{he next
rorth generation
aas synfax that
allows object-like
nwultiple code
fields

he language
Forth differs
from other com-
puter languages
: many respects. For example, the usual
socess of defining data structures in
orth is to extend the compiier’s knowl-
dge 10 include the new type. In contrast,
aliows rypedef and struct to define the
+ments of a data structure and then use
v named definition to create insiances
¢ the structure.
A more specific example can be seen
5 the definition of a NUM. In C. this
efintion might be:

nedefl struct

it n;
num
v den = 0 10,
s /7 oecess oum in structure */

smpare this to the Forth definition:

WM ln-dl-adr) | creote storage
for n, returning peinter to d, adrl
CREATE , () ;

JNUM TEN

EN @ ! occess num)

Both definitions allow access to
L UAMs starage. The entire definition
om CREATE 1o the semicoion (;) is
spraximately equivalent to the rypedef
fret combination, plus any initializa-
wa {or cach instance.

1f, however, we wanted the structure to
« stored 1n external memory, neither

struct nor fypedef would be of much
help. We would need to write a separale
procedure to allocate the external mem-
ory to the new structure and manipulate
the structure with procedure czlls. In
Forth, this procedure can be bundled into
the defining word, making the process
much cleaner:

SXNUM (- - odr
i creote external storage for o,
return pir )
CREATE  _allot external memory,
leave addr..
DUP , { save location!
t{ store init value)
DOES> @ { external location pirl ;
10 XNUM XTEN
ATEN @X [ access xnum)

Note that the Forth code from CRE-
ATE 10 just before DOES>> is approxi-
mately equivalent to the C rypedef struct
combination plus any initialization of
cach instance. This create-time code is
executed during the creation of an in-
stance of a XNUM. The code from
DOES> to the ; {the does-time code) is
executed when an instance of an XNUM
is referenced. Conventional Forth mem-
ory reference syntax can be used to read
and write the XNUM. The greater flexi-
nility of Forth comes in the contral over
the create-time and does-time code.

The preceding example is trivial yet
representative. It is important to note
that the code could be changed so the
data is stored on disk or on a network. To
do the equivalent in C would be exceed-
ingly difficult {or impossibie) while re-
taining C's struct-compatible syntax.

Unfortanately, each new class of Forth
structures may require its own set of ma-

By George W. Shaw

nipuiation operators, cluttering the lan-
guage with operator names surrounding
a given theme. The example already
mentioned might need the external mem-
ory read and write operators (named,
say, @X and /X) once the external ad-
dress is available. Many Forth systems
have most or all members of the memory
and /O reading set (@, J@, Be. Ce.
D@, N@. P@. PCa and S@) as well as
the memory and 1/0 storing set (/, 2!,
B!, C! DI, N! P! PC!land 8§}

(Table 1).

Additionaily, after almost every use of
a data structure, an operator is compiled
to define the action upon that structure.
Considering the proliferation of opera-
tors, this is sometimes cenfusing, some-
what error prone, and almost always a
waste of memory.

As the number of data structure
classes (objects) increases, it is apparent
that the number of operators (methods)
also increases. This correlation makes it
difficuit to recall what operators are
available for each structure, how they
are spelled, and even how they are used.

Since these operators are defined sepa-
rately, it usuatly is not possible to ask the
computer what operators are available
for a data structure without first creating
and maintaining another data structure.
However, removing the punctuation char-
acter or other attached prefixes or suf-
fixes and using a different synlax might
make the operators easier to use and the
code more readable.




Memory and 1/0 reference operator set

@ Read 14 bits from memory

2@ Read 32 bits from memory

B@ Read 8 bits from a record in the disk buffers

C@ Read 8 bits {characier) from memory

D@ Read 32 bits [double) from a record in the disk buffers
{sometimes an alias for 2@}

N@ Read 16 bits (number! from a record in the disk buffers

P@ Read 16 bits from an /O pont

PC@ Read 8 bits from an /O port

RP@ Read return stack pointer

@ Recd string into PAD buffer

SP@ Read dota stack pointer

| Store 16 bits into memory

21 Store 32 bits into memory

Bl Stare 8 bits into a record in the disk buffers

Ci Store 8 bits (character} into memory

DI Store 32 bits {double} inte  record in the disk buffers
{sometimes an alias for 2}

NI Store 16 bits (number) into a record in the disk buffers

Pl Store 16 bits into an 1fO port

PCl Store 8 bits into an /O port

RP! Store into return stack pointer

sl Store string inta PAD buffer

SP Store into data stack pointer

Table 1.

Compiled representations

Memory cell Memory cell Memory cell
count count count

o e o e e L L - ——
1 acf of X 1 acf of X 1 acf of X

S P —— I e
2 acl of @ 2 aclof ¥ 2 acfof Y

b e e ot o o e e e et o o e T T
3 acf of Y 3 act of + 3 acl of +

e = ot o o o i R b o o e o e
4 actof @ 4 acf of TO or 1S 4 acf of TO Z

I —— O S W ———
5 act of + 5 acfof Z

-——--'- ﬂﬂﬂﬂﬂ ——o——+ —————
6 act of Z

T Ny ——
7 acf of |

SR LT SR

Bartholdi’'s TO solution
or L&P 15 solution
XYiozs

XYisz

Typically compiled
X@yY@?i!

Typical direct or indirect threaded code implementations
ac! = address of code field

Figure T.
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Multipte code held
TO solution
XYioz

e

For example, the command to read
memory is @ (catled “fetch™) and the
command to write memory is ! (called
“store™). Thus the command to read the
clock is often @ TIME (“feich time™}
and the command to set the clock is of-
ten 'TIME (“store time™). The meaning
of these commands is readily apparent to
most Forih programmers without ever
looking them up in the reference manual.
But are these the correct spellings?
Could they alternatively be TIME@ and
TIME!? Certainly. And, if onc exists.
what of the word set to operate the serial
port? [s it COMI@ and COM /! or
@COM! and /COM 7 Each of these ex-
amples requires two identifiers 1o name
the two operations.

Application examples are often com-
plex, requiring many more operators. [t
might also be possible with a new syntax
to perform these and other operations
with a single identifier and perform
operations not convenienily possible with-
Olit 4 new syntax.

The advent of such a syriax allows for
previously unforeseen possibilities in
Forth. You can define generic smart op-
erators that require no smarts at all be-
cause the intetligence is built into the
data structures. Forth thus possesses ca-
pabitities much like object-eriented lan-
guages, with the ability to manipulate
many varied data structures using a few
simple logical operators. Additionally,
the run-time references compile 1o iess
memory and execute faster than the pre-
vious dumb operator-reference pairs.

Parallel histories

Over time, Forth has developed as a gen-
eralized solution to what were once spe-
¢ific probiems. The same is true of the
development of the object-oriented pro-
gramming techniques described in this
article, though object-oriented program-
ming was never the goai.

The seed for this work came from the
growing dissatisfaction of Forth users
with operators, stemming from con-
structs ke X @ Y@ + Z ! This struc-
ture obtains the values of the variabies Y
and Y, adds them, and stores the result
in Z. Referencing the variables returns &
pointer 1o their data. @ and [ read or set
memory, given the pointers.




Note that since in Forth all identifiers
are separated by spaces, each is generi-
cally referred to as a word. The seven
words in the previous example compile te
seven cells in memory. Further, analysis
has shown that values are fetched many
more times than they are stored. Thus
the @ foflowing X and ¥ is usually re-
dundant. requiring additional memory
and execution time.

These problems were first discussed by
Charles Moore in 1978. At that time,
Moore also suggested the syntax for
what was laler to becomne known as the
TO solution X ¥ + TO Z. The concept
involved the variables X and ¥ normally
returning their values rather then point-
ers 10 their values, and the TO prefix
causing the result to be stored in Z. The
primary goal was 1o eliminate the re-
quired pointer manipulation {so that
standardizing pointers would become a
simpler task) and create a more readable
and more efficient syntax. This new syn-
1ax typically compiles to four or five cells
{two to three cells less than the original}
and can execute much faster, depending
on the implementation (Figure 1).

Several implementations of this syntax
have been presented since its introduc-
tion. Both run-time bound’ and compile-
1ime bound’' implementations have been
presented. Yarious exiensions such as AT,
OF. and + TO have added more capa-
bilities and extended the syntax. Alterna-
tives such as the £S5 solution solve the
original. limited problem more simply,
but with contracted additional
vapabilities.

The words QUAN (a variable/con-
stant type word), LOUAN {a variable/
constant type word in external memory),
and VECT (a vectored execution vari-
abie) were suggested to define structures
using the 7O solution syntax. These
names have lost favor and been replaced
by the more appropriate and readable

VALUE and DEFER,

Unflortunately, little other work has
seen presented that fully realizes the
power of all these implementations. The
object-oriented programming technigues
presented in this article are an attempt
1o generalize the TO solution and its var-
wus implementations. {For & more thor-
ough discussion of the history of the TO
solution, see the accompanying sidebar.)

History of the TO solution

The TO solution was originally pre-
sented by Charles Moore at the Forth
standardization meeting in 1978. He
suggested the following syntax:

XY+ 702

to resolve Forth programmers’ dissat-
isfaction with operators.

Moore's suggestion was implement-
ed by Paul Bartholdi.! This imple-
mentation caused a run-time variable,
set by T0, to indicate the action to be
performed by the next variable, Z.
Variables would otherwise return
their value (uniess preceded by 70}
when they set their value. This solu-
tion was used widely in Europe and
especially at the University of
Utrecht, the Netherlands.

Bartholdi’s implementation has sev-
eral limitations. First, it uses run-time
pinding (a conditional test is executed
at run time) that slows execution.
Second, it does not allow easy access
to a pointer to the variable (the value
previously returned by variables).
Third, the Forth operator +/, which
increments the value of a variable giv-
en its pointer {similar to +=, ++,
—=, and - in C) cannot be used.

Various extensions were proposed,
all requiring even more complex con-
ditional rum times:

AT Z iretern the pointer to Z)
470 7 ladd to the value of Z)

The complexity and speed of the run-
time binding are even more unsatis-
factory considering other operations
on Z might be defined.

Lyons’ M_CF_ wp'r_ﬂ me:ﬁo_rf !ayout :

Byte offset from -
compildtion address "

tn either cérifigi.urdi_i_c:m,.ihe'_ _v_'ci!ue" of the: ¥

word is stored:direcily in 1he'pdrqme:é_ :

igure 1

George Lyons suggested a more
elegant selution just after Bartholdi
published his 70 solutien.? Lyons
suggested that a variable might have
two run-time operations rather than
one, the first for the fetch and the
second for the store operation. The
compiler or interpreter could then de-
cide which to use. Lyons’ solution did
not allow for returning a pointer to
the variable but did solve the run-
time speed and complexity problems
by binding the operation at compile
time.

The run-time code for a Forth word
is located through the cede field of
the compiled word definition. The
code field contains a pointer to the
run-time code (indirect threaded
code) or the actual code itself (direct
threaded code), depending upon the
implementation. Thus, Lyons pro-
posed that variables have two code
fields to locate the two pieces of run-
time code (Figure 1). Other imple-
mentation techniques use other
combinations of run-time code and
pointers, but the concepts remain the
same.

Evan Rosen presented his imple-
mentation of Lyons’ solution at the

1982 Forth Madification Laboratory

(FORML) conference.’ He used three
code fields, one each for fetching,
storing, and pointing. These types of
structures have come to be known as
multiple code field (MCF) words.
Rosen named his MCF variable
QUAN. He also created an execution
vector (an executable pointer to a
procedure) he named VECT. Unfor-
tunately, he did not devise a syntax

he _ff.sg_gd':. :




en'é‘rallzcd the =
lowever; ‘the syn-
from Wilham

. than 16-bit. - :
: For common usc, I prcfer thc

“ rather than; thc address itself. A4’
‘also used in many Systems; suc

Laxen and Perry’s:publi¢ doma

-tem, for X ¥ curso ddressmg
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Whut are MCFs?
In the examples at the beginaing of this
article, the default action of CREATE
or the code following DOES> specifies
the run-time action of TEN. The system
finds the ren-time code for a Forth word
through the code field of the compiled
word definition. The code field contains a
pointer to the run-time (indirect-thread-
ed) code or the actual (direct-threaded)
code itself, depending on the
implementation.

Other implementation techniques use
different combinations of run-time code
and pointers, but the concepts remain the
same. This single code field allows a sin-
gle run-time behavior to be associated
with the data. To efficientiy allow multi-
ple run-time behaviors, multiple code
fields (MCFs} are needed. The concept
of multiple rather than single behaviors
(run times) is the focus of this article,

From the programmer’s point of view,
it is useful not o have to know how a
data structure is organized to use it—
somewhat like driving a car without
knowing what type of engine it has or
precisely how it works. Maintaining this
arms-length distance between the work-
ing internals and the operations upon the
data structure is known as “data abstrac-
tion.” The operations defined to manipu-
late the data struciures are “methods.”
(Methods can be any manipulation ap-
propriate for an object, including adding,
dividing, moving, storing, executing, and
printing.)

The words that tell the system which
method to use are “method selectors.”
What the methods manipulate and
whose metheds are selected are “ob-
Jects.” (Anything can be an object, in-
cluding serial ports, ¢locks, procedures,
numbers, and data structures. In Smali-
tatk, everything is an object.) The ability
to define a new class of objects and asso-
ciated methods created as an extension
or modification of an existing class is
“inheritance.”

In object-oriented programming, ob-
jeots are treated as atomnic urits to main-
tain data abstraction. Maintaining data
abstraction allows the structure of the
object to change during program devel-
opment, program execution, or when
moving from system to system without
breaking the program. In keeping this




-|&T%31§'\

arms-length relationship, a method refers
10 a more logical rather than strictly
nhysical operation upon an object. Meth-
»d identifiers are then easily and appro-
priately reused, greatly reducing the
number of operations for the program-
mer to remember.

Data abstraction and shareable meth-
od selectors allow the programmer to
write generalized routines to perform
aperations upon a wide variety of objects
vithout care for their internal structure.
mplemented properly, the methods ex-
:cute very efficiently on their objects.

Object-oriented Forth

Forth has always had the buddings of an
abject-oriented language. For example,
the standard DOES™ construct used 1o
create VALUE in effect allows the defi-
aition of & single method upon the object
fata structure VALUE (the first MCF
word class):

VALUE {n-3-n)
{ define CONSTANT like struciure )
CREATE {n},
DOES> @ (nt

What is needed is a syntax and
nechanism to expand DOES> to allow
t to define additional methods. MCFs
give us the essence of object-oriented
programming in Forth. Each code field
specifies a method to be used on an in-
stance of its object. Properly implement-
2d, methods can be inherited.

TQ, AT, and + 70 (among others) are
nethod selectors. By using these selectors
-ather than explicit operators, messages
wre passed through the compiler and in-
lerpreter and received by the desired ob-
tect. Thus data abstraction is
maintained. Further, the selectors are
logical operations that can be applied to
1 wide range of structures.

Listing 1 shows VALUE and DEFER
iefined using the proposed new syntax.

JOES > returns a pointer to the data
-bject. The TO and OF prefixes tell
DOES> which method to apply to the
procedure. This new syntax is a direct
extension of the existing standard syntax
and use of DOES™>.

VALUEs and DEFERs are not the
sniy uses for MCFs and object-oriented

programming in Forth. As already men-
tioned, these structures were not original-
ty intended to add objects to Forth but to
clean syntax, speed execution, and save
memory. Primarily, their intent was to
reduce the use of pointers to enhance
transportability.

A secondary effect of LOUANS is the
ability to address external memory with-

e A
*14T0-YALUE ~ +T0 DOES
+ OF-YALUE ~ OF DOES)

+ TO-VALUE 70 DOES)

: DO-VALUE  DOES> B

S VALUE  (Sn-/tosn-
HEADER 4 CODEFIELDS

OF ‘define as...

: E!.IKIA_L'UE (Sn- / to
:HEADER 4 CODEEIELD

Without naming DO-VALUE

CDEFER (S of -/ to:
HEADER 3 CODEFIELD
“DOES)  © EXECUTE.

OF ‘Use inheritance and

: DEFER (S cf -/ to:
.['] NOOP VALUE 'DOE X
( above will contain inappropriate +J

Examples:

SCALE
-2 +T0 SCALE
OF SCALE

DEFER KEY
© (KEY} 7O KEY
Kgy':.-_
OF KEY'

Listing 1.

/T0-VALUE +TO-VALUE OF-VALUE DO-VALUE

out explicit external addressing. By using
MCFs to hide the external addressing
mechanism, this extension further exer-
cised the beginnings of object-oriented
programming: data abstraction. Remem-
ber, one of the attributes of object-orient-
ed programming is that the internals of a
structure remain hidden unless explicitly
asked for.

‘2 bytes back )
6-bytes back.)

- DE-VALUE

‘of named run-times )




Table 2.

d

. “Set
ad fr RP@ and RPI

returp siack point
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o. - Returns ratisrn stack pointer value)
value J

MCFs and new syntax options
DEFERed words were an obvious choice
for the second MCF word class. DE-
FERed words are very similar to VAL-
UEs and inherit most of their behavior.
In fact, as VALUE obviates most needs
for VARIABLEs, DEFERed words are
implemented using VARIABLES on sys-
tems not containing an appropriate defin-
ing word:

VARIABLE "KEY { varioble to hold
pointer to key
roytine)

: (KEYY .. ; { run-time key
routine |

" {KEY) 'KEY | ( set vector fo
pointer to key
routineg |

KEY [ - c ){ execute KEY
routing to get a
character )

'KEY @ EXECUTE ;

DEFER defines an execution vector (a |
forward reference) to a procedure to be
later defined or changed during execu-
tion. With an MCF DEFER (as with an
MCF VALUE), the method selector 70
is used to set the procedure to be execut-
ed, completely eliminating the need for
the word IS and its complexity {Figure
1). Additionally, memory is saved each
time a DEFERed word or VALUE is set
because IS no longer compiles before
DEFER or VALUE,

How eise might we use these and other .
MCF words? For what other areas do we .
define a set of methods to work on an ob-
ject? Consider the following clock exam-
ple. As an MCF word, the two separate
words with @ and / prefixes or suffixes
are no longer needed. Reading and set-
ting the clock becomes:

TIME { read the clockl !
TO TIME { set the clock)

Similarly, DATE can be used in the
same way:

DATE { read the colendar}
TO DATE { set the catendarl

In addition, most Forth implementa-
tions include words to read and set the
stack pointers—@SP, /SP or SP@. SP!




for the data stack and @RP, {RP or
RP@, RP! for the return stack. Most
also have string variables (often defined
with STRING and accessed with S@
and 8, the dictionary pointer (normally
HERE to return its value, DP as the in-
ternal variable, and ALLOT to change
its value while testing for dictionary
full).

Table 2 lists the new syntax possible
for these and other words. In addition to
the memory saved when they are used,
MCF words can save memory in the im-
plementation of their methods, especially
when the structures involved are very
similar.

Most Forth systems have two stacks, a
data stack and a return stack. Words ex-
ist to transfer data between the two
stacks, but most operations are defined
anly on the data stack. Some Forth sys-
rems, though, supply a small subset of
the most useful data stack words to oper-
ate on the return stack. These words usu-
ally have the same name as the data
stack operation but are prefixed with an
R. For instance, SWAP becomes
RSWAP, and DROP becomes RDROP.

More operations are not commonly de-
Gned because the return stack is general-
iy not used heavily; thus the memory
usage is not justified. MCFs offer a very
inexpensive mechanism for allowing all
operations to be available on the return
stack or even a user stack, if desired:

Define 2 methad selector and call it R,
which will select the second method. De-
fine a method selector and call it U,
which will select the third method. Con-
sider the foilowing syntax:

R SWAP
R QVER
R DROP
{manipulate the return stack)

addr U SWAP
addr U OVER
addr U DROP
{manipulate o user stack)

Now make all of the stack primitives
MCF words. The second code field ex-
ecutes cade (selected by R) that swaps
the return stack and data stack pointers,
executes the first code field (which per-

forms the functien on the current stack
pointer), and then swaps the stack point-
ers back. This code need only be defined
once with all the stack manipulation
words pointing to it. Thus for the ex-
pense of about 20 bytes (plus 2-4 bytes
per stack operator), all the data stack
operations can be performed on the re-
turn stack.

For an additional 2-4 bytes per stack
operator, a third code field (selected by
U)) can be added and passed a pointer to
a user stack pointer. Manipulating the
user stack is identical to manipulating
the return stack except the user stack
pointer and data stack pointer are
swapped (Listing 2).

Further uses of MCF techniques and
objects are unrelated to application data
structures. Many systems allow the selec-
tion of case-sensitive or case-insensitive
dictionary searching, usually performed
by setting a flag tested during the dictio-
nary search (o control sensitivity testing.

Listing 2.

Testing flags is slow and inelegant. Using
a DEFERed word set for case or caseless
dictionary searching is faster, but not as
clean as it could be. It requires the user
to remember {and the Forth to have in
memory) the identifiers of the case-sensi-
tive routine, the case-insensitive routine,
and the DEFERed word. Thus three
identifiers are required to implement one
operation.

A cleaner mechanism is to implement
a singie MCF word, CASELESS, that
has two methods, CASELESS takes a
string and, if necessary (depending on
how the word was previously set) con-
verts the string to uppercase. The 70
method accepts a true or false flag and
sets the word to convert to uppercase if
necessary. Thus:

TRUE TO CASELESS

{set to convert to uppercase]
FALSE TO CASELESS

(sel ta not canvert to uppercasel




e,
o

3 .

Since TRUE and FALSE already exist
in most systems, only CASELESS need
be defined.

fFar-fetched idea

Where else can we apply the MCF tech-
nology? Where else are operators repli-
cated with slight changes in behavior to
work on a related class of objects? A
clear set—(@ and !'—was listed at the be-
ginning of this article.

Many processors have 16-bit data bus-
ses. Unfortunately, they also have 20-bit,
24-bit, or larger address busses. Because
the data bus width is less than the ad-
dress bus width, CPUs such as the 8086,
80286, Z8000 and PDP-11 series are
handicapped in working with addresses
farger than their data bus width. For ef-
ficiency, most Forth systems for these
processors are built around a 16-bit mod-
el with a 64K address space.

Operating Forth with a 32-bit model is
one solution to this problem. However,
this solution is inefficient in memory us-
age and processor time. Additionally,
sometimes it may not be desirable to im-
plement full 32-bit systems in 32-bit ad-
dressing machines (such as the 68000).
Typically, 32-bit systems require twice as
much program memory and, with their
full linear addressing, do not supply the
segment security automatically given by
the former class machines.

The segmented machines typically use
additional fetch and store operators to
access this external memory. The exter-
nal addressing word set often use an L
suffix to denote long addressing. Thus @
becomes @£ and !/ becomes /L. Double
and character operators also need to be
defined; thus we get D@l. DI!L, C@L,
and C/L.

If these few @s and /s comprised the
entire external address word set, then
this naming scheme would not be so un-
attractive. A copy of the entire memory
Listing 3. reference set, including CMOVE,

? CMQVE>, MOVE, SCAN, SKIF,

i CSET, CTOGGLE, etc., should be de-
I fined if the extended memory is to be
used effectively.

Alternatively, only @, /, and the move
operators might be defined as long.
Then, any data at an external segment is
moved to the default segment for pro-
cessing. But this continual transferring is
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inefficient. L suffix commands still might
be used, but in addition to doubling the
aumber of memory reference commands,
the L suffix makes many of the otherwise
very readable command names much less
readable,

A hint of another solution to the exter-
nal addressing problem might be taken
from the assembler for one of the seg-
mented processors, the 8086. The 8086
assembler uses the FAR prefix to indi-
cate that an operation is te include an
explicit segment reference. Using this
concept we only need the named opera-
tors, each with a second method for the
explicit external address reference oper-
ation. The selector suggested for this
method is, as in the assembler, FAR.
Thus @L becomes FAR @, /L becomes
FAR !, ete.

The simple memory operators aren't
the only candidates for FAR. Almost any
command that takes or returns memory
addresses is a candidate. Many systems
have virtual memory management block
buffers in external memory that are
automatically transferred to local mem-
ory when accessed. This transferring is a
waste of time in many cases, especially
vhen only a small portion of the block is
needed. To access the external disk buff-
er, the FAR prefix can be used on
BLOCK or BUFFER to return the exter-
nal address without transferring the buff-
er (Table 3).

New compiler options

We've seen how MCFs can be used to
make code faster and shorter (VALUE),
reduce the number of words needed in
the system (FAR, CASELESS, and the
stack operations), and make the code
more readable and less cryptic (VALUE)
as well as less complex. What else can we
do with MCF words and object-oriented
programming?

One hotly debated area in Forth is
that of state-smart words. State-smart
words test the system variable STATE
during their execution so they may be-
have differently during compilation and
interpretation in an attempt to behave
identically in both places. While state
smartness sometimes seems to simplify

word usage and syntax, it also causes
some hidden problems.

One of the most apparent Forth-79
state-smart words is the Forth word ’
(“tick™). The ’ returns a pointer to the
code field of the word following it. When
interpreting the sequence ’ <word>,’
execuies to return a pointer to <word>.
When compiling the same sequence, ’ €x-
ecutes (does not compile) and a pointer
to <word>> is compiled as a literal to be
returned when the procedure containing
the sequence exccutes later.

However, it is sometimes desirable to
create a procedure that uses * to return &
pointer to the word following the proce-
dure when the procedure is later execut-
ed (not the word following the ’ inside
the procedure). The new procedure be-
comes an extension of the compiler. We
must prevent * from executing during the
compilation of the new procedure. The
sequence [COMPILE] * within the pro-
cedure solves this problem by foreing * to
be compiled (and not executed during
compilation). So far, 50 good.

When the new procedure is interpret-
ed, it would seem that everything should
behave as advertised. But if the new pro-
cedure is used inside a procedure to ex-
ecute during compilation (Listing 3), the
state smartness of the embedded * will
cause ’ to compile a literal pointer to the
word following *. This pointer will later
be returned when the newest procedure is
executed rather than while we are com-
piling. Not what we had in mind.

Now that we understand the problem,
what is the solution? One solution (used
in the 1983 Forth standard) is to give the
word two slightly different names, one
for interpretation () and one for compi-
lation {[']}, both without state smartness.

Another solution is to use MCFs to
define two separate methods for a word,
one to be performed by the interpreter
and one by the compiler. Since the inter-
preter and compiler will select the meth-
od and STATE will not be tested when
the word executes, the state-smartness
problem does not exist. (I refer to these
words as “state unsmart.”) Thus the se-
quence /COMPILE] " causes the inter-
pretable ’ methed to be compiled. Since
the interpretable method always executes
to return a pointer to a word (never com-

piling the pointer), the problem is elimi-
nated. Though many words are state
smart {or unsmart), only a handful of
words in Forth cause these problems.
Nonetheless, the MCF solution is
attractive.

In Part 11 of this article, I will discuss
extending the power of the MCF DE-
FER, simplifying metacompilation, ap-
plications of MCFs for the current ANS
Forth standard, and how the syntax is
implemented. E
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bject-oriented
programming
techniques
have existed
in Forth for almost a decade, though
they were never recognized as such. As
with the development of much of Forth,
this capability has grown as a general-
ized solution 1o a specific problem.

This probiem involved the transporta-
bility of pointers and a dissatisfaction
with syntax in constructs like:

X@Y@+ 7!

Charles Moore, Forth's inventor, sug-
gested an alternate syntax that became
known as the 70 solution:

XY +TOZ

This syntax removed the explicit refer-
ences 10 pointers and reduced the rum-
ber of operators. Several run-time bound
and compile-time bound implementations
of the 7O solution were published after
its introduction, but mast only addressed
this specific problem.

With the generalization of the TO so-
lutien and greater awareness of the prin-
ciples of object-oriented programming, i
became apparent that the transportabi-
lity and syntax problems were best solved
with object-ariented solutiens. Through
the development of more efficient imple-
mentations of the 7O solution, the ob-

By George W. Shaw

ject-oriented capabilities of Forth
evolved.

Forth’s object-oriented tendencies can
be seen in the standard CREATE
DOES= {or CREATE ;CODE} pair,
which allows the definition of a single
method upon the CREATEC object.
What is nceded is a syniax and mecha-
nism to expand the DOES> family to
allow it to define additional methods.

Normatly, each structure has just one
execution procedure (method) associated
with it. A single code field is required to
specify the behavior of the object. How-
ever, in the TO solution, each object X,
¥, and Z, allows at least two methods:
fetching and storing. For each method a
code field is defined to specify the behav-
jar of the method on the object. Thus X,
Y. and Z cach have at least two code
felds. Objects such as these have come
io be known as multiple code field
(MCF) words.

MCFs give us the essence of object-
oriented programming in Forth. Each
code field specifies a 1zethod te be used
on an instance of an object. Properly im-
plemented, methods can be inherited, 70
is a method selector. By using selectors
rather than explicit operators, messages
are passed through the compiler and in-
terpreter, then received by the desired
object. Thus data abstraction is main-
tained. Further, the selectors are logical
operations that can be applied to a wide
range of structures,

In Part 1 of this article (COMPUTER
LANGUAGE, May 1988, pp. 67-75), 1
discussed many different ways to use
MCFs and object-oriented programming
techniques in Forth, including VALUES,

new stack operations, new syntax possi-
bilities, external memory operators, DE-
FERed words, and new compiler options.
In Part 2 I will deive further into the en-
hancements of DEFERed words and the
compiler options and show how MCF
words are implemented.

More powerful DEFER

One of the original MCF words (VECT)
was the equivalent of a DEFERed word.
A DEFERed word is an alterable refer-
ence to an object that is later defined or
changed during run time. The simple
syntax for manipulating a DEFERed
word is iisted in Tabie 1 {(and was dis-
cussed in Part 1), This syntax works
quite well and is sufficient, as far as it
goes. [t is very limited, however.

The syntax previously suggested is
simple but does not directly allow one to
DEFER an object and still apply meth-
ods to it. Why? Because the selectors op-
erate on the DEFER data structure, not
the object DEFERed. Thus additional
methods of manipulating DEFERed
words are desirable.

[f normal selectors are to perform
their operations on the DEFERed object,
a new syntax must be defined to manipu-
late the DEFER data structure. For
completeness, access 1o the vectored ob-
ject as well as a default vectored object
(for initializatiots and error handling)
might be desired. By defining method se-
lectors thai increment the selector num-
ber rather than setting it, the selectors
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VECTOR and DEFAULT can be used
with other selectors to access the desired
methods of the DEFERed word (Table
1}. The selecter number is then placed
out of range of the values possible for the
DEFERzd object within.

Figure 1 shows the organization of the
more powerful DEFERed word. The
code fields at positive offsets from code
field zero are the methods that manipu-
late the DEFER data structure. Being
positive offsets, they are not detected by
error checking for out-of-range selector
values {too large a negative offset) ap-
plied to the DEFERed word.

The normal code fieids must be coded
to skip the code fields at positive offsets.
This allows them to gain access 1o the
DEFERed object in the parameter field.
Further, since the DEFERed object can
change at run time, the normal code
fields must execute to bind to the proper
object at run time. This allows any ob-
ject ta be DEFE Red.

Metacompiling

In Part | T discussed the problems that
arise when a programmer wants 1o use
the interpret time behavior of a state-
smart word while it is embedded in a
new word that is 1o be executed at com-

MCFDEFERed word symax

Table 1.
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" Defines name tb'b____ deferre
Delines task deferred.nom

pile time. In this situation, the state-
smart word sees the compilation state
and pesforms its compile-time operation
rather than the desired interpret-time
operation.

One solution to the problem is to make
the word state-unsmart. That is, to give
the word different interpret and compile
time behaviors without testing STATE.

A state-unsmart word contains two
code fields, one for interpret time and
the other for compile time. When the in-
terpreter loop finds a word, it executes
the word's interpret-time code field.
When the compiler loop finds a word and
a compile-time code field exists, the
word's compile-time code is executed;
otherwise, the word is compiled. Since
STATE is never tested, the state-smart
problem doesn’t occur.

This siate-unsmart technique has
many applications. One feature of Forth
is its ability to compile another version of
itsell, This process, referred to as meia-
cempilation, is rather complex to imple-
ment, The complexity comes from the
normal practice of extending the compil-
er in Forth. I[f a word is defined in the
child {1arget) system that extends the
compiler, the parent (host) metacompiler
must be programmed te know not only

how to compile the child’s structure but
how to emulate its execution if the struc-
ture is used fater in the child,

When metacompiling a new Forth sys-
tem, this difficulty primarily occurs with
- (calen), ; (semicolon), BEGIN,
WHILE, REPEAT UNTIL, IF, ELSE,
THEN, DO, LOOP, VARIABLE, CON-
STANT, and the dreaded VOCABU-
LARY, (VOCABULARY is particularly
difficult because it requires the meta-
compiler to compile into several different
word lists, rather than just cne.}

One commen implementation scheme
is to have ali words be state-smart and
either compile themselves to the chiid
system {on disk) or execute on the par-
ent. This can cause the same problems
listed for “tick™ () (defined in Part 1}
but, most annoyingly, requires a condi-
tional test of STATE to select the com-
pile-to-child or interpret-on-parent
procedure in the definition of every com-
piler extension. This makes the words un-
necessarily complex. The two-code-field,
state-unsmart approach allows the inter-
pret and compile methods to be separat-
ed and the attendant problems to be
eliminated.

Solutions for the ANSI standard?
The 70 solution was suggested as a reso-
lution to incompatibility of pointers
among systems. Because MCF words
such as STATE, BLK, and BASE hide
the implemeatation of the function and
structure used, they can greatly enhance
transportability in areas other than
pointer usage, such as data base fields;
STATE, BLK, and BASE; and other
variables.

Data base fields. If data is to be ex-
changed among Forth systems an differ-
ent processors, (@ and ! cannot be used
to place binary information on the stor-
age media. The order of bytes within in-
tegers differs among processors. Data
stored by a 68000 cannot be fetched by
an 8086, for instance.

By defining an arbitrary byte order
and using MCF data base fields, the
byte order can be made consisient across
systems regardless of the native (@ and !
byte order. Other than byte order, the
data base fields are defined jusi ke a




VALUE or STRING except the storage
area is offset from a record bulfer
pointer.

STATE. Implementation and environ-
menial dependencies other than byte or-
der and pointers can be hidden and
optimizatien performed using MCFs. For
instance, standard systems cannot change
the value of the variable STATE to con-
trol compilation and interpretation.
STATE can only be an indicator for the
system. Several vendors have even imple-
mented the compiler in ways that make
properly maintaining STATE a nuisance.

If standard compiler and interpreter
control is to be allowed, additional words,
techniques, or rules need to be defined.
This is not desirable. One solution is to
make STATE an MCF word. The
seguences:

TRUE TO STATE  { start compiling)
EALSE TO STATE  { stort interpreting!

can do whatever is necessary to put the
sysiem in the selected state. For efficien-
¢y and consistency with other MCF
words, STATE should then be defined to
return its value rather than a pointer 1o
its value. However, for compatibility with
the previous standards, a pointer can be
returned with an additional method to
return the value, if desired.

BLK. The variable BLK, which indi-
cates which mass storage black is being
interpreted or compiled, is another candi-
date for definition as an MCF word.

According to the standard, when BLK
is zero, input is coming from 778, the
text input buffer (usually the terminal).
When BLK is not zero, input is coming
from the mass storage block. This behav-
ior requires a run-time conditional test to
direct the input stream to the correct
place. If BLK is made an MCF word,
then the sequences:

0 TO BIK { set terminal input stream)
100 TO BLK [ set mass storage input)
| stream 1o block 100)

can allow the system to fix the input
stream at the 778 when BLK is set to
zero and always cause a block lockup
when BLK is not zero. This wouid speed
interpreting and compiling, especially if
the interpreter and compiler are imple-

Enhanced MCF DEFERed word memory fayout
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mented with the conditional test in high-
tevel Forth rather than assembler.

BASE. BASE can be treated just like
BLK. The variable BASE specifies the
radix for number input and output. Forth
allows any number base to be used. With
BASE as an MCF word, the system can
be optimized for converting in the given
base. Decimal, hexadecimal, octal, and
binary are the most likely candidates to
optimize; others can be performed with
the current general conversion routine.

Other variables, in Forth, values are
fatched much more often that they are
stored. To deal with this, MCF words

Figure 2.
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were developed (also discussed more
thoroughly in Part 1). The fetch/store
frequency holds true for all variables list-
ed in the Forth standards (including
SPAN and #TIB), and any others that
might be added by the current ANSI
Forth standards committee.

If the standards committee is interest-
ed in eliminating more words from its
document, the . and .( pairs, as well as’
and ['], could be consolidated into one
word: .* and ’, respectively. This could be
done by defining them as state-unsmart
words,

Other questions surround the proposed
standard. What of the pointer problems
and external address operators described
in Part 17 Are these to be available in
the ANSI standard? Or are 16-bit sys-
tems to be crippled without a standard
mechanism for external addressing? Are

Listing 1.

we to add a large set of L operators that
32-bit systems would be required to in-
clude, even though 32-bit applications
would never use them?

With FAR aperators, 32-bit systems
would not require additional names and
could simply manipulate the extra ad-
dress bits to emulate a segmented 16-bit
data address space. Large, 16-bit appli-
cations can be ported to 32-bit systems.
32-bit applications wouldn’t care because
they wouldn’t use the FAR operations.
The FAR concept seems more attractive
and is, in fact, the syntax used by many
C compilers to solve the same problem:.

How does it worlk?

As you have seen, the defining syntax for
the MCF words described is upwardly
compatible with the existing Forth stan-
dards and systems. The syntax works by




foliowing the behavioral conventions list-
ed in Table 2.

The new execution procedures are de-
fined with DOES™> and ;CODE, just as
they are now. The only difference is that
the method selector becomes & prefix for
DOES> and ;CODE to tell these words
to compile code that will build the appro-
priate code field when the defining word
is executed. CREATE must be internally
split into HEADER and CODEFIELDS
to allow a variable number of code fields
to be defined.

POES> and ;CODE shouid also be
made state-smart (or state-unsmart with
MCFs) to allow run times to be defined
interpretively, but this is not required.
Interpretively defined run times do not
jeave behind a compiled creation-time
portion or headers of the run times and
defining word, thus saving additional
memory. The structure of a complete
MCF dictionary entry is given in
Figure 2.

The interpreter and compiler as well
as the systems dictionary search routine
(FIND) need 10 be modified slightly.
FIND must return a pointer to code fieid
zero. Thus FIND must skip the other
code fields before returning the pointer.
The variable CF- is added to the system
1o hold the current method selector value
for use by both the interpreter and
compiler.

If a found word is not IMMEDIATE
(designated to execute during compita-
tion instead of being directly compiled),
the method selecior value is subtracted
from the CFO address and the selector
set to zero. This new CFx address is ex-
ecuted if the program is interpreting or
compiled if it is compiling. The method
selection operation is very fast and sim-
ple so the effect on compilation speed is
negligivle.

Selectors such as 70 and OF simply
set the method selector variable CF-.
Thus CF- is actually an MCF object
(procedure and variable). It is set to the
negative offset needed to reach the de-
sired code field. CF- is defined to be set
by T¢. Otherwise it executes by sub-
tracting its vatue from the given CFO, re-
turning the result and then setting itself

to zero. If error checking is desired to en-
sure that the code fieid exists, it can be

performed in CF-. Compiled and inter-
preted defining examples are given in
Listing !.

A few minor points: OF (originally
called AT) is somewhal unnecessary with
V4LUEs. When a pointer to a VALUE is
desired, try to use a VARIABLE instead.
The temptation to use +/ with a V4L
UE pointer is too great. One can not be
sure that the pointer is valid for +/. The
+ TO approach for incrementing the val-
ue is safer because it maintains the data
abstraction by keeping the inside of the
¥4 LUE object hidden. When a pointer is
needed, use * and run-time binding.
When run-time binding 1o an object is
desired, * the object, perform the method
selection directly, then EXECUTE the
resulting code field pointer. For example:

: FOOQ
* [ addrass word following FOOI
{COMPILE] TO
{ obtain TO selector)
CF- | perform selection)
EXECUTE ;

Applying the techniques

MCF words allow an appropriate mecha-
nism for using prepositions in Forth syn-
tax: in fact, most of the defined selectors
have been prepositions. C and other lan-
guages can hardly approach Forth’s abil-

Pros and cons of MCF words

Advantages

Less memary needed when used

Less memory needed 1o define (sometimes]

Executes faster {usuallyl

More readable

Class specific operators not needed

Class spanning operators not needed or
are simpler

Generic operators definable

Code complexity reduced

Syntox options expanded

Enhances transportobifity of code

Enhances iransportability of data

Greoter regularity in usage _

More compact source code when used

Methods centrafized ond bundled ™ -

Implementation independencefversatility

Function optimization possible

Table 3.
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ity to extend, modify, and simplify itseif
as techniques and styles advance.

[ have used these techniques in appli-
cations for almost four years and have
found them to be of great help. For ex-
ample, in an inventory application with
aver 120 fields (objects) in 20 files, these
techniques allow the creation of a gener-
ic set of input verification routines for
each format of object (15 or 20} rather
than for each individual object. The in-
put form procedures execute the fetch
operation on the object and coavert it to
ASCII, allow editing, then verify the val-
ue and execute the siore operation on the
object.

Those who use objects and share
method seiectors heavily may find it use-
ful to translate the method selectors from
a jogica! selector number to a physical
code field offset for each structure class.
This can easily be performed by storing a
pointer to a translation table between the
header and the code fields, thus reducing
side cflects and enhancing the reusability
of the sejectors.

These technigues have their advan-
tages and disadvantages (Table 3) and
offer great promise for transportability
and implementation independence. The
abstraction allows a vendor o implement
the internal data structures of his or her
system to gain any level of efficiency

Disadvantages

Slows compilation slightly

System memory overhead might not be
recoverad

Mare memory needed to define (sometimes!

New concept/syntox to learn

More syniax options to consider

Not widely supported

Until widely ovailable, reduced code
transportability

As o syslem exiension, code may be slower

Some new words required

TO is not Forth-like

Shows other language influence
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