,Ys,Zs).

Curry program

app [] ys = ys
app (x:xs) ys | zs =:= app xs ys = x : zs where zs free

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 4

From Logic to Functional Logic Programs

Approach: Demand functional transformation
as before, but use binding (let/where) instead of unification
inline bindings for compact notation

Curry program
app [] ys = ys
app (x:xs) ys | zs =:= app xs ys = x : zs where zs freeapp (x:xs) ys = let zs = app xs ys in x : zsapp (x:xs) ys = x : app xs ys

Evaluation strategy becomes relevant:
strict (call-by-value): source/target computations are equivalent
non-strict (lazy): some bindings not demanded⇝ fewer steps

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 5

Demand Functional Transformation

app [] ys = ys siglist [] = Zero
app (x:xs) ys = x : app xs ys siglist [_] = One

siglist (_:_:_) = Many
> siglist (app xs ys)

strict: (length(xs) + 2) steps vs. lazy: ≤ 3 steps

Problem: lazy strategy ignores non-demanded failures

tail([_|Xs],Xs).
sigtail(S) :- tail([],Xs), app([0,1],Xs,Ys), siglist(Ys,S).

?- sigtail(S). ⇝ No solution

Demand functional transformation:
tail (_:xs) = xs
sigtail = siglist (app [0,1] (tail []))

> sigtail ⇝ Many !!!

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 6

Fix the Demand Functional Transformation

Demand functional transformation correct if all operations are non-failing
(totally defined)

⇝ force evaluation of possibly failing expressions:

(f $! e) ≈ strict evaluation of e

tail (_:xs) = xs -- not totally defined!
sigtail = siglist (app [0,1] (tail []))

⇝

sigtail = siglist $! (app [0,1] $! (tail []))

Fail-sensitive functional transformation:
ensures semantic equivalence of logic and functional logic programs
(laziness⇝ possible more general solutions computed)

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 7

Abandon Predicates: From LP to FLP

Systematic transformation method
Details: [TPLP 2022, LOPSTR 2024]
Automatic transformation tool: pl2curry

Input: (almost pure) Prolog program
Output: Curry program

https://cpm.curry-lang.org/pkgs/prolog2curry.html (source)
https://hub.docker.com/r/currylang/prolog2curry (docker)
https://cpm.curry-lang.org/webapps/pl2curry/ (webapp)

Advantages [LOPSTR 2024]

semantic equivalence
worst case: same number of evaluation steps
general cases:

less evaluation steps (if some subexpressions not demanded)
reduce infinite search spaces to finite ones

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 8

https://cpm.curry-lang.org/pkgs/prolog2curry.html
https://hub.docker.com/r/currylang/prolog2curry
https://cpm.curry-lang.org/webapps/pl2curry/

Evaluation: Benchmarks

Benchmarks (run-time in seconds)

Language: Prolog Prolog Curry
System: SWI 9.0.4 SICStus 4.9.0 KiCS2 3.1.0
rev_4096 0.23 0.22 0.10
tak_27_16_8 6.97 3.23 0.74
ackermann_3_9 2.13 8.72 0.07
pali_[] ∞ ∞ 0.01
siglist_app_0 ∞ ∞ 0.01
numleaves_7 ∞ ∞ 0.01
sublist_1_2 ∞ ∞ 0.01
permsort_10 1.43 0.28 0.03
permsort_11 16.16 1.38 0.08
permsort_12 206.34 15.23 0.28

rev_4096, tak_27_16_8, ackermann_3_9: same number of steps
permsort_n: demand-driven exploration of search space

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 9

Abandon Backtracking: Complete Search Strategies

Strategies for non-deterministic search
Prolog:

backtracking (due to limited hardware resources)
not easy to change: many non-logical features rely on backtracking

Curry:
no fixed search strategy
PAKCS (⇝ Prolog): backtracking
KiCS2 (⇝ Haskell): depth-first (DFS), breadth-first (BFS)
Curry2Go (⇝ Go): DFS, BFS, fair search (FS) via goroutines

Non-deterministic identity

idND n = loop ? n ? loop -- "?": non-deterministic choice
> idND True

DFS, BFS: loops (no choice in loop), FS: returns True

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 10

Evaluating Search Strategies

PAKCS KiCS2 Curry2Go
Example SWIPL DFS BFS DFS BFS FS
nrev_4096 6.29 0.10 0.10 0.85 0.85 0.85
takPeano_24_16_8 56.78 0.12 0.12 8.05 7.98 7.76
primesHO_1000 29.46 0.04 0.04 3.51 3.58 3.55
psort_13 18.92 0.35 2.32 7.11 7.25 9.51
addNum_2 0.18 0.24 0.57 0.28 0.29 0.28
addNum_5 0.20 2.01 4.36 0.67 0.67 0.35
addNum_10 0.24 11.83 16.84 1.53 1.54 0.54
select_50 0.09 0.19 0.27 0.02 0.02 0.02
select_100 0.27 4.13 4.80 0.06 0.06 0.03
select_150 0.56 25.10 32.42 0.13 0.13 0.06
isort_primes4 9.56 0.02 0.02 1.15 1.14 1.11
psort_primes4 112.38 0.02 0.02 1.11 1.11 0.71

primes4 =̂ [primes!!303, primes!!302, primes!!301, primes!!300]

⇒ non-deterministic algorithm faster due to concurrency

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 11

Conclusions

Can LP Be Liberated from Predicates and Backtracking?

YES!
functions: only advantages, no disadvantages!

transformed programs compute same or more general answers
worst case: same number of evaluation steps
general: reduced number of steps, infinite⇝ finite search spaces
optimal evaluation for inductively sequential programs

complete strategies are not slow, we have enough memory/processors!

Advantages
modern language concepts: functions, nested expressions
avoid incompleteness: close theory/practice gap of LP
easier teaching of declarative programming
avoid non-declarative features (cut, is, I/O side effects,. . .)

⇒ keep LP ideas in future programming systems!

Michael Hanus (CAU Kiel) Can Logic Programming Be Liberated from Predicates and Backtracking? Bad Honnef 4/2025 12

