pylibjit: A JIT Compiler Library for Python

Gergd Barany
Institute of Computer Languages
Vienna University of Technology
gergo@complang.tuwien.ac.at

Abstract

We present pylibjit, a Python library for generating machine code
at load time or run time. The library has two distinct modes of use:
First, it aims to provide a high-level interface for generating code at
run time. This is achieved by using language features such as operator
overloading and Python’s context managers and decorators.

Second, Python’s reflection features allow us to access functions’
abstract syntax trees. pylibjit can make use of this to generate
machine code for functions originally written in Python. Compiling
a Python function can be as easy as attributing it with a decorator
providing type information, without changing the function itself in
any way. Such compiled functions are executed transparently within
interpreted Python programs. This makes it convenient to develop
applications in Python and then speed up only the hot spots using
compilation.

The development of pylibjit is at a very early stage, but we can
already present some working examples. For simple numeric programs,
we achieve speedups of up to 50 x over standard interpreted Python.

1 Motivation

Interpreted high-level programming languages are often criticized for their
comparatively poor performance. Still, they are popular due to their ease
of use and high-level features. Various techniques are used to bridge the
performance gap to more traditional compiled languages: tracing just-in-
time compilers (JITs) [CSRT09, BCFR09], JITs for subsets of languages
marked by special annotations [asm], or ahead-of-time compilers that rely
on static type annotations [Sel09]. A partial solution is to use interpreters
that specialize the program at run time [Brul0].

This paper introduces the pylibjit library, which aims to provide a JIT
for fragments of Python code marked by annotations (‘decorators’ in Python
parlance). The compiled code runs within the normal Python interpreter
embedded in a traditional Python program; program parts without compiler

def fib(n):
if n < 2:
return n
else:
return fib(n-1) + fib(n-2)

Figure 1: The naive Fibonacci function in Python.

annotations are interpreted as usual, while the compiled parts can make use
of static type information provided by the developer.

JITs are mostly associated with languages that are compiled to some
form of ‘bytecode’ intermediate representation. However, machine code gen-
eration at run time is an important topic even for some programs written
in traditional, statically compiled languages. Code generation can be useful
for programs that perform expensive computations with control flow that
heavily depends on user input. For example, image processing applications
can benefit from generating specialized JIT-ed code for user-defined image
filters [Pet07]. Even the Linux kernel contains a JIT compiler for a simple
domain-specific language describing network packet filtering rules [Corl1].

Our pylibjit project builds on a JIT library meant for building code at
run time in such applications. However, since Python also allows execution
of code at load time (or rather, since there is no clear distinction between
‘run time’ and ‘load time’), we can apply the same library to compile entire
Python function definitions as they appear in a source file. The following
sections describe how pylibjit builds up from a simple JIT library interface
to what is a de facto ahead-of-time compiler for a subset of Python.

2 Compiling functions using the low-level API

Our pylibjit library builds on the GNU 1libjit just-in-time compiler li-
brary! and an existing Python wrapper library for it2.

We will use the naive Fibonacci function in Figure 1 to illustrate the use
of this existing library and our improvements to it. The library exports a
clags jit.Function which users must subclass for each function they wish
to build and compile. Figure 2 shows the code needed to build the Fibonacci
function using this interface. The core is the build function which performs
the API calls to build up the intermediate code step by step: API calls
provide for computations, labels, conditional and unconditional jumps, and
function calls. Note that, since the intermediate code is meant to be compiled
to machine code, all computations are typed, although type annotations are

"http://www.gnu.org/software/libjit/
*https://github.com/eponymous/libjit-python

class fib_function(jit.Function):
def create_signature(self):
return type, argument types
return self.signature_helper(jit.Type.int, jit.Type.int)

def build(self):
values: n, one, two
n = self.get_param(0)
one = self.new_constant(l, jit.Type.int)
two = self.new_constant(2, jit.Type.int)
if n < 2: goto return_label
return_label = self.new_label()
self.insn_branch_if(n < two, return_label)
return fib(n-omne) + fib(n-2)
fib_func = self
fib_sig = self.create_signature()
a = self.insn_call(’fib’, fib_func, fib_sig, [n-onel)
b = self.insn_call(’fib’, fib_func, fib_sig, [n-two])
self.insn_return(a + b)
return_label: return n
self.insn_label(return_label)
self.insn_return(n)

Figure 2: Building the Fibonacci function using the low-level JIT interface.

mostly only needed where a value is first introduced; the types of arithmetic
and other operators are inferred from their operands. The type name int
refers to the machine’s ‘usual’ word-sized integer type, as in C.

Note also that already at this level, Python’s high-level nature offers some
convenience: The arithmetic operators + and - (and others) are overloaded to
work on the compiler’s ‘value’ objects, so we can directly generate an addition
instruction by writing a + b rather than the less natural insn_add(a, b).

Having created this definition, the class can be instantiated and called
as if it were a normal Python function. Wrapper code takes care of unbox-
ing Python argument values and boxing the native code’s return value in a
Python object.

3 The higher-level API

While this library is usable, it makes building functions more verbose than
absolutely necessary. Having to subclass Function and implement several
methods on it can lead to a lot of boilerplate code; the only interesting
function in a typical subclass is build, so ideally users should not have to
write more than this function. Conveniently, Python provides a concept of
function decorators that can be used for this purpose.

@jit.builder(return_type=jit.Type.int, argument_types=[jit.Type.int])
def fib2(func):
n = func.get_param(0)
one = func.new_constant(l, jit.Type.int)
two = func.new_constant(2, jit.Type.int)
with func.branch(n < two) as (false_label, end_label):
func.insn_return(n)
else:
func.insn_label(false_label)
func.insn_return(func.recursive_call(’fib’, [n - one]) +
func.recursive_call (’fib?, [n - two]))

Figure 3: Building the Fibonacci function using the higher-level interface.

A decorator is a callable object that can be attached to a function defini-
tion using the @ operator. After the function has been parsed and compiled to
Python bytecode, the decorator is applied to it and can perform any analysis
or transformation. Finally, the decorator’s return value replaces the original
function object. This enables various higher-order programming techniques.

Using this mechanism, it is easy to write a decorator for JIT builder
functions that hides all the boilerplate involved in defining a class and
instantiating it. This is encapsulated in the jit.builder decorator ex-
ported by pylibjit. This decorator creates an internal class subclass-
ing jit.Function, defines the build method in that class to call the deco-
rated function provided by the user, and finally takes care of instantiating
the JIT-ed function.

Besides boilerplate, another inconvenience when using the pure libjit
interface is the lack of structure. In Figure 2, the control flow in the gen-
erated program is difficult to see as it is implicit in a number of labels and
jump statements. We can, however, build constructs for more structured
programs using Python’s contert managers combined with its with state-
ment. In essence, a context manager is a pair of two functions __entry__
and __exit__ which are called when execution enters and leaves a with
statement, respectively.

This is a good match to the work that must be done to set up a branch or
a loop: At the head of the control structure, a branch condition must be eval-
uated, and at the end a label (and, for loops, a jump back to the loop head)
must be generated. pylibjit defines context managers branch and loop for
this purpose. Figure 3 shows how the code building the Fibonacci function
can be simplified by using a decorator and the branch context manager. The
context manager’s entry function generates the labels needed to distinguish
the true and false branches of execution; unfortunately, the abstraction is
not perfect because the user must still take care of placing some jumps and
labels.

This interface makes it convenient to build functions at run time and,
if needed, specialize them to user input that is partly known (such as user-
defined filters [Pet07]). However, the API is still too verbose for functions
encapsulating algorithms that we do not want to specialize in this way. The
next section puts everything together by showing how pylibjit can leverage
Python’s own syntax for specifying compiled functions.

4 Compiling Python functions

As the final step in the development, we note that Python’s inspect module
allows function decorators to access metadata for functions. In particular,
it can be used to obtain the function’s original source code (if the program
is available in source form, which is typically the case); that code can be
extracted and passed to the ast module to obtain an abstract syntax tree
(AST) for the function [BJ13|.

We are therefore in a position to write a decorator function which ac-
cesses its decorated function’s AST and traverses that AST emitting appro-
priate pylibjit instructions for each AST node. That is, we obtain a very
simple way to replace interpreted Python functions by compiled code imple-
menting the same semantics. The Python code itself need not change at all:
Whether the code is interpreted or compiled depends only on whether an
appropriate decorator is present.

A compiled version of the Fibonacci function is shown in Figure 4. Note,
again, that apart from the decorator it is identical to the original Python
implementation in Figure 1. At any point during development, the decorator
can be removed (e.g., by commenting it out) to switch back to the original
interpreted function, or inserted again to obtain the benefits of compilation.

As with all the previous examples, this also produces an object that
can be called like a function. On our development machine (Intel Atom
N270 at 1.60 GHz running Linux 3.2.0), it takes about 8.2 seconds to eval-
uate £ib(32) for the original Python version, while the compiled version
takes about 0.155 seconds, for a speedup of about 53 x.

Q@jit.compile(return_type=jit.Type.int, argument_types=[jit.Type.int])
def fib(n):
if n < 2:
return n
else:
return fib(n-1) + fib(n-2)

Figure 4: The compiled naive Fibonacci function.

def eval_A (i, j):
return 1.0 / (((1 + j) * (L + j + 1) >> 1) +1 + 1)

def eval_A_times_u (u, results):
u_len = len (u)
for i in range (u_len):
partial_sum = 0
j=o0
while j < u_len:
partial_sum += eval A(i, j) * ulj]
j+=1
results[i] = partial_sum

Figure 5: The spectral_norm benchmark.

5 Larger benchmarks

The ultimate goal for pylibjit is to be able to compile a nontrivial subset
of Python to speed up the innermost loops of computationally intensive
programs. While development is at a very early stage, we can already use
it to speed up some interesting benchmark applications. The decorator-
based approach with an embedding in the Python interpreter is convenient
for incremental development of the compiler: We never need to worry about
handling all the intricacies of the Python language, only the features actually
used in the few functions of interest.

At the time of writing, we can compile Python functions containing arith-
metic, branching, counting loops, function calls, and accesses to tuples, lists,
and arrays. Compilation is implemented using an AST traversal comprising
about 600 lines of code. Here we present results for two benchmark programs
in which the hot spots use only these features.

5.1 Case study: The spectral_norm benchmark

First, consider the implementation of the core of the spectral_norm bench-
mark? in Figure 5. The eval_A_times_u function takes two arrays of floating-
point numbers as its arguments and populates the second based on values
from the first. The other half of the benchmark is an almost identical func-
tion that differs only in that the arguments i and j to eval_A are swapped.

Running this benchmark with an input of 1000 (denoting the length of
the input array) takes 190.7 seconds using the Python interpreter. We can
cause the core functions to be compiled by pylibjit by defining a decorator

*http://benchmarksgame.alioth.debian.org/u32/program.php?test=
spectralnorm&lang=python3&id=8

that declares the types of the arguments and variables used within each
function.

Decorating only the eval_A function, the benchmark’s performance de-
teriorates to 304.9 seconds, a 1.6 x slowdown. This is caused by the fact
that calls from Python to code compiled by pylibjit are expensive. Such
calls follow a slow path in the interpreter in which the code to be called is
looked up in an object’s __call__ slot. The wrapper code must then check
and unbox the Python argument objects and finally box up the function’s
result in a Python object. It is therefore not worthwhile to compile only very
small leaf procedures such as eval_A.

However, if we also compile the outer eval_A_times_u function and its
almost identical twin, we obtain a version of the program that runs in 3.5 sec-
onds. This is a speedup of about 53 x over the Python interpreter. The time
for the compiled version includes JIT compilation time, which for this bench-
mark is on the order of 0.05-0.1 seconds. For comparison, the C version of
this benchmark compiled with GCC 4.6.3 takes about 3.4 seconds when com-
piled at -01, 2.8 seconds at -02, and 2.6 seconds at -03. This shows that
for numerical computations on array-like structures we can sometimes come
close to the performance of optimized C code while enjoying the benefits of
developing in Python.

5.2 Case study: The AES benchmark

As a larger and more realistic application, we compiled parts of a Python
implementation of the AES encryption algorithm®*. AES encryption and
decryption consists essentially of XOR operations and permutations of arrays
of bytes. Figure 6 shows two representative functions. Compiling these and a
few other similar leaf procedures which together account for 81 % of execution
time, pylibjit improves benchmark runs from 12.4 seconds (interpreted) to
3.42 seconds for a speedup of about 3.6 x. (In other words, 72 % of execution
time is optimized away.)

This can be improved further by also compiling the outer loops that call
such leaf functions. In this implementation of AES, the entire algorithm
is encapsulated in a Python class, and the calls to the auxiliary functions
are therefore implemented as virtual method calls. However, in the context
of this benchmark, the targets for these calls can, in principle, always be
determined statically. pylibjit allows users to annotate such functions to
resolve targets at compile time. This is useful because it saves not only
lookup time but also surprisingly expensive boxing and unboxing operations
on method objects [Bar13].

Applying this user-guided static devirtualization when compiling the en-
cryption and decryption driver functions, we obtain a total benchmark ex-

4Adapted to Python 3 from a version available from https://bitbucket.org/pypy/
benchmarks/src

def add_round_key(self, block, round):
offset = round * 16
exkey = self.exkey
for i in range(16):
block[i] ~= exkey[offset + il

def sub_bytes(self, block, sbox):
for i in range(16):
block[i] = sbox[block[i]]

Figure 6: Two of the hottest functions in the AES benchmark, showing simple
manipulation of arrays of bytes.

ecution time of only 0.607 seconds. This corresponds to a total speedup of
about 20 x versus interpretation.

6 Conclusions and future work

We presented pylibjit, a Python wrapper for the GNU 1ibjit just-in-time
compiler library. Besides just exposing the underlying API, pylibjit allows
the use of decorators to cause existing Python functions to be compiled
to machine code. At the time of writing, the library supports a fragment
of Python supporting integer and floating-point arithmetic, counting loops,
function calls, and accesses to Python tuples, lists, and arrays.

The current version of pylibjit is not fit for general use, but the com-
piler is simple and extensible and will soon grow more features as needed.
Since the compiled code runs within the Python interpreter, all of the func-
tions used internally by Python to implement operations are accessible and
can be called from the compiled code. This means that to support more lan-
guage features, pylibjit need only mimic the sequence of internal API calls
that the interpreter would itself execute for a given program. However, the
presence of type annotations means that we can elide certain operations that
add overhead, such as dynamic typechecks and boxing/unboxing operations.

A more complete version of pylibjit will be made available through the
author’s website at http://www.complang.tuwien.ac.at/gergo/.

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) under con-
tract no. P23303, Spyculative.

References

[asm]

[Bar13]

[BCFROY]

[BJ13]

[Brul0]

[Corll]

[CSR*09]

[Pet07]

[Sel09)]

asm.js: an extraordinarily optimizable, low-level subset of
JavaScript. http://asmjs.org/.

Gergd Barany. Static and dynamic method unboxing for Python.
In 6. Arbeitstagung Programmiersprachen (ATPS 2018), included
in volume 215 of Lecture Notes in Informatics (LNI). GI -
Gesellschaft fiir Informatik, February 2013.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and
Armin Rigo. Tracing the meta-level: PyPy’s tracing JIT com-
piler. In Proceedings of the 4th workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, pages 18-25, New
York, NY, USA, 2009. ACM.

David Beazley and Brian K. Jones. Python Cookbook, 3rd Edition,
chapter Parsing and Analyzing Python Source. O'Reilly, 2013.

Stefan Brunthaler. Efficient interpretation using quickening. In
Proceedings of the 6th symposium on Dynamic languages, DLS
10, pages 1-14, New York, NY, USA, 2010. ACM.

Jonathan Corbet. A JIT for packet filters. https://lwn.net/
Articles/437981/, 2011.

Mason Chang, Edwin Smith, Rick Reitmaier, Michael Bebenita,
Andreas Gal, Christian Wimmer, Brendan Eich, and Michael
Franz. Tracing for web 3.0: trace compilation for the next
generation web applications. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execu-
tion environments, VEE ’09, pages 71-80, New York, NY, USA,
2009. ACM.

Charles Petzold. On-the-fly code generation for image process-
ing. In Andy Oram and Greg Wilson, editors, Beautiful Code.
O’Reilly, 2007.

Dag Sverre Seljebotn. Fast numerical computations with Cython.
In Proceedings of the 8th Python in Science conference (SciPy
2009), 2009.

