Grace - Daughter of Gray

1 Introduction

Gray is a parser generator, written by Anton Ertl, that is distributed with GForth. Grace provides two
extensions to Gray, a BNF front end and the ability to generate a standalone parser for the target
language. This document describes how to use Grace, it does not describe the design of Grace.

1.1 BNF front end

Gray requires a grammar with productions specified in a format specific to Gray, this format is similar
to an extended BNF with special notation. Disadvantages of this are that a user has to learn the Gray
format and that any grammars already written in BNF have to be manually converted into Gray format.
The first extension is to the front end to Gray so that it will recognise a conventional extended BNF
source file. Why do this? There are basically two reasons, firstly more people are familiar with standard
BNF, secondly when developing a parser for a language with a published grammar, use of Grace avoids
the need for manual translation of the grammar, which is, admittedly, not difficult but tedious and
therefore error prone.

1.2 Standalone parser generation

Gray compiles the parser into memory and is, therefore, an on-line tool. Using the compiled parser
requires the user to compile Gray, then the parser prior to running the parser. The second extension to
Gray is to generate the parser as Forth source code, thus making Grace an off-line tool - generate the
parser once then use it without the overheads of Gray. While these overheads are not large, particularly
in the context of today’s desktop computers, this gives the user the choice of an off-line or on-line
parser.

1.3 Modes of operation
The code for Grace has been factored into files so that Grace can used in any of four modes by using
conditional compilation:
a. with both extensions i.e. BNF input file and generating a standalone parser.
b. with Gray format input generating a standalone parser
c. with BNF input compiling an in-memory parser

d. with neither extension i.e. emulates Gray with Gray input compiling an in-memory parser
1.4 ANS Forth compliancy

Grace is written in ANS Forth and should be compatible with any ANS Forth compliant system e.g.
GForth. Descriptions in this document on how to run the examples will assume the use of GForth.

1.5 Copyright

The changes and additions to Gray are copyright G W Jackson, the copyright of the original code remains
with Anton Ertl and is issued under the GNU public licence. Both tools may be freely used for any
purpose as long as the copyright notices in the files are preserved if they are modified and/or distributed
further. They are made available in the hope that they will be of use and no guarantee or warranty is
provided.

grace.pdf 1.0 Page 1 of 10 22 October 2008

2.1

2.2

2.3

BNF input format - the first extension

This extension is basically a bolt-on front end to Gray that recognises a BNF format and calls the
appropriate interface words in Gray. To use this the user simply prepares a source file specifying the
grammar in the BNF format described below (see section 2.6 for an example) and, having included the
appropriate files, to call a word such as grace in file grace. fth with the name of the BNF file. The
BNF format recognised by Grace is similar to that used in specification of the XML grammar with two
extensions. This section uses terms that are common in the description of programming languages and
compilers. An explanation of these is given in any book on compilers e.g. the Red Dragon book
('Compilers, Principles Techniques and Tools' by Aho, Sethi and Ullman, 1986).

Productions

The grammar for a given language expressed in BNF format consists of a series of productions or rules
that define non-terminals in terms of a sequence of terminals and non-terminals. A production has the
form:

non-terminal ::= sequence of terminals and/or non-terminals;

where items on the right hand side may be separated by operators and qualified by other operators. Note
the terminating semi-colon used to separate productions — this is an extension to the XML style BNF
notation.

Non-terminals and terminals

A non-terminal is a string of alphanumeric characters including an underscore, it must start with a letter
or underscore. Consecutive non-terminals must be separated by white space.

The symbol ::= separates the non-terminal being specified from its definition.
There are two types of terminal:

e Those specified by enclosing a character string in quotes i.e.
'string-a' or "string-b"

where string-a and string-b may contain any non-control character except ' and " respectively.
This type of terminal will typically be keywords and operators of the language to be parsed by Gray.

e Those such as identifiers and numbers that are specified by a regular expression, e.g. in the input to
LexGen. These must have the same form as a non-terminal i.e. a sequence of alphanumeric
characters starting with a letter or underscore. These need not be enclosed in quotes but should be
used in the form which the lexical scanner will recognise. For example see the use of ident in the
production for MetaIdentifier in section below.

For example five legal terminals are: 'begin' "IF" 'a"name"' "'" fred
Two illegal terminals are: 'abc'ef' nnn
Production definitions

If we represent a general non-terminal or terminal as A and B the following may be used on the right
hand side of productions:

AB matches A followed by B
A|B matches A or B but not both
A¥* matches zero or more occurrences of A

grace.pdf 1.0 Page 2 of 10 22 October 2008

24

2.5

2.5.1

2.5.2

2.6

A+ matches one or more occurrence of A
A? matches zero or one occurrence of A (i.e. A is optional)

(AB) parentheses group the contents into a unit so that, for example (A B)+ means one
or more occurrences of A followed by B

These may be combined and extended indefinitely e.g. A B (C | D)*

A production may be spread over several lines of text. Productions may be in any order except that the
first production is taken as the parser name (see below). White space is needed between non-terminals but
is not necessary between other symbols.

Extensions to BNF
BNF2Gray has two rules in addition to those of extended BNF:

e The non-terminal on the left hand side of the first production is taken as the name of the parser and
must not be used in other productions.

e Each production must be terminated with a semicolon.

Comments and actions

The set of productions can also hold comments and actions.
Comments

These look like a C comment and are ignored by Grace e.g.

/* This is a comment */

Comments cannot be nested and can contain any character or string except */. Comments can be spread
over more than one line.

Actions

Actions are surrounded by braces, { and } and can cover more than one line. They contain Forth code that
is executed when the terminal for that part of the production has been recognised. For example in section
there is a production for SyntaxRule, in which {startRule} is an action. The word startRule is a
Forth word which is called when a MetaIdentifier has been recognised by the parser generated by
Gray. Actions may be a sequence of Forth words.

Actions are copied through to the generated parser code inside the colon definition for the production
containing the action e.g. see the example in section .

Actions being copied through to the output can lead to different behaviour between the parsers generated
by Gray and Grace (see the restrictions in section 7).

Example grammar
The BNF parser used in Grace was generated by Grace itself from the following grammar complete with

comments and actions - beware, depending on the font used for display or print, it may be difficult to
distinguish between the parentheses and braces characters:

grace.pdf 1.0 Page 3 of 10 22 October 2008

2.7

3.1

/* BNF grammar for the Grace BNF parser */

BNF ::= {startGrammar} Comment* (SyntaxRule Comment*)+ {endGrammar};
SyntaxRule ::= Metaldentifier {startRule} '::=' DefinitionsList
{endRule} ';';
DefinitionsList ::= SingleDefinition ('|"' {||} SingleDefinition) *;
SingleDefinition ::= Factor+;
Factor ::= (Metaldentifier
| {getTerminal} terminal string
| GroupedSequence) Qualifier?
| ActionSequence
| Comment;
MetalIdentifier ::= {getNonTerminal} ident;
GroupedSequence ::= '(' {((} DefinitionsList ")' {))};
Qualifier ::= {22} '"?2' | {++} "+"'" | {**} '=*',;
Comment ::= {skipComment} '/*'
/* Any character string except <end comment> */
l*/l;
ActionSequence ::= {BNF-action} '{' /* User defined Forth code */ '}’

{endAction};
Running the BNF parser

More detailed information on this uses examples and follows later in this document (see section 4).

Parser generation - the second extension

This extension to Gray is an alternative back-end that writes a Forth source code parser to a file instead
of compiling the equivalent directly into memory. Therefore this part of Grace replaces the code
generation part of Gray entirely.

Forth code generation

The approach taken to code generation is:

e Each production becomes a colon definition or : noname definition (if a production is used before it
is defined). The name of the colon definition is the production name surrrounded by angle brackets.

e References to other productions are converted to a call to that production’s colon definition name.

e Terminals become either a test on a constant value or a test of membership of a set where there are
more than one possible valid terminals.

e BNF operators are converted to appropriate Forth control structures.
e Actions are copied in-line to colon definitions without any changes.
e Comments are ignored.

For examples compare the BNF code in section 2.6 and the generated parser in file graceparser. fth.

grace.pdf 1.0 Page 4 of 10 22 October 2008

4

4.1

4.2

4.2.1

422

423

4.2.4

4.3

43.1

Using Grace
Overview

As described before Grace is based on the Gray parser generator (reference 1) and the documentation
available in that package should be read and preferably understood before using Grace - see the
examples provided with Gray. This section will describe the use of Grace in each of the 4 modes
available and a common example will be used. This example is based on the Mini language provided as
an example in the Gray distribution.

A version of the Mini parser is given for each mode of operation for illustrative purposes only, for
application development, choose the mode required and develop the appropriate files for that mode (see
the table in 4.3.1).

In the examples LexGen has been used to generate the lexical scanner, this is different to the Gray
example. It is not necessary that LexGen be used with Grace, any other lexical scanner can be used as
long as it returns numerical token values for the various symbols to be handled in the target grammar.
For an example of an alternative see the file mini. fs in gray5.zip (reference 1) which uses Gray for
the lexical scanner - it could be a useful learning exercise to use Grace to generate a lexical scanner for
Mini. Also it is not necessary to understand LexGen at all to use Grace, but reference 2 about using
LexGen with Gray may assist the understanding of how Gray works.

Files used for the Mini example

The set of files loaded for each of the four modes is given in the loader file mini.fth. Initially
considering the files for mode 0 (Gray emulation) because the files for other modes are mostly
variations of this, the set of Mini files is (ignoring library files):

ministt.fth
minitokens.fth
miniactions.fth
minitokens.fth
mini.gry

ministt.fth was generated by LexGen and with the library file lexscanner2 0.fth provide the
lexical scanner which replaces the Gray equivalent in mini. fs. As stated before use of this scanner is
not essential for Grace and so this file will not be discussed any further.

minitokens.fth defines the tokens used in a mini program. This file is included twice (see refer-
ence 2), firstly to define token values, secondly to define Gray terminals - the same thing is done in
mini. fs. For the first use a word called token is defined in library file lexscanner2 0.fth to de-
fine constants, for the second use is redefined inminiactions. fth.

miniactions.fth is again mostly taken from mini. fs and the code is described in more detail be-
low. For the other modes there are equivalents of this file that contain similar, if not identical, code. In
the modes where a standalone parser is generated, the file is split into two, one for parser generation, the
other for run-time.

mini.gry defines the grammar for a mini program - taken from mini. £s. This includes calls to ac-
tions that are defined in miniactions.fth. In modes where the input file is in BNF the file called
mini.bnf is used instead.

Files for the different modes of operation
Each mode of operation requires the code to be split in various ways into different files. In the following

descriptions the various files will be generically referred to as “target” files. The target files for each
mode in the Mini example are given in this table.

grace.pdf 1.0 Page 5 of 10 22 October 2008

4.4

4.4.1

4.4.2

4.4.3

4.4.4

Mode Compile/Generate Run-time

0 - Gray emulator miniactions gray.fth
1 - BNF file input, compile parser into memory miniactions.fth
2 - Gray format input, generate a parser as Forth minidefs gray.fth

source code .
minirun.fth

3 - BNF file input, generate a parser as Forth source minidefs.fth
code

Contents of the target files

The target files are given in the table in 4.3.1. The code in these files is divided into the types described
in the next few paragraphs. Reference should be made to the appropriate files given in the table to see the
actual code. Another example of a run-time file can be seen in the file grace. fth. which is the run-time
file for parsing a BNF source file. The table in 4.4.8 below shows which code type is required for each
mode of operation.

Interface to the scanner:

In the examples given these are calls to LexGen via the word getNextToken which returns the token
value for the next symbol in the input file of the target language. If an alternative scanner is used it
should provide the same functionality.

Source file handling

This simply opens and closes the target source code file. The Mini examples use a library file called
inputsources. fth to do this so that the scanner can use ANS Forth words like REFILL on the input
file. This code section depends on the needs of the scanner used.

Interface to Gray
Gray requires various things to be supplied (see reference 1):

e acall to max-member with the highest token value in use.

e aword to test whether a token (here held in variable sym) is a member of the supplied set. This
word, testsym? has to have its execution token saved in Gray variable test-vector.

e aword to check that a result is true and, if so, to fetch the next token from the source file. Here
this is called ?nextsym and its execution token must be supplied to the Gray word terminal
when a terminal is declared. This is done in the redefined word token below.

See file miniactions. fth for the actual code used. When generating a standalone parser only the call
to max-member is required. However the other two are required when running the standalone parser.

Interface to the standalone Mini parser

This is only required for a standalone parser at run-time and must contain the definitions of testsym?
and ?nextsym as described in 4.4.3 and a word called test-token, all of which will be called in the
generated parser e.g. see file miniparserl.fth. In minirun.fth the definition of testsym? is
optimised as the number of tokens is less than the cell size. An alternative definition is given, but
commented out, for multi-cell sets (i.e. with more than 32 members in a 32 bit system).

In addition the following values must be declared so that the parser can set their value:

0 value bytes/set
0 value bits/cell

grace.pdf 1.0 Page 6 of 10 22 October 2008

4.4.5

4.4.6

4.4.7

4.4.8

0 value first-set
0 value parser-name

Definitions of actions

This contains definitions of any actions that are called in the grammar (both formats). These depend on
the target language.

Redefinition of token

The tokens file is included for a second time so that a terminals can be created by Gray for each token.
As the actions are likely to use token constants, this redefinition of token has to follow definition of the
actions. There is a significant difference between the redefinition of token in files
miniactions gray.fth and minidefs.fth. The latter is used when generating a standalone
parser.

A driver

A word is needed to make things happen i.e.
® compile a mini program (e.g. the word mini in file miniactions gray.fth)or
® to generate a standalone parser (e.g. generate-forth inmindefs.fth) or

® to compile a program in the target language (e.g. mini in minirun. £th).

Code sections required for each mode of operation

Code section type Mode 0 Mode 1 Mode 2 Mode 3
(Gray in) (BNF in) (Gray in) (BNF in)
(Compile) | (Compile) (Generate parser) (Generate parser)
Generate Run Generate Run

Scanner interface v v v v

Source file handling v v v v

Gray interface v v v v

Mini parser interface v v

Definition of actions v v v v

Redefinition of token v v v v

Compiler or parser v v v v v v

driver

4.5 Running the examples

4.5.1

The examples can be run by setting some compilation constants at the start of the file mini.fth .
These are [forth-out] and [bnf-in], used as defined in this table:

grace.pdf 1.0

Page 7 of 10

22 October 2008

Compilation constants

Mode of operation

[forth-out] [bnf-in]
1 Mode 3 - BNF file input, generate a parser as Forth source code
0 Mode 2 - Gray format input, generate a parser as Forth source code
1 Mode 1 - BNF file input, compile parser into memory
0 Mode 0 - Gray emulator

4.5.2 For each mode mini.fth includes the necessary library and Grace files before the appropriate mini
files. As can be seen the files used do vary according to the mode of operation. When you develop your
own parser cut and paste the set of files from graceloader. fth for the mode you wish to use into your
own loader file replacing the mini files with your own application. Alternatively use graceloader.fth as
it is with [forth-out] and [bnf-in] defined for the mode you want.

4.5.3 The loader files have been set up for use with GForth, use with another Forth system will probably re-
quire changes to the file paths. To run the examples with GForth:

5 Installation and files provided

”

S

unzip the file grace.zip into a directory called grace

edit the values of [forth-out] and [bnf-in] in file mini. fth for the required mode of
operation
type (note the forward slashes - back slashes won’t work with GForth):
grace/mini/mini.fth” included <enter>

which will compile or generate the Mini parser and run it with the example Mini program called
square.mini. Note that in modes 2 and 3 the generated parser file will appear in the mini directory.
To further test the mini program type (e.g.):

12 square
which should then display the answer 144

<enter>

Repeat with another setting of the compilation constants

The following files are included in grace.zip which should be unzipped into a folder called grace:

To run Grace

graceloader.fth

includes the grace files needed for parser generation.

graycore.fth

equivalent to gray5.fs less code generation and sets definitions

gracegen.fth

generates the parser as Forth source code

graygen.fth

compiles the parser in memory (graycore + graygen + sets is func-
tionally equivalent to the original Gray)

gracestt.fth

State transition table for Grace (generated by LexGen)

gracetokens. fth

Declares the BNF symbols to be recognised by Grace in the gram-
mar file

grace.fth

run-time action definitions for the Grace parser (holds the defini-
tions described in)

graceparser.fth

the BNF parser (generated by Grace itself from the example in para-
graph)

ansify.fth

library file with some common definitions

xmini_oof.fth

library file, extended Mini-OOF

grace.pdf 1.0

Page 8 of 10 22 October 2008

sets.fth

library file for handling sets (originally extracted from Gray)

inputsources.fth

library file for using ANS words on text files

files.fth

library file to write to files

list.fth

library file for rudimentary list handling

sections.fth

library file for using ALLOCATEd memory

lexscanner2_0.fth

a lexical scanner used with transition tables generated by LexGen

An example using the Mini example from the gray5.zip distribution

mini.fth

includes necessary files and runs grace.fth to generate a Mini parser

minitokens.fth

defines the symbols and their tokens for the Mini language

ministt.fth the state transition table for recognising symbols in a Mini language
source file (generated by LexGen)

mini.bnf BNF definition of the Mini language grammar (modes 1 and 3)

mini.gry Gray format definition of the Mini language grammar (modes 0 and

2)

minidefs.fth

definitions to generate a forth source code parser for the Mini lan-
guage from a BNF input file (mode 3)

minidefs_gray.fth

definitions to generate a forth source code parser for the Mini lan-
guage from a Gray format input file (mode 2)

minirun.fth

run time definitions for the generated Mini language parser (modes
2 and 3)

miniactions.fth

the run-time file for the Mini language (mode 1)

miniactions_gray.fth

definitions to compile a parser into memory from a Gray format in-
put file and then run it (mode 0)

square.mini

a Mini program

Documentation

grace.pdf

This document

6 Errors

As with Gray error reporting is rather basic (see reference 1 for errors that can be reported in Gray and
which are also reported in Grace) . The additional errors detected in Grace are:

1. Syntax errors when Gray has failed to recognise something in the input file, for example a missing
semicolon will cause BNF2Gray to stop at the following ::= with a syntax error message.

2. When one of the memory buffers overflows when a message “Section overflow” will be displayed
before the GForth trace messages. This can happen for the larger grammars and can be prevented by
increasing the size of the section called nonterm-buf or action-buf in the file gracegen. fth.

7 Differences between Grace and Gray and restrictions

7.1 Actions are compiled in a different context in the two systems. In Gray actions are compiled as they are
read in whereas the grammar is compiled later with calls to actions. In Grace actions are inserted into the

grace.pdf 1.0

Page 9 of 10 22 October 2008

7.2

7.3

7.4

7.5

7.6

generated grammar. This could cause problems if the ANS Forth BASE or the compilation wordlist differs
at the time of compilation

Actions within a production in Grace are compiled in-line with the parser, therefore they are in the same
colon definition. In Gray they are compiled separately. This gives more flexibility in Grace e.g. use of

the return stack between different action sequences.

Errors and warnings may be shown in a different position, a simple example is that an invalid word in an
action will not show up until parser run-time in Grace, whereas Gray will report it immediately.

As Grace simply scans action text looking for a terminating } or }}, actions containing a string with
embedded } characters will not be handled correctly whereas Gray will handle this correctly. This
(unlikely?) problem can be avoided by defining the string in another word that is called in the action.

As the character { starts an action in BNF input, the Forth 200X syntax for locals cannot be used in
actions. This can be handled by using them in another definition that is called in the action.

In Gray the user can choose the name of any production as the nam of the grammar. In Grace the name of

the first production is taken as the name of the grammar. For example in the Mini example the first
production is:

Program ::= 'PROGRAM'
ANS compliance statement
(To be completed)
References
1. Gray by Anton Ertl from http://www.complang.tuwien.ac.at/forth/gray5.zip
2. LexGen from http://www.qlikz.org/forth/lexgen

3. Using LexGen with Gray, file lgandgray.pdf from the download in reference 2.

grace.pdf 1.0 Page 10 of 10 22 October 2008

	Grace - Daughter of Gray
	1 Introduction
	1.1 BNF front end
	1.2 Standalone parser generation
	1.3 Modes of operation
	1.4 ANS Forth compliancy
	1.5 Copyright

	2 BNF input format - the first extension
	2.1 Productions
	2.2 Non-terminals and terminals
	2.3 Production definitions
	2.4 Extensions to BNF
	2.5 Comments and actions
	2.5.1 Comments
	2.5.2 Actions

	2.6 Example grammar
	2.7 Running the BNF parser

	3 Parser generation - the second extension
	3.1 Forth code generation

	4 Using Grace
	4.1 Overview
	4.2 Files used for the Mini example
	4.2.1 ministt.fth was generated by LexGen and with the library file lexscanner2_0.fth provide the lexical scanner which replaces the Gray equivalent in mini.fs. As stated before use of this scanner is not essential for Grace and so this file will not be discussed any further.
	4.2.2 minitokens.fth defines the tokens used in a mini program. This file is included twice (see reference), firstly to define token values, secondly to define Gray terminals - the same thing is done in mini.fs. For the first use a word called token is defined in library file lexscanner2_0.fth to define constants, for the second use is redefined in miniactions.fth.
	4.2.3 miniactions.fth is again mostly taken from mini.fs and the code is described in more detail below. For the other modes there are equivalents of this file that contain similar, if not identical, code. In the modes where a standalone parser is generated, the file is split into two, one for parser generation, the other for run-time.
	4.2.4 mini.gry defines the grammar for a mini program - taken from mini.fs. This includes calls to actions that are defined in miniactions.fth. In modes where the input file is in BNF the file called mini.bnf is used instead.

	4.3 Files for the different modes of operation
	4.3.1 Each mode of operation requires the code to be split in various ways into different files. In the following descriptions the various files will be generically referred to as “target” files. The target files for each mode in the Mini example are given in this table.

	4.4 Contents of the target files
	4.4.1 Interface to the scanner:
	4.4.2 Source file handling
	4.4.3 Interface to Gray
	4.4.4 Interface to the standalone Mini parser
	4.4.5 Definitions of actions
	4.4.6 Redefinition of token
	4.4.7 A driver
	4.4.8 Code sections required for each mode of operation

	4.5 Running the examples
	4.5.1 The examples can be run by setting some compilation constants at the start of the file mini.fth . These are [forth-out] and [bnf-in], used as defined in this table:
	4.5.2 For each mode mini.fth includes the necessary library and Grace files before the appropriate mini files. As can be seen the files used do vary according to the mode of operation. When you develop your own parser cut and paste the set of files from graceloader.fth for the mode you wish to use into your own loader file replacing the mini files with your own application. Alternatively use graceloader.fth as it is with [forth-out] and [bnf-in] defined for the mode you want.
	4.5.3 The loader files have been set up for use with GForth, use with another Forth system will probably require changes to the file paths. To run the examples with GForth:

	5 Installation and files provided
	6 Errors
	7 Differences between Grace and Gray and restrictions
	7.1 Actions are compiled in a different context in the two systems. In Gray actions are compiled as they are read in whereas the grammar is compiled later with calls to actions. In Grace actions are inserted into the generated grammar. This could cause problems if the ANS Forth BASE or the compilation wordlist differs at the time of compilation
	7.2 Actions within a production in Grace are compiled in-line with the parser, therefore they are in the same colon definition. In Gray they are compiled separately. This gives more flexibility in Grace e.g. use of the return stack between different action sequences.
	7.3 Errors and warnings may be shown in a different position, a simple example is that an invalid word in an action will not show up until parser run-time in Grace, whereas Gray will report it immediately.
	7.4 As Grace simply scans action text looking for a terminating } or }}, actions containing a string with embedded } characters will not be handled correctly whereas Gray will handle this correctly. This (unlikely?) problem can be avoided by defining the string in another word that is called in the action.
	7.5 As the character { starts an action in BNF input, the Forth 200X syntax for locals cannot be used in actions. This can be handled by using them in another definition that is called in the action.
	7.6 In Gray the user can choose the name of any production as the nam of the grammar. In Grace the name of the first production is taken as the name of the grammar. For example in the Mini example the first production is:

	8 ANS compliance statement
	9 References

