
~ ~ i i FURTH UlrnEnSlOnS
Forth Interest Group
P.O. Box 8231
San Jose, CA 95155

VOLUME 111:
Numbers 1 - 6

FORTH INTIRIST GROUP
P.O. Box 1 105
San Carlos, CA 94070

Volume Ill
Number 1

Price $2.00

2 Letters

4 Announcements

5 FORTH-79 Dialog

7 Technical Notes

10 Programming Aids

13 FORTH, Inc. News

14 Pa ram et e r Pass i n g

15 Com pi ler Security

20 Userstack

23 A Stack Diagram Utility

33 C hapters/Meetings

Published by Forth Interest Group

Volume 111 No. 1

Publisher
Guest Editor

Editorial Review Board

Bill Ragsdale
Dave 8oulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner

MayIJune 1981

Roy C. Martens
C. J. Street

FORTH DIMENSIONS solicits editorial material.
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($24.00 foreign arr). For membership, Ch8f~Qe of
address and/or to submit material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

IXtSTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville. VA. It was created out of dissatisfaction
witn available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers' untque requirements.

EDITOR'S COLUMN
The last edition of FORTH DIMENSIONS was the

beginning of many changes in editorial policy and
format. Al l these changes are designed to make FORTH
DIMENSIONS a practical and useful communications
tod.

This practical approach continues. In this edition
you will find a number of utility programs that will make
the task of implementing practical applications in
FORTH easier and faster. A l l of these utilities have
been contributed by FIG members who have found
them to be valuable tools. The editorial staff thanks
these contributors and would like to encourage all FIG
members to share their ideas and experience.

If you have a progfamming idea or tool that you have
found useful, pleese send it to

Editor
FORTH DIMENStONS
P.O. Box 1105
San Carlos, CA 94070

YOU DON'T HAVE TO BE A WRITER-me editorial
staff will provide whatever copywriting is necessary to
make your ideas publishable.

On the aesthetic side. you will find this edition con-
tains several photographs and art illustrations. This is
a FORTH DIMENSIONS' first and you con expect to see
more in the future. Photographs and art i l l u s t r ~ o n s
will be chosen and published on the basis of their
educational and human interest value.

This issue also introduces the charactw HEX who
will be FORTH DIMENSIONS' official comic strip. You
will find the HEX comic strip in future editions of
FORTH DIMENSIONS. HEX'S adventures will be a com-
bination of humor and education. Ideas for HEX comic
strips are welcome.

C. 3. Street
Editor

PUBLISHER'S COLUMN
Renewals and new members are coming in at a fast

pace. We expect to climb to 3,000 members in the next
few monthsand to 5,000 within a year.

Both the Computer Faire in San Francisco and the
Computer Festival in Trenton, New Jersey were huge
successes We'li be in both again next year. (I'd like to
know of any other shows where. you think FIG should
exhibit.)

Good material i s coming in for FORTH
DIMENSIONS. Keep it coming and send in your
comments.

The Forth Interest Group is centered in Nwthem
California. Our membership is over 2.400 worldwide. It
was formed in 1978 by FORTH programmerstto e m u r -
age use of the language by the interchange of ideas
through seminars and publications. my Martens

Page 1 FORTH DIMEI9SU)"ON I n / l

Dear Fig:

LETTERS

Dear Fig:

My company ir developing burinerr
ryrtemr using FORTH and we would be
intererted in caaanmicating with local
FIGGIES as well as offering our input to
FST, FORM,, FIG and other applicable "F"
acronym since it ir obviourly in our
interert to promote the rpread and
acceptance of FORTH. We're alro confirmed
FORTH fanaticr.

David B. Man8

27 Eart Kings Highway
Haddonfield, NJ 08033
(609) 429-0229

BUSINESS SYSTEMS SOFTWARE, IMC.

You are our kind of fanatic and m're
happy to put the word out for you Dave! --
ed .
Dear Fig:

Re : "Born-again progra=er" and "Born-
again FIGGER" in FORTH DIMENSIONS II/S.

My interest in FORTB as a programing
language does not envolve becoming mired
down in the morass of a religion. It
would be best to stay on rational groundr
in the development of FORTH and leave
religion to those who are unable to think
without faith.

f will not take part in a religious
group. Therefore I will not be renewing
my membership.

Larry R. Shultis
P.O. Box 218
Fontana, WI 53125

Just goes to shav you that there is more
than one type of fanatic! Keep the faith,
Larry, (OOPS, sorry about that! I meant:
Don't worry, Larry,) FIG is not envolving
(your spelling) into a religious group. --
ed .

Thank you for the prompt and efficient
rervice I have received. I realize that
you can't have much time left to look
after the reat of the world, but without
your interert it may never have reached
there rhorer. Spread the good WORD.

J. Iluttley
u#IVERSIT!l OF AlXKLAND
19 Duncan Avenue
Auckland 8,
New Zealand

You are very welcome! - ad.
Bditor'r note:

At the WEST COAST CUBPUTER FAIRE in
California two verrionr of a FORTB bumper
rtrip were circulated:

?FORTH IF HONK THEN

or alternately

Just thought you ught like to know. --
ed .
Dear Fig:

TGIF is .very interested in mapping
listings with other Fig-FORTR groups. Our
current lirtingr are 2 Decorpilere; Full
rcreen editor; CASE statement8 for 8080,
280 and 6502; 6502 Arserbler.

TGIF
lWRR1 INTEREST CROUP -- TULSA
Bsx 1133
Tulra, OK 74103

Bow about rending them in to FORTH
DIMENSIONS? - ed.

FORTH DXHENSIONS III/1 Page 2

Dear Pig:

I was lucky enough to attend one day of
the recent West Coast Computer Faire and
to meet some of the mentors of FIG. I had
numerous questions and enjoyed talking to
Bill Ragsdale and others about them. (By
the way, for those of you who couldn't
make it to the Faire, the FIG booth was
one of the most crowded. People were
standing there like no where else even as
the 5 : O O closing approached. We all owe a
thanks to the dedicated folks for their
time and effort in this endeavor,
promoting and spreading the word of FORTH
and FIG. 1

One of my questions to Bill was "How can
we remote members contribute to FIG" in
ways other than articles for FORTH
DIMENSIONS. I got a number of project
ideas, for one of which I need tne help of
the whole membership. So ?LEASE: NOW
HERE THIS!

I propose to assemble a book of utility
program packages for publication by FIG.
I have a list of functions which I think
should be included. This covers such
things as editors (both the current FIG
line oriented editor and a video screen
type editor), string processing, data
structures, extended math (double prec-
ision as an example), math functions (sin,
log, etc.), matrix operations, and float-
ing point routines. No doubt there are
others to be considered and I solicit your
suggestions.

The plan I propose to compile and
publish such a document is as follows:

1. Members are asked to send their
proposals for implementing utility
packages to me at the above address
(or through FIG). These proposals
should consist of well documented
(lots of cooments) fig-FORTH source
code accompanied by complete instruc-
tions for use, any known operating
limitations, and a brief technical
description or reference if appro-
priate. The programs should be as
transportable as practicable; if
system unique routines are necessary,

enough information should be provided
so as to allow them to be adapted to
a different machine.

2. I will compile a draft of the pro-
posed publication and submit it to a
technical review cornittee for review
and appropriate testing. This com-
mittee of FIG members (I am looking
for volunteers) will scrutinize the
proposals (and alternatives if appro-
priate), test them on a running FORTH
system, and make recommendations.

3. I will then compile the final version
and submit it to FIG for publication.

I have set some timelines for com-
piling this compendium such that it
can be published by next year's
Computer Faire. Material should be
sent in no later then 1 September
1981 (please send them early and give
me a chance to get ahead). I will
distribute the draft for review and
testing by 15 October 1981. Finally
I will begin compiling the final
version by 1 January 1982 and have it
ready for publication by 1 February
1982.

This may seem like a long time
abuilding, but I want to provide
ample opportunity for the contribu-
tors to develop their ideas fully and
conduct a fair amount of testing
themselves before submission, I also
want to provide a good review by the
coormittee to provide the highest
quality document for FIG. It will be
worth it in the long run. Your con-
tributions will be sincerely appre-
ciated, and though the publication,
as are all of FIG'S, Vill be in the
public domain, credit will be given
to the authors and contributors. So
if nothing else, this is a chance to
get your name in print, in an inter-
national publication.

Sincerely,
George 0. Young 111
617 Mark NE
Albuquerque, NM 87123

Page 3 FORTH DIMENS IONS I I I / 1

This is a great project. Our goals
continue to be to decentralize FIG
activities, and George's project of a
published "Goodies Package" will be
helpful to all. Contributors should send
a brief description to George and then
prepare the full document. This will
a I. low co-ordina t ion of similar material .
-- ed.

S p r e a d i n g the fig-FORTH at the West Coast
Computer Faire, April, 1981.
Top : (1-r) Plichel Yannoni (FORTI! vendor),
Dave Boul ton and Martin Sthaaf (Answering
t h e question: What's FORTH? 10,000 times)
Bottom: (1-r) Roy Flartens (FD Publisher),
Anile & Bill Ragsdale (FIG prime movers).
Order y o u r T-shirt, like Bill's!

ANNOUNCEMENTS

FORML CONFERENCE CALL FOR PAPERS

Papers are requested for the three day
technical workshop to be held next
November 25th to 27th at the Asilomar
Conference Grounds in Pacific Grove,
California (Monterey Peninsula).

Although registration for this con-
ference is not yet open, attendance will
be limited to 60 persons. Authors will be
accepted before listeners, so if you want
to attend, the only sure way is to write a
paper. Please note: abstracts or propo-
sals for papers or discussions must be
submitted no later than September 1, 1981
for inclusion in the conference and its
proceedings; completed papers by Sep-
tember 15, 1981.

The purpose of this workshop is to dis-
cuss advanced technical topice related to
FORTH implementation, language and its
applications. Potential authors should
write for an author's packet for detailed
instructions. Send all correspondence
regarding the conference or papers to:

FORML CONFERENCE
P.O. Box 51351
Palo Alto, CA 94303

FORTH WORKSHOPS

Beginners and advanced workshops in
FORTH are being jointly sponsored by the
College of Notre Dame and Inner Access
Corporation both of Belmont, CA.

Beginners workshops start June 23 and
advanced workshops start July 14. Classes
meet every Tuesday and Thursday evening
from 7:OO to 9:00 P.M. Registration is
$135 for 3 weeks (12 hours).

For more information and registration
contact :

College of Notre Dame (415) 593-1601

FORTH DIMENSIONS III/ 1 Page 4

CONTINUING DIALOG ON

FORTH079 STANDARD
Dear Bill:

We recently obtained a copy of the
FORTH-70 Standard from FIG and are
attempting to align our version of FORTH
with it. The document is generally well
done and in most cases clearly and con-
c isely expressed. However, there are
about a half dozen or so definitions that
seem to us somewhat ambiguous.

I am writing to you in the hopes that
you can clarify the word definitions in
question; or, that you can refer us to
someone who can. I am also interested in
knowing whether the FIG model has been
aligned yet, if not, when it will be.

My list of questions is enclosed and I
would appreciate anything you can do to
assist us in their resolution.

Cordially,

Robert D. Villwock
MICROSYSTEMS, INC.
2500 E. Foothill Blvd., 1102
Pasadena, CA 91107

OPEN QUESTIONS
FORTH-79 Standard

1. For the words / and */ does the
t e rmi no logy rounded toward 2ero"
essentially mean truncated? If not,
precisely what does it mean?

2. The word SGIN is now apparently
defined to be used "outside" of the
<#, #>operators. What is the pre-
cise definition of where the minus
sign character is to be stored? Why
was this word changed from its former
function between < # and #> ?

3. The word ':I is defined as a non-
precedence word. Is this a typo or
is it intentional? If intentional,
could you explain the rationale? It
seems that the number of occasions
f o r which "colon" needs to be com-

piled are few and could easily be
handled by using the [COMPILE]
operator. ON the other hand, syntax
errors and typos often result in
mistaken attempts to compile ':
which, when it's an imnediate word,
can be flagged by the compiler.

4. The word CODE is defined as using the
form:

CODE <name> ... END-CODE
However, the word ;CODE says nothing
about the corresponding form. Our
version of FORTH rquires that code
level action routines defined by
;CODE also be terminated by the word
END-CODE. Is this compatible with
FORTH-79?

, etc., as 5. The words FIND, I , ' ':I

defined in the Standard, indicated a
search of C0I"EXT and FORTH only. Is
it considered an incompatibility if
the CURRENT vocabulary is also
searched (if different)? The defini-
tion of VOCABULARY is not clear
regarding the possibility of "sub-
vocabularies" such as ABC chained to
Xm chained to FORTH. If this is
allowed, and, ABC is the CONTEXT
vocabulary, is not ABC, XYZ, and
FORTH searched?

6. What is the mnemonic significance of
the C words such as C!, CMOVE,
etc.? Surely it doesn't stand for
"cell," does it? The term "cell" is
defined on page 3 of the Standard to
be a 16-bit memory location. The word
MOVE is defined on page 26 to trans-
fer 16-bit words ("cells"), while the
word O W on page 20 is defined to
move bytes (not "cells"). If the C
does stand for "cell" what is the
rationale? Why was the former stan-
dard's B (for byte) replaced by the
mysterious C?

7. I note that in the reference section
of the Standard, the word DPL which
formerly used to handle both input
and output "point" situations now
strongly emphasizes that input con-
versations should not affect its

FORTH DIMENSIONS III/ 1 p w 5

value. What i s the reason for t h i s
r e s t r i c t ion? How l i k e l y is it t h a t
t h i s may become par t of the Standard?

8. The def in i t ion fo r CREATE i s not
c lear . Does the second sentence
"When <name> i s subsequently
executed, the address of the f i r s t
byte of <name> 's parameter f i e l d is
l e f t on the stack" mean tha t the word
CREATE alone is t o function t h i s way
or only when followed by ;CODE or
DOES) ? In other wordr, is it
intended tha t CREATE work a s i n the
FIG model or has i t s def in i t ion
changed? Taken l i t e r a l l y , FORTR-79
says tha t CREATE w i l l generate an
unsmudged header with the CFA point-
ing to the run t i m e procedure fo r
var iables . Is t h i s what is intended?

COMMENTARY FROM THE FORTH DOCTOR

1. Some computers apparently (by Stan-
dard Team comnent) round quot ients
and remainders t o smaller magnitude
(more negative). Trucation of nega-
t i ve quotients would do th i s . I f a
correct representation is not possi-
ble , the r e su l t should be nearer
zero. Dave Boulton is more know
ledgeable on th i s point.

2. 'I Sign is to be used within <# and
#> . The user chooses where to s to re
the sign. Notice tha t no word gener-
a t e s the saving of the sign. In fig-
FORTH the only difference is the ROT
would be e x p l i c i t l y done j u s t before
SIGN, ra ther than i n SIGN.

3 . FIG and the Europeans make : an h e -
d i a t e word fo r e r ro r control. Other
users, and FORTH, Inc. r e j e c t t h i s
leve l of e r ro r control-too bad! We
need a technical paper presenting the
trade-offs (code needed and compila-
t ion slowdown). Conversation a t a
team meeting i s in su f f i c i en t t o
change opinion8 developed over ten
years.

4. These topics were barely touched on
by the Team as CODE def in i t ions a re
not portable. ;CODE probably should

15.

6 .

7.

8.

terminate i n END-CODE. This is an
unrcrolved area.

The standard wording was painstaking-
ly done regarding vocabularies. This
is the most divergent topic among
uaers. a l l known methods can comply
with the Standard, but it does less
than a l l ry r t em. The r a t iona le i s
tha t you build CURRENT but you exe-
cute only from CONTEXT (and FORTH).
No cbaining is recognized, beyond
context leading t o FORTE. This may
be physical l inks or log ica l (within
FIND). Again, pos i t ion papers are
e r r e n t i a l t o get a c-n, more
advanced, conatruct.

Charles Moore has used C for ten
years as a character (byte) prefix.
Ignore (i f you can) tha t a character
i s defined ar 7 b i t s i n the Stan-
dard. This was a hot ly disputed
point with FIG and the Europeans f o r
"B"yte and FORTH, Inc. and a couple
of others f o r "C" . K i t t Peak was
adamant before the meeting for "B"
and other uniformity improvements.
Their representat ives made no defense
of the issue. His tor ica l precedence
wins t h i s one.

Reference Section is j u s t l e f t -
overs. Only one vote of any team
member was crufficient t o maintain a
Reference word on the l i r t . The
Standard attempts t o minimize system
variables. Increased usage of
spec ia l var iables is unlikely.
Things l i k e DPS are delegated t o
applications.

The def in i t ion of CREATE is qui te
c lear . You have s ta ted it and then
cor rec t ly paraphrased it. Other
defining words may be used before
DOES >which help bui ld a parameter
f ie ld . DOES> rewriter the code f i e l d
t o i t s own code.

: CPU CONSTANT DOES) ;

is equivalent t o

: CPU CREATE , DOES) ;

FORTH DIMENSIONS III/l Page 6

TECHNICAL NOTES, BUGS & FIXES

Dear Fig:

I have recently brought up FORTH on a
6800 system and find it to be a very easy
and powerful system for microcomputers.

I have a mini-computer with a cross-
assembler on it which I used to assemble
the source after keying it in. Naturally,
as soon as I got it working I wanted to
change it. I feel that the EXPECT routine
and backspace handling could be improved
significantly by incorporation of the en-
closed recomnendations.

I also experimented with the GLOSSARY
routine submitted by D.W. Borden in FORTH
DIMENSIONS, Volume 1, No. 4. I modified
it to handle the variable length name
field and changed the format slightly.

Keep up the good work.

Toby L. Kraft
San Diego

010 D C C I W Dw 3 I . C U E

012 C W I)5I b R WUE
013 C 4) I I T R A V L R T DU
014 3 + b S P U E CR

0 1 1 F YY - cm I ID WUES

013 I . I cw '
016 ~ m I i I N U . I F W I T W I F
01' ELSE W I T W E Y - I N

Modifications to the fig-FORTB boot-up
literals :

1. Backspace Character
Character to emit in response to a
backspace entry. X'08' (control-H)
is character FORTH respondr to for
backspace function. Character to
emit is terminal dependent and should
be defined in the user table.

This also allows use of a printable
character (e.g. C'\' 1 to emit for
backspace for use on printing
terminals.

2. Form Feed Character
Character to emit to cause terminal
(or printer to advance to top of
form. This is also device dependent
and should be in user table.

3. Form Feed Delay
lumber of null characters to emit
after issuing a form feed charac-
ter. This is similar to CR/W delay
which is already provided.

Reconmendation :

Add variable 'BSTOF' to user table.

X'BBFF' - two characters of data
FF - form feed character
BB - back space character (X'OC' initial value 1

(X'08' initial value 1

Add word 'BSTOF' to vocabulary to access
this variable in user table. (Similar
to 'BASE'

Modify definition of current user varia-
ble 'DELAY' to include formfeed delay in
upper byte .
Add word 'DELAY' to vocabulary to access
this variable in uoer table.

Modify startup parameters and cold etart
accordingly.

1

Modify EXPECT t o use user defined
backspace character and t o e x p l i c i t l y
generate be l l code (X'07') . Currently,
EXPECT t e s t s for the beginning of the
buffer and subtracts the boolean f l ag
r e su l t from X'08' to generate the char-
ac t e r to emit i n response to a back-
space.

Toby L. Kraft
7822 Convoy Court
San Diego, CA 92111
(714) 268-3390

This r ea l ly needs expansion and gener-
a l i t y . How about terminals tha t need an
"escape sequence" to c lear screen, i.e.
form feed? Toby, HEX should be used
ins tea t of X' .--ed.

Dear Fig:

I wish to convey a concept which has
great ly increased the c l a r i t y of my FORTH
coding. It has t o do with in-line docu-
mentation of the contents of the stack
(comments within parathesis) .

Unfortunately, none of the ex is t ing
techniques (space, hyphens, brackets, or
ordinal suf f ix) provide the brevi ty and
c l a r i t y that one becomes accustomed t o
with FORTH. The technique which I have
devised provides both. It revolves around
the backslash character '\I, which I r e f e r

which I re fer t o as ' leaves ' . Using t h i s
terminology, the following c-nt:

to as 'under' and the double hyphen I-' I

(address\count --
is read "address under count leaves
no thing, " and

(Nl \N2 - N3

is read "Number1 under Number2 leaves
Number3 ."

The 'under' symbol imparts a c lear
verbal and graphic representation of the
ordering of the stack contents, and
provides an elegant solut ion t o a major
problem encountered when transporting
FORTH algorithms and source code.

Don Colburn
Creative Solutions, Inc.
4801 Randolph Road
Rockville, MD 20852

Dear Fig:

Some t i m e ago I bought your Ins t a l l a t ion
Manual and the 6502 Assembly Listing. I
have been studying both for qu i te a while,
and am a l so a charter member of the
Potomac FORTH In te re s t Group (PFIG: Joel
Shprentz and Paul VanDerEijk).

I have FORTH (casse t te) for the
TRS80 up, and have j u s t bought GEOTEC
FLEX-FORTH for my KIM, although I don't
have my 16K ram card in s t a l l ed i n KIM
yet. I do l i k e FORTH!!! The PFIG has
been f a i r l y inac t ive for some t h e due t o
lack of a meeting place, but Joe l Shprentz
has been conducting some Intermediate
FORTH classes ($30 for s i x lessons) which
are ongoing, and very in t e re s t ing - we are
w e l l i n to <BUILDS/DOES>, and w i l l then go
on t o disking, e tc . Ask Joe l fo r de t a i l s .

I ' m s t i l l planning t o bring up FORTH on
the KIM from my own hand-assembled ver-
sion, j u s t to s a t i s f y my own curiousi ty
about what makes FORTH t ick. I do think
I ' m f i n a l l y beginning t o understand how
everything f i t s together.

I n t h i s vein, I have a few comments t o
pass on from an (advancing) novice FORTH
enthusiast . The f i r s t two comments regard
the above referenced Ins t a l l a t ion Manual
and 6502 Assembly Listing. The las t two
are ideas of my own which I o f fe r fo r what
they a re worth.

1. There is a d i spa r i ty i n the Ins ta l -
l a t i o n Manual version of the 6502
memory map regarding the placement of
the Disk buffer and User Area.

FORTH DIMENSIONS III/l Page 8

Indeed, there is disparity in the
6502 Assembly Listing between what is
done near the front and what is actu-
ally implemented (per the installa-
tion Manual). The Installation
Manual puts the Disk buffer at the
top of RAM with the User area just
below. Line 0051 of the assembly
manual says User area is top 128
bytes, with disk buffer next (line
0052 1. CREATE assumes just the
oppposite in both the Installation
Manual and Assembly Listing. (Editor
-- correct on all all points. The
author was inconsistent.)

2. In screen 49 of the Installation
Manual, I see no need whatsoever for
a dedicated word such as ID. to move
the word name to Pad and then type it
out! The first 4 words are not
needed, and neither are the words

PAD). Just a waste of time and space
to bring the name to PAD and then
type it out! (Editor -- this is not
so. If you have W I D T H set to less
than 31, ID. is required.)

following " - " (PAD SWAP CMOVE

3. I would suggest a word (Q that
might be inserted into any type of
loop (Do/LoOP or BEGIN/AGAIN) to
allow a timely exit when things go
awry (as they do with Novices!).
It's very simple - : Q ?TERMINAL IF
QUIT ENDIF ; MMS FORTH has this
embedded into the code of " : " , but
I think that's overkill. But it sure
is nice to undo errors put into
loops. (Editor -- this is terrible
style. LEAVE is the correct way for
a controlled termination.

4. This has specifically to do with the
Jump Indirect of the 6502 as used in
both the Installation Manual and the
assembly listing. Having used the
6502 for better than 4 years, I have
yet to use the JMP indirect after
finding out about its shortcoming of
wrapping around within a page if low
byte of address is SFF. I pretend
this opcode does not exist. (Editor
-- CREATE on 6502 systems correctly

places code field. Anymore comnents
should be directed to Chuck Peddle,
designer of 6502.)

Keep up the good work.

Edward B. (Ted) Beach
5112 Williamsburg Blvd.
Arlington, VA 22297

CORRECTION ON SEARCH
by John James
(Vol. I1 16)

When you are debugging or modifying a
program, it is often important to search
the whole program text, or a range of it,
for a given string (e.g. an operation
name). The 'SEARCH' operation given below
does this.

To use 'SEARCH', you need to have the
FIG editor running already. This is
because 'SEARCH' uses some of the editor
operations in its own definition. The
'SEARCH' source code fits easily into a
single screen; it is 60 short because it
uses the already-defined editing func-
tions. Incidently, the FIG editor is
documented and listed in the back of FIG'S
Ins ta 1 la t i on Manual.

Use the editor to store the source code
of 'SEARCH' onto a screen. Then when you
need to search, load the screen. (Of
course if you are using a proprietary
version of FORTH, it may have an editor
and search function built in and auto-
matically available when needed. This
article-ette is mainly for FORTH users
whose systems are the ten-dollar type- i t -
in-yourself variety).

Here is an example of using 'SEABCR'.
We are searching for the string 'COUNT' in
screens 39-41; the source code of 'SEARCH'
is on screen 40 . The screen and line
numbers are shown for each hit. Inci-
dently, the search string may contain
blanks. Just type the first screen
number, the last screen number, 'SEARCH'
followed by one blank and the target text
string. Conclude the line with return.
The routine will scan over the range of

Page 9 FORTH DIMENSIONS III/l

.c
8 t

tb

H

I
I
1
1
1
1

PI

tl
.(

m
S

II

screens doing a text match for the target
string. All matches will be listed with
the line number and screen number.

Happy SEARCHing!

SCR I 40

0 SEMICII. OVER RIffif Or SCREEIS UFR)
1 BLClRAL
2 00 VAI I IA ILE COUNTfR
J : IU I IP < THE L I N E WUNBER I10 HUlDLE W I I (0
4 1 COUNTER + I COUNTLR S
5 '56 > IF 0 COUNTER I

6
7 : SEIRCH (FROM, TO --- lllRGET 91R116 I
I 12 Ell11 01 l E X T 0 COUWTER I

P I + S Y I P DO FORTM I JCR

CR CR IS MESSAGE I2 EN11 TMEN ;

1 0 E D I T O R 10)
1 1
12

I E G I M I L I W E I F 0 1 SCR ? tUIv THEN
1023 111 @ < U W l I L

13 LOOP : CR : SEIRW IS LOLDEB ;S
1 4

2 4 0
440
440
540
840 OR

IS TYPICAL USE TO LOCATE 'KEY-YOID': 21 44 S W C H KW-W)

PROGRAMMING AIDS & UTILITIES

Kim Harris
FORTHRIGHT ENTERPRISES

P.O. Box 50911
Palo Alto, CA 94383

In true ideal FORTE programning style
the definitions contained within the
screens clearly designate8 their use.

The following utility indexes 10 screens
at a time and is an excellent aid in
searching.

HEX : +INDEX 113 0 DO
DUP 10+ SWAP OVER INDEX
KEY ?ESC IF LEAVE THEN LOOP;

The following utility was contributed by
Sam Bassett and is an excellent program
development aid that 8hows you what the
current base is

: BASE?
BASE @
DUP
DECIMAL

BASE ! .
9

FORTH DIMENSIONS III/1 Page 10

Eere is ~II 8daptation of George Shaw'r
VIEW to use the word WHERE, which on my
system invokes a full screeen editor that
highlights the word pointed to by a block
number and displacement. It certainly
helps pick out a word in dense code.

HELP WAlQTED

Senior Level FORTH Progra~~3crr

Fr iends-Amis
505 Beach Street
San Francisco, CA 94133
Call: Tom Buckholtt
(415) 928-2800

Intermediate (5 Senior Level FORTH
Programers for Data Entry Applications

MSI Data
340 Fischer Avenue
Costa Mesa, CA 92627
Call: Joan Ramstedt
(714) 549-6125

PRODUCT REVIEW

by C.H. Ting, Peb. 26, 1981

Thin-FORTH, f r m Mitchel E. Timin Engi-
neering Co., 9575 Genesee Ave., Suite E2,
San Diego; CA 92121, (714) 455-9008.
8" single density diskette, $95.00

I was invited by Dr. T h i n to compare
his CP/H FORTH (FD 11/3, p. S6) with the
2-80 FORTH by Ray Duncan, Laboratory
Hicrosystems (FD 11/3, p. 54; FD 11/5,
p. 145) I ran the two FORTR systems on
his home made 2-80 computer (S-100 bus,
6 Wiz) The results of a few bench marks
were :

: - ~ m o m I m P - ~ I D o p ; 5.9 7.4

: ~ m o D o I A l p * H I B L m P ; 44.0 54.9

: /"L' 7EW O Do 7EW I / JXYP LDOP ; 74.3 88.6

: WIPE 120 61 Do I ClBARLmP ; 34.3 81.8

97 IMD (faa hmdred eighty 9's 17.9 18.6

\
I was surprised that Thin-FORTH which

is 8080 fig-FORTH ran faster than Z-80
FORTH which uses the extra 2-80 registers
for I P and W. Dr. Timin's opinion was
that the 2-80 instructions using these
extra registers are slower then the
simpler 8080 instructions. The word WIPE
tests disc access time. Thin-FORTH
accesses the disc by 1024 byte blocks, and
it is twice as fast as 2-80 FORTH, which
readdwrites by 128 byte sectors, as in
the fig-FOBTB model.

The dictionary in Tidn-FORTH is about
11 Kbytes, including an editor and an
assembler. The editor is the same as that
of the fig-FORTH model. The assembler has
all the 2-80 instructions. An interesting
word SAVE allows the whole system in-
cluding application words to be preserved

Page 11 FORTH DIMENSIONS III/1

3

as a CP/M file which can be loaded back
for execution. It maintains eight 1 Kbyte
disc buffers.

The documentation supplied with the
system is a 68 page booklet 'USER'S MANUAL
& TUTORIAL'. It is a very well done
manual introducing users to the systems
and to the FORTH language. However,
source listings are not provided.

My overall impresssion was that this is
a well rounded FORTH system suitable for
engineering and professional applications.

Editors Comment -- FORTH Dimensions
refrains from publishing timing benchmarks
as this reflects processor speed more than
effectiveness of problem solving. Now-
ever, the above review points out that the
allegedly superior 2-80 runs these tests
slower than the 8080. Our point is that
the user should evaluate all aspects of
problem solving: hardware characteris-
tics, language implementation and appli-
cation technique. The Timin manual is
sold separatly for $20.00. This price is
not justified by the copy received for our
evaluation.

HELP WANTED
h
0
s
9

e
e
E
R
id
.h
n

It
In
It
1s

18

!d
1-

FORTH PROGRAMER

PDP-11 RSX Op Sys On Site ContracCor

Micro/Temps
790 Lucerne Dr.
Sunnyvale, CA 94086
(408) 7 38-4 100

FORTH TELE-CONFERENCE IS NOW OPERATIONAL

FORTU now has a dynamic, public access
data base. By dialing into the FIG
CommuniTree (tm, the CommuniTree Group)
you may access our tele-conferencing
system. It was created by Figger John
James to allow group interaction to build
upon our collective knowledge.

The number is 415-538-3580. The system
runs 24 hours a day. Use a 300 baud modem
and start with two "returns", the system
is self-instructing. This conference
holds information on employment, vendors,
applications, announcement calendar,
inquiries, books, etc. Information of the
conference is organized in a tree struc-
ture, hence the name I' Conference Tree".

Our hope is that half of the callers
will review the available material and
then ask questions. The orher half should
add answers to these questions. You
simply find a topic or message and attach
your query/response. Users naturally
organize their material in a form that
facilitates retrieval.

This system was written in Cap'n
Software Version 1.7. Versions for other
than Apple 11 are being developed.

For availability contact:

The CoaDmuniTree Group
Box 14431
San Francisco, CA 94119

or call the original Tree: (415)
526-7733.

FORTH DIMENSIONS III/l Page 12

FORTH, INC. NEWS

MAJOR EXPANSION PLANS

FORTH, Inc. is now entering a major
expansion phase, according to President
Elizabeth Rather. Appearing on a panel on
"Programming Languages for Small Systems"
at the recent NCC in Chicago, Rather
observed, "The level of excitement and
enthusiasm about FORTH in the industry is
tremendouus. We are increasing our number
of OEM'S and we have been approached by
several major silicon manufacturers
desiring to obtain marketing rights for
special versions of polyFORTH. Arrange-
ments are also being made to produce the
FORTH processor, and we expect this
project to start very soon.''

LIFEBOAT REPRESENTATIVE VISITS

Masa Tasaki, Managing Director of
Lifeboat , Inc., FORTH, Inc. ' 8 distributor
in Japan, spent two days at FORTH, Inc.
recently to discuss mutual marketing
plans. Lifeboat, Inc. is one of the few
software distributors in Japan, and
polyFORTH is the top of their product
line. Tasaki has installed over 40
polyFORTH systems in Japan in the past
year, and plans to sell an additional 50
polyFORTH systems by the end of 1981.

STARTING FORTH BOOK PREPRINTS AVAILABLE

STARTING FORTH, a 380-page book intro-
ducing the FORTH language and operating
system will be published by Prentice-Hall
this September in both hard and soft-bound
editions. FORTH, Inc. is offering limited
preprjnts to customers until then. The
preprint, numbered and signed by both
author Leo Brodie and Charles H. Moore
sells for $50.00 (plus 6% sales tax for
residents of California). You may reserve
a copy of STARTING FORTH by calling Winnie
Shows at (213)372-8493. All orders must
be pre-paid.

RECENT FORTH COMMERCIAL APPLICATIONS

Work has just been completed for
Raytheon Corporation on a terminal cluster
(up to 32 terminals with a single concen-
trator). Each component of the system is
controlled by an 8085 processor, and all
are programed independently, using
polyFORTH. This is a capability they've
never had before -- to do custom prograrn-
ming and provide extensibility. Terminals
up to two miles away can be polled at a
rate 30 times faster than the previous
protocol, which was written in assem-
bler. Dean Sanderson was the principal
programer on the project.

The famous 200" Hale Telescope at Mt.
Palomar Observatory (near San Diego) has
recently installed a polyFORTH system for
data acquisition and analysis using a
PDP11/44 and a Grinnell display proces-
sor. The Observatory has been using FORTH
since the early 1970's, including a
miniFORTH system installed in 1975 and an
early polyFORTH installed in the late
70's. Barbara Zinmerman, a programer at
Cal Tech (which operates the observatory)
said, "I am extremely impressed by the
level of polish and sophistication in
polyFORTH, and the performance of this
systeiu is outstanding." The type of work
done involves reading data from an 800 x
800 array of CCD sensors, integrating and
recording the data, and displaying it in
the Grinnell. Charles Moore installed the
system, which features a comprehensive
math package for analysis as well as basic
image-processing functions.

A by-product of this installation is tho,
availability of polyFORTH in RK05 disk
cartridges. These are available with on-
sit e ins ta 11 at ion.

SCHEDULE OF UPCOMING FORTH, INC. SEMINARS
AND WORKSHOPS :

Location Seminar Workshop

Palo Alto
Houston
Tampa
Irvine

June 4 June 5
July 7 July 8
July 9 July 8
July 23 July 24

Page 13 FORTH DIMENSIONS III/1

Pi

t

I

I
I
!

I

I
t

1

i
1

1

I
1
4

I
I
4

II
1
1
I

I
i

1
I

1

1

i

strate its usage. Both MR8 (16 bit dump)
and CDUMP (8 bit dump) share a corrmon PARAMETER PASSING TO DOES)

David McKibbin
S ygne t ron

2103 Greenspring Drive
Timonium, MD 21093

Often in programing one runs into the
case where several different processes
share similar structures. Not wanting to
waste time or space for redundant code,
the programmer usually creates a sub-
routine or procedure to execute the basic
structure. Then the individual processes
merely pass arguments to the prodecure to
accomplish their task. Several schemes
can be used to pass these parameters. In
simple cases, the stack can be used
directly. This is the typical act of
programming in FORTH.

However, as the procedures get more com-
plex it gets more and more difficult to
keep track of the passed parameters espe-
cially when the procedure itself is using
the stack heavily. Also many times it is
necessary to pass not only numbers but
operators or words as parameters. One
means of accomplishing this is via (BUILDS
DOES). Parameters will be stored in the
parameter field of the newly defined word
and accessed from DOES) via a new word
{ $ } . 1 $ will push the first parameter
on the stack, 2 $ will push the second,
etc. All parameters are 16 bits. Varia-
ble R# is used to store the parameter base
address.

Now that the mechanics are explained the
following example will more fully demon- I

structure with only a few inner words dif-
fering. DUMPS is a new defining word used
as a procedure for both DU?Q and CDUMP.

: U.R 0 !M!W D.R ;

What has been accomplirhed is akin to
passing procedureslfunctions as parameters
in Pascal. I expect that there are other
ways to do this FORTH beyond what has been
proposed.

FIG-FORTH UNDER OS-6SU

Software Consultants has announced the
availability of Fig-FORTH under OS-65U for
the Ohio Scientific Line. The package
includes assembler and a terminal oriented
editor and is available n w for $79.95.

This version is said to support hard-
dirk, multi-user systems and may even be
run in one partition and BASIC in another.

For more information contact:

Software C6nSUltantS
7053 Rose Trail
Memphis, TN 38134
(901) 377-3503

-
! FORTH DIMENSIONS IIt/l Page 14

COMPtCER SECURITY

George W. Shaw I11
SHAW LABS, LTD.

17453 Via Valencia
San Lorenzo, CA 94580

How it Works and How it Doesn't (Adapted
from a section of the Acropolis A-FORTH
manual

There is much argument about parameter
validation and error detection in FORTH.
Many problems exist with many good solu-
tions. Fig-FORTH and its derivitives have
taken one route of extensive protection in
compiler directives and their associated
words. This is not an only solution in
this area. Its extensiveness may not be
necessary. There may be better alterna-
tives. Read on, learn how fig-FORTH
works, consider the options and then
decide. Your opinion and ideas are
needed.

Fig-FORTH and its derivitives provide a
type of compiler error detection referred
to as "compiler security". Compiler
security provides protection against
structural programing errors made by the
programer as well as insuring the proper
machine state and, in a very few in-
stances, the validity of parameters.
Though it depends on the type of program-
ming, the most common errors are struc-
tural errors* , machine state errors, and
then parameter errors, respectively.

(* structural errors may be caught
internally by detecting parameter
errors. See text.)

STRUCTURAL ERRORS -
The comoiler security system uses two

methods to trap structural prograndng
errors inside of colon-definitions.
Structural errors are those caused by
incorrect program structure; either
improper nesting of structures or not
completing a structure inside of a defi-
nition. Either of these conditions would
cause the program to compile incorrectly

and could cause disastrous effects (i.e. a
system crash) at run-time. The methods
used by the compiler security system
entail either checking a value on the top
of the stack (to verify the proper nesting
of structures) or checking that the stack
position is the same at the end of a defi-
nition as it was at the beginning of the
definition (to ensure program structure
completion). These two methods probably
trap about ninety percent (90%) of the
structural programming errors that a pro-
gramer might make.

The first in each of the paired struc-
tural compiler directives (i.e. pairs such
as IF THEN , DO LOOP , etc.) leave
on the stack at compile time a value which
is checked by the ending structure to
ensure the proper nesting of structures.
For example the word IF leaves, in
addition to the other data necessary to
compile an IF , the value of two (2) on
the top of the stack. The words ELSE
and THEN remove a value from the top of
the stack and check to see if it is a two
(2). If the value on the stack was not a
two (21, a Conditionals Not Paired error
($19) results, and compilation is termi-
nated (control returns to the keyboard).
If the value is a two (2) the remainder
of ELSE or THEN executes, removing the
necessary data from the stack to finish
the structure, and compilation continues
on to the next word.

Below is a table of the conditional
pairs for the current structural compiler
directives, with the values placed on the
stack open and the values removed from the
stack in parenthesis. Note that UNTIL
and END as well as THEN and ENDIF
have the same effect. Only the former of
each pair are presented here for clarity.

BEGIN 1
BEGIN 1
BEGIN 1
IF 2
IF 2
D o 3
D o 3
D o 3
D o 3

UNTIL (1)
WHILE 4 REPEAT (1) (4)
AGAIN (1)
THEN (2)
ELSE (2) 2 TREN (2)
LOOP (3)
+LOOP (3)
/LOOP (3)
+/LOOP (3)

FORTH DR3tlOSIONS III/l

LI
:I

a
r!

c4

Note that ELSE tests and replaces the
same value on the stack. Because of t h i s
the current compiler secur i ty system
cannot detect the presence of mult iple
ELSEs in a def in i t ion . For example, i n
the def ini t ion:

i f compiled , (and it w i l l compile,) and
then executed with a boolean value (zero
or non-zero) on the s tack, w i l l execute
without crashing t h e system. B u t the
execution may not be what you expected.
If entered with a t rue f l ag (non-zero) the
"True Part 1" and the "False Par t 2" w i l l
p r in t , while i f entered with a f a l s e f l ag
(zero) the "False Par t 1" and "False par t
3" messages w i l l p r in t . To borrow a
phrase from K i m Harris, probably "Not - what
you had i n mind!".

This i s the only case I know of where
the compiler secur i ty system pla in ly does
not work, but there a re probably more.

How i s t h i s , apparently incomplete,
s t ruc ture checking performed? Read on.

The values on the stack is ver i f ied by
?PAIRS . For example the words ?PAIRS ,
B E G I N and AGAIN a re defined as follows:

: ?PAIRS - 19 ?ERROR ;
: BEGIN ?COMP ?ERE 1 ; IMMEDIATE
: AGAIN 1 ?PAIRS COMPILE BRANCH BACK
: IMMEDIATE

BEGIN f i r s t checks t o make su re t ha t i t
is being executed i n compile mode (in s ide
a de f in i t i on) with ?COW which issues an
e r ror i f i t i s not. It leaves the current
dict ionary address on the stack (HERE)
as a branching reference for AGAIN , and
then the 1 as the f i r s t of a conditional
pair . When AGAIN later executes during
the compilation of the def in i t ion it f i r s t
checks the stack t o see tha t a BEGIN
preceded it a t the same leve l of nest ing
by executing ?PAIRS . ?PAIRS expects
t o find a matched pa i r of values, i n t h i s
case ones (l) , as a matched set of condi-

t iona l pairs. I f ?PAIRS does not f ind a
matched set, i t abor t s with a Conditionals
Not Paired e r ro r (#19). I f the values on
the s tack a re paired, i t removes them and
re turns .

The above simple form of e r ro r checking
is very e f f ec t ive , but as s t ruc tures
become more complex, manipulating and
maintaining the s tack values can become
cumbersome and unwieldy. The above i s
a l so not yet complete. One more check
must be executed t o ensure tha t the
s t ruc tures i n the de f in i t i on have been
completed. Since the above e r r o r checking
leaves data on the stack i f a s t ruc ture
has not been completed, the simplest check
is tha t of the stack posi t ion. 5Jhen a
de f in i t i on is entered : (colon) s tores
the Current Stack Pos i t ion i n the user
var iab le CSP . A t the end of a def ini-
t ion , ; (semi-colon) executes ?CSP t o
compare the current s tack posi t ion t o the
value stored i n CSP . I f the values
d i f f e r a Defini t ion Not Finished e r ro r
(820) occurs indicat ing tha t e i t h e r data
was l e f t on the stack or t ha t too much
data was removed fram the s tack, i .e. t h a t
a programing s t ruc tu re was probably not
completed. The word "probably" is used
here because other conditions, such a s the
improper or sometimes various proper uses
of the word LITERAL , w i l l cause the same
e r ro r condition t o occur.

MACHINE STATE ERRORS

The loading and execution of a FORTH
program causes the system t o en ter several
d i f f e ren t machine states. Three of these
are loading, compiling, and executing.
Each of these s t a t e s is defined by i t s own
s e t of parameters and some s t a t e s may even
overlap. For example, while loading a
screen o f f the d isk the machine w i l l be
e i t h e r executing or compiling. Here the
loading state has overlapped with e i t h e r
the execution or compilation state. The
machine cannot be i n the execution s t a t e
and the compilation s t a t e a t the same
t i m e , though the states may be in t e r -
leaved. An example of inter leaved states
is the use ins ide a de f in i t i on of a pro-
gram segment similar t o th i s :

Page 16 FORTH DIMENSIONS III/1

[scIBF# 3Co-J. ZITdRAL

vhich temporarily suepads compilatiaa t o
ca lcu la te the value within the brackets
and then compiler it as a s ixteen (16) b i t
l i t e r a l . Remember though, tha t t o com-
p i l e , the machine is executing a program,
and tha t compiler d i rec t ives (such as
LITERAL above) execute during compilation
to perform the i r task, but the machine
state remains tha t of campilation.

Certain words require tha t the machine
be i n a spec i f ic rtate t o execute proper-
ly. These words are p r o g r a d t o contain
one of the following words:

?COMP ?EXEC ?LOADING

which check fo r their corresponding state
and issue an e r ro r message i f the machine
i s not i n tha t state. Below is a descrip-
t ion of each of the above words and the
parameters which determine the current
machine state.

?EXEC or ?W?P

The execution state or compilation state
is determined by the value of the user
var iable STATE which has a zero (0)
value i f the machine is i n the execution
s t a t e and a non-zero value the machine is
i n the compilation state.

?LOADING

Loading is determined when the value of
the user var iable BLK has a non-zero
value. A value of zero for BLK id;-
cates tha t input is coming from the user ' s
terminal and tha t the machine is therefore
not loading.

T h j above words are defined as follows:

: ?EXEC STATE @ 18 ?ERROR ;
: ?COW STATE @ 01 17 ?ERROR ;
: ?MADING BLK @ O= 22 ?ERROR ;

If the machine is not i n the execution
s t a t e when ?EXEC executes an Execution
Only e r ro r (#18) occurs.

I f the machine is not i n the compilation

state when ?COW executes a Compilation
Only, Use i n Definit ion e r ror (#l7)
occurs.

I f the machine is not i n a s t a t e of
loading when ?U)ADIW is executed a Use
Only When Loading e r ro r (122) occurs.

The t e s t ing of machine states as above
i s necessary when words such as BEGIN
and AGAIN (see example i n STRUCTURE
ERRORS above) are used. These words may
only be compiled because they muet compile
samething other than themselves which i s
not known a t the time they are executed.

PAUHETER ERRORS

During compiling and aimilar operations
there are only a few parameters which a re
ac tua l ly checked. In mst cases, the
parameters checked are those involved i n
the other areas of compiler secur i ty or
those which deal with the s i ze or va l id i ty
of the dict ionary and stack.

The words involved i n other compiler
secur i ty areas are !CSP , ?CSP ,
?PAIRS . These words are used t o protect
against s t ruc tu ra l programming er rors ad
described above i n STRUCTURAt ERRORS. An
explanation of each of the uses of these
words is as follows:

! CSP ?CSP

These words are u8ed together to check
for changes i n the stack posit ion.
lCSP s to re s the current stack posit ion i n
the user var iable CSP . ?CSP compares
the value i n CSP t o the current stack
posi t ion and, i f they are not the same,
issues a Defini t ion Not Finished er ror
(120). !CSP and ?CSP a re current ly
used i n : and ; respect ively t o ensure
t h a t a l l Structures i n the def in i t ion have
been completed before the semi-colon. Any
s t ruc tures uncompleted w i l l leave data on
the stack and thus allow ?CSP t o flag
the error . These words can a l so be used
t o check the stack e f f ec t of user def ini-
t ions. For example, i f a def in i t ion
should have no stack e f f ec t (leaves the
same number of items on the stack 3s it
removes) the following would test th i s :

Page 17 FORTH DIMENSIONS III/ 1

I

L

1

5

c

I

c

i'

e
7
n
f!9
d

c

-
n
t?

t

..-.
1

!CSP cccc ?CSP

vhich would execute a def in i t ion named
z c c c and issue a Definit ion Not Finished
Crror (#20) i f the number of item on the
stack a t the beginning and end of the
def ini t ion were d i f fe ren t .

'PAIRS

This word is used when t e s t ing for
correct s t ruc ture i n compiler d i r ec t ives
'see STRUCTURE ERRORS) t o check t h a t the
-slue of the two numbers on the s tack is
r i e same. I f the value of the two compi-
. s t i on conditionals on the stack i s not
:ie same, a Conditionals Not Paired e r ro r
t19) occurs. ?PAIRS can be used t o test

similar s i tua t ions i n user programs, but
the e r ror message given w i l l be the same
' e r ror R19).

The checks on the dict ionary and stack
:ons i s t of tes t ing the stack for under-
f lw, the dictionary and stack fo r over-
f l o w , and the name of the dict ionary en t ry
t o be created for uniqueness (i n A-POBTIT
tnis t e s t is optional and there is a test
t o ensure tha t a de f in i t i on name is not
n u l l) . Some of the tests are performed
during the execution of other functions by
the tes t ing word (such as the tests per-
formed by WORD and by CREATE). Only
the tes t ing performed by these words v i l l
be described here.

Defini t ion Name! e r ro r (19) is given. I f
a dict ionary en t ry with a n u l l name were
created, the system would attempt t o
in t e rp re t t h i s as the end of the current
buffer with unpredictable resu l t s .

?STACK

This word checks tha t the parameter
stack is within bounds. It compares the
current stack posi t ion (by executing SP@)
against the base stack posi t ion i n user
var iable SO t o check fo r a stack under-
flow. It a l s o checks tha t there a re a t
least 128 bytes of dict ionary space l e f t
(t o leave t o m f o r PAD and stack work).
I f the stack underflows an Empty Stack
e r ro r (#1) i s given. If the stack comes
within the 128 bytes of the dict ionary a
Ful l Stack e r r o r (#7) is given. ?STACK
i s not executed a t runtime unless compiled
by the programcer, though it is executed
frequently during compiling and t ex t
in te rpre ta t ion .

This de f in i t i on moves t e x t from the
current input buffer t o the head of the
dictionary. The e r ro r test performed
checks t h a t there is enough space between
the head of the dict ionary and the top of
the s tack for the text about t o be
moved. I f there is not enough space a
Dictionary Fu l l e r ro r (#2) is given. This
prevents the system from crashing by
wri t ing over i t s own stacks.

CREATE
DO We NEED IT?

This word creates a dict ionary header
€or a new word. In the process of
creat ing t h i s header a dict ionary search
is performed t o check t h a t the header is
unique. The message given i f a dupl icate
is found is I s n ' t Unique (14). This is
no t a fa ta l e r ror but j u s t a warning.
A-FORTH allows the disabl ing of t h i s test
(and the associated message) and performs
another t e s t for a dict ionary entry whose
name is a null . The creat ion of a dic-
tionary entry with a nul l name is not
allowed because the nul l i s the name of
the entry interpreted a t the end of the
d i s k or terminal buffers. I f an attempt
to create a nul l entry is detected a Null

Should we have a l l t h i s secur i ty a l l the
time? O r j u s t when we think we need i t ?
Fig-FORTH current ly does not give us a
choice on the matter. Sure, we can cow
p i l e on top a new set of compiler direc-
t i ves which don't have the tests, but we
have then already wasted a l l the memory
fo r the secure d i rec t ives , the ?xxK words,
and the lo t . The reverse course I con-
s ider more appropriate. The kernel system
should have as l i t t l e protect ion a s pos-
s ib le . The system should not suf fe r the
overhead for those who do not des i re it.
I f secur i ty i s desired, a "Novice Pro-
gramer Protection" package could be

FORTH DIHENSIONS ILI/1 Page 18

compiled i n t o a user ' s a rea which would
include a l l the words necessary t o p r o t e c t
him or her (and the o ther users) from him
o r h e r s e l f . This would al low pro tec t ion
even for the words such a s ! (s t o r e) ,
FILL and CMOVE when desired.

Something as simple and extremely effec-
t i v e a s the !CSP and ?CSP i n : and
: respec t ive ly may be l e f t i n the kernel
s y s t e m t o give warning t o even the b e s t of
us when necessary. Def in i te ly , a l s o the
s tack checks a t compile t i m e and possibly
:he uniqwmess (though it should be
opt iona l) and n u l l d e f i n i t i o n (c u r r e n t l y
A-FORTI! only) checks should be l e f t i n ,
but the s t r u c t u r e and s t a t e t e s t i n g i s
i f t e n incomplete and annoying. Anyone who
 as t r i e d t o write and secure a good
general CASE s t r u c t u r e , o r a BEGIN
WHILE REPEAT loop which allows mul-
t i p l e WKILEs w i l l know what a pain it is
t o t r y t o secure them i n a reasonably
complete fashion. For these people
compiler s e c u r i t y dosn ' t work. Addition-
3'-ly. new s t r u c t u r e s t ransported from my
system t o another may not remain secure
because the same condi t iona l p a i r numbers
used i n my s t r u c t u r e on my system may have
been used i n a d i f f e r e n t s t r u c t u r e on the
o ther system. Again, the compiler secur-
I t y dosn ' t work.

The same method used i n high l e v e l s t ruc-
t u r e t e s t i n g is a l s o used i n one known
assembler, which the author considers
t o t a l l y inappropriate. I f one i s program-
ming i n FORTH assembler one is doing so
for speed, which may requi re not being
s t ruc tured a t a l l .

Current ly , the matter of compiler s e c u r i t y
is being s tudied by the group wr i t ing t h e
next SO80 fig-FORTH vers ion (which could
possibly o u t l i n e a new model). Should we
have a l l the pro tec t ion a l l the t i m e , or
j u s t some of i t and a programmer protec-
t ion package? O r maybe there i s a better
a l t e r n a t i v e . Your input is wanted and
needed. Write t o the 8080 group a t FIG,
PO 3ox 1105, San Carlos CA 94070 and t e l l
'3s what you think.

NEW PRODUCTS

POLYMORPHIC FORTH NOW AVAILABLE

FORTH is now a v a i l a b l e f o r the Poly-
Morphic Systems SSSD 5" systems (8813 &
8810). The PolyMorphic d i s k operat ing
system has been patched i n and the system
is in te r faced t o the PolyMorphic operat ing
system. PolyMorphic FORTH includes a
modified systems d isk , and b r i e f documen-
t a t i o n on changes t o i n t e r f a c e t o the
PolyMorphic SSSD 5" d i s k operat ing system -- based on 8080 Fig-FORTH. Pr ice i s
$50.00. For more information contact:

Ralph E. Kenyon, Jr.
ABSTRACT SYSTEM, E X .
145-103 S. Budding Avenue
Virg in ia Beach, VA 23452

FORTH FOR HP83/8P85

A d i s k based FORTH is now a v a i l a b l e for
t h e HP85/HP83 personal computers. The
implementation is the FIG FORTH 1978
standard with some machine dependent u t i l -
i t i es . User receives both 16k and 32k
versions with user space being 2k and 18k
respec t ive ly . Both vers ions requi re a
disk. Included is an assembler, a FORTH
decompiler and ed i tor . This is not an HP
supported product but ava i lab le through
the u s e r ' s l i b r a r y . FORTH, i n ob jec t form
(no source), an assembler, decompiler and
e d i t o r , i n source, a re sent on a disk.
This product recoarmended f o r experienced
users only! Those fami l ia r with FORTH
should have no t rouble using t h i s system
(i .e . there is no manual inluded).
However, s u f f i c i e n t references a t e
given. Current cost is $50.00. For more
infmmation contact Nany Reddington a t
(503) 757-3003.

FORTH PROGRAHMER AVAILABLE

3 mos. experience with FORTH (a l s o know
BASIC & COBOL) Active member of P.I.G.
Contact: Martin Schaaf, PO Box 1001, Daly
Ci ty , CA 94017 (415)992-4784

Page 19 FORTB DIMEXWIONS III/1

USERSTACK

Peter H. Helmers
University of Rochester
Department of Radiology
Medical Center, Box 648
Rochester, NY 14642

I KTRODUCTION

One of the advantages of FORTH is
use of a stack oriented architecture.
conventional FORTH implementations,
has available two kinds of stacks:
return stack and the parameter stack.

its
In
one
the
In

general, the return stack is used to keep
track, at execution time, of the path of
invocation of nested FORTH words while the
parameter stack is used to manipulate data
3sed within and/or passed between FORTH
vords.

Unfortunately, in the real world, such a
:lean segmentation between parameter data
and execution nesting data tends to break
down. For example, DO... LOOPS are imple-
mented by using the return stack to keep
track of the loop count and associated
data. The motivation for this violation
af the sanctity of the return stack with
W...M)oP parameters is the desire to
separate the DO... LOOP data from any
parameters being used by the programmer
vithin the loop. Failure to do so would
allow confusion of loop parameters with
actual user data -- causing a consequent
abnormal execution of the DO.. .LOOP
arising from an unwarranted modification
of loop parameters.

In addition to the above saving of
DO.. .LOOP parameters on the return stack,
it is not uncommon practice for a program-
mer to want to save some parameter stack
data in order to be able to first calcu-
:ate using data beneath it. One previous-
l y employed method to do this was to
cemporarily push the parameter stack data
onto the return stack, and then later

Editor's llotc: Mr. Helmers uses URTH, a
dialect of FORTH.

retrieve it when subsequently needed.
Admittedly, this is an easy - lazy! --
way to achieve tranisent data storage.
But woe unto those who forgot to pop the
return stack of this temporary data.. . !
USER STACKS

The "user" stack concept allows a FORTH
program to retain the convenience of an
auxiliary stack, but in such a way as to
avoid mixing temporary data with execution
time return information. As an added
convenience, this concept allows creation
of multiple, named, stacks which can be
typed according to the number of (two
byte) words per stack element.

A user stack can be thought of as an
array (integer, double precision, or real)
of data which has implicit addressing.
Consider, by way of analogy, a conven-
tional array such as:

loo ODIM MY-ARRAY

One would store the 53rd integer element
by explicitly stating the index:

52 MY-ARRAY ! (ZERO ORIGIN.. .
This would take data from the top of the

parameter stack and store it in MY-
ARRAY. Alternatively, one would access an
integer from this array by:

27 MY-ARRAY @

The disadvantage of arrays is that they
require both an explicit index, and an
explicit load (@) or store (I) operator.
While an array could be used for temporary
storage of parameter stack data, such
programing practice is not neccessarily
clear or efficient.

So how does a user stack help us?
Consider the integer user stack defined:

100 STACK MY-STACK

MY-STACK would, in this case, have a
size of 100 integer elements. Data can be
put into this user stack from the top of
the parameter stack by:

FORTH DIMENSIONS III/1 Page 20

PUSH MY-STACK

while it can be retr ieved back t o the
parameter stack by:

POP MY-STACK

Note tha t addressing is implicit- there
a re no indices - and tha t the d i rec t ion
of data t ransfer is s e t by the PUSH and
POP words.

USER STACK WORDS:

In pract ice , three types of user stacks
have proved useful; STACK, DSTACK, and
FSTACK. While stack var iables created by
these three defining words a l l use the
PUSH and POP words to save and r e t r i eve
data, the amount -- or type -- of data
pushed or popped d i f f e r s . A s discussed
e a r l i e r , STACK deals with integer (two
byte) words. DSTACK consis ts of elements
of double precision integer words (four
bytes) while FSTACK elements are f loa t ing
point numbers (s ix bytes). A l l three of
these words are defined in terms of an
a rb i t ra ry n-precision NSTACK word which
allows specif icat ion of any number of two
byte words per stack element.

Two other words are a l so useful with
user stacks. There a re EMPTY-STACK and
?STACK. Note tha t both of these cannot
(present ly) be used within colon
def in i t ions . The l ine:

EMPTY-STACK MY-STACK

w i l l , for example, reset the s tack pointer
for the user stack: MY-STACK so tha t it
w i l l be empty. Again using the MY-STACK
example,

?STACK MY-STACK

w i l l dump out the contents of the s tack
from the top of the stack through the
bottom of the stack. ?STACK is intended
purely as an aid i n debugging.

IMPLEMENTATION:

As was previously mentioned, STACK,
DSTACK, and FSTACK are a l l defined i n

terms of a more general USTACK defining
word. A l i n e such as:

22 4 NSTACK WIDE-STACK

w i l l define a 22 element stack with eight
bytes (four words) per element. NSTACK
has two primary par ts . The f i r a t par t ,
executed when a new stack is defined,
bui lds a FORTE word header, s tores some
stack def in i t ion parameters i n to the dic-
t ionary, and f i n a l l y a l loca tes the actual
dict ionary space for the stack, The
second par t , writ ten i n 8080 assembly
language fo r speed, defines the execution
t i m e act ions taken by the stack varia-
ble. Both of these defining par t s w i l l be
explored i n grea te r d e t a i l below.

The format of the user stack i n the
dict ionary is shown i n Fig. I . It con-
sists of a normal FORTE header, followed
by the following four stack def in i t ion
parameters:

a) current s tack pointer (two bytes)
b) #words per stack element (one byte)
c) maximum stack pointer address (two

d) minimum stack pointer address (two
bytes)

bytes)

#BYTES FIELD COMMENTS

Figure 1 -- Dictionary Layout
fo r a Stack Type Variable

Page 2 1 FORTH DIMENSIONS III/1

Llk

ox
OK
OK 1 0 0 STACK WV-STXK
OK 35 STACK YOUR-STACK
OK
OK 1 1 22 33 44 55 && 77 88 99

OK PUSH MY-STACK
OK Pusw WY-STACK

OK Pusn YOUR-STACK
OK pusw MY-STCICK
OK wsw WV-STCICK
OK Pusti WV-STKK
m Pusw YOUR-STACK
OK t POP WY-STACK - .
-11 oc:
OK POP VWR-STACK wp YOUR-STACK 2wP . . + .

77 33 110 ac
5s OK

6 6 O K

8 8 m
W O K

OK POP MY-STMK .
OK POP WV-STACK .
OK POP MY-STKK .
- 3 POP WV-STLICK .
CM
OK
OK
OK
rl(
OK
OK %TACK W-STI\CK
USER STACK EWPTY OK
OK 1 1 PUSH WV-STMK 22 PVSH W-STACK ?STACK W - S T M U
3 A 7 A 0 0 1 6 00OB
OK
Y
lx EWPTV-STACK w-STACK ?STACK W-STACK
USER S T K K EWPTV OK
OK
OK
OK
oy

Note that the stack, consistant with the
8080 architecture, grows down in memory.
Following these stack parameters is the
actual stack area which is allocated in
the dictionary.

The PUSH and POP words are code defini-
tions (for speed) which push a 0 or -1
flag value to the top of the parameter
stack. Thus, when the stack variable is
subsequently executed, this flag is used
to differentiate between popping from the
user stack (flags01 and pushing to the
user stack (flagzl). The assembly code is
thus separated into two very similar exe-
cution loops which move stack data one
word at a time until the proper number of
words for the stack element have been
moved; these two loops differ only in the
direction of the data transfer. In both
loops, the A register contains the current
word count which is intially set to the
number of words per stack element and
decremented each t h e through the loop.
The BC register pair contains the current
user stack pointer while the HL register
pair contains the eddress of the stacks
parameter field so that the new user stack
pointer value may be saved after all words
within the stack element have been trans-
ferred.

CONCLUDING REMARKS

These user stacks have been optimized to
provide rapid execution speed at the
expense of high level transportability and
error checking for a stack pointer out of
bounds. It is felt that the concept, in
whatever realization, is important since
it provides a very readable and structured
method to temporarily store and sort data
without having to resort to such "unclean"
practices as using either explicitly
addressed arrays or the return stack.
It's the type of FORTH word that, once you
have it, prompts the question: "it's so
obvious, why didn't someone think of it
be fore?"

FORTH DIMENSIONS III/l Page 22

NEW PRODUCT

STAND-ALONE FIG-FORTH FOR OSI

FORTH Tools has announced stand-alone
Fig-FORTH for all OSI mini-floppy cOm-
puters that combines Fig-FORTH with stand-
alone machine drivers by FORTH Tools.
With this system OSI-65D is superfluous-
with FORTH booting up directly, yet the
disk is OS-65D compatible.

Since FORTH Tools FORTH dispenses with
the OSI operating system, FORTH Tools has
developed disk, display and keyboard
drivers for the OSI hardware.

FORTH Tools FORTH for OSI is strictly
compatible with Fig-FORTH. All words in
the Fig model, including disk support,
work correctly. Portability to other
machines is also claimed.

Stand-alone FigFORTH for OSI is avail-
able on one 5-1/4" disk for C1 (Super-
board), C2 and C4 machines with 24K.
Product includes a structured 6502 macro-
assembler and disk utilities designed by
FORTH Tools and the FIG portable line
editor. Complete technical documentation
and the fig-FORTH glossary are also
included. The complete price is $49.95.
For more information contact:

FORTH Tools
Box 12054
Seattle, UA 98102

SEE THE
"XS-

NEE- FOR 31 YA??--

A STACK DIAGRAM UTILITY

Barry A. Cole
3450 Sawtelle Blvd. 1332
Los Angeles, CA 90066

INTRODUCTION AND CONCEPT

A year and a half ago, when I was still
fairly new to FORTH, I spent a lot of time
drawing pictures of stacks as I made up
programs. I crumpled them up and started
over each time I changed them. As
sections were debugged, I drew up another
copy to document the code. When I found
an error, I would have to redraw whole
series of stacks, just as a cartoonist
would have to change a whole series of
frames. It soon became clear that I was
expending time to do rather tedious
work. I came up with an idea for an
automated tool to update these diagrams.
I thought up a way to represent the stack
data easily and an approach to implement
the tool. The original implementation was
done in 8080 polyFORTH by my co-worker
Greg Toussaint. We collaborated in the
initial debugging and then passed it back
and forth over the next four months.
After nearly a year in active use, I
converted it to fig-FORTH and updated
several messy areas to be more straight-
forward. The results of these pursuits
are detailed in this paper for more
general consumption.

ORIGINAL IMPLEMENTATION

The original program was going to take
push and pop information from the keyboard
to generate pictures of what was on the
stack. It became immediately clear that
the stack could more easily be represented
horizontally than down the page. We chose
to put the stack to the right so that the
size of the stack could be read like a bar
graph. I figured that if I represented
each item on the stack as an address
pointing to a count and printable string,
that many of the stack diagram words would
be identical to the FORTH word equiva-
lent. Thus, DUP, OVER, DROP as well as
many other primitives would be coded
before I started. Even as it was being

0 . S - FIR. ?RE- THO---- IS NOT AN EMP----- OF
FOR-- I X -

Page 23 FORTH DIMENSIONS III/l

built, the tool grew to get the source
codes directly from disk and then to
generate a printer format spool file also
onto FORTH screens. Keeping track of
values when an IF was encountered and
restoring them on ELSE and THEN was
added. This generates a warning message
if the two paths leave different numbers
of parameters on the stack. Finally,
concatenation of strings for algebraic and
logical expressions was added.

USAGE AND OPERATION

tered, it will revert to the prompts since
it is not known what a symbolically appro-
priate name is for the fetched value.

Processing will terminate with an "OK"
for sucessful completion of the screen or
colon for SDOC or PDOC, respectively. If
stack underflow occures, it will abort.
It is good practice to do a FORTH after an
abort condition to insure that the stack
vocabulary is properly exited. A user
abort is also provided. This is accom-
plished by typing an escape key followed
by a carriage return in response to the
"PUSH VALUE?" prompt.

'Ihe main mutims called by a user are:
SAMPLE DIALOG

screen# maefname todoamrent.1definitial
s c d sxx:
screen# pRlDoc
pII)c to prina: last doarmentatian

to doamEnt a h l e screen
to print f m n gitlen screen

The program clears the display stack
before each colon definition. A search is
made for the first colon on SDOC or the
specified name following a colon on DOC.
The name of the function is displayed
along with the currently empty stack con-
tents. It requires user input to continue
since the entry conditions of the routine
are unknown. It prompts "DROP?" to see
how many excess elements should be dropped
from the stack, A carriage return suf-
fices to leave it alone. It continues
with the prompt , "PUSH VALUE?". For each
symbolic name of a value on the stack, a
free form name should be typed followed by
a carriage return, The prompt will be
repeated until a line consisting of only a
carriage return is typed. There are no
limitations imposed on the input, however,
it is advised that nulls and tabs should
not be included as this will detract from
the clarity of the final output. The
?fogram will then continue reading words
from the source screen and generating
3utput lines to the console and spool
file.

In a typical sequence, up to about a
dozen lines will be handled without inter-
vention. For example, occurences of DUP,
DROP, and numeric literals will be pro-
cessed automatically. When a @ is encoun-

The package creates a special stack
vocabulary as well as the user entry
points. The use of the package is best
seen by example. Figure 1 is a sample
dialog. Notice how little intervention is
required and how the ELSE restores the
stack values. Figure 2 is the source that
was used in the examples. Figure 3 is the
printer output as displayed by PDOC.

FIGURE 1

100 SDOC
ANALY 2 E I
DROP?
PUSH VALUE? addr
PUSH VALUE? len
PUSH VALUE?
ANALY 2 E I addr
SWAP
INCH
DROP?
PUSH VALUE? char
PUSH VALUE?
INCH I len
DUP I len
7P I len - I len
IF 1 len
DUP I len
OD I len - I len
I F I len
DUP I len
OUCH I
DROP? 1
PUSH VALUE?

I len
len

add r

add r
add r
addl
add r
addr
add r
add r
addr
addr
add r

char
char char
char char 7 P
char (char-7P)
char
char chai
char char OD
char (char -OD)
char
char chai

FORTH DIMENSIONS III/1 Page 24

FIGURE 1 (cont .)

OUCH
OVER
C I
1+
SWAP
1-
ELSE
(
DROP
SWAP
DROP
20
OUCH
DROP? 1
PUSH VALUE?
OUCH
0
OVER
C 1
0
THEN
E L S E
(

DROP
8
OUCH
DROP? 1
PUSH VALUE?
OUCH
1-
SWAP
1+
THEN

OK

I len addr char
I len addr chat addr
I len addr
I len (addr+l)
I (addr+l) len
I (addr+l) (lcn-1)
I len addr char
I len addr char
I len addr
I addr len
I add1
I addr 20
I

1 addr
I addr 0
I addr 0 addr
I addr
I addl 0
I addr 0

I len addr
I len addr 8
I'

I 2 %%: 2::

I len addr
I len (addr-1)
I (addr-1) len
I (addr-1) (lcn+l)
I (addr-1) (len+l)
I (addr-1) (lcn+l)

FIGURE 2

OK
100 L I S T
SCR I 100
0
1 f ANALYZE SWAP IYCU W P 7 1 - I? W P OD - I?
2 DUP OUCU OVlD CI 1* SWAP 1-

4 ELSE (DELETE) DROP 8 Wcil 1- t*AI 1+ TllCll 1
5

I ELSE (CRI DROP SWAP DROP 20 oucn o WLU CI o T I I ~

6
OK

FIGURE 3

AUALY ZL SWAP
I K B
DUP
7 1

I?
DUP
OD

-

I ?
DUP
OUCU
W t l
CI
1*
S W
1-
ELSE
(
DW?
SWA?
DROP
20

0
OVSI
CI
0

ELSE
(
DY)P
I
oucn
1-
SUA?
l*
?sell
I
OK

own

?new

l a
I 1
I 1
1 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
i l
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I I
I 4
I 4
I 4
I 4
I 4
I I
I 4
I I
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I (
I (
I 1

len
addr
addr
d d r
add I
add1
b u t
add r
d d r
bdd1
d d I
add8
addl

char
char char
char char 7 1

char
char char
char char OD
char (Char-OD)
char
char Char
char

char (cha1-7?)

**l) len
ddr*ll (lcn-1)
in addr char
in add1 char
In d d r
Ida lcn
MI
Ids 20
Idr
Idr o
MI 0 addr
MI

Ibr 0
m d d r char
in b u r char
in . d d r
in adds 8
in add:
in ddr-1) (d d r - 1) len

*-I) (lcn+l)
*-11 (l.n+l)
-1-1) Ilen+l)

mt o

HELP WANTED

FORTH PROGRAplpiER

E n t r y Level - Will Train

John Saclcis
D a t a B r e e z e

Oakbrook, IL 60521
2625 B u t t e r f i e l d Rd. Sui te 112E

(312) 323-1564

Page 25 mTfi DIMENSIONS III/1

CONDITIONALS

The IF...ELSE...THEN cons truc t
automatically saves and restores the stack
values. A mismatch in number along the
two paths produces a warning message,

"STK ERROR, ELSE -m THEN -n"

where m is the number of parameters left
sn the stack at the end of the IF clause
and n is the number left when the THEN is
encountered. The DROP/PUSH prompts are
presented f o r the user to attempt
recovery. A known cause of this message
is a -DUP preceding the IF, as this is
Tot handled.

SPOOLING TO DISK

To be useful, a hard copy of the output
without all the intermediate operator
conversation is useful. It is also quite
possible that a machine readable version
would be handy to facilitate distribution
3f the documentations. A spool file is
generated to satisfy these requirements.
I! may later be displayed or printed by
?DOC.

The spool file contains the encoded
screen from which the diagram was made
followed by variable length lines
separated by carriage return characters.
Tl?e file is terminated by an ascii null
zharacter. It resides on a set of
Zonsecutive screens. The first screen and
2aximum number are determined by literals
- 2 SPIT and PRTDOC. I use 10 screens
jcarting at 230. These may be copied
?!sewhere and printed by PRTDOC. Failure
t o copy them will cause the listing to be
l2st the next time a function or screen is
i L ag rannned .
lUPLEMENTATION PROBLEMS AND SOLUTIONS

I t is important not to search the
standard vocabularies when diagramming
scacks. This is because actions are
irfferent for the same name, depending
:?on state. By way of example, for the
-3erator + must concatenate the symbolic
:ame strings representing these elements

with an embedded plus sign, rather than
adding the top two elements on the
stack. Also, not all operators are
defined. On detection of this case, the
diagramer must shift control to the
operator prompt section. In polyFORTH,
this was accomplished by defining a new
vocabulary and having it be the only one
searched. in fig-FORTH, this option is
not directly available since the FORTH
vocabulary is searched after the current
vocabulary. This may be solved by
carefully breaking links with zero
entries, or alternatively by defining a
special dictionary search routine that
stops at some fence value. I chose the
latter.

It wasn't obvious until the
implementation began that operators would
require concatenat ion of their identifying
strings. It was also decided that
parenthesis would be placed around each
level of expression nesting so that
ambiguity could be eliminated without
rearranging expressions for precedence.
This occasionally leads to expression such
as ((array+2)+2). This is unavoidable
since even the constants within the
expression are treated as strings rather
than numbers. Thus, the example cannot be
reduced to (array+4).

Error recovery is not nearly as good as
I'd like it to be. Stack underflow in the
diagraming session is generally fatal.
Due to the amount of bookkeeping already
being done, there is no provision for
retracting answers after wrong data has
been put on the diagram stack. This is
inconvenient in a first pass through a
function, but has not proved to be a
problem once a feel for the tool and the
function being diagramed has been
acquired.

Provision is left for user defined
functions in the last two screens of the
diagram source. This allows commonly used
functions to be handled in an automated
fashion. This makes it very easy to
define composite functions such a s , 1- as
the sum of its component parts. For out-
side of functions, constant and variable

FORTH DIMENSIONS III/1 Page 26

have been redefined to put their own name
on the stack. Before this facility was
added, I always retyped the variable name
manually when it came up.

The spool function and some of the
source reading routines such DOC assume
that screen blocks are contiguous 1,024
byte areas. Those functions using BLOCK
will have to be rewritten if this is not
the case in your system. I recomaend that
you instead generate a new system with lk
buffers as that is faster and more
flexible.

WEAKNESSES AND PROPOSED FUTURE EXTENSIONS

The diagrammer presently does not keep
track of the contents of the return
stack. This requires uses of R) and I go'
to the operator for clarification. Try a
pencil for now. This could be added in a
similar fashion as IF..ELSE..THEN by an
additional stack.

The area of error recovery is ripe for
suggestions. Perhaps some dummy buffer
area could be added and tested in PSTAK.
This would allow detection prior to
destruction on stack underflow. Backing
up by reading backwards would be nice but
also very difficult to implement.

CONCLUSION

Now that the tool has been built, its
real function is more evident. It is
still used for documenting words as origi-
nally intended, however, its primary usage
is debugging and validating code. It has
also proved to be very useful as a
teaching aid to explain what is going on
within the stack. I hope it will be as
useful to you as it has been to me.

:LN Line number being printed. Used
for page headings.
: sc Current screen number being
spooled.

IFPTR The address of top of IF stack.
Used to restore values on stack for
IF...ELSE...THEN construct.

IFST The area reserved for pointers to
previous stack contents. It is used to
restore the stack on ELSE and THEN
clauses.

SPL A temporary variable used by :NFD
to retreat the spool file to erase the
unknown stack prior to operator specifi-
cation of what is added or dropped.

SPOOL Offset into spooled print file.

SUM The sum of differences in two
strings. Used in -TEXT. Value is 0 for a
text match and nonzero if different.

T1 Pointer to current input word in
memory (type format).

CONSTANTS

UIHIT The limit address for dictionary
search to keep fram using standard FORTH
words from within the STACK diagrammed
words.

FUNCTIONS

--- 'FIND pfa length true (found)

-- 'FIND false (not found)

This is the same as -FIND except that
the true condition is set only if the work
is found above LLIHIT. This restricts the
search to stack vocabulary words.

(' (' ---
A STACK DIAGRAM GLOSSARY

VARIABLES

: BK The base block number for spooled
stack diagram.

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
gramed input string.

Page 27 FORTH DIMENSIONS III/ 1

Defined back to its original state
after being used as a concatenation token,
this marks the beginning of a comment.

All text following it is ignored
until the next 1 .

Tests two strings for not equal.

A string constant used for building
expressions when arithmetic or logical
operations are encountered in the dia-
gramed input string.

stl st2 -TEXT cond

True if the two strings differ.

va 1 1- Val-1

Decrements the top of stack value by
one.

v l ~2 2DROP --
Drops the top 2 elements off the

stack and discards them.

This is the stack diagram
redefinition of colon. It diagrams the
word following it instead of compiling.

It is invoked by colon as the very
last definition from within this package.

stl st2 :c st3

Concatenates two strings into a
single combined string. It is used to
build expressions when operators are en-
countered in the screen to be diagramed.

:HEAD -- ---

Prints the header for a line of
output to the console and also the spool
file.

:KILL -- ---

Removes and discards the top of the
IFST.

--- :N"D addr

This is called when the w r d being
analyzed is not in the special stack
vocabulary. It checks for valid
numbers. If this test is passed, it
returns a pointer to that string.
Otherwise, it invokes SKBD to get user
help.

adr :PSH ---
Pushes the address of a level of the

stack values onto the separate IF stack.
This is used for IF..ELSE..THEN stack
restoration and checking.

adr :RST ell el2 etc

Restores the stack from the IFST
stack. Does not affect the IFST.

adr :sAv --
Saves current stack element list on

the IFST. Does not affect the parameter
stack.

:SP -- ---
Marks the end of the spool file with

a zero.

adr ?NUM cond

Checks current word to determine
whether it qualifies as a legal
hexadecimal number.

--- CONSTANT ---
A defining word which causes the name

of the defined word to be put on the stack
when that word is encountered.

--- DEPTH depth

Computes the depth of the stack in
it-.

scri M)c _--

FORTH DIHENSIONS III/1 Page 28

Searches for a colon followed by the
word whose name follows this invocation on
the specified screen. It aborts if the
definition is not on the specified
screen. Otherwise, it comences to gen-
erate the diagram for the word specified.

--- ELSE ell el2 etc

Clears the stack and then restores it
from IFST.

--- ESC ---

Aborts the package if an escape key
was the first key pressed in answer to the
"PUSH?" prompt. The vocabulary reverts to
FORTH; however, the stack diagram packape
is s t i l l loaded and ready to go.

G-HERE adr cond ---

Moves a string from PAD into the dic-
tionary. It allots the space and leaves
the address of the item and a true cond if
successful. It leaves only a false cond
if no valid string was found.

compile time of the stack diagram package.

A defining word for building strings
into the dictionary at compile time of the
stack package. On invocation of the new
word, the address of the string displaying
its own name is put on the stack. The
word that follows GWRD is read twice at
compile time, once for the name of the
function, and a second time to be placed
in string format into the dictionary.
This is used to build up constant words
for the diagraming package.

--- cond IF

Drops the condition flag from the top
of the stack without evaluating it. It
then invokes :SAV for ELSE restoration and
THEN error checking.

adr cnt MTYP

Types the message to the screen and
also passes the parameters to STYP for
spooling.

expr G (1) op(expr 1
src dst Zen MVB dst len src+l src

Builds an expression from a simpler
expression. At execution time of the
following word, the top of the stack is
enclosed in parenthesis and preceded by
the operation symbol. It is used for
unary operations. eg. -(name)

expr G(2) op(expr)

Similar to G(1) except that uuary
operation is also enclosed within the
parenthesis. eg. (name*2)

espr G(3) op(expr)

Similar to G(1) except that binary
operation is also enclosed within the
parenthesis. eg. (vall+val2)

--- inadr GBLD

An auxiliary word used to build a
named string in the dictionary from the
word following GBLD. This is used at

Intermediate function to set up fur
ma.
arc dst delim MVDEL adr

Move a string f r m the source to the
destination address until the specified
delimiter is encountered. This is used to
build data strings within the dictionary.

Prints the latest generated diagram
from the default spool file blocks.

--- --- PHDG

Prints the top of page heading and
sets the lines per page count. Used by
PRTDOC .
blk# PRTDOC ---

Page 29 FORTA DlHENSIONS I11 1 1

I

!

I

r

!

!

1

I

>

i

1

r

2

d
3

5

d
P

-
'1

Pr in ts the stack diagram from the
s p o o l f i l e whose s t a r t i n g block is the
s p e c i f ied blk# .

Similar t o TYPE but spools t o disk
ra ther than typing t o the screen. Outputs
an addi t ional two blanks a f t e r the
message.

adr T; cond
P r in t s a l l words from the s t r i n g

a d d r e s s e s on the stack. The top element
:s printed to the r igh t of previous
elements. The stack is unchanged.

a d r cnt PWRD -- -
Pr in t s one word via MTYP. Used by

?STAK.

REPEAT --- ---

Functionally ident ica l t o the re-
defined THEN.

s c r # SCRST scr#

Resets the spool pointer and places
t h e screen number in to the beginning of
:he output spool to be used i n top of page
ieadets by PDOC.

Documents me whole screen by exe-
cuting it, using the diagram def in i t ions .

This scans the keyboard for user
Lnteraction. It generates the "DROP?" and
"PUSH VALUE?" prompts. It is invoked
shenever intervention is required i n the
:lagramming process. . .

c h a r SPIT ---
Writes character out to d isk spool - . -. 7 - le .

-- STACK ---
This is the name of the vocabulary

: mtaining t h i s package.

a d r cnt STYP -- -

Tests the current s t r i n g for a match
t o the FORTE word semicolon. This is used
t o ex i t DOC.

-- -- THEN

Re-defined i n the dtack vocabulary,
t h i s cleans up the IFST. I f the depth of
the s tack has changed from before the
ELSE, i t issues a warning and c a l l s SKBD
t o allow the user t o correct a s tack depth
d i s p a r r i t y between the IF and ELSE
clauses.

--- VARIABLE --
A defining word which causes the name

of the defined word t o be put on the stack
when tha t word is encountered.

I02 I L I L O

SCI * 102
0 (staer diagram p.oka#a 1 O r 14 b. A. @I* 81032b)
I

a Cal l in8 n uenees.

1 sormen S#K
8 rmc
9

s c r a m & a e r n i u

I0 OUC b u i l d s a t m k d l a s r u ror one d d i n i t l o n .
11 SOW b u i l d 8 stack diaurau ror e n t i r e 8cre.n.
I2 ?OW p r i n t s staok d i a s r u b u i l t by WX: or SWC.

I5
2

SCI *
O (
I 0
2 0
3 0
1 0
s o
6 0
7 0
8 0
9 0

10
1 1 -
I2

:f
15

V A I I I B L C 1 %

V A R I I B L C IfST 20 A L L O T
VLIIABLI I r m
:PSI I W r R I

->

Page 30 PORTEl DIMENSIONS III/1

12

1 Y
13 - - >

15

SCR

8
5
6

4

!
IOb

7 Y I I DU? 1. C? 85 I +
BEGIN 1. DU? C? 16 DIGIT
W:LE DROP REPEAT C? 32 * ;
:HEAD CR 13 SP:? 10 SP:T DUP
COUN? 10 M:N SWAP OVER MT?? I 1
SWAP - 0 Do 32 S P I T S P L c g LOO?

atmek aiwyrwm packm#e 5 or l a b.

I 3 I F HERE C I L L L O t

i s : ESC P A D cc 27 IF . rst - ABWT tmcn ; 1 -->
I " ELSE 2DROP 20ROP C ??EN '

2

1: @ 8 1011 DUP 9 <
5 IF DEPTH 1 - MIN 0 W M O P LOOP
6 ELSE DROP TUEW
' BEGIN 3 R .' PUSH VALUE? PAD 80
8 EXPECf ESC G-ULRE 0. END ;

3 SKBD CR : DROP1 - xer WP c n ~ ? < mcmn ~ l w Tor aroo.vu8Mw)

10 : :NFD fl @ l # U M (nmnah wrd mt round)
11 :f 7 1 ? (number)
1 2 ELSE SXDD S P W L @ SPL I (un6.flnea)
1 3 T l @ :HEAD DROP SIL ? SPOOL I TUEM ;
I Y - - >

. P k t D o c DUP :&K I BLMK e (print aiaeram fro. *we mcr)
: :sc I PHDC 10280 2 Do ' ~ 1028 /MOD :DK ? BLOCK + V -DUI
5 :F ?UP E M I T 10 r

0 :r PUDc ?UEY tncn
3 ELSE LEAVE THEN L W P :

.F :Ln ? 1 - DUP : L N I 0.

' 1 PDL 130 PR?DoC ,

* . __,

111 TRIAD

scn I 1 1 1
O (
1 1
2 1
3
I :
5
6 1
7
8

8UCk 4la#r.m pack.#& 10 Of 14 8. A.
rPSH 2 IFPTR + I IPPTR @ I ;
:SAV HERE :PSH SPC DEPTH 1 - DUP ,
DUP + HERE SUP OUP ALLOT cnove ;
:RST IFPTR c e DUP c DUP 2 ROT . SYAP

STACK DEFINITIWS nene . LLIHIT I

0 DO DUP @ SYAP 2 - LOOP THEN DROP
IKILL -2 IPPTW +I ;

9 -->
10
11
12

15
;:

C01.

-DUP

8 10425)

I F

i I T H ~ W DEPTH 1 w t n c e I + ce -DUP
3 IF 128 - 2DUP -
4 IF CR .. STK ERROR. ELSE -* .
5 .* THEN -" . SKBD
6 e s e ZDROP THEN
T a t e MOP THEY :K ILL ;
8
i : EWE DEPTH 128 + >n SPI :is n> I w t n e e I+ CI ;

10
11 : IF WOP :SAV ; FOwTH DtlINITIOHS -->
12
13
14
15

scn # 113
0 (*tack 41a#rm paCka8. 12 of lil B. A. Cole 810326)
I : GILD IN I 32 YM~D ncnt cc I+ ALLOT ;
2 : CURD IN @ (BUILDS CBLD

DOES> .
5 I G (1) I N e <BUILDS CBLD
6 DOES> SYAP (SYAP :C :C ;

CURD) C Y i D (

Q 8 C(2) IN @ <WILDS CBLD
Docs> rC IC (S U P :C

9 I C(3) I N C (BUILDS OBLD
10 DOES> SYAP 1 :C 1C 1C (SYAP 1C
11 i (4 1 WORD : IHHEDIATE -->
12
13
14
15

.a*** from: B a r r y A. -1. Lor An#elem. CA
OK

13-390-3851

Page 31 PORTR DIMENSIONS IfI/1

T k l I D

w # 114
G (*tack dla#raB paCkA#a 13 Of 84 b. 1. COlO Ul0125)
I
2 STACK DEFIlrTIONS

: 32 YOID mane DUP w I. ALLOT ;
: DUP DUP ; : ROT ROT ; I s u r SUP ; I own OIU ;

b 1 DECIMAL D ~ C I M ~ L ; 1 zour ziur ; : I mor n o r ; : t r I
. ' I> DROP . : M O P M O ? ' I . M O P i I HEX ME1 . I (wo i

8 I 21 I M O P :
9 : C. M O P ; : W I . I DUMP I ; I EMIT DlO? i : -DUI DU? i

" . I 1 ; I M O ? ; I S I l C L i 1 1 ; I \ ;
: 'i DUO? i : ALLOT M O P ; I SLlNl I i

10 : CUD DROP ;

1 3 : u o w men ; I IePelT i n t i : I u m e xr i

: enisc' i ; I +LOOP DIOP i : /LOOP om01 i
I 1 : EXPECT I ; : MOVE I DlO? . I LEAVE '
12 i SPACES M O ? ; : TYPE I ; I &GIN ; I LOO) i : \ ;

I * I AGAII ; : UNTIL I ;
15 - - >

i Q i

I > . ?
I 1 : ;S OUIT ; : --> OUIT i .. 3; W I D i I I I 1 i
12 r M T H M~lNITIo*S i S
13
I .
.I

S'L 0 110

2

Date:

Where:

who :

What:

Cost:

How:

FORTH CLASS

June 22 - 26
Humbolt State University
Arcata, CA 95521

Kim Harris and Henry Laxen

Intensive 5-day course on the use
of FORTH

$100 - $140 plus room and board
Call Prof. Ron Zammit
(707) 826-3275

MMS-FORTH FOR STRINGY FLOPPIES

Kalth Microsystems will make available
to all licensed MMS-FORTH users a modified
version that runs on the TRS-80 with an
EXATRON stringy floppy. This modification
is said to make MMS-FORTH operate as it
would on a disk except for the speed.
Users retain the capability to switch back
to cassette operation with a single c o w
mand. Implementation includes the normal
readlwrite block commands plus a number of
new utility words. The modification is
available on ESF wafer for $14.95 includ-
ing shipping. For more information
coatac t :

Kalman Fejes
KALTH MICROSYSTEMS
P.O. Box 5457,,Station F
Ottawa, Ontario K2C 351
Canada

PORTH DIHENSIONS III/l Page 32

How to form a FIG Chapter:

1. You decide on a time and place for
the first meeting in your area.
(Allow about 8 weeks for steps 2
and 3.)

2. Send to FIG in San Carlos, CA a
meeting announcement on one side
of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP
numbers that you want mailed to
(use first three digits if it
works for you).

Massachusetts
3rd Wed MMSFORTH Users Group, 7:OO

p.m., Cochituate, MA. Call
Dick Miller at (617) 653-6136
for site.

Seattle Chuck Pliske or Dwight
Vandenburg at (206) 542-76111.

Potomac Paul van der Eijk at (703)
354-7443 or Joel Shprentz at
(703) 437-9218.

Tulsa Art Gorski at (918) 743-0113.

3. FIG will print, address and mail Texas Jeff Lewis at (713) 719-3320
to members with the ZIP'S you want or John Earls at (214) 661-
from San Carlos, CA. 2928 or Dwayne Gustaus at

(817) 387-6976. John Hastings
(512) 835-1918. 4. When you've had your first meeting

with 5 or more attendees then FIG
will provide you with names in
your area. You have to tell us Phoenix Peter Bates at (602) 996-8398.
when you have 5 or more.

Northern Ca 1 i f orn ia
4th Sat FIG Monthly Meeting, 1:OO

p.m., at Southland Shopping

Workshop at 10 : 00 a.m.
Ctr., Hayward, CA. Fom

Southern California
Los Angeles
4th Sat FIG Meeting, 11:OO a.m.,

Allstate Savings, 8800 So.
Sepulveda, L.A. Call Phillip
Wasson, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:OO noon,

Fullerton Savings, 18020
Brockhorst, Fountain Valley,
CA. (714) 896-2016.

New York Tam Jung at (212) 746-4062.

Detroit Dean Vieau at (313) 493-5105.

England FORTH Interest Croup, c/o 38,
Wors ley Road, Fr irnley ,
Camberley, Surrey, GU16 5AU,
Eng 1 and

Japan Mr. Okada, Presdient, ASR
Corp. Int'l, 3-15-8, Nishi-
Shimbashi Manato-ku, Tokyo,
Japan.

Canada
Quebec Gilles Paillard at (418) 871-

1960.

San Diego West Germany Wolf Gervert, Roter Hahn
Thur FIG Meeting, 12:OO noon. Call 29, D-2 Hamburg 72, West

Guy Kelly at (714) 268-3100, Germany, (040) 644-3985.
x 4784 for site.

Publishers Note:

Please send notes (and reports) about
your meetings.

Page 33 FORTH DIMENSIONS III/1

FORTH OlmEnSIUflS
FORTH INTEREST GROUP
P.O. Box 1 105
San Carlos, CA 94070

Volume I l l
Number 2

Price $2.50

35 Letters

40 Technotes

45 Data Base Design

53 Increasing Disk Access Speed

54 Music Generation

57 Dictionary Searches

58 Tracing : Definitions

59 FORTH, Inc. News

60 FORTH Vendors

61 Decompiler

66 C hapters/Meeti ngs

EDITOR’S COLUMN

Published by Forth Interest Group

Volume I l l No. 2

Publisher
Editor

July/August 1981

ROY C. Martens
C. J. Street

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner
Bob Berkey

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Grouo.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at 515.00 per
year ($27.00 foreign air). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore In
1969 at the National Radio Astronomy Observatory,
Charlottesville. VA. It was created out of dissatisfaction
with available programming tools. especially for obser-
vatory automation.

Mr Moore and several associates formed FORTH,
Inc in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage. and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California. Our membership is over 2,400 worldwide. It
was formed in 1978 by FORTH programmers to encour-
age use of the language by the interchange of ideas
through seminars and publications.

The feedback on our new applications editorial
policy is all positive. To date, we are receiving a nice
variety of articles. I want to urge our members not to
slack off. In order to keep up a steady flow of quality
output. we need quality input-IN QUANTITY

If you have an article you have been meaning to
write. please get it down and send it in. I f you havr an
application. programming trick or tool that you have
found useful, please share i t with our members
Remember: YOU DON’T HAVE TO BE A WRITER-our
staff is set up to help you with whatever you need to
make your idea publishable.

Please send all submissions to:

Editor
FORTH DIMENSIONS
P.O. Box 1 105
San Carlos, CA 94070

HEX is back this month, and there are photos of the
Rochester Conference courtesy of George W. Shaw. 11.
We are always looking for photos (black and white or
color prints preferred) and cartoon ideas, too.

Starting next edition, FORTH DIMENSIONS will
have a marketing column in a question and answer
format. If you have had ideas, programs, etc.. that you
wondered how to sell, this column will be for you.
Please direct your marketing questions to the above
address. Ouestions of general interest will be an-
swered in this column by experts chosen for their
knowledge of marketing and computer hardware and
software.

C. J. Street
Editor

PUBLISHER’S COLUMN
Lots of good news! The reaction to the application

orientation of FORTH DIMENSIONS has been very
positive. Thanks to our editor, Carl Street. The more
articles you send Carl, the closer we come to being
able to go monthly. Our plans are to make FORTH
DIMENSIONS more general interest and publish high
level (sic) technical material twice a year, ala. 1980
FORML Proceedings.

Plans for the 1981 FORML (FORTH Modification
Laboratory) Conference are underway. Refer to page
63 for more details. The FIG National Convention will
be on Saturday, November 28th in the San Francisco
Bay Area. Make your plans.

Now, some bad news! We have to raise some of our
prices. It’s been a couple of years since we’ve done
any price adjusting and cost increases have caught up
with us. The order form on the last page reflects the
new costs which arenow in effect Sorry, we’ll do our
best to hold the line.

Roy Martens

FORTH DIMENSIONS III/2 Page 34

3ear FIG,

Please find enclosed two short articles
i.:?ich might be suitable for publication in
F3RTH DIMENSIONS.

I did not ask for the publication kit,
13 I hope the articles do not violate your
rjles too much. Second, my native lan-
gaage is not English but Dutch, so forgive
3e if there are any errors and feel free
13 correct them.

Please note my new telephone number and
rarrect it in your listing of local FIG
r5apters.

We have not had many meetings lately,
:robably because our members are too
a: t ive !

Paul van der Eijk
5480 Wisconsin Avenue 11128
Chevy Chase, MD 20015
(301) 656-2772

Thank you for your articles, Paul.
leaders can find them under the appli-
rations area of this issde.--ed.

)car FIG,

I recently purchased a listing of fig-
.?3RTH for the 8080 from you and I am v+ry
lnpressed with the Language package. You
-+ill find enclosed an order and Bank Draft
f x several books which I eagerly await.
I received my Dual Micropolis Mod I1 Disk
:rives only two weeks ago and my first
Groject was to assemble FORTH. The disk
-3terface routines were quite easy to link
Z J the Micropolis DOS using ideas €tom the
3?n interface supplied. However, when I
iried to LOAD a short word definition off
I screen the system would lock up and not
:me back with any error messages or the
' 3K' ; because the system would compile
Irxds from the keyboard and the Disk 1/0
?orked well, I was puzzled as to why there
i a s a problem. After four days of search-

ing and debugging, I found that the
program was looping through INTERPRET, and
each time the parameter stack had an extra
value on it. Eventually, I found the bug;
it was in the ENCLOSE routine and the
problem is that only an 8 bit counter is
used to hold the offset into the buffer.
However, the Micropolis sectors are 256
bytes and so are my Forth Disc Buffers.
If there are any non-delimiter characters
in a buffer, then all works OK. However,
if the buffer holds 256 blanks, then the
loop around ENCLl scans to the end of the
buffer but the 8 Bit offset ends up
pointing at the start of the buffer still
an INTERPRET never gets to to see the NULL
at the end of the buffer. Obviously, the
routine works OK for CPM 128 Byte Sectors,
but needs modifying for larger capacity
sectors.

I have included the source listing for
ENCLOSE as modified by me (sorry, I
haven't got my printer going yet). I have
used the DE register pair for the offset
counter and have kept the definition
character in the Accumulator which means
pushing and popping it when it is neces-
sary to check for a HULL.

I hope you find this of interest and
maybe you will include a change of this
sort in future versions. I learned a
great deal from this problem, and it was
probably to my advantage that it occurred,
as my only prior information was the
'FORTH' BYTE. I really learned the hard
way.

William D. Miles

Red Cliffs
Victoria, 3496
Australia

P. 0. BOX 225

Thank you for your contribution.
NOTE: You will find Mr. Miles' bug fix in
the TECHNOTES, BUGS 6 FIXES section of
this issue.--ed.

DON'T MISS OUT!

EARCY FOR THE FORML CONFERENCE!

GET YOUR PAPER IN

FORTH DIMENSIONS III/2 Page 35

Dear FIG,

Could you print my address in your next
FORTH DIMENSIONS issue: I would like to
hear from other Belgian FORTH-ists!

Hichel Dessaintes
Rue de Zualart 64
B 5810 Suarlee
Begium

OK, Hichel, start watching your mail
box! --ed.

ducing errors are ever present. I ' m sure
that you catch most of them.

Robert 1. Demrow
P. 0. Box 158 BLUE STA.
Andover, MA 01810

Thank you for your thoughts. Glad you
like our new approach. John James SEARCH
is in a previous issue. Regarding errors,
we do try to minimize them; but we are
only human. --ed.

Dear FIG,
Dear FIG,

Congratulations on your last issue
(Vol. 11, No. 6). It's nice to see some
tutorial inputs at a level that beginners
like me can understand. Keep it up!

Would you please print the SEARCH
routine mentioned in John James' article
on page 165 of Vol. 11, No. 6. It appar-
ently got replaced by the correction
notice at the bottom of the page.

I was interested in trying EDGAR 8.
FEY'S FEDIT in Vol. 11, No. 5 ? but was
stumped by the word REPL which was not
defined. Is it possible MR. FEY could
provide the definition? (Also, I noted
that SCR#67 errors at line 48 -B/BUD -
which apparently is supposed to be
B/BUF.) Screens should be required to be
loadable, not edited by publisher or
author without loading edited version.

In respect to editing, please also note
that Major Selzer's article in the Vol.
11, NO. 3 issue on page 83, SCR#200 line 8
should apparently be 08 CASE for left
cursoi as opposed to OB as printed, since
OB is used for UP cursor. This screen
does work when above mentioned change is
made.

During September of 1980, material was
ordered which included hard copy of
figFORTH for the Motorola 6802 (6809
preferred) CPU, and FIG membership for a
year. Hard copy received was Talbot
Microsystems -1.1.1. 6809 FORTH. After a
considerable amount of study, and a c o w
plete rewrite, that software is now up and
running, apparently as designed. (No
operating bugs have been detected, but it
would be reasonable to expect bugs to
appear far into the future.) Some general
comments on the system may be of interest.

A major factor in the acquistion of
this software was the indicated ability to
run high level software on a small sys-
tem. If the Talbot software is designed
for a microsystem, then I must have a
nano-system by definition; a disk would
cost far more than all hardware currently
in use, and appears quite unrealistic for
this home hobby system. The alternative
cassette is implemented, but patience
would be strained beyond limits if nearly
8K words were loaded for each use at 300
baud. Thus, my system clearly demands use
of EPROMs for source code.

I have used several methods of code
reduction.

I realize that submitted copy may need . 1. A short branch to several copies of
to be retyped but the dangers of intro- NEXT.

2. Place the user area in the direct
pad.

Page 36 FORTH DIMENSIONS f11/2

n
&
?
k
PI
1)

1,

1

3. Add a byte literal as well as LIT.

4 . Some high level routines are
shorter in code.

The end result of this process was code
retaining nearly all of Mr. Talbot's word
iefinitions, and fitting easily in 6K
5ytes (3 2716's). There is very little
jenchmark information available (this
vould make a worthwhile FORTH DIMENSIONS
article), but those found generally ran in
: I 2 the time cited for the APPLE.

A. R. Gunion
182 Minuteman Drive
Concord, MA

The real definitions of nano and micro
9 s applied to systems vary with each
Lser. Suffice to say that FORTH is by
:efinition a disk based system. If you do
x t have a disk then you are compromising
3n an area vital to obtaining the real
mtential of the system.

Regarding benchmarking, it has always
5een the position of FORTH DIMENSIONS that
:he nature of FORTH makes benchmarks more
2 f an indication of the speed of a CPU
:ian any particular system and we gener-
a!ly do not publish them. This has been
Zrscussed at length in previous edi-
:ions.--ed.

. .

3ear FIG,

While 1 cannot disagree with the intent
= f "An Open Response" in FORTH DIMENSIONS,
.,.ol. 11, No. 6, concerning the hardware
requirements for FORTH, I feel you may
!iscourage some with the categorical
qtatements you made. It is possible to
accomplish a great deal with much less
:han you described. I hand-installed the
5502-verison of fig-FORTH on a homebrew,
KIM-based system that had only 8K of RAM
and traditional cassette-storage. My
"terminal" was a memory-mapped 16-line by
32-character display with ASCII key-
3oard. This minimal system has given me
l o u t s of pleasure and practical experience
vith FORTH, and because of the concise
2ature of FORTH has been capable of power-

ful constructs. An acquaintance has
installed a c u t - d m version on a 5K KIM
with ASCII keyboard and walking "times-
square'' display on the KIM LED'S. There
is no question that we would be more
comfortable in the hardware environment
you define, but compared to Tiny-Basic,
for example, these minimal FORTH' s are
heaven.

I found the same bugs in the May 1980
6502-version of fig-FORTH that Grotke and
McCarthy have already reported. In addi-
tion, I would warn prospective installers
that the TRACE routine depends on the
output routines preserving the Y-register,
and that the MON routine is not quite
correct. Since the 6502-processor incre-
ments the program counter by two when BRK
instruction is executed, BRK should be
followed by a NOP to ensure that a simple
machine-language monitor will return to
the start of the IDX XSAVE instruction.

My system now includes a 320x200 dot
raster-scan display, and I am interested
in corresponding with others concerning
FORTH-based graphics processors.

Kent A. Reed
49 Midline Court
Gaithersburg, HD 20760

The point of the "Open Response" was
not to condemn anyone's system; rather to
point out that FORTH is derigned to be
used with a disk. Naturally, the nature
of FORTH means that it will perform (and
outperform other languages) regardless of
the environment. Your "bug" comments are
appreciated.--ed.

Dear FIG,

In bringing up the 6502 Assembly Source
listing on my Rockwell System 65, I
encountered a problem involving writing or
reading the disk drives. The symptoms
involved setting an 01 error everytime the
disk was asked to jump to the next track.

The problem turns out to be hardware
and only exists on a Sys 65 with Pertec

FORTH DIMENSIONS fII/2 Page 37

model FD200 drives. The fix is simple and
is detailed in Rockwell Service Bulletin
'SYSTEM 65-7' which may be obtained by
writing:

Rodger Doerr
SYSTEM 65 Customer Service Dept.
ROCKWEU INTERNATIONAL.
Microelectronic Devices

Anaheim, CA 92803
P. 0. BOX 3669

(Or call Rodger at (714) 632-2862.)

I hope that this information can be
helpful to other individuals who are
working with FORTH on the SYS 65.

Jack Haller
230 Mechanic St.
Boonton, NJ 07005

Thank you--1 am sure you have saved
more than one frustrated progrmer a few
sleepless nights.--ed.

Dear FIG,

Enclosed is $12.00 (now $15.00--Pub.)
for another year of FORTH DIMENSIONS. I
have FORTH up on 2 KIM'S (Dean's version)
and a Superbrain; although my "playtime"
is limited, I enjoy tinkering very much.
It might amuse you and Mr. Moore to know
that one of the systems is going to
control a 10' dish radiotelescope which I
also use for looking at thunderstorms.

I am slowly getting together parts of a
Western Digital-based computer. Their p-
code chip is a natural for FORTH--almost
all primitives are single instructions.
This is a very long-term project and, no
doubt, someone will beat me to it, but it
needs doing. Please pass this on to any-
one who might be interested. I would be
glad to correspond with them.

As a long-time but not prolific user of
FORTH, I'd like to put in my buck's (in-
flated two bits') worth: KISS-- this
acronym is keep it simple, stupid. In
other words, let's not get too many words

into "Basic FORTH" vocabulary. Certainly,
more advanced words are useful and should
be published and documented, and are, of
course, part of the FORTH vocabulary by
definition. Any standards, however,
should be kept very simple. Enough.

Don Latham
Six Mile Road
Huaon, MT 59846

OK interested members, drop him a
line.--ed.

Dear FIG,

This letter is in response to C. A.
HcCarthy's letter in FORTH DIMENSIONS,
Vol. I1 No. 6 concerning the errors he
listed:

Page 0061

Yes, there should be a SEMIS at the end
of the UPDATE.

Page 0064

I haven't hooked up disks to FORTH yet,
so I didn't notice this one, but I
agree that the displacement in line
3075 ir wrong.

Page 0067

I dropped one of the STX XSAVE's
without ill effect.

Page 0069

The extra SEMIS is superfluous, but
will not have any harmful effect.

I did find another error in the
listing. This one, rather than being a
typo, appears to be an error in program
logic.

Page 0017, lines 0803-0805. The listing
for routine ZERO shows:

Page 38 FORTH DIMENSIONS 11f/2

LDA 0,X
ORA l,x
STY 1,X

Since Y contains 0 at this point, the
zero flag in the processor status register
will always be set by the STY inetruc-
tion. Therefore, the branch which follows
will never be taken, resulting in a logi-
cal "false" value always being left on top
of the stack. I replaced the above code
vith the following:

LDA l,X
STY l,x
ORA 0,x

This causes the processor status to be
set properly to indicate whether the top
stack entry is a zero or not. I know of
no other errors in the listing.

Steve Wheeler
504 Elmira
Aurora, CO 80010

Thank you for passing along the
above.--ed.

:,ear FIG,

A little note about changes in the
situation in NW Europe. During the second
i a l f of March, there was an exhibition in
V L l r o o (close to Copenhagen) - "Datacraft
5 1'' (Computer power-81).

Up until then, FORTH was very difficult
12 get in touch with here in Sweden. To
p~ great astonishment, there were at least -. perhaps 6, systems running in different
3x1s. The most interesting one was a
;cly-FORTH system running on an ABC-80 (a
5v 2-80 lowend machine). There were also
 FORTH'S running realtime setups on
'IT'S.

To me, who had up until then been 'dry-
swimming ' FORTH, it was quite an experi-

ence to key in definitions, clear,
compact, and (CR/LF), to be able to use
them. Quite a kick!

Calle Hogard

Glad to hear things are moving ahead.--
ed.

Dear FIG,

Response to "An Open Response".

I object strongly to the tone of the
above (unsigned) article in Vol. 11, No.
6. It is the attitude of the 'computer
professional' with access to a large, all
singing, all dancing computer looking down
his/her nose at the pathetic squirmings of
the home computer buff. If thin attitude
had prevailed, there would be no cheap
computers. As it is, a lot of harm is
still done by designers making their small
computer systems in the image of large
computer systems instead of making them
like super calculators.

Like many others, I first became
interested in FORTH via the August '80
issue of BYTE. One thing that attracted
me was the idea that here was a high level
language which could be used over the
whole range of hardvare. There are
obvious resemblances between the FORTH and
the HP programmable calculator languages
and it is reported that FORTH or similar
languages are used in hand-held language
translators and in one of the hand-held
computers. Compare the editorial and,
more specifically, Charles Moore's
"Characteristics of a FORTH Computer"
(p.88) in that BYTE issue with your "Open
Response". FORTH is a language in which
the user is allowed unparalleled
freedom. Please do not insult us by
drawing arbitrary limits which will in any
case be out of date in a short time.

I will agree that a quart cannot usu-
ally be fitted in a pint pot. Solution:
devise a means of listing the glossary in
such a way that for any word, the
indirectly referenced words underlying it

FORTH DIMENSIONS III/2 Page 39

can be read. The answer to those wishing
to devise minimum systems would then be
"go away and get on with it!" Remember
that necessity is the mother of invention
and the professionals are those who carry
on in the wake of the amateurs-- like
Einstein--to name but one.

N.E.H. Feilden
47 London Road
Halesworth
Sufolk IP19 8LR
England

P.S. Number typing (e.g., Fixed,
floating, double, quad precision, etc.)
Surely, all this business of having
hundreds of different numbers types is
silly, cumbersome, and FORTRAN-like.

Why not forget the whole scheme and do
it like BASE. That is to say, have a
constant, say NTYPE which tells all opera-
tors how many bytes to operate on and
whether fixed or floating. It would, of
course, be necessary to code all constants
and variables in the same way so that when
referenced, the appropriate conversions
would be done. If this were done in
linked lists, then the memory overhead
would be very small. The whole thing
would be vastly easier to use than what is
currently proposed. This suggestion would
help to reduce the number of words to
remember.

Sounds like you have some interesting
and creative approaches to problem
solving. You might be interested to know
that the author of "Open Response" works
on a home size computer. I am sure that
no offense was meant and if the author of
"Oper Response" would like to answer in
this space or another column, we will be
glad to print it.--ed.

HELP WANTED
Los Angeles Area FORTH PROGRAMMER WANTED
-- Contact Linda Stoffer at Pace
Personnel, (213) 788-7039.

FORTH, Inc. has the following job
openings:

TECHNOTES, BUGS, FIXES

TIPS ON BRINGING UP 8080 Fig-FORTH

Ted Shapin
5110 E. Elsinore Aenue

Orange, CA 92669

Some of the "gotchae" I ran into in
bringing up 8080 Fig-FORTX may be helpful
to others.

Make sure your assembler Will handle
lines such as DW A,B-$ correctly. The
Boston Systems Office cross-assemblers use
the address of the first operand as the
value for "$" in the second operand. This
leads to a system that will print out the
sign-on message but will fail to perform
many other operations correctly. I got
around this by changing such occurrences
to two separate lines: DW A and DW B-$.

The next problem to solve is how to
type in the editor screens. It ie nearly
impossible to type the editor in twice
Correctly. As R. Allyn Saroyan pointed
out, you only need to type in a mini-
editor twice. Once, to get it in the
dictionary so you can use it, and again,
to get it to a screen so you can put in on
disk. The mini-editor is simply taken
from the implementation model editor
screens as follows:

HEX : TEXT HERE C/L 1+ BLANI(S WORD HERE
PAD C/L 1+ CMOVE ;

: LINE MIP FFF0 AND 17 ?ERROR SCR @
(LINJ3) DROP ;

: -WVE LINE C/L CmlVE UPDATE ;

: P 1 TEXT PAD 1+ SWAP -Mom ;

DECIMAL

Now, proceed tQ u8e it to write itself
to the disk. You can do this by picking
an unused screen, say 85 and typing 85
LIST. Now use ttPt' to place a line of text
on the screen, e.g., 0 P (Mini-editor

FORTH D m N S I O N S I I I / 2 Page 40

c

t
a
t
L
t

I
C
l

a
1

I

I

1

!

wall place a comment on line 0 of the
:urrent screen.

Type the rest of the lines above and
:hen use the word "FLUSH" to write the
uni-editor to disk. Now, when you need
:3 start the system again, just type 85
2 A D and your mini-editor will be put into

I :.he dictionary.

I Use the mini-editor to type in the Fig-
-WETR editor. The string search screen
:an be omitted if you do not have a ver-
sion written in highlevel FORTH.

USING ENCLOSE ON 8080

Using ENCLOSE with disk block buffers
2f 256 bytes each or larger on the 8080
?rocessor.

111)

DB
DB
Dv

I'CI Dv
POP

PUS11
nov
LXI
I X X

:KLl INX
I NX

pop

CUP
J7

rust1
PUSll
MOV
ANA
J hZ
POP
INX
PUSH
ocx
PUSll
Jnr

.'cCl.Z M P
I NX
I NX

J E

t1OV
AIlA
.JNZ

POP
PUSll
PUSII
JHP

cnr

rustt

EtlC1.4 PUSH
INX
PUS11
JIlP

n i i i ;mt:i.ust:
'El lCLOS'

PFIND-9
$+2
D ; (DE)<-(Sl)-DELlflllER CIlR
!I ;(lIL)<-(SZ)-ADDI. OF TEXT TD SCAN
11 ; (S4)<-ADDR.
A.E ;(a)<-DELII(QIR
D,-1 ;INITIALIZE CHR OFFSET COUNTER
II ; (IIL)<-ADDR-l

11
D
If ;IF TEXT am - DELIPI ain
EIIC1.1 ;TIIIN LOOP AGAIN

D ;(SJ)<-(DE)-OFFSET TO IS? NON-DELIPI

A.M. ;IF 1st NON-DELIH-NULL
A
EllCLZ
PSY ;TIIEEN DISCARD DELIM CllR
D ;(SZ)<-OFFSET TO BYTE POLLOVlNC NULL
D
D ;(SI)<-OFFSET TO NULL
D
NEXT
I'SY ;(A)<-DKl.lfl CllR FROII STACK

D ;(DE)<-OFFSKT TO NUT CllR
n +IF NEXT CIIR<>DELIH CIlR
ENCLl

A,M ;AND IF NEXT aIR<>NULL
A
ENCLZ ;'WEN CONTINUE SCAN

PSU ;DISCARD DELIH QlR
D ;(SZ)<-OFFSET TO NULL
D ;(Sl)<-OF'FSET TO HULL
NEXT

D ;(SZ)<-OFFSET TO BYTE FOLLWINC TEXT
D
D
YEXT

* E * + B ~ I

;SKIP OVER LEADINC DELItIITER QlRS

;ELSE Nou-DeLxn QIR mum

rsu ;SAVE W.LIR QIR ON STACX

I I ;(IIL)<-ADDR NEXT CllR

PW ;SAW. nELxn ata or1 STACK

;ELSE CllR=NULL

;ELSE CIIR-DELIN am

;(SI)<-OFFSET TO ~IIYTES AFTER END nr WORD

NOTE: see Hr. Miles' letter in Letters
section.--ed.

Mr. William D. Miles

Red Cliffs
Victoria 3496
Australia

P. 0. BOX 225

CORRECTIONS TO METAFORTH

John J. Cassady
339 15th Street

Oakland, CA 94612

The following corrections to the Fig-
FORTH cross-compiler, METAFORTH, by John
Cassady should be noted:

page 26 screen 66 line 7 should read

KISR H LXI SRA.5 SRLD 12 ORG + LHLD SPHL
HEm m
page 38 dumped memory location 798C
should be 6A

A few lucky purchasers will have noted
that they possess those rare copies of
METAFORTH in which pages 8 and 9 are
swapped.

METAFORTH, by the way, is a cross-
compiler for Fig-FORTH. It can be used to
regenerate a FORTH system including the
nucleus without resort to an external
conventional assembler. This is helpful
when modifying low level words, generating
" stand-alone" applications, convert ing to
FORTH-79 and the like. A special section
is devoted to generating headless
configurations vith the same or different
processor.

METAFORTH is available in hardcopy
through: MlUNTAIN VIEW PRESS, PO Box
4656, Mountain View, CA 94040 for
$30.00. There are plans to have it
available on disk and compatible with
several of the popular commercial f i g -
FORTH6 from their respective vendore.

FORTH DMNSIONS II1/2 Page 41

CHANGING 8080 fig-FORTH
FOR DISK COPYING

Ted Shapin
5110 E. Elsinore Avenue

Orange, CA 92669

The FigFORTH 8080 implementation uses
all bytes of all sectors on the single and
double density diskette. This means 2002
sectors on a disk for single sector and
4004 sectors for double. This is not a
multiple of eight so the last screen on a
disk will be split across two disks. By
simply changing the equates for SPDRVl and
SPDRV2 to 2000 and 4000, we will have an
even number of screens per disk. This
allows a screen disk to be copied from
disk A to disk B by using the Fig-FORTH
COPY word.

NOTE: Ted has the correct method. Any
other system setup that could split
screens is incorrect.--ed.

FORTH STANDARDS CORNER
Robert L. Smith

There is a need for a channel of
communication regarding the etandard-
ization of FORTH. A major topic is the
clarification of the FORTH-79 Standard.
What changes are required or desirable for
clarification or extensions to the Stan-
dard? Is the FORTH Standards Team the
appropriate mechanism for obtaining a
"seal of approval" for corrections and
changes to the Standards?

Let us first consider a fairly simple
topic, the unsigned count specified in the
definition of F I U in the 79-Standard.
FILL is defined as follows:

FILL addr n byte 234

Fill memory beginning at address with a
sequence of n copies of byte. If the
quantity n is less than or equal to
zero, take no action.

This is a clear and reasonable un-
ambiguous definition. However, at the
Rochester FORTH Standards Conference,
there was a strong conseneus that the byte
count n should be an unsigned number. The
restriction in the definition seems to be
unnecessary; the only thing to be said in
its favor is that it might save a pro-
gramer from an inadvertent error (and
generally FORTH does not try to save
progranrmers from their errors). If the
unsigned FILL were to be the fundamental
definition, then the signed version would
be trivial to implement. The reverse is
more difficult. Thus, the unsigned FILL
would lead to better "factoring". Fur-
thermore, a common use for FILL is to
preset a large portion of memory. The
unsigned version is clearly better suited
for this task.

Having said that, what should be
done? Since the current definition is
unambiguous, and since 79-Standard ver-
sions of FORTX currently exist (with
several more in advanced stages of
development), it seems to me that there
should be no change to the 79-Standard in
this area. The Standard Team has sug-
gested one mechanism for evolutionary
changes in FORTH via "Experimental
Proposals". An experimental program
would, however, involve a new name for the
changed function and could not become a
permanently accepted change until two
revisions of the Standard. That may or
may not be acceptable, depending on the
frequency of the revisions.

Please send in material, questions, and
corrments relevant to FORTH Standards. I
will try to cover one or two areas with
each issue. Possible topics for next time
are the words WORD and +LOOP.

CORRECTION

"Systems Guide to fig-FORTH" by Ting is - not available through FIG. Orders f o r
this book, revised 1st edition @ $25.00,
should be sent to:

MOUNTAIN VIEW PRESS
PO Box 4656

Mountain View, CA 94040

Page 42 FORTH DIMENS IONS I I1 / 2

NEW PRODUCTS

SYM-1 FORTH

Saturn Software Limited has implemented
Fig-FORTH for the SYM-1 single board com-
puter. Their implementation takes advan-
tage of many of the features and resources
of the SYM-1.

SYM-FORTH 1.0 (disk version) requires
16K of ram, serial terminal, and the dual
HDE mini disk system. System has been
upgraded to the 79-STANDARD and includes a
versatile input line editor, fig-style
editor, 6502 assembler, and a cassette
interface. This product is also supported
by a quarterly newsletter with an initial
circulation of 100.

Product has five active installations
of the disk version (79-STANDARD). There
are also 50 installations of the cassette
version.

Price:

SFD-1 SYM FORTH FOR DUAL HDE MINI DISK
SYSTEM $150 U.S., includes shipping, tax,
etc.

Vendor support:

Direct personal support by phone,
correspondence, and newsletter.

Order turn around time:

Inmediate.

For more information, contact:
Extras included:

Assembler, editor, cassette interface,
plus numerous utilities and demos pre-
sented through subscription to newsletter.

Jack W. Brown
SATURN SOFTWARE LIMITED
8246 116A Street
Delta, B.C., V4C 5Y9, CANADA
(604) 596-9764

Machine on which product runs:

SYM-1, 6502 singleboard computer.
OSI-FORTH 2 .O / PIG-FORTH 1.1

Memory requirements: 16K of ram

Manual :

The 74 page manual include8
introductory tutorial material, system
information, and glossaries for the FORTH,
EDITOR, and ASSEMBLER vocabularies. The
manual is available separately for $25
which will be credited towards a later
purchase.

Form product is shipped in:

Product is distributed on two 5-114
inch diskettes, and boots with 79-STANDARD
upgrade installed. (Cassette version is
also available which can be upgraded to a
disk system at any time.)

This ie a full implementation of the
FORTH Interest Group Version 1.1 of
FORTH. It runs under OS-65D3.12 (or 3.0,
3.11, on any disk-based Ohio Scientific
system, and has access to all DOS comPands
and resources.

Extras include resident text editor,
Assembler, and utility screens for
transferring the system to a new disk,
initializing library and system disk block
storage tracks, copying screens from disk
to disk, and reconfiguring the system
memory usage.

Machines:

Ohio Scientific C4P MF, C8P DF, C3, C2-
8P DF, C1P MF, and C4P DF. While only one
drive is needed, dual drives are
supported.

FORTH DIMENSIONS III/2 Page 43

Memory Required: 24K

Manua 1 : For more information, contact:

Currently 95+ pages--with new OSI-FORTH
Letters added as they are produced.
Twenty-four pages of discussion of
particulars for OSI, utility screens, and
operation of the editor (includes sample
edit screen). FIG Installation manual
included. Listings of utility and other
sample screens. Available separately for
$9.95, which is credited toward system
purchase.

Media Available:

Approximate number shipped: 25

Price:

Eight-inch or mini disk.

$79.95 includes shipping. (Florida
residents add 4% sales tax.)

Delivery: 30 days.

Support :

OSI-FORTH Letters subrcription avail-
able for $4 per year. Contains fixes for
any new minor bugs that may be found, as
well as listings of application screens
donated by urers, or developed by
Technical Products.

Daniel B. Caton
TECHNICAL PRODUCTS COMPANY
4151 N.W. 43 St., 5507
P. 0. Box 12983
Gainesville, FL 32604
(904) 372-8439

NEW PRODUCT

DATRICON FORTH

Datricon now offers D-FORTR, a software
package designed €or use in conjunction
with microprocessor-based, STD Bus COP
patible products using a Single Board
System concept and offering a variety of
6 8 ~ x 1 6 5 ~ ~ processors. Datricon' s single
board controllers use interface standards
such as the STD Bus, RS232, and RS422 for
serial cormnunicationa and with or without
parallel I / O compatible with the popular
isolated AC/DC module racks.

For more information, contact:

DATRICON CORPORATION
7911 N.E. 33rd Drive
Portland, OR 97211
(503) 284-8277

Warning--this FORTH is different in names
and omitted 'vestigal words'.--ed.

re
Xl
n-
rd
3f
Le
iS

3r
ut
ar

es

I

4
I

J

-
' 2

ELEMENTS OF A FORTH
DATA BASE DESIGN

by Glen B. Haydon

In this day and age, data base design
and manipulation is one of the major
activities best accomplished with com-
puters. In practice, FORTH proves to be
an ideal language for developing and using
custom data bases. By comparison with
other languages, high or low level, FORTH
is a winner. It meets the requirements of
being interactive and providing documen-
tation as identified by Fred Brooks in his
book, THE MYTHICAL MAN-MONTH, as being
ideal for the development of new sys-
tems. The amazing speed and ease with
which custom data bases can be developed,
more than justifies the effort required to
learn FORTH.

I have developed a number of small data
bases of up to 800 records containing 128
bytes each to serve my specific needs. I
have also initialized, with simple for-
matted input and output routines, a curtom
data base for inventory control in a few
hours one evening. Having used languages
other than FORTH for similar work, it is
highly unlikely I will ever go back to
them.

This discussion presents a group of
utility FORTH word definitions which
facilitate the development of custom data
bases and a sample application using these
utilities to define a small file. A
number of techniques available in FORTH
are illustrated.

Some months ago, at a regular monthly
meeting .of the FORTH INTEREST GROUP in
!iayward, the prime mover of the group
distributed and discussed several FORTH
Screens which provided the foundation for
beginning the definition of a data base
file. I have modified his Screens
slightly and expanded them to provide a
general framework with which to define
custom accounting data bases. I will
assume that the reader has some knowledge
of the fig-FORTH Model and proceed with
the examination of Screens developed from
it. In the discussion, FORTH words are

enclosed in single quotes to set them
apart from the English words in the
text. In FORTH, these words are used
without the single quotes.

SCR I 21
0 1 S m 21: C W D m AIO WD m0 mTA CILC 1

2 .* mls d a m s t r a t i o n data rystm prwldu a p t t e r n for the'
3 CR .: further dwelcpnt of any typ of data b . ~ .
4 CR . s CR : u c l l l t l e r ace on 24, 25, and 26. The dmo f l l e *
6 CR .' d e f l n l t l a u are on 27. L l u n t a r y 111. wlprlatlm '
7 CR .* ut l1 l t l . r are on 21.
8 : RCOCCDE Crc CR .. Y ' TO KEY 89 - IF
9 29 22 W I WD UOP ;

I 27 mIt 69 miT CR CR cn cn cn
I h e bask.

f i l e f o m t i q dcflnltlcrrr are on S x n M 22 and 23. Sou'

mls 6 1 should qet 'pu s U r t d . '

I0 R(QzDE
11 rS
12
13
14
15

The first two Screenr provide eight
utility FORTH words for developing a data
bacle file. The comwnts included in the
Screenr within parentheses should, com-
bined with the mnemonic nature of the
words, give you a clue to what is hap-
pening. The first two words are variables
used in manipulating the file, ' R E C l ' and
'OPEN'. ' 2 @ ' is a FORTH word, and alias
for ID@', which fetches the next two
values beginning with the address on the
top of the stack and placer them on the
stack. The word, 'LAYOUT', places two
parameters of the new definition of a file
on the stack for subsequent use. 'READ'
in the first word that one will have
occasion to use in routine manipulating
records in the data base. It takes the
number of the desired record from the top
of the stack and, after checking to see
that it is a valid record, places its
value in the variable 'REC#' which is used
to identify the record then under con-
sideration. The word 'RECORD' takes the
value for a record number from the stack
and returns its address to the stack.

FORTH DIMENSIONS 111/2 Page 45

Finally, 'ADDRESS' takes the record number
at the variable 'RECI' and using 'RECORD'
leaves the address of that record on the
top of the stack. With only these eight
FORTH words: two variables, one utility
word, and four basic words for file refer-
encing, we can proceed to the definition
of three defining words in the next
Screen.

M ' Z I .
a :a S O Y D ~ J r1umcwrnwr- i .
I RIPO <UIuL cr-t. cmt tmld I
I JlcP , w , . I-.. (11. comt tor thl. * l l " l t i ~ I
I m s I LW*I. &r. CMC I
4 N K u l L S S . e * r s
' CTILW . W I I 5 cr..te * ert. 11.1J I
6 .YEP * .W.' (11. -t for tnr. * f r n l t l m

8 t m 5 5 .
9 F!LC Ct..C. . or*d sto19. . lIQ.tlOn

5 x 5) 1-I. .Mr..s I

12 (BL'IL35

*5$ I .5
L

The three words on the next Screen are
called defining words because they are
used to define new FORTH words as the
names of fields in our record and to de-
fine the name for the file we are
defining, each with specific properties.
These wo-ds utilize the combination of the
FORTH primitives '<BUILDS' and 'DOES>'
which are present in the Model. It may
take some time to fully appreciate what
these primitive words accomplish and the
way they work. Perhaps an examination of
what they are doing in this Screen will
help you understand their function.

Two types of record fields are
distinguished and defined with separate
words, a numerical or data field and a
text field. The first word, "DFIELD', is
used to add to a record being defined, a
field containing the number of bytes given
on the top of the stack and gives that
field a name. In subsequent uoe, that
newly defined word (data field name) will
cause the address of that field in the
record whose value is curreotly in the
variable 'RECI' to be left on the stack.
This word is used to identify the location
in a record where a numerical value is to
be stored in a binary form. I call it a
"data field", in contrast with a "text
field" in which the Length of the field
should also be immediately available.
Thus 'WIELD' is used to define a "text

field" which will identify a field in the
new record with a length in bytes given on
the top of the stack and gives that field
a name. In subsequent use, that newly
defined word (text field name) will cause
not only the address of that text field in
the record whose value is currently in the
variable 'RECI' to be left on the stack,
but also the length of that ficld, The
length is convenient when the primitive
word 'TYPE' is used to print the character
string in that field. Obviously the
length is not needed in a data field.
Thus, provisions are made for defining two
types of fields in a record. As nev
fields are added to a record in the course
of its definition, the current length of
the record is maintained on the top of the
stack.

~ m * n o r * r r
I d. u --- r .
I d r - d

d. 41 --
I d -- d. d
I dl. a. -
I a. 0 --

I . . .

Once the definition of the fields in a
record is completed, the value of the
record length remains on the stack. To
this we need to add values for the number
of records we wish to include and finally,
the block number in which the records are
to start, before we can use the defining
word 'FILE' to give the file a name.
Later when the new file name is used, the
address of the necessary file parameters
is placed in the recently defined variable
'OPEN' as required for access to any given
record with the words defined in the first
Screen.

With these two Screens, we have the
file utilities necessary to define a new
file. However, several characteristics of
the particular implementation of FORTH
which is being used are important. Most
systems created under the Model have 128
bytes per block although any multiple of
128 can be used. In these sytems then,
the largest record length can be no longer

Page 46 FORTH DIMENSIONS 112/2

E
a
a
b
t

f
b
b

i

U

C

1

P
5
5
i
dl
3
c L

Y

I

d
Q

0

b
P

f
t

I
I

I

' t
l a

9

F
d
Tl
d

S

- rn

e
n
3
Y
e

e

e
e
r
e

n

9

0

W

e
f
e

a
i e
ro
EK

Y '
re
ng
e.
he
rs
le
en
st

he
lew
Of
:TH
1st
.28
of
zn,
?ler

2/2

than 128 bytes, but with a larger block
size, larger records can be used. In
order to take maximum advantage of the
block size, it should be very nearly equal
to a multiple of the record length. For
example, a record length of 70 bytes would
not leave enough room in a 128 byte block
for a second record and in this case, 58
bytes of space would be wasted. If need
be, such a designed file would work, but
at the expense of memory space. Also, the
initial block to be used in the definition
created by the word 'FILE' must be chosen
according to the block size for the
particular implementation. For example,
block 400 in an implementation with 128
bytes per block would be block 50 in an
implementation with 1024 bytes per block.
Although, I find a block size of 1024 to
be more efficient and use it routinely,
the Screens presented here have been
written for and tested on an imple-
mentation with 128 bytes per block.

Before starting with a discussion of an
example of the application of these file
development utilities, several Screens of
utilities for use in the input and output
of numerical data will prove to be most
helpful. These include a group of double
precision utilities, date compression and
expansion routines, a numerical routines
for handling dollar amounts and storing
them as double precision integers.

i a

1 2
: J
:a
: 5

The double precision integer utilities
are used in date compression and expansion
as well as in the double precision integer
operations for dollar amounts. These are
simple extensions from the limited double
precision words found in the Model and
should require no further explanation.
The input on the stack before executing
the word and the output left on the stack

afterwards are indicated in the format
used in the fig-FORTH GLOSSARY. You will
note that several of these are mixed
double and single precision operations
which are sufficient for the requirements
of this program.

The date compression routine is really
simple. When I find the time I will
develop an algorithm to convert the date
to a true Julian day and store the least
significant value. This would make
calculation of the time between two given
dates easy. In the meantime, the present
routine allows one to enter the date as
numerical values separated by slashes, a
commonly used format, and reduce the value
to a single 16 bit integer requiring only
two bytes for storage. The routine
provides an example of using a delimiter
other than a space to parse 'WOBD' and the
use of 'NUMBER' to interpret a numerical
value without searching the dictionary.
After the parsing of the input, three
double precision numbers are left on the
stack. The word 'DATEBIT' defines a
simple algorithm which is applied to
reduce these three double precision values
to 16 bits. The execution of '?DATE'
first prompts with the format to be used,
then waits for the value to be entered.
The value is then converted to the 16 bits
and left on the stack for starage. since
' . I is used to conote "print" in FORTH,
'.DATE' is defined to print a properly
formatted date from a 16 bit integer on
the stack. This routine is useful as an
example of conversion of a binary value to
a text string for printing.

I 26
D CR : meo m: ?UIIM AKI .- .
1 : muLL 180 D* . : Ism 10 0. ; : BULL ;
~ : B W : I N F V T C I O D ~ - C (I :
4
5 * o s a u CTA u n m u WYIK * ISU crA ,
6 1 S W - A .

I 1 ddi - ~ R I Q I tor each wale Cbso I

1 d.1 in r.1. case d e x t u d for r m rl t!! 'CTA' 1
KCLU crA ,

m s i I I 5
CK

Finally, we have a Screen to define
some FORTH words used to input and output
dollar amounts and convert them to and
from double precision 32 bit integers with

FORTH DIMENSIONS III/2 Page 47

the necessary scaling for the location of
the decimal point. In FORTH, the use of a
decimal point forces an input number to a
double precision integer which takes four
bytes. A convenient FORTH primitive word,
'DPL' for decimal point locator, keeps a
count on the number of digits entered
following the decimal point. Utilizing
this value as an input for a case type
word, the numerical value entered can be
scaled properly, regardless of how many
digits are entered to the right of the
decimal if any. This method of executing
a case like routine is straight forward.
First, the action to be taken in each case
is defined. 'OSCALE' means that there
were no digits to the right of the decimal
which requires that the entered double
precision integer must be multiplied by
100. In a similar manner '1SCALE' is used
meaning that there was only one digit
entered following the decimal point and
the entered double precision integer must
be multiplied by 10. '2SCALE' does
nothing since no scaling is needed.
Finally, if more than 2 digits are entered
an error must have been made an an appro-
priate error message is given. Once each
of the cases is defined, their code field
addresses, 'CFA' , can be stored beginning
with the address of a defined variable
'NSCALE' and extending into the alloted
space. The word 'SCALE' then finds the
value of the variable 'DPL' and counts
over to the proper code field address
which is then placed on the stack and the
selected word is executed.

After this scaling operation, the word
to input a dollar amount '?$AMOUNT' is
defined which leaves the scaled double
precision integer on the stack ready to be
stored. Finally, a routine defined by the
word '.AMOUNT' connoting "print dollar
amount" will print the double precision
integer on the top of the stack as a
dollar value right justified in eight
spaces.

There are certainly other and probably
better ways to accomplish the work done by
these three Screens of utilities, but they
work. The way they work provides some
examples of the beauty of FORTH as it

exists in the Model.

With these five Screens, we can very
quickly define a record for a data base
with custom selected fields and then the
associated file characteristics. In the
past, I have several times included in a
data base values calculated from other
values in the base. On occasion, it has
been necessary to change one of the
original values. This has always required
that the calculated fields be redone,
too. I now find that it is more con-
venient to enter only the basic data. All
calculations can be made while the output
is being formatted and printed with no
significant loss of time. The slowest
part of printing the formatted result is
the delay in the output device.
SCR 4 27

0 CR ." WDi 27: DMO FILE - RECORD CXNfRATION '
1 6 2 WIELD TK; I a t 4)
2 30 WIELD NAME I i t m nme)
3 2 WIELD MY (the date)
4 4 WIELD DOLUR (a dollar momt I
5 280 (ncnbcr of records I 4oB (startirq block)
6 FILE m0
7 : IW I bnlt tor nme them #tore i t i n record 1
8
9 W C RUr MIN CMYE Uf'Mm ;

NAME CAOP 30 32 FILL WRY 1 TfX PAD CCUM

19 : .W (prlnt m e f l e l d 1 NAME WPE ;
11 (the r e s t lollow In the sane W J ~ I

13 : 1-R 'KA- W L I A R DI UPMTE ;
14 : . W L I A R W U A R W .- ;
15 : .REC CR RECl I! 3 . R 2 5- .NAME . M Y 2 SPACES .OOLIAR ;

12 : IMY ~ T E MY I u p m n ; : .MY MY e .MTE ;

As an example of the definition of a
new data base, I have chosen one in which
each record would be allotted 4 fields for
a two byte tag, a 30 byte stock name, a
two byte date, and a 4 byte stock price.
Though little could be done vith this as a
data base, it does provide an example of
each type of input. Finally, a simple set
of routines is given to clear the records,
input new records, and print out a list of
the records in the file.

As a matter of convention, I give each
field a name with no prefix. Thus, a data
field name will leave an address on the
stack and a text field name will leave an
address and count on the stack. By using
the FORTH connotations of'!' for store and
'.' for print, I define some utilities for
inputting data and text and printing out
the respective fields. From these util-
ities, I can assemble an input format and
an output format as desired. I have not
included routines €or error checking which

1

1

I

1

I

1

I
I

I

,

1

I

I

I

I

1
1

I

I

I

I

1

4
1

I
I

Page 48 FORTH DIMENSIONS III/2

would be most desirable especially in a
hostile environment.

Now, to examine the actual example of
:he definition of a file which we will
:all 'DEMO'. Each record will begin with
zero offset from the record address and a
'0' is entered followed by '2' for a two
5yte length of a data field to be named
' T A G ' . Many occasions in later
aanipulation of records make it desirable
:o have such a field for adding flags,
etc. Following this definition, the
Length value of 2 is left on the stack so
that for the next field, only its length
need be entered. In this case, a text
:ield of 30 bytes which is given the name
'W' which then leaves the value of 32
:the length of the 'TAG' field plus the
'NAME' field) on the stack. Then a two
byte data field, 'DAY' is reserved for a
16 bit compressed date and then a four
byte data field 'DOLLAR', for a double
precision integer value of a dollar
amount. With this, the 4 fields within
che record of a new file are defined.
Next, we will define the file name.
According to the utility for generating a
new file, we must first add to the value
of the record length remaining on the
stack, a value for the number of records
we plan to include in the file and then
the first block number to be used as
determined by the FORTH implementation in
use. Then, we use the word 'FILE' to
create a file with these paramters and
give it the name 'DEMO'. The data base
file ia now defined. For the record num-
ber whose value is in the variable 'RECP',
we can place the value of the address of
the data fields and the address and count
of the text fields on the stack by simply
entering the field name. Next, a few
simple utilities will make accessing these
new fields easier.

_ .

Remembering the connotations associated
with the FORTH words I ! ' and '.' we will
define words to input data or text to the
appropriate fields of that record whose
value is currently in the variable
'RECB'. These are simple file primitives
which will then be available for routines
to format input and outputs as desired.

The field 'TAG' is not used at this time
and specific routines are not defined. To
store a name in the name field, we define
the word '!NAME'. This routine first
fills the existing field with blanks,
ASCII 32 (decimal) and then pauses for
input from the keyboard. The input text
is truncated to the maximum length of the
text field if necesary and then moved to
that field. In order to output the name
in the field, we define the word
' .NAME'. In a similar manner, we define
'!DAY' to store a 16 bit integer value of
a date which has been compressed into that
field, In the earlier utilities, we have
already defined '?DATE' which waits for a
date to be input and leaves the compressed
value on the stack. All that is necessary
is to put the address of the field on the
stack with 'DAY' and then etore the en-
coded date there. We then define ' .DAY'
to output the date stored in the 'DAY'
field. We get the 16 bit value stored
there to the top of the stack and use the
previously defined word '.DATE' to output
it in the proper format. Finally, we
define '!DOLLAR' to parse a dollar value
input with a decimal point in any location
and scaled to a double precision number
which is then stored in the proper
field. In a similar manner' . D O L U R ' L S
defined to format the stored double pre-
cision integer to a right justified eight
digit number preceded by a dollar sign.
With these definitions, we have completed
a set of FORTH words to input and output
data from records in our data base.

Immediately after putting data into a
record, it is often desirable to see what
is actually present in that record. The
values in each byte of a record can be
displayed using a dump routine. Simply
place the desired record address on the
top of the stack by entering the record
number followed by our file utility word
'READ' and 'ADDRESS' followed by the
length of the record and the word for your
dump routine. But the byte values printed
out in hex or decimal are not really all
that helpful. It is hard to interpret the
numerical value in their byte pattern. A
convenient word ' .REC' is defined to print
out the current record nunber followed by

FORTH DIMENSIONS III/2 Page 49

the formatted output of the value in each
field using the above utilities and an
appropriate number of spaces and carriage
returns. This is the m e t rudimentary
form of a formatted output. If desired,
the output could be presented in reverse
video by a slight modification of this
routine. It could also be placed anywhere
on the screen.

SCR t 28
e CR : SCREEN za: caw FILE - CLVJI.MTA, INPVP, arrpvr
i clear especially taq i n the 0 record i n f i l e 1
2 : CLEAR.WTA 0 R W TK, 128 0 FILL m T E ;
3 (exanple o t fonnattrrq for i n p t)
4 . INPVr 0 R W T K @ 1* U P W m WP TK, ! m.
5 C R C R . ' W I ' E S N A M E -> ! W E
6
1 CR : mTcR AKlMT -> ! D U R
8 .AEC FLLSH ; (S a m t h i s r-rd on disk I
9

CR .* WIUI WTE -> * IMY (has d-foIlMt PCCUW)

[ilst files 1 t h r a q h t h e nmbrr In T X of 0 r e c o C ?)
la . curm o R W TK, e DUP a- I F CR CR : MPPY FILE
i i mop KSL i+ 1 DO F(KM I RW .REC m e ~ O I F CR CR ;
1 2 ;s
13
14
15

Finally, a few examples of formatting
input and output routines are shown on the
last Screen. First, it is desirable to
clear all data in a file with a vord
'CLEAR.DATA' before entering new data.
This particular definition clears only the
first block, all that is necessary in this
application. You should be able to modify
the definition of this word to meet the
requirements of your application and par-
ticular implementation of FORTH.

I use the 0 record in a file for a
variety of information about the file
which I can address directly from the
address of its first byte without using
the field definitions or I can use spe-
cific bytes or fields in ways other than I
have defined them. In this example, I ure
the value in the integer at the field 'TAG'
in the 0 record to keep track of the last
record currently in the file. When this
record is cleared with 'CLEAB.DATA', a
value of 0 is present in the location of
'TAG' which means that there are no
records present. '0 READ' places the
value of 0 in the variable 'RECI' and then
'TAG' places the address on the top of the
stack and '@I gets that value, the last
record number used in the file. To add a
new record, this value is increaented and
then duplicated on the stack. The top
co7y is stored back in the field of 'TAG'
in the 0 record which is updated. Then

the second copy is placed in the variable
'REC#' and we are ready to fill in the
information for the next record.

A series of prompts can be formatted on
the screen in any convenient arrangement
as in this example. Following the desired
prompt for each field, the previously
defined word is used to get the informa-
tion for the field and store i t there.
After entering a record, it is always nice
to see the data you actually put in. This
is done with the word ' .REC' followed by
the FORTH primitive 'UPDATE' to flag the
buffer as altered~ and 'FLUSH' to save the
new record on the disk in the file. This
assures that the image of the record which
is displayed is the version saved on the
disk.

An output format can be developed in a
similar manner. In this example I have
included a check to see if there are any
records in a file because the 'DO'.. .
'LOOP' will always print one loop and
peculiar output is generated if the bytes
in the fields are all set to zero. This
output routine presents a simple list of
the record numbers and the formatted
content of the fields.

In conclusion, I find this approach to
file definition is time saving and hope
that you will find it useful. The dis-
cussion of the FORTH utilitie: used to
define a new data base file and the
example example of handling data provides
some elaboration of the information in-
cluded on the Screens. This vill be a
review for one who already has learned the
primitives in the FORTH Model and under-
stands how the language works, but perhaps
the discussion of these Screens will help
those less experienced. There is nothing
sacred about the techniques used here.
Modify the various words to suit your
particular needs. It is easy enough to
develop new formats interactively. How-
ever, I would encourage you to utilize and
build on the standards of the fig-FORTH
Model. When the '79 Standards become
generally available, it should be rela-
tively easy to update your Screens without
changing the format of the record file.

Page 50 FORTH DIMENSIONS III/2

3 e importance of utilizing an accepted
standard in developing programs for
iitimate use in a wide variety of imple-
nentations of FORTH cannot be over-
onphasized.

I wish t o thank Bill Ragsdale for his
excouragement to write this discussion
-ased on his presentation to the FORTH
I m R E S T GROUP at one of their monthly
meetings last year.

-LyP L I CAT ION NOTE :

These FORTH routines have beendeveloped
: 3 a FORTH OPERATING SYSTEM for the
ZATHKIT H89. This system is available
from the MOUNTAIN VIEW PRESS, Box 4656,
Yountain View, CA 94040. The compiled
-WSTH program image can be saved on disk
z2d will be up and running in less than
f z u r seconds from a cold boot. The system
=as 1024 byte blocks which also increases
:he speed of operation.

However, after develoment, the Screens
iere loaded on a FORTH implementation
:?rived from the fig-FORTH FOR 8080
45SEMBLY SOURCE LISTING which is available
irm the FORTH INTEREST GROUP, Box 1105,

Carlos CA 94070,in printed form and
;:ready on disk also from the MOUTAIN VIEW
3 3 s . This version has 128 byte block
zz5 operates in conjunction with CP/M. TO
f71s has been added the fig-EDITOR from

5:ngle extension, DUMP, used to illustrate
:he appearance of the records as stored in
z 5lock.

- - -.-e fig-FORTH INSTALLATION MANUAL and a

assure that there are no errors in the
printed Screens.

BIBLIOGRAPHY

Brooks, F. P., Jr., TRB MYTHICAL MAN-
MONTH, Addison-Wesley Publishing Company,
1975.

fig-FORTH INSTALLATION MANUAL, GLOSSARY,
MODEL, Forth Interest Group, Box 1105, San
Carlos, CA 94070.

fig-FORTH FOR 8080 ASSEXBLY SOURCE
LISTING, Forth Interest Group, Box 1109,
San Carlos, CA 94070.

The printed session illustrated was
nade using the CP/M control P to echo the
-::put on the printer. The session starts
c : h CP/M loaded and its usual prompt.
?e CP/M file, FORTH6O.COM, is the object
nzule of the fig-FORTH Model. The
warning messages are not on Screens 4 and
f and the warning flag is turned off.
Tien, the Screens for the fig-EDITOR and a
g m d dump routine are loaded. Finally,
r y e Screens discussed are loaded. The
irle 'DEMO' is called and the application
- 5 some of the file utilities is illus-
:rated. This presentation will hopefully

mroQ
MRll
cIuI.mm Q

32TH DIMENSIONS III/2 Page 51

HELP WANTED

OK
S K A T U W

f &-TREE TELECONFERENCE

(415) 538-3580

If you are an active FORTH programer, or
just have an interest in FORTH, you will
want to save this phone number. With your
terminal or computer and a modem, the
number will get you on-line to a dynamic
data-base on FORTH.
Want to ask a question? Want to know
where and when the next important FORTH
IntereTt Group seminar, meeting, workshop,
or other event is going to be? The fig-
Tree has a calendar section where you can
find out about these events and let others
know about yours. Want to find out about
FORTH-related software, products and
services?

Dial-up the fig-Tree for on-line
information. Use any 300 or 110 baud
modem, and type several carriage returns;
then the system is self-instructing.

FORTH PROGRAMMERS Experienced with
dni/micro computers and peripherals to
produce new polyFORTH systems and scien-
tificlinduetrial applications. Degree
in science or engineering and knowledge
of FORTH essential.

PRODUCT SUPPORT PROGlUIMMER Responsible
for maintaining existing list of soft-
ware products, including the polyFORTH
Operating System and Programming Lan-
guage, file management options, math
options and utilities and their documen-
tation. Also provide technical support
to custmers.

PROJECT W A G E R Supervise applications
and special systems programing
projects: writing proposals, setting
technical specifications, customer liai-
son, hands-on programing, and
supervision of senior programmers.
Extenoive FORm programmiq experience,
some scientific or enginl!ering back-
ground and management skills required.
Bachelors degree or equivalent.

Contact: Min Moore
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 92054
(213) 372-8493

WRITERS WANTED

ANY FORTH SUBJECT
SEND TO:

FORTH INTEREST GROUP
P.O. Box 1 105
San Carlos, CA 94070

Page 52 FORTH DIMENSIONS III/T

INCREASING fig-FORTH
DISK ACCESS SPEED

by Michael Burton

Anyone who has used CP/M and has then
-sed 8080 fig-FORTH will have noticed that
:?,'!I is much faster than fig-FORTH when
yeading or writing data on floppy disk-
-3:tes. The reason for this apparent speed
:Ifferenee lies in the manner in which
I?,'Y stores its files as opposed to how
irg-FORTH stores its screens. (Editor's
-3te: Speed is also reflected in hardware
:?tails such as interleaved formatting and
:rrect memory access. It is not neces-
4arily a FORTH characteristic.) I shall
2::empt to explain the difference.

A single-sided 8" diskette formatted in
r-e normal manner contains 77 tracks, with
aa:h track containing 26 sectors with 128
::tes of data in each sector. In order
f:r the disk controller to be able to find
a particular sector in a given track,
-eader data is stored on the diskette j u s t
---or to each 128 byte data block - a sort
s f preamble. Among other information in
I-:$ preamble is the sector number. A
!>mat program writes this information on
r i c h track in a consecutive manner; in
:f?er words, immediately following the
-2iex hole pulse is sector 1,2,3, ... 26.

--.

A program that reads a sector must
f - r s t select the proper track and proper
sector, then must read that sector's data
2:i store it someplace for use. It is
farrly easy to select the proper track and
sector and read the data; the problem
:me8 in trying to read two consecutive
sectors. There is not enough time between
r -e time when the first sector's data is
:cad and the time when the next sector is
iiailable, to store the data from the
5-rst sector and request the data from the
second sector. This means that reading
::nsecutive sectors 5 and 6, for example,
requires a minimum of two revolutions of
r ie diskette.

CP/M accesses files faster than fig-
TI'RTH accesses screens because the files
a r e not stored in consecutive sectors.

CP/M uses a translation table to tell it
which sector to use. Someone figured out
that while storing the data from one
sector, about five more sectors go by
before CP/H is able to read another
sector. So instead of storing a file in
sectore 1,2,3 ... it uses its translation
table and stores the file in sectors 1, 7,
13, etc. This means that 1024 bytes of
information can be read or written in two
or three revolutions of the diskette
instead of eight.

What can be done about the manner in
which fig-FORTH reads/writes screens? A
CP/M-etyle translation table could be
added to fig-FORTH, but that would make
the diskettes, and the FORTH program,
incompatible with the rest of the FORTH
world. Instead, the diskettes can be
formatted to look like a CP/H translation
table, which is extremely easy and still
allows compatibility. A diskette would
look like this:

Sector

Oldfmmt: 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 U
Newformat: 11410236192151124 720 3

Old farmat: 14 15 16 17 18 19 20 21 22 23 24 25 26
Newfonmt: 161225 821 4171326 9 2 2 518

Most format programs use an incre-
menting register to supply the proper
sector number when formatting. To imple-
mnt the translation scheme, a table must
be added to the program and must be
accessed in place of the sector register
when formatting the diskette .

With this new format, fig-FORTR still
reads 'consecutive' sectors (1, 2, 3,
etc.), but they are available sooner.
Using the new style format, fig-FORTIl
should be able to read or write a screen
in two or three disk revolutions instead
of eight.

Two simple teats were run to determine
haw this affects fig-FORTH performance:

Page 53 T>RTH DIMENSIONS 111/2

II)Iu)uscm!m 1: 28 1: 17 12.5%
mY)saaau. 224 :53 63.z

If you can't reformat your dirkettes,
you may choose to copy diskettes r h -
lating interleaveing by this program. The
multiple screen copy definition ured for
the second test is listed in rcreen 167.

SCX # 167

MUSIC GENERATION IN FORTH
by Michael Burton

The General Instruments programnable
sound generator (PSG), the AY3-8910, can
be used to produce very acceptable three
voice music when properly programmed.
FORTH's background as a device control
language makes it a good choice to use
with the PSG for music production.

The programmable sound generator is
capable of producing sound on three
separate analog channels. The amplitude
and/or envelope of each of these channels
is also separately controllable. Although
the PSG is used by several manufacturers
on their music boards, the board that was
used for the development of the attached
music constructs is the S-100 Sound
Effects Board produced by Digital Research
Computers of Garland, Texas. This
particular board contains two AY3-8910
chips, allowing up to six voices to be
generated simultaneously.

Now, for an explanation of the music
screens. Screen 51 consists of defini-
tions of 110 port values and variable
declarations. The variable ALVl is the
melody voice amplitude (voice one) and the
variable ALV2-6 is the harmony voices
emplitude (voices two through six). These
amplitudes may be varied from 0 (off)
through 15. It is a good idea to keep the
hannony amplitude about two steps lower
than the melody amplitude, in order to
make the melody stand out. The variable
DVAL controls the length of the notes,
DVAL being the length of a whole note.
The variable IVAL controls the length of
the slight no-tone period between notes.
Together, DVAL and IVAI, control the song's
tempo. Experimentation is necessary with
there two variables to produce the proper
tempo for a particular song.

Screen 52 contains all the definitions
necessary to access the S-100 Sound
Effects Board in order to play music. The
only PSG registers currently being used in
muric generation are the tone period,
enable and amplitude registers. Note the
use of the 8080 fig-FORTH peculiar word

FORTEl DIMENSIONS III/2

P!. P! simply sends
particular I f 0 port.

Screen 53 marks the

a data byte to a

start of the actual
definitions used in producing a song. The
definitions vl through v6 are used to
select voices 1 (melody voice) through
6. These definitions do not turn the
appropriate voice on, they merely select
it so that a tone period (note) may be Pet
for that voice. Voices are actually
played only when a note duration is
selected. The definitions vldis through
v6dis are used to disable a particular
voice the next time a note duration is
executed. They do not turn a voice off if
it is currently being played, they just
turn it off the next time it is supposed
t o be played.

Screens 54 and 55 define the musical
3otes. The lowest note that may be played
- 9 b of octave 0, and the highest note
that may be played is b of octave 8.

Screen 56 contains the definitions
RINIT, VON and VOF'F. RINIT initializes
a l l the registers on each PSG. RINIT in
:he only place vhere the amplitude of the
;.sites is initialized, and should be used
2efore playing any music. The definitions
;'3N and VOFF are used to turn all selected
;.3ices on and off. They are used inside
:he note duration definitions and are not
want to be used in a song definition.

Screen 57 contains definitions for rest
hrations, from a sixty-fourth rest (fr)
f 3 a whole rest (w r) . It also contains
:efinitions for slur note durations, from
a sixty-fourth slur (fs) to a whole slur

A slur note is one that does not go

allowing a smooth transition between noter
&en desired. Screen 57 also contains
:cfinitions for dotted slur durations,
irom a sixty-fourth dotted slur (fds) to a
&3le dotted slur (wds).

us). _ _ _ -:< after its duration is finished,

Screen 58 is the last of the music
rsnstructs screens, and contains defini-
: lone for note durations, from a sixty-
isarth note (f) to a whole note (w). Note
x a t after the note is turned off, a

slight delay (IVAL) ir introduced so that
the notes will be dirtinct from one
another. Screen 58 also contains defini-
tions for dotted noter, from a dotted
sixty-fourth (fd) to a dotted whole note
(vd).

There is room for improvement in these
music definitions. Control of the notes'
envelope could be introduced to simulate
other musical instruments, and
restrictions imposed by the non-interrupt
nature of the note duration generation
could be eliminated. These exercises will
be left to other aspiring composer/
programmers.

? I
I : #

5
6
7
?
9

IL
I I
I 1
I 3
I 4
I5

Yore icflnitlonr
n ~ R U I L D \ c. c. ML\> nup I + re WAP c* T O -
Lf an? n M L f bLb n c l LE L1R n c l l
nc Cfr n d l l FR rnr n 0 1 LR 12r n II
I9 or7 n 1 1 19 r'l* n 111 111 a t 1 n a 1
17 ocq n bl r 7 177 n c ? 17 n u n c12
IF. u47 n d l 2 1 5 ILD n I S I90 n I 2
I4 1 F C n q 2 L4 an4 n q l 2 I4 LlC n a?
I1 Pt4 n h? 0 3 C I C n c l I1 8116 n c I 1
b l 074 n d l 1 I2 IF6 n e l #2 ICI n f I
r? MIL n 93 I 2 0% n 911 a1 (I30 n a3
DI v f A II b l DI enc n c4 01 mc3 ?I e l 4
@ I Y92 n d l 4 I1 (I71 n * 4 D l U6L n I 4
111 I l k n 9 4 II 1 2 U n 914 I1 UIC n a4

u s m i U MY^ 1

I
,PEL i

en 14c n n l
I r I?r n I l l
1 L 061 n a l l
I F . 017 n d l
05 I47 n I 1 2
I4 111 n a 0
I3 LSJ n 61

LA4 n 1 1 3
I2 Y 1 1 n a 0
n I #M n d4
u l 0 5 1 n 114
Y I V I C n a14 - - >

SCM I 55
I f ruslc - i a p r i m e n t a l Conmcrucca 052h I I - *Po I
1
2 f not. d*flnltlc
3 II IkD n b4
4 II K 9 n d15
5 eo 1 9 r n q5
6 0 1 I7P n b5
7 I1 C64 n dIF.
a an 151 n q6
9 ell L3I n bc

i n am a12 n 617
I 1 ma # I 0 n 0 7
I ? a@ n71 n b7
I 1 LD I19 n dll
I4 LP # I 1 n RR
1 5 #I 1.10 n ha

I
#I ILl n e l 5 u# (IU5 n d5
LI I n 3 n I5 a0 LA9 n 115
II 189 n a5 I0 La6 n a 0
IL I71 n c l 6 On I 6 A n d6
#a I 5 9 n fh LP D54 n I l k
II 147 n a6 MI 1 4 3 n a16
IC n3L n c I 7 be C 1 5 n d7
In I20 n 1 7 #I LZr n I17
In I 2 4 n a7 La a 2 2 n a17
La L1c n clR ne I11 n 48
Om D I 6 n I 0 I b e l 5 n (18
a 1 1 1 2 n a 1 LI a11 n a10

I C Y I 56
I I nuslc - Laperim~ntal Constructs
1
2 f Clear a l l r w i c board reqs and set ampllcud~s I
I : K l N l t U t F W U L C I at+' U I A # L E 2 3 I DU I CMYIILL I
4 7 I W L I SLT LOOP I b 0 Do ALV2-6 D I ShT W O Y
5 eL lld W I I SET LOOP 2 +LOOP I CMIIIILL I 2 V O l C L I
6 A L V I @ M P i
7

1 f voicer *nable/dlsabl~ d*finitionb
9 I vo* C l A S K I C LIIAMLLI L W K 2 C L U U L L I ;

I* : v o t k I F r CIIAbLLl I Y 1 L U l L D 2 I
11 -->
12
11
I 4
15

I

ok

>&I. I 5 1
Y (nusic - bZplllrmtal Construer1 0 5 2 4 U I - * h 1
1
2 (w s c J*ratlon d*flnitions I
3 : r <bUlLDS C, WES> CD OVAL P S l A k I I W LOOP i
4 64 I f r 32 r t r 16 r ar LO r *r
5 c4 r qr I 2 r hr 01 r w r
6
1 I Slur duration definltlons I
0 : sl <nUILDS C. NICS> CL OVAL @ W A P I I Vn* Do LOOP I
9 r.4 .I fs 37 S I t s 16 a1 ss 18 II as

l a e4 . I qs I 2 .I h. I1 a1 y.
I 1
I ? I Docred slur buratlon b*flnitlons I
1 1 I i d s WJAL c 64 DUP z + I VIWI w Lone ;
1 4 i tda IS 1 s I I sds ss t s I I *ba as s8 :
IS I qda OI *s : : hds hs 9s I : u 6 S WI ha I -->

-FORTH DIMENSIONS III/2 Page 55

s i z 4 i i - m n I 0 I nusic L n p r l m t b l Conitruela
1
2 I not. durat lon dellnlllona I
1 I d cLUlLDC C. WLSD CC UVAL L P A r I I VW h) LW*
4 VOW ;VAL # I UU LOOW I
5 6 4 d t 3 2 d I 1 6 6 . I C O *
6 M 4 d q I Z d h I l d r
1
I Dottad mot. durat ion datlnlrlona I
9 : do VOtP lVAL I W LOOP I

K N I 58

10 I fd I ds do 1 t t d 16s 40 I : sd W b du I
I 1 ad oda do I I q4 qda do i I M M a do :
I 2 : r d d l d o l
I 1 ML'lRAL U l U I T
1 4 C l i .. WSIC Constructs Loaded .
I 5 i s

scn I 5s
n r

1u
I 1
1 2
I 3
1 1
I5

0.

? : MI11 *4 C5 m l 15 V 2 a \ 1) f5 V4 C5 V5 f > a8 C 4 0
1 v l q 5 " 5 d l4 "6 d 0 as " 1 c6 v l 1 0 v5 d4 V.l 43 0 V2 a5
4 v l f5 v4 b4 YL. q l q v 2 q5 v 1 a5 v4 a14 v5 c4 u6dlr q
5 v 2 1 5 v3 c5 v4 1 4 v > c4 "6 t l q. v2 a 5 v l 15 v4 c5 .I
6 r l c6 v l a5 v1 15 v2 f6 qd I
7 : n w Y ~ ~ I S Y ~ O I S vwlr v6dls v l c5 r l c5 *a v l t5 v2 1 5 a
8 "1 a 5 v2 a5 "3 c5 "4 I 1 v5 1 3 a. Y 4 c4 a v4 a4 as
9 "I q5 v 2 95 "1 a14 "4 c4 1 VI t5 v z 15 VI a4 V(14

10 v5 1 3 q VI 95 r 2 q5 v l d l 5 14 a4 v5 5 4 VL f 3 -8 V l 1 5
11 v 2 I 5 . v l d5 v 2 d5 v l 411 v4 a l l v5 a11 v l d l l eb
1 2 v l f 5 v2 15 v l d5 as "4 q4 v5 a l l *I v4 a4 aa d4 9 I
13 - - >
1 4
i5

s c n I 6 5
0 ' S o w - 11.6 R1v.r Va l l ey ~ ~ 1 7 m - a m I

1 I 11111 " l d l l V461. V 5 d l l VLdI. V l c5 v 2 c5 a. V l 15 v 2 f 5 a
I V I a5 vz a5 VI cs ~4 r 3 ~5 r i .S ~4 c4 VI as vz a*
4 VI 1 5 v* cs "4 6 4 VI C(VI er. vz COT VI 15 1 4 cs

6 u5 q4 *s V l a5 V? a5 V l f 5 vs I 4 a v l 05 v7 05 v l 05

c ss V I " I a14 v4 a4 vs C) q I

5 v5 a4 v W l 1 -1 v5 c4 a1 v l a15 v7 4 0 v l a5 v4 c5

7 v1 c5 v 5 9 4 Y' c4 qs v2d lD v4 a4 as v 1 bl V I I 4 v5 45

9 : Ucl4 v l d l i v4d1s v5dls vhdls v l c5 v2 c5 as v l 1 5 v2 15 a
1C r i a5 v l a 5 v l CT v4 tI w5 f l as v4 c4 *a m4 as v l 95

:2 v 1 q5 v l 95 v l a5 v4 a14 v5 c4 -1 v l a5 v2 45 '11 d l5

1 4
1 5 -->

SCN I 66

1 1 vz 95 VI a14 ~4 C I VI 15 vz Is VI a4 V(14 .S ~6 c4

1 3 v4 c5 ~5 I I .
I I SOW - Mad I l v a r Val lay 0 5 l l I l - R W I
1
2 a Y k 5 v l CC v2 e6 V3 15 v4 05 US .I3 v6 a12 as V 1 415
3 v 2 a 0 v l I 5 v4 d5 *a v 6 d i i v5 1 4 am q4 as a I 4 q
4 v l A5 v2 65 v l q#4 v4 1 4 v5 ill a 1 v l CIS v2 e l 5
5 v5 b l 0 v l c5 v2 c5 v l a4 v4 t4 v5 c4 qa v l 15
6 v l f 5 v l c5 v4 a4 v5 e l as a v l a5 v2 a5 v l f 5
7 "4 04 v5 d4 VC 0 3 q v l 95 r 2 q5 v l a5 v4 a14 v5 c4
8 vfidis es v l 1 5 v l 15 v3 a4 v4 c4 v5 1 3 ql v l a14
9 v4 d4 ss a 1 v3 a4 v4 c4 q 8

I P : IIW v 1 c* v l cs v3 15 v4 d I 5 v5 a 0 v6 a12 a. v l a15
11 V l a 0 I 4 45 el Ved1. V5 14 a4 be4 V l d5
I 7 v l d5 v l q l 4 v4 1 4 VS a l l as b l v l c#% v2 CIS ;
1 3 ->
1 4
15

K N # 67
I I Sow - N.d Ylvar Val ley I 5 1 4 # 1 4 - I
1

I v l c5 v4 a5 as a v l a5 v2 a5 u l I5 v4 M VS d4
4

2 : w7 V l c5 V l c5 V l a4 v4 1 4 v5 c4 q C l V l 15 v2 15

5 V I f 5 v z 15 VI c5 V(a4 v5 c r v6 1 3 *a a8 u2 a5
6 VI f 5 V(c5 as 15 va c6 VI a5 0s v2 16 u l c* v4 1 5
I v5 a4 qd I
8 t RIVCR I C O I ~ WAL I 256 i v c l ~ I
9 11111 RR2 I 0 3 NU4 11115 I R 2 R I l H I 4

v6 q l q v 5 d l i v6d la v l 95 v2 q5 v l a5 v4 D l 4 OD

10
I 1 Cn : mad n l w r v a l l e y 1 4 . d
12 I S
11

R17 n13 1 1 4 RnS RRl.RlNlt I

14
I5

011

1
7
1
a
5
b
7
8
9
1I
11
12
13
I 4
15

t X 1 v l qh v 2 -6 "1 c h "1 7 % "5 c4 wh cl r 3 d l a v 4 d l b
v l a6 v l a5 v l cc 11 45 v l a5 v. c5 .. h v l a6 ~2 I(.
v l c6 v4 a5 q v ld ra v4d is v l 16 v l I5 a v l cI, w 2 a 5
v l 1 5 v4 c5 4s n v l a IL v l l h w l W V 4 .I5 q wld ls
v 4 d l l v l qh v l 95 a v l a16 v l a 0 v l a6 v 2 1 6 v l CL
v4 a5 y r l d l l v4dla v l qC v l q5 V l 16 v l 15
v l qL " 2 e h v3 cL v4 q5 q v l d 1 i v4dls v l e* v l - 5
v l c6 r2 q 5 v l 0 5 v4 55 .b y v l d l r V l d l l v l d l s Y 4 d l b
V5dI. V6 q l s a s ,

i JC2 v6dll v 2 95 v l a5 v4 C4 v l a85 c6 a 1s v441S 5
v l a15 v b q l c4 v l ch a 415 a c6.e a15 I

I X I c6 v l d l 5 "4 d04 a v 2 d l s v l d l s v l a 0 q5 as v 4 d L s
s v l d l 5 " 2 a14 v l q4 w4 a l l as d l l q8 q3 eS 4 0 1 i -- D

SCI I 71
I I sow - J.SUS cmrist Superstar
I

SCM I 71
0 I Sonq - Jamus Cbrlst SuwrsLar 051281-lPs)
1
2 I X b V 2 a5 V 1 d 0 V4 1 3 V1 C 6 SS V4dl l s V 4 54 1 4
3 a a v l a15 c6 d IL v l 4 0 v l -5 w 4 c4 a v l cfi e
4 a15 v 2 15 v l d5 w4 q l a v1 c4 d86 v2 a15 v l a5 v 4 c4
5 v l c6 v2 95 "1 *5 01 v4 q l q v l d l b v2dls v l d l s I
6 I JC7 c4 e l v l 95 s 1 a15 vl 15 v3 d5 I a5 v1 c6 v 2 q5 .
7 l a h v l d l s v2dl5 u l d i s v4 I 4 a1 v! q5 s s a15 v l 95
8 v3 d l 5 a v l c6 v l a5 1 11 ql v4 c4 q v l d r s v l d l r v l d l s
9 I 4 as v l a5 s 1 v ? I5 a v l d i a v l ch f h v l c6 v3 a 5

I I a. v4 c b 9s 11 q I
11 -D
17
1 1
1 4
15

1 I X 8 v l d l s 12611 v l d l a v4 c4 ms v l qb 1 1 tb v2 C 6 v l a5 1
3 v 2 d l s r l d l s v l 616 a CL v l q5 v l a5 l a ql v4 9 1 a 1
4 v l d l i v l d l s v l d l s c4 as v l q5 a a a 0 v2 15 v l d5 a -5
5 v l C6 v l q5 as 0. V4 93 as C4. VldlD v l d l l v l d l l
6 1 4 as v l a5 a a v2 15 i vZd1i v1 ch a I6 v l c6 v l a 5 a1
7 v4 c4 qa 11 *a c4 I
8 I JCI v l d l r v 2 d l i v l d l a v4 1 4 m l v l 16 1 I l h s I 6 v l C6
9 v l a5 a ~ 2 6 1 1 v l d l a v l dl4 a 1L v2 cb v3 a5 D l v4 d l 4

1 I qs c4 *s 13 v l d l s v l d l l v l d l l C b as v l I16 I S I S
I 1 v? c6 v l a5 a v l d l s v l d l l v l d l 6 a CK v2 05 v 3 a5 11
12 v4 a11 91 q5 P i
I 3 -)
1 4
15

a
3
4
5
6
7
I
9

1I
11
I2
11
1 4
I 3

' I X1I v l 95 v2 a5 v l C5 vb q4 v 5 C4 Vh C l q *Id11 v3dlr v4dlr
VI m 5 c5 v l q 4 v l a1 h v l a5 r l 15 w l c5 vb a4 v5 1 4
v6 1 3 y r l d l s v l d l l v 4 d l l v l I 5 c5 v l a4 es h I 5 v l a15
v l d5 a14 v5 a13 v6 a12 q vZd1s r ld1a u4dls v l 95 a15
a5 v2 1 5 "1 c5 "4 a4 v5 1 4 v6 I 3 q v 2 d l l v3drs v4dls v l q5

1 5 . q5 v 2 a5 r l c5 "4 q4 v5 v5 e4 v6 el q v l d l i v3dIs
~ 4 6 1 s v l a5 a e5 v2 q4 "1 a4 01 ma v6dls v 5 q l qs a v5dls :

' -D

I

I
2 I X I 1 v1 0s v2 .5 v l c5 v4 c4 q VlJ1. " M I . W l .5 a c5 v2 0 4
3 v3 -4 v4 c1 as qs q l a 1 c4 a 11 v l a5 v2 15 v3 c5 q v l d l l
4 VWIS VI 1 5 c5 v z a4 VI r r v4 11 qs 0s a? a41 VI a15
5 v? I 5 v l d5 q v l d l l v l d l s v l q5 a15 a a5 w l f 5 v l c5 v I 1 3
6 q V 2 d l l V h l l D V l 95 V 4 q1 4 1 V l 1 s 05 V2 V 3 C5 V 4 C4
7 q v l d l s v l d l l v l *5 e5 v2 q 4 v l 0 4 a* as v4 q3 qr . i
I .UrA A L V I 0 1 - ALVI 1 ALVl-6 C 1 - ALVI-6 I v l ALVI P U P
9 v2 ALV2-6 C MI v l ALV2-6 L M P ~4 A L V 7 - h C U P I

I I I X p l D M ALVI I 6 ALVl-6 I I

12
1J J C I JC9 JCII J C U JC2 JCA JCI JCI JCA Jbb JCS JC6 JCl JCU JC9
I 4
15 C I . J e o W Chrlmt Superstar loadad - I S

JC1 JC2 JCA JCI JCZ JCA 5,; J 0 JCh JC7

J t l l J C t A J C l l JCYA J C l l JCFA JCPA JC11 JClMD RlU11 I

OR

Page 56 FORTH DIMENSIONS III/2

bPTIMIZING DICTIONARY SEARCHES
An application program 70 screens long
took 210 seconds to compile; the new
dictionary structure reduced the com-
pilation time to 98 seconds.

Paul van der Eijk
5480 Wisconsin Avenue, 11128

Chevy Chase, MD 20015
(301) 656-2772

Recently, I finished the implementation
of fig-FORTH on my Radio Shack model XI.
I must admit that I did not follow the FIG
rnodel precisely; some high level defini-
tions were recoded in assembler to
increase their speed. For example, sign
extraction in the divide and multiply
vords gives an execution time improvement
of a factor two. These improvements are
predictable and probably implemented many
cimes already.

One deviation from the FIG model I want
to share with you is the structure of the
dictionary.

In the FIG model, the Link Field
Address is stored after the last character
3 f the name. When (FIND) searches the
Aictionary for an entry, the lengths of
:he strings are compared. If the compari-
son fails, and this happens a lot, the
:haracters stored are scanned for a high
3it in the last character. When the scan
stops at the last character, we know the
address of the LFA, because it follows the
last character. It will be obvious that
:he time spent on searching for the LFA
vill be linear with the average numbers of
Zharacters stored for an entry. One way
to get around scanning is adding an
additional byte in every dictionary entry,
indicating the actual number of characters
stored. Another approach was taken by
Xobert Smith, see FORTH DIMENSIONS, Vol.
1, No. 5.

The structure I implemented puts the
:FA in front of the Name Field Address.
.Then (FIND) stores the address of the NFA
in a machine register, a search for the
;FA is not necessary because it precedes
:he NFA directly. In addition, the char-
acters of the entry can be stored in
normal order, which makes changing ID.
unnecessary.

The new dictionary structure can
improve compilation speed substantially.

To implement the new dictionary struc-
ture, the following words have to be
rewritten:

CREATE VOCABULARY LFA NFA PFA .
(FIND) has to be rewritten as well, but is
not given here because it is machine
dependent.

fl (WA precerdm NQA I of 2:
I IIEX
2 : CREATF. - C I I U I Y M O P NCA ID. 4 HCSSACC SPACE TllEN
3 (chrck unlqw In WRRLNT and CONTEXT)
4 IIERE d u I m ~ e mn 11 t a w e n u b r r of chars atored)
I HERE OAO TDGCLYI IIERP. R + WP 080 m C G U
6 (d i e and d r l l a l t e r b l t a
7 DUP 2+ R I* -0fOVE (m v c entry d a m to I n s e r t LtA)
I UTEST IIERE I MERE I+ CUUEWT @ I
9 I> 3 t ALLOT IIERE 2+ , ;

10
I 1 : WA 3 - -1 TRAVERSE ;
12 : U A WA 2 - ;
13 : ? f A 1 TRAVERSE 3 + ;
1 4
1 5 -
0
1
2
1
L
5
b
7
I
9

L O
I 1
1 2
13
1 b
15

(LfA precurdm N C A 2 of 2: Rtil van der E l j k aprll-12-1981 1
: V O C A U I U R Y < I I I L U S CURYtlT @ 2+ , OAOOI ,

WERE VDC-LINK 0 , voc-LINK I
Docs> COwTcrr I ;

(Ihe f o l l w l n ~ charye In -PINO a p e d . up dlctionmry srarcltes
(ID came the CUREHT mnd aOWTEXT voeabulrr lea are the s a w .
(the chansr l m not necraaary lor thr nmu dlct lonary structure)

: - f l N D EL MOM llERE COWEXT @ @ (FIND) DUP 0-

)
)

IF DIOP UTEST CONTEXT e @ 0-1 -
I? IIERC SUAP (PII IO)
ELSE mop o

TUEN TllEtl ;
DECIMAL :s

POTOMAC FORTH INTEREST GROUP MEETING

Program was presented by Paul van
der Eijk on IQS - An Interactive Query
System.
lets the user create, edit, search and
list a file without writing a program.

The next meeting is Tuesday, Aug.
4, 1981 at Lee Center, Lee Hiahway at
Lexington St., Arlington, Virginia from

He described this system which

7:OO - 9:OOpm.

FORTH DIMENSIONS I11/2 Page 57

TRACING COLON-DEFINITIONS

Paul van der Eijk
5480 Wisconsin Avenue, 51128

Chevy Chase, MD 20015
(301) 656-2772

This short article describes a few
simple words to trace colon definitions.
When I am completely lost trying to find a
bug in a FORTH program, I use colon
tracing to get a print-out of all words
executed together with a few parameters on
the data-stack. Such a print-out ia often
enough to spot the bug; in addition, it
gives some insight how many times certain
words are executed which can help to
improve the execution time of a program.

How it works:

A technique to trace colon
definitions is to insert a tracing word
directly after the colon.

i.e., : TEST T1 T2 ; TEST can be traced by
having a definition compiled as if it
were:

: TEST (TRACE) T1 T2;

When (TRACE) executes, the address of
the word following it is on the return
stack. Subtracting two from this address
will give the parameter field address,
from which we can reach the name field
address using the word NFA. In order to
enableldisable the trace ouput, the varia-
ble TFLAG is used; a non-zero value will
enable the output and a zero value will
suppress the trace output.

Tl,e insertion of the (TRACE) word can
be automated if we redefine the definition
of the colon.

The colon is redefined to insert the
runtime procedure for the colon followed
by the address of (TRACE).

Note that the address of the colon
runtime procedure is obtained by taking it
from the code field address of the word
(TRACE).

Improvements:

1. If we save in (TRACE) the value of the
variable OUT and direct output to the
line-printer, words doing formatted
terminal output can be debugged
effectively .

2. A variable TRACE is introduced to
control the insertion of the word
(TRACE) in the new definition for the
colon.

If the value of TRACE equals zero,
(TRACE) is not inserted, if the value is
non-zero (TRACE) will be inrerted.

This enables tracing code to be
inserted in a selective way by changing
the value of TRACE preceding a colon
def ini tion.

i.e.:

0 TRACE I : TEST1 T11 T12 ; (TEST1 will
not be traced 1

1 R U C E I : TEST2 T21 T22 ; (TEST 2 can
be traced

U (t r h r eulon wrdw: Paul van dar L1)k aprll-IJ-I981)
1 fORTll D L C I N l T l M l S
1 0 V A I l A R U T f U C (control8 t ram output)
3 : (TRACE) (81- trace output. to be 1nwarr.d 0. f i r m w r d)
4 WUGC (trace ourput I f non-zero)
I It CI R 2 - WA DUP ID. (back to RA WA for)
6 d 3 1 M D 32 Y A P - SPACES (add 8p.cea to n m e)

8 I I (C N ;
9 : : (rdef1o.d to Jlucrt ftacm w r d after colon)

1 -2 4 DO sr(I + e 8 .I -2 +LOW (.tech)

10 ! L a c ICS? cuILI(T P m E x 7 1 UUIL
11 (IRA=) CIA W? e RCRL 2 - I , 1 ; lMt@3IATL
1 2
13 (exmpla: trace lollwin(w e of I and CI)
l b : I f i
1s I CI CI i ;s

NEW YORK CHAPTER

First meeting of the N e w York Chapter
was held on June 23, 1981. There were
five FIG members and one mu-FIG person
in attendance.
scheduled for August 25, 1981 and sub-
sequent meetings wery other month.

The second meeting is

Page 58 FORTli DIMENSIONS III/2

FORTH, inc. NEWS

;e ' re Growing

FORTH, Inc. expects to double its staff
;.:thin the next year to accotnnodate
.:.creased product demand and applications
:rogramming. (See job openings listed
+:sewhere in this publication.)

The latest addition to our staff is
:rogrammer Charles Curley. Curley is a
izrmer freelance writer and programmer who
?:,ts and publishes the Ohio Scientific
- 3 e r s ' Newsletter.

"I put F I G FORTH up in my own Ohio
:r:entific C2-8P DF and liked it,'' he
~xnnents, "but I wanted to learn FORTH
s;stematically, and I figured this was the
:rst place to do that. At FORTH, I get
- - 1 - = - d to do what I like to do.''

- .

::ner News

President Elizabeth D. Rather was a
w m b e r of a panel on programming languages - I - - -c small computers at the NCC Conven-
- . .-xi. She was featured in both Computer-
i-r?d and Computer Business News.

Programmer Mike LaManna has relocated
r: Long Island, New York, and is working
I: the 68000 polyFORTH. It should be
.-.;ailable midsummer.

?::yFORTH Palo Alto Users Groups Starting

Dr. C. H. Ting has volunteered to Chair
- - e Palo Alto Thread of the FORTH Usera
::~up for the first three months. Anyone
--.:crested in joining the Users Group may

I ::ntact Dr. Ting at Lockheed Missiles and
1 ;?ace Corp., (408) 742-1101 or A1 Krever

i: FORTH, Inc. (213) 372-8493.

?c:ent Applications

FORTH, Inc. has produced a computer
:=nerical control program for L 6 F

Industries ' rotating longitudinal- stretch
forming machine. This 80- f oot-long ,
three-story-high giant weighs over a
million pounds and pulls 750 tons. It is
used to form, stretch, bend and stretch
wrap aluminum, steel and titanium sheet
metal or extrusion parts (typically panels
used in C5A-sized aircraft).

An LSI-11 detects the yield point of
the metal and maintains a pre-set stress
as the operator directs the initial opera-
tion; it then takes over full control and
manufactures identical product ion parts.
This computer program, written in polp
FORTH, coordinates the motion of nine
simultaneously moving servo-controlled
axes with a resolution of .008". The
system also displays on a CRT the position
of all axes and a graph of the stress
curve showing the yield point of the
metal. Mike La Manna, Jim Dewey and Gary
Friedlander were involved in the project.

Starting FORTH Preprints Available

A few unsigned preprints of Startin - FORTH are available now for $30 + plus 6%
state tax). The Prentice-Hall edition
will be available in book stores September
8. To order a preprint, send a check to
Winnie Shows at FORTH, Inc., 2309 Pacific
Coast Hwy., Hermosa Beach, CA 90254 or
you may call her at (213) 372-8493 with a
VISA or MASTERCHARGE number.

FORTE, Inc. Seminars, Workshops, Classes

Iacatim Semimr

Chicago August 4 Augu s t 5
Boston August 6 August 7
Boulder, CO September 1 September 4
Los Angeles October 15 October 16
San Diego October 22 October 23

An introductory class in polyFORTH
programming will be offered August 10-14
at FORTH, Inc. Call Kris Cramer for
details (213) 372-8493.

;2X?H DIMENSIONS III/2 Page 59 "I

FORTH VENDORS

The following vendor. have verrionr
of FORTH available or are
conaultanta:

WEA UICEO
Professional Managmat Servicer
724 Arartradero Rd. #lo9
PA10 Alto, CA 94306
(415) 858-2218

Sierra Computer Co.
617 Hark NE
Albuquerque, "t4 87123

A P P U
IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(4 1 5) 525-9452

George Lyona
280 Henderaon St.
Jerrey City, NJ 07302
(201) 451-2905

Micronotion
12077 Wilrhire Blvd. #506
Los Angelea, CA 90025
(213) 921-4340

moss coIIpILEus
NAutilur Syatew
P.O. Box 1098

(408) 475-7461
SAnta Cruz, CA 95061

polylDRTd
FORTH, Inc.
2309 Pacific Coaat Hwy.
Hermosa Beach, CA 90254
(213) 372-8433

LYNX
3301 Ocean Park 1301
Santa Monica, CA 90405
(213) 450-2466

M h B Deaign
820 Sweetbay Drive
Sunnyvale, CA 9U86

Ilicropoli,
Shaw Lab., Ltd.
P. 0. Box 3471
Rayvard, CA 94540
(415) 276-6050

north Star
The Software Work., Inc.
P. 0. Box 4386
Mountain View, CA 94040
(408) 736-4938

081
Consumer Caputera
8907 Ldeaa Blvd.
LaMena, CA 92041
(714) 698-8088

Software Federation
44 Univeraity Dr.
Arlin6ton Heighta, IL 60001
(312) 259-1355

Technical Product8 CO.
P. 0. Box 12983
Cainrville, FL 32604
(904) 372-8439

Tom Zi-r
292 Palcato Dr.
nilpitar, CA 95035

WOO b 6809
Kenyon Microryatemr
3350 Walnut Blvd.
Hourton, TX 77042
(713) 978-6933

mr-11
Laboratory Software Syatem8, Xnc.
3634 klandeville Canyon Pd.
Los Angeler, CA 90049
(213) 072-6995

John S. J w r
P. 0. Box 348
Berkeley, CA 94701

ns-80
Hiller Microcomputer Servicer
61 Lake Shore Rd.
Hatick, MA 01760
(617) 653-6136

The Software Farm
P. 0. Box 2304
Perton, VA 22090

Siriur Syatew
7528 Oak Ridge b y .
Knoxville, TN 37921
(615) 693-6583

IOM
Eric C. Rehnlrc
540 S. b n c h Viev Circle #61
AMheim Hill89 CA 92067

~ / ~ / ~ ~
Laboratory Microryrtau
4147 Beethoven S t .
Lor Angelea, CA 90066
(213) 390-9292

Mitebell E. T h i n Engineering Co.
9575 Genesre Ave. #E-2
Saa Diego, CA 92121
(714) 455-9008

C.aowlraat
Henry L u e n
1259 Cornell
Berkeley, CA 9b706
(415) 525-8582

Applicatiom ?ackqee
InnoSgm
2150 Shattuck Avenue
Berkeley, CA 94704
(415) 843-8114

Decirion Reaourcer Corp.
28203 Ridgefern Ct.
Rancho Palo Verde, CA 90274
(213) 317-3533

? insre , Board. d Ikcbima
Da tr icon
7911 NE 33rd Dr.
Portland, OR 97211
(503) 284-8277

Porvard Technology
2595 Martin Avenue
Santa Clara, CA 95050
(408) 293-8993

Rockuell International
Microclectroaicr Devicea
P.O. Box 3669
Anaheim, CA 92803
(714) 632-2862

Zeodex Corp.
6398 Dougherty Rd.
Dublin, CA 94566

Variety of low Praducta
Interactive Computer Syatemr,
6403 Di Mrco Rd.
f m p , PL 33614

Mountain Viev Preaa
P. 0. Box 4656
Mountain View, CA 94040
(4 1 5) 961-4103

Superroft AlrOCiAtcr
P.O. Box 1628
Ch.npaigo, IL 61820
(217) 359-2112

cmsnlturt.
Creative Solutiona, Inc.
4801 Randolph Rd.
Pockville, 1Q) 20852

Dave Boulton
581 Oakridge Dr.
Radvood City, CA 94062
(415) 368-3257

Elmer Y. Fitter).
110 Hc Cregor Avenue
Mt. Arlington, NJ 07856
(213) 663-1580

Go Polrn
501 Lakemead Way
Pedvood City, CA 94062
(415) 366-6124

Inner Accear
P. 0. Box 888
Belmont, CA 94002
(415) 591-8295

Page 60 FORTH DIMENSIONS 1II/2

I

DECOMPILER FOR SYN-FORTH

SYN-1 Urer's Group
PO Box 315
Chico, CA 95927

The following decompiler works very
e l l except that because INTERPRET ir not
remembered by ;S nor (;CODE-) nor QUIT,
:h is FORTH decompiles loop I

I I J ->

ENGLISH FORTH APPLICATION

Golden River company har been using FORTH
for the RCA 1802 for the last three years,
to fill a need for a l w cost development
8nd prototyping tool with potential for
being u8ed at remote sites where power is
not easily available.
The most interesting concept in the
equipment ir it uses 32K of dynamic RAM as
rtorage apace for up to 30 screens of
rource FORTE code. The equipment is
designed with law power in mind and is
normally ured like an electric car--it is
urually kept connected to an AC source,
8Ithough it has nine-days battery life and
can be ured remotely.
The product ir currently being shipped in
Europe and will be introduced in the U.S.
mrket through Golden River Corporation,
7315 Reddfield Court, Falls Church, VA
22043

For -re information, contact:

Golden River Company, Ltd.
Churchill Road
Bicester, Oxfordshire OX6 7XT
England
Phone: Bicester (08692) 44551
Telex: 83147 V U O B G 'GRIVER'

GET READY!

FORML's COMING!

I
Page 61 1 WRTH DIMENSIONS II1/2

NEW PRODUCT
ANNOUNCEMENT FORMAT

In the interests of comparison uniform-
ity and completeness of data in new
product announcements, FORTH DIMENSIONS
requests that all future new product
announcements use the following format:

1. Vendor Name (company)

2. Vendor mailing address

3. Vendor street address if PO Box.
Used as mailing address. For
reference file.

4. Vendor area code and telephone
number

5. Person to contact

6. Product name

7. Brief description of product
uses/ features

8. List of extras included (editor,
assembler, data base, g8111e8, ete.)

9 . List of machines product runs on

10. Memory requirements

11.

12. Tell what manual covers

Number of pages in manual

13. Indicate whether or not manual is
available for separate purchase

14. If manual is available, indicate
separate purchase price and whether
or not manual price is credited
towards later purchase

15. Form product is shipped in (must be
diskette or ROM-no RAM only or tape
a y s terns

16. Approximate number of product
shipments to date (product must have

Page 62

active installations as of writing--
no unreleased products)

17. Product price

18. What price includes (shipping, tax,
etc.)

19. Vendor warranties, post sale
support, etc.

20. Order turn-around time

MEETINGS/EVENTS
ANNOUNCEMENT FORMAT

In order to have uniformity and insure
complete information in all meeting and
rpecial event announcements, FORTH
DIMENSIONS requests that you use the
following format:

1. WHO is holding the event (organi-
zation, club, etc.)

2. WHAT is being held (describe
activity, speakers' names, etc.)

3. WHEN is it being held (days, times,
etc.; please indicate if it is a
repetitive event--monthly meeting
etc. 1

4. WHERE is it being held (be as com-
plete as possible--room number,
etc.)

5. WHY is it being held (purpose,
objectives, etc.)

6. REHARKS and SPECIAL NOTES (is there
a fee, are meals/refreshements being
provided, dress, tools, special
requirements, pre-requisites, etc.

7. PERSON TO CONTACT

8. PHONE NUMBER/ADDRESS (include area
codes, timer to call and give work
and home numbers in case we need
c 1 ar i f i ca t ion)

FORTH DIMENSIONS I I I / 2

FORTH STANDARDS CONFERENCE
ROCHESTER, NY - SPRING 1981

Conf erence
Purpose :

Attendee
Select ion
Priority:

Registration
Form, Complete
and return to:
FORML
PO Box 51351
Palo Alto, CA

94303

Accomnodationr
De s ired :

Page 64

1981 FORML CONFERENCE
Asilomar, California November 25-27, 1981

ATTENDEE REGISTRATION FORM

The 1981 FOBML (FORTH Modification Laboratory) is an advanced seminar
for the presentation of FORTH language papers and discussions. It - is
not intended for beginning or casual FORTH programmers.

The FOWL Conference is limited to 60 FORTH programnets (approx. 30
family and other non-participants accommodations are also available).
The priority for selection of attendees is:

-
0

1st -Paper presentors who send in their 100-word abstract by the
deadline of September 1, 1981.*

2nd -Poster presentors who send in their 100-word abstract by the
deadline of September 1, 1981.*

3rd - FORTH programnets who wish to attend only. Depending upon the
response of paper and poster sessions there may or may not be
room for non-presentore.*

*The FORMI, Conference Referees will make the final decisions on
paperfposter presentors which will in effect determine attendance and
priority positions.

ADDRESS
CITY STATE ZIP COUNTRY
PRONE (Day) (Evening)
I have been programing in FORTH for: (years) (months)
Types of CPU's and/or computers:
I have authored the following papers and/or articles about FORTH:

I expect to: - present a paper, - present a poster session
- chair a section, - non-presentor

My tapic will be:

Roome at Asilomar include meals (including a huge Thanksgiving) and the
price of the Proceedings is included in participant costs.

Myself - Double $iio.oo - Single SlSOeOO -
- Wife/Husband/Friend ($85.00 for room and meals)
I will arrive the afternoon or night before, please reserve a room

for:

$47 .OO single Or -
#- on Tuesday, November 24 @ - $35.00 double

FOR MOW INFOBMATION CALL: ROY MARTENS (415) 962-8653
FORTR DIMENSIONS III/2

I

LATE NEWS

Mr. Roy C. Martens
For th I n t e r e s t Group
P.O. Box 1105
San Carlos, CA 94070

BURKLUND & ASSOCIATES
3903 Carolyn Ave
F a i r f a x , VA 22031

(703) 273-5663

June 29, 1981

S i rs :

T s k , T s k , Tsk! You r e a l l y d i d i t t h i s time1 T s k , T s k , Tsk.
The p r o d u c t r ev iew of T imin Eng. v e r s i o n of FORTH is t o t a l l y
b e s i d e t h e point...what you d i d , was c r u c i f y o n e of t h e f i n e s t
ve r s ions of FORTH c u r r r e n t l y a v a i l a b l e on t h e market, namely t h e
Laboratory Microsystems, 2-80 FORTH.

I bought Laboratory Microsystems 2-80 For th about 3 months
ago, and was e c s t a t i c w i t h what I had b o u g h t f o r a p a l t r y $50.
When I read your product review, I t r i e d t h e same d e f i n i t i o n s on
my 4 MHZ system and found t h a t a l l times were approximate ly 2-5%
less than your comparat ive data f o r T h i n s 8080 version...there-
f o r e w i t h t h e d i f f e r i n g CPU clock r a t e s of 4MHz f o r my and 6Hhz
f o r T i m i n s s y s t e m s on which t h e L a b o r a t o r y M i c r o s y s t e m s 2-80
ve r s ions were compared (how convenient is was t r i e d on Mr. T i m i n s
s y s t e m s) t h e 2-80 v e r s i o n s h o u l d r e f l e c t b e n c h m a r k t imes
approach ing 30% b e t t e r t h a n t h o s e c i t e d i n t h e c o m p a r i s o n test .
I would have t h o u g h t t h a t FORTH DIMENSIONS would have ~ t a f f
e x p e r t i s e of a b i t h i g h e r q u a l i t y t h a n t h a t r e f l e c t e d i n t h e
product review article.

A s fo r t h e t i p t o e i n g d i s c l a i m e r s v i a t h e E d i t o r s Comment...
hey, it j u s t won't wash1

I th ink t h a t FOFtTH DIMENSIONS owes a larae apology t o
LABORATORY MICROSYSTEMS, and at least a f u l l page of space t o t r y
t o c o u n t e r t h e damage you have done t o 2-80 FORTH; o r w i l l you
allow t h e o l d adage t h a t " the t r u t h never c a t c h e s up t o t h e lie",
p r e v a i l ? FORTH DIMENSIONS...Shamel Shame! Shame!

S i n i r e l y , /7

h b l i s h e r ' s Comment: The following l e t t e r w a s received i n feference to a Product Re-
7iea by C. H. Ting i n FORTH DINENSIONS, 11111, page 11-12, which compared some bench
marks between CP/M FORTH f ran T h i n Engineering and Z-80 FORTH from Laboratory Micro-
systems. We are pr int ing t h i s le t ter i n i ts en t i re ty for several reasons: t o correct
a q unintentional damage t o Laboratory Microsystems; t o ask our members whether they
&sire cornparisions between FORTH and other languages and between FORTH products; i f
we are to do cornparisions then i t w i l l have t o be by volunteers s ince w e do not have
a s t a f f , i t then becomes a problem of who and how, Any volunteers?

DIXENSIONS III/2 Page 65

How to form a FIG Chapter:

1. You decide on a time and place for
the first meeting i n your area.
(Allow at least 8 weeks for steps 2
and 3.)

2. Send FIG a meeting announcement on
one side of 8-1/2 x 11 paper (one
copy is enough). Also send list of
ZIP numbers that you want mailed to
(use first three digits. if it works
for you).

3. FIG Will print, address and mail to
members with the ZIP'S you want from
San Carlos, CA.

4. When you've had your first meeting
with 5 or more attendees then FIG
will provide you with names in your
area. You have to tell us when you
have 5 or more.

Northern California
4th Sat FIG Monthly Meeting, 1:00 p.m.,

at Southland Shopping Ctr. ,
Hayward, CA. FORML Workshop at
1O:OO a.m.

Southern California
Los Angeles
4th Sat FIG Meeting, 11:OO a.m., All-

state Savings, 8800 So.
Sepulveda, L.A. Call Phillip
W~SSOU, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:OO noon, Fuller-

ton Savings, 18020 Brockhorst,
Fountain Valley, CA. (714) 896-
2016.

San Diego
Thur FIG Meeting, 12:OO noon. Call

Guy Kelly, (714) 268-3100,
x 4784 for site.

Nor thwee t
Seattle Chuck Pliske or Dwight Vanden- -

burg, (206 1 542-8370.
Oregon
2nd Sat FIG Meeting, 1:00 pm, Computers &

Things, 3460 SW 185th %", Aloha,
Eric Smith, (503) 642-1234.

New England
Boston
1st Wed FIG Meeting, 7:OO p.m., Mitre

Corp., Cafeteria, Bedford, MA.
Call Bob Demrow, (617) 389-6400,
~ 1 9 8

Boston
3rd Wed MMSFORTH Users Group, 7:OO p.m.,

Cochituate, MA. Call Dick
Miller, (617) 653-6136 for site.

Southwee t
Phoenix Peter Bates at (602) 996-8398.

Tulsa
3rd Tues FIG Meeting, 7:30 p.m., The

Computer Store, 4343 So. Peoria,
Tulsa, OK. Call Bob Gilea,
(918) 599-9304 or Art Gorski,
(918) 743-0113.

Texas Jeff Lewis, (713) 719-3320 or
John Earls, (214) 661-2928 or
Dwayne Gustaus, (817) 387-
6976. John Hastings (512) 835-
1918.

Hid Atlantic
Potomac Paul van der Eijk, (703) 354-

7443 or Joel Shprentz, (703)
437-9218

New York Tom Jung, (212) 746-4062.

Hidwes t
Detroit Dean Vieau, (3139 493-5105.

Foreign
England FORTH Interest Group, c/o 38,

Worsley Road, Frimley, Camber-
ley, Surrey, GU16 5AU, England

Japan FORTH Interest Group, Baba-bldg.
8F, 3-23-8, Nishi-Shimbashi,
Minato-ku, Toyko, 105 Japan.

Canada
Quebec Gillee Paillard, (418) 871-1960

or 643-2561.

West Germany

Wolf Gervert, Roter Hahn 29, D-2
Hamburg 72, West Germany, (040)
644-3985.

Page 66 FORTH DIMENSIONS III/2

1'1

FORTH llImEnSlOflS
CORTH lWtCRCSt QROUP
P.O. Box 1105
Sen Carlos, CA 94070

Volume 111
Number 3

Price $2.50

68 Letters

73 FORTH Standards Corner

74. FORTH-79 Standard-A Tool Box?

78 FORTH Engine

80 FORTH, Inc. Line Editor

Recursion and the
Ackermann Function

91 FORTH, Inc. News

P 3 Marketing Column

96 Classes

g7 Chapters/Meetings

98 FORTH Vendors

Published by Forth Intemt Group

Volume 111 No. 3 8.ptember/October 1881

Publl8hM
Editor

Editorial Revlow Board

Bill Ragsdaie
Dave Bouiton
Kim Harris
John Jam-
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner
Bob Berkey

FORTH DIMENSIONS rolicits editorial matorhi,
comments and letters. No responelbility is auumed
for accuracy of material 8ubmltted. ALL MATERIM
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit givon to
the author and the Forth Interest Group.

Subscrlption to FORTH DIMENSIONS I8 free wlth
membership in the Forth IntcHe8t Group at $15.00 per
year ($27.00 foreign air). For membrrhip, chango d
address and/or to submit materlal. the a d d m ir:

Forth intereat Group
P.O. Box 1 lo5
San Carlos. CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charlw H. Moon In
1989 at the National Radb A8tronomy Obwmtory,
Charlottesvilie, VA. It was created out of diucrtlrhctiocl
wit.1 available programming tools. eauechlly for obwf-
vatory automation.

Mr. Moore and beverai associates formed FORTH.
Inc. in 1973 for the purpo8e of licenring and 8upOort of
the FORTH Operating System and Pmgmmmlng Un-
guage, and to supply application programming to mot
customers’ unique requirement8.

The Forth Interest Group ir centersd In Northom
California. Our membership I8 over 2,400 worldwid.. It
was formed in 1978 by FORTH programmer8 to oncour-
age use of the language by the interchange d id.r,
through beminam and pubilcatlons.

Page 67

EDITOR’S COLUMN
This month introduces the long-promised

MARKETING COLUMN. Considerlng that one of the
bmt ways to proliferate FORTH I8 to 8 0 1 1 it in the form
of appikntkns, 1 believe thir column will contribute to
the Hnanciai welfare of our members and help make
the FORTH language a force in the software world.
Quaations related to all phases of marketing from pro-
duct research and development to pricing. advertisinu
and distribution channels are welcome

Our next edition will be devoted to the conference
at the University of Rochester and will be coordinated
by Mr. Larry Forsely of that institution. One of my main
gods as editor has been to “de-Caiifornne” FORTH
DIMENSIONS and make It reflect more accurately the
opinions and techniques employed throughout the
FORTH world. This next edition is a bold experiment in
thk regard and I have every confidence in Mr Forsely
hdping to make it a successful one.

The brue following ROCHESTER will be devoted to
musk, graphics and games. Currently, this type of ap-
pllcstion is In very short supply and I am appealing to
our members to submit them as .soon as possible.
Pleare remember, YOU DON’T HAVE TO BE A
WFlilER-our staff will help provide whatever is neces-
sary to make your article or game pubiishable-but the
raw Ideas and code haw to come from you. Also, we
are not necessarily looking for lengthy, complex and
dogant applications-simple, instructive. short codes
often are best and the most useful.

Pleese contribute whatever you can--’ultimateiy the
quality and utility of FORTH DIMENSIONS comes from
our members!

C. J. Street
Editor

PUBLISHER’S COLUMN
Nov. 2-4: Mini/Micro Show. Anahelm, GA
Nov. 25-27: FORML Conference, Pacific Grove, CA
Nov. 28: FIG National Convention, Santa Clara. CA
Mar. 19-21 : Computer Faire. Sen Francisco, CA

FORTH vendors-these shows can be helpful to
you In 8everal ways. First. if you will send FIG approxi-
mately 500 flyers. 8% x 11, about your products, we’ll
dirplay them at ail four places. Second, you should ex-
hibit at the FIG Convention on November 28 at the Mar-
rbtt Hotel, Santa Clara, CA. An 8’ table is only
$SO.W-aend a check to FIG, today. Third, FIG has a
prime location at Computer Faire, March 19-21, 1882
In San Francisco. We have booths 1343C and 1442C;
ho8e face the central booth area and form an island
wlth eight other booths. Six of these booths are cur-
rently available. Lets get all FORTH vendors together.
All you have to do is call Computer Faire (415)
851-7075 and tell them you want to be in the same
Island as the FORTH Interest Group.

Roy Martens

F O R M DIMENSIONS III/3

LET

isturbed to see that you have recently
a review comparing our 2-80 FORTH

to TIMINS FORTH and stating that the
RTH is significantly slower than the

rersion. Please be informed that the
ark was run on an early version of 2-80

lvhich has not been distributed for the
-LP months. The current version that we
=-iv has been benchmarked by some of

Jnsatisfied customers. I think it reflects
m r l y on your publication that you would
s x h a review without checking the facts
a2 of the interested parties. If you people
=ally concerned with promoting the
7 language, please be a l i t t le more care-
.tC1 attacking the reputation and products

TW FORTH language vendors.

LABORATORY MICROSYSTEMS
4147 Beethoven St.
Los Angeles, CA 90066

r e fail to see how publishing a comparison
N of products that were on the market less
3 year ago can be construed as an attack
'7er that product or the reputation of i t s

inference has been made that Laboratory
ystems Z-80 FORTH is an inferior
i, or that i t has dissatified custorners. In

2, but we know of no facts that were inac-
:eiy reported. I f we are to provide the
TH world with useful product reviews,

xacy is important, and if Laboratory
xeystems knows of any inaccurate fact8 or

2-d care Lo provide us with an updated
.ow, ample space wi l l be provided.--ed.

'TE ,RS
Dear Fig:

Let me introduce myself: Pm Jim Gerow, en
avid MMS FORTH user, a FORTH programmer
(installer) for larger machines, and a member of
the local MMS FORTH user group.

I've been referred t Q you by Dick Miller of
MMS as a correspondent. Please le t me know
how I can be of service and how our MMS
FORTH User Group can support you.

Jim Gerow
1630 Worcester Rd., 1630C
Framingham, MA 01701

Thank you--we would appreciate any arti-
cles, ideas, bug . fixes, or usable programs or
tools you can send in. Looking forward to
hearing from you-ed.

Dear Fig:

San Oiego has a FORTH InteFeet Group that
meets informally each Thursday and somewhat
formally the 4th Tuesday o f each month.

Because of the different machines, MPU's,
and operating systems, (i.e., Disk or Cassette,
etc.) we have a problem of software exchange
(transportability). We are considering the
development of a communications package
involving RS-232 modems and software.

We are interested in finding out what FIG
has, i f anything, in standardizing any of the
communications such as protocol or hardware
specification.

Currently, most of the software exchange
involves hardcopy. If you have any information
relative to communications between FORTH
operating machines or protocol standards used,
we would appreciate your help.

K. G. b s c h
Rancho Bernard0
12615 Higa Place
San Oiego, CA 92128

O.K. members--how about giving Ken a
hand? Or better yet, send the info to FORTH
OIMENSIONS and we w i l l publish it for all of
our members' use.--ed.

Dear Fig: The hard- and soft-bound editions by
Prentice-Hall w i l l be on the shelves Sept. 8.

Would you please forward me a writer's
k i t? h thinking about writing something for
Nov./Dec. GRAPMC/MUSIC. I have imple-
mented a set of graphic words for Columbia
Data Products' MX-964 (2-80 Micro-"2, 512x256
bit mapped, $10-8080-figFORTH), and am
working on some musical words for a dual GI's
sound chip board. If I can get my hands on
Oigitalk (National Semi) early enough, maybe
some work also can be done on that before the
date I send out my articles.

Since you share the very same address as the
8080 Renovation Project, would you please for-
ward the following page to them for me? Many
thanks. Happy FORTH!

Tim Huang
9529 N.E. Ger t t Circle
Portland, OR 97211

Thanks, Tim-we'll be in touch. The
graphics issue is approaching rapidly (deadline is
Oct. 15, 1981)-word to the wise-ed.

Dear Fig:

This is a note authorizing you to uae the
cartoon-style illustrations in the book Starting
FORTH by Leo Brodie of FORTH, Inc. The
credit line should read Leo Brodie, FORTH,
Inc., Starting FORTH, a forthcoming Rentice-
Mall publication. Reprinting oy permisaim of
Prentice-Hall, Inc., Englewood Cliffr, N.J.
After October 1, 1981 you can leave the
"forthcomingtt out since the book wi l l be in
print. Thank you for your interest.

Jim F. Fegen, Jr.
Editor, The Computing Science8

Ehglewood Cliffs, NJ 07632
PRENTICE-HALL

Thank you hn t i ce - l i a l l . Watch for
cartoons from this important work.-ed.

Dear Fig:

Here is your complimentary copy of Starting
FORTH. We a t FORM, Inc. hope you enjoy it
as much as Mark Garetz of INFOWORLD, who
said it was the best beginner's book he'd wen.

Page 69

Le t us know what you think of the book. We
are anxious to hear your comments.

Winnie Shows
Public Relations
FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254

Thanks, Winnie. Please note the review in
this issue.--ed.

Dear Fig:

I l ive in a country town in Australia and the
number of local computer hobbyists can be
counted on one hand. I have so far converted
one friend to FORTH and we have found all the
back issues of FORTH DIMENSIONS very
helpful with programming examples. I have had
my system for about 5 years; it is an SlOO Z-80
system with recently added dual Micropolis Mod
II disks. I have rewritten the 8080 FIG FORTH
CP/M interface to work with Micropolis DOS
and am currently reworking some of the 8080
CODE definitions to use 2-80 instructions
where they wi l l improve the code. I am
interested in corresponding with other FIG
users, particularly those with systems similar t o
mine.

I wish to make a comment about the naming
of words related to 32-bit integer operations.
The present mixture of prefixed "D" and "2"
make these words more frustrating to learn and
use. That would not be the case with consistent
prefix character. I think that the prefix
character should be t'Dtt for double. I am sure
that most of us find the prefix letter "C" easy
to use for 8 b i t operations and I am glad the
ASCII did not allow 1/2@ to be used. When
floating point comes around (for example, in a 6
byte format), it seems most likely that F! w i l l
be used, not 3!. So let's be consistent and leave
digits for numbers and use a prefix letter
mnemonic to indicate stack operations, etc.
that are not the usual one word (16 bits).

Could someone please explain what the HEX
value A081 is for, in the definition of
VOCABULARY? I can't work it out.

FORTH DIMENSIONS ID/3

<eep up the good work wi th the magazine.

Bill Miles
PO Box 225
Red Cl i f fs
Victoria 3496
Australia

'Clanks for your comments, Rill. Glad to
-FZ- FORTH is alive and well in the land down
r:~:' How about some of our members
zespond ing wi th Bill and helping him over the
*1+-);7 spots.--ed.

1

3 R T H DIMENSIONS has grown increasingly
3e'-: t o me in the past few months as I have
?-z..v begun to "get the hang o f ' FORTH. I
-ze running on my TRS-80 several versions of

ORTRAN, PASCAL, APL, SAM76 and
0th TRSOOS and CDOS; but I have

TEA?: found any language harder to learn that
Part o f the problem is the scope o f

t the same t ime I'm try ing to
mxrstand the interpreter, compiler, 0% and a
w-=x as di f f icul t as LISP's. I have found a l l
"nt x t ruct ion manuals so far to make a drastic
--: from simple concepts l ike 2 2 +. and

~C..-LOOPS to discussions of the Dictionary
fining Words. (I think the writers had

same problems I have, o f separating the
nctions of the system.) One o f the

=Ips I received was Mr. bmgarner's Stack
1% .-am in this year's March issue of BYTE.
z" qecessity o f being able to visualize the
Id ot be overemphasized. Once I was
n: -0 do that, 1 starting learning in earnest.

re -aving leaped this hurdle, I found FORTH
9)' -IF rewarding than any other language t o
he I--. One of i ts greatest advantages to me as
en w z3plications programmer is its (almost)
16 IP-+-,v consistent syntax: operators, functions,
i U urns" disappear and a l l you have are
ve get their arguments off the stack
.er >lace their return values on the stack. A l l
tc. qpl icat ions so far have been in BASIC.

are as "structured" as I can make them
subroutines calling subroutines), but it

becomes hard to remember what "GOSUB
and which variables have to have
in order to do whatever to whom

- &erev Not so with FORTH: although a

!
e
d
e
v
d
c
d
-1
S
0
Is
T

L1
n

? . J

II .

3
Of

- T T H DIMENSIONS III/3

restr icted use of variables does make the
program somewhat less readable, keeping most
o f the arguments and returned values on the
stack actually makes it more "writeable"
because there is no need to remember what the
formal or actual parameters are. Right now,
because o f my l imi ted experience w i th FORTH,
it takes longer to wri te a "routine" than it
would in BASIC: but already the to ta l t ime to
test and debug is far less.

I'm using Mi l ler Microcomputer Services'
top-notch MMSFORTH, and I have absolutely
nothing bad to say about these people. Last
summer I drove down to New England in order
t o pick up 8ome hardware, and decided to drop
in on Richard and Jill Mi l ler in Natick, MA.
They showed me the utmost in hospitality,
helping me purchase equipment and wasting
their t ime in general to make sure that my trip
was worthwhile. Their product is excellent:
worth it a t twice the price and more (you didn't
hear that, Dick!)--with standard features such
as Strings, Double-Precision, Graphics, a good
Screen Editor, and not one, but several fine
demonstrations programs. A++ for
MMSFORTH.

Morningstar is a software house in southern
Ontario that does mainly custom program-
ming. AII o f it so far has been BASIC, but we
expect to have ful ly switched t o FORTH by the
end o f 12 months, D.V. No other language
would have compelled us t o give up "Tandy
Compatibility," but the advantages of FORTH
far outweigh any extra cost for the lanage.

Thanks for your attention.

Vincent Otten
MORNINGSTAR
225 Dundas St.
Woodstock, Ontario
CANADA N 4 S l A 8

I am sure Dick Mi l ler appreciates your
comments. You might also look into Mr. Leo
Brodie$ new book Starting FORTH (reviewed
elsewhere in this issue) that w i l l be available in
mid-September.--ed

Page 70

Dear Fig:

I very much enjoyed my first paso through
your article "Compiler Security" in FORTH
DIMENSIONS m/l. I plan to re-mad the article
when I have more time.

In terms of the multi-user environment,
haven't you almost answered your own question
of security always versus security on demand
with your parenthetical "and the other users"
remark? This was near the end, in the
discussion of the possible use of a ttNovice
Programmer Protection" package. In a single-
user environment, more liberties can be taken,
but I know Fm a novice user, having only been
involved with computers since 1958 or so, and
having only "FORTHed" non-intensively for
about 3 years. My single-user system would
always include the protection package
(well.. .almost always). I would not, however,
object to making security optional in the single-
user case (but I am not a prospect for a FORTH
implementation without it).

I don't agree with your characterization of
Assembler security as inappropriate. It is the
ability to have unstructured code that causes
many of the problems with assembly code. If it
is so easy as to be tempting, we wi l l al l err.
FORTH makes the cost-to-fix versus time-
error-found curve perhaps less steep, but early
error detection is s t i l l cheaper, and software is
sti9 the largest part of the system cost (and
getting larger). I cannot argue against being
able to defeat Assembler security fairly easily,
however, since there may be situations in which
the risk is worth it.

John W. Baxter
Sr. Principal Programmer Analyst
NCR CORPORATION
Coronado, CA

MR. SHAW REPUES:

I hope that after three years o f FORTH
programming that you have developed good
FORTH style. This should be the case unless
YOU have le t your previous 20 years of
experience interfere with your learning of
FORTH's simplistic concepts.

In either case, you should be aware that
good FORTH code is well thought out and very
short. Most definitions, in either high level or
assembler, should be very short; not more than
a few lines. In very few instances is high level
code ever longer. Those definitions that are
long should be so well scrutinized as to the
reasons for their length that the type of errors
that the current compiler security would trap
should not exist. Assembler code should only be
used when speed is a crit ical factor. And then,
structured code may not be the easiest or
fastest to program without error, or the fastest
to execute. The programmer may s t i l l program
structured if he desires. He may even load a
package to ensure this. And i f the code
definition is long then the statement for high
level would apply also. The code should be well
scrutinized as to reason.

Note that using SP and ?CSP is a simple and
effective way to catch many of the errors made
in either case. They can even be used outside
of the definitions of : and ; or CODE and END-
CODE, and never otherwise interfere. I am not
saying there should be compiler security at
all. If I had this viewpoint I would not have
bothered to write the article. Even I feel much
more comfortable with an application that I
have programmed after it has been successfully
loaded into a secure system. But I do object to
having to program around the compiler security
(which wastes time and introduces errors) when
I wish to load a perfectly correct program
which the security does not like. W i t h an
optional package, I can check my application as
desimd, but do not have to fight the compiler
security to get the job done. Or, I can have the
security package resident. I make the choice.

George W. Shaw
SHAW LABS LTO.
PO Box 303
San Lorenzo, CA 94580

Page 71 FORTH DIMENSIONS IIV3

Here is a very short contribution, a compiler
?xtension, which has been helpful to me. I want
13 share it with all RGgers; perhaps it can
: ecome a fig-FORTH standard.

Often in creating a definition, we want to
:est or output an ASCII character, using words
..<e EMIT or = or possibly even in a CASE
statement. These are normally supplied as
.!oral numbers i n the current radix. These
I n p i l e into the usual dictionary pair of LIT
'~llowed by the l iteral value. The difficulty is
:Tat we must either determine the ASCII code
2lrperimentally beforehand, or else reach for
s n e reference l i s t (usually in the wrong radix).

This compiler extension allows any editor-
.-zceptable character to be displayed in i t s real
' x m while compiling into a normal l i teral
:air. While this may prove to be a minor help
5: edit-time, the resultant source code is much
-ore readable at a later time, and is self-
Zvimenting, both highly desired features o f any
: rogramming language.

The new word is ASCII, and it i s followed by
3 literal character. The definition of ASCII is
:.Tple:

:ASCII BL WORD HERE 1+ C B
[COMPILE] LITERAL; IMMEDIATE

: :s made immediate so that it executes during
:-npile-time. WORD takes the next input-
;:ream text, delimited by a blank, and places it
:: HERE. Then the f i r s t character is placed on
:-e stack for use by LITERAL, which has been
' x e d to be compiled into our definition. What
::dd be easier?

Formerly, we had to write 65 EMIT to out-
x! the letter "A" (assuming decimal radix).
' a w we can write ASCII A EMIT , clearly the
retter for everybody's understanding. The
-mice of the word ASCII is open to change, but
:-e idea is a valuable addition to our efficient
-se o f the language.

That's my contribution. I hope others can
2 it to improve their work. Thank you for
zxviding a medium for ideas.

Raymond Weisling
Jln. Citropuran No. 23
Solo, Jawa Tengah
Indonesia

3 R T H DIMENSIONS IIIl3

I have no way of knowing whether this solu-
tion to the multiple WHILE problem is generally
known, though I am sum that many people must
be using it. The note has been kept as short as
possible, and could easily be expanded.

(: ENDWHILE 2 - ?COMP 2 ?PAIRS could
be simplified to : ENDWHILE ?COMP 4
?PAIRS probably-it weakens the ENDlF
analogy a little.

Many of your readers may not be familiar
with ENOWHILE as a means of achieving multi-
ple WHILES in a BEGIN loop. It is simple and
convenient, but not elegant. ENDWHILE is used
in the construction

BEGIN. . .(test) W MLE. . .(test) WHILE. . .
ENOWHILE ENDWHILE AGAIN or

BEGIN.. .(test) WHILE. . .(test) ENDWHILE
UNTIL

with one ENDWMLE for each WHILE in the
loop.

The definition is

: ENDWHILE 2 - E O M P 2 ?PAIRS HERE
4 + OVER - SWAP ! ; IMMEDIATE.

It causes WHILE to compile a branch to the
word following AGAIN or UNTIL, and is directly
analogous to ENDIF (THEN). It can be easily
understood by comparing the definitions of
WHILE and IF, and ENDWHILE and THM.

A similar ENDWHILE can be defined for use
in the ASSEMBLER vocabulary.

The ENDWHILE construction is awkward
(poor English) but simple, and is worth using
until something better is decided on.

Julian Hayden
2001 Roosevelt Avenue
Vancouver, WA 98660

Page 72

Robert L. Smith

The word WORD has caused implementera o f
the 79-Standard a certain degree of difficulty.
The definition of WORD as it appears in the
FORTH-79 Standard is as follows:

WORD char -- addr 181

Receive characters from the input stream
until the non-zero &limiting character is
encountered or until the input stream is
exhausted, ignoring leading delimiters. The
characters are stored as a packed string
with the character count in the firat
position. The actual delimiter encountered
(char or null) is stored at the end of the text
but not included in the count. If the input
stream was exhausted as word is called, then
a zero length wil l result. The address of the
beginning of this packed str ing is le f t on the
stack.

Theme are a number of problems with the
definition as it stands. Later I wi l l suggest a
slightly modified definition which should clarify
the apparent intent of the Standards Team, al-
though some of the problems wi l l remain for the
present.

1. The phrase "non-zero delimiting charac-
ter" presumably means that char must
not be the null character. An emor
condition should be specified if char is
found to be zero.

2. The character count is to be stored in
the first character position o f a packed
string. That could mean that the
character count could not exceed 127.
Since a string holds a sequence of 8 b i t
bytes, the Clarification Committee o f
the Rochester Standards Conference
felt that the term "character position"
was a typographical error that should
have been "byte position", thus allowing
a str ing count up to 255 characters.

Since the source string could be as long
as a block (1024 bytes), the character
count could exceed 255. This cam
should be specified as an error condi-

3.

tion. The action to be taken on an error
condition depends on the implementa-
tion. A number of schemes have been
proposed, but there are none that are
completely satisfactory. Many people,
including this author, fee l that any
count should be allowed.

4. The definition uses the phrase "actual
delimiter encountered (char or null)". I
do not believe that the Standards Team
meant to required implementations t o
use a null as a universal delimiter,
although many undoubtedly will. The
sequence in which the above-mentioned
phrase appears probably means that i f
the end of the input stream is en-
countered before the specified termi-
nating character is seen, then a null
should be appended at the end of the
packed string instead of the specified
terminating character.

Note that in addition to being a termi-
nating delimiter, char also specifies
init ial characters to be skipped. That
property makes WORD very diff icult to
use in conjunction with strings which
may have a zero length. An example of
a zero length string is the null comment
(1. If one attempts to use WORD in a
straightforward manner to enclose the
command terminated by the right
parenthesis, he wi l l find that it and al l
succeeding text wi l l be skipped! Since
under the Standard, the use of WORD is
about the only way that one has access
to the contents of the text input buffer,
this limitation appears to this writer to
be unreasonable.

3.

I believe that the following definition of
WORD meets the essential intent of the
Standards Team, and clarifies the problems
stated in (1-4). in order to not add to the
confusion, I have put a new serial number on the
definition.

WORD char -- addr 501

Receive characters from the input stream
according to the delimiter char and place
the characters in a string beginning at

h 9 e FORTH DIMENSIONS III/3

addr+l. The character count is placed in the
byte position at addr. An error condition
results if char is an ASCII null or if the

~ count exceeds 255. In i t ia l occurrences of
I char in the input stream are ignored. If char ' appears in the input stream as a terminating

character, it is appended to the string but
not included in the count. If the input
stream is exhausted before char is en-
countered as a terminating character, the
terminating character null is appended
:nstead of char. A zero length w i l l result if
!b input stream is exhausted when WORD is
called.

The problem of the character count limits-
. 3c1 could be considered in the future. One

Tole approach would be to use a full word for
*-e character count. Another would be t o elim-
?ate the character count and always append a

- ~ l l a t the end. The user could then do his own
T-enning. The problem o f null length strings
-3uld be "defined" away by making null length
:.r ngs illegal. I think that that is a poor
--:dion. The real problem is that WORD is
-mrly factored. As usual in FORTH, the less a

does, the more useful it becomes. The
:vcess of scanning for in i t ia l delimiters should
-9 separated from the process of scanning for
irminating delimiters.

28002 Software Development System under
3 P/M @ or Cromemco COOS. Includes cross
:ompiler and a number o f utilities. Available
3rl 54" or 8" disks. Price: $4,000.00

Inner Access Corp.
517K Marine View
Belmoqt, C A 94002
(41s) 591-8295

wStarting FORW
Available NOW!

$16.00 Paperback
$20.00 Hardcover

Mountain View Press
PO Box 4656
Mt. View, C A 94040
(415) 961-4103

=ORTH DIMENSIONS IIID

ME FORTH-79 S T W A R D - A TOOL BOX?

George W. Shaw, II

As e vendor of a version of the FORTH
language, and a self-proclaimed priest o f the
FORTH religion (I carry a soap box in my back
pocket and w i l l mount upon it at a moments
notice), I am very interested in the best
standardization of the FORTH language possi-
ble. There are many items in the '79 standard
which need work. Many cannot, and maybe
should not, be changed this t ime around, but
w i l l have to wai t for subsequent standardization
efforts. To this end, I am conducting interviews
to compile as complete a l is t o f problem areas
and solutions as possible. I would l ike to thank
a l l o f the people who have spent t ime giving me
the input, comments and ideas which are the
inspiration for this article.

Much discussion centers on the defining:
"What is a '79 standard program?' Many of the
questions are similar to 'Can I xxx, and wi l l i t
be standard?", or "My system has a zzz which
does more than the standard says. Is it stan-
dard?". These are the wrong questions.
Granted, many of these questions could be
answered by more explanatory text wi th in the
standard. But, in general, the real question is
"What does a standard mean?", or better "What
is the FORTH-79 Standard?"

The '79 standard very clearly defines itself.
But, unfortunately, it seems that many people
skip reading the f i rst page of the standard and
branch right into the glossary. If one is to read
the f i rst page, one notices a section of great
importance:

1. PURPOSE
The purpose of this FORTH

standard i s to allow transportability o f
standard FORTH programs in source
form among standard FORTH systems.
A standard program shall execute
equivalently on al l standard FORTH
systems.

This section very clearly states t!w standards
purpose is 'I... to allow transportability o f
standard FORTH programs in source form..."
Further, that the program "...shall execute
equivalently ...I' The section previous to the
above clarifies the extent:

Page 74

0. FORWARD
The computer language FORTH

was created by Mr. Charles Moore, as
an extensible, multi-level environment
containing the elements of an operating
system, a machine monitor, and faci l i -
ties for program development and
testing.

States clearly o f FORTH as "...containing
elements of ..." the various environments.
Thus, the standardized FORTH should be a
language which contains only the elements
necessary to allow the transportation and
equivalent execution of programs between
FORTH systems. This is even further l imited
by the definition of transportability.

transportability
This term indicates that eauivalent

execution results when a program' is exe-
cuted on other than the system on which it
was created. See 'equivalent execution'.

Which implies that a 79 standard system (in this
case, a system which contains only the standard
words) does not necessarily allow program
creation (development). This is not to say that
one could not define within the standard the
additional tools necessary to develop pro-
grams. Only that the set o f standard words may
not be sufficient for development. (The
additional words necessary for development is
definitely an area to be looked a t for the next
standard.)

Considering the above definitions, I propose
this answer to the t i t le question of this
article: The FORTH-79 Standard is to be a
basic tool box upon which other devices can be
built. From the definitions within the standard
one should be able to build almost any other
needed tool or application. We do not know yet
if this is the case. It is extremely unlikely that
the in i t ia l e f for t would have encompassed a l l
design possibilities. The 79 standard is a f i rs t
effort--a place to start from; a base from which
we may begin to determine the minimum addi-
tions necessary to allow al l tools or applications
to be built transportably.

Yet, even wi th this understanding, it may be
feIt that the standard is incomplete. In a few
cases this may definitely be true. A good
example of this is in the text dealing wi th the

vocabulary mechanism. The standard seerns
extremely limiting and impossible to deal
with. But, the solution is simple. Do as you
have always done in FORTH. If a structure is
inadequate for an application, define a struc-
ture which is adequate. The standard itself, by
content, forces development in those areas
which have not yet been ful ly developed. I t
forces new ideas, better solutions, and,
hopefully, a better standard next t ime around
by its own proper usage.

As for the two most asked questions
mentioned earlier, read the standard carefully.
Does it specifically or implici t ly prohibit
xxxing? If not, t ry to transport it to other
systems. If you are s t i l l unsure, send the
question to FIG, we'll work out a clari f icat ion
and recommend it to the standards team. What
if your system does more than zzz says? Can it
be ma& to do only what z t t says by possibly
not exercising options? If so, it is probably
standard. S t i l l not clear? Send in the
questions. We need them to make a better
FOR TH-79 Standard document.

There are areas o f the tool box which may
be cluttered by pacameter testing or unnece-
mary words. Some areas may require better
factoring. Much work has yet to do done.
These areas need to be exposed. Write FIG
about them. All input is greatly appreciated. I
have found that each person sees dif ferent valid
problems. Many are seen by all, but most
people usually see a t least one that has not been
seen before; an application or solution which
had not been considered.

When considering the FORTH-79 Standard,
t reat it as a basic tool box. Additional tools are
applications f rom the point o f view of the stan-
dard. Extend it as necessary. Can you add
what you need by defining it only in terms of
standard words? If not, what i s the minimum
necessary to allow you to do that. More
definitions or more explanations? Experience is
a l l that w i l l tell. Send in your results.

George W. Shaw, II
Shaw Laboratories, Ltd.
P. 0. Box 303
San Lorenzo, C A 94580

Page 73 FORTH DIMENSIONS III/3

Book Review:

title: Starting FORTH
Author: Leo Brodie

FORTH, Inc.
Copyright: 1981
Publisher: Prentice-Hall, Inc.

Price: $19.95 (hardbound)
$15.95 (softback)

Availability: M id September, 1981
Review by: George W. Shaw I1

Shaw Laboratories, Ltd.

In most books the useful information begins
.7 chapter one, or later. Startinq FORTH is an
5xception. Useful information starts in the -
- x w a r d section of the book.

The book is designed to be interactive.
After only two pages of chapter one, you are
t,ving at the terminal. It is seldom that a
sentence w i l l leave you thinking, "Now, what
ioes that mean?" Analogies are used throug-
-out. Any "buzz" words, or differences between
systems, or phrases which might cause con-
'Jsion are footnoted to explain in more detail.
-?is presents extremely basic or nonessential
. leas outside of the main text, allowing the
33ok to be simple enough for the beginner, but
-3t to become tiresome to the more knowledge-
ible. For example, in the sections o f the book
zealing wi th math, separate sections or foot-
-3tes are presented to explain what integers are
x what an absolute value is (for beginners). Or
:? give additional information about a faster
zlgorithm than was used in an example in the
-.lain text (for experts). Where appropriate,
x izzes or exercises are interspersed within the
3apters to help wi th understanding the
?aterial presented.

The book i s wr i t ten for the current "close-
:3-79-STANDARD1' version o f polyFORTH wi th
w,ations or footnotes to indicate and explain
:he differences from the standard. Throughout
:5e book, tables and lists are used to summarize
and clari fy the information presented. The
xcasional tables of new words (in glossary
'3rm) are of great help. They prevent having t o
!ig through the text for the words to perform
:5e practice problems. A t the end of each
5apter is a complete glossary o f the new
dords. Also, at the end of each chapter are
xoblems, wi th the answers in the appedicies.

'ORTH DIMENSIONS 1x113

There are even a few surprise questions to
lighten the air.

Moving from the general to the specific, the
value o f this work becomes even more apparent
in the following chapter by chapter review.

The Introduction is not just one introduction,
but two: one for beginners (to computers) and
one for professionals. The beginnner's section
explains conceptually what computers and
computer languages are, using an analogy (as
w i l l often be found) to simplify. the
professional's section answers the usual
skeptical questions of "What is" and "Where is"
Forth w i th an impressive l is t o f facts about the
language and applications in which it has been
used.

Chapter one, "Fundamental Forth", presents
the basic concepts o f dictionary extensibility
and problem definition immediately, so that
af ter only two pages, you are typing a t a
terminal executing commands and defining
words. The text steps the reader through the
complete development of a program and then
illustrates i t s execution wi th the previously
mentioned cast. The operation of the stack is
then illustrated, and the format o f glossary
entries explained.

Chapter two, "How to Get Results", presents
the basic four arithmitic operations, calculator
and definition style, wi th conversions between
inf ix and postfix notations. Practice problems
and stack pictures are provided t o ensure com-
prehension. The next half o f the chapter covers
the basic single and double precision stack
operations wi th excellent stack pictures and
quizzes to help along the way.

Chapter three, the "Editor (and Staff)",
again looks at the dictionary, but in terms of
redefinition and FORGEThg of words. Forth's
use of the disk is also described, along wi th
USTing, LOADing, and the word "c' for
comments.

Chapter four, "Decisions, Decisions, . . .",
illustrates the IF ELSE THEN structure of
Forth; the various conditional tests, their uses
and alternatives; and flags and how to manipu-
late them.

Page 76

Chapter five, "The philosophy o f Fixed
Point", expands upon the basic four arithmetic
operations wi th some of the composite (I+, 2+,
etc.) and some miscellaneous operations. The
operators for the return stack are introduced
with examples of their use in ordering
parameters for formula calculations. A dis-
cussion of benefits o f floating or fixed point
math is followed with instruction about scaling
in fixed point to eliminate the need for floating
point. Discussed also are the use of 32 b i t
intermediate operators and the use of rat ional
approximations in fixed point.

Chapter six, "Throw It For a Loop", dis-
cusses the operation of the various types of
loops in Forth. A new cast of characters
illustrate the ''how" of DO LOOPS, nesting
loops, using IF ELSE THEN inside loopp, etc.
BEGIN UNTIL and BEGIN WHILE REPEAT are
also introduced.

Chapter seven, "A Number of Kinds of
Numbers", is divided into two sections: for
beginners and for everyone. The beginners
section gives an excellent tutorial introducing
the novice to computer numbers. This section
describes in detail both signed and unsigned
single and double length numbers. Also covered
are arithmetic shifts, bit-wise operations,
wmSer bases and ASCII character representa-
tion. The section for everyone explains Forth's
handling of signed and unsigned single and
double length numbers for input, formatted
output and mathematical operations. The
effect o f BASE on I/O, some usage hints, and
mixed operations are discussed.

Chapter eight, "Variables, Constants, and
Arrayst1, discusses the uses and operation of
these structures. Both single and double length
structures are introduced. Example problems
are used to show various designs for byte and
single !ength arrays. Factoring definitions is
also discussed.

Chapter nine, "Under the Hood", presents a
very clear, detailed, explanation o f the various
types o f execution and structures within a Forth
system. Of the many things examined are: tex t
interpretation, t icking (9, compiling, vectored
execution, dictionary structure, colon definition
execution, vocabularies, the For th memory map
and its pieces. Much of the detail applies t o

polyFORTH, but the theory i s sufficiently
general to apply to the operation and structure
of most For th systems.

Chapter ten, "I/O and You", discusses string
and text manipulation as they relate to disk and
terminal I/O. Block buffer and terminal buffer
access is discussed with notes for multi-user
systems. String operators and string to number
conversion are also covered.

Chapter eleven, @'Extending the Compiler:
Defining Words and Compiling Words", weans
the reader from the friendly cast of characters
as it shows the code behind the faces. All of
the aspects of Forth compiler are discvssed
including: t ime periods, the various compilers
inside Forth, DOES > words and immediate
words. D-charts are introduced.

Chapter twelve, : "Three Examples",
presents three programming problems and their
soolutlona as an example of good Forth style.
Text manipulation is presented with a random
paper generator; Data manipulation wi th a f i le
syetem; and fixed point number manipulation
w i th a math problem which would seem to need
floating point.

Following chapter twelve are four appen-
dices which contain the answers to the
problems, the features of polyFORTH not
discussed in the text, the differences from the
1 9 Standard and a summary index of the Forth
words presented in Starting Forth.

On the whole, Startinq Forth is very well
organized and presented. On occasion a few
topics seemed to appear out o f nowhere, as the
section on Factoring Osfinitions in the chapter
a b w t variables, constants, and arrays. But,
these digredone only serve as short breaks
from the subject a t hand and do not detract
from the organization of the material. The text
in very complete and easily understood. I ra te
the book very highly for both the novice and
intermediate Forth programmer.

Page 77 FORTH DIMENSIONS III/3

I

THE FORTH ENGINE

David Winkel

What can computer architects do to make
their lives interesting?

It has been clear for some time that building
nonventional Von Neumann computers is useful
3ut dull. This in spite of large vendors'
advertising literture which breathlessly
announces new architectural advanc s for their
.atest machines. Meyers' book' has an
entertaining discussion of the history o f these
"Qew" advances. For example, virtual storage
goes back to the Atlas system (U. Manchester,
:959).

How can we improve performance? I t

a. Engineering - faster components,
pipelines, caches, etc., applied to
conventional architectures.

b. Architectural - building fundamentally
different computers.

appears that there are two practical ways:

The engineering approach has been remark-
ably successful as shown by Seymour Cray's
Droducts. These machines do an excellent job
Nith Fortran, but conceal gaps that program-
Ters have adjusted to and, in fact, accept as
tkologica' necessities. For example, the array
is a fundamental concept of Fortran, ye t is only
.?directly supported in hardware. Subscripts
going out of range is a common run t ime error
sut the hardware happily goes on with the
wong data pointed to by a bad subscript.

The architectural approach would reverse
?he procedure. Build hardware to support a
.anguage. We can do this at several levels, the
owest being language-directed design where
v rdware features are added to support specific
!anguage features. An example would be
Surroughs' concept of data descriptors to
provide run time checking of subscript ranges.
Another example would be a P-code machine.
"-code is language-directed since i t was
proposed as an ideal machine for compiled
Pascal. I t would be less suited for FORTRAN
for example. The general idea in language-
directed design is to mirror important high-
level language concepts in hardware. Semantic
Gap is defined as the degree to which language

FORTH DIMENSIONS III/3

features are not mirrored in hardware. Thus,
the semantic gap for ALGOL running on a
Burroughs 86500 would be small, for PL/1
running on CDC machines quite large.

If we reduce the semantic gap to zero, we
have a direct execution machine where hard-
ware mirrors all the constructs (both data and
control) of the language. Good discussions and
bibliographies are given in references 1 and 2.

Now we have the maximum in speed and the
minimum of generality. The computer now runs
only one language. What that language should
be is a central question. The !SYMBOL com-
puter was an early, truly heroic, system built by
Fairchild to directly execute the Symbol
l a n g ~ a g e . ~ This is a PL/1-like language with a
great deal of power. System performance was
spectacular and ye t the entire exercise cannot
be considered successful. A large part was due
to language complexity which translated into
hardware complexity. I t was difficult t o fix
bugs and impossible to add features inadver-
tently lef t out.

What we need is a well-tested, simple
language before we build a corresponding direct
execution machine. FORTH is the obvious
choice.

The goal of this research is t o build the
world's fastest FORTH engine. This is a no-
compromise effort to force the hardware to
mirror the language. W e did not start by saying
i t must be built with bit slices, or PLA's, or ...
In fact, an early paper design was done with bit
slices and discarded because i t was too slow.

The measure of speed is clock cycles per
instruction. Clock rate, in turn, is a function of
technology, not architecture. The machine
currently runs at 333 ns but could be easily
speeded up by using ECL or Schottky logic and
faster memories.

The design cycle for a FORTH primitive
proceeds as follows:

a. Pick a primitive such as DO or LOOP.

Page 78

b. Postdate hardware data paths, stackr,
registers, etc., that implement DO and
mating primitives such as LOOP end
+LOOP.

c. Make sure this hardware supports
hidden logical concepts-in this case, I,
J, K-and violates no other FORTH
concepts.

d. Count clock cycles.

e. Repeat b-d until you can think of no
more speedup possibilities.

f. Make an engineering choice for imple-
mentation. DO takes 2 clock cycles
without overlap, 1 with. LOOP and
+LOOP take 1 clock cycle. For the
first machine, we use a 2-cycle DO and
reserve the 1-cycle version for later
enchancements. As a byproduct of this
implementation we can support loop
nesting to a depth of 1024.

This process is repeated far each FORTH
primitive. Finally, this collection of indi-
vidually optimized hardware must be forged
into a coherent whole that makes engineering
sense. he result4 is not too surprising. -re
are data and return stacks plus separate stacks
for loop control. Of course, the loop stacks are
invisible to the programmer. An arithmetic
unit operates from the data stack, etc. What is
surprising is the mass of data paths required to
support parallel operations such as 2SWAP in
one clock cycle. The results are impressive.
For the fig-FORM primitives all but 4 can be
executed in one or two clock cycles with the
exception of multiply and divide which take 1
clock cycle per bit. The machine currently hem
16k X 16 main memory with l k X 16 stacks both
extendable by 4 X. 1/0 is done with a slave
6809 'rith programmed access to the data stack
and DMA access to main memory. Control is
microprogrammed with a 2910 driving a l k X 60
bit write ble control store. This follows Logic
Engine ' philosophy so the user has very
pleasant access to the micromemory for
tailoring high-speed special purpolle
instructions.

Page 79

Results for randomly chosen inatructions are
given below. All comparisons are based on a 1
MHz 6809 running fig-FORTH. The FORTH
engine rum at 3 MHz.
DUP 9 9 X f a s t e r SWAP 132 X faster
@ 101 X faster U* 96 X faster
! 114 X faster ROT 624 X faster
AND 126 X faster DO...LOOP 110 X faster

(null body)

As a rule of thumb the speedup is a factor of
100. Why the 6809 (or any other computer) is so
slow i8 an interesting question and will be
treated in a more formal paper.

We have received a number of inquiries
about machine availability. Does anyone really
need a machine this fast? It is obviously a large
(ZOO+ IC) machine in the minicomputer class
and will cost more than a 280. I would
appreciate hearing from readers about this as
well 88 memory and 1/0 requirements.

David Winkel
2625 Solar Drive f 5
Salt Lake City, UT 84117

REFERENCES

lAdvences in Computer Architecture, Glenford
J. Meyers, Wiley, 1978.

zSouthcon Conference, Atlanta, Georgia, 1981,

3SYMBOL - A Major Departure from Classic
Software Dominated Von Neumann Computing
Systems. Roc. 1971 Spring Joint Computer
Conf., AFIPS, 1971, pp. 375-587.

4Southcon Conference, Atlanta, Georgia, 1981,
Session 20/4, David Winkel

session 20/2, Phillip crews.

Art of Diqital Design, D. Winkel & F.
Rosoer, Prentice Hall, 1981.

FORTH DIMENSIONS II1/3

I

a

THE FORW INC UNE EDmm
S H. Daniel

System Development Corporation
500 Macara Avenue

Sunnyvale, CA 94086

The upcoming publication of Starting
-3RTH, which is destined to become the ltbible"
:' FORTH neophytes everywhere, provides an
q o r t u n i t y to upgrade the existing fig-FORTH
-- editor at a very small cost in time and
?Yort.

There are at least two good reasons why this
q r a d e should be done. The f i rs t is standard-
zation. A user of any version of fig-FORTH
-.!: be able to step up to a polyFORTH system
md use the line editor. Conversely, FORTH,
1-c. customers who try fig-FORTH wi l l not have
:: !earn to use a different editor.

The second reason for adopting the
r::vFORTH editor is its increased flexibility
t-c ease of use. The current f ig line editor uses
~ : y the PAD for storage of user inputs for
searches, deletions, and replacements. The
x:yFORTH editor employs both a FIND buffer
5-d an INSERT buffer, in addition to the PAD.
--IS allows both of the extra buffers to be
:aded, and the contents reused several times,
-.'.Clout extra typing by the user. This makes
sc-nmands like D (Delete) and R (Replace)
?: Jec iall y useful.

3 y taking a few hints from Starting FORTH,
s - d combining them with the existing editor, I
-3s able to write a line editor which is
--ictionally identical to the polyFORTH editor,
:I-: which is i n the public domain and can be
- 5 4 by anyone.

7 -' STEM REQUIREMENTS

This editor should run on any fig-FORTH
i . stem, including FORTH-79 Standard systems
' the changes mentioned in the section

-3RTH-79 Standard are made). The compiled
-e editor requires approximately 2K bytes o f

-cnory, plus room in the system for the PAD
2-d the FIND and INSERT buffers. It operates
-.thin the confines of the default data and
P : J ~ stacks.

A high level vemion of the word MATCH,
used by the line editor for marches, 18 Included
for those who do not already have a version
written in assembly language. If you intend to
use this version o f MATCH, screeno 216 and 217
should be loaded prior to loading the rest of the
line editor. Credit for this version o f MATCH
goes to Peter Midnight of Hayward.

THE EDITOR COMMANDS

The word 'text' following a command indi-
cates that any text typed after the command
wi l l be copied to the text buffer used by that
command. The buffer contents wil l then be
used when the command executes. If no text is
typed by the user, the contents of that buffer
(left over from the previous command or com-
mands) wi l l be used without modification in the
execution of the command.

X ext ract (-)
Copies the current line into the INSERT buffer,
and removes it from the screen. All following
lines are moved up, and line 15 is l e f t blank.

T Type (n - 1

Type line n from the current screen. Set the
cursor to the start of the line.

L List (-- 1

Like the FORTH word UST, except that the
current screen number is obtained from the
variable SCR, rather than being typed in by the
user.

N Next (- 1

Increments the current screen number by one.
This command is used just before the L com-
mand, to allow the user to l ist the next
sequential screen.

8 Back (- 1

Decrements the current screen number by one.
This command is also used before the L com-
mand, to allow listing o f the previous sequential
screen.

-3RTH DIMENSIONS m/3 Page 80

P Put (- 1
P text

Any following text wi l l be copied into the
INSERT buffer. The INSERT buffer wi l l be
copied into the current line, replacing its
previous contents. I f the text consists of one or
more blanks, the current line wi l l be erased.

WIPE Wipe (-- 1

Erases the current screen. Equivalent to the
original CLEAR command, except that the user
need not enter the screen number.

cow copy (from -2, to-1 -
Copy one screen to another.

F Find (- 1
F text

Any following text is copied to the INSERT
buffer. The contents of the INSERT buffer are
compared to the contents of the current line. If
a match is found, the line is displayed with the
cursor positioned immediately after the end o f
the string searched for. The F command, with
no following text, is exactly the same aa the
previous editor command N. If no match is
found, the requested string is echoed to the
terminal and the error message “NONF‘ is
output.

E Erase (- 1

Erases backwards from the CUNOF, according to
the number of characters in the FIND buffer.
This command should only be used immediately
after the F command.

D Delete (-
o text

Any following text ia copied into the
buffer. The D command is a combination of the
F and E commands. The string in the FIND
buffer is matched against the contents of the
current line, and if a match is found, the found
string is deleted from the line.

TILL Til l (- 1
TILL text

Any following text is copied into the FIND
buffer. Starting from the current curwr

position, TILL searches for a match with the
contents of the FIND buffer. If a match is
found, TILL deletes all the text on the line from
the current cursor position up to any including
the end of the matched text.

S Search (last screen#+1 --)
S text

Any following text is copied into the FIND
buffer. Starting at the top of the current
screen and continuing until the bottom of the
screen immediately before the screen number
on the top of the stack, S searches for a match
to the contents of the FIND buffer. Whenever a
match is found, the line containing the match
w i l l be typed out, along with the line number
and screen number in which the match
occurred. Because of the way FORTH handles
loops, the number on the top of the stack must
be one higher than the highest screen to be
searched.

I Insert (-- 1
I text

Any following text wi l l be copied into the
INSERT buffer. The I command copies the
contents of the INSERT buffer into the current
line, rtarting at the current cursor position.
Any text to the right of the cursor wi l l be
p h e d to the right and wi l l be pushed of f the
line and lost if the total length of the line
exceeds 64 characters.

U Under (-)
u text

Any following text wi l l be copied into the
INSERT buffer. Spread the scmen at the line
immediately below the current line, leaving a
blank llne. All following lines are pushed
down. Any text on line 15 wil l be lost. The
contents o f the INSERT buffer wi l l be copied
into the blank line, and that line wi l l be made
the current line.

R Replace (-)
R text

Any following text is copied into the INSERT
buffer. The R command operates as a
combination of the E (Erase) and I (Insert)
commands. Star t ing at the current cursor
pcmitim, and working backwards towards the
start of the line, text corresponding to the

Page 81 FORTH DIMENSIONS IW3

.ength of the contents of the FIND buffer is
Aeted, and the contents of the INSERT buffer
are inserted into the line. Since the contents of
:w FIND buffer determine how much text w i l l
:e erased, the R command should only be used
?mediately following the F (Find) command.

M Move (Block#, Line# --
Zopies the current line into the INSERT buffer,
rwn copies the INSERT buffer to the block,
r3ecified by Block#, UNDER the line specified
I:. LINE#. The original block number is
:Qstored, and the next line in the block becomes
:?e current line. This allows sequential lines to
2 moved with a minimum of keystrokes. One
A?fortunate side-effect o f this command is that
13 move something to line 0 of another screen, - ZIU must f irst move it UNDER line 0, using the
xmmand xxx 0 M, make screen xxx current,
37d then extract the old line 0, moving
3verything else up.

length byte o f 1 wi l l be stored, but
PAD+1 w i l l contain a null t o indicate
the absence of text.

(LINE) (Line#, Screen# -- Buffer Address,64)

Using the l ine and screen numbers,
computes the starting memory
address of the line in the disk
buffer. May not be necessary in
FORTH-79 Standard systems, depend-
ing upon implementation. Should
already be present in earlier
implementations.

LINE (Line# -- Buffer Address)

Ensures that the line number is within
the legal range of the current screen,
then uses (LINE) t o set the starting
address o f the line in the disk buffer.

WHERE (Offset, Block# -1
t (-- 1

Jsed as a terminator for a l l commands allowing
text input, such as P, F, R, etc. Allows more
:?an one command to be entered pn a single
..w, e.g.,

3 T P This is line 3? L (cr)

Although useful, this feature does preclude the
J S ~ of the " " as a character in any text to
x! put on a screen.

Used when a compile t ime error
occurs during loading. Converts the
block number to a screen number,
make8 that scmen current, and prints
the line in which the load error
occurred. Underneath the line in
error, the cursor is printed to show
the approximate location of the
error. Enables the EDITOR vocabu-
lary as it exists. Str ict ly speaking,
this is not part of the polyFORTH
editor, but it is a highly useful tool.

3 L 0 SSARY
#LOCATE(-Cursor offset, line#)

The following glossary addresses al l the
-3RTH words in the line editor except the
x t u a l editing commands, which are discussed
zSove.

'EXT (delimiter -)
Any following text in the input
stream, up to but not including the
delimiter, is moved to the PAD. The
length of the input string is stored a t
PAD, wi th the actual string starting
at PAD+1. In FORTH-79 Standard
systems, if no text follows in the
input stream, a length byte o f 0 w i l l
be stored. In non-Standard systems, a

'ORTH DIMENSIONS III/3

Uses the current cursor position to
compute the l ine number which con-
tains the cursor and the offset from
the beginning of the l ine t o the cur-
rent cursor position.

#LEAD (--Line address, offset t o cursor)

Computes the beginning addreas of
the current line in the disk buffer,
and the offset from the start of the
line to the current cursor position.

Page 82

#LAG (0- cursor addre-, count after
cursor)

Computes the addrem of the cursor in
the disk buffer and the count o f
characters remaining on the line
after the cursor.

-MOM: (from address, to line# -
Moves a line within the dlsk buffer to
the line specified, completely re-
placing the previous contenb of that
line.

?MOVE (destination buffer address -)
If any text has been entered into the
PAD by TEXT, moves that text to the
specified buffer. b e d to load the
FIND and INSERT buffer8 fm
searches, etc. If no text waa in the
PAD, no action is taken.

>LINE# (- current line number)

Uws the stored cumor location to
compute the current line number.

FIND-BW (- 1

Establishes the FIND buffer a fixed
distance above the current addrum of
the PAD.

INSERT-BUF (-)
Establi8hes the INSERT buffer a fixed
distance above the FIND buffer.

Non-destructively copies the contents
of the current line to the INSERT
buffer.

(KILL) (Line# -
Replaces ths specified line with a
blank line.

(SPREAD) (- 1

Spreads the screen, starting at the

page 83

current line, pushing all lines below
the current line down, and leaving the
current line blank. Any text on line
15 is pushed of f the screen and i s
lost.

DISPLAY -CURSOR (--
Displays the current line with the
cursor in place.

Replaces the current line with the
contents of the INSERT buffer. Used
as the primitive operation for the P
command.

(TOP) (--
Resets the stored cursor position to
the top of the screen.

lLINE (-- Flag)

Scans the current line for an exact
match with the contents of the FIND
buffer. I f a match i s found, the
stored cursor position is updated.

Starting at the current cursor posi-
tion, searches the rest of the current
acreen for an exact match to the
contents of the FIND buffer. If no
match is found, the contents of the
FIND buffer are typed and the error
message "NONE" is output.

(DELETE) (Count - 1

Starting at the current cursor posi-
tion, text is deleted backwards
(towards the beginning of the line),
according to the count. The remain-
ing text MI the line is moved to the
l e f t and the end of the line i s fil led
with blanks.

Copies any following text t o the
FIND buffer and searches the

FORTH DIMENSIONS In/3

1

n

current screen for a match. U s d
as the primitive operatian for the
F and 0 commands.

Uses the length of the contentm of
the FIND buffer to set the count
for (DELETE). Uaed aa the
primitive for the E and R
commands.

ZWNTER A variable uaed by the S command
to count the number of lim
output to the screen end printer.

WMP (- 1

Increments the number of lines
output and sends a page eject
when 56 lines have been output.
Used by the S command to handle
pagination on the coneole and
printer.

FoRll+79 STAISARD

The following changes should be made to the
.3ed screens shown in order to bring the line
editor into conformance with the FORTH-79
Standard:

k e e n Line(sx=hanQe

299 9,lO The FORTH word R
should be changed to R@.

214 5,6,7 The FORTH word R
rhould be changed to R@.

212 3 The 0 preceding the word

leted, since variables are
initialized to 0 auto-
matically under the
FORTH-79 Standard.

VARIABLE should be de-

202 12 The word 1+ may be de-
feted, since the FORTH-
79 Standard specifies that
a length byte of 0 wil l be
stored when WORD finds
no text in the input
stream.

ERROR MESSAGES

Only two error memagem am output by the line
&Stan

"E Micatea that no match was found
on the current screen
comwpondinq to the contents of
the FIND buffer.

NOT ON CURRENT EDITING SCREEN

Indicatm that the line number
p a a d to the word LINE was
outride the legal range of 0-15
decimal.

8
9 I LINE

13
14 -->
15

TH DIMENSIONS m/3 Page 84

sm*2eG
e < YIPE. cow. ~ L I W

4 ie e DO I <KILL> ~ o o e J

1
2
3 I YIP€ < c 1 . r th cvrvnc - >
5

018715 Sru)
A
2 1
3
4
S
6
7
$ 1
9

19
11
12
13
14
1s

-> i

IONS m p.gb86

eiem
2 I <F> < find QCCCT- oc fOllaUina text >
3 f E m
4 FIED-BVW-PUXS
5 <SEEK> 1
6
? : F < find ud d i u l n , f'ollauitu text >

SCR 0 211
e < D. TILL
1
2
3 : D < find.
4 CF> E I
5
6

818715 SCO >

d.lot0, m d d i v l r v follouin. tat,

4
S
6 : -
7 1 -
8 S 8 > IF
9 C R C R B F
10
11 ->
12
13
14

? W I N
8 1LINE IF DISPLAV-CURSOR
9 m = R m e <

11 LOW R> SCR ! i
ie MIL

12
13 ->
14
15

SCR 0 2 1 5
0 C R . M
1
2 : R
5 <E> I I
4

6 S C R I M
7 R I I M
8 % I N 3 o*LD>
9 S Y F Y S C R !

10 1+ WL I R.
1 1 <spREHD) <R>
1 2 R> C/L + Re
13 R> SCR ! I
1 4
1 5 FORTW DEFINITIWS

s : n

SCR 40 2 1 6
e <

c

<
<
<
<
<
!
<
I

i

r w l r r fard trxt uith inset Wffor >

DECIWC

3
4 c 3 w I p
5 ROT M ROT R>
6
7 : - aJERockR
0
9 : <rmTM)

10 -OW IF (M R +
11 w
1 2
1;:
1 4
1s

SCR a 217
e <
1
2 :
S
4
S
6
7
8
9

10
1 1
1 2
I f
1 4
1 5

DUP
IF

E L S E W
LOW

8 1 8 7 1 5 YU >

810715 Yo >

q R T H 01 MENSIONS IIU3 Pep 88

RECURSION AND THE ACKERMANN
" C T I O N

becomes:

Joel V. Peterszn

Recursion involves the calling o f a program
by itself. An example of where recursion might
be used is in the parenthesis handler of an
algebraic string parser. Every time the parser
encounters a le f t parenthesis, it calls itself;
every time the parser encounters a right
parenthesis, it completes a call of itself.
Recursion is somewhat diff icult to explain and
very diff icult to use properly. However, the
implementation of recursion in any language
can be tested with a program called the
Ackermann Function. This is a recursive
function of two variables which is almost
impossible to explain. The followintj is an
implementation of the function in PASCAL.

VAR K,J: INTEGER; CALLCNT;INTEGER;

FUNCTION F(K,J: INTEGER): INTEGER;
BEGIN

CALLCNT :=CALLCNT+l;
IF K=O THEN

ELSE
F :=J+l

IF J=O THEN

ELSE
F := F(K-1,l)

F :=F(K-l,F(K, J-1));
END(+ACKERMANN FUNCTION*);

Recursive programming as illustrated in the
PASCAL example is not possible in FORTH. A
program can not invoke itself simply by ming
i ts own name while defining that word.
However, recursion is not diff icult at all to
achieve:

(FIG-FOR TH)
: MYSELF LATEST PFA CFA , ;
IMMEDIATE

(M C- f or t h)
: MYSELF LAST @I Q 2 + , ; IMMEDIATE

MYSELF simply places the address of the
code field of the word being defined into its
own definition. Thus, whenever the program
needs to invoke itself, the word MYSELF should
be used instead. The Ackermann Function now

(FIG-FOR TH)
0 VARIABLE CALLCNT
: ACKERMANN (I J - F)

1 CALLCNT +!
O= IF

ELSE
SWAP DROP 1+

DUP
O= IF

DROP 1- 1 MYSELF
ROT ROT DROP 1- SWAP MYSELF

THEN
THEN ;

(MC-forth)

VARIABLE CALLCNT

: ACKERMANN (I J - F)
1 CALLCNT +! OVER
THEN

DUP
THEN

POUP 1- MYSELF
-ROT DROP 1- SWAP MYSELF

DROP 1- 1 MYSELF
ELSE

EUOIF

SWAPDROP 1+
ELSE

ENDIF ;

For comparison, tb Ackermann Function
was tested on the Nicolet 1280 20-bit
processor in both (compiled) PASCAL and
MC-forth. The K=3, 305 function took 8
seconds in (compiled) PASCAL and 12
seconds in MC-forth. (As an aside, the
addition of a simple hardware mod to the
1280 processor to speed up NEXT in MC-
forth reduced this to 9 seconds! Who says
inline coding is 80 much faster than indirect
threaded code!)

When attempting to t r y the Ackermann
Function, one must allocate lots of room for
both the parameter stack and the return
stack. Every time the function is called,
there must be two elements on the
parameter stack, thus the parameter stack
w i l l fill up approximately twice as fast as
the return stack. The K=3, 3=6 function

requires over 1000 elements on the
parameter stack and over 500 elemenb on
the return stack a t its deepest point. When
the K=4, J=1 function was tried, the pro-
gram finally crashed after five houn with
the return stack containing over 5000
elements!!

The results of the simpler Ackermann
Functions are given below. F is the value
returned by the function. CALLCNT is the
count of how many times the program called
itself. MAXDEPTH is the maximum depth
attained by the return stack.

Y J - F CALLCNT MAXDEPTH

0 1 2 1
b 8 l 1

1 0 2
1 1 3
1 2 4
2 0 3
2 1 5
2 2 7
2 3 9
2 128 259
3 0 5
3 1 13
3 2 29
3 3 61
3 4 125
3 5 253
3 6 509
3 0 13
0 1 ??

2
4
6
5
14
27
44
33669
15
106
541
2432
10307
42438
172233
107
??

3

8
10

63
127
255
511
16
??

'JC-forth is the implementation of FORTH on
'-e MCOLET INSTRUMENT CORPORATION
- 30/1280 series computers. This computer is a
:"-bit minicomputer with a 19-bit address
rtace.)

Joel V. Peterson
Nicolet Instrument Corp.
5225 Verona Road
Madison, Wisc. 53711
(608) 271-3333

_ - I- - A great article, but watch out. Most
-- ;=ORTH implementations have insufficient
3 : x k space to execute this function. Rograms
m u l d be reviewed for compatibility.)

RMEW

A Brief Review of the Manuals
for the PET/CBM fuIIFORTH+ V1.3/4

by Jim Berkey

Complete system is available from IDPC
Co., Box 11594, Philadelphia, PA 11916 for $65
(plus shipping?). Includes about 70 pages of
documentation and a 5p diskette (not re-
viewed).

IDPCb fulIFORTH+ is noted to have taken a
person-year to be developed by an experienced
programming staff. I give them a triple E for
effort, but the product is, at best, rough.

fuLlFORTH+ is described as "a complete
implementation of the FORTH language, as
defined by the FORTH Interest Group." If this
is true of the disk, then there are glaring
technical errors in the glossary, whose defi-
nitions deviate substantially from the FIG
manual. One example from +LOOP : "If the
counter and limit values are equal, ei ther
before or after adding the increment, the DO
loop is exited . . .'I If you take this literally, the
counter (read "index") is compared to the limit
twice-once before and once af ter the incre-
ment-and exit can never occur on greater-
than, as i t does in the FIG model.

On the plus side, the package includes 6502
assembler, screen editor (not PET'S), printer
support, and floating point routines. These are
nice to have, but from the samples of use
shown, I suspect the presence of endless small
inconveniences. To be fair, endless small
inconveniences are a built-in feature of CBM
disk systems which fuIlFORTH+ has not
mrrec ted.

I can't recommend fuIIFORTH+ for any but
the desperate, because of two central pmb-
lems: (1) the manual reveals a mangled view of
the FIG model, and (2) fuIIFORTH+ was
probably not implemented originally for the
PET/CBM.

'3'ITH DIMENSIONS IIID Page 90

FORTH, INC. NEWS

BETTER SUPPORT PROMISED THROUGH
FORTH, INC. AND TECHNOLOGY

INDUSTRIES MERGER

FORTH, Inc. and Technology Industries, Inc.
of Santa Clara, CA., have announced a
merger. This means that FORTH, Inc. wil l
become a wholly owned subsidiary of
Technology, and the present shareholders of
FORTH wil l become shareholders of
Techno logy.

Technology Industries is a new company
founded in February 1981 by John Peers. Peers
is best known as founder and former chairman
of Logical Machines Corp. of Sunnyvale, CA.
This very successful company manufactures and
sells business computers that feature a
"programmer less" language called Adam,
designed by Peers.

"The principle change that everyone wil l
notice," said FORTH, 1nc.b president, Elizabeth
Rather, "is that we'll be doing a lo t more of
what we do best-selling and supporting high
quality professional FORTH systems and
applications-and doing it even better. We're
expanding w r staff and investing heavily in
equipment training."

FORTH, Inc. wi l l operate with i ts individual
identity, retaining the same name and operating
structure. Technology Industries wi l l be the
"parent" of several other new companies as
well. Each wil l specialize in hardware designed
around and featuring FORTH. wMembership in
this group wil l provide us with the opportunity
to do some things Pve wanted to do for ye-,"
said Chuck Moore. "Fm extremely excited
about these plans."

EXPAF lSION CONTINUES

FORTH, Inc.% growth in recent months has
included two significant additions to
management.

Joseph ''Skipn Reymann, formerly with
GOULD NAVCOM of El Monte, California, has
joined FORTH, Inc. as vice president of opera-
tions. Reymann has extensive experience in
both the technical and business aspects of

program management. He has degrees in
physics, finance, and corporate and contract
law.

Robert E. Smith, Jr. is FORTH, Inc.'s new
vice president of sales and marketing. Smith
has over ten years of experience marketing
application software for minicomputers. He has
already tripled the size of the marketing
department and plans to triple it again within
eighteen months.

Other important additions to the staff
include two people in the accounting depart-
ment and three sales and marketing representa-
tives. The products department has been
reorganized with Leo Brodie, author of Starting
FORTH, acting as manager. The publications
department has grown by two, and three general
support staff members have come on board.

RECENT APPLICATIONS

FORTH, Inc. recently signed a contract with
International Business Services, Inc. in
Washington, D.C., to supply hardware and soft-
ware to the United States Forest Service.

FORTH, Inc. wi l l provide the hardware and
update and enhance the software for a high-
resolution map analyzer system. The system
wi l l work with digitized data from existing
contour maps in raster format.

The raster-scanned maps wi l l be displayed
on a high resolution (1024 x 1024) image
system. A pDP-11/44 is then used to follow a
given contour line and convert it to a string of
vectom. Operator assistance is required i n
selecting a contour line, labeling, handling
breaks in data, and making corrections from the
original map. Operator input is via a track ball
interface and alphanumeric CRT.

Dick Liston of USFS has used FORTH for
several years developing a prototype version of
the system using miniFORTH on a PDP 11/05.

Page 91 FoR7Hort(mnusItn\rsIlTPJ

Q. Pve written several programs that al l my
friends think are excellent; what is the best
way to market them?-M.L., New Mexico

A There is no universally "best" way to market
anything, and that includes computer
programs. Generally speaking, however,
planning is your best ally. Since you have
already received some feedback (and I
assume you are certain that i t is valid and
not just your friends being politely sup-
portive), it makes sense that persons that
closely match the profile of your friends in
terms of need, occupation, income, etc.
would be your best prospects. Simply put,
marketing under these circumstances wi l l
consist of finding a way to communicate
effectively and cost effectively with this
target group.

Q. h e run a number of ads for software I have
developed and while I have sold some, I just
don't seem to make any real money for the
time I am putting in-what am I doing
wrong?-R.B., Sandusky, Ohio

9 Your problem points up many areas that do
not occur to the amateur entrepreneur. In
the interests of brevity, I wi l l touch on a
few of the more significant as being instruc-
tive to our readers.

RODUCT--in this area you may be pro-
moting a product that serves no real need
or is competing with an already estab-
lished vendor.

PRICE--your price may be too high,
causing your potential customers to seek
other sources or do without; or, more
commonly, your price may be too low,
causing you to perform excessive labor in
selling and servicing your accounts for the
amount you are charging.

MEDIA--you may be advertising or selling
to the wrong audience. I f you have failed
to research your market and are running
ads based on who's cheapest as opposed to
who's reading (prospect profile), you are
unlikely to achieve any realistic sales.

Remember your media should be
purchased on the baais of cost per pros-
pect, not cost per 1,000.

MESSAGE-you may be saying the right
thing to the right people, but in the wrong
way. Part of your test marketing should
be to give your advertising and sales copy
to a rank amateur and see if what they
think you are saying is the same thing you
think you am saying.

The above l ist is by no means all-inclusive,
but these are the areas you should start
looking into first.

Q. Is there any way of selling my programs
other than by buying ads, etc.?-B.C.,
Walnut Creek, CA

A. Yes. One of the most common ways is to
have your software merchandised through
any number of firms that specialize in this
field. Basically the way they operate is to
contract with your for ownership of your
software and pay you a royalty on sales--
much like an author receives from a book
publisher. Naturally, the royalty is nowhere
near the amount you would receive if you
sold your software directly to the consumer
yourself; but considering that you have no
risk and your time is free to develop
additional products which in turn can be
sold, the reduced percentage is s t i l l often
the best way to go. The point is that it isn't
how large a percentage you receive that is
important-but how much money you make.

Questions of general interest regarding the
marketing of software wi l l be answered in each
edition in this column. Because of time
limitations, it wil l not be possible to provide
private answers either by phone or mail. In the
interests o f personal privacy, questioners w i l l
be identified by initials only. Questions should
be addressed to:

MARKETING COLUMN
Editor, FORTH DIMENSIONS
PO Box 1105
San Carlos, CA 94070

Page 92

t€LP WANTED

FORTH PROGRAMMERS

Openings at A l l Levels
A t FORTH, Inc.

Programmers experienced with mini/micro
computers and peripherals to produce new
polyFORTH systems and scientific/industrlal
applications. Degree in science or engineering
and knowledge of FORTH essential.

PRODUCTSUPPORTPROGRAMMER

DUTIES: Responsible for maintaining existing
l i s t of software products, including polyFORTH
Operating System and Programming Language,
file management options, math options and
utilities and their documentation; and providing
technical support to customers.

Requirements include:

Good familiar it y with FORTH--pref web1 y
throu# one complete target-compiled
application. Assembler level familiarity
preferred with the 8080, PDP/LSI-ll, 8086,
M6800, CDP1802, NOVA, IBM Serim I,
TI990. Communication skills are ewential.

PROJECT MANAGER

Project manager to supervise applications and
special systems programming projects: writing
proposals, setting technical specifications,
customer liaison, hands-on programming, and
supervision of senior programmers.

Exper:enced in course writing and development,
technical education in computer software, hard-
ware, and related subjects, including FORTH
programming. Responsibilities include mar-
keting seminar support and instructing in-house
poly FORTH courses.

EMJCATIONAL STAFF ASSISTANT

Experienced in dealing with public, sales and
marketing, and some programming. Duties wil l
include assisting education department manager
with overflow administrative tasks, active
participation in FORTH, Inc. user group.

Experienced in public speaking or educational
instruction, programming on various processors
--high-level languages and assembler. Micro-
processor and FORTH programming background
valuable.

CONTACT:

Pat Jones
FORTH, Inc.
2309 Pecific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493

coNSuLTANTWAM€D

We are designing a heat pump controller
sptem, which is based on the National Semi-
conductor "COPS" Microcontroller. It is a 4 bit
calculator chip, with 2K of ROM and 128
nibbles of RAM. '

We need a consultant who can:

1. Advise whether or not Forth can be put
on the COPS

2. Estimate the program size, once
compiled

3. Write software which would allow me to
write and debug code on a TRS-80,
Model I, and then cross compile it to
the COPS.

For information call:

THE COLEMAN COMPANY, INC.
Scott Farley
Design Project Manager
(316) 832-6545

Page 93 FORTH DIMENSIONS IIIl3

FORTH by Timin Engineering, Release 3

Release 3 of FORTH by Timin Engineering is
z complete software development system, It is
-teractive (conversational) i n nature. The

- 3RTH system incorporates a command proces-
scr , compiler, editor and assembler, all memory
msident. The principal benefits are a reduction
- software development time and a reduction
- memory size for large applications. The
:::mipal application area has been machine and
~xcess control. The language is suitable for all
zdications except scientific mathematics.
'is product is based on the well-known FIG

-35TH but with numerous enhancements,
- zluding:

-

-

- visual (screen) editor
- array handling (implemented in machine

code)
- very fast disk 1/0
- configurable for different memory size
- creates turn-key applications
- CP/M system calls and f i le handling

Selease 3 of Timin FORTH wi l l run on Z-
K '8080/8085 hardware systems with CP/M or
3MS. Minimum memory size is 28K. The
:-.= for Release 3 of Timin FORTH is $235 (if
xyer than 8" standard disk, add $15). To order
=..ease 3 of Timin FORTH, write Timin
5- gineering Company, 9575 Genesee Avenue,
i : t e E-2, San Diego, CA 92121, or call (714)
-! 5-9008.

HOOS FORTH

H89/Zenith Z89 users with the HDOS
operating system. It is a version of 8080
FIG-Forth Version 1.1 customized for
HDOS and the H/Z89. Disk I/O takes
place via a standard HDOS disk file. In
addition, the FIG-Forth source listings are
provided and may be modified and re-
assembled on a single-disk HDOS sytem.

- Extras: None.

- Target machines: Heath HE9 and Zenith
289. Heath H8 users may also use the
system if they modify the console 1/0
routines.

- Memory requirements: 32K of RAM

- Number of documentation pages: 140

- Documentation description:

Documentation consists of release notes,
a copy of the FIGFor th Installation
Guide, and a copy of the official 8080
FIG-Forth version 1.1 source listing. The
manuals provide the information
necessary to install and modify the Forth
system.

- Emex does not offer the manuals
separately. They may be purchased
separately through the Forth Interest
Group.

- We wi l l reduce the price to $25.00 for
persona already owning copies o f both FIG
docurnen ts.

- Vendor: Essex Computer Science - Form of Product: 5" HDOS diskette,
including source, object, and release note

- Address: 1827 St. Anthony Ave., St. Paul, files.

- Telephone: (612) 645-3345

- Contact: Rick Smith

MN 55104 - Shipments to date: about 4

- Rice: $45.00, or $25.00 for those who
already own the FIG documentation.

- Product Name: Essex HDOS FIGForth - Includes: U. S. postage, local tax.

- Description: - Warranties and support: 30 day free
replacement, of defective media. We are

Essex HOOS FIG-Forth is an inexpensive interested in fixing bugs that crop up but
version of FIG-Forth for Heath do not guarantee that bugs wi l l get fixed.

'3RTH DI MENSIONS III/3 Page 94

- Order turnaround time: 3-4 weeb.

Order from:

h e x Computer Science
Richard E. Smith
1827 St. Anthony Avenue
St. Paul, MN 55104
(612) 645-3345.

AN 1802 FIG FORTH

Version 1-RCA COOS
Load under RCA COOS
Disc with source and object files for

COP1 8S007
COP18SO05 with COOS upgrade

RCA CDP18S008

A minimum of 8K from addresa 0 is Fequimd

Version 2--RCA unit-track
Load under RCA unit-track
Oisc with source and object files far
RCA CDP18SOO8
CDPl8S007
CDP18SOO5 with UART card

A minimum of 8K from addre- 0 is required

Version 3-object and FORTH screena
Load under RCA unit-track
then LOAD FORTH screens

Version 3 Is suggested unless tho user wanb
to manipulate the 1802 source code. This
version wil l be continually updated with
program materiel.

The discs are $50 each (Calif. re8 add 6
percent sales tax)
Order from: CMOSOFT, P. 0. Box 44037,
Sylmar, CA 91342

AIM-FORTH 'HACKER'S SYSTEM"

I finally got my f igFORTH 65 running on
my AIM-65 at work and I would l ike to offer i t
to other hackers like myself. This FORTH
system runs on AIM -65 with the DAIN DISK
SYSTEM and uses an external terminal.

The software is on 2 disks. One contains the
complete source and object. The other contains
Editor, Screens, &or Messages and other bits
o f FORTH code of my creation done while I
started using FORTH.

I wi l l supply my AIM-FORTH "Hacker's
System" to anyone for $25.00. THIS IS NOT

M a i C I A L PRODUCT! I am interested in con-
tacting other FORTH hackers in my area and
would like to possibly make some noise with
them or start a phone line software interchange
o f techniques using MODEMS. I welcome any
letters or input on this idea.

FOR BEGINNERS! THIS IS NOT A COM-

Eric Johancwon
55 A Richardson St.
Billerice, MA 01821
(617) 667-0137 (home)
(617) 899-2719 x 224 (work)

FORTH MAILING LIST FOR APPLE

Allows users to maintain 1,000 entries per
floppy. Functions include adding, deleting, and
modifying entries. The mount option allows
mounting any number of mailing l i s t floppys.
Labels can be generated in 1,2,3, or 4 across
format8 with ueer optional selection criteria.

This application package includes: 16 sector
boot disk for the Apple; Source code for system
and a bonus of one mailing l ist floppy with name
addresses and phone numbers of over 100
FORTH users.

R i c e is $45.00 from:

Elmer W. Fit tery
INTERNATIONAL COMPUTERS
110 McGregor Avenue
Mt. Arlington, NJ 07856
(201) 663-1580 (call after 6:00 pm)

FIG CoMasG - NW. 28

Page 95 FORTH DIMENSIONS III/3

FORTHCLASSES

NEW CLASS
BY KIM HARRIS h HENRY LAXEN

and October 5-9 at FORTH, Inc. An advanced
course wil l run October 12-16. Contact Kris
Cramer for details. FORTH, Inc., 2309 Pacific
Coast Highway, Hermosa Beach, CA 90254,
(213) 372-8493.

FORTH, PRINCIPLES AND PRACTICES
MORE FORTHCLASSES

This clam is intended to teach the student
-2w to write programs in FORTH. It is a "how
I;" class and not a "why" workshop. The class
*il l meet on each Monday in October from 6:30
'3 9:30 a t Berkeley Computer, 1569 Solano
'denue, Berkeley. The phone number there is
'26-5600. The topics to be covered are:

TheLanguage
Input output StrucfUre
string Hendling

Defining wards
Vocabularies

This is an ambitious schedule, and depending
3" the level of the students, more or less w i l l be
rzvered. Experience with other computer lan-
pages would be helpful, though it is not
Tquired. There wil l be homework exercises,
zYj machines wi l l be available for students'
se. For more information, contact Henry
dxen at (415) 525-8582.

SEMINARS, WORKSHOPS, CLASSES
FROM FORTH, INC.

acetian *miner Walcbhop
-:s Angeles October 15 October 16
31 Diego October 22 October 23

Introductory classes in polyFORTH
zxqramming wil l be offered September 14-18

Intensive 5-day FORTH workshops are being
offered at INNER ACCESS CORPORATION.
These workshops provide en introduction to the
FORTH programming language sufficient to
design and debug programs to solve real
problems. These workshops also serve to
enhance one's mderstanding of the FORTH
tools necessary for complex applications.

wabhop Date8 Time CaBt
Septa 21-25 9-4:30 $295
Oct. 19-23
NOV. 16-20

To obtain more information on these work-
shop, call Inner Access (415) 591-8295 in
Belmont (home of Marine World) in the San
Francisco Bay Area.

ANDMORECLASSES

Free Beginner's Clam for Apple users. In
San Diego, two-session course on 9/26/81 and
10/30/81 at 1 p.m. at Computer Merchant, 5107
El Cajon Blvd. K. V. Amatneek, Instructor.

Page 96 'ORTH DIMENSIONS III/3

How to form a FIG Chapter:

1. You decide on a time and place for the
first meeting in your area. (Allow at least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on o m
side of 8-1/2 x 11 paper (one copy is
enough). Also send list of ZIP numbers
that you want mailed to (use f i rs t three
digits i f it works for you).

3. FIG will print, address and mail to
members with the ZIP'S you want from
San Carlos, CA.

4. When you've had your first meeting with 5
or more attendees then FIG w i l l provide
you with names in your area. You have to
tell us when you have 5 or more.

Northern California
4th Sat FIG Manthly Meeting, 1:OO p.m, at

Southland h p p i n g Ctr., Hayward,
CA. FORML Workshop at 1O:OO am.

Southern California
Los Angeles
4th Sat FIG Meeting, ll:00 a.m., Allstate

Savings, 8800 So. Sepulveda, L.A.
Philip Wasson, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:OO noon, Fullerton

Savings, 18020 Bmckhorst, Fountain
Valley, CA. (714) 896-2016.

San Diego
Thur FIG Meeting, 12:OO noon. Guy

Kelly, (714) 268-3100, x 4784 for
site.

Northwest
Seattle Chuck Pliske or Dwight Vandenburg,

southwest
W n i x Peter Bate8 at (602) 996-8398.

Td8a
3rd Tues FIG Meeting, 7:30 p.m., The

Computer Store, 4343 So. Peoria,

9304 or Art Gorski, (918) 743-0113.
Tul~e, OK. Bob Giles, (918) 599-

Texas Jeff Lewis, (713) 719-3320 or John
Earb, (214) 661-2928 or Dwayne
Gustaua, (817) 387-6976. John
Hestings (512) 835-1918.

Mid Atlantic
h t o m a c Joel Shprentz, (703) 437-9218.

New Jersey George Lyons (201) 451-2905.

New York Tom h g , (212) 746-4062.

Mldwmt
Dean Vieau, (313) 493-5105.

m a Lame Collina (03) 292600.

-land FORTH bltemst Group, C/O 38,
Wor8ley Road, Frimley, Camberley,
Surrey, GUl6 5AU, England

Japan FORTH Interest Group, Beba-bldg.
8F, 3-23-8, Nishi-Shimbashi, Minato-
ku, Toyko, 105 Japan.

Canada
Quebec Gillw Paillard, (418) 871-1960 or

643-2561.

We& Germany

Wolf Gervsrt, Roter Hahn 29, 0-2
Hamburg 72, West Germany,(040)
644-3985.

(206) 542-8376.

New Enqland
Boston
1st Wed FIG Meeting, 7:W p.m., Mitre Corp.,

Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198.

Boston
3rd Wed MMSFORTH Users Group, ROO p.m,

Cochituate, MA. Dick Miller, (617)
653-6136 for site.

Paw 97 FORTH DIMENSIONS IW3

FORTH INTIRIST OROU?
P.O. Box 1 105
San Carlor, CA 84070

Volume 111
Number 4

Price 52.50

w
101 FORTH and the University

1 1 . FORTH in Laser Fusion

Proceedings of the 1981 Rochester
2 FORTH Standards Conference

Implementing FORTH-Based
.-, Microcomputers

Data Structures in a
Sd Telecommunications Front End

Mapped Memory Management
113 Techniques

fle A High Level Interrupt Handler in FORTH

Optimized Data Structures for
1 1 , Hardware Control

121 The String Stack

125 Complex Analysis in FORTH

A FORTH-Based, Micro-sized
1 2 6 . Micro Assembler

Published by Forth Interest Group

Volume In No. 4

Publisher
Editor

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Dave KiISridge
Henry Laxen
George 'vlaverick
Bob Smith
John Sumgarner

Nowmber/Detcomber 1981

Roy C. Mutens
C. J. Street

FORTH DIMENSIONS solicits editorial material, comments
and letters. No responsibility is arumed for accuracy of material
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST CRDUP IS IN THE PUBLIC DOMAIN. Information i n
FORTH DIMENSIONS may be reproduced with credit given to tha
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with mmbarrhip
in the Forth Interest Group at $15.00 per y o u ($27.00 foreign
air). For membership, change of addresa and/or to srrbmit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

FORTH waa created by Mr. Charlea H. Moon In 1969 et thr
National Radio Aatnwmy Obwrvatory, Chulottesville, V A It
was created out of dissatisfaction with available proprunmlng
tools, especially f a obwrvatory lutomatim.

Mr. Moore a d severel aseociatss formed FORTH, tnC. in 1973
f a the purpae of licensing end support of the FORTH Operating
System and Programming Lngwge, and to wpply opplication
programming to meet wstomcrs' unique requirements.

The Forth Interest Group is centered In Northem Cdifomla.
Our membership is over 2,400 worldwide. It waa famed in 1978
by FORTH programmers to encourage w e of the language by the
interchange of ideas through aemiovr and publlcatiam.

ORDER YOUR COPY1
Proceedings of the 3981 Rochester FORTH Standards

Conference
$ 2 5 . 0 0 US, $ 3 5 . 0 0 Foreign. Send check or MO to
FIG i n US funds on US bank.

'Starting FORTH'
Hard Cover - $20.00 U S , $25.00 Foreign
S o f t Cover - $16.00 US, $20.00 Foreign

m m r camw

A mecial thanks this month aoes to Mr. Larrv Foralev d tho I _..-
- 7 . - ~

Univenlty of Rochester. The f&]ority of thia k u e comes from
hia efforta and those of his asociates. While acting as guest edi-
tor for this i88ue of FORTH DIMENSIONS, Mr. Forsley was also
compiling end editing the proceedings from this year's FORTH
conference at the University of Rochester. Even with this
"double duty," Mr. Forsley hor done en excellent job.

The quality of material we hove received from the University
of Rochester is excellent end greatly encourages me in my plans
to "de-Califomize" FORTH DIMENSIONS through the use of re-
giocul gwst editon. While Mr. Fonley and the University of
Rocheater may be e tough act to follow, I will welcome contacLs
from anyone else (penon and/or organization) who would like to
try guest editing en iuw. For your peace of mind, let me asaure
you that production (typesetting, proofing, printing, etc.) wil l be
handled for you. If you think you have whet it takes, give me a
call or drop me a line.

Y w may find that wme of this irrue's aectiau have been re-
duced is size and/or eliminated. h i s is a temporary concession
becaurs of the volume of material we have to publish in this
irrue. h t e l costa prohibit expending the size o f FORTH
DIMENSIONS to publish a11 we receive, so when we have a quan-
t i t y of quality material we publish those items that would %em to
hove the greatest reader interest.

I hope to meet many of you at the FIG National Convention in
Santa CIare, California on November 28th. Meanwhile,
GO-FORTH a d get additional members.

C. J. Street
Editor

We are heeding into aome bury times for FIG. By the time you
pet thir copy of FORTH DIMENSIONS we'll have completed the
Mini-Micro Aow in bu them California and be deep into the
details of the FORML Conference and FIG National Convention.
Remember that the Convention is Lturday, November 28th at
the Mur io t t Hotel in S.nta Clara, California. Expect to see
many of you there.

We've rent out packeta to FORTH vendors about exhibiting at
the FIG National Convention. If you are interested in exhibiting
and haven't received a packet, call the FIG line and request ooe:
(415) 962-8655. Only $50 for a table!

This inue ia the much awaited Univenity of Rochester
effort. Ita packed with useful material. You ought to order the
Proceedings of the 1981 Rocheater FORTH Standards Conference.
It her 378 p a p of excellent papers

"Starting F O R W by Leo Bmdie is available from FIG --- ---------- md replecea "Uainq FORTH" u the book to have
about the FORTH I~guag8 .

We have conducted en unscientific
w v e y and fwnd that in many locations there are people who are
uring FORTH m d aren't members of the FORTH Interest Group.
Y w M a member ahould work on them to join. All you have to do
is make a copy of the Order Form------------------- and
hove your aaociatsr f i l l in their name and adarea. I f we each
get w more person to join we l l have over 5,OOO members. Let's
do it.

Roy C. Mutens

Now, a l i t t le lecture.

FORTH DIMENS IONS mr 4 100

FORTH AND THE USVERSITY

Lawrence P. Forsley
Laboratory for Laser Eneigetics

University of Rochester

Welcome to the wonderful world of
-9W, or, University of Rochester
-39TH. URTH was developed wveral
.cars ago and has been used for meny
zxl!ications, some of which are
%-merited here. Beginning with the

FORTH Internatinel Standards
Znference , held on Catalina, we have
':..swed the FORTH standardization
"'ort. As a result, the majority of our
8.items are close to being FORTH-79
I:rndard, although not FIG model. Very
' e r papers in this issue will refer to
-% TH.

The 1901 Rochester FORTH Standards
I m f e r e n c e was held at the University.
--.e major reason for this, aside from the
x . p t f u l weather a t that time of year, is
"e FORTH activity a t the University.
--.s work shows up in several divisions and
2ezartments including the University

z-vuting Center; Optics; Physics and
A rtronomy; Chemical Engineering;
-'?zhanical Engineering; Department of
i:.ology, Division of Diagnostic Ultra-

i:-Td; Department of Cytopathology;
rz:rical Engineering and the Laboratory
:- Laser Energetics. Indeed, we are
- 0 3 t e d to the original work by Dick

r- 3 f Physics and Astronomy, for deriving
-e first URTH system; and to Ken
 wick, who in 1977 was with the

-r bersity Computing Center, for bringing
z :?e IBM 360/65 TSO version based on
1 z g ' s work. At this time, Ken, Dick and I
o r - c the only FORTH users a t the
-? Wersity. I believe the name URTH was
-I u d by Ken, although Dick was partial
I PARTH, for Mike Williams'
- -':itasking Intel 8080 FORTH system.
-- 'x tunately, Ken and Dick are no longer - :- the University; and Mike's commit-
-t-ts prevented his authoring a paper.
T r e v e r , their work is reflected in the
-3:erial presented here.

ze-7 ,, who in 1976 was an assistant profes-

--.-(

-his issue s ta r t s with three overview
: x c r s . The first paper is mine and covers
-c development of FORTH a t the Labora- :-. for Laser Energetics, which remains
.-c iargest university FORTH user. The
p.:md paper, by Pe ter Helmen, ref lects
T :ye uses of FORTH in medical research
r c clinical applications. The third, by
D-- Lefor, covers one of the more visible
r .ersity FORTH systems: The IBM 3032
2 -0mmunications front-end.

-* next three papers demonstrate a
i-.cty of ways by which FORTH can be

ze: to interact with hardware. The first
L.CP-, by Rosemary Leary and Carole

wler , deals with three methods of using
- a x e d memory. A second paper, by Bob

Keck and me, demonstrates a high level
interrupt handler used in plasma physics
experiments. The third paper in this
section is by Joe Sawicki, and suggests
powerful structures for easily and
efficiently interfacing hardware.

The last mct ion illustrates the dlffi-
culty with defining the difference between
systems and applications. The first p iper
is by Michael McCourt and Hichad Marisa,
and describes a transportable String
Stack. The second paper is by Alfred
Clark and covers a F O R l K b a s e d complex
arithematic calculator. The IisL paper is
by Greg Cholmondeley and documents a
microprocessing tool similar to one
supplied by Signet ica

These papers have many things In
common. Dn. example is the difficulty in
discriminating between user8 and imple-
mentors. Bob Keck, a user, worked with
me to develop a tool for high level inter-
rupt handling. Likewise, Al Clark, also a
user, has augmented a floating point
package with words appropriate to the
complex plane. The String Stack is clearly
a system tool. Complex arithmetic is ISM
so, end a microprogramming system is
clearly an application. Or is it? In the
context of i ts user, the microprogramming
words are a system. We seem to be for-
ever chasing our tail when determining a
FORTH context. But 1 think tha t this is
the power of FORTH.

Another facet is the use of defining
words used throughout the papers. An
extension of defini words, Paul
Bartholdi's TO concept? is used in both
Joe Sawicki's and Greg Cholmonde y's
code. Mike McCourt's "IN" concept' is
used by Pe ter Helmer's to implement the
TO concept. However, a student, Carole
Winkler, thought that TO complicated
things unnecewarily, so she doesn't use it.

This last comment illustrates one of
the virtues of universitier freedom of
dissent. Unfortunately, 1 have found that
most groups, and many people, using
FORTH are intolerant of different views.
During my involvement with FORTH I
have watched many grodps rise t o
ascendency, tout the t rue way, and then
be replaced by another group. This has
been especially true of the FORTH
Standards effor t where Kitt Peak,
FORTH, loc., the European FORTH User's
Groups and FIG have all played this role.
But another view is possible, which is
more in keeping with FORTH8 nature.

Many of us see FORTH as being' a
system of controlled, or directed,
anarchy. Since every man, or woman, can
be for himself it is highly idiosyncratic
and anarchistic in form. Anyone who has
tried a team approach to FORTH
programming is familiar with the tendency
towards a Tower of Babel. On the other-
hand, people comfortable with thie

unstructured environment find both their
productivity and creativity increased.
But, some direction must be applied to
share code anrong uabrr. I wggest that
this direction should be one of form, and
not of content.

I t Is appropriate to define documenta-
tion ntandards which imply a form. But is
is inappropriate to s ta te that something
can be done only % (with the implied
right) way. However, people who learn
something by doing it the wronq way
understand much be t te r than people who
a r e JoJ the right way.

I thiqk an example of this can be foun
in a conversation 1 had with Kim Harris.
Kim took exception to an emr e r paper by
Pe ter Helmers on Userstacks! I was told
thnt the approach was wrong. Period. But
on fur ther diacueaion, I found tha t I agreed
with Kim. The fault was that Peter had
found only a partial wlution to da ta
typing, and in a multitasking system his
technique might be very cumbenome.
That's fine. Pe te r I-bImem does not wb
multitasking systems, as his systems are
all single uwr, interrupt/event driven.
thus, it is worth remembering tha t eac of

I

us has different, and valid, viewpoints. P
As a major promoter of FORTH a t the

Univemity of Rochester, I have tried to
define an environment conducive to this
type of interplay. This has resulted in a
learning environment with many student
opportunities; and with Leo Brodie's book,
Starting Forth, and Don Colburn's study
guide, Goinq Forth, we can begin teaching
with FORTH. Not teaching FORTH, but
teaching with it. Four of the authors in
this issue a re students and three other
authors teach courses or neminars. If
FORTH is ever to ca tch on like Pascal, or
FORTRAN, then it must begin wtih
university teaching as those two languages
did. In five years my present students will
be in industry, as my first student con-
tacts already are. A univeristy environ-
ment coupled with its students' enthusiasm
and their eventual employment will
further FORTH more than any seminar
series or interest group. But it will take
time.

1. FORTH DIMENSIONS Vol. I No. 4 and
Vol. I No. 5.

2. FORTH DIMENSIONS VoL I1 No. 4

3. Personal conversation on May 10, 1981
prior to the Rochester Conference.

4. FORTH DIMENSIONS Vol. 11, No. 2

5. Since thet paper, Pe te r has published
another one, entitled "Alternative
Parameter Stacks," which can be found
in the Proceedings of the 1981
Rochester FORTH Standards Con-
ference.

Page 101 Ip TH DIMENSIONS Ill14

FORTH W LASER FusioN

Lawrence P. F orsley
Laboratory for Laser Energetics

University of Rochester

A b d r r t

Inertial confinement fusion research
using lasers has resulted in the laboratory
creation of extraordinary conditions of
temperature and pressure, duplicating
those found in the cores of white dwarf
stars. The machines which create these
conditions and the diagnostics that mmi-
tor them have become increasingly auto-
mated. The demands of this research heve
forced us to adopt new techniques, l ike
FORTH, for enhancing interactions
between engineers, physicists and their
cxper iments.

Introrhctian

Lasers have been used to simulate
plasma conditions of high density (ap-
proaching solid) and temperature (over 60
million degrees) for several years. The
goal of these experiments has been either
for weapons effect simulation, practiced
at the national laboratories, or for the
possible commercial generation of
power. This latter program has been
exclusively pursued by the Laboratory for
Laser Energetics (LLE) for almost a
decade. As can be expected, these exper-
iments have resulted in the development
of new diagnostics, and these diagnostics,
in turn, have resulted in new fields of
physics. Besides the Laser Fusion Feasi-
bility Project, there are research
programs in: sub-picoaecond h e m , nano-
second X-Ray sources, X-Ray lasers,
laboratory astrophysics, and materials
damage testing.

These research programs, and the main
supporting lasers, are highly automated.
About me half of the computer systems
on the 24 beam 13 terrawatt infrared
Omega laser and all of the computers on
the single beam Class Ocvelopment Laser
(GDL) are implemented in FORTH. This
paper will explore the development of
FORTH-like languages a t LLE.

The laboratory is also part of the
College of Engineering of the University
of Rochester. Thus, them is an important
interplay between the staffs, and students,
of LLE and the University. Most of our
FORTH systems have been partially, or
totally, implemented by students from
chemistry, electrical engineering, physics
and computer science. Four of the other
papers in this journal issue have a student
author who is also a member of LLE.

Shndardizatim

LLE was one of the firrt Laser Fusion
to automate i tr laser

~s;bS~~~s?esWhenever pasible, wa relied

upon standard computers, interfaces and
software. Originally, in 1971, we chose
the Hewlett Packard 2100 series com-
puter, and the RTE (Real Time Executive)
Operating System with Fortran, Assembler
and Algol. We used the HP backplane for
our instrument interface. This system ran
for over five years and 15,000 shots, but
building a completely automated laser
with 24 instead of 4 beams required a
different approach.

The Hewlett Packard computer b r k -
plane was limited in the number and vari-
ety of devices which could be procured
and attached to it. We overcame this
difficulty by adopting CAMAC (5).
CAMAC provided us with a large capacity,
computer-independent backplane. It was
also a widely used standard in the nuclear
physics community with instrumentation
and interfaces appropriate to our needs
available from several sources.

The problems of computer and wft-
ware standardization ware more diffi-
cult. Some of our applications were real-
time, and appeared to require a fast
interrupt response. In other cases, we
were interested in direct i m q e digitize-
tion and needed a large address space.
Other requirements suggested the need for
a powerful multiprogramming operating
system. Unfortunately, no one computer
type and operating system supported aU of
our applications; and yet, with limited
manpower, i t was difficult to support a
variety of hardware and software.

Computer I ~ g ~ a p s , including
FORTRAN, are different from one vendor
to another, and especially when operating
system calls were taken into account. The
problem of software consisteney and sup-
port was not limited to dissimilar com-
puters. Ehrman (4:16,17) hag shown that aa
many as 12 different Ionquages may be
encountered by a programmer when edi-
tors, linkers, and loadert M included in
addition to the programming language.
Therefore, a unifying software spprooch
was needed among various operating sys-
tem functions and languages on the same
and different computers. We did not know
of the unix System from Bell Laboratories
(11:1905-1929) and the 'C' programming
language of Richie and Stevens (12:1991-
2019) in 1976. However, I had talked with
people a t Kitt Peak in 1976 and travelled
there in the spring of 1977 to see FORTH
being used.

FORM

FORTH was originally developed M a
smell, real time operating system for tele-
r o p e control and image processing by
Moore (8:497-511), (9) and Rather (101223-
240) a t the Kitt Peak and NRAO facilities
which are funded by the National Scimce
Foundation. I found t h e groups a t t h ~ w
facilities uaing FORT* scientists, com-
puter engineers and b c h n i c i w fn wme

cases, the scientists were very knowledge-
able about FORTH, whereas in other
cases, they only k n e w a few words. 1 was
especially impressed by Dr. Mark Alcott,
who was, st the time, with Cal Tech and
was observing on NRAO's 36 foot radio
telescope. He was pleased with his ability
to change the graphics routines and other
"systems" software while continuing to
collect data. Similarly, I found many
technicians programming and writing test
program& This appeared to make good
use of their time, especially when they
would be familiar with a device, like a
Varian computer disk controller, and did
not have to explain i t a function to a pro-
grammer. I t also appeared that many of
the computer group's staff enjoyed
FORTH, although there were problems
witk standardization and change. I found
out several years later, talking with Jeff
Moler, who was then in operations at Kitt
Peak and is now with the Livermore
Tandem Mirror Experiment, how difficult
it wos to maintain programs in this envi-
ronment.

FORTH seemed to have many desirable
charocteristics, and it provided the same
programming environment on many
machines. I t allowed both very low level
access to hardware and high level struc-
tures to shield users from that hardware.
There was an assembler, a compiler, and

interpreter. What we did not know
then was the care required in documenting
it, m d the tendency to create personal-
ized applicetione Md words. But, we
needed a version of FORTH at the Univer-
sity.

Dick Berg, M assistant profels r in
physics and astronomy a t the time,' de-
compiled a Kitt Peak Varian nucleus circa
1974. He recoded it for the National
Semiconductor PACE microprocessor.
Ken Hordwick, t with the Univerity
Computing C e n t e y u s e d this as a model
for the IBM 360/65 under TSO and M i k e
Williams developed a multitasking version
on the INTEL 8080. This was the birth of
URTH.

We also procurred a version for the
Z i l q Development System from FORTH,
Inc. at about the same time to demon-
strate an automated X-Ray spectrometer.
Although I had a system for the Hewlett
P r k a r d 2100 from Kitt Peak and a "disk-
l e d version from Don Berrian at Prince-
ton, 1 decided that we should develop our
own version bawd upon the URTH model.
Ken Hudwick and I did this in late 1977.
Since then, other members of the Univer-
sity community and the Laboratory for
Lawr Energetics have worked on various
versions of FORTH for Data General,
Modcornp, PDP 212 and IBM 3032 compu-
tam. Through the efforts of Mike
&Court, originally with the Department
of Cytopathology and then with LLE, w e
developed a FORTH-79 system. All of
thew were multitasking systems (2514-

FORTH DIMENSIONS 11!/4 Page 102

::8). 3. March 1978- A laser amplifier organize related devices into rubaystems.
testbed was demonstrated. This hierarchy consists of both spatial and

T - t b d a temporal relationships among components
4. April 1978- Single h e r amplifier (11, (3). The menipulation of these rcla-

tionships requires the development of a
w e hardware testbeds. Them are two hardware rubcontractor's site, data-base-like language. My in i t ia l work
:.)tinct phases in dealing with hardware. with a duplicate at LLE. w i th Fortran and RTE, end discuuions
-* first O C C U ~ during i ts in i t ia l checkout wi th Ray Helmke a d Eric Knobil at the
=d reoccurs when it fails, or you suspect By April, it was clear that the Wilson Synchrotron! led me to develop
: of failing. A t this stage, one is con- Omega Power Conditioning com- such a language for process control called
m n e d with device and interface imple- puter would not be available until Maps, because it "maps" relationahips
"entation, and it is important to be able August, 1978. Since the Depart- 6:109,110.
3 interactively set m d test data and ad- m m t of Energy four-beam mile-
iress lines. stone was originally scheduled for A Map contained two types of struc-

early September, 1978, this l e f t tures, or Tags. A tag was either a collec-
A testbed must be capable of exer- insufficient t ime for laser prepar- tion of data, or a set of pointers to other

:mng hardware at a rate of about 1 kilo- atim. Tags. The Map contained an inverted l ist
Yrtz. Devices which operate In a fartar o f pointers to each tag, so that all tags
:me domain wi l l usually be buffered, as 5. April 1978- An LLE engineer, John were unique end accesaible. Two special-
rn example, with transient digitizers. Boles, and a consultant with the i red programs, SETUP and BUILD, were
'Jmt other devices, such as relays, software subcontractor developing developed to manipulate and create the
: m a t e in a 10 Hz or slower time the power conditioning software, in i t ia l Maps from text files. About a dozen
=main. A t a 1 kHz rate, tuf f ic ient sam- subroutines were developed to allow tags
:.es can be taken from A/D's and D/Ats to t o be accessed. Data could then either be
: x k l y check their accuracy and range, placed into one or more Tags, or retrieved
n d thereby checkout many parts of a sys- f rom them. In the interest of speed, this
:em quickly. system was recoded in assembly language

6. June 1978- A Bix beam laser sys- and later microcoded on a Hewlet t
Several language features are required tem was operational. Packard 2lMX-E computer. This com-

puter currently runs the Omega 24 beam
7. August 1978- Preliminary delivery power conditioning, and was mentioned in

of full 24 beam system which wan the Testbed Section of this paper.
For tran-based.

The first FORTH applicatims a t LLE testbed was operational at laser

began coverting the single ampli-
f ier testbed to run 4 laser beams
synchronized with the laser oscil-
Iator.

'3r tests l ike these. A means must be pro-
..*d to individually and collectively set
,:dress and data lines. There must also be
2 way of repetitively issuing data/ address
zatterns. Often, a hardware problem is Alternatively, by using the text inter-
-termittent, and a test and branch capa- 8. October 1978- Department of preter and FORTH8 capability to define

:.!ity is necessary to allow loopiung until a Energy Milestone passed. arbitrary data structures, several data-
' a h r e occurs. base-like systems have been developed. In

There were substantial differences be- i t s simplest form, everything in FORTH is
Thus, the specificatim for a testbed tween the 24 beam Fortran based system an executable data structure. Thus,

mguage grows quite large, with a major and the 6 beam FORTH versim. These FORTH allows one to define spatial and
'ale occupied by the command processor, included the lack of an error detecting temporal relationships in a simpler, and
X text interpreter. Regardless o f command processor, a graphic display end more coocire fashion than Maps. In ad-
e t h e r the testbed language is imple- error archiving on disk. However, whereas dition, it is internally consistent, whereas
-ented in Fortran, Basic, Pascal or most the FORTH version used 16K words of Maps had Fortran, assembler, microcode
::mr programming banguages, a wbstan- memory and a floppy disk, the Fortran
:.a1 Effort w i l l be spent on the text inter- based system required 196K words of
z-ter. On of the virtues of FORTH is
:-.at it comes with a generalized text
-terpreter, suitable for testbeds and This application also made us aware of Once FORTH had proven viable for
::%r applications. FORTHS compactness and the speed w i th small systems, we decided to implement

which applications could be developed. It product im systems in it. These systems
Our FORTH testbed applications in- is my feeling that this, and several other included automated diagnostics as well as

:.Jded: power conditioning testbed for applications, were brought up in m e half the laser control systems. The prototype
3 c k i n g out laser amplifiers; alignment the time it would have taken in Fortran, Omega 24 beam calorimetry system was
restbed for debugging and calibration of including FORTH training time. Once an example of an early production
*Jtomated compments; ' and, general good documentation is available, FORTH system. It used simple, vector l ike struc-
3 AMAC module testing. Other testbeds w i l l prove even better. tures to contain the addresses, relation-
'ave been used to develop image pro- ships and values associated with various
: * s s i n g hardware and software, and one- Also, I have found FORTH systems to calorimeters, analog to digitel convertors
: ;wnsimal rsticon arrays. be more maintainable than comparable and calibrators. It was capable of diaplay-

Fortran systems, because FORTH uses 10 ing beam energies and calculatinq expo-

xveloped a lmg the following schedule: needed when writing FORTH. Another
advantage can be gained by the ease of
using data base technology when building

and operating system interface facets.

memory and a 15 megabyte hard disk. Roductim syoteima

The laser amplifier testbed was times fewer source lines. Some care is nential f i ts to the data.

The Omega 24 beam Alignment System
October 1977-Ken Hardwick and I is more complex. It has run on an LSI 1112
began writ ing a FORTH system process control systems in FORTH. w i th 5 CAMAC crates and 3 color dis-
for the HP 2114. plays, controlling over 1000 devices.

Initially, the operators used the FORTH
2. January 1978- The FORTH system text interpreter for e l l commands and

was completed and CAMAC soft- The f i rst phase of dealing wi th hard- queries. One advantage was their abil ity
ware started. ware is over when the hardware works. t o wr i te new "macros" to setup compli-

The relationships among devices then cated alignment procedures more
become important. One can hierarchically quickly. However, there was a risk anso-

1.

Sp.tid md Temptma1 R s l a t i d i

- ~ R T H DIMENSIONS in14 Page 103

ciated with letting operations' personnel
directly program the system. Thenfore,
t5e new Alignment System has a more
complete command processor impla-
rnented in FORTH, but which does more
error detection than the simple text inter-
preter. This system also uses the defining
words capability and has a large disk resi-
dent data base for describing components.
W i t h the advent of the command proces-
sor, the system was switched ov
LSI 11/23 w i t h mapped memory? t:G
addition allowed approximately 20 tasks to
handle various functions, communicating
v i a a queue-based massage protocol.

The laser beam quality is also impor-
tant to us. We use streak cameras inter-
faced to Princeton Applied Research
Optical Multichannel Analyzers for this
purpose. The PAR OMA includes a
FORTH-based LSI 11 for acquisition and
reduction. As with the early Alignment

grammed directly in FORTH.
those systems though, this was originally
not a turnkey system provided by software
engineers, but rather was incrementally
developed by physicists and students.

and Calorimetry systems, ib iv;;;

We also use FORTH excludvely on the
Glass Development Laser (CDL) with simi-
lar computer systems. A FORTH based HP
2100 is used for power conditicning and
interlocks for the main bay and three sur-
rounding laboratories. A DEC LSI 11/2
collects laser and target calorimetry data,
reduces it, and also maintains a data base
on disk. A second LS1 11 is used in a PAR
OMA for processing streak camem data.
This is especially dgnificant since GDL is
engaged in converting the infrared light to
ultraviolet, and the fint harmonic IR, a
second harmonic green and the thi rd har-
monic, UV are observed w i th the same
streak camera. This required a very flexi-
ble system to allow reduction in a quasi-
two dimensional mode. Another Hewlet t
Packard 2100 has two video digi t izen and
a color graphics unit. It is used for
determining absolute beam intensity md
modulation for materials damage teeing.
This system is being converted to a DEC
Ls1 11/23 with an RLOl disk attached. A
third LSI 11 has been used by a graduate
student to observe target plasma produced
X-rays? Finally, M L S I 11/23 is used
with the nanorecond X-Ray faci l i ty for
the real t ime acquisition and reduct im of
2 0 X-ray d i f f rac t im pattern. Recently,
Chis system has had an array processor
interfaced to it to allow real-time fast
f w r i e r transforms of sample di f f ract ion
rings. Al l of these systems u e FORTH
based, with the automated imaging ding-
nostics serving as prototypes for Omega
dieqnostics.

Carluim

Although FORTH was relatively m-
known, it has made a positive impact on
the development of sys tem and irrtru-

mentation at LLE. It has allowed the
computer sytems g r w p to adopt the phi-
losophy of providing tools t o scientists and
engineers, equipping them to do a job
themselves. Sometimes, it was questioned
whether this was the best use of their
time: and, for some people, It wam't. But.
for the majority of people in GDL, and a
fair number on the Omega systems end
other laboratories at LLE, FORTH has
been a success.

~ l ~ ~ t r

I would l ike to thank an d m a t endlesa
l is t of people for their help over the past
f ive years. Moat important among them
though, are Ken Hardwick, Dick Berg,
Chip Nimick and Mike McCourt. A h ,
without the help of many students during
this period, many of these sytems would
never have been built.

This work was partially rupported by
the following sponsora Exxm Research
and Engineering C o m p ~ y , General Elec-
t r ic Company, New York State Energy
Research and Developmmt Authority,
Northeast Utilities, The Standard O i l
Company (Ohio), the Univen i ty of
Rochester, Empire State Electric Energy
Reaearch Corporation, md the U. S.
Department o f Energy inert ia l furion pro-
gram under contract number DE-AC08-
80DP40124.

Lawrence P. Fon ley is group leader of
the Computer Systems Group rt the
Lm4oratory for Laser Energetics, Univer-
sity of Rochester, Rochester, N.Y.

Footnot..

The four-beam system, Delta, had
computer control ond monitoring in
1972. (&lOl).

He is now wi th the Deferue Mapping
Agency in Washington, D.C.

Ken is now wi th Network Sys tem Inc.,
in Minna.polis, MN.

Come11 Univerity in ths aummer of
1977. This faci l i ty is now known as the
Cornell Electrm Storage Rlng.

The m e e d memory tschniqum are
discussed by Laary and Winkler In the
"Mapped Memory Techniques In
FORTH' poper in this irrus.

PAR purchased thir system from
FORTH, Inc.

This is mentioned In Bob Keck'a and my
paper, "A High Level Interrupt H.ndler
in FORTH", which can be found in this
Iaue.

PROCEEDeKTffM
1981 ROOESTER FORTH S T W A R D S

cx3wmfNc€
Many have been waiting for this con-

ference proceedings to come wt, from
what was a very interesting, and different
conference. It was the f i rst conference to
addrer the FORTH Standard since the
Catalina meeting of October 1979. Al-
though it was suggested that the
Rochester conference was only a regional
meeting, attendees came from six coun-
tries and thirteen states. Also notable, we
succevfully divided papera into serial oral
remiom one morning and had parallel
poster scrrions that afternoon. This way,
almost everyone of the seventy partici-
pants presented something, and no one
misred anything (we think).

In addition, we added travel sponsor-
ship this year. The Standard Oi l Company
(Ohio), Friends Amis, Inc., Miller Micro-
computer Services, Md Software Ventures
contributed over $5,000. This travel fund
covered partial travel expenses for atten-
dees from w far away as Hawaii, Chile,
Germany and the Netherlands, and a3
close as California and Kentucky.

The original call for papers was in
three major am.= the Standard, floating
point end fifes management. These ereas
are well represented in the proceedings.
In addition, there are sections on philoro-
phy, Vocabulary, Multi-tasking and Data
Acquisition, Data Structures and the
Future of FORTH. The organization we
adopted combined poster sessions, oral
reuion and lomc material not presented
at the conference. There is an entire sec-
tion devoted to working groups on areas
l ike Standards clarification, FORTH tech-
niqucl, Floating Point and Fi ler Manage-
mmt. There uu 378 pages covering the
state of FORTH. The Proceedings are
available for $25. See the FIG Order
Fotm.

for those who are interested, there
w i l l be mother Rorhester FORTH Confer-
ence the th i rd week of May, in 1982. The
tentative subject area wi l l be Process
Control end Data Acquisition. We expect
that t h e n w i l l be subareas dealing wi th
microprogramming, FORTH machiner,
personal computing, and the Standard.
For information, please contact the con-
ference chairman:

Lawrence P. f orrley
Laboratory for Laser E mrget ics
250 East River Road
Rochester. NY 14623

Page 104 FORTH DIMENSIONS 1U/4

bPLEMEN1WC FORTH BASED
MCROCOMRJTERS AT THE
UdVERSITY OF ROCI-ESTER

MEDlCAL CENTER

Peter H. He lmen

htmhctim

"The micros are coming!" Everyone
-as heard this so that it is not unexpected
:?at physicians and researchers at the
Jrliversity of Rochester Medical Center
ask the question: "How can they be put to
.re?" Over the past four years I've been
artempting to answer this question by
assembling a series of microcomputers for
30th research and clinical applications.
-?ese systems are al l similar in their use
2' an 5-100 bur hardware architecture and
j W R T H software environment. Yet they
:.'fer significantly when i t comes to
uec i f i c hardware interfaces, application
r;!tware, and types of system users.

In this article, I am going to focus on
:2th there similarities, these differ-
r ~ e s in microcomputer systems. I am
;31ng to start out by discussing their
t immon hardware foundation, and then
exdore peripheral devices unique to each
:.stem's design. Because the ul t imate
x r s of a system have a significant
"oact on application software, I am going

: 3 try to characterize the types of users I
- 3 v e dealt with, and their specific soft-
-are capabilities and needs. From here I
- . I 1 discuss some common software pack-
i ;es that were written to transcend both . rriable hardware, and v ~ i r i a b k user,
-equirements. By discussing all. of this in
: e m s of how FORTH has aided system
zcvelopment, 1 hope to fully support my
rzitention that FORTH is an ideal envi-
'zqment to meld many different types of
.sers to just as diverse hardware configu-

- a r e 1 Hardware Chqmizat i rn

'3LIOnS.

Sa let's start out by considering the
rzmmon architectural arrangement of
"ese microcomputers. They are all Z-80
:3sed machines with typical memory sizes
:' from 32U to 48U bytes of static read/
-r:te memory and 1K to 2K of EPROM
-e-nory used to contain machine specific
-dementations of commonly needed I/O

?Jtines such as console and disk drivers.
cr:h microcomputer uses one or two eight
-3 single density floppy disk drives. The

Z-mary system console is comprised of a
. S line by 64 character memory mapped
. ?eo display along with detached ASCII
aevboard. Each machine also has an RS-
:!Z serial port f a printer hookup.

These computers are all organized
i - w n d the 5-100 (IEEE-696) bus w i th from
:en to fifteen card slots available. With
1-e basic setup described above using f rom
'2Jr to six of these slots, the customiza-
:. n to specific system configurations is

accomplished by a mixture of standard
commercial and/or wire-wrapped peri-
pheral interface cards. Let's consider
some of these iystems in greater detail,
looking a t apecial hardware and how this is
reflected in the systems' software.

UlPUMd Diffrrtim Appuatum (UON

The UDA microcomputer is part of an
experimental system to explom the scat-
tering (diffraction) of medical ultraround
signals through tissue samples. The
scattering is a function of both frequency
of the ultraround dgnal (2 to 8 Mhz) and
the angular podt ion of a receive trans-
ducer relative to the ultrasound transmit-
ter. The UDA system thus must control
three primary functions: analog carrier
signal generation, tissue sample position-
ing, and received signal analog process-
ing: A t present, only sample positioning
(u s ~ r q stepper motors) ir not directly
handled by the UDA microcomputer.

Carrier signal generation is controlled
by means of a Hewlett-Packard 816SA
programmable signal generator interfaced
to the microcomputer by means of an
IEEE-488 (GP-IB or HP-18) instrumenta-
tion bus. An opto-iaolated parallel TTL
output port is used to control a program-
mable attenuator on the output of the
8165A. W i t h a range of 0 to 130 db, the
attenuator can be used to automatically
adjust gains for maximum signal dynamic
range.

The most cr i t ical aspect of the UDA
hardware is the generation of gating
signals used by the malog processing
circuitry. This is accomplished by using
high speed analog mixers driven by digital
t iming circui t ry wi th a resolution o f 100
nsec., and an accuracy of 0.01%.

Study of Vein Mechnirn

The basis of this system is an experi-
ment to measure axial force, diameter and
transmural presrure in a blood vein (in
vitro) while controlling axial strain and
pressure. The system consists of a verti-
cal chamber for the vein rpecimen, a pre-
fusion and pressure clamping apparatus,
force and pressure transducers, and a
microprocessor for data acquisition.

The microprocessor contain8 a sixteen
channel, twelve b i t multiplexed analog t o
digital (A/D) converter to digit ize the
force and pressure signals under high level
program control.

In conjunction wi th this A I D is a com-
mercial video (TV) digit izer capable of
programmed resolution Up t o 240 lines of
256 picture elements. The input to this
digit izer is f rom a TV camera aimed at
the blood vessel under study. A special
code definit ion was wri t ten to analyze a
programmable area of the TV image for an
indication o f vesael diameter. This works

by f i rs t threahholdinq, than detecting
vemel edges via a wftware algorithm. By
using FOQTH/Z-80 OMembly Ianguage, the
diameter determination executes in IGM
than one second.

This data acquisition system also con-
tains a dual mode graphic8 diaplay capable
of 128x128~4 grey scale images or 256x
240 dot graphics Digitized video images
use the former mode while acquired pres-
sure and force data use the dot graphics.
In addition, the TV signal dynamic range
can be studied by a dot graphic plot of TV
signal amplitude versus time.

AIM included in this system, to aid in
data reduction, is an Advanced Micro
Devices AM9511 high speed floating point
processor IC. This circuit's weed, com-
bined w i th the memory mapped graphics
display, allows real-time analysir and
display o f acquired data, thus giving
continuous feedback on the progrew of the
experiment.

Overall, this system replaced a manual
strip chart a d photographic recording
setup that required several days for data
collection and analysis. Now data can be
automatically acquired and processed
within a couple of hours.

Pulmonry Micmconputsr

The pulmonary clinic uses a micro-
computer identical to that just damxibed
except without the TV video data acquisi-
t ion interface. Used in a clinical setting,
this pulmonary microcomputer is inte-
grated with a mass spectrometer and a
breathing chamber to allow analysis of
pulmonary tissue volume and capillary
blood flow. The basic procedure requires
keeping track of the patient's breathing
(by monitoring volume within the flexible
breathing chamber) while analyzing the
decreasing concentration of two soluble
gees: dimethyl ether (DME) and acetylene
(C21-$), referenced t o the concentration
o f an insoluble g a r helium (He).

The hardware floating point unit facil i-
tates rapid (30 seconda) analysis of the
acquired data, including several curve fit-
ting operations, and analysir of signals for
relative maximdminima. The graphics
interface allows immediate viewing of the
acquired data to ascertain proper signal
levels, and to compare raw data to the
curve fit data.

XRay scmilq system

This experimental rcanner uaes a
slotted wheel and two horizontal slots
(mounted at 90' t o the radial orientation
of the wheel) to achieve a mechanically
raster scanned X-ray source. The wheel
and horizontal S l o b are controlled by
means of three reparate rtepper motors
pulsed under control o f the
microcomputer. X-ray exposure is also

3RTH DIMENSIONS Ill/& Page 10s

controlled by the computer as a function
of meawred patient X-ray attenuation.

The microcomputer contain8 a
counterltimer chip which is used to
control the stepper motors, a seven
channel multiplexed eight b i t A/D con-
verter (Uaed to measure patient X-ray
attenuation and X-ray power), and an
elght b i t D / A converter to control the
axposure time of each X-ray pulse.
Several digital l/O lines are used to start
the X-ray rotor, turn on the X-ray genera-
tor, and control stepper motor direction.
Other lines are used to sense mechanical
limit switches.

The software used in this machine is
primarily concerned with controlling
exposure time for each X-ray pulse in
synchrony with the motor movement. The
system ramps the motors up to apeed from
an init ial stopped condition. In addition, it
gradually increases speed to compensate
for linear speed as the horizontal slots are
moved radially towards the center of the
wheels. 'he software also controls expo-
sure time by sampling the attenuation of
X-rays through the patient once each
motor step, and using table look-up tech-
niques to set the next pulse's exposure
time. In addition, total x-ray power is
sampled and accumulated to keep track of
total patient dosage and X-ray tube uaage.

How umrs' Nshd. IrqMCt Thwe S p b m

In my development of these systems, 1
have encountered three types of users:
system developen, researchen, and phyri-
cians (and their clinical technicians). This
grouping of usen also roughly correaponda
to levels of FORTH software utilization.
The system developer--myself and pre-
sumably yourself-is expected to know all
the in's and out's o f system operation. I f
something i s miuing, it's generally eary to
add it; this is a primary reason why many
of us l ike FORTH. However we don't
actually apply a system, we only aet up
the roftware foundation for the syatem.
As uaers, we don't cwot!

A true end user, whether researcher or
physician, cannot be sold on FORTH
because missing capabilities can be easily
f i l led in; they don't have the knowledge to
do so. Nor do they really want to learn to
do so. They have to be sold on other
virtues o f FORTH.

In my experience, researchers have
been very receptive to FORTH. In general
they have aophisticated technical back-
grounds but l i t t l e practical computer
knowledge. This is a prime benefit: they
may have used FORTRAN on a large
machine for number crunching, but other-
wise they have few preconceived notiona
about computer organization. They ore
less impresaed w i th structured program-
ming techniqwr or f i l e systema than they
are by the fact that they CM physically,

and interactively, control peripheral
devices. A research scientist may not
understand how a word l ike R A M P Or
SAMPLE works,but can readily learn what
they do.

For example, the FORTH software
written for the U D A s y 8 t m allows
explicit uaer control o f the hardware for
setup purposes aa well as automatic con-
t ro l during experimental data acquisition
runs Setup can be done through words
auch a s
OK 25 DB

(RRl'r a na tu ra l herct)

(v ia the C F I B

- OK 2.5 US= CUUIIW-OR

-
PRQ 2500 XHZ' TAU

A data acquisition experiment can be rat
up using words auch aa:

100 2000 swEPr-?RltQublcy
(de f ine con t ro l o f BPBldU)

(de f ine con t ro l o f a t t e n 1
OX F I X ~ - A l T E W A T I O N

OK DON'T-CSIO*-ATFWUA"IOUS

-
1500 32 m v A - c o m t o L

(let the minicomputer take
over c o n t r o l o f the micro.)

In addition, the remarcher can build
upon basic words to create custom appli-
cation programs ar needed. Thur the X-
ray scanner system can be earily program-
med by:

OX MO'IOR VHEEtMO'IOII
(def ine a 'WTQR' data th)

O R D O

(ramp r tepp inp motors)
ox LIH I F IlCBG57
(e x i t loop i f motor l im l ted)
OK SYNCERONI 21
rsynchron ize t o =tor pulse)

-
- OK : ROTATE-m

2!!
-

W k ' E U X Q R R M P

-

U U P - m ;
A physician or clinical technician ir

much more of Wl end-uwr than the
rerearcher. Ar auch, they are l e u
concerned with words that @llow them
flexibil i ty in control o f peripheral
hardware; instead they want worda that
control herdware in specific wayr towardr
some lpecified clinical objective& Thus
they need to implicit1 use both basic
FORTH ,words and p e r i p ~ e r d driver words,
but want to only expl ic i t ly know wordr
that achieve specific aims. But even here
FORTH can be appreciated. It allows a
flexible, conceptual system with a non-
confining syntax. With the pulmonary
microcomputer, the phyt ic i rn might
typically have the following didogr

(.equlre data, and u l c it 1
OR ORIN= naS RGSDLTS
Tpint r e s u l t s

- OR mLwoNm CAW~ATIONS

~ t m E V I r w

5 CzB2 mad
(view p l o t s of gascr m 1

(... graphica d i s o l r v)

By learning a limited, yet full, vocabulary
of perhaps twenty to f i f t y well chosen
worda, these non-technical usen can
effectively use a FORTH based micro-
computer with l i t t le training or under-
standing of programming. And without
fail, they learn to use colon definition8 t o
group theae beric words to their own
lpeci f ic uaage patterns.

commm sottwrra Pr l r rp .

As we have just seen, I group FORTH
software in three coarse categories cor-
reaponding to types of users: basic
FORTH system software, peripheral sup-
port extentions, and custom applications.
The basic syttem software does not vary
at a11 while custom application software i s
unique to each end-uaer system. Peripher-
al aupport software is in a hazy area.
From the point of view of documentation
and support, any given type of peripheral
should appear uniform between systems;
but at the hardware level, each type of
peripheral varies in myriad details. By
creating common roftware packages with
thir in mind I have been able to avoid
constantly recreating software because of
hardware variations.

Common software packages can do
more t h n Just enae support for similar
rystema. It can effectively hide hardware
details from the user, thus making dis-
umi la r A I D converters. for example.
appear ident icd from the software point
of view. And a well designed set of driver
software alw imparts increased capebili-
ties to a system than just those of the
'raw' hardware. Let's look at a few
exampler of software peripheral drivers to
reinforce theae point&

Many o f them microcomputers are
u w d for data acquisition purposes involv-
ing different type8 of A/D converters and
real t ime clocks. From a hardware point
of view, w m e of these A/D's have eight
b i t vemus twelve b i t resolutions. Some
have raven or eight analog multiplexer
c h m l r while othen have rixteen. Some
of the real time clocks have fixed 60 Hz
rewlutiom, o then are programmeble.

From a conceptual point of view, these
data acquisition rystems all operate
identically: they can randomly rample
multiple analog signals a t some specified
rate. The driver software Implements
these concepts using two words SAMPLE
and DELAY. SAMPLE taker an integer
multiplexer channel number as an input
argument, and returns an integer ampli-
tude value. I t works identically no matter
what hardware is controlled by it; the
multiplexer addressing and A / D digital

Page 106 FORTH DIMENSIONS in14

wtput format are hidden from the user.
f!milarly, the real time clock works in a
-anner transparent to hardware
Icecifics. DELAY requires only an input
argument to specify the number of real
. . n e clock "ticks" to delay.

But the conceptiial basis of the data
icquisition package transcends jusl the
z ' 3 hardware; there must be some place
:> put the data. This may be on the para-
"eter stack, in data arrays, or in disk
2ascd virtual arrays. When this capability
s added, the data acquisition specific
'ardware creates a synergy with the fund-
a-nental system hardware such as read/
c i t e memory or floppy disk.

Another example of a peripheral driver
Zackage that I developed is a memory-
-apped vioeo graphics package. The
I .sical hardware interfaces ranged from
1 3 x 2 5 6 resolution up to 512x460 resolu-
: YI, with as many different methods of
~ddressing specific dots on the display.

Conceptually, we want, f irst of all, to
3 0 able to plot physical X,Y points inde-
:endent of hardware specifics. A word
% x h as PLOT, using X and Y integer para-
-etem on the stack top, can give us this
raoability very readily.

But t o really us0 graphics effectively,
: IS nice to be able to specify different

i r e a s on the video screen to plot different
:3ta, as well as scaling functions to adopt
q i c a l coordinates to this specified

I - a D h i C S area. The GRAPH data type
2 d i l t with a defining word) allows these

? fferent graphics areas and scaling func-
I m s to be associated, and invoked, by a
:-mmon name. Further capabilities were
i 3 e d to allow easy creation of vectors,
;-ids, t ick marks, axes, and boxes. A l l of
I wdden, a very proletarian graphics peri-
:-era1 is transformed into a powerful
~ 2 2 1 . And because these new functions are
i.' built on the PLOT word, they are
-?adily tansferred between systems with
: fferent hardware interfaces.

A final software driver to consider is
:-at of the hardware floating point unit.
: IS interesting to consider this f rom both

8 FORTH, and a conventional language
:2int of view. In a language such as
=ASCAL, the system generally has bui l t in
s f tware based operators for floating
:gint. Because the system is not inherent-
. extensible, the addition o f a hardware

'.Jating point peripheral requires either a
-anufecturer rewrite of the PASCAL
'.3ating point routines, or elre a user
-terface through PASCAL functions or
: rocedures. The former requires manu-
'acturer acceptance and support of a new
-ardware peripheral; unless a very popular
Ievice, such support wi l l be reluctant at
z e s t . The lat ter requires a very awkward
anguage syntax to invoke hardware float-
-q point capabilities. Either way, the

problem is that the hsrdwue has to be
forced to conform to the manufacturar's
language standard.

A t the Medical Center, a hardware
floating point package waa easily added as
an extention to the basic FORTH system;
the language adopted the hardware!

Anrhrmim Q pprt.nt?

A t this juncture it is valid to ask i f
FORTH justified itself in i t 8 ura at the
University of Rochester Medical Center.
1s it an anachronism of the past, or a phi]-
owphy portending the future?

Admittedly, FORTH is wmewhat
l imi ted without such thinga qs a fi le
system or procedural name rcoplnp of
variables. Perhaps there should also be
less explicit knowledge of addresses, and
more system security. Perhaps. But i f m,
then these things w i l l be evolved as
FORTH matures.

It is what FORTH eepouws, thwgh,
that justifies its use. It allows hardware
components to dictate the software
design, thus allowing rapid incorporation
of technological advances. Other lang-
uages force conformance of hardware t o
language standards-a slow, expensive
process.

FORTH allows isolation o f uwrs from
hardware dependencies, and adds capabili-
ties to the basic hardware. The result is a
user environment that supersedes specific
machine configurations with concept
oriented, yet free syntax, computer opera-
tion. The FORTH system developer might
need to know w, but the system user
need only know E. Conventional
systems, to the contrery, generally require
everyone concerned to ask: "why?"

FORTH encourages an exploratory
development technique. A user can
choose between interactively trying con-
cepts, writing full programs, editing pro-
grams. compiling programs, and/or debug-
ging programs. He or she can do this in a
single, consistent FORTH environment,
uti l izing any of these phases of develop-
ment as required. The result is efficient
use of a l l system resources.

The embodiment of the FORTH philor-
ophy is thet programming is not what it is
often taught to be: the application of top-
down programming techniques t o e i n g l e
problem. Instead, it involves a series of
interrelated problems a l l related to
system use. This might mean a set of
words that allow a researcher t o control a
TV digitizer, or it may mean a seriea of
words to calculate end graphicelly display
the results of a mathematical analysis.
While the wr ies o f capabilities needed wi l l
always vary between different systems, it
is only by providing a r i ch enough vocabu-

lary that a user can have a flexible, effec-
tive, and friendly syrtem. FORTH IS
unique among languages in that i t encour-
ages the programming of solutions:

Peter Helmerr i s a rsnior laboratory engi-
neer In the diagnostic ultrasound reaearch
laboratory within the Department of
Radiology at the University of Rochester
Medical Center.

Eolmorr' W i d e continued
QI nex t two pqor

BUG FIXES

Corncum roFEDn

Sorry you had trouble wi th FEDIT. The
llsting was retyped crt FIG and several
t y p w cmeped in. They are:

1. SCR 64 Line 10: compile should be

2. SCR 65 Line 23: 1+ /MOO ahwld be 1+

3. SCR 67 Line 46: B/BUD ahwld be

COMPILE

16 /MOO

B / W

4. X R 67 Line49: : €should be: .E

5. SCR 67 Line 50: + AL IN should be
+&IN

You are perfectly right that aource
text should be loadable. I talked to some
of the people at FIG about this and they
w e n acutely aware o f the problem but
they are simply not s0t up to directly
reproduce listings in FD at the present
time. They do the best job they can with
the resources available to them, and they
work darn hard a t it. I can't fault them.

REPL is a pseudonym for the fig-
FORW line editor definition, R . I u e d
the pseudonym because FEOIT was the
f i rst program I wrote in FORTH and I
wasn't really familiar enough with
Vocabularies to comfortably us0 a word
that WM already ured in the FORTH
vocabulary.

L e t me k m w how it works for yw. I f
y w would l ike a machine produced listing,
I c w l d run one for you from my current
version. Let me know. Good luck.

Edgar H. Fey
16 Calendar Court
L a Grange, L 60525

-3RTH DIMENSIONS 1II/4 Page 107

L b > I 9

DISPLAY ASCII TV DATA

ACOUISITION
4

INTERFACE KEVOOARD
* .

* J

STATIC CPU FLOPPY DISC
RAM +-+I
40K Z I O A 8TORAQE -

SAYPLINQ MULTIPLEXED ARITHMETIC
AD PROCEII lNO

CLOCK CONVERTEA UNIT .

f " ' 9

lb FORTH DIMt"S 4
I

a)

Microcomputer

Scanning beam

Film cassitte

I
i
:-ray detector

DATA S T R U C T l R S
N A

TELEOOMMCMICATIONS FRONT W

John A. Lefor
University of Rochester

A a t n r t

URTH, the University of Rochester
dialect of FORTH, was used to implement
a telecommunications front end for an
IBM 3032. This package provides acceas t o
the IBM 3032 from as many as 160 ASCII
terminal a t speeds up to 9.6Kb. Each of
these terminals contend for 128 simulta-
n e w s connections a t the IBM computer.

The reasons for choosing URTH as the
development language and a review of the
major advantages and disadvantages of
using Urth for this project is discussed.
Also, some conclusions as to the applica-
bility of URTH, and the data structures
used in this application i s reviewed. The
U K of conventional data structures for
providing information paths between the
various components of the system is
examined and the possible advantage of
less cmventional data structures more
firmly based in URTH constructs is ex-
plored.

A plan for development of similar sys-
tems is presented which integrates some
of these concerns and promises a bet ter
structured system.

h tmduct ion

In 1977, the University of Rochester
Computing Center first got involved with
the FORTH language. The initial devel-
opment In FORTH was the implementation
of various flavors of the FORTH system
known collectively a s URTH. Most of the
URTH systems developed have provided
multitasking capability on a variety of
micro-, mini-, and mainframe computers.
During the development of the various
URTH iystems, a number of people within
the Computing Center showed interest in
using an URTH based system for develop-
ment of real projects rather than viewing
URTH as just another academic curimity.

Concurrent with the development of
the URTH system, was the growth of tala-
communications in computing a t the Uni-
versity. A need for additional tele-
communications lines into the computer
was fast becoming a necessity m d the
financial support for such a purchase was
on the verge of becoming a reality.

In this environment, the design and
implementation of a locally deiigned tele-
communications front end was begiming
to emerge. The front and had to exist in
an academic computing center where the
need for teleprocessing was growing. The
front end had to communicate with an IBM
host (it was generally believed that the

IBM environment was a t the University for
many years to come). The front end had
to provide access for the ever growing
number of ASCII terminals being
purchased for both computing and non-
computing environments. Importantly, the
front end had to provide for access to the
1BM host from more terminals than could
be dedicated to the host a t any one time.
The only front end which could posribly
meet these goals and be reasonably C o s t
effective had to be one of local design.
meeting local requirements.
Fwbm Rwicbd

The front end designed at the Uni-
versity of Rochester Computing Center
does provide some unique features to the
users of our IBM 3032 computer. To be
sure, the features a r e not unique within
the context of computing, but are not
generally available in an IBM mainframe
environment.

One of the major advantages provided
by the locally designed front end is the
ability to switch between systems from
the same terminal. In a traditional (non-
SNA) IBM mainframe, it is not always
convenient to have a terminal rwitched
between different software teleproceuing
applications. Typically, a terminal either
is connected to one application or an-
other. With the locally designed front
end, it is potsible to choore the appli-
cation ot which the terminal is attached.
In effect, the front end is a port contender
for various applications on the mainframe.

The aecond major feature arising from
a local front end is the ability to support
an XON/XOFF protocol. Since the IBM
mainframe communicates with its termin-
als in a half duplex mode, XON/XOFF
support is not traditionally available. The
local front end is based on full duplex
communication to the terminal so
XON/XOFF can be supported in a fully
effect ive fashion. Thoae terminals which
have buffera which can overflow can turn
off the input at will, a feature not avail-
able without special support in the IBM
world.

The front end is today m i n g at the
University of Rochester Computing Cen-
ter. It is supporting 160 ASCII terminals
contending for 128 host computer ports.
Each terminal CM aelect connection weed
between 110 and 9600 Baud M well as a
few other tailored features. The fact that
the implementation continues to run fre-
quently appears to be a miracle but repre-
rents some fai th tha t the concept is at
least ementially wund.

l-kdwmm Dsum

In order to implement the telecom-
municationa front end to M IBM
computer, ths p m c c g o r chosen for the
implementation had to provide the capa-
bility to interface to an IBM byte multi-

plexor channel. Since the protocol fur
channel interfacing is non trivial, there
a r e a limited number of vendors of mini-
computers who were able to provide this
interface capability. Another irnportant
consideration in the design of a telecom-
munications front end is the realization
that if a failure should occur in the fronr
end, there is a perception that the host
computer failed. Because the-? :s great
need to Occesa the host computer, it is
undesirable to have hardware failures
affecting the Front end. To this end, the
mini-computer chosen as the frorit end had
to have both a history of :eliaDle service
and a maintenance t rani capable o f
repairing any difficulty with a minimum of
fuml.

In evaluating the available mini-
computers against these criteria, the pro-
cessor which was finally chosen was a
Digital Equipment Corporation PDP
11/36. The interface to the channel is via
a DX-118, and the ASCII terminals are
supported by DZ-11's (actuaily many of
the terminals are supported by a Digital
Communications Associates 205, which
emulates 32 lines of DZ-11 on a singie
quad height board).

In retrospect, we can see that though
the PDP 11/34 does work in the required
environment there are some deficiencies.
The most notable is in the maintainability
of the DX-118 (the channel interface
which connects the PDP 11/34 processor
to the IBM processor). There are so f e w
DX-11B's In production throughout the
United States that the DEC customer
engineers a re relatively unfamiliar with
the details of i ts operation. When subtle
problems have occurred, the repair of the
problems has taken considerable t ime and
talent. To be sure that the subtle difficul-
ties were discovered and corrected is a
tribute to the engineers dedication to the
problem, but a more popular interface
wwld probably have been repaired in a
shorter time.

softvpe Drim

In determining the nature of the soft-
ware to run for this application, it was
necessary to evaluate the probable struc-
ture of the end goal and to consider all the
concern8 of a project of this sort. After
the major considerations a re evaluated,
the best software choice can be made
baaed on the concerns and knowledge of
what is available.

A telecommunications front end is a
realtime device which must be able to
handle a relatively large number of poten-
tial 1/0 devices. ki particular. many ter-
minals are expected to be connected to
the front end. Also, there were consid-
erations for a t tachment of synchronous
liner for w o r t of Hasp Bieync, Remote
3170'8, and local area network communi-
cations. All these considered together, it

Page 110 FORTH DIMENSIONS]Ill6

*a(important t o choose a mftware
.nplementation which provides support for
reltime device handling.

The wide variety of I/O devices which
Yere contemplated for the front end also
-mired that the software provide tools to
Telp the designers of the system gain
,nderstanding of a wide variety of hard-
ware devices. There were going to be
asynchronous and synchronous devices as
*ell as a channel interface which had no
*ell defined characteristic8 (the best
xmmenta t ion of how the OX-116 worked
was found in the diagnostic programs sup-
2:ied for hardware maintenance). In
addition, there was alway8 the porsibility
:f needing to support a new and different
::ass of 1/0 device. Though the manuals
mcumented how the hardware worked,
31y software which would allow inter-
i i t i o n with the unfamiliar hardware would
3e beneficial in the debugging of the over-
3.: syrtem.

Another area of debugging which was
Imsidered in the software choice was the
mftware protocols. The connection to the
rTannel of an IBM computer by asyn-
:?ronous ASCII devices invokes a non-
:-;vial set of software protocols. A simple
trample of the kinds of problems is in the
:-anmission of any single ASCII character
13 the channel. In the IBM environment,
:x software running in the processor
? v e c t s that any ASCII characters trans-
-i!ted from a telecommunications front
r - d are sent not as simple ASCII
riaracters (as generated by the terminal),
I,! rather demands t at each ASCn char-
x:er be b i t reversed? Though this is not
i diff icult feat to accomplish, it points
S J ~ the nature of some of the software
:-XocoI issues which must be dealt wi th - a telecommunications front end.
S,ffice i t to say the software used to
:*sign the front end would benefit the
zesigner if it helped to identify, and
-?solve, software protocol issues.

In the development of any realtime
r ' tware project, i t is recognized that the
:-roughput of the system is important.
'ye telecommunications front end is no
exception. Since there are to be a large
-t-nber of 110 devices providing input to
:-e software application asynchronous to
:v operation of the software, it is imper-
3:ive that the application software be able
: 3 keep pace with the demand. On the
r:?er hand, the inability o f the front end
:: keep pace with the demand is not c r i t i -
:3:. If a character destined to a terminal
s lost, a human being w i l l not die but a
:rogremmer may get upset. Keeping
.wse priorit ies in mind the project had t o
10 implemented in an environment which
-as not wasteful of processor time, but
:-.ere was no need to be alarmed i f there
-as the potential to loose data.

The hardware decision made specific
'eatures o f the p r o c e w r had t o be con-

sidered in the aoftware choice. *eel-
fically, the PDP 11/34 hod 64K bytes of
memory. We had to have some degree of
confidence that the entlra system could be
packaged in 64K bytes. If that was not
possible, the development time c w l d be
slowed down waiting for shlpment of addi-
tional memory. The weed of the 11/30
processor led us to believe we would have
sufficient C W to do the job, but not a lo t
t o apare.

The final and perhaps major conridar-
ation which affected the choice of
software was the perceived development
time. The project was inlt iated at a time
when there was an extra I8M processor at
the University. It would be possible t o
design and debug the entire front end on a
processor which was not in use. That was a
real opportunity not to be parsed up.
However, the procemor could not remain
idle for too long a time. Any software
package which could help to shorten the
development time and thereby allow de-
bugging of the front end on the unused
processor would be of great benefit to the
implementation.

Albmatiw Software Stnhgiea

Examining the issues in making the
software choice, there appear to be three
alternative software strategies. The uw of
assembler language, the UM of a high level
language such as C or Fortran, or the use
o f URTH.

Assembler language provides a number
of solutions t o the problems w t l i n e d I t
tends t o be compact in memory uaage, it
certainly has the potential to make most
efficient use o f the l imi ted CPU, and it is
quite capable of handling the foreign
devices needed for a front end. However,
the assembler has a few drawbacks.
Probably the major di f f icul ty wi th assem-
bly language is the extended development
time. Debugging is slow and tedious and
design o f code and data structures to aid
debugging is totally a responsibility of the
programmer. Thus. development of a
major application in assembly Ienguage is
concerned both wi th the solution of the
problem but also much e f fo r t is g e n t on
good design and coding techniques.
Another di f f icul ty wi th the asaembler is
maintainability. Each programmer has an
individual design style. The documenta-
tion rests largely in design o f the code. I f
the original &signer is no longer available
for maintenance o f the project, there is a
long learninq curve to t ra in a new indi
vidual.

High level languages solve many of the
diff iculties wi th amembly language. If the
language is well conceived for a realtime
problem, i t wi l l support the di f f icul t
hardware iawes and w i l l provide a frame-
work for data structure design which pro-
vides readability and maintainability of
the software. A major di f f icul ty wi th high

level languages is their UM of memory,
and sophisticated operating system ser-
vices. These two concerns may make a
larger faster CPU needed for effective
execution of the application. Another
drawbeck of both the asletnbler and high
level solution is the lack o f inherent inter-
active develoment and debugging tools.
They typically can be designed into the
system, but they generally are not present
in the basic environment.

EvJlwtlm of UPTH

URTH appears to meet many of the
goair in the software choice. Though
there are limitations, the advantages seem
to outweigh the disadvantages eapecially
when design time is so important a consid-
eration.

When looking at LJRTH, a clear advan-
t a p fforded by URTH is implementation
time.l Mort of the other advantages pro-
vided by URTH can be directly t ied to the
speed of implementation. URTH provides
easy access to any set of unusual devices,
because the device handlers are ach tai-
lored to the system and the hardware.
Once a program is debugged in URTH,
there is good r e a s 7 to believe i t w i l l
continue t o work. Another major
advantage offered in the URTH environ-
ment is the enormous flexibil i ty in design
o f both murce coder and data structures.
The abil ity t o code both high level URTH
and m e d i n e level code and to achieve a
uniform interface provided many oppor-
tunities to g e e d up inefficient code. The
abil ity to design new data atrucutres to
work in a large scale environment offers
much flexibil i ty in design.

The URTH environment is not without
fault. The fact that URTH is an inter-
preter does mean the code is not as
efficient in CPU g e e d as possible. Of
course, the eaae of generating assembly
code helps alleviate this problem. How-
ever, a major drawback of the URTH
environment stems from i ts f lexibil i ty in
data structure design.

The very fac t that it is possible to
design any needed data structures coupled
with the implementation of the traditional
data structures of arrays, constants, and
variables created some diff iculties in the
design of system which had so much pres-
sure for development in a short time.
There was not a lo t of t ime p e n t on
development of the best data structure for
the problems encountered. Rather, tradi-
tional data structures were used to meet
individual demands. In particular, many
arrays were implemented for storing of
information relating to specific 1/0
devices, and queues (obtained from a free-
pool) were used to buffer data between
devices. The uae of such data structures
had two major impacb on the project.
Firat, the queues were sufficiently di f f i -
cult to handle as to have impact on the

-3RTH DIMENSIONS IN14 Page 111

weed of the overall system.' The use of
the arrays to hold information for later
processing yielded much difficulty in
debugging individual words and tended to
leave side effects which had impact on
words already debugged.

Thus, the use of URTH has many vir-
tues but i t i s crucial to recognize the
particular issues which may lead t o
difficulty in debugging. Udng data
structures such as arrays and variables to
communicate information between teaks
in the front end tended to leave open
many portential pitfalls in the debugging
and design of a system as complex and
highly integrated as a front end.

Altarnative Dgiq Stratogias

In examining the resulting front end
for difficiencies, it becomes clear that
there are some strategies for alternative
design which could l imit the difficulties
encountered in any similar realtime
project, and wwld make URTH a vehicle
for well designed, well integrated, and
effective systems design.

The issues of code design are well con-
sidered in URTH. The ability to switch
between machine level code and high level
URTH provides a classic tradeoff between
speed of execution and memory ut i l i -
zation. The fact that the interface
between both environments is standard
allows all design in high level URTH, and
conversion to machine code when and
where appropriate. In this area, URTH
provides suffficent tools and a good set of
options.

In the data design area, URTH provides
so many options that the best data struc-
ture choice i s very much at the control of
the programmer. In the case of the front
end design, the traditional data structures
were not sufficient to effect the job but
there was insufficient time to design an
optimal data structure. In retrospect, it is
possible to peruse the alternatives and
choose a structure which provided the
flexibility needed, and also limits the side
effects from preventing effective debug-
ging of words.

One of the major advantages URTH
provides over alternative aoftwarc
approaches is the stack. Proper design of
URTH worck with parameter passing via
the stack helps to insure that a debugged
word wil l tend to continue to work, and
will have no dde effects Given this
Observation, it would be natural to use the
stack to pa= parameten in the telecom-
municationa environment. Unfortunately,
the stack i s not useful in communication
between tasks, and the stack is diff icult to
address and use when too much infama-
tion is parsed In the front end, there are
so many unrelated parameters which need
to be parsed between tasks that the stack
is not uaefuf. But, the concept of a stack

does solve one of the major difficulties
encountered in the front end design. Given
this set of considerations, it m m s like a
good idea to define a "Mmed object
stack" for each 1/0 entity defined in the
telecommunication environment. When a
particular I/O device medr mme form of
service, the named stack i s invoked and a11
data relating to the I/O device is availa-
ble. The rtack can contain pointer8 to
ring buffers as well as current status of
the device. Using thia strategy provides
an environment that naturally f its within
the basic strucutm of URTH proqram-
ming, makes effective w e of c w t r u c t r
within the URTH ryrtem, and promotes
g w d URTH progmmming practices which
minimize the side effect problem& Over-
a11 speed of the spplication is not
significantly impacted and many old
functions can take advantage of the data
structure.

The stack wil l contain rufficient
volumes of information about each I/O
device that it may be advisable to create
a "framing" of the stack. This would allow
access to individual parts of the r t w k as
i f it were the current top of stack, thus
allowing accesa to more data in a conve-
nient notation.

SUmf-Y

The telecommunicationr front end
designed and implemented at the Univer-
sity of Rochester Computing Center Is a
useful model of many realtime applica-
tions. In the design are fwnd a number of
flaws which are pr imui ly related to the
particular presures p r e m t at the time of
the design. The choice of URTH as the
roftware vehicle appear8 to have been an
excellent one however, the choice of data
structures to u w within the URTH anvi-
ronment was not a8 well conceived.

URTH provided a software
environment which clearly a f f i t e d time
effective development of a complex
system. It provided a compmheruive
interactive d e b u g g i ~ environment with
the ability to addre88 specific Ipeed
inefficiences in a uniform manner. The
major drawbacks to the URTH environ-
ment relulted from the choice of data
structures for intartaak communication
within the qplication.

the optimal data rtructuwa for any par-
ticular .ppllcation. In tho case of real-
time applicatiw, the choice of data
structures ir particularly critical. from
my experience, 1 believe that a data struc-
ture dmilar to the -named object stack
ww ld benefit many redtima application#
in URTH both function provided and in the
limiting of rids ef fecb m prevelmt in
global data rtrucutres ruch a8 m a y %

A mond feature which w w l d be valu-
able in m URTH envlronmant would be

URTH -8 p r o v i b tooh to d.velop

any uwfu l stand-alone dump with indexing
to help the programmer walk through the
dictionary. When total application col-
lapse occurs, URTH is not very informa-
tive as to the nature of the problem. A
memory dump (with a good index for the
dictionary) would help to debug some
rather sticky timing problems.

'

Overall, URTH is a good choice fo r
development of realtime applications, but
care in the design of data structures
8hwfd help to make the overall mainte-
nmce of the application a simpler chore.

Foornotr

1. Thin is not simple an example of a per-
v e m IBM, but instead i s another fact
of IBM computing history. The stan-
dard device IBM used to connect ASCII
terminals to the host (a 270x) was not
designed using today's UARTS, rather
it collected the bit serial data in 8

register. The data was collected in a
register in wch a way as to cause the
characters to be captured in bit
reverse order. Rather than correcting
the problem in the front end, they
transmitted the bit reversed ASCII t o
the host, and translated the bit
reversed ASCII to EBCDIC for pro-
censing. The roftware stayed, so the
nwd for b i t reversed ASCII ex is ts
today.

2. This advantage was certainly realized
in the actual project. The basic system
was operational within four months
from beginning of the project.

5. This is dependent upon good URTH
progmmming practices. But, in our
project there became clear a self
evident truth. We attempted to debug
ro many "words" which were already
correct, we began to believe that it is
very difficult to &bug a working pro-
pram

4. Converting mwt of the queues to indi-
vidually aaaignad ring buffers npeeded
~p overall proceasing by 20% or more.

5. See Peter Helmen, "Userstack",
FORTH DIMENSIONS, Vol. 111, No. 1
and Peter Helmera, "Alternative
Parameter Stacks", Proceedings of the
1981 Rochertor FORTH Standards
Conference. -

I would like to thank Richard Marisa, Ken
Hudwick, Mike Armstrong, and Mike
Willimmr for their assistance.

LA. L a f a was senlor systems programmer
at the University Computing Center at the
Univerrity of Rochester and i s now Data
Communications Manager.

FORTH DIMENSIONS II1/4 112

M A p p f D K M o R Y MANACEMENT
TECCMQUES H FORTH

Rosemary C. Leary
Carole A. Winkler

Laboratory for L a m Energetics
University of Rochester

W r t

Three techniques for using memory
-anagcment hardware in a FORTH rystem
' w e been implemented at the Laboratory
'3r Laser Energetics at the Univerrity of
qxherrter. One method U M ~ mapped
-wmory for data storage by creating e
'data window" in the logical address
uace. A second method increases the
available space for programs by mapping
:asks in a multi-tasking system. The third
-5es mapped memory for data itorage by
:wnq advantage of special instructions
z - 4 a second set o f memory management
-eqisters.

-tion

The problem of insufficient memory
'2: programs or data is commonly encoun-
::red on computers with a 16 b i t word
i .ze. Many manrlfacturers now offer hard-
-are t o alleviate this probiem. At the
-7 lvers i ty of Rochester's Laboratory for
-aser Energetics we have devised solu-
: 3% to three different aspects of the
:-?blew using FORTH on PDP-11/23 and
=Y-11/34 computers.

Two applications at the Laboratory had
I Teed for large image processing arrays
2~ to lOOK words). We solved this by

.s.ng a double precision array index which
- 33s physica! memory into a logical mem-
I-.. "data window" within the FORTH sys-
1 C T .

On a different, very large FORTH ap-
I .cation, we needed both more program
i w c e and more data space. We increased
IP amount of program space by imple-
-tnting a multi-tasking system in which
:+:tain portions of memory contain the
-,-:!em and common code, while other
::::ions are task specific and are period-
:o:ly switched in and out of active u&.

To increase the available data space
- 0 are using special instructions and a
second set of memory management regis-
:crs on the PDP-11/23 and PDP-11/34
~r-nputers.

Additional material on these systems
:a be found in "FORTH in Laser Fusion," :. Larry Forsley, in this issue of FORTH
3: WENSIONS.

*ware

The memory management hardware on
:Y PDP-11/23 and POP-11/34 computers
: m i s t s of two e t s of registers that map
.: b i t logical addresses into 18 bi t phyr-

Page Block No.

i c d addre~er. OM wt of ngirterr I8
wed when the procraor ir In "kernel"
mode, the other when it lr in *uwr"
mode. T h mode ir dotermined by two
bit8 of the procemor status word.

Each set of regirten contain8 eight 32-
b i t Active Page Raqirterc (APR'r). Each
APR 18 acturlly two regirtersr the Page
Addreu Register (PAR) which contain8 a
brae address, and the Page Descriptor
Regirter (POR) which containr the page
length and the accau control key.

The &bit logical addreu apace I8
divided into eight "pager" ihown In
Table 1. When the memory mnagemmt
unit is enabled, m y acceu to memory w i l l
be mapped through the APR for that
eddrau.

Logical
Address DIB

Pare

0
1
2
3
4
5
6
7

L o l i c a l Address Ranan

0 - 17776
20000 - 37776
40000 - 57776
60000 - 77776

100000 - 117776
*120000 - 137776
140000 - 157776
160000 - 177776

(octal)

T a b l e 1. Loliral Address Sracr.

The physical memory eddrers that wil l
actually be accened is a combination of
the logical addreu and the PAR for that
page. Figure 1 rhows how the logical
address is deriv d. Bits 15-13 of the
logical address give the page (or APR)
number. The PAR for that page gives the
bass addrean in 64 byte blocks. Thin value
is added to the block number field of the
logical address (bits 1 2 4) to find bits 17-6
of the physical addreas. Bits 5-0 of the
physical address are the same m bit8 5-0
of the logical addrew.

Flpora 2 lhowr the logical address
apace.

Page 7

Page 6

Page 5

Page 4

P Ige 3

Page 2

Page 1

Page 0

' T I } 4 K

block buffers . - - - - - - - - - - - -
return stack

d lc t lonary

nucleus
- _ _ - . . - - - - - - - -

* 28K

Figure 2. Loglcal address space f o r
slngle task without napped mmory.
Additional information on the PDP-11

it can be found in memory mmegement
the procemor handbook . r
D . t a W l n d a * d ~ ~ t

One way to utilize the memory men-
egement hardware and additional memory
ir to uw it for data rtorage. Two of our
appl icet im at LLE require large data
arrays (up to lOOK words) for image pro-
cesaing. We wlved this problem by
creating a "data window" in our logical
address apace. Figure 3 rhows the logical
addreu layout of a system with a data
window.

I t 0
Active Page
Reg i s t e r Page Addrtss F ie ld

I

0
Physical
Address

I1

Physical Block No. DIB
I

(Dlsplacemnt
I n blocks)

Figure 1. Construction o f a Physical Address

(derived f r o m f igure 7-9 o f [l] and
repr in ted with pennlssion f rom DEC.)

' X T H DIMENSIONS IIl/4 Page 113

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

,24K

t

Figure 3.

110

data window

block buffers

return s tack
paraneter stack

_ _ _ - - - - - - - - - -
_ _ _ _ - - - - - - - -

1

1
d i c t i ona ry

nucleus
. _ _ _ _ _ - - - - - - .

Logical Address Space With Data Window.

The black buffers, return stack, and
parameter stack are moved dom to the
top of the next 4K word page of logical
memory, leaving B 4K word gap in the log-
ical addrean space. In a 128K word sys-
tem, lOOK words of physical memory are
then accessed through this window.

The X and Y coordinates of the image
array are converted to a double precision
index. This is donc by multiplying the Y
coordinate by the number of pixels per
line and adding the X coordinate. Thir
index i s divided by the number of paps
per image. The quotient indicates which
page the pixel i s in, and the remainder wil l
be the addregl offset of the pixel into the
Page.

The relocation constant for the needed
page is set in the PAR so that it c n be
accessed through the data window. The
logical address of the pixel is obtained by
adding the address offaet to the starting
addma of the data window.

Multi-rrd-MrrPnrcnt
Our venion of FORTH implements

multi-tasking in the following m m r .
Each task has a "state vector" which
contains "uaer" variables that can differ
from tank to task. Thir includes

- Dictionary and atack pointers
- Program counter and interpreter

pointer - Status flags and state indicator8 - Terminal 1/0 routines end buffer
pointers - Vocabulary pointers - Numberbaw

The state vector for the master UC is
included in the nuclaur

Each task also has its own t a r m i n l
buffer, dictionary, parameter stack, and
return stack. New tasks are created with
a routine called BLDTASK which allocates

space for tham in tha m u t e r taak's dic-
tionuy. Figure 4 shows the logical
address mace in M wmapped multi- . .

tasking system.

return stack

1 4k

i-
d1 C t 1 OMry

nucleus

unmapped system with tw tasks.
re turn stack
parmeter stack
t 4

dic t ionary
?V buffer
s ta te vector

Page 0

Figure 4. Logical address space for

Task state vectors .ro linked to each
other in a circular fah im, ona pointing to
the next n d the last back to the first. A
"round robin" scheduler starts running a
new task when the c u m t t a d exacuter a
PAUSE. P A W store8 the current
machine state into tha state voctor of the
existing tdc and wta the now m r h i m
Itate according to the new t a d ' s M a t s
vector.

tarlcing y" be found in works by Forale$:
M ~ C O W C , nd ~ e u y and ~ c ~ ~ m u w 4 .
Figure 2 shows the logical a d d ~ r pm
of a FORTH application with a dngle tea
nd not udng mema), mmg.mhnt.

To odd propnm p.ce Lo our multi-
tnking ryotem, we reserved a "tnk win-
dow" in th. logical mddmas pm. The
muter teak occupies the low five p e p of
addrcnr v e . Code in thir m a is wrble
by tUkh

M q p d tuks occupy p.gst 5 and 6 of
the logical .ddrerr spoca Oefinit ion .nd
data within a rm~psd tdc M m d b l c
m l y to itwlf. Each tank must have a
wpmate vocmbuhry. If deflnitionr in a
mapped tuk aa entarad into the FORTH
vocabulary, the dictionuy Ilr*r will ha

This u r u l l y nultr in 8 sy-m -8h.
Figure 5 ahowstha logical uldrwsp.ce In
a mqpad m u l t i - W i n g rydem.

Additional intonrution on mu1 '

grw whrn ths next tdc bomeJ active.

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

I f 0

return stack

paramter stack
t 4
dic t ionary

block buffers

return stack

. _ _ _ - - _ - - - - - -

. - - - - . _ - - - - - -

1

d i c t I ona ry
nucleus

_ _ - _ - - - - - - - -

Figure 5. Logical Address Space f o r
Happed Mult i- tasking System.

Implementing thir technique required

- Modify the scheduler PAUSE so
that it lab the page 5 and 6
memory management registers, as
well M swapping in the uwal state
veetar information.
Move the block buffers and master
tad stacks to the top of page 4.
ch.nga the routine BLDTASK to
u i g n the new tank's return stack,
puameter rtack, and dictionary t o
pages 5 4 6, inrtead of givlng
them space in the master task's
dictionary.
Chngc BLDTASK to aslign physi-
cal memory to the task. It must
caiculats the appropriate settings
far APR 5 and APR 6 and save
them in ths tank's state vector so
that they EM be loaded into the
memory management registers by
PAUK.

the following chonges

-
-

-

UrSpmcmtafhtm

The two p p r o r h m discussed pr t -
v W y both ran in procensor "kernel"
moda. To increoae our memory rerident
dd. otw.ge k, the multi-taaking appli-
cation described previoualy, we une the
"user" mode memory management regis-
ters.

The paoceror status word has two
mod. fields current mode and previous
mode. The instruction MPD moves a
word from the "previous" mode address
w e to the "current" mode processor
tL& (the return stack in our FORTH
lmplemenhtion). The instruction M T W
moves a WOEd from the "current" mode
prucetaor stack t o the 3mvious'' mode
-pra.

Using there inatruetione it is pwsible
to retrieve and store data quickly and

FORTH DIMENSIONS Ill/ b

a'. ciently, and the data stored there i a
i ixss ib lc to all kernel mode programs,
--et?er they are mapped tasks or not.
1a:a tables that would otherwise need to
:= ?isk resident because of their size can
- f * be memory resident to speed resoonse

- e .

The source listing o f the user mode
:1:3 storage code is included a t the end of
- s article.

~ n c l u a i o n

The first technique, the data window,
- 5 : Seen used for two image processing
%:;:!cations. One is used to view infrared
t - i ultraviolet laser beams in materials
-:-age testing experiments. The system

z s l u t e intensily withir, the 10 minute
- - a < - - _ - circular averaging and calculates an

_.. .. cycle.

- 5 e other image processing application
: : j e - b e S X-ray diffraction patterns pro-
:.:*$ by a nanosecond X-ray source. A
*riiique of radial averaging is also used
- e to enhance the diffraction pat tern -~ : s tudy changes induced by sample stim-
-._

2 : 37.

-ye second and third techniques are
-1.5: on the Omega Alignment System,
- - :b no+ has 17 tasks installed and uses
EI-: 100,000 bytes of memory for pro-
- - sDace. The user mode data storage
-5:yod is used by the data base software
I- I 'or the intertask message queues.

-:-

;.though this paper describes tech-
. :-es used with DEC PDP-11 series com-
. . :ers, the techniques are similar to those
.:?: with any limited address system with
: ; :al/physical mapping hardware. Thus,
- 4 . are applicable to minicomputers like
- s ?ewlett-Packard 1000 series and the
-.:l newer 16 bit microcomputers like
- - '.4otorola 68000 and Zilog 8000. The
t r v i q u e s are especially appropriate in a

-Iz.TY-79 context where the FORTH
-+:line is defined a s having a 64K byte
~ : - e s s space, carved out of an arbitrarily
=-? physical address space.

b r n w l e d g a m s n t r

-ye following people played a major
7 5 :n the development of the software
=j:r,Sed in this article: Donald P.
'*-I I.imans, Lawrence P. Forsley, Reade
? '..mick, Robert D. Frankel, Joseph A.

D , and Robert L. Keck.

-71s work was partially supported by
-c '3Uowing sponsors: Exxon Research
TI Engineering Company, General Elec-
- I Company, New York Sta te Energy
-arch and Development Authority,

*:-:?east Utilities, The Standard Oil
I :->any (Ohio), the University of

: r e s t e r , Empire S ta te Electric Energy
%arch Corporatim, and the U.S.

zc-ar tment of Enerov inertial fusion
:yf:-am under contractnumber DE-ACO8-
6 33A0124.

~ . ~ 8 8 ~ t 8 8 8 8 8 8 t 8 8 8 t S 8 8 8 8 BLOCh # 4 4 5 S t t t S 8 l t 8 8 t S 8 8 8 8 8 8 8 8 8 * 8

(MEMORY MANAGEMENT - ue, u !)

COt lE U@ (C A D R S I - - - C D A T A l RETRIEVE FROM USER HOIlE MEMORY) _ _ _ _ -~
7 7 7 7 7 6 0 @ # 300000 # HOW, (SET PROCESSOR STATUS UORD: 1

(CURRENTPhERNEL, F'REW=USER)

8 P)+
7 7 7 7 7 6 0 @ # 0 t
s -) RP) +

C O D E Ul (CDATAICADRSI-
RP -) 2 s I)
7 7 7 7 7 6 0 e t 3ooooo t

s e) +
7 7 7 7 7 6 0 B t 0 6

POP
- - ,

FPD, (FROM A D R S ON STACh T O RP)

NOV, (PSU BACK T O NORHAL)
MOW, (RP T O STACh 1
NEXT, (RETURN)

- - E l STORE I N USER MODE MEHORY)
MOW, (D A T A FROH STACL TO RP)

MOW, (SET PROCESSOR STATUS UORD:)

TPD, (FRON R P TO A D R S ON STACh)

H O V t (PSU PACK T O NORMAL)

J t (RETURN U I T H CLEAN STACK)

(CURRENT=KERNEL, PREWsUSER)

8**lS8lt88tS88888kSL8t BLOCK t 4 4 6 8 8 8 8 8 S 8 8 8 8 8 t l 8 8 8 8 8 t 8 8 8 ~

(tIEHORY MANAGEMENT - K:U)

CUIIE h.U (Ch ADRSICU AI IRSICCOUNTI-- -CI COF'IES 'COUNT')

(UORDS FROH KERNEL S P A C E T O USER SPfiCE)

W S jt HOUt (UtCOUNT)

K 1 s)i HOU, (RlXKERNEL SPACE ADDRESS)

F'O s) + MOW, (RO=USER SPACE ADDRESS)

7 7 7 7 7 6 0 es 3ooooo t PIOW, (SET PROCESSOR S T A T U S u o ~ c i :)
(CURRENT=KERNEL, FREW=USER)

H E G I N ,
hP -) R 1) + MOW, (FROH KERNEL SPACE T O RP)

U SOH, (LiEC U, HRANCH I F NOT ZERO)

7 7 7 7 7 6 0 C# 0 # MOW, (PSU BACk TO NORMAL)

NEXT, (RETURN)

R O) + TPD, (FROM R P T O USER SPACE I

- - .

t t ($ L t t t t * S l X t t l 8 8 8 i 8 8 BLOC& # 4 4 7 8 8 8 8 ~ 8 8 8 8 8 8 8 8 ~ l 8 8 8 8 8 t t 8

(HEHORY HANkGEHENT - UI.K)

CODE U:h (CU ADRSICh ADRSlCCOUNTl-- -Cl COPIES 'COUNT')

(UORnS FROH USER SF'ACE T O KERNEL SPACE 1
w s)t MOW, (Y=COUNT)

R 6 s) + HOU, (ROzKERNEL SPACE ADDRESS)
R 1 s It HOUi (Rl-USER SPACE ADDRESS)

7 7 7 7 7 6 0 C t 300000 # MOW, (S E T PROCESSOR STATUS UORD:)

BEGIN,
(CURRENT=KERNELv FREVtUSER)

R l) + FPDt (FROM USER SPACE T O RF)

R O) + RP)t MOW, (FROM RP T O KERNEL SPACE)
li SOB, (DEC U P LOOP I F NOT ZERO)

7 7 7 7 7 6 0 61 0 t now, (CURRENT=KERNEL, PREWIKERNEL)

NEXT, (RETURN)
i s

R.C. Leary is a conrultant employed by '*

the Engineering Division of the Laboratory McClimans, Omeqa Alignment System
for Laser Energetics. C.A. Winkler is an Software Maintenance Manual, Univer-
undergraduate in the Department of sity of Rochester, Laboratory for
Mathematics, University of Rochester. Laser Energetics, 250 East River Road,

Rochester, NY 14623,1981.
RdWOnCW

4. Roclemary '. Leary and

1. Microcomputers m d Memories, Digital
Equipment Corporation, Maynard, MA
01754,1981.

2. Lawrence P. Forrley, "FORTH Multi-
tasking in WITH," Proceedings of t h e
4th West Coast Computer Faire, 1979.

3. Michael A. McCourt, POP-11 FORTH-
79 Implementation Guide, University
of Rochester. Laboratory for Laser
Energetics, 250 East River Road,
Rochester, NY 14623,1981.

FORTH CLASSES

November 16-20
December 7-11
January 11-15

Ca!l: Inner Access
(415) 591-8295

- Y -Y DIMENSIONS In/& Page 115

A HCH LEVEL M E R R W T
HANXER N FORTH

R. L. Keck and L. P. Forsley
Laboratory for Laser Energetics

Unversity of Rochester

Abrtrrt

A system for writing interrupt service
routines in high level FORTH is des-
cribed. An evample of the utility of high
level interrupt service in a dynamic data
acquisition situation is provided.

htroductim

X-ray data from laser-plasma inter-
action experiments on the GOL laser
system at LLE has in the past been
acquired from photographs of oscilloscope
traces. Because of the large number of
detectors currently being employed, this
method has become impractical and we
have chosen to use 12 channel integrating
AID converters for data acqu sition. These
A/D converters are CAMAC compatible
modules and because of the extensive
CAMAC vocabulary available in the UR
FORTH-79 system, as well a s the
suitability of FORTH for use in a dynamic
programming environment, FORTH is used
for the acquisition software.

I

The A/O modules integrate the signal
at each of their 12 inputs for the duration
of a gate signal, which is derived from the
laser oscillator. The oscillator is fired
once every 10 seconds to keep it in stable
operation, however, our data signal occurs
only when the full system of laser ampli-
fiers is fired as well, an event which
occurs when a f i re sequence is carried w t
by the laser system controller on com-
mand from the operator. W e require a
means of clearing the AID modules just in
advaqce of the oscillator pulse a t which
the full system will fire. This is accom-
plished by feeding a ready-to-fire signal,
provided by the laser system controller 4
seconds in advance of fire-time, to a
CAMAC contact sense input module. Our
acquisition sequence then is: look for a
ready-to-fire signal from the contact
sense input module, clear the A/D module,
wait for data available indication from the
A/D module and read the data from the
A/D module.

The d o v e sequence could be imple-
mented directly, using the available
CAMAC vocabulary, by simply continu-
ously interrogating a module until the
desired condition occurs and then pro-
ceeding to the next step. This method
needlessly ties up the computer executing
loops and prevents it from handling any
other task while the sequence is in
progress. Since both the contact sense
input module and A/O module will gener-
a t e CAMAC Look At Me's (LAM'S) when a
signal occurs at their inputs and a CAMAC
LAM can generate an interrupt, we can

use an interrupt driven acquisition system
which will avoid needless looping. This
requires the writing of interrupt service
routines in machine code, which is a t best
cumbersome. It would be nice to be able
to write high level FORTH interrupt ser-
vice routines which could be readily
changed. This can, in fact , be done and
our method for doing this is discussed
below.

Inrplemenbtim

Our system consists of UR FORTH-79
running on a Digital Equipment Corpora-
tion LSI-11 microcomputer under DEC's
RT-11 operating system. While a com-
plete description of the implementation of
this system may be found in the imple-
mentation guide', we will briefly cover
FORTHs usage of processor registers for
reference in the following discussion.

Four of the processor's general purpose
registers a re dedicated FORTH registers.
R6, the system 5tock pointer, serves a s
FORTHs return stack pointer (RP). R5 is
used a s the stack pointer (S). R4 is used
as the FORTH interpreter pointer (IC); it
contains the address of the compilation
address (also referred to as the code field
address or CFA) of the next word to be
executed. Finally, R1 is the s t a t e vector
pointer (SV!; more will be said about the
SV later.

The procedure for executing a FORTH
word from code is essentially quite simple
and is accomplished by the word
XEQ.MACR0 (a tisting is included in the
appendix). It accepts an address, into
which will la ter be placed the compilation
address of the interrupt rervice word, on
the stack and generates code which will
place the compilation address of the
service word on the stack [MOV BWADDRI
,-(S) 1, loads the IC with the address of the
compilation address of the return from
interrupt code [MOV &HERE+8~1C 1 (note
that <HERE+& contains the compilation
address of RTI (COMPILE RTI), the return
from interrupt code word) and then jump
to the executable code for EXECUTE to
begin execution of the interrupt service
ward [JMP ' EXECUTE]. The net e f f e c t
of this code sequence is to s ta r t execution
of a high level interrupt service word and
subsequently execute the return from
interrupt code.

Before execution of the code gener-
a ted by XEQ.MACR0 can begin, the con-
tents of the processor registera murt be
preserved by pushing them onto the sys-
tem stack. Code to do this is generated
by REG.SAVE.MACR0. We must addi-
tionally ensure that the S end SV registers
point to valid memory areas. In the multi-
tasking UR FORTK79 system, this is
most easily accompU8hed by having a
aeparate interrupt task area. The task
area contains return and parameter stack
memory allocations as well as a s ta te

vector allocation. The SV register points
to the s ta te vector and the s ta te variables
contained in the s ta te vector are addres-
sed relative t o the value of the SV
register.

It should be noted that it is not
necessary to have a multi-tasking system
in order to implement high level interrupt
routines. This is because the values of the
s ta te variables referenced by the interrupt
routine are in general identical to those
for the master task. On a non multi-
tasking system we would simply reserve a
parameter stack area for the interrupt
routinea and s e t S to point to it. It is
necessary, however, that FORTH be coded
reentrantly for this scheme to work.

The SV.SET.MACR0 is used to gener-
a t e code which will se t the SV and 5
registers. Note that it also changes the
return stack location. This would not be
necessary, except for the f a c t that the
FORTH stack checking routines require
that the return stack be located in mem-
ory immediately above the parameter
stack. The value of the interrupted task's
return stack pointer is stored in a f ree
vector location [52T(SV) 1.

SETUP.INT sets the interrupt vector,
in this case specifically for CAMAC (the
vector for the device in slot N for the
CAMAC c r a t e is located a t 400+N*4).
The processor is run a t priority 7 during
interrupt service to prevent further
interrupts from occurring.

To make it simple to crea te interrupt
service routines, the macros previously
discussed am combined to produce a
defining word called

CREATLCAMAC. 1NT.WORD .
This word when executed, accepta a task
a rea and CAMAC slot number on the stack
and creates a word which contains the
code sequences previously developed
starting a t the second parameter field
location of the newly created word and
sets the interrupt vector to point to this
code. The f i r s t parameter field location is
reserved to hold the compilation address
of the word to be executed when an
interrupt occurs. The DOES*part of the
new word will load this reserved location
with the compilation address of the
desired interrupt service word.

AnExvnple

The listing for blocks 3 and 4 illustrate
how the interrupt handler is used in our
acquisition system. A task area (1TASK)
is created and initialized for the interrupt
routines to use. It must be delinked from
the multi-tasking system to make i t trans-
parent to the multi-tasking dispatcher.
Then two interrupt service routines a re
defined (RDY.WORD and FIRLWORD!
each with an associated CAMAC slot (or

FORTH DIMENSIONS in14 Page 116

:cvice). They ahare the rame t8ak area
,.ice on ly one interrupt service routine
Ian be active at a time.

In block 6, the high level wrvice
-:Jtines a n defined. RDYJNT io used to
: ear the A/D module, enable A/D LAM'S
TZLR XENLAM) and then clear and dis-

a 3 . e further LAM'r from the contact senre
-xi; module, on occurrence of a LAM
'-27 the contact renie module. FIRE[
r:;iccts the A/D data, dirabler fur ther
1 3 LAM'S (XCOLLECT XDISLAM) and
az::vates another teak which will print the
-rrdlts (ZTASK DISPATCH) on occurrence
3' a LAM from the A/D module. There - j h level routines are inrtalled M the
-:errupt service routines for the rppro-

:-.ate CAMAC devices with the aequen-
: e s RDY.WORD SOYJNT and
-'SE.WORD FIRE[. Changing an interrupt
!?-rice routined with thia system reauires
I - . V defiqing a new high level handler
-:-d and installing it as the handler word,
?.;., FIRE.WORD FIREZ[will make the
-:rd FIRE2[the new interrupt service
.:-:ine for the A/D module.

:Jncllmim

We have shown that it is possible to
- - :e high level interrupt service routines
- -3FITH. This makes i t possible for pro-

z-amrners unfamiliar with interrupt pro-
:-inming to easily write interrupt service
-:L:ines. In addition, the facility with -- ?-I this system permits changes to be
- 3& to the interrupt handlers makes this
I - . h a 1 way to handle data acquisition in
i -apidly changing experimental environ-
-?-It.

*nowledgament

The authors would like to thank
'I' r'lael McCourt for assistance with
=:ails on the internal operation of UR - - . -9TH-79.

-. Yeck is a graduate student in Mech-
a- :a1 Engineering at the University ?f
' :Chester. L.P. Forsley is Group Leader
I' Zornputer Systems at the Laboratory

- r 3 e s t e r .
. - _ - Laser Energetics, Universitv of

APPEND1 X
WORD LISTINOS

BLOCK 1 888l8888t88

(Yiah level FORTH interrurt hrndler rlk Irf 25-.mu-81)

: REQ.RESTORE+HhCRO (<>-<>t restore resisters 0-3 8)

C3DE R T I (restore re#isterst return from interrupt 8)

: XEO.HACR0 (<8ddr of xeo word, 8ssemb1w time>-<> 8)
ASSEH8LER 8 -) BUAP R# HOU, (Push handler word 8ddr on stack)

ASSEHBLER 0 5 DO I RP)+ HOUt -1 +LOOP FORTH I

RP SZT 8U I) NOUt AEO,RESTORE.HACRO RTIt FORTH

IC HERE 8 + # HOVt (preset the IC)
' EXECUTE P JHPI (Jurr to execute 1

COHPILE HTI (pointer to next instruction)
FORTH 8

MSEHBLER 6 0 DO RP -) I HOVt LOOP FORTH I
: REG.SAUE.HACR0 (0-0, 8.V. T'elliSterS 0 - 5 8)

-->
BLOCK 2 888

(more interrurt stuff 25-maw-81 rlk)
: SETUP.INT ((slot#><code 8ddr>-<> set c.18~ vector 8)
SWAP 4 a 4000 + DUP ROT s u m I
2+ 3400 SUAP ! I

: SU.SET.HACR0 (<SV loc>-0 set SU for interrupt routines 8)
ASSEMBLER SV SUAP 4 HOW* S 1 4 1 SU I) MOW, 521 SV I) RP HOVt
RP 1 6 ~ su I) now, FORTH I

: CREATE.CAHAC.INT.UORD (<SV loc><slot6>-<>r create int. 8)
(defin. word. 8)

.\'BUILDS 0 t HERE SETUPIINT HERE 2- REG.SAUE.HACR0
SWAP SU.SETeWACR0 XER.MACRU
DOES> CCOHPILEI INSTALL SUAP ! i

-->
RLOCK 3 8 ~ ~ ~ ~ 8 8 8 8 8 8 8 8 8 8 l 8 8 8 8 8 8 ~ 8 8 * 8 8 8 8 8 8 8 8 8 8 8 ~ 8 ~ ~ 8 ~ 8 ~ 8 8 8 8 8 8 8 8

(Interrupt task area initialization rlk 16SEPB1)

20 30 0 47 PLDTASK lTASK CPe8te f8.k 8?@8 8)
lTASK TCLEAR (initialize t8.k area 8)
ITASK DUP ! SU DUP ! (delink task. fron t8rk list 8)
1TASK DISPATCH (n8rk t8.k 8s 8CtiVR 8)

(cre8te 8 re8du t o f i r e hmdler word f o r CAMAC slot 6 8)

(Cre8te 8 time uord for the A/D module)I)
1TASK 6 CRE~TE.CAnAC.INT.UORD RDYeUORD

1TASK XAD CREATE.CAHAC.INT.UORD FIRE-UORD

;s
BLOCK 4 t * tat f* taa*t* t* t t **aa888888*8aa8a8~8888*8888*8*88888*

(X P ~ Y interrupt service 13-a~r-81 rlk 1
40 120 0 47 BLDTASK 2TASK (task area for Post fire uord 8)

: Rt!Y.INT (rdu fire int handler 8)
XCLR XENLAH 6 N 0 A 2 F DROP 24 F 1

t FIRE! (fire time h8ndler 8)
XCOLLECT XDISLAM 2TASK DISPATCH I

. Vodular instrument and digital
interface system (CAMAC, IEEE STD.

: HcCwrt , Michael, "Univerrity of
Soehester PDP-11 FORTH-79 Imple-
mentation Guide," Release Number
1.0, May 1981, unpublished.

5 a m n s)

RDY tUORD RDY

FIRE.UORD FIRE

NT (m 8 k W RDYeINT the readv to fire 8)
(interrupt service routine *)

(make FIRE! the fire tire interrupt handler 8)

--..

Page 117
= X T H DIMENSIONS IU/&

OPTIMIZED DATA STRUcfLREs
F o R H A R D w A R Z : m a

Joseph D. Sawicki
Laboratory for Lmer Energetic8

Univerrity of Rocheater

Ab&mct

Data r t r u c t m r have been developed to more e d l y control hardware. A di8k driver ir uwd u M example for exploring alternative
FORTH data rtructurer ond way8 of optimizing them. These examptar ahow that FORTH data r t r u c t u m M well wited to minimizing
programming time and increaring d t w a r e efficiency.

h b d J C t i 0 I l

While workifg at the Laboratory for Laser Energetic8 thir u m m r one of my project8 w.8 to write a general purporc backup routine
for e MC-like RX02 m o b floppy diak drive. In doing thir certain commmly uwd FORTH twfr b e n m uwful. Thir p w e r will rervc to
i h r t r a t e thew tools, and the modification8 mcerrcrry due to the future of the project.

o.t.stn#ctANa

The TO concept war developed by Dr. Paul Eutholdi and we8 der r ibed in FORTH DIMENSIONS Vol. 1 No. 4 and VOL I No. 5 concept2
in variables. Thir cwld be implemented in hioh level a8 followr

0 VUIABLE %TO
: T O I % T O ! ;
: VAL <BUILDS (<I)>-<> , ACCEPTS INITIAL VALUE)

&ES> (<#>-<>;<>-<#>, SrORES OR GIVES "VAL")
%TO @
XF !

ELSE @
THEN ;

0 %TO !

It would be uaed like a variable. Entering 0 VAL+lAME+would define a variable with an initid value of zuo. To change the value to a
rix one would aay 6 TOeNAMD, rsyiWNAME+wwld now put e six on the a t r k .

Thir technique make8 the codn more readable by eliminetlng the u w of a and [4 t h vui.blar (nd ' with cmrtantr) to access and
modify them. The backup driver ir no exception to thir and in f r t offera the opportunity to carry the campt one rtsp fur thy . In the
DEC POP-11 architecture, VO ir memory mapped w that, for intame, the Dbk Control Statum R q i r t e r ir at location 1771700 end the
Data Buffer Ragirter ir a t location 1771720. One way to communicate with them . d h r r e r ir to define two conetn t t :

1771700 CONSTANT CSS
1771720 C W T A N T 13BR

but then the u8e of @ nd [become8 neceosuy. A way around thir problem i8 to define a dmta structure u m U u to VAL excspt that it
contain8 an address in it8 parameter field inrtead of a value. It would .Im be uwful to fetch the a d h a a8 well a8 to send data to and
from the addrow. An ~ r y , though by no mean8 optimal, implementation of u c h a 8tructum ir given beIow.

: TO (SETS FLAG SO THAT A MUM MILL BE STORED IN A REG.)
1 ZTO ' i

-1 LTO ' i
: FRO# (FLAG so TWT n MUM YILL BE GO:HN FROM A REQ)

(TEST BED FOR BEGINING OF RX02 DRIVER JltS 15JUNbl
: REGISTER +BUI DS

t s h D , - \ * , BUILDS A DATA TYPE CALLED A REGISTER)
DOES) (GIVES REGISTER ADDt CONTEdTS OR SENDS Db7fi

P %TO P I QET hDDRESS OF REG AND #rO
DUP -1 = IF SMAP P SYAP (G E T CONTENf)

10 THE RE6ISTER DEPENDIN6 0)r THF STATUS OF

J

THEN
THEN 0 P O

1 = I F i (STORE VALUE IN RET; i

Once thew two rtructumr are implemented I t become8 very easy to talk to the diJc drive. For example, if a VAL had b e a defined
called IN-TRACK# which contained the t r e k to be read, d i n g I t to the DBR would simply cmri r t of uying N-TRACKI TO

FORTH D I M N S I M m/b B.rp 118

In the R X 0 2 mode there are eight disk commands. They are ell similar in that they need to have a drive and denrity b i t set and they
are sent t o the CSR. The first problem is solved by a V A L called D R I V E / D E N S I T Y and the four words drown below:

: SINGLE-DENSITY I *.COB. - < C O B , . , SETS THE 3ENSITY b I T T O 0)

: DOUBLE-DENSITY (.COB. - C O B . , S E 1 S THE DENSITY BIT T O 1)
DRIVE/UENSITY 2 5 s B I C T O DRIVEILENSIT~ *

DKIVE/BENSITY 256 P I S T O I iK IVE 'DENSIT I

DKIVE/CENSITY 16 B I C T p D P I V E / L E N S I T I I

DRIVE/UENSIT I 16 8 1 5 T O DRIVE/DENSITY T

: ODRIWE I .con. . - C O B . I x i s THE DRIVE BIT T O 3 1

: 1URIVE (C0ho:- COB, P > E l THE DCIVE B I T TL1 1

After setting the drive and density as desired, the V4L D R I V E l D E N S I T Y can then be ORed with the command to produce the draired
results. There are two approaches that can be taken at this point. For example, take :he command to format a disk in a single or doubk
density; call i t (SET-DEN). A word could be defined, alonq with seven others l ike it, as shown:

: (SET-DEN) 110 D R I V E / D E N S I T Y OR TO CSR ;

The second approach would be t o again use a defining word:

: bISh-COBBAN[~ BUILBS .CON - TAhES THE CON FOR A DISh of'. '

110 DISh-COBNANU (SET-DEN! (USED T O FORNAT I l I S h S SING OR D DEN)

Opt im i ra t im

A s usual we have a classic FOR fH space-time tradeoff. The second approach executes somewhat slower (see figure 1) because the
constant needs to be fetched, but whereas the first approach takes 18 bytes per command or a total of 144 bytes, the second approach
takes only 10 bytes per command plus 24 bytes for the defining word for a total of 104 bytes. Because o f the space savings the philoso-
phy that very similar things should be grouped together could override the execution speed losses and the second approach was used.

Al l of this would have been fine except that when doing the track to track backup a sector interleaving technique must be used to
keep backup times down to a reasonable level. Since these V A L ' S and R E G % have high level IF statements in them and they are used each
time 8 sector is read or written, they require an overly large interleave step size. The solution t o this problem is to use ;CODE instead
of D O E S ? Though this makes the word less transportable i t isn't seen as a problem since this is a PDP-11 specific disk backup. The VAL
word now can be defined as follows:

: YAL \BUILDS (#;- , v TALES THE I N I l I A L VALUE OFF Tlct STACh 1
I
iCODE (- 4 . - , OR ':- 4 ' 9 GETS VALUE OR STORES VALUE)

Z T O F T S T r (SEE I F % T O f O S I T I V E I
G T I F ,

YPARAB W 1 , S) + HOVr (STORE VALUE)
% T O F 0 4 BOV, (ZEKO OUT Z T O FLAG t

ELSE I
THENr NEXTr -- s -) YPARAN Y I) nov. I FETCH VALUE OF VAL)

where W is the PDP-11 register containing the CFA (code f ie ld address) of the word executing, W P A R A M is a constant equal t o the
offset from the CFA to the PFA, and I) indicates indexed addressing. Not only is the coded VAL faster than the h i@ level version, but it
IS also faster than a V A R at fetching and the same speed a t storing (see figure 2). It was also necessary to code REG as shown below:

: REG <.BUILDS (BUILDS A I I A T A TYPE CALLED A REGISTER)

I T 0 F T S T r (CHECA I F I T 0 IS POS NEG OK ZEKO)
G T I F r

uFARnn Y e l) s) t nov, (STORE VALUE IH REG !

5 -) WARAN Y e l) now, (GET VALUE)

ELSE,
L T IF,

ELSEr

THEN,
S -) YPARAH Y Ii N O V t I PUT T . 0 . S . 1

THENr
% T O F 3 4 NOW, NEXT, -- ,

o h I r q l

To il lustrate the use of these concepts the F O R M A T - D I S K word w i l l be shown. But f i rst to insure that the program doesn't t r y to do
things before the dlsk controller is ready, two more words am needed that wait for the done and transfer request bit to be asserted in the
CSR.

: T R . Y A I T (YA ITS FOR THE I I A T A IRANSFER B I T T O BE SET)

: DONE.YAIT (W I T S FOK THE DON{ B I T TO BE ASSERTEb)
BEGIN 2000 FROPI CSR A N D END

BEGIN 400 FROB CSR A N D ENU P

rORTH DIMENSIONS ID14 Page 119

The dink command an almwn bofom war called (KT-DErJ). After ~ i v l n g thlr commend tha dlk controllor walta for a “key” byte
{lllo, the letter I in ASCII) to be sent to the DBR, thorefom the ent in cwmnmd ir coded ao ohown!

To format the dirk in the e l v e om double denrity one would mtar lDRlVE WUBLEdMSlTY FORMAfaISK$ to format the disk in
drive zero single denaity one wwid enter ODRIVE SHGLE-DENSITY F f f l M A T a I M -

M n o
To &ow tho effocta of the different approache8 timinq t08t.8 W O N IVI. Th. f h t rontruta tha diffOrWC0 ktwnen tho two t y v Of

dirk commendr In all tort# tha action wan placed i d d o I double loop likcu

: TEST 10 0 00 30000 0 W LOOP LOOP ;

This routine took 23 rcondr which war then d t roc ted from the other M l k 8 to glvo tho tima to do tha op6ration lOap00 timer Thir
was then divided by 300,000 to give the time per operation. Thew M tho d t a on a M C LS11112r

To Send Dirk Corvad

Colon def in i t ion .23 met.

h f i n i n g word .28 msoc.

Then a hi* level V A L war compued to a coded VAL and a VARI

fetching (nec) r t o r i q (mooel

hish level VAL .237 .39

coded VAL .067 . l l

VAR .083 .09S -
This psper not only ahowed tho urfulneu of certain technlquer In FORTH hut dm I l l w t r ~ t e r mme prrral proportier of the

Imguage. The firat of the- is the ease of implementation of new data r t r u c t u m Thmuph tha u n of BUILDS ... DOES or BUILDS ...
;CODE one can fint build the dructum to uit the me& of tha qpl lcat lm and Lhwr lmbod in tho exacutable coda n e c e a u y cprrtionr
for the 8trUCtUm. Alm a rtructure can earily be glvm v u i a b b execution ma in M u CY of V A L ond REG Another importrnt banefit of
FORTH u the ear of optimization of the word by the UI of aammbly coda. Chmglq tho VAL md REG ymrdt to tCoDE taok low thon
a half hour. --

I would like to thank Mike MCCOurt, Bob Keck. LBW?OIEO F d o y md Peter P u b n far Uutr h.Lp In pttinp the hardware running ad
for comments on the mftwue.

This work war partially upportad by the following p a r # r m Exxm R.r.rch ond Enpinrrhq Campmy, Canard Electric COWMY,
New Ywk Stab Energy Research and Development Authority, N0rthS.d Utilitiw, Th. Standard Oil Comprny (Ohio), the Univedty of
Rocheater, Empire Stata Electric Energy Rowarch Corparation, and tho US. m t m m t of ern^ in r t i a l f d o n program under
contract number DtZ-ACOB-80DP40124.

J. Sowicki i8 n undsrgrrduate With the Electrical Enginoerlng D.putnunt of tho Cdl.gl of khginwriq at tha Univadty of Rocherter.
Ha ir a DJ in hi8 gsre time.

1. DEC end POP-11 am trrd.muk8

i b i x indiciter octd
2 The TO c~lca t by P ~ u l Butholdi FORTH 0IMENSK)NS VOL 1 Na 4 nd VOL I Na 5-

M STRWG STACK

Michael McCourt
Laboratory for Laser Energetics

University of Rochester

Richard A. Marisa
Production Automation Project

University of Rochester

Abstract

Applications which require a text data
type are supported by a group of functions
which operate with string variables and a
string stack. The string stack is analogous
to the parameter stack, however, the data
type with which it operates is the string,
containing length and character data.

String Defining Words

Two defining words are available for
The the creation of string data entities.

first is:

<maxlen> STRING-VAR <NAME>

which creates a varying length character
strinq with maximum length cmaxlen>.
InvokingeNAMbplaces

<beginning address><maxinu string length>

on the parameter stack. The first byte
atebeginning addressais the current string
length; the string text begins a t the next
byte.

The second string defining word is:
<number of elements> <maxlm> ()STRING 4 A J W

which creates an array of variable length
strings. Invoking

ei>eNAME>
placer caddress of the i-th 8triRg> Uul.0,

on the parameter stack. Note that
(number of elements) x (maxlen) bytes will
be allocated to hold the string array.

String Stack tulmipuletim

A string stack, separate from the para-
meter stack, is maintained in memory for
the purpose of manipulating string data.
Several words which manipulate the string
stack are defined in the string stack
library which can be compiled by execut-
ing >STRINGS (which loads in the string
stack package). Currently 200 (decimal)
bytes are allocated for the string stack.

The quote word ('I) is available for
TO placing a string on the string stack.

stack a string, type:
" <text>"

'' is followed by exactly me space, then
<texD delimited by a quotation mark.

A string print word .SS is used to print
the top element of the string stack,

t::ltaSttla:iatatt BLOCh 9 1 Stt:S:ll8t:tl::l4lt

i STRING STACh--FIXED LENGTh STRING COMPARISON LAR 19-SEP-79) : SS i (NOTE: PAR&^ ORDER NOW ..ADR;z.LEN,, MAM l l -JU#-B(, I
([ADD A t A B D B t L E N I P - - - [A D D A ~ ADDBt a OR t OR - 3)
(COMPARES CHARS. I N STRINGS A L P P A k I W I S E i RETURN5 0 I F
(STRINGS ACE = t t I F A'B, - IF A \ P)

: swo o SWAP o DO DROP OVER ce OVER ce - ROT i t
ROT 1t R O T DUP J = NOT I F LEAVE THEN LOOP i

([ADD A t A D D 8 1 LEN] - - - [= OR t OR - 3 8 SAME A S S V F D O)
(EXCEPT ADDRESSES NOT RETURNED)

([ADD A t LEN] - - - [= OR t OR - 11 OMPARF STRING A TO)
(A STRING OF BLANKS--RETURNS 0 I! TWO AWE EOUAL J

: SVF S'FDO ROT R O T ZDROP i

: s v o SWAP o DO DROP DUP ce BL - SWAP i t SYAF DUP 0, -- I F LEAVE THEN Loor SWAP DROP i

tattaataat~aaaaata BLOCK 9 7 t8ttSlt::S::tlt:::t

LAR 19-SEP-79) (STRING STACh WORDS

, SSTOP SST @ i

: SOVCHECk OVEh SSORG U,

SVAR SSO 0 SVAR SSM 0 SVAR SS! . : SSTOFl SSMX SST ssn e I I i

I F SSMAX S S T O f 1 141 TABORT THEN i

I F SSMAX SSTOP 1 1 3 1 TABORT THEN i

: SSCIRG sso e i
([FROM, T O , LEN I---['] CHEChS FOR STACk BOUNDARIE

(CADDI - - -C l INSURES T H A T ADDRESS POINTS TO STRING
: SSVER DUP DUP ce t S S M A X u.=

: SSDOWN DUP ce i t t , (A D D OF TOP S T R I N G l - - - t A P OF NEXT STRING DOWN3

(CADBI - - - [l PUSHES STRING A T A b I l R . T O TOS)
: SSPUSH DUP C@ I t SSTOP OVER - DUP S S T O P I SWAP RMOVE

)

STRING STACk U O R K LAW 1 9 - s ~ p - 7 9)
'DROP
sB:O,P SSVER SSBOWN SSTOF t

([I---[I PEMOVES TOP STRING FROM STACK tj

(LI---Cl RETURN LEN OF TOS STRING I! _. .. ~

SEOP SSVER ce i
' L o t ([I---[I RETURN ADDR OF TOS STRING L) ..
SJTOV 1 t i

DUY ([I---[I COPY TOS STRING t)
!STOP SSVER SSPUSH i

WAF ([I---[I EXCHANG TOF STRINGS 8)
S I T O P DUF SSDOUN DUF SSPUSH SSD6UN SStOP SWAP SSTOPl
!WAF SSPUSH SSPUSH 9

SSTOP DUP SSDOWN DUP SSDOWN DUP SSPUSH.SSDOWN S S T O Y SYAP
ROT ([I---[I ROTATE TOP THREE STRINGS ABC->BCA

SSTOPl SWAP SSPUSH SWAP SSfUSH SSPUSH t - - j

(STRING STACK WORDS HAM 13-JUN-80 I

: 'OVER (CI---Cl PUSH 2ND STRING DOWN ONTO TOS 8)

: 2DUP ! []---[I COPY TOP 2 STRINGS 8)

: :?DROP ! [I---[] DROP TOP 2 STRINGS t)

: '20VER . ([I---[] PUSH 3RD AN11 4TH TO TOS 8)
: 2SWAP ([I - - - L l EXCHANGE 1ST I 2ND W I T H 3RD AND 4TH

* e (\ADDR,>'LEN,---Cl PUSH STRING A T AODR TO SS t)

!STOP SSDOWN SSVER SSPUSH i

'OVER 'OVER I

DROP 'DROP t

$STOP SSDOWN SSDOWN DUP SSDOWN SSVER SSPUSH SSPUSH i

!UP SSDOWN SSDOWN SSDOWN SSTOPI SSPUSH SSPUSH 55PUSH SSPUSH 8

* DROP SSPUSH i

Page !?CORTH DIMENSIONS UI/4

removing the top element in the proceu. 888888888888848888 BLOCK 101 88888888&1l841&84~4
For example, (STRING STACK YORDS CONT'D MAR 13-JUN-80)

: " (CADRICLENI---Cl STORE TOS AT ADDR, 1 DROP TOS 8) OK " STACK THIS STRING "

OK

.SS <CR>

STACK THIS STRING OK

<CR>
~ ~ : o ; ~ ; ~ R ~ ; ~ ; ~ A ~ OVER ce RIM ~ D U P SYAP c 1 1t

(CSTRINGI--- [I STORES STRING I N PAD THEN MOVES I T FROM)
(THERE TO THE TOSS -- YORIS DURING EXECUTION TINE)

MOD
: x ' 420 YORD o * e : $' R> DUP 0 '@ Dub CB UUP

(CSTRINGl---Cl STORES STRING AT TOP OF DICT. STACk 1
(DURING COMYlLATIOM)

I F 1 t ELSE 2t THEN ALLOT 9

I F 1t ELSE 2t THEM t .R P

: c * COMPILE $ 0 420 YORD ce !UP 2 MOD Notice that the functions .SS and. are
similar. Several other functions operate
on the string rtack in a manner analogous : STATE @ I F C ' ELSE X ' THEM i IMP *
to worth which operate on the parameter
stack. These am:

--

"DUP
"SWAP

"DROP
"OVER
"ROT
"ZDUP
"ZDROP
"ZSWAP
"ZOVER
"+

copies top of stack
reverses top two
strings on tho stack
removes top of stack
copes 2nd string onto top
moves 3rd string to top
copies top 2 strings
ruoves top 2 strings
reverses 16 2 with 3 6 4
copies 3 6 4 to top
string addition (eatanation)

B A B A A

B A A B
B A B
B A B I B
C B A B A C
B A B A B A
C B A C
D C B A B A D C
D C B A D C B A D C
B A BA

sbk)--
Just as the pumnuter stack relational

operators -move their arguments from
the parameter stack, the following string
stack relational operators remove their
arguments fmm the string stack. The
logical result of the string relation is
pleced on the parameter stack. The avell-
able nlationals are:

'k "<r

"<> ">=

"< ">

888888888888888888 BLOCK 102 8888888888888888888

(STRING STACK YORDS CONT'D M11M 18-MAR-81)

:
: .S (Cl---Cl TYPE OUT STRING AT TOSS 8)

iS!OP SSVER R Y COUNT TYPE i
(<>-0, '8U? STRIMG I M DICTIONARYr MAKE EVEN LEN8TH 1

410 YORD COUNT DUP HERE SYAP i t -2 AND ALLOT SIMP c n o v E ,
(SOME FIXED LENGTH STRING DEFINITIONS)

(CADDRvMAX LENI- - -C l PUSH STRING AT ADDR TO TOSS)
: '(F DUP SSTOP OVER - 1- SSTOPl SSTOP C' SSTOP

1t SYAP CMOVE i
(CLIDDRvMAX LENl - - -C l COPY CHARS ONLY FROM TOSS TO ADDR) : ' I F ZDUP BLANk 'LEN NIM SSTOY I t ROT ROT CMOVE 'DROP I

-->

888818888888888888 BLOCK 103 888888888888t888&88

! STRING STACK YORDS CONT'D

' *hAP(SS&-QdDt& #&I E p ' R ~ ~ ~ ~ P o : : s ~ ~ ~ K R b F F T lo

string V r W s t a q . d R.triml
LAR 19-SEP-79)

The string store word, 'f, places tho
top o f the string stack in the string v u i -
able described by the parameter stack,
popping the string stack. Tho string (CHAR OF ORIGINAL STRING)
retrieve word, "I, places the string : 'SUBSTR 1- SSTOP SSUER 'DROP t DUP ROT ROT C! SSPUSH I
referred to by the parameter stack onto
the string steck.

')

SSTOP C! SSTOP DUP 1t ROT It RMOUE SSTOP I t SSTOP! I
([LEN, BEGINNING CHAR #I---tl REPLACE TOSS Y I T H)
(SUBSTRING OF LENGTH CLENI. STARTOMG Y I T H SPECIFIED)

(CADD OF ZND STRt1, 1ST CHAR OF 1ST STR, LEN OF 2ND1 0 I)

(1ST q1R.L. I? FOUND, COMPARES ZND STR. FROM THAF POIHT
(TO 137 STR 1

(---t FFSET R 0 I SEARCHES ZND STk. FOR I S 1 HAR OF)
f

: 'INDEXDO DO OVER I t CI,OUER =
t SSTOP t EN S?F

IF !%RhP I 1t RO# RO\ LEAVE !;EN THEN LOOP 1
OK 30 STRING-VAR MYSTRING <CR>

OK

" string taxt " MYSTRING "1

OK

<CR>

HYS~ING 'I@ ~ST~~ING 'I@ "+ .ss string t a t string t a t

OK

Page 122 FORTH DIMENSIONS m/4

-.:ding the M m e of the string vrr i rb le
-' . STRING in the preceding example
: i r e d <address> <maxlen> on the para-
-e:er stack. String store and i t r ing
'.":eve check the maximum and current
*-;!h of the string variable when moving
! . -q data.

ahen i t is required to move field8 of
:!! length which do not contain an

t-zedded current length in the f i n t byte,
1.3 length string store and retrieved

-:-:3 may be used. The syntax i8;

<address> <length> "!F
<address> <length> "@F

st-uq Functim

-EN returns on the parameter iteck,
- c .ength of the string on top of the
. -3 stack. The string remains on the

. . ' 3 stack. The address of the first byte

. :?e string (one byte after the length
t : IS found by executing "Lot.
. r - g t h > <beginning character number'

"SUBSTR
-rz.a:es the top of the string stack with a
:.:s!ring of length <length>, beginning - :- the specified character of the
._ ; qal string. For example,

3K

" abcde" 2 3 "substr .SS
cd OK

'?e "INDEX function searches for the
- 5 : occurrence of the string in the

I t r y d string. I f an occurrence is found,
: :ffset i s returned on the parameter

ri:<. I f an occurrence i s not found, -1 is
? ' -xed. The top of the string stack is
: x - e d .

-%-mg stack E m

- d o errors are reported by the string
izg package: string stack underflow and

- +-!low. As stated previously 200 bytes
:-t initially allocated for the string
:I<. If repeated overflows are gener-

f +I more space can be allocated for the
. -3 stack by changing the parameter

:%ed to "INIT in the string stack
r - e r y . String stack init ialization is the

* ? : 'unction performed when the r t r ing
):I(l ibrary is loaded.

i r r m m y

This was the fint major mf tware
:i:dage transported throughout the
.- Versi ty LJRTH community. Originally,

-ad a few code routines which were
- Szhine specific to reduce execution

-e. However, these were removed on
L :be systems but the Intel 8080. The
:?:*age has run, without change (except
IC the above mentioned machine-rpecific
:?=' on Hewlet t Packard 2100, DEC
32-11, IBM 360 and the INTEL 8080.

I i o

: '? 0. 1

: ' < ' ? O > i
(C l - - - C T / F l LOGICAL LESS THAN TESTS TOP 2 STRINGS)

STRING STACK YORDS CONT'D HAM ie-nAR-81)
e * '> ! E I - - - C T / F l TESTS TOP 2 STRINGS FOR 8)

'? nr
: i I l - - - t T / F l TESTS TOP 2 STRINGS FOR <= 8)
: '>= ([l - - - C T / F l TESTS TOP Z STRINGS FOR > = 1) *:> NOT i

* < NOT i

SSTOP 1- DUP ROT SYAP C! SSTOPI 9

: 'SPACE (d'N>-c'>r PU H A STRING OF N PA S ON S 1)
D W o 00 ssiop i - BL ~ V C H E C ~ OUFR c i SsiESI Loof

: ' I N I T (<#CHARS TO ALLOCATE FOR SS>-<>.t I N I T S S - I N T O D I C T)
1 ? # HERE SSO 1 ALLOT HERE 2- DUP SSM ! SST I v

2 0 0 7 ' I N I T (ALLOCATE 200 CHARS FOR STRING STACK)
-->

ttttltttt8lttltttt BLOCh l o b 8t88ltttttltt8lttlt
(STRING VARIABLE AND STRING ARRAY MAH 13-JUN-80)

(CHAX L E N I - - - [I ALLOTS SPACE I N D I C T FOR MAX L E N AND
(MAX #-OF CHARS.)

(CNAX LEN1 STRING <NAME>
(W E N <NAME, IS EXECUTED THE BYTE ADDR. OF THE STRING)
(START AND LENGTH A!

: STRING-SPACE DUP 9 0 9 2/ DP+! i --- B U I L D S A STRING VARIABLE)

: STRING-VAR (BUILDS STCING-SPACE
;CODE s -) Y nou, (PUSH PARAM ADDR 1

S) 4 # ADD, (POINT TO COUNT AND F I R S T CHAR
S - 1 Z Y I) ROV, (PUSH hAX LENGTH)

NEXT 1

E LEFT ON THE STACK)

(STRING ARRAY ROUTINE HAM 13-JUN-80)
: O S T R I N G (C # OF ELERENTSr NAX LEN3 ---<;MANE>

(BUILDS sunp DUP I (B U I L D HEADER, STORE # OF STRINGS)
o DO DUP STRING-SPACE (ALLOT PIC SPACE, STORE NAX LEN)

LOOP DROP
DOES:. 2 t DUP P ROT ROT 3 P I C K (ADDR OF 1ST ELENENT)

DUP 2 MOD I F 3 t ELSE 4 + THEN (l + TO NAX LEN I F ODD)

ROT 8 2 t t SYAP i (STRING ADDR t ELENENT OFFSET)
(Z t I F EVEN, 2 t FOR HAXLEH)

(RETURNS COUNT AND ADDR 1

-->

tS88tt88888888St8t BLOCK 108 ttlSttttttttltltSS8
(STRING EXECUTION ROUTINE LPFvHAH 18-MAR-81 1

: 'EXEC (<YORD NAME ON TOSS>-Oc EXECUTE YORD I F FOUND)

ELSE 0 TABORT THEN i (UNDEFINED YORD ERROR)

HERE 'LEN * !
F I N D TDUP I F EXECUTE

: 'FORGET ((YORD NAME ON TOSS>-<>, FORGET YORD I F FOUND)
HERE 'LEN ' 1
F I N D 'DUP I F YPARAM + SFORGET

ELSE 0 TABORT THEN i (UNDEFINED YORD ERROR 1

i s

-- ISTH DIMENSIONS III/4 Page 123

The first application was for a screen-
oriented data entry system, Later appli-
cations included an ISAM data bare, a
menu-driven interface for flow cytometry
and a word procesaing system. The pack-
age consists aImost entirely of i ts original
code written in 1977 by Mike Williams, of
the University Computing Center. The
major change has been the addition of
comments.

Acknowledgsmentr

We would like to thank the following
people for their asaistence: Mike
Williams, of the University Computing
Center, who developed the original String
Stack Package for URTH on the IBM 360
and the Intel 8080; and two undergradu-
ates who worked for Lawrence Forsley,
Lynn Raymond and Dan Blumenthal, for
documenting this package.

This work was partially supported by
the following sponsors: Exxon Research
and Engineering Company, General Elec-
tric Company, New York State Energy
Research and Development Authority,
Northeast Ut i l i t ies , The Standard oil
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, and the U.S.
Department of Energy inertial fusion
program under contract number OE-ACOB-
80DP40124.

R. Marisa is the manager of the computing
facility of the Production Automation
Project in the College of Engineering at
the University of Rochester. M. McCourt
was a senior laboratory engineer with the
Laboratory for Laser Energetics at the
University of Rochester and is now an
applications engineer for Harvey
Electronics.

HELP W n N T m

-M.ngar,
-crmprtsr-

Primary responalbility for designing,
debugging and implementing major wft-
ware projects on the Pulmonary Computer
System. Programming experience with
POP-11 Assembly Ianguagn and FORTH
desirable. Some hardware experience wil l
be useful.

Salary range to t35,WO. Superior
benefits package, three weeks vacation
first year.

Contec t:

John Gilbert, Employment Officer
Cedars-Sinai Medical Center
8723 Aldsn Drive
P.O. Box 48750
Los Angeles, CA 9ooo8
(21J) 855-5529

Released on two 5.25" diskettes with N E W pRowcT5
source in Z80 aswmbler 120080-ZS ($80).

Released on one 8'' diskette with
m r c e in ZBO assembler #$008O-Z8 ($80).

FORTH mtiatlm M o f h l a
DLkat.

The FORTH scmena, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price for the
diskette of FORTH application modules i s
$75 (i f other than 8'' standard disk, add
$15). To order the FORTH modules, write
Timin Engineering Company, 9575
Cenesee Ave., Suite E-2, Son Diego, CA
92121, or call (714) 455-9008.

M R ACCESS FORTH
SOFTWARE AND DOCUMENTATION

Fig-FORTH compiler/interprater for
POP-11 for RT-11, RSX l lM or stand-
e l m with source code in native as-
sembler. Included in this package are an
aaaemblsr and editor written in FORTH
end installation documentation.

Released on two 5.25" diskettes
120100-89 ($l,OOO).

Releared on one 8" diskette 120100-88
($l,OW).

Complete Ziloq (A M) 28002
develoment system that CUI be run under
CP/M or CROMEMCO CDOS. Syrtem
includes a METAFORTH Cross-Compiler
which produces a 28002 fig-FORTH
compiler/interpreter for the Zilog 28000
Development Module. Pockege includes a
Z8002 awembler, a Tektrooix download
program and a number of utilities.

129102-85 ($4,000).
Released on two 5.25" dlJtettes

Released on one 8" diskette 129102-88
(W,OOo).

This is available on a ooc 8" single
density diskette only. #Mol l -01 ($80)

Ziloa 28002 Develoment Module fig-
R e f e r m ~~~~l for p~p-11 fig- FORTH-ROM set. Contains fig-FORTh

FORTH above. 120011-99 ($20) with ZBOOZ aaembler and editor in 4
(2716) PROMS. 138002-M1 ($850).

Fig-FORTH cornpiledinterprater for
CP/M or CROMEMCO COOS system
comes complete with source CO& written
in native assembler. Included in this
package are an a r m b l e r and editor
written in FORTH and installation
documentation.

All di8kettes are ungle density, witP
5.25" diakettes in 128 byte, 18
rcctor/track format and 8" diskettes in
128 byte, 26 rectar/track (IBM) format.

For aden and further information,
contact:

INNER ACCESS CORPORATION
Software Division
Box 888
Belmont, CA 94002
(415) 591-8295

Releared on two 5.25" diskettes with Sym-FORTH Newletter now available,
wurca in 8080 egcmbler 120080-85 ($80). contact: Saturn Software Ltd., PO Box

397, New Westminister, British Columbia,
Released on OM 8" diskette with V3L4Y7, CANADA.

m r c e in 8080 aawmbler 120080-88 ($80).

-
Pa iga 124 FORTH DIMENSIONS 11114

COkpcEX ANALYSIS PI(FORTH

Alfred Clark, Jr.
Department of

Mechanical Engineering
University of Rochester

3uring my years as an engineering
educator and a researcher in theoretical
fluid mechanics, 1 have often wished for
the perfect calculator--a compact
machine which would perform intricate
and useful mathematical tasks in response
to a few keystrokes. The pocket scientific
calculators, amazing as they are, never
seemed to have quite the power and flexi-
bility (and certainly not the graphics
ability! that I hoped for. I always sup-
posed that my hopes were unreasonable
until I discovered FORTH two years ago.
Having been a FORTRAN programmer for
20 years, I found the transition to FORTH
somewhat difficult and even painful a t
times. Originally, I took up FORTH out of
curiosity, but gradually I realized that the
quest for the perfect calculator was over-
-it is FORTH plus a microcomputer.

Perhaps 1 should say a little more
about what a perfect calculator is sup-
posed to do. Among other features, it
should have (1) staidard trigonometric and
exponential functions, (2) other common
special functions (e.g., Bessel functions),
: 5) graphics and automated plotting of
functions, (4) numerical integration, (5) a
root-finder, (6) special purpose applica-
tions, such as a direction field plotter for
first order differential equations, and (7)
complex arithmetic, including complex
transcendental functions. Further, all
procedures should be executable with a
few keystrokes.

The last item in the list-complex--is
in some ways the most stringent tes t of
any would-be perfect calculator. It's
certainly not available on any pocket
calculator. Although it can be imple-
mented in BASIC, it is cumbersome and
requires a large package of subroutines.
The versions of FORTRAN available for
small machines generally omit the com-
plex arithmetic and complex functions
which a re available on large machines.
With FORTH, however, the extension to
complex from real floating point is simple
to implement, easy to use, and powerful.
Since complex arithmetic is not yet very
common in FORTH on small machines, I
thought it would be worthwhile to sketch
briefly my implementation.

to define all of the Important r tack mani-
pulations such as ZDROP, ZDUP, ZOVER,
ZROT, and ZSWAP, which perform exactly
like their integer and florttng point
counterpart#, The basic load and r tore
operators, Z@ and Z[, can be defined in
terma of 3 and [.

There a re many single number opera-
tions which are ureful. There include the
real par t REZ, the imaginary par t IMZ,
the complex conjugate CONJ, the modulus
/Z/, the q u a r e of the modulus /Z/2, the
reciprocal 1/Z, and the phare A R M
(radians). Most of there are quite rimple
to define. IMZ, for example, ir jui t
: IMZ FSWAP FDROP ; where FSWAP and
FDROP are floating point rtack oper-
ations. As another example, consider l /Z
def inedby : 1/z ZDJP /z/2 Pwr mmi F/

?lWrrrOrF/mU:

For ARGZ it is very important to establish
a precise range and to implement it care-
fully. The conventional range, which I
have used, is -PI < ARGZ <= PI. Any care-
lessness in the definition of ARCZ will
lend to disasters later when multi-valued
functions are introduced. Many engineer-
ing applications require the p h a r in
degrees, and it is convenient to build in a
function DARGZ which supplier this.

Conversion words between rectangular
and polar forms are also very ureful. To
go from retangular to polar, with the
phase !in radians) on top of the stack and
the modulus just below, we have

A similar word, DPOLAR, leaves the argu-
ment in degrees. For cormrsion from
polar to rectangular, we have RECT (angle
in radians)

: m ~ ~ 0 3 5 P R z 7 p F T u r s I b l P

and a word DRECT for the angle in
degrees. A very useful application of
these is a rotation operator ROTZ, defined
so that the sequence Z F ROTZ rotates
Z by F radians and leaves the result on the
stack. The definition is
: m m F l D T R x A R F l W p F + m ; .

There a re several different useful
formats for complex output. ("y system
has 8 different formats, which is handy
but a little extreme.) The word 2. prints
the number a s an ordered pair -- 3.5 7.2,
for example. The conventional mathema-
tical notations is obtained by Z1. -- (3.5) +
(7.211. Words to print in polar form are
also useful. For examole. ZP. is defined

: m A R ?mP/z/mc113TAIIGz:

define. For example, Z+ ir defined by
: z + mP+mPwrIum;

where FROT is a floating point ROT, and
F+ is a floating point add.

Higher functions can be defined, pro-
vided the underlying real floating point
has the standard real functions SIN, COS,
ATN, and EXP. The complex exponential,
for example, is then defined by

:zD[p ps139wpmJPApTmcTsPwrF.

ApTPFfurmsINP

Other uaeful functions w c h a8 ZSIN,
ZCOS, ZTAN, ZSINH, ZCOSH, and ZTANH
are defined similarly.

Of the multi-valued functions, the
most useful are the square root ZSQR, the
logarithm ZLOG, and the power Z*+. As
an example of the definitions, consider the
principal value of the square root:
x - R l k R 2 . F / F S A P m R M W E P :

The baaic words described above can
be the building blocks for substantial
applications. One such application, which
is particularly ueeful pedagogically, is
conformal mapping. I have defined a word
MAP such that the uequence

-> Cfryrticn,

will take any previously defined curve in
the Z-plane and any previously defined
complex function, and produce a graph
showing the curve and its image under the
transformation. This tool allows students
(and the instructorD t o improve their
understanding of the geometry of complex
functions.

Notar m 1rnplemsnt.tirn
' The code described above runs on the

author's 48K Apple 11. The underlying
integer FORTH is the excellent version
written by William Graves and distributed
by SOFTAPE. The real floating point
arithmetic and functions have been
implemented by interfacing the SOFTAPE
FORTH with the Applesoft ROM rou-
tines. The same data stack is used for
integers (2 bytes), reds (6 bytes), and
complex numbers :12 bytes). The code for
the complex routines was written entirely
in FORTH, and, in compiled form, occu-
pies about 2K. The conformal mapping
code compiles to about 1% additional.

~ r I -~~ ~

ORDER NOW! , The most fundamental question in so tha t the sequence 3.5 7.2 ZP. gives
introducing complex analysis is how to P r o c e e d i n g s of t h e 1981 R o c h e s t e r
represent complex numbers. Here it turns 'Ix) 8.u)5b2303 AiG 1.11832144 (RAD) ' FORTH S t a n d a r d s C o n f e r e n c e

, out that the Dure mathematician's defini- All of these WtDut words are defined in $25.00 US, $35.00 F o r e i g n . Send
tion of a complex number as an ordered c h e c k o r MO t o FIG i n U S funds
pair of real numbers is exactly what we o n US b a n k .

" S t a r t i n g FORTH"
Hard - $ 2 0 . 0 0 US, $25 .00 F o r e i g n

need. Thus the complex number 3.5 + 7.2i
IS regarded a s an ordered pair, and is
pushed on the stack by typing S.5 7.2 . The binary complex operations a r e Z+, S o f t - $16 .OO US, $20 .00 m r e i g n
With this convention established, i t is easy

terms of the basic floating point print
word F. . For example, 2. is defined by

: Z. FZXW F. 2 S P X S F. ;

ORDER NOW! Z-, Zf, and Z/. These a re quite easy to

FORTH DIMENSIONS IIV& Page 125

A FORTH BASED
MCROSTZED

MCROASSEIUSLER

Gregory E. Cholmondeley
Laboratory for Laser Energetics

University of Rochester

Abstract

The FORTH programming language can
be used t o implement a very small and
umful micro assembler. Functions ranging
from automatic field alignment to user
definable macros can be written and
altered easily, permitting a flexible and
easy to use microcoding technique. This
paper also serves to illustrate several of
the many programming features fwnd in
FORTH.

Introductim

Computer central processors often
contain an iternal data form called
"microcode." This code defines the
instruction set of the processor. The
creation of this internal code is called
"mic rocoding."

Microcoding by hand i s at best a tedi-
ous and wasteful undertaking where a sig-
nificiant portion of a programmer's time i s
spent aligning fields, formatting output
and correcting typographical errors.
Understanding (let alone debugging) a
microcode program i s difficult due t o the
lack of readability from a human point of
view. Through the use of comments, auto-
matic field positioning, labels and other
such tools, a good micro assembler should
minimize the above problems making
microcoding a much more agreeable form
of programming.

There already are micro assemblers
written which handle these along with
other problems associated with micro-
coding, but most of them share one rather
serious drawback: they are large pro-
grams. The micro aaaembler preaente
here is bawd heavily upm the Signtics
micro assembler but requires only a few
"blocks" of FORTH code. Thus it is p a -
sible to have a micro aaaembler m a mall
home computer[Such en assembler could
be used as a deign tool as well as an
inexpensive and effective teaching aid. It
wwld allow even wide instructim words
to be built in a simple to urn, high level
form.

f

urgc
There are two main phases associated

with this micro aaaembler: instruction
definition and actual programming. A
third phase wil l be implemented shortly t o
allow the user to explicitly m d easily
define output formats. The first of thaw
phases t o be explored is the instruction
definit im phase. This ia the time when
the various instruction word formmb are

defined. A simple example of ouch a F O W T
definit im wwld be as follows

INSTRUCTION WIDTH e FIELD HH W I M H 8 DEFAULT 255

FIELD GG WIDTH 16 DEFAULT 65535
FORtlAT . END

Define an &bit instruction. END.INSTRUCTION

FIELD A WIDTH 4 DEFAULT 3 Figure (1) : Sample Instructon Definitioo
Define field A as the 4 most signifi-
cant bit p o r i t i m in the imtruction,
having a default value of 3. instruct ion

I
FIELD B WIDTH 2 I

Define field B as the next 2 b i t pmi-
tions, having a default value of 0.

1
M-->BB-+HH fields AA, BB and HH

I
I FIELD C WIDTH 2 DEFAULT 1

>*field BB has 2 alternate Define field C as the 2 h a t dgnifi- *----
cant bits, having a default value of 1. I I formats

I I
ENDJNSTRUCTION I I

1
The resulting instruction word ww ld I

I

Close the instruction definition. CC-->DD GG format 1 contains fields CC
a d DDformat 2 contains field
SG

field DD has 1 alternate
format

appear in the following form:

J I : 7 4 : 3 2 : l 0:

I A 1 B I C L
EE-->FF fields EE and FF

From this point m the field names A, 8,
and C will be unique and may not be uaed
to define other fields.

While the preceding example is rather
trivial en instruction definition may
become quite complex. It is, for imtanca,
possible to define multiple format8 for
every field, with each of thew m t a i n i n g
multiple sub-fields. This is uaeful when it
i s deemed that fields should have different
meanings depending upon the context of
the rest of the imtruction word (vertical
vams horizontal programming). %-
fields are treated in the wme manner 88
fields 80 that they too may haw multiple
formats and nub-fields. This feature ir
implemented aa a tree structure allowing
an unlimited nesting of fields, formats and
sub-fields. Figures (1) and (2) chwld
clarify this concept.

This part of the micro uaumbler h u
error checking capabilitim which prevent
unintentimal overwriting of fields. For
example, i f field EE of figure (1) is filled,
then fields BB, DD and CS (and of cwrae
EE) could not be ured.
defaulting uaes the wme mechartiam 80
that if field EE is the only field filled
(udng the format from the previous
example) then fields AA, CC, FF and HH
will be defaulted.

Automatic f ield'

INSTRUCTION WIDTH 32
FIELD M WIDTH 8
FIELD BB VIDTH 16

DEFAULT 255
DEFAULT 65535

DEFAULT 15
DEFAULT 4095

F I E W E E WIDTH 10 DEFAULT 1023
FIELD FF W I W 2

FORMAT
FIELD CC WIDTH 4
FIELD DD WIDTH 12

FORJIAT

DEEAULT 3
FORtlAT. END

FORUT . END

Figure (2) : Structure of Figure (1)

The programming phese of the micro
awernbler is where the actual microcoding
wtm place. An imtruction is created by
typing the name of a field followed by a
number or axprenim reprewntinq the
vmlue that that field ahould take. This i s
continued for as many fields as needed in
the instruction word. When the instruc-
tim ir complete a "$" (dollar rign) i s typed
and the computer readies itself for
another word. A t this point any undefined
field8 a n set to their default values, the
inotruction and other related information
i s stored in memory, and the location
counter is incremented. Figures (3) and
(4) demonstrate a rimple microcoded pro-
g n m which merely oets one field at a
time equal to a zem.

PROGRAH lEXAWLE WIDTH 32

ORG 512

M O S
BB 0 $
cc 0 $
DD 0 $
EL 0 $
no$
= O $
m O $

END. PROGRAn

Page 126 FORTH OlMENSIONS lnl4

::30000011111111 1111111111111111
.::1111100000000 1111111111111111
..1111:100001111 1111111111111111
. : i l l l l l l l l l o o o o 0000000011111111
.::1111111110000 0000001111111111
..:1111111111111 1111110011111111
..11111100000000 0000000011111111
.~illlllllllllll 1111111100000000

M urod BB 6 HH dofaultod
BB urod M 6 HH dofAu1t.d
CC urod M, DD 6 HH dofaulted
DD urod M, CC 6 HH dofAu1t.d
EE ured M, CC, FF 6 HH dofau1t.d
FF used U, CC, EE 6 HH defaulted
GG urod M 6 HH dofaulted
HH urod M 6 88 dofaultad

Figure (4) : Sample Output

While automatic field alignment ia in
:self a vast improvement over hmnd
:3ding, t h e n are a few other toola avall-
a31e to the programmer which make
7icrocoding even eaaier. A ''(2' Cnoter a
:imment allowing anything up to m d
Yluding a lt.)ll to be ignored. Typing ORC
aid a number or an expnrrion will aet the
. x a t i m counter (LC) to that value.
-vping SET <new variable nmo>

.4 declare and initialize a variable, while
:.>ing

TO <number or expression>

EQU <old variable rime>

WITH <number or expression>
-111 store a new value Into a previourly
2eclared variable. Thew variable8 return
:wi r value when they are typed (aimilar to
3 constant in FORTH) and can be ursd in
rxpressions at any time and in any phacu
:' the micro assembler.

One of the most verratile toolr avail-
n l e in this micro assembler ir the
'.':CROP function. Microps are user-
rfrnable functions designed to eliminate
I :arge part of the repetitious program-
-:ng associated with microcoding. For
example there may be times when several
' .ids will always take on conrtent or
-elative values. Rather than cluttering
:--? program by having to a& all of these
'.eids every time, a microp can be written
:J do this automatically. A program writ-
:?n using well named microps can in turn
3 3 quite a bit easier to read and under-
::and than me which merely cuts the
'>elds.

The definition of a microp requires a
--tque name and a set of commands which
-111 be executed whenever i t s name is
:elled. Any FORTH programmer wil l soon
- ta l ize that a microp definition ir nothing
::her than a colon definition, thus allow-
-q the fu l l power of FORTH to be easily
jccessed directly from the micro amem-
::er[An example of a simple microp that
sets a few fields to zero would be:

YICROP EX1 (. set f i e l d s CC, FF,
cc 0 and HH t o 0 .)
FF 0
H H O

END.!IICROP

An example of th ia microp in uw w w l d be
found in tho prognmmlng phew uid might
look Ilke:

NOTE2 LC In the preceding example in
a variable, the "('I and 9" am requiwd
for it8 proper execution. They do not
Lno te a commmt in tha MICRO
vocabuluy context. fhia ia a180 true
when building micrapr In the MICRO
vocabulary commenta are delimited by
y." M d "?.
Being aimple colon definitions, micropr

can do internal teating, looping and every-
thing elm offered in FORTH. Micropa can
expect parametera on the at& as well a8
numberr or exprerrionr from the input
buffer via a function called =TI. for
example:

Another way to increase readability in
the micro aowmbler is through the ure of
labelo. Thir famture ia only partially
implemented at thin time but will work a8
follow#. Labela muU have unique names
and muat be Lclared via LABEL atate-
mentr before they ara uwd. When a label
Ir found Immediately preceding a new
inatruction word (or in other words;
immediately following a "S") the current
value of the location counter (LC) i s
a t o r d 08 the value of the label. Multiple
labelr may be uwd to repnrent the name
llm of cob. When a label ir uwd inride
an inrtruction definition after i t a value
hu been mt, it will be treated M any
other variable. I f the label ha8 not been
wt to a value (Lo., forward referencing) a
zero will be returned and a11 information
necewrry t o remlve the reference wil l be
atomd in memory for the aecond pars.
During the wcond par, the micro amem-
bler will rhif t the correct vaiueb) of the
Imbol(8) into the proper place(@) and then
add the rewlting number to the reat of the
word. Thin a l l ow labels to be referenced
more than once in a single instruction. It
also allow addition and rubtrsction of
other rum-label expramionr to labels be . ,
AA (lLABEL + 2) or AA (ILABEL - 1
but not AA (1024 - lLABEL)). When this
ir implemented another extended precision
function (E+) wil l be needed to perform
the extended precirion addition.

HICROP ?GT (. <axprl> ?GI <expr2> - - tests i f expr l i s > exprZ .)
GET# >

IF M 0 BB 0 CC 0
ELSE HH (Lc)
THEN

END. HICROP

This could be used like:

M 19 $
<variable.name> ?GI 1024 $

Finally, micraps have macro capabilities
in that they can be mated m d may even
create several lines of code in one call (as
may be needed in a tort md branch, or
jump subrtitute routine).

HICROP EX3
Lc 100 >

IF EX1 J

ELSE M 0 J

T I E N

Lc ?GT 1000 5

C C O H H O $

END. HICROP

The last major feature of the micro
assembler concerns output formatting.
This has not been developed at all but will
consirt of a baaic inrtruction set for
programmen to uae to define npecific
output formats (i.e., hex, insertion of
special delimiting characters, etc.). The
programmer wil l define a function (similar
to a microp or colon definition) for each
type of output format. The executabfe
cod0 field address of the current format-
ting function is rtored along with the
other instruction word information on the
first pas% On the second paas the format-
ting function will be executed to produce
the de r i rd result. It wil l be possible t o
change the current format function
between instruction w o r h by using a
command of the form:

SET.FORPUT <format function name>

allowing multiple output formats within a
single program. By installing different
formats in currently existing ones, it wil l
be pouible to view the code i n punched
c u d format as well as a format suitable
for blowing PROMS!

Page 127 FORTH OIMENSIONS III/4

w-np 1-b-
The firrt problem that I addreooed war

how to align the field, in m instruction
word definitim. For wordr that are 32 or
fewer bitr wide the wlutim ir simple,
merely do logical ohifting and ORing.
Since 32 bit. is a rather rtrinpent l imi t on
C b word width, I have kept the r a m baoic
rtrategy but have defined a mt of func-
tiw which can do logical operations upon
extended precision words. The precirion
(in terms of 16-bit words) is stored in a
variable called PRECISION and ir wt at
the PROGRAM WIDTH rtatement. Thee
are the extended precirion functions which
I needed:

1.

2.

3.

4.

5.

6.

7.

EXT.PREC - This ir a defining
word that creater an extendsd
precirion variable which uaer the
Bartholdi "TO concept" to atore
and fetch extended precirion
numbem. EXT.PREC expectr the
desired precirion of the new
variable on the rtack.

LFILL - E.FILL expectr a number
and the precision of that number
in terms of 16-bit wordr m the
otack. It urer thir to fill in tho
mcmt significant places with zeror
until the number has a precision
equal to the current value of
PRECISION. Notice that the
value of PRECISION must be
larger or equal to the length of
tho given number.

€.DROP - Thir function drops an
extended precision number from
the top of the stack.

E K - The ESL function perfarmr
a logical ohift to the le f t m an
extended precirion number. It
expecto the extended preciaim
number and the number of ahiftr
on the stack and r e t u r n the
d M b d number.

EOR - Thir taker two extended
precioion numben off of tho
otack, logically OR0 them togeth-
er d returns the mmjiting
number.

EXOR - This executer an exclu-
rive OR operation between two
extended precision numberr. It
expecto two extended prociaion
numberr and returns the rerult.

ECOM - ECOM doer a 1% comple-
ment of the given extended pmci-
oim number.

One extended arithmetic function wil l be
needed to implement forward referencing
of I&dr Thir function h a already been
mentioned and wil l be called E+.

888888888888888888 BLOCR 160 88888888I8IlL&4L&O

(alsebraic notat ion 6EC 15-JUL-dI I

: GET: (Cc,--<inrut exrression:s value.>l t
32 WORD NUHDER NOT t tet next i n r u t charlnum I

I F R > R> SYAP >Ir >k THEM 8 (i f char then t rea t as ' 4 ' t

: (, CCOHPILEI (I IMHEDIATE (define (. as coaaent d e l i a l t e r t

888888888888888888 &LOCI 1 6 1 88888888888888t8ttt

(value and f l i r f l o r t v r y 6EC 10-JUM-81)
0 VAR %TO (f l a s) . T O 1 %TO ! i

: VAL (returns Value Of Variable c not address 3)
*.WILDS v DOES,

%TO @ I F ! 0 %TO 1 (store value J
ELSE p t rush value)
THEN i

: FLIPFLOP (returns 011 and stores 110)
cDUxLDs 0 1 (Cw--(.>l init ia1i:e F.F I
DOES> XTO e

I F 1 0 %TO I I C<l/O>--\>I set F.F.
ELSE DUP e DUP NOT ROT I (c ~ - - < 1 ~ 0 , ~ 1 ti1, F . F . t

-- THEN 8

88888l8888I888l888 BLOCR 162 88888888888888ll888

(variable de f i n i t i ons 6EC 19-JUN-81 !
o unL CURADDR (current address J 0 unl C;FiE.LD.

0 O VkL VkL INSTR

0 VAL F.POS
0 VAL F,LENOTH

0 vnL LC
0 VAL IMSTRYIDTM
6 VAL L.FIELD

(current f i e l d)
(current fo rma t)

(current inst ruct ion uord)
(f i e l d l en r th I

I f i e l d r o s i t i o n)
(location counter 1

(ins t ruct ion u id th)
(l as t tielo i

(l a s t format I
t l a s t inst ruct ion) 0 VLL L.1MSTR

o unL MEH (current aeaoru addr for r r i n t routines I
0 VAL NEW.YORD (f l a s set a t s t a r t of neu ins t r . uord I
0 VAL OFFSET (o f f s e t of s h i f t {used i n ESL) 1

0 VAL LeFORM

- - .

888888888888888888 BLOCK I63 8888888888888Lll l88

(vari

0 VAL
0 V(IL
0 VAL
0 VAL
0 VAL
0 VAL
6 VAL
FLIPFL
0 XEO
G XEO
0 XEO
0 XEO

o unL
Iable def in i t ions - 2 BEC 19-JUN-81 1
OVFLb (overf lou f l a r)

(r rec i s ion of vord i n 16 b i t un i ts)
1ESl.FLAG 4 flat used i n error rheckins and default ins 1
TSHIFT (interbedlate number O f s h i f t s <ESL>
XDEF (default rhase (0 . use/l. set/?. initialize))
LFLA6 (value to store i n flarc t o l l > >
XPRINTeFORHAT (addr of outrut fo rma t code i

BROTHER (brother o f current f i e ld / fo raa t 1
PARENT (rarent of C.FIELD)

UNCLE (uncle of C.FIELD)

P A PkEEFSIOM (addr of temp storage i n extended orerations b

.OF FLPeFF (f i e l d F.F. f o r error checkinn S defaUltlnS1

SELF t C-F IELD)

--,

888888888888888888 BLOCK 164 888888888888888I888

(extended r rec i s ion functions 6EC 12-JUN-81 J

: EXT.PREC (\ r rmis ion>-<> bui lds an extended wec is ion t)
<BUILDS DUP 28 v 0 DO 0 v LOOF
DOES.* (O-<lou-order ... hish-order,. or reversed i f 110)

%TO e IF DO I 1 2 tLoop o XTO I (stores t)
ELSE SYAY 2 - DO 1 P -2 tLOOP (fetches t)

DUP DUY e t 2 t SYAP 2 t

. THEM i
: E.FlLL (0 l en> - i t 0 .., O> r u t s 0 ' s i n hish order.rlaces)

: EDROP (i lou-order ,,. hiah-order>-O drors cxt.rrecision t)

PREClSION SWAP ZDUP ;, IF DO 0 LOOP ELSE 2PkOF TMEN t

-- >
PRECISION o DO DROP Loor i

128 FORTH DIMENSIONS IIIh

When a field in assigned a value and is
aligned, the following p r o c e r occurs. An
extended precision number with a preci-
sion equal to PRECISION is on the stack.
This is the value of the current line of
microcode. After the field-name is typed,
an extended precision number with a
precision equal to the width of the fleld is
accepted. E.FILL is used on this number
to make it the same precision ar the
instruction word, ESL in ured to rhift It
over the proper number of bitr, and EOR
is used to update the micro-instruction.
This is repeated until a " $ is encountered
which will clear the flags, set any default-
ed fields, store the extended precision
instruction word in memory and lerve an
extended precision number equal to zero
on the stack (for the next micro-
! ns t ruc t i on).

The second main problem that I feced
dealt with how to handle multiple for-
mats. I implemented a tree r t r u c t u n
where the instruction is the root with the
list of fields as its children. Each field
?as a list of formats or a zero for its
zhildren. Every format has a list of field8
as its children and the cycle continues.
Each node in this t ree has pointers to its
parent, "oldest" child, and next youngest
3rother. Each node also contains a flag
denoting whether i t is a valid field or not,
a value corresponding to its starting pmi-
:ion in the instruction word, its field
length and its default value. Thus when a
'ieid IS accessed a test is executed to
determine whether it is valid or not. This
,s accomplished by traversing up the t ree
and checking the validity flag. I f the f i r s t
set flag is found in a field, then the
:rogrammer is trying to overwrite another

and this is not a new line of microcode,
:hen this field is not defined in the same
.istruction word as the previous one!s) and
another error condition is found If, how-
ever, the field is determined to be valid,
then the flag bit of that fieid will be set
along with the flag of i ts parent, and its
3arent, continuing up to the root. When a
"$" is encountered, the t ree is traversed in
:be same manner but from the root down
and all flags are reset. At the same t ime
any unused brothers of the lowest level
'ields used will be assigned their default

ormat in the same field. If no flag is s e t

values.

:r\lSTRUCTION FORMAT FIELD

INSTRUCTION FORMAT

2 a r e n t I 0 I 1 f i e l d I
ircther I 0 I I format I

s e d Flag I 0/1 I I 0 /1 I
:-.:ld \ f i e l d I I f i e l d I
' . e l d S t a r t i n g P o s i t i o n
' l e l d Length
. e i a u l t Value

3r Zeros

8888888888888888~8 BLOCK 165 8888888888~8888l888

! cxtrnded w r c . f u n c t i o n s - 2 GEC 12-JUN-81
I ESL clou-ord hish-ord O-shifts:-~lou-ord ... h i r h , o r d

(c r e r t r u o r C s ~ r c c

(for butr from h i i h t o lou do

IF # - s h i f t)= 16
TSHIFT 16 - T O TSHIFT
1 TO OUFLG (set ovrrflou f l r r

ELSE (# - s h i f t 16 < s h i f t normrl lv >
DUF TSHIFT *'-L OFFSET HERE t

s h i f t s # - s h i f t s t o l r f t {drops h i J h ov 1 s h i f t s i n r i 's o TO OUFLG HERE PRECISION 2 8 t DUF TO PLACE HEM
DO 0 I I ? tLOOP

0 PRECISION 1 - 21 DO I T O OFFSET DUP TO TSHIFT SWAP

BEGIN TSHIFT 16)=
OFFSET ? t T O OFFSET

DUP e ROT OR SUAP 1
-->

8888888l8888888888 BLOCK 166 888888888888l88t888

r x t r n d r d r r r c . f u n c t i o n s - 3 6EC 12-JUN-81)

OFFSET 2 t HERE t DUP P (h r n d l r s #s that arr s r l i t
R O T 16 TSHIFT - ->L OR SUAF 1 (into ? bvtrr bu s h i f t J

THEN OVFLG MOT 0 TO OUFLG
END -' t OOP DROP

P d HERE PO I P (f r tch # from trmr u o r k s r r c r)

?PRECISION (C t of b i tsJ- - t# of 16-bit uordsl J
o 17 MIMOD DROP s w DROP it i

DUP PRECISION 1 - 28 t DO I e -2 tLooP t

2 +LOOP i

EOET (C..rddr O f v8rirblr:.--'.cxt.?r..1,] J

--
888t8888888888888S BLOCL 167 8 8 8 8 8 8 8 t 8 t 8 8 8 t 8 8 8 8 8

cxtcndrd r r e c . f u n c t i o n s - 4 GEC 15-JUN-81 f
: €OR (, r x t . r r e . l r x t . r r r . # - .rxt .rre.#> trk 2 r x t . F r e bs 1

HERE PRECISION t 1 - DUP TO PLACE HERE DO o I 1 2 tioof
1 PRECISION DO

HERE PLACE DO I I - 2 tLOOP
PIACE HERE DO I P 2 tLOOP i

I PRECISION t PRECISION I - t FICk
PRECISION 1 t PICh OR -1 tLOOf'

PRECISION 21 0 ti0 DROP LOOP

: ECOfi (C~ext.b,--..NOT e x t . # 3 one comrlemrnts e x t . P r e . t)
HERE PPECISIGN 28 t 1 - DUP TO PLACE HERE
SUhP DO I 1 - 2 tLOOF
PLACE HERE DO I e cofi tLooP i

-_. : ERWOR.FUNCT .' ERROR CODE: CR i

888888888888888888 BLOCh 168 8888888888t8888888l

I rxtended prec. f u n c t i o n s - 5 GEC I
,:,-<rxt.rrr.# ~ Oir
'0 PLACE HERE DO o
- t Pxcm
tL0OP

,5,-JUk-81 1
e::t.rre # s > i ' 2 tL0OP

-- .
S t 8 8 8 8 8 8 8 8 8 8 8 ~ 8 ~ 8 8 BLOCk 169 888888888888888S888

! o f f s e t s i n f i e l d s t r u c t u r r GEC 3-JUL-El) . OFF.UAL
t X T O e IF I o X T O 1 ELSE DUP o\> IF e THEN THEN i

: ?PARENT 0 OFF.UAL i
: ?FLAG 4 OFF.UAL 9 : ?CHILD 6 OFFaVAL 9

: ?BROTHER 2 OFFeUAL i

: ?ANCESTOR ?PARENT W A k E N T i
: ~1NSTRUCTION.WIDTH 8 0FF.UAL i
: ?FIELD.START C.FIELD 8 OFF.UAL i : *FIELD.LENGTH C.FIELD 10 0FF.UAL i
: TDEFAULT'C.FIELD 12 t i

(INSTRUCTION i
(FIELD)
(FIELD)
(FIELD)

: NEW.SON
DUP ?CHILD DUF ROT AND

ELSE DROP 0
THEN TO BROTHER i

IF o sunP B E G I N DUP ?BROTHER ROT DROP DUP NOT END DROP
-- >

Page 129 FORTH DIMENSIONS I1114

W i t h the rtructurw defined, the teak
of creating a program comes to lipht. An
explanatim has already been given der-
cribing how the words are constructed.
The following diagram should help clarify
how a "program" is actually stored in
memory in ib first p a u form.

Choral First Pam S t n r t u s for
Mi-pmgrrmr
. Forth

Name
I I I

Forth I l l
Header I-
Program I-
Header 1 0 1

I-
I : I

Complete I_ :_ I

.

Link *--I - - - - -
. I- ' - - I - - - - - Description

*-- I - - - - - Instruction Word Width
. *--I----- Address of Label

I- *-- I - - - - - Field (ie. I of shifts)

First Pass
Data For

I- * - - I - - - - - Address of Lab1
I- *--I - - - - - Field

One 1 0 1

Word I-
Instruction I- *-- I - - - - - Output Format

Lc *--I _- - -_
I_ - _I Instruct ion

Word I - - I I I-

I :)

I- *,-I ----- Addross of Label
I- * - - I ----- Field
l-:-l
I _ - I Instruction
I- I Word
1 1 1 End of Program

Each program has a unique name which
defines a FORTH header. When this name
i s typed, the program is listed in a basic
binary and hex form along with the format
address, LC, and any unresolved Iabelr

One of the primary objectives of this
micro assembler is to make microcoding
easier by making it mom readable, and
there are quite a few places where the
reverse polish notation found in FORTH
does not appear quite as nice as an infix or
prefix form. Hence, I have written a few
short functions to allow FORTH functimr
to accept numbers and expressiw from
the input bufter as well as from the para-
meter stack.

This method uees the return stack vie a
function GET# which accepts input from
the input buffer. I f the input is a number
GET# places i t on the stack and return
If the input is not a number than GET#
assumes that the programmer typed a l e f t
parentheses meaning that there is n
expression or a variable in the input
buffer. if this is the case then GET# wil l
swap the last two values on the return
stack and return. When a right parenthe-
ses i s found, the top two valuer of the
return stack are again mapped md the
system is back to normal. Thia is oimpla
and fast, although it has no method of
checking whether a set of p a r e n t b s is
properly clored. However, a vuiable
could be used which would be incrementad

ttttaattttttttttta BLOCK 170 ttaatttataartaaaata
headers o f fields I formats GEC 3-JUL-81)
?NAME DUP 0 . : . IF CFA6TNAME ELSE UROP THEN i

: IGNORE 32 WORD DROP I

: HEADER (creates 1st 4 f ie lds in FIELD and FORMAT)
0 TO UNCLE HERE T O SELF
BROTHER 0.;. IF SELF BROTHER TO *BROTHER

LSE SELF PARENT T O ?CHILD
HEN SELF TO BROTHER

rsrrnt/brother/flal/child 1
5

PARENT I 0 v 0 v 0 9 i

: F0RNAT.HEADER (defines FORMAT relatives L executes HEAbER)
INSTALL LeFIELD IN UNCLE INSTALL CqFIELD IN PARENT
INSTALL LSFORI IN BROTHER INSTALL CeFORk I N SELF
CrFIELD NEWeSON HEADER 0 TO CeFIELD P --,

ttttattattttttaatt BLOCR 171 tttattatttttatttaaa
(instruction and format defs. GEC 3-JUL-61 1

: INSTRUCTION (INSTRUCTION <name/ WIDTH (width;)
0 TO C.FIELD FORMAT.HEAUEK
IGNORE GET6
DUP 9
DUP T O F.LENGTH T O F.POS i (field lenrth/field rosition) : FORMAT (FORMAT)

?FIELb.LENGTH TO F.LENGTH (f i e l d lenrth)

*FIELh.START F:LENGTH t T O FePOS f field rosition)

: SET.FLAGS f <6,-<) Sets flars from C.FIELD UP to 6)
TO %FLAG
CeFIELD
BEGIN ?PARENT XFLA

instruction uidth

FORMAT,HEADER 9

TO OVER TFLA6 DUP NOT END DROP -- , XFLAG C.FIELD T o ?FLAG i

aaatataat~taatttaa BLOC^ 172 ttttaaaaataattattta

f format.gnd and field header GEC 3-JUL-63.)

: FIELDeHEADER
INSTALL LOCORN IN UNCLE INSTALL C-FORM IN PARENT
INSTALL L.FIELD IN BROTHER INSTALL C.FIELD IN SELF
SELF *:I IF SELF ?PARENT ELSE C.FORM THEN
DUP 18 PARENT NEYeSON

--. HEADER P

atttttatttattttttt BLOCK 173 tattaiatatttttaatta
! error checkinr for used fields

ER.CYECk (check
0 TO FLDeFF CeFIELD
BEGIN

DUP ?FLAG TO TEST.FLAG
FLDaFF DROP
'PARENT
DUP NOT TEST.FLAG OR t

IF 4 ERROR.FUNCT RESTART
END DROP
TEST.FLAG FLDaFF AND

ELSE TESTeFLAG NOT iLF5, ERROR.FUNCT RESTART

GEC J-JUL-al)
t o see if field 1s rerbittel J

I so to parent 1
if flar found or root reached)

f f i e l d defined t u i c e)

(not rrorer instruction)

-- \ THEN-0 TO TEST.FLAG i

: D0,DEFAULT
'FIELDeLENGTH ?PRECISION
XDEF SEL << 2 = = ' DROP 0 DO 0 9 LOOP 0 TO XDEF 0)>

?PRECISION OVER i 21 SWAP
DO I 1 2 tLOOP 0 TO XDEF 0 2 2

<< 1 ==> DROP E-FILL ?DEFAULT ?FIELD.LENGTH

<\ 0 ==) DROP ?DEFAULT SWAP 1 - 3 OVER t
DO I P -2 tLOOP 'FIELD.LENGTH 'PRECIS
€.FILL ?FIELD.START ESL EOW 0 '

NDSEL i : TO.Dh 1 TO XDEF i : INIT.DEF 2 TO XDEF

#ION

i

-- ~

: DEFAULT
GET6 10-DEF DO.DEFAULT i

when a ''(" i s encountered and decwment-
ed when a ")'I is found. This would catch
m y errors involving too many closing p u -
t?theses. A "1" function cwld be written
4 i c h would behave in the same manner as
:?e UCI LISP function of the same name.
:! would use the variable mentioned above
:3 close all open parentheses for a suc-
cessful evaluation of the expremion.

GET# and its related algebraic func-
:20ns have rorne interesting features in
:Tat there is no hirrarchial ordering of
' r c t ions (i.e., 2 + 3 5 = 25 while 5 3 +
: = 171, however, expresrions enclmed in
xrentheses will be solved before others

.c., 2 + (3 5) = 17). The entire code for
:-IS is only a few lines long and is aa
'?:!ow%

XTlr 32 WORD NCXBER
WT' IF R> R> SNAP >R >R
TKES ;

tttll$ltlt&ttStttS K O C h 175 t t l ~ t t t t & l t # l l t l t l S

(f i e l d structure GEC 3-JUL-81)

: FIELD I FIELIl 'nrre YIDTH w i d t h ;)
<BUILDS IGNORE GET#

niw C.LEYGTM <= --. . I__.._...

IF FIE D.HEADER
F,LbNGTH OVEC; - T O F.LENGTH
F - P O S OVER - DUP 10 F S P O C ,

(f i e l d s t a r t / f : r l d l r n f t h)

THEN
DOES:, T O C.FIELD

N E Y ~ Y O R D IF 0 TO NEUeYORO ELSE FRvCHECL THEN 1 SET*F?hGS
?FIElD*START ESL EOR 1 - - >
GET# TFIELD.LENGTH TPFECISION E.FILL

FORTH-like, it does result in much
cleaner code. I adapted the concept in
om place to build a flip-flop function.
This function creates a data type which
alternately returns zeros and ones when-
ever it is called and makes use of the "TO
conceDt" to allow itself to be initialized to

pets number
soap i f not s number

,::ABCLARY ALGEBRAIC ALGEBRAIC DEFINITIONS redefine functions eithe; state. The micro assembler also
makes use of multiple vocabularies to
allow the same function to have different
meanings in different contexts. While this

re-swap return stack is not absolutely essential for the assem-
swap return stack bier to run, it again makes the code

cleaner and easier to use.

- GET0 + ; : - GET# - ; - GET// * ; : 1 GET# 1 ;
R> R> SYAP >R >R ;
) ;

:::3 DEFINITIONS carlurion

A typical usage of this function could
1 e:

."
I L

- - r r e n t I 1 Parameter I Return
- - ? c t i o n 1 Command I Stack I Stack - - - - - - - - - - - - - - -_ - ----------- . -

main I 3 1 3 1 input a 3
!*) 1 (+ I I 3 I main c a l l function (+I
SET11 I GET11 I 3 I main (+I c a l l function GET#

I (I 3 I (+) main suap return stack
main I 4 I 3 4 1 (+) return and input a 4
' + I I {+I I 3 4 I (+) main c a l l (+) again
SET11 I 5 1 3 4 5 I (+) main (+I input a 5
a +) I + I 3 9 I (+) main return and add
n a i n I I 3 9 I (+I return to main

1 I 3 9 I (+I main c a l l function)
I I 3 9 I main (+) swap return stack

I +) I + I 12 I main return and add
a a i n I . I - I return and print

There are a few general concepts
d i c h are used throughout this micro
zssernbler, one of which is the "TO Con-
zept" (see Joe Sawicki's paper entitled
Zottrnired Data Structures for Hardware
Ixtrol). This concept allows the UK of
sariables without the programmer having
:1 deal directly with the address. While
:-IS may be thouqht of as bainq a bit un-

The reeaon why I have chosen to write
this micro assembler in FORTH is simpli-
city. As 1 mentioned earlier, this "pro-
gram" is based largely upon a very lengthy
micro assembler written by Signetics and
yet the FORTH code is only a few pages
long. The time spent programming was
equally short. It took roughly half of my
time a t work from around June 10 through
July 15 to complete the micro assembler
to this point (although I have occasionally
gone back to add or change a feature or
two). Two of the features. that I did
change, labels and forward referencing
through the first pass, brought up another
quality of FORTH its modular nature.
These are rather major additions and yet
ttmy only required one new "block" of
code, a few minor changes in the old code
m d took only a few hours to implement[

Once the forward referencing is com-
pleted and the output formatting is imple-
mented, this code will be a micro assem-
bler by iteelf as well as a kernel for more
extended versions. An example of an
extended feature is the compilation of a
symbol table a t the end of a program. A
further extension would involve tying this
symbol table to other symbol tables to
allow external references. Through the
UIC of external symbol tables the micro-
code could be maintained in the first p a s
format so that the external references
could be resolved reveral times for labels
with differing values. This cwld result in
a modular microcoding technique.
A n o t b r extension could be a FORTH pro-

=ORTH DIMENSIONS m14 Page 1

gram which would be used, in much the
same manner as the micro assembler, and
r imi lar to Hardware Description Lang-
uages, to describe a simulator for the
microcode. These two programs would
constitute a powerful yet inexpensive
teaching aid as well as an effective design
tool. Programmers and students w w l d not
need to waste their t ime punching cards or
blowing PROM3 in order to discover the
errors in their coder A dozen other "nice"
features can be imagined (i.e., prohibiting
forward referencing t o allow interactive
microcoding, or the development of intrin-
sic microps to define commercial chips,
etc.), but the point is that they could al l
be bared around the small "kernel" micro
assembler presented here.

A c J t n o w l ~ m s n t a

I would l ike to thank Lawrence Forrley
for the time and ef for t he expended help-
ing to direct and complete this project. I
would also like to extend thanks to Dr.
Charles Merriam for his useful comment8
and suggestions.

This work was partially wpported by
the following sponsors Exxon Research
8nd Engineering Company, General Elec-
t r ic Company, New York State Energy
Rerearch and Development Authority,
Northeast Utilities, The Standard O i l
Company (Ohio), the University of
Rochester, Empire State Electric Energy
Research Corporation, the Center for
Naval Analysis, under grant number CNA

Department of Energy inertial furion
program under contract number DE-ACDO-
8ODP4012Q.

G.E. Cholmondeley is currently an mdor-
graduate student in the department of
Electrical Engineering at the University o f
Rochester. His interests l ie in computer
software and hardware design.

1. Signeticr Micro Asaembler Reference

SUB M0016-76-C-0001 and ths US.

Manual

HELP WANTED

FORM b f t w r a l3gineer

Program, edit and maintain files fo r
8080. Abil ity to troubleshoot the
rof tw are-hardware interface.

Cell:

Wendy Palmer

Instrumentation Laboratory, Inc.
Analytical Instrument Div i r ian
Jonapin Road
Wilmington, MA 01887

1-800-225-4060

132

aaaaa:aaaaaaaaaa:a BLOCh 176 aaaaataaaa:iaaaaaaa
(end.instr L f i n d root I bro ther 6EC 11-JUN-81)

: END-INSTRUCTION (checks for any u?defined fields)
BEGIN FORNAT.END C - F I E L D ?ANCESTOR NOT END 9

: ROOT o sutw (finds instruction
BEGIN (Ca s c l f l - - C s e l t rarentl)

DUP ?PARENT ROT DROP DUP NOT
END DROP i

: FIND.BROTHER 0 SUAP (finds brother u i t h flar set 1
REGIN

END DROY DUF
PUP 7RROTHER ROT DROP (La se l f l - -Cse l f brother1 i
OVER 'FLAG OVER NOT OR () la¶ Oh not brother)

?FLAG NOT IF DROF 0 THEN 4 ([brother OR 0 1) --

taaaaa:aaaaaaaaaat DLoch 177 tttaaaataaa:aaaaata
(d e f a u l t - 2 6EC 8-JUL-81 i

CR 7 N A M .' DEFAULTED '
[I 0 OVER T O 7FLAb i flar s e t - r e s e t to 3)

BOP ?CHILD FIND,bROTHEL DUP (find sub-format used 1
I F 0 OVER TO 'FLAG t reset forrat f l r r to 0)

(CheCC sub-iiclcl:. 1
- J P 7BROTH5R (n? format used-fino b r o t h e r)

LD CR 7Nk)tE . USED Ur NOT
DP 'ANCESTOR DUP *BROTHER OVER NOT OVER OK' END

sunP NOT -- END DROP CR i

a:aaaat::taaaat:ta B L o c h 178 ta:atataaaa:aaraaai
f m i c r o - a s s e m h l c r : forward r e f . 6EC 17-JUL-81)
: LABEL (LABEL ';~Jw:) - .__

*< BU I L DS
0 v 0 I (def.fla9 / Val 1

IF DUP !? f F ,
DOES NEU.YOR[r ,

Label rrcviouslr defined' CR RESTART THEN
1 OVER (s e t flae)
't LC sunP 1 (se t value) ELSE DUF P
IF 1t e
ELSE 7FIELD.START SYAP I t 0

THEN THEN i

aaaaaaaaaaaaaaaaaa BLoct i 179 ~aaaaaaaaaaaaaaaa i i
(end o f uord I orisin 6EC

: s (ends uord in ~rolram mode)

11-JUN-81)

C.FIELD ROOT IF DEFAULT' THEN
0 , f end of l abe ls)
XPRINT.FORNAT v LC DUP r 1t TO LC
PRECISION 0 DO)UP B. t LOOP CR
0 1 € . F I L L
1 TO NEY.YORD i

: ORG
GET: TO LC i

ttttttttttaattttaa BLOCK 180 a::aaaaaaaaaaaaaaaa
! rrintinr rou t ine GEC 18-JUN-81)

U+ZERO
DUP 40961 U.= I F O T

ELSE DUP 2561 U- I F 11

THEN THEN THEN

ELSE DUP 161 U,= IF 21
ELSE 3 1

D U Y - I F QUP 01 UO 01 11 U.R LOOP THEN
4 7 sunP - U.R

FORTH DIMENSIONS inio

tllBttbttttBSttBtl BLOCL 181 t t t B B B t l k t l B B 8 t B B B B

' rrintins routines - 2 GEC 16-JUN-81)

: (PRINT (6ext.Pre.8.rddrz-0 rrint ext.Pre.4 i n binrru 1 hex)
DUP ~ K E $ I S I ~ N 27 8 t S U M ?PUP DO I I 8 . 2 1 tLOOP . . DO I e U.ZERO 21 tLoop i

I Printins routines - 3 GEL 16-JUN-81)
: l+PASS*PRIWT

DUF T0,kEH 0 1 AND
IF ERROR - PR GRAM LEN TH 0 ' CR
E L S ~ i o BASE ! c! BEGIN n@n e

IF BFGIN
I LABEL ' ' HEM DUP Y CFA TNAHE CR 2t T O MEH .' SHIFTEII~ ' MEN DUP I . CR CR 2t DUP 10 MEH R NOT cun T H E Y ~ R ;t TO HEM

' I t * MEH DUP e CR z t 70 HEM
a ' FORHATi
AEk 8 Y R I N i CR HEk PRECISION ? a t 10 hEH
LR C l i - C R HEk @ 1 = END CR 101 bASE 1
THEN r -- 1

kEk DUP C . CR 2t TO MEk

ItltttttlttttlllBl BLOC& 183 BBBBtBtttllBBBtBttt
! Profraa statement GEC 16-JUN-81 J

: PROGRAH
B V I L D S !GNORE GET8 DUP v ?PRECISION TO PRECISION 0 P
1 TO NEU,YORII
0 1 €.FILL

DOES DUP @ 'PRECISION TO PRECISION 4 t 1.PASS.PRINT 4 --;.

~llllltttllltBtttt BLOCK 184 ~ t B B l ~ l S t B B B t B l B B B t

! end rroaram 1 Hicrop combmdr GEC . E!4b.PROGRNI.
CIlROF 1 I f

17-JUN-81)

; NICROP CCOHPILEI : i
: END.HICROP CCOHPILEI i I IMMEDIATE
: S E T i defines 3 variable data ture)

HJlLBS IGMORE GET# i SET .vrr.name? !O iexrrerrion>)
DOES e v (tvar,nrme,. returns value)

: E O U (EOU 'var.nrmep. UI!H <expression> i
1" IGNORE GET8 SUAP 1 t

IICRO DEFINITIONS I S

h
8
X

-

? a u ! m i Y N m S

FORTH-Ebed Savvy Lob h r
Talk to Computer

FORTH, hc. Is working with i t a parent
company, Tschnology Industrim, Inc. of
Santa Clua, Cdlfomia, to develop a new
w f t w u e package for the Apple Il, using a
ZBO P ~ C O M ~ . W i t h it, the Apple wil l
o f f a the kind of c raw l and efficient man-
computer interface that until now, exirted
only in movie8 l ike 2001 and Star Wara.

Tha project callr for Savvy-the trade
name for Excdibur Technology Corpaa-
tiarb Adaptive Pattern Recopnition Pro-
cnsor-ta be wed u e uniqw lnguage
interpreter. Savvy permite a user to com-
municate with a computer in the user%
Mtiw language and normal prarsology--no
spacial language and formm are needed.

o Recognirm written wordr strung
together In idiomatic phrares.
(Future v e n i o n wil l understand
spoken words n d respond to
Spanish command m well M
English Other Imqueger wil l
follow.)

o Trw\rlatm there imprecise
patterm into procine computer
comm.nb.

Savvy% unique interactive approach to
dealing with computera in an important
development f a the 80s. The powerful
combination of FORTH and Savvy wil l be
oignificant in realizing the ryrtem't, full
potential mnd demonstrating the power of
FORTH. A special development team h.8
beon formed for thin project, including Art
G?~v~M, Chuck More, Dean Sendenon,
md mother programmer who ha8 not been
idantif ied.

*ific.lly, savvy:

NO ROOM FOR THE ORDER FORM THIS TIME!
ORDER - Proceedings 1981 Rochester FORTH Standards Conference. Send
check or MO to FIG i n US funds on US bank, $25.00 US, $35.00 Foreign.

TRAVEL THERE
RESORT

YpF..*%F,.... :...: *..'.,.,......,...., -3- 4.lr;

FORTH DIMENSIONS III/ 4 Page 133

FORTH UlmEflSlOllS
FORTH INTlRlST QROUP
P.O. Box 1 lo5
San Cador, CA 04070

Volume Ill
Number 5

Price: $2.54

IflSlUE

FurrctkMl Programming 8nd Forth

Forth and Artificial Lingulstks

137 H8Wt?y GIBSS

138 Raymond Weisling

140 Technotes

143 William F. Ragsdale
A Forth A8semMer for The 6!302

A Technical Tutdd:
Table Lookup Exampies

The Game of Reverse

The 31 Gsme

Simulated Tektronks
4010 Graphics with Forth

A Video Version of Master Mind

Transfer of Forth Screens by Modem

151 Henry Laxen

152 M. Burton

154 Tony Lewis

156 Timothy Huang

158 David Butler

162 Guy T. Grotke

FORTH UlNEflSlOra

Publirrhsd by Forth Interest Crag

Volume III No. 5 J.nuuy/Flrwy 1982

Rlblisher
Editor

Roy C. MULm
c. J. stmet

Editorial Review Board

Bi l l Ragrdale
Dave Boulton
K im Harris
John James
Dave Kilbridge
Henry Laxan
George Maverick
Bob Smith
John hmgamer

FORTH DIMENSIONS solicits editorial materlai, cowwnmb
and letters. No responsibility is uumed for .cwrcrcy of m a t w i d
submitted. ALL MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information In
FORTH DIMENSIONS may be mpmduced with credit given to tho
author and the Forth Interest Crwp.

Subscription to FORTH DIMENSIONS is frao with mMb.rrhip
in the Forth Interest Grorp at $15.00 per year ($27.00 foreign
air). For membership, change of addms and/or to ubmk
material, the address ir:

Forth Intereu Grwp
P.O. Box 1105
Sen Carlos. CA 94070

FORTH WM created by Mr. Charles H. Moors in 1969 at the
National Radio Astronomy Observatory, Ch.rlotteavllie, VA. It
w8m created out of dissatisfaction with available progmmmltq
tools, especially for obwrvatory automation.

Mr. Moore and several arrociates formed FORTH, Inc. in 1973
fo the purpose of licensing and apport of the FORTH Opnrtiq
System and Programming Language, and t o wpply appllclltim
programming to meet customers’ unique requiremanta.

The Forth Interest Grorp is centered in Northem Cmlifdm.
Our membership is over 2,400 worldwide. It w8m formed in 1978
by FORTH programmen to encourage use of the by the
interchange of ideas through seminars md publicatiar.

EDrroRr COLulrH

1981 is behind us and as I look back, I am pleased to we how
much has been accomplished for FORTH, FIG and FORTH
DIMENSIONS.

I really eppreciete al l the help and support I have received
from our readen. I have not dons everything right and some of
the beat help hm been your disagreement. Intelligent, construc-
t ive criticism is a8 welcome as earned praise.

1982 will be a year of continued growth. You CM look
forward to continuing responsiveness. It i s my plan to contact
every FIG chapter by telephone at least quarterly to get feedback
and encourage reader contributiau.

FORTH DIMENSIONS wil l also be awarding AUTHOR’S
CERTIFICATES for outstanding articles that contribute to the
growth and understanding of the language. While we are not yet
In a pooition to give you carh for your contributions, we at least
wi l l give you credit.

Starting in this imw wil l be a policy of putting in tutorial
u t i c l e r designed to help our entry level readers. This, however,
wi l l not be done at the experwe of our more seasoned FIGGERS
who wil l find an expanded bane of challenging articler and
p 9 l i c a t i m .

In closing, I want to say that the writer’s kits have finally
coma off the presses and I wil l be glad to send one t o anyone who
wants to contribute. Please send in applications and utilities,
philomphy, questions and problems -- in the final analysis,
FORTH DIMENSIONS is what you make it.

C. J. Street

RmLElim5cu-w

1981 has been a great year for FORTH, the FORTH Interest
Cmup and for me, personally. FORTH has spread around the
world and is being used on thousands of computer and
microprocessor-based products. It is being taught extensively in
ochools, companies and by FORTH programmen. FIG has just
completed i ts most successful national convention with almost
500 attendees, over 20 exhibitors and multiple sessions. (Thanks
to Bob Reiling, Conference Chairman and Gary Feterbach,
Program Chairman.) The FORML conference was well attended
md the Proceedings are now available--see order form.

My deepest thanks to the FORTH community for “THE
It was a fantastic thri l l and a FIGGY”, Man of Year Award.

rurprire. 1 stand in good company.

Roy C. Martens

FORTH DIMENSIONS IIIl5 pese 1%

tioru of volunteers aervlnq without Him-
bumment. The FORTH DIMENSIONS
editorlal staff aupporb FIG afforts to
keep FORTH intact and rasiat tho temp-
tation to obtain mere popularity and in Lhe
process, fail in their misalon to pnwlde
and w o r t the finest r o f t w m concapb
and tools available today. Thir ha8 not
been an easy task (and all too oftan, a
thankless one) but It is hoped that If
others will least try to understand, the
ef forb and contribution of thew volun-
teers will continue to benefit us aIl.--ed.

3ear Fig:

Congratulations t o all the people who
produce FORTH DIMENSIONS on Its qual-
ity and improvement. Pleare rend ma a
writer's k i t 80 I c m make soma of my 8P-
plications presentable for publication.

Bob Royce
Box 57 Michiana
New Buffalo, MI 49117

Your k i t is on the way! Anyone elm?

--ed.

3ear Fig:

Glen Haydon's nice article in FORTH
YMENSIONS llI/2, page 47 talks about an
algorithm he would like to have to
getermine the Julian day. W i t h the
3ackground that FORTH has in astronomy,
:'TI sure there must be several, but this is
:7e nicest I know. It comes from the U. S.
Uaval Observatory via an article in the
4strophysical Journal Supplement Series,
b'01. 41 No. 3 NOv. 1979 pp 391-2.

3 (JULIAN DATE
: : JD >R SWAP
Z
3
i SWAP2759+/+ :
i
6 367 R> M* D+ ;

DUP 9 + 12 / R + 7 + 4 I MINUS
OVER 9 - 7 / R + 100 / 1+ 3 * 4 I-

+ S-> D 1.721029 D+

Cxample: 3 20 1982 JD D.
2445049 OK

If you are only concerned with dates
Jetween 3/1/1900 and 2/28/2000, then you
:an omit line 3 entirely.

On another subject, there is another
correction I noticed in the dump of the
'ig-FORTH 6502 Asrrembly Source - at
xation OC32,80 1A should be 07 08.

Peter 8. Dunckel
52 Seventh Avenue
San Francisco, CA 94118

?eally slick! But the algorithm would be
Tard to explain to most people.--ed.

N"ALpROQRAMlr0JcAH)
FORTH

Harvey Clam
Univanlty of Swth Florida

College of Engineering
Department of Computer Science

Tampa, FL 33620

The dlstinpuirhd computer rcimtist,
John Backua, in his 1977 Turing Award
lecture (1) describes the shortcomings of
conventional programming languages and
wggests a new Wproach to programming
in a atyla dercribad as functional pro-
gramming (FP). We will wmmarize the
faulb that Backus finda in conventional
Imguages, brlafly dercribe the functional
programming style, and lastly show that
FORTH mmts the apirit of this style of
programming.

Conventional Langue9 es

An mderiying problem of conventional
pmqramming languages is that they tend
to be high level descriptim of the Von
Nwmam computer. The assignment
statement is ths principal construct of
there languages. A program becomes a
aeries of these asrrignment statements,
each of which requires the modification of
a single cell. We may think of the Von
Neumam computer aa a set of storage
cells, e sparate pmewor, and a channel
connecting the two. I f assignment state-
ments imitate the store operation, then
branch statements imitate jump and test
while variables imitate storage ce l i r The
high level languages provide sophisticated
cmt ruc ts to directly model the under-
lying Von Neumam design. Conventional
languages in the "word at a time" flow
deecribed above require large data trans-
f e n through this small channel connecting
main storage end the CPU. Backus calls
this the V m Neumann bottleneck. It is
not merely a physical bottleneck but,
more importantly, i t is a bottleneck to our
thinking about computer languages.
Backus refen to it as an "intellectual
bottleneck." He characterizes conven-
tional languages as both fat and weak
sin- increams in the size and complexity
of these languages have provided only
small increems in power. The typical pro-
gramming language requires a large fixed
set of constructs, is inflexible, and is not
extensible. The problem has been eased
by approaches such as top-down design and
structured programming, but them have
not provided a solution to the underlying
difficulty. Backus suggests that we need a
new way of thinking about computing. He
describer a new style which he calls func-
tional programming.

Functional P m m m i n q

following characteristics:
This new atyle of programming has the

- A function (program) i s constructed
from a mt of previously &fined

f u n c t l m udng a set of functional
forms that combine them-

- The moat fundamental functional
form is called compwition. If the
comporition operator is denoted by
0, then in Backus' notation "fog" Is
the function where g is f i n t applied
and then f.

- The functions incorporate no data
and do not name their conventiw
nor substitution rulm.

- A function is hierarchicalj i.e., built
from simpler functions.

Backus point8 out that, T P (Functional
Programming) systems are 10 minimal that
some readen may find it difficult to view
them as programming languages." We
have a set of predefined functions in a
library (dictionary) and may define new
functions in terms of there predefined
functions.

tunction, to form new ones.

Functional forms are m s t r u c b do-
noting functions which take functions as
parameters. For example, the mtruct
"if-elm-then", and the construct "do
while" are functional forms. As indicated
above, compodtion is aim a functional
form.

FORTH of course has predefined con-
strucb which serve as the functional
forms of FP systems. In ftxt, FORTH
provides fecilitiea for adding func-
tional forma. An example would be a
"case" construct to provide a more flex-
ible and clear decirim structure than that
of a set of nestad "if-elm-then"'s. The
capability of language to add new func-
tional forms is not inherent in FP
systems. Reckus Qfines a language with
this capability a8 a formal functional pro-
gramming (FFP) Isnguage.

An Example of Functional Proqramminq:
The Factorial Function

An example of a program written in
the style of functional programming is aa
follows:

def 2:eqO-r I ; o [id, !! w b l l , where
the notation 0, - , end [1 denote func-
tional forms. As we have awn, o denotes
composition. The notation [f ,f I denotes
construction where [fl,f2] &Tied to an
argument x yields the aequence <f (x),-
f.,(x)> . The notation p * f;g applied to an
argument x indicates that the value p(x) i s
to be examined and i f p(x) is true the ex-
pression yields f(x) elm it yielda dx).

-

Other definitions uaeeo in the above

eq0 applied to x yields a value trw if x
i s 0, and yieida false otherwim.

1 is the literal value 1 and yields the

are:

-

valw 1, regardler of the argument.

is the multiplication operator, and
applied to a sequence <x,y> yields x*y.

id is the identity operator. id applied
to x yield8 x.

sub1 applied to m argument x yields x-
1.

Following the logic of the above func-
tion we see that 2 applied to an argument
n yields 1 if n is zero. I f n is not zero we
generate nqn-1):

Clearly then for @ this is a definition
of the factorial function. In FORTH (i f
the language were recunive) we would
write:

. I1 . -
o= IF I+

ELSE wp 1 - 2
THEN ;

The syntaxes of the two examples are
different. The composition rule is applied
right to left in the fint example m d left
to right in FORTH. The rules for dropping
arguments are different. Construction i s
not used in FORTH.. That the rulm of
syntax are different rhwld not be wr-
prising. The operations were defined by
different people at different times. What
is most important is that on clom exami-
nation it is qparent that the atyle is en-
sentially the same. We have “words”
which denote ftmctiorm which are eval-
uated following very similar rules.

FORTH as a Lanqu.qe with Charac-
teristics of Fur t ional prwrS mmirq

Consider the FORTH (outer) inter-
preter. Literally all that the interpreter
recognizsr are functims; or to be precise,
words thet denote functions.* The fund-
amental combining form is composition
where in FORTH “tog” would be expressed
as g f. Functiorm need not incorporate
data, do not M~IW their arguments, and
require no rubrtitutlm rule8 f a parameter
paaaing. There are no assiqwnent rtate-
mmts and a new function is built from
simpler previously defined functions. It is
this style of programming in FORTH-so
different then that of cmventimal Ianq-
uages--that provides a power and flex-
ibility that ha8 sparked the enthusiam of
m many of us.

Summary

This very rhort summary of the article
by John Back- doer not begin to do
justice to either the scope or depth of the
paper.

The “new“ type of programming has
generated considerable interest within the
computing commulity md most particu-

larly among tho6e interested in innovative
approaches to computer architectures. It
is this authorb contention that FORTH is
a functional programming language which
closely resemble8 the approach wggested
by John Backus in his definitive paper. It
wil l be interesting to aee if, 08 a rewlt of
this paper, lanquager which have attri-
butes similar to FORTH begin to appar in
academic circles. -

The author has recently implemmted
such an operator in FORTH.

** Thc way that literals are handled can
be viewed aa merely a question of im-
plementation and efficiency.

References

1. J. Backus, “Can Programming be
Liberated from the Van Mumann
Style?” CACM, VoL 21, No. 8, August
1978, p. 613.

FORTHAN~AR~C~ALLDNCXIISTICS

Raymond Weisling
Surakarta, h w a Tengah

Repubilk Indonesia

There has not been much raid about
the linguistic nature of computer
langruger, principally because m few of
them permit the dewlopmant of syntax
Str~Cture8 that s p p a r h humm language,
and hence foster lingulstic observation.
FMiTH and i t s other thma&d-co& rela-
t ivm allow for such structure8 to be
developed, principally h a u m of the
lopger body of word8 that .rim from its
ex tw ib i l l t y and hierarchal function of
operatom.

The point I wiah to addmr here is the
syntactical limitatiom of the Irmguage we
are building, m artificial language based
in put on e human I.nquage (English) that

developed. &It them i8 a fundamental
weaknam in this hglln which I think we
must be warn of, since it rww counter to
the philosophy of FORTH. This is the syn-
t a x - d t i v i t y of word f m , eopecially
mum and verbs, which in Englirh are
commonly 8petlled end ptunounced exactly
the name. We rely m the structure (word-
order, partly) to distinquish Chore often
unrelated words.

A few eramplar are in order. Comider
the possible function .of tha# FORTH
words, both with respect to Lhair current
use (some are nouw while othen are
verb), but also in their opposite hypothet-
ical use: BUFFER , FENCE , KEY ,
LIMIT , LOOP , SPACE ,,TYPE , etc.
Othen which a programmer might wish to
urn in developing opplicatims might
include: OFFSET , SPAN ,INSERT ,

i8 widely l m d wherever tschmlopy has

FILE ,CATALOG , OUTWT . Since the
action of theae words is not known from
the word itself, but only from either prr-
viws agreement of syntax, and since syn-
t.x sensitivity is not a common part of
FORTH (i.e., where a syntactical form
does not alter the way in which a word is
compiled), some degree of confusion can
result.

Furthermore, use of a word in only one
form rules out i t s use in another form, ex-
cept where it can reside in a different vo-
cabulary. Thus words like KEY , LOOP ,
BLANK , and TYPE (all FORTH verbs)
cannot function as nouns despite our
temptation to use them that way for their
inherent (English language-based) clarity.
The same is true of some of the FORTH
nouns like BLOCK , BUFFER , STATE ,
LIMIT , and BASE .

Thus it is not possible to know the
nature of the word from its name alone.
Would prefixes for verbs unnecessarily
clutter the language? Would some preflx
or suffix to differentiate constants from
variables be useful? Or should we leave it
alone. The TO and FROM words help clar-
ify things but are not without problems,
whereas : and @ are perfectly uniform in
function. Could a FORTH-like languaq~
be built that allows the word-type to be-
come part of the header, with the com-
piler choosing which form of the same-
named word to use based on i t s syntactical
position, like nouns (variables, constants,
arrays) being objects of TO and FROM ’
Or does this push us back into the horrible
me= of artificial syntax forms such as
algebraic notation (something we are per-
haps proud to have departed from)?

I offer no solution per se. I only wish
to point out a weakness that we all should
be sensitive to when we assign names to
our words. Since FORTH is s t i l l in evo-
lutim, this i s yet another aspect to con-
sider when standards are defined. 1 wish
to disclaim any implication that I am a
linguist of any sort other than Armchalr
Linguist. M y sensitivity to this IS a result
of living in a different culture where I am
learning a human language that permits
far greater fluidity of structure due to the
inharent differences in nouns and verbs,
shown by a well codified system of pre-
fixes and euffixes (morphemological dif-
ferentiators). Those here who learn
English struggle with the structural dif-
ferentiation of all the parts of speech
while our morpheme differentiators are
used for relatively useless things like verb
conjugation, plurality, cases, and tenses
(which are 011 essentially absent in this
part of the world). As technology spreads,
m artificial language for man-machine
manipulatim (a two way street) should be
more universally based, at least with re-
spect to linguistic modeling. As FORTH is
already in use in many parts of the world,
the channel for feedback is already open.

p e 1% FORTH DIMENSIONS Inl5

FORTH S T M A R D S CORNER
Robert L. Smith

fIg-FORTH). Fht, wo b f l ~ I dlgitr Control and Data Acquisition". IEEE
Journal of Quantum Electronics, V O ~

V ~ ~ ~ : I E E E , September, 1981.
QE-17 No. 9. NSW Ymk, NSW

Vom Words on WORD
A digit b MY one of a aet of AX IS

In my last column, I discumed WORD.
! neglected to mention an important topic
relating to the implementations of WORD
which may influence tranqortabllity.
'rior to the 79-Standard, the execution of
NORD caused the string from the input
Tedium to be moved to the dict imary
area, starting at HERE with the character
count. Some imDlementerr would be

charrct i ra which-reprerent numeric vaiws 4.
in the range from 0 to bare-1. For buer
greater than decimal 10, the set of c h u -
actera is 0 ... 9 A 8 C ... whom the m-
cendlng ASCII wqwnce Is u d for A end
above.

Next., wo add to the original definition of
number as followr?

5.

-----. Towards More Umble
Syrtems: The LSRAD R aport.
narae Swtems Reoulremenb for . .. -.
Appl?cati& Development). Chicago:
Share, Inc, 1979.

-----. IEEE Standard 585-1975.
New York: IEEE, 1975.

rempted to define the 79-Standard WORD 6. -----. 1977 Laboratory for Larsr
'?om the older WORD in a manner some- Energetic8 Annual Report.
what like this: number Rocheater, W : Laboratory for

Laser Energeticr, 1978.
: W O R D WORD HERE : A number ir reo remted in the inwt

3ther implementen would probably put
:?e string elsewhere. Now suppme that
:% user wished to reverse the character
r:ring and emplace the modified string in
:T dictionary. The result from the for-
-er implementer's system will not be a8
expected, and wil l not result in "equiva-
ent execution" on the later implementer's

!rstem. A similar but much less serious
:-oblem occurs with PAD. PAD is
-mventionaliy offset from HERE by a
' r e d amount (68 bytes in fig-FORTH).
-?ere are at least three different soh-
: ms:

(1) Implementations which place the
string at HERE could be con-
sidered non-standard, and the
problem goes away.

(2) A clarification could be added to
the Standard indicating either that
the string wil l always be at HERE,
or that it may be at HERE.

(3) The problem could be forced upon
users by requiring that the char-
acters from WORD be stored in a
user-defined area prior to their
movement to the final destination.

-e t Me Number the Ways

In many areas the 79-Standard defines
n i t s and formats in painful detail. There

5 an important area in which very l i t t le is
said, namely the format for single and
rouble precision numbers in the input
::ream. In the section "interpreter, text"
: is clear that "numbers" are allowed in
:w irput text stream end may either be
zwnpiled or placed on the parameter
r:ack. A definition of the format of a
umber should include at a minimum the
I stinction between double and single pre-
:.ston, the sign of the number, and the set
:' allowed characters from which the
-umber is constructed. In keeping with
:Te spirit of the rest of the Standard, I
-odd like to propose a few definitions
-7ich should be fairly easy to implement
ad which appear to be compatible wi th
l o s t current implementations (including

rtream a8 a word compwed of a mq&e
of one or more digits with a leading AX11
minur (4 if the number is negative end a
trailing ASCII dot (.I i f the valw ir t o be
considered double precision.

I recommend that implementera allow
the above format, and that authom o f
tranrportable programs adhere to the
same format. In any cars, when the Stan-
dards Team meets again, they should car-
tainly clarify this area.

Under the Spreadinq FIG-TREE

As many of you are aware, there is a
Computer Conference Tree (now nick-
named the FIG-TREE) which contaim
items of interest to the FORTH com-
munity. I would l ike to encourage all
persons interested in the 73-Standard to
read and contribute to the branch of the
FIG-TREE called 79-STANDARD. A l l you
need is a terminal (110 or 500 baud), a
modem, and a telephone. The number is
(415) 538-3580. See back issues of FORTH
DIMENSIONS for further information, or
just call up and send a few carriage
returns until the system reaponda.

7. Moore, Charles. "Forth: A New
Way to Program Minicoimputen"
Journal of Astronomy and Astro-
phydcr Supplement E. New York:
AAAS, September, 1974.

8. Moore, Charles. "Forth, The Part
Ten Yeam. and the Next Two
Weeks". Forth Dimenrims. Vol. 16
Sm Carl-, CA: Forth Interest
Group, 1979.

9. Rather. Elizabeth and Charles
Moore. "The FORTH Approach to
Operating Syrtems". ACM 76 Pro-
ceedings. New York: ACM,
October, 1976.

10. Ritchie, D. M. and K. Thompwn.
"The UNIX Time-sharing System".
The Bell System Technical Journal.
Vol. 2 No. 6 Part 2. New Provi-
dence, NJ: A.T. and T., July-August,
1978.

11. Ritchie, D. M., e t al. "The C Pro-
gramming Language'(. The Bell Sys-
tem Technical Journal. Vol 57 No. 6
Part 2. New Providence, NT A.T.
and T., July-August, 1978.

Change: FDII1/4, pg. 118, para 3 to:
The TO concept y a s developed by
Or. Paul Rartholdi as an alternative
to constants and variables.

CORRECTMNS

Add to: FO IU/4, pg. 102 the following:

REFERENCES

1. Fomley, Lawrence P. The Beta
Laser Control Sydem. A talk given
at the Laboratory for Larer Energet-
ics on March 9, 1977 and on July 16,
1977 at the Wilson Synchrotron,
Cornell University.

2. Fomley, Lawrence P. "Forth Multi-
tasking in URTH'. The Best of the September, 1981 edition of Eiectronics
Computer Faires Volume E. San And Computing Monthly. Feature article
Francisco: 1979. was FORTH, "The Lanouaw of the Eiqht-

3. Boles, J. A., Pewel, D. and L. P.
Fomley. "Omega Automated Larer

EDITOR'S NOTE:

Peter Bmgtson of DATATRONIC AB in
Stockholm. Sweden sent us a CODV of the

iw" in which FIG is mentioned prominent-
ly. More confirmation we are al l riding
the crest!

?RTH DIMENSIONS In l5 Page 159

TEcHWm BUGS A)*(D FIXES

I have three questions about FORTH:

(3. I know of two CP/M FORTH, that have
their own way of dealing with the BIOS
and BOOS and as a result cannot read each
other's screem. What I'm leading to i s
this: CP/M M d fig-FORTH are both sup-
posed to be machine independent systems
but cannot read each other's source code
files. CP/M figgers ought to get together
on this one.

A. Differences between disk organizations
are sector skewing and location. It is easy
to add definitions to a FORTH which uses
BIOS ao it can read other organizations; it
is not possible the other direction.

2. When selecting a new drive, you need
to do a COLD start or you'll remain on the
last drive--this is only true i f you are
accessing the same screen number. I f you
leave an empty line between two defini-
tions on the screen, a LOAD wi l l stop
loading at the empty line. Are these
FORTH conventionr, I haven't heard about
yet or are they peculiar to my Timin
FORTH?

A. Both of these are bugti-demand fixes
from Timin.

3. Somehod?), I've been leaving a lo t of
control characten behind when using the
editor. They don't show up on a acreen lirt
but they sure ruin any attempt at loading
the acreen. I am not wre if thir is a
common problem but I have enclowd a
short routine to replace control charaters
with spaces for any- else who har this
problem.

SCREEN 95
(HUNT FOR CONTROL CHARACTERS)
: HUNT (SCREEN # --)

BLOCK
1024 0 DO W P C@ O W 32 <

IF CR ."t" 64 + EMIT
2' @ :" Dup u. ELSE DROP

ENOIF I+ LOOP DROP ;
: FIXSCREEN (SCREEN # ---)

BLOCK
1024 0 00 W C@ 32 < IF

OW, 32 SWAP C! E W F
1+ LOOP DROP ;

(ACTUALLY W T AND FIXSCREEN
ARE QUITE SIMILAR, HUNT JUST

SHOWS UP ANY GUILTY CHARACTERS
AND FIXSCREEN REPLACES THEM)

A. Don't know. May be an editor bug or
the way you are using it. If you add a line
with #P followed immediately by a car-
riage return in the f ig editor, a null is
introduced into the l ine which s t w com-
piling. (editor f ix &odd be supplied)

THAT MYSTOUOU6 fig-FoRTH
AMNESIA

Many fig-FORTH users have probably
noticed the curious phenomenon I refer to
as "amnesia" in their computers, and those
who understand the method of the fig-
FORTH dictionary search, no doubt under-
stand i t as well. It is an amusing, often
perplexing, but usually useful property
peculiar to fig-FORTH dictionaries.

Because names in fig-FORTH may
have variable length, the distance between
the start of the name and the link to the
next name in the dictionary is also vari-
able. Because the width (number of char-
acters saved) i s also allowed to be less
than the actual number of characters in
the name, one cannot rely on the count to
provide the addreas of the link-field, given
the address of the name-field. This is why
the fig-FORTH compiler automatically
sets the most significant b i t of the first
character and the last character in every
name. By this device, one can scan a
name forward or backward by looking for
this bit.

In a dictionary search, the address in
the l ink-field is followed to the beginning
of the name-field o f the previous word. If
it is not a match to the key y w are look-
ing for, we scan forward in memory until
the most significant b i t tells us we have
found the link-field to the next word.
When a dictionary link is "broken" by clob-
bering RAM, an erroneous address is fol-
lowed, and the system is m id to "crash".

However, in fig-FORTH, the system
doea not always "die". In many cases, it is
merely "wounded", displaying a strange
kind of amnesia in which it has no recol-
lection o f recent definitions, but remem-
b e n with clarity i t s "childhood". What
happens is this: the broken link sends the
dictionary search o f f to a totally random
part o f memory (if you do not have 64K. it
may address RAM where there are no
board& Since it is not likely t o find a
match a t this address, it scans forward for
the most significant b i t that marks the
end of the "name". The o& are that it
w i l l eventually f ind one, mistake the next
two bytes for a link, and follow another
wild addrew somewhare else.

Now, depending on how much of your
memory is f i l led with dictionary, and de-
pending on what is in your unused RAM,
the odds are not bad that after bouncing
aimlessly a rwnd for awhile, the search
may land in the middle of a valid name.
One doea not expect a match to compare
with the middle of a name, but the search
then scans for the most significant bit,
fin& a valid link, and gets back into the
dictionary. What the "amnesia" has ac-
tually forgotten, then, is everything be-
tween the broken link and the point where
the search re-enters the dictionary.

If your used RAM is large in compar-
ison to FORTH, you are likely to find most
of FORTH st i l l available as a kind of crip-
pled monitor to help you find out what
went wrong without re-booting the system
(which destroys the damage). Further-
more, since you now know the cause of
this illness, you can exploit it to your ad-
vantage. Simply modify your boot-up
RAM-check routine so that i t leaves a
pattern in your unused RAM, such that no
matter how it is viewed, it wi l l appear t o
be an address somewhere in the middle of
a name-field, somewhere near the top of
your basic FORTH and utilities. You wil l
now find, to your delight, that when you
"crash", you usually have your most
powerful tools st i l l at your disposal.

Users of FORTH, Inc. Micro-FORTH
are not likely to observe this phenomenon.
Because names are always exactly four
characters long, the link field does not
have to be scanned for; instead, it is found
by simple arithmetic. In order to re-enter
the dictionary, one must land by chance on
the exact beginning of a name-field.
Much more likely than this, is that the
search w i l l enter a loop in which it goes
again to an address it has already visited,
and get caught forever. Remember that
the addresses found are by no means ran-
dom. A l l you have to do is cover the most
common ones.

Steve Munson
8071 E. 7th Street, I l l&
Buena Park, CA 90621

TRANSDENT DEFINITIONS

These uti l i i tes allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) in the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area" which must be above the
end of the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to i t s normal
location. Now the application program is
compiled and the temporary definitions
are removed with the word DISWSE.
DISPOSE wi l l take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
all words above the dictionary pointer.

NOTE: These words are written in
MicroMotion's FORTH-79 but some
non-79-Standard words are used. The
non-Standard words have the fig-
FORTH definitions.

Philip Wasson

Page 140 FORTH DIMENSIONS IU/5

MOREWOWXABUJTWORD

Robert D. Vlllwock
Mlcrosyrtems, Inc.

In analyzing or proposing changes to
any Standard definition, it is very impor-
tant to concentrate on the details of the
needed function and to avoid any precon-
ceived notion of internal implementation
details, unless, of course, the two are in-
separable. If this is not done, we can
severely and unnecemarily constrain
future implementors from doing their best
possible job, or, worse yet, find them a-
voiding the Standard entirely.

A good case in point is the word
WORD. Since most FORTH implementors
have favored using the "free space" above
the dictionary to store tokens extracted
3y WORD, and further since their exper-
ience seems to be centered around small
t o medium sized application programs, it
IS tacit ly assumed that this free space is
arbitrarily large. In addition to storing
tokens at HERE, PAD is usually also de-
fined to float above the dictionary in this
"unbounded" free space. Therefore,
whether WORD handles tokens of length
128, 256 or even 1024 bytes is innocently
discussed with the idea that the only issue
involved is the length descriptor preceding
the string!

However, whether this token buff-er
and PAD float above HERE or are fixed
!mation buffers or some different scheme
is devised, they consume real memory and
are not really "free space". To illustrate,
suppose we assume the traditional imple-
Tentation for a moment and use HERE as
the start of the token buffer used by
'WORD. The PAD is then usually floated
a t a location equal to HERE plus some
constant. If WORD must nandle tokens as
long as 255 bytes, then PAD must be
floated at least 256 bytes above HERE to
prevent token extraction from corrupting
the contents of PAD. The 79-STANDARD
requires that PAD be able t o hold at least
54 bytes, so now we're at HERE-
3ytes.

I f one is compiling a large application
orogram, the dictionary wil l grow until
eventually HERE + '120 hits the peg
rvhether i t is a fixed boundary or the

3STACK bottom or whatever). When i t
does, no more compilation can take place
even though there is at least 320 bytes of

JnUsed dictionary lef t) without violating
fhe Standard. If you permit further com-
>ilation, the size of PAD begins to drop
below the minimum 64, which is not al-
:owed. Even if you start automatically
reducing the PAD offset so that it remains
fixed in size, the token buffer begins
shrinking and can no longer satisfy the 256
oyte string requirement.

I'm trying to illustrate that "free
space" is only "free" as long as a l l of

memory isn't needed. When memory fillr,
these "free space" bu f fen prevent code
from being compiled into their pace. The
floating buffer concept swmr to obocure
this fact more than If the token buffer and
the PAD were given fixed, dedicated areas
of memory.

If the token buffer must handle 1024
byte strings, the situation is even worw.
We then have to stop compiling whsn the
dictionary has over 1K byte8 of apace
left! Since most o f the time the tokens
extracted by WORD am very short (31
characters or leas), we pay a dear price to
be able to handle the occasional long
string, given that WORD must handle it,
and WORO is defined as at present.

I f you discard the notion that a more
or less unbounded "free space" exists
somewhere in memory, the approach to
WORD'S definition takes on a new facet.
A t Microsystems, we have developed
several large applications using FORTH,
which resulted in target compiled code In
the range of 32K to 48K bytes, exclusive
of the dictionary headers and the FORTH
operating sysem software. When appli-
cations become that large, there isn't even
room to hold all the names in memory at
one time (even if constrained to 3 char-
acters and length), l e t alone room to bum
for large "free space" b u f f e d Our im-
plementati which is called
proFORTH", handles this problem by
means of multiple dictionaries and
ROM/RAM segment control with selective
symbol purging. Names are classified as
to their needed lifetimes during com-
pilation. When the names am no longer
needed, they are purged and their memory
space is reclaimed. This allows much of
the memory devoted to dictionary headers
to be reused many times during com-
pilation, thereby enabling very large ap-
plications to be compiled.

The foregoing is not a commercial for
proFORTH, but rather i s intended to illus-
trate that the scope of usage to which
FORTH can be applied is very broad. In a
situation where you have multiple diction-
aries and are fighting for every byte of
memory available, thinking in terms of
storing unbounded tokens at HERE and
floating PADS of arbitrary length becomes
very incongruous. Admittedly, I've des-
cribed a somewhat extreme situation, but
it is not as rare as y w may think. Micro-
processor applications are getting more
ambitious every day and sooner or later
you wil l have a crowded memory
condition. I think FORTH should be able
to handle these situations gracefully,
without having to deviate from the
Standard.

When defining WORD, then, one ob-
jective should be to enable users to
extract arbitrarily long tokens from the
text stream but @ force the implementor
to provide an arbitrarily long memory

buffer to r c o m p l i i h it. Whlle thli m y
mund a l i t t le llke trying to %ave ywr
cake and eat It ban, a n t h a r dmple
factoring of WORD can easily accomplilh
it. To Ulurtrate my point, luppaao we
&vim a mom basic WORD called (WORD)
and define it a8 followor

I (WORD) (c -- a n 1 BLK 0 ? W P
I? BLOCK
ELSE T I 8 0
?WEN >IN 9 + SWAP ENCLOSE
>IN *I OVER - -ROT + SWAP I

where ENCLOSE i i defined a i in the FIG
g l a u r y md -ROT i o equivalent to ROT
ROT.

Thia new (WORD) extractr tha next
token from the text itream, delimited by
c, and leave8 Its addrem & length on the
stack. Actually, the token is msmly left
in tha input buffer (keyboard or diak) and a
pointer to it is given. Thw, no additional
or temporary buffer is mded. The user
may now do anythinp he (she) want# w i th
the string, including moving it to HERE i f
desired (and if it wil l fit).

For example, if you want to compile
the token a8 6 "dotquote" string, a deflni-
tion such as WORD, can be umd.

I WQ(D. (c -- 1
(WORD) HERE OVER 1+ ALLOT SWAP OVER CI
C W N T moa I

If you want a blank-filled line put in
PAD, the following could be u rd :

1 TEXT (c --) PAD C/L 2' BLANKS
(WORD) C/L WIN PAD Cl PAD

COVKP CWOVE I

Far the routine compilerlinterpreter
job of extracting m a i l (31 characters or
lea) tokens from the text stream, the fol-
lowing could be used:

t WORD I c -- a)

(UORD) WDSZ WIN WBFR CI IBFR C W l T 1*

M O V E WBFR I

where WBFR is a "small" word buffer
l imited to WDSZ + 2. Note that except
possibly for the *If-imposed size limi-
tation., the last definition satisfies the
79-STANDARD definition of WORD.

If you wi l l carefully examine these
comtruc l , you can quickly discover that
given (WORD) as the elementary form, the
user can extract tokens of any size, put
them wherever he wants, and format them
with or without the trailing delimiter, or
for that matter, the leading count byte (or
16 b i t word if you prefer:. In other words,
the user ought to be able to do essentially
anything that he may desire, but, the im-
plementor need not provide any special,
temporary buffers or arbitrary size just to

Page 141 'ORTH DIMENSIONS In/5

satisfy the Stnndard.

Using (WORD) aa the fundamental
token extractor allows implementon to
compile dot qwte strings, for example,
without the necd for any transitional buf-
fers (we WORD,). On the other hand, i f
dot quote strings are acquired by the
present form of WORD in the Standard,
then the token buffer must be at least as
large as the lmgest dot quote atring,
which is presently specified to be 127
characters.

One might argue that i f the buffer i s
at HERE, there is no penalty since that is
where the string must go anyway, and i f it
won't f i t it can't be compiled. However,
this line of reasoning is again limited by a
parochial view that all FORTH implemen-
tations must be alike. I f a system like
proFORTkf i a being used, the target defin-
ition body can optionally be compiled "in
place" separate from the dictionary
header. There may be room for the atring
in the target segment of memory but not
enough in the dictimary.

In conclusion, let me say that i f them
is sufficient memory, the user may
declare all the buffen he wants, but we
shwld rot require that there buffers be
preallocated by the implementor in order
to satisfy the Standard. Therefore, I aub-
mit that my definition of (WORD) is a
more fundamentally valuable function
than WORD (a0 currently defined in the
79-STAM)ARDJ from w h i d all othera
can be built without burning sometimes
precious memory space. There are a1-
ready enou@ buffen and auch required
(directly or indirectly) by the Standard.
Let's not arbitrarily insint m more by ac-
cidently defining words in wch a way as to
force an implementor to provide them.

I emphasize "possibly" because fortun-
ately the Standard ia not exdicit as to the
length of tokens that must'be handled by
WORD.

d

coRREcTloNToFmcT

Sorry you had tmuble with FEDIT. The
listing war retyped at FIG and wveral
typos creeped in. They are:

1. SCR 64 Line 10: compile should be

2. SCR 65 Line 23: l+/MOD -Id be 1+

3. SCR 67 Line 48: B/BUD -Id be

4. SCR 67 Line 49: :e shwld be : .€
5. SCR 67 Line 50: + A L N should be

+ALIN

You are perfectly right that yxlrce
text should be loadable. I talked to wme

COMPILE

16 /MOD

B/BW

of the people at FIG about thin and they
were acutely aware of the problem but
they are simply not set up t o directly
reproduce liatingr into FD at the present
time. They do the beat job they can with
the NSOUEOS available to them, and they
work darn hard at it. 1 can't fault them.

REPL i a a pseudonym for the Fig-
FORTH line editor definition, R . I used
the pseudonym becauw FEDIT was the
first program I wrote in FORTH end 1
really wun't familiar enough with Vocab-
ularies to comfortably UWI a word that was
already used in the FORTH vocabulary.

Let me know how it works for you I f
you would like a machine pmduced listing,
I could run one for you from my current
version.

Edgar H. Fey, Jr.
18 Calendar Court
La Grange, IL 60525

Here'. a short FORTH word of great
uti l i ty that 1 uw hav i l y in my SCNW. I
hope you like it. Its name ia CM, which
stands for "convert to decimal".

DECIMAL
: CVD

BASE @ SWAP
OVER /MOD
ROT /Moo
10 +
10 +

;

I like to work in hxidacimal, but often
make mistakea when using the words

lcrwn editor words beceure I'm thinking
in decimal when tho aystem'a in hex. I f 1
do the following:

LOAD, UST, M d m n y of the FORTH

:LIST CVDUST;

thm 130 UST lists EM 130 whether Pm
in decimal or hex. It alao worka far m y
other bea, an long 01 that base rccapb
the number.

Aa to how it works, a l i t t le work will
show that CVD aplib a threa-diqit number
into its respective digits (IE, 130 becomes
I, 3, and 0) and reaanemblw the diqib into
the number that ia, in decimal, the same
as the keys prsawd by the user.

Crew Williama
BYTE Publicationn
Po Box 372
Hancock,NH 03449

CALL FOR PAJXRS

1982 Rochester FORTH Conference
m

Data Bases and Process Control

May 17 through May 21, 1982

University of Rochester
Rochester, New Ywk

The second annual Rochester FORTH
Conference will be held in May, and will
be honted by the University of Rocheater's
Laboratory for Laaer Energetics. Thls
year's topics complement and extend the
work described at the 1981 FORML Con-
ference and the previwr Rochester Con-
ference. We believe that the areas of
data bases and process control can be
uniquely dealt with using FORTH.

Thare'is a call for papers m the fol-
lowing t o p i a

1. Data Baaen, including, but not lim-
ited Lo: hierarchical, network and
relatimal models; scientific use;
procem control; and commercial
systems.

Process Cmtrol, including, but not
limited to: multitasking, meta-
compilation, data acquisitim and
real time systems; video games.

2.

3. Related concepts of:
implementation, speed/space
tradeoffq user interactions; de-
upnar tools; and graphics.

Papers will be handled in either oral
wrima or poster rssions, although oral
papers wil l be refereed in accordance with
conference directim, paper quality and
topic. Plearc submit a 200 word abstract
by March 15, 1982. The oral papers dead-
lirm is April 15, 1982, and the poster
papers deadline is May 1, 1982. Send ab-
atrecta and papers to the conference
chairman, Lawrence Forsley, by those
d a b . Plea= keep papers to a maximum
of 10 printed pages. I f this restriction
causes a serious problem, contact us.

For more information, please contact
the conference chairman at:

Lawrence P. Forsley
Laboratory for Laser Energetics
University of Rochester
250 E a d River Road
Rochester, New York 14623

~ e g e 142 FORTH r 3 M 3 W O f U S llIl5 n

t

A FORTH
FOR TkE6502

by William F. Ragdale

INTRODUCTION

This article ahould further polarize tha
attitudes of thow outride the growing
community of FORTH userr. Some will be
fascinated by a label-less, macro-
assembler whose source code ir only 96
lines Ion$ Others wi l l be repelled by
reverw Poliah syntax and the absence o f
labels.

The author immodestly clalmr that thir
is the best FORTH assembler ever dir t r i -
buted. It is the only wch assembler that
detecb ail errors in op-code generation
and conditional structuring. It is releawd
to the public domain 80 a defenw mechan-
ism. Three good 6502 assemblers were
submitted to the FORTH Interest Group
but each had some lack. Rather than
merge and edit for publication, I chose to
publish mine with all the submitted fea-
tures plus several more.

Imagine having an assembler in 1300
bytes of object code with:

1. User macros (l ike IF, UNTIL,) de-
finable at any time.

2. Literal values expressed in any
numeric base, alterable at any
time.

3. Expressions using any resident
computation capability.

4. Nested control structures without
labels, with error control.

Assembler source itself in a port-
able high level language.

5 .

OVERVIEW

Forth is provided with a machine lang-
uage assembler to create execution pro-
cedures that would be time inefficient, if
written as colon-definitions. It is intended
that "code" be written similarly to high
level, for clarity of expression. Functions
may be written first in high-level, tested,
and then re-coded into assembly, with a
minimum of restructuring.

THE ASSEMBLY PROCESS

Code assembly just consists of inter-
preting with the ASSEMBLER vocabulary
as CONTEXT. Thus, each word in the in-
put stream will be matched according the
Forth practice of searching CONTEXT
f i r s t then CURRENT.

ASSEMBLER (now CONTEXT)
FORTH (chained to ASSEMBLER)
user'r (CURRENT If one exltd
FORTH (chained t o user's v o c d
t r y for l i teral number
else, do error abort

The above auqwnce ir the urual action
of Forth's text interpreter, which remain8
in control during aaembly.

During assembly of CODE definitiOn8,
Forth continuer interpretation of each
word encountered in the input rtream (not
in the compile mode). There wemb le r
wordr opacity operandr, address moder,
and op-coder. A t the conclurion of the
CODE dellnition a final error check veri-
fies correct completion by "unrmudging"
the definition'r name, to maka it available
for dictionary warcher.

RUN-TIME, ASSEMBLY-TIME

One murt be careful to understand at
what time a particular word definition
executes. During assembly, each as-
sembler word interpreted executes. Its
function at that instant is called ' awmb-
ling' or 'assembly-time'. This function
may involve op-code generation, addresa
celculation, mode selection, etc.

The later execution of the generated
code is called 'run-time'. This distinction
is particulary important with the condi-
tionals. A t assembly time eech such word
(i.e., IF, UNTIL, BEGIN, etc.! itself 'm'
to produce machine code which w i l l later
execute at what is labeled 'run-time' when
i t s named code definition is used.

AN EXAMPLE

A8 a practical example, hem's a simple
cal l to the system monitor, via the NMI
address vector (using the BRK opcode).

CODE MON (exit to monitor)
RRK, NEXT JMP, END-CODE

The word CODE i s f irst encountered,
and executed by Forth. CODE builds the
following name "MOM' into a dictionary
header and calls ASSEMBLER as the
CONTEXT vocabularly.

The 'V is next found in FORTH and
executed t o skip t i1 "),,. This method skips
over comments. Note that the name after
CODE and the "1'' after 'Y" must be on the
same text line.

OP-CODES

BRK, is next found. in the assembler as
the op-code. When BRK, executes, i t as-
sembles the byte value 00 into the dic-
tionary as the op-code for "break to moni-

1. The comma how8 the conclurion
of a logical grouping that would be
one line of classical m m b l y
wurce code.

2. "," compiles Into tha dictionary;
thur a comma impller the point at
which code 18 generated.

3. The ",' dirtinguilher op-codes
from posrible hex numbers ADC
and ADO.

NEXT

Forth executer your word d e f i n i t l m
under control of the addresa interpreter,
named NEXT. This ahort code routine
mover execution from one definition, t o
the next. A t the end of your code defini-
tion, you must return control to NEXT or
else to code which returns to NEXT.

RETURN OF CONTROL

Most 6502 systems can rewme execu-
tion after a break, since the monitor mves
the CPU register contents. Therefore, we
must return control to Forth after a
return from the monitor. NEXT is a con-
stant that specifies the machine address
of Forth's address interpreter (say
$0242). Here it is the operand for JMP,.
As JMP, executes, it assembles a machine
code jump to the address of NEXT from
the assembly time stack value.

SECURITY

Numerous tests are made within the
assembler for user errors:

1. Al l parameters used in CODE
definitions must be removed.

2. Conditionals must be properly
nested and paired.

Address modes and operands must
be allowable for the op-codes

These tests are accomplished by
checking the stack position (in CSP) at the
creation of the definition name and
comparing it with the position at ENO-
CODE. Legality of address modes and
operands is insured by means of a b i t mask
associated with each operand.

3.

Remember that i f an error occurs
during assembly, END-CODE never exe-
cutes. The result i s that the "smudged"
condition of the definition name remains
in the "smudged" condition and wi l l not be
found during dictionary searches.

The user should be aware that one
error not trapped i s referencing a defini-
tion in the wrong vocabitlary:

tor via 'INMI**.
i.e., O= of ASSEMRLER when you want

Many wemb le r words names end in O= of FORTH
",". The significance of this is:

PORTH DIMENSIONS 1/5 Page 143

(Editor's note: the listing assumes that
the figFORTH error memagas are already
available in the system, a8 follows:

?CSP ianues the error message "DEFI-
NITION NOT FINISHED" i f the stack
position differa from the valw saved in
the user variable CSP, which is wt at the
creation of teh definition name.

?PAIRS issues the error message
"CONDITIONALS NOT IMPAIRED'' i f i t 8
two arguments do not match.

3 ERROR prints the error message
"HAS INCORRECT ADDRESS MODE".)

SUMMARY
The object code of our example is:

305 983 4 0 4F CE CODE MON
305D 4D 30 link field
305F 61 30 code field
3061 00 BRK
3062 4C 42 02 JMP NEXT

OP-CODES, revisited

The bulk of the assembler conrirts of
dictionary entries for each op-code. The
6502 one mode op-codes are:

BRK, CLC, CLD, CLI, CLV,
DEX, OEY, INX, INY, NOP,
PHA, PHP, PLA, PLP, RTI,
RTS, SEC, SED, SEI, TAX,
TAV, TSX, TXS, TXA, TVA,

When any of these are executed, the
corresponding op-code byte i8 aanembled
into the dictionary.

The multi-mode op-codw are:

ADC, AND, CMP, EOR, LDA,
ORA, S8C, STA, ASL, DEC,
INC, LSR, ROL, ROR, STX,
CPX, CPY, LDX, LDV, STY,
JSR, JMP, BIT,

These usually take an operand, which
must already be on the rtack. An addrer
mode may also be Ipecified. If norm is
given, the op-cod um8 z-page or absolute
addressing. The addram modes are deter-
mined by:

Symbol Mode Operand

accumulator
immediate
indexed X

indexed Y

indexed indirect X
indirect indexed Y
indirect
memory

MWIO
8 bits only
z-page or
absolute
z-page or
absolute
z-page only
Z-ww only
abmlute only
Z P e g a or
abwlute

EXAMPLES
Here are examples of Forth vs. con-

ventional assembler. Note that the oper-
and comes firat, followed by any mode
modifier, and then the op-code
mnemonic. This makes best use of the
stack at assembly time. Also, each as-
wmbler word i8 met off by blanks, as is
required for all Forth source text.

.AROL. R D L A
~ ~ L D Y ; L D Y X ~

DATA .X STA. STA OATA,X
DATA ,Y CMP, CMP OATA,Y

6 X) ADC, ADC (06,X)
POINT)Y STA, STA (POINT),Y

VECTOR) JMP, JMP (VECTOR)

(.A distinguishes from hex number OA)

The words DATA and VECTOR specify
machine addresses. In the caw of "6)X
ADC," the operand memory address Moo6
was given directly. This is occasionally
done i f the umqe of a value doesn't justify
devoting the dictionary space to a symbol-
ic value.

6502 CONVENTIONS

Stack Addreaainq

The data stack is Located in z-page,
usually addressed by "Z-PAGE,X". The
stack starts near W E and grows down-
ward. The X index register is the data
stack pointer. Thus, incrementing X by
two removes a date stack value; docre-
manting X twice maker mom for one new
data dack value.

Sixteen bit values are placed on the
deck according to the 6502 convention;
the low byte is at low memory, with the
high byte following. Thir allows "indexed,
indirect X" directly off a stack valw.

The bottom and second stack values
are referenced often enough that, the wp-
port words BOT and SEC am included.
Using

BOTLDA, aswmblm LDA (0,x)and
SEC ADC, asembler AM= (2,X)

BOT leaves 0 on the stack and w ts the
addrew mode to ,X. SEC leaves 2 on the
stack alro wetting the address mode to ,X.

Here is a pictorial repmentation of
the stack in z-page.

O(K: high
sec low

bot high
bot low <=ex offset

~ abova Mow,

Hare is an examples of code to "or" to
the accumulator four byter on the deck:

BOT LDA, LDA(0.X)
BOT 1+ ORA, ORA (1,X)
SEC ORA, ORA(2,X)
SEC 1+ ORA, ORA (3,X)

To obtain the 14-th byte on the stack:
BOT 13 + LOA,

RETURN STACK

The Forth Return Stack is located in
the 6502 machine stack in Page 1. It
strrts at SolFE and builds downward. No
lower bound is set or checked as Page 1
has sufficient capacity for all (non--
recursive) applications.

By 6502 convention the CPU's register
points to the next free byte below the bot-
tom of the Return Stack. The byte order
follows the convention of low significance
byte at the lower address.

Return stack values may be obtained
by: PLA, PLA, which will pull the low
byte, then the high byte from the return
stack. To operate on aribitrary bytes, the
method iu

1) save X in XSAVE

2) execute TSX, to bring the S
register to X.

3) usa RP) to address the lowest
byte of the return stack. Offset
the value to address higher
bytes. (Address mode IS
automatically set to ,XJ

4) Restore X from XSAVE.

As an example, this definition non-
destructively tests that the second item
on the return stack (also the machine
rtack) is zero.

CODE IS-IT (zero ?)
XSAVE STX, TSX, (setup for
return stack)
RP) 2+ LDA, RP) 3 + ORA,
(or 2nd item's two bytes
together)

OZ IF, MY, THEN, (i f zero, bump
Y to one)

TYA, PHA,XSAVE LDX, (save
low byte, rstore data stack)

boolean)
PUSH JMP, END-CODE (P U ~

I Return Stack1

I

Page 144 FORTH DIMMSlONS

FORTH REGISTERS

Several Forth registers are available
only at the assembly level and have been
given names that return their memory ad-
dresses. These are:

IP address of the Interpretive
Pointer, specifying the next Forth
address which will be interpreted
by NEXT.

address of the pointer to the code
field of the dictionary definition
just interpreted by NEXT. W-1
contains S6C, the op-code for in-
direct jump. Therefore, jumping
to W-1 will indirectly jump via W
t o the machine code for the def-
inition.

UP User Pointer containing ad-
dress of the base of the user
area.

a uti l i ty area in z-page from
N-1 thru N+7.

W

N

CPU Registers

When Forth execution leaves NEXT to
execute a CODE definition, the following
conventions apply:

1. The Y index register is zero. It
may be freely used.

The X index register defines the
low byte of the bottom data stack
item relative to machine address
$0000.

The CPU stack pointer S points
one byte below the low byte of the
bottom return stack item. Exe-
cuting PLA, wil l pull this byte to
the accumulator.

4. The accumulator may be freely

2.

7.

used.

5. The processor is in the binary
mode and must be returned in that
mode.

XSAVE

XSAVE is a byte buffer in z-page, for
temporary storage of the X register.
Typical usage, with a call which will
change X, is:

CODE DEMO
XSAVE STX, USER'S JSR,
(which wil l change X)
XSAVE LDX, NEXT JMP,
END-CODE

N Area

When absolute memory registers are
required, use the 'N Area' in the b a e
page. These registers may be used as

pointers for indsxed/indirect mddreuing or
for temporary valuen. As an example of
use, see CMOVE in the system tOurc0
code.

The assembler word N returns the
base addreas (usually $0001). The N Area
spans 9 bytes, from N-1 thru N+7. Con-
ventionally, N-1 holds one byte and N,
N+2, N+4, N+6 are pairs which may hold
16-bit values. See SETUP for help on
moving values to the N Area.

It i s very important to note that many
Forth procedures use N. Thus, N may only
be used within a single code definition.
Never expect that a value will remain
there, outside a single definition!

CODEDEMO HEX
6 # LOA, N 1 - STA,

(setup a counter)

(tickle a port)
BEGIN, 8001 BIT,

N 1 - DEC,
(decrement the counter)

O= UNTIL, NEXT JMP, END-CODE
(loop till negative)

SETUP

Often we wish to move stack values to
the N area. The sub-routine SETUP has
been provided for this purpose. Upon en-
tering SETUP the accumulator specifies
the quantity of 16-bit stack values to be
moved to the N area. That is, A may
be 1, 2, 3, or 4 only:

3 # LDA, SETUP JSR,

stack before N after stack after
H hiah H
G lo; bot--> G-
F- F
E E
D- D-

sec--> C- c-
B B

bat--> A- N--> A-

CONTROL FLOW

Forth discards the uwal convention of
assembler labels. Instead, two replace-
ments are used. Fint, each Forth defini-
tion name is permanently includsd in the
dictionary. Thin allows procedures to be
located and executed by name at any time
as well as be compiled within other defini-
tions.

Secondly, within a code definition,
execution flow is controlled by label-leas
branching according to "structured pro-
gramming". This method is Identical to
the form used in colon-definitions. Branch
calculations are done at aasembly time by
temporary deck values placed by the con-

trol word=

BEGIN, UNTIL, IF, ELSE,
THEN,

Here again, the assembler words end
with a comma, to indicate that code i s
being produced and to clearly differen-
tiate from the high-level form.

One major difference occurs! High-
level flow is controlled by run-time
boolean values on the data stack. As-
sembly flow is instead controlled by pro-
cessor status bits. The programmer must
indicate which statua bit to test, just be-
fore a conditional branching word (IF,
and UNTIL,).

Examples are:

PORT LDA, O= IF, <a> THEN,
(read port, if equal to zero do <a>)

PORTLDA, O= NOTIF, <a> TMN,
(read port, i f not equal to zero
do <a>)

The conditional specifiers for 6502 are:

CS test carry set C = l in
processor

status
o< byte lass than zero N = l
O= equal to zero z:1
CS NOT test carry clear C=O
0 <NOT test positive N=O
O= NOT test not equal zero 2-0

The overflow status bit is so rarely
used, that it is not included. I f it i s
desired, compile:

ASSEMBLER DEFINITIONS HEX
50 CONSTANT VS (test overflow
set)

CONDITIONAL LOOPING

A conditional loop is formed at as-
sembler level by placing the portion to be
repeated between BEGIN, and UNTIL,:

6 # LDA, N STA,
(define loop counter in N)

(repeated action)

(N reaches zero)

F in t , the byte at address N is loaded
with the value 6. The beginning of the
loop is marked (at assembly time) by
BEGIN,. Memory at PORT is decrement-
ed, then the loop counter in N is decre-
mented. Of course, the CPU updates i t s
statua register as N is decremented.
Finally, a test for Z=1 i s made; i f N hasn't
reached zero, execution returns to
BEGIN,. When N reaches zero (after exe-
cuting PORT DEC, 6 times) execution
continues ahead after UNTIL,. Note that

BEGIN, PORT DEC,

N DEC, O= UNTIL,

: Page 14s

BEGIN, generates no machine code, but i s
only an assembly time locator.

CONDITIONAL EXECUTION

Paths of execution may be chosen at
assembly in a similar fashion and done in
colon-definitions. In this case, the branch
IS chosen based on a processor status con-
dition code.

PORT LDA, O= IF, (for zero set)
THEN, (continuing code)

In this example, the accumulator is
loaded from PORT. The zero status is
tested if set (Z=l) . If so, the code (for
zero set) is executed. Whether the zero
status IS set or not, execution will resume
a t THEN,.

The conditional branching also allows a
specific action for the false case. Here
we see the addition of the ELSE, part.

PORT LDA. O= IF, < for zero seD
ELSE, <for zero clear>
THEN, <continuing code>

The test of PORT will select me of
two execution paths, before resuming
execution after THEN,. The next
example increments N baaed on bit 0 7 of
a port:

PORT LDA, (fetch M e byte)
CK IF, N OEC, (if 07=1, decrement

N)
ELSE, N INC, (if 0 7 4 , increment

N)
THEN, (continw ahead)

CONDITIONAL NESTING

Conditionals may be nested, according
to the conventions of structured pro-
gramming. That is, each conditional se-
quence begun (IF, BEGIN,) must be ter-
minated (THEN, UNTIL,) before the next
earlier conditional is terminated. An
ELSE, must pair with the immediately
preceding IF,.

BEGIN, < code always executed)
CS IF. <code if c a m r e 0

ELSE, <code' if carry clear>
THEN,

03 NOT UNTIL, (loop till condition
flag is m z e r o)

<code that continues o n w d

Next is m error that the assembler
security will reveal.

BEGIN, PORT LDA,
O:%, BOTINC,

0 . UNTIL, ENDIF,

The UNTIL, will not complete the
pending BEGIN, since the immediately
preceding IF, is not completed. An error
trap will occur at UNTIL, saying "condi-
tionals not paired".

RETURN OF CONTROL, revisited FOOLING SECURITY

When concluding a code definition,
several common stack manipulstim often
are needed. Thew functions vb already
in the nucleus, 00 we may share their use
just by knowing their return points. Each
of these returns control to NEXT.

POP POPTWO remove one 16-bit rUck
values.

WPTWO remove two 16-bit stack
valuea.

PUSH add two bytes to the data
stack.

PUT write two bytes to the
data rtack, over the
prarent bottom of the
stack.

Our next example camplemsnts a byte
in memory. The bytes' addrer is on the
stack when INVERT is executed.

CODE INVERT (a memory byte) HEX
(fetch byte addreued
by stack)

FF R EOR, (complementaccumu-
lator)

BOT X) STA, (replace in memory
POP JMP, END-CDDE (discard

pointer. fmm stack,
return to NEXT 1

BOT X) LDA,

A new stack value may mwlt fmm a
code definition. Wa could program placing

CODE ONE (pu t 1 on the stack)

it m tb st8ck by:

DEX, DEX, (make room on the

1 # LDA, BOT STA, (store low byte)
BOT I+ STY, (hi byte rtomd from Y

NEXT JMP, END-CODE

data stack)

since = zero)

A simpler version could wa PUSH:

COOE ONE
1 # LDA, PHA, (push low byte to
mechine stack)
TYA, PUSH JMP, (high byte to
accumulator, puh to dab stack)
END-CODE

Occasionally we wish to generate
unstructured code. To accomplish this, we
can control the euembly time security
checks, to our purpoae. First, we must
note the parameters utilized by the
control structurer at assembly time. The
notation below is taken from the as-
sembler glorary. The --- indicate3 as-
sembly time execution, and separate input
rtack values from the output stack values
of the worda execution.

BEGIN, =P --- addr8 1
UNTIL, ==> addre 1 cc ---
IF, ==> cc --- addrl 2
ELSE, =3 addrl 2 --- addrE 2
THEN, =d addrI 2 ---

or addrE 2 ---

The address values indicate the
machine location of the corresponding
'B'EGIN, 'IF, or 'E'LSE,. cc represents the
condition code to cslect the processor
status bit referenced. The digit 1 or 2 i s
tested for conditional pairing.

Tho general method of security control
i s to drop off the check digit and manipu-
late the addreaaes at assembly time. The
aecurity against erron i s less, but the pro-
grammer is usually paying intense atten-
tion to detail during this effort.

To generate the equivalent of the high
level:

BEGIN <a> WHILE REPEAT

we write in assembly:

BEGW, OROP (the check digit
1, leaving add&

<a>
(leaves addrl and digit

2,

CS IF,

ROT (bring addrB t o bottom)
JMP, (to addrB of BEGIN,

ENDIF, (complete false for-
ward branch from IF,)

The convention for PUSH and PUT is: I t is essential to write the assembly
1. push the low byte onto the time stack on paper, and run through the

assembly steps, to be sure that the check
2. leave the high byte in the digit. are droppad and re-inserted at the

correct points and addresses are correctly
available. 3.

ASSEMBLER GLOSSARY

m r h i n e stack.

accumulator.
jump to PUSH or PUT.

PUSH wil l place tho two bytes as the
new bottom of the data stack. PUT wil l
over-wite the present bottom of the I Specify 'immediate' addressing

mode for the next op-code gener- stack with the two bytea Failure to push
ated. exactly one byte on the machine stack wil l

disrlqt execution upon wage!
)Y Specify 'indirect indexed Y' ad-

dressing mode for the next op-
code generated.

p.ge - 146 FORTH OlMENSloNs IU/S n

Spoclfy h lexed X' addraring
mode f a the next op-codr gener-
ated.

Specify Wdexed V addrewing
mode f a the next op-code goner-
rtad.

Speclty accumulator addrewing
mode for the next op-codo gener-
ated.

Specify that the immediately fol-
lowing cond i t im l will branch
bared on the procerror otrtur b i t
being negative (2.11, i.e., lea
tha zero. The flag cc is left at
aowmbly time; there is no run--
time effect on the stack.

-- cc (essembling)

- cc (uembling)

Specify that the immediately fol-
lowing conditional will branch
baaed on the processor status bit
being equal to zero (Z=l) . The
flog cc is left at assembly time;
there is no run-time effect on the
stack.

;CODE b e d to conclude a colon-defini-
tion in the form:

: <name>. . . ;CODE
<assembly code> END-CODE

Stop compilation and terminate a
new defining word <name> . Set
the CONTEXT vocabulary to AS-
SE MBLER, aacmbling to machine
code the following nrnmonics. An
exirting defining word must exist
in name prior to ;CODE.

When <name> later executes in
the form:

thc definition <name* wil l be
created with ito execution pmced-
ure given by the machine code fol-
lowing <name> . That is, when
<namex> is executed, the address
interpreter jumps to the code fol-
lowing ;CODE in <name> .

Make ASSEMBLER the CON-
TEXT vocabulary. I t will be
searched first when the input
stream in interpreted.

<name> <name*

ASSEMBLER in FORTH

BEGIN, ---addr 1 (aosembling)
I- (run- t i me)

Dccun in a CODE definition in
the form:

At run-time, BEGIN, marks the
rtart of an aooembly oequence re-
peatedly executed. It oerveo ar
the return point for the comer-
pondinq UNTIL,. When reaching
UNTIL, a branch to BEGIN, will
occur if the procerror statur b i t
given by cc ir falm; otherwire

BEGIN, . . . cc UNTIL,

exocutlon contlnrnr *ad.

A t mwmbly time, BfGIN, Ieaver
the dictionary pointer addran
ad& and thm value 1 for later
tosting of conditlanuy pairing by
UNTIL,.

BOT --- n (uwmbllnp)
Uoed b r i n g code aaembly In the
form:

SOT LDA, or B O T l + X) STA,

Addrema the bottom of the data
dack (containing the low byte) by
wlectlng tho ,X mode and leaving
04, at uoembly time. Thlr valw
of n may be modified to another
byte o f fw t into the data dack.
Mutt be followed by a multi-mode
op-code mnemonic.

a3oE A defining word w e d in the form:

corn <M&. . . . W - C D D E

to create a dictionary entry for
<MW in the CURRENT vocabu-
lary. Name% code field containr
the address of itr parameter
f ie ld When <M& ir later
executed, the mrh ine code in this
parameter field wil l execute.
The CONTEXT vocebulary is
made ASEMBLER, to make
available the op-code mnemonico.

An maembler defining word urcd
to crate arambler mnemonics
Chat have only one addressing
mode:

CPU n --- (compiling armblcr)

EA CPU W ,

CPU createo the work NOP, with
its op-code EA a0 a parameter.
When NOP, later executes, it
aucmbles EA as a one byte op-
code.

cs --- cc (eoaembling)
Specify that the immediately fol-
lowing conditiarcrl will branch
bored on the. proceaor carry is set
(C=l). Thc flag cc is left at as-
iembly time; there i s no run-time
effect on the stack.

ELSE, -- (run-time)
addrl 2 --- addr2 2

O c w n wlthin a code definition in
the form:

(aacmblinq)

cc IF, <truepart) ELSE,
< f a l r part) THEN,

At W-tim, If tb condition CO&
qmcified by cc ir fdoe, execu-
tion Will Jtip to the. machine code
following ELSE,. At aowmbly
time ELSE, msemblw a forward
jump to jud after THEN, and re-

rolver r pending forwerd branch
from IF. The velwr 2 are u e d for
error checking of conditional pair-
lng.

EMECODE
An error check word marking the
end of a CODE definition. Suc-
cenful execution to and including
END-CODE will unemudge the
moot recent CURRENT vocabu-
lary definition, making it available
for execution. END-CODE a100
exit8 the ASSEMBLER making
CONTEXT the same as
CURRENT. This word previously
war named C;

F, cc - - - addr 2 (aooembly

_ _ - addr 2 (assembly-
time)

time)

Occurs within a code definition in
the form:

cc IF, <true part) ELSE,
false part THEN,

At run time, IF, branches based on
the condition code cc, (W or O=
or CS). I f the specified proceooor
status i s true, execution continues
ahead, otherwise branching occurs
to just after ELSE, (or THEN,
when ELSE, is not present). At
ELSE, execution rewmes at the
corresponding THEN,.

When assembling, IF, creates an
unreoolved forward branch based
on the condition code cc, and
leaves addr and 2 for resolution
of the branch by the correponding
ELSE, or THEN,. Conditionals
may be nested.

NO€X --- addr (arsembling)
An array used within the auem-
bier, which holds bit patterns of
allowable addressing modes.

--- addr (assembling) IP
VIed in a code definition in the
form:

IP STA, or IP)Y LDA,

A constant which leaves a t as-
oembly time the address of the
pointer to the next FORTH ex+
cution address in a colon-defini-
tion to be interpreted.

At run-time, NEXT moves IP
ahead within a colon-definition.
Therefore, IP points just after the
execution address being inter-
preted. I f an in-line data struc-
ture has been compiled h., a
character strinc', indexing ahead
by IP can acceos this data:

IP STA, or 1P)Y LDA,

TH DIMWSIWS m/S Page 147

loads the third byte ahead in the
colon-definition being interpreted.

n l n2 --- (compiling assembler)
An assembler defining word used
to create assembler mnemonics
that have multiple address modes:

M / C W

1C6E 60 M/CU ADC,

M/CPU creates the word ADC,
with two parameters. When
ADC, later executes, i t uses
these parameters, along with
stack values and the contents of
MODE to calculate and assemble
the correct op-code and operand.

MEM Used within the assembler to set
MODE to the default value for
direct memory addressing, z-page.

MODE --- addr
A variable used within the
assembler, which holds a flag
indicating the addressing mode of
the op-cock being generated.

N

NEXT

NOT

W P

--- addr (assembling)
Used in a code definition in the
form:

N 1 - STA, or N 2+)Y
ADC,

A constant which leaves the ad-
dress of a 9 byte workspan in z-
page. Within a single code dcfini-
tion, free use may be made over
the range N-1 thru -7. See
SETUP.

-- addr (assembling)
A constant which leave8 the
machine addreg of the Forth ad-
drew interpreter. Al l code defini-
tions must return execution to
NEXT, or code that returns to
NEXT (i.e., PUSH, PUT, WP,
WPTWO).

c c l -- c c l (asrembly-time)
When asembling, reverse the con-
dition code for the following con-
ditional. For example:

O= NOT IF, <true par0 THEN,

wil l branch based on 'not equal to
zero'.

_-- addr (assembling)
n _ _ _ (run-time)

A constant which leaves (during
assembly) the machine address of
the return point which, at run-
time, will pop a 16-bit value from
the data stack and continue inter-
pretation.

PDPTWO
--- eddr (assembling)

n l n2 --- (run-time)
A constant which leaves (during
assembly) the machine addreso of
the return point which, a t run-
time, will pop two 16-bit values
from the data stack and continue
interpretation.

PUSH --- addr (assembling) --- n (run-time)
A constant which leaves (during
assembly) the machine addrew of
the return point which, at run--
time, will add the accumulator (as
high-byte) and the bottom
machine stack byte (as low-byte)
to the data stack.

PUT --- addr (assembling)
n l --- n2 (run-time)

A constant which leaves (during
assembly) the machine addrean of
the return point which, at run-
time, w i l l write the accumulator
(as high-byte) and the bottom
machine stack byte (as low-byte)
over the existing data stack 16-bit
value (nl).

RP) -- (asaembty-time)
b e d in a code definition in the
form:

RP) LDA, or RP) 3+ STA,

Address the bottom byte of the
return stack (containing the low
byte) by selecting the ,X mode and
leaving n=$101. n may be modi-
fied to another byte offset. Be-
fore operating on the return stack
the X register must be saved in
XSAVE and TSX, be executed; be-
fore returning to NEXT, the X
register must be restored.

SEC --n (assembling)
Identical to BOT, except that
n=2. Addregles the low byte of
the sacond 16-bit data stack value
(third byte on the data stack).

THEN, --- (run-time)
addr 2 --- (awembly-time)

&cum in a code definition in the
form:

cc IF, <true part> ELSE,
<false par0 THEN,

At run-time THEN, marks the
conclusion of a conditional struc-
ture. Execution of either the true
part or false part r e m e a fol-
lowing THEN,. When assembling
ad& and 2 are wad to resolve the
pending forward branch to THEN,.

UNTIL, --- (run-time)
addr 1 cc --- (assembling)

Occurs in a CODE definition in
the form:

BEGIN, . . . cc UNTIL,

At run-time, UNTIL, controls the
conditional branching back to
BEGIN,. I f the processor status
b i t specified by cc is false, exe-
cution returns t o BEGIN,; other-
wise execution continues ahead.

At assembly time, UNTIL, as-
sembles a conditional relative
branch to addr based on the condi-
tion code CC. The number 1 is
wad for error checking.

up --- addr (assembling)
Used in a code definition in the
form:

UPLDA, or UP)Y STA,

A constant leaving at assembly
time the address of the pointer to
the base of the user area. i.e.,

HEX 12 R LDY, UP)Y LDA,

load the low byte of the sixth user
variable, DP.

W --- addr (assembling)
Used in a code definition in the
form:

W 1+ STA, or W 1 - JMP, or
W) Y A K ,

A constant which leaves at as-
sembly time the address of the
pointer to the code field (exe-
cution address) of the Forth dic-
tionary word being executed. In-
dexing relative to W can yield
m y byte in the definition's
parameter field. i.e.,

2 I LDY, W)Y LDA,

fetches the first byte of the
parameter field.

X) Specify 'indexed indirect X' ad-
dresoing mode for the next op-
coda generated.

XSAVE -- addr (assemblinq)
Used in a code definition in the
form:

XSAVE STX, or XSAVE LDX,

A constant which leaves the ad-
drew at m m b l y time of a tem-
porary buffer for saving the X
register. S i m the X register in-
dexes to the data stack in z-page,
it must be saved and restored
when ursd for other purposes.

Page 148 FORM DIMENSIONS m/3[115

FORTH Araemblcr f o r 6S02 by Y. P. Pagrd.1. July 1, 1980
SCR # 81

0 (FORTH-65 ASSEMBLER YII-79JUWO3)

1 HEX
2 VOCABULARY ASSEMBLER IUMEDIATt ASSENDLEI DK?XYITIOW8
3
4 (REGISTER ASSIGNUENT SPECIFIC TO IMPLIIIIlTATIOl)
5 EO CONSTANT XSAVE DC CONSTANT W
6 D9 CONSTANT IP D 1 CONSTANT N

D I COWSTAWT 01

7
8 (NUCLEUS LOCATIONS ARE IUPLEUSNTATIOY SPICl?Ic
9 (DO) OE + CONSTANT POP
10 ' (DO) OC + CONSTANT POPTWO
1 1 ' LIT 13 + CONSTANT PUT
12 ' LIT 11 + CONSTANT PUSH
13 ' L I T i 8 + CONSTANT NEXT
14 ' EXECUTE NPA I 1 - CONSTANT SETUP
I5

SCR # 82
O (ASSEMBLER, CONT. WII-78OCTO3)
1 0 VARIABLE INDEX
2 0909 , 1505 , 0115 ,
3 0080 , 1 4 0 4 , 8014 ,
4
5 2 VARIABLE MODE
6 : * A 0 MODE I i
7 : .X 3 MODE 1 ;
8 :) Y 6 MODE 1 ;
9
10 : BOT .I 0
I 1 : SEC . x 2
12 : RP) .x 101

8011
8080

: I
: . Y
:)

; .

- 2 ALLOT
, 8009 , IDOD , 8019 , SO80 ,
, 8080 , lCOC , 801C , XI0 ,

I UODE 1 ; : NEN 2 YODK I ;
4 MODS 1 ; : X) I &ODs 1 ;
P MODE I ;

(APDRtSS TUE BOTTON OI TEE STACK *)
(ADDRESS StCOWD I T U l OW STACK *)
ADDRESS BOTTOM OI IITlllW STACK *)

13
14
15

SCR I 83
0 (UPMODE, CPU
1
2 : UPMODE LP NODE @ 8 AND 0-
3 1 MODE @ OF AND -DUP IP
G OVER I + @ AND 0- ;
5
6 : CPU <BUILDS C, DOES> C@
7 00 CPL' B R I . 18 CPU CLC,
8 88 CPU CLV. CA CPU DEX,
9 C8 CPU INY. EA CPU NOP.
10 68 CPU PLA, 28 CPU PLP.
1 1 38 CPU SEC, F8 CPU SED.
1 2 A8 CPU T A Y , BA CPU TSX.
1 3 98 CPU TYA.
14
1 5

t F 8 UODK + I T a l l TPUW
0 DO DUP + LOOP TPUI

C , MEU ;
D8 CPU CLD, 58 CPU CLI,
88 CPU DEY, I8 C?U IlX,

40 CPU R T I , 60 CPO I T S ,
78 CPU SEI, M CPU TAX,
8 A CPU T U , 9A CPU TXSs

48 CPU PUA, 08 ccu r m ,

I

~

I
I

I

I

FORTH DlMENSlONS 1U/5 149'

S C R 4 8 4
0 (M / C P U , UULTI-MODE O P - C O D E S U F R - 7 9 M A R 2 6)

1 :
2
3
4
5
6
7
8
9

10
11
1 2
13
14
15

SCR.
0
I
2
3
4
5
6
7
0
9

10
11
1 2
13
l b
1 5

S C R
0
1
2
3
b
5
6
7
8
9

10
I1
12
13
1 b
15

N / C P U < B U I L D S C ,
D U P I+ @ 80 AND
FFOO AND UPMODE
3 ERROR T H E N

OF AUD 7 < IF
I N D E X + ce + c.

I C 6 E
1 C 6 E
l C 6 E
ococ
ODOD
0 4 8 6
O C 8 E
8480

60 w c p u

E O w c p u
c i w c p u
2 1 w c p u
E O w c p u

40 U / C P U

A 0 U / C P U
40 U / C P U

ADC,
E O R ,
S B C ,
DEC ,
P O L .
C P X ,
L D Y ,
JMP ,

, D O E S >
IF 10 MODE + I THEU OVER

UPMODE IF MEN C R L A T E S T I D -
C @ MODE C@

MODE C @ 7 AND IF MODE C@
c. ELSE , T H E N THEW n E n ;

l C 6 E
1 C 6 E
1 C 6 C
ococ
ODOD
0486
0 4 8 C
0 4 8 4

2 0 W C P U A N D . i c 6 ~ co w c p u cnp .

~i U / C P U IUC, ODOD 41 n/cPu L S R ,
61 W C P U R O R . 0414 81 n/cpu STX.

80 n / c p u S T Y , 0480 14 W C P U JSR.
2 0 n / c p u B I T ,

A 0 M / C P U LDA, l C 6 E 00 M/CPU ORA,
80 U / C P U S T A , ODOD 01 M/CPU A S L ,

C O M / C P U C P Y , 1 4 9 6 A 2 U / C P U LDX.

I 8 5
(A S S E M B L E R C O N D I T I O N A L S WFR- 7 9 M A R 2 6)
: B E G I N , H E R E I ; IMMED I A T E
: U U T I L , ? E X E C > R 1 ? P A I R S R> C. HERE I + - C. ; I M M E D I A T E
: I F , C , H E R E 0 C , 2 - I M M E D I A T E
: T w u . ? E X E C 2 ? P A I R S U E A E O V E R ce

IF S Y A P I E L S E OVER 1+ - SWAP C 1 THEN ; I M U E D I A T E
: E L S L , 2 ? P A I R S H E R E I+ 1 J M P ,

: NOT 20 + ; (R E V E R S E ASSEMBLY T E S T)
90 COUSTANT C S (ASSEMBLE T E S T FOR CARRY S E T)
DO C O N S T A N T 0- (A S S E M B L E R T E S T FOR EQUAL ZERO)
10 CONSTAYT O< (A S S E M B L E T E S T FOR L E S S THAN Z E R O)
90 C O P S T A U T >- (A S S E M B L E T E S T FOR G R E A T E R OR EQUAL ZERO)

S Y A P HERE OVER I + - SWAP C 1 2 ; I M N E D I A T E

(>- IS O N L Y CORRECT AFTER SUB, OR cnp.)

06
(OSL OF A S S E M B L E R WFP- 7 9 A P R 2 8)
I BID-CODE (END OF CODE D E F I N I T I O N *)

CURRRYT @ C O N T E X T I ? E X E C ? C S P SMUDGE ; I M M E D I A T E

F O R T U D E P I U I T I O N S D E C I M A L
: CODE (C R E A T E WORD AT ASSEMBLY CODE L E V E L *)

? L X E C C R E A T E [C O M P I L E) ASSEMBLER
A S S E M B L E R MEN I C S P ; I M M E D I A T E

(LOCK A S S E M B L E R I N T O S Y S T E M)
A S S E M B L E R C F A ' ; C O D E 8 + I (OVER-WRITE SMUDGE)

L A T B S T 1 2 + O R I G I N I (T O P NFA)
U B R S 28 + O R I G I N ! (F E N C E)
YBRB 30 + O R I G I N I (D P)
' A S S L M D L E R 6 + 32 + O R I G I N I (VOC-LINK)
B E R B F E N C E I

110 FORTH DIMENSIONS Inl5

Henry Laxen
Laxen and Harris, Inc.

One of the problems with FORTH, as
with every rich language, is that given an
idea, there are many ways of expressing
it. Some are more eloquent than others,
but it takes practice and experience to
create the poetry and avoid the mundane.

This article is written to illustrate 4
different ways of implementing a simple
Table Lookup operation. The goal is the
following: we want to create a FORTH
word, named DAYS/MONTH which be-
haves as follows: Given an index on the
stack which is the month number, such as
1 for January and 12 for December, we
want to return the number of days in that
month, in a normal year. Thus if we exe-
cute 6 DAYS/MONTH it should return 30,
which is the number of days in the month
June. I will use the Starting FORTH dia-
lect in this paper, not fig-FORTH, so if
you try to type in the examples, they
probably won't work unless you are running
a system that behaves as described in
Starting FORTH (or the 79-Standard).

Our first attempt at solving this prob-
lem uses the FORTH word VARIABLE.
The code i s as follows:

VARIABLE 'DAYS/MONTH 22 ALLOT

3 1 'OAYS/MONTH
28'DAYS/MONTH 2 + !
31'DAYS/MONTH 4 + !
30'DAYS/MONTH 5 + !
3l'DAYS/MONTH 8 + :
30DAYS/MONTH 10 + !

sl'OAYS/MONTH 14 + !
3ODAYS/MONTH 16 + !
31'DAYS/MONTH 18 + !
30'DAYS/MONTH 20 + !
3l'DAYS/MONTH 22 + !

T~DAYS/MONTH 12 + !

: DAYS/MONTH (INDEX --- VALUE)
1 - 2* 'DAYS/MONTH * g ;

There is nothing significant about the
!apostrophe), I only prefaced the VARI-
ABLE name with it because I want to use
the word DAYS/MONTH later. Now, what
happened is that VARIABLE allocated 2
bytes in the dictionary for the value of
DAYS/MONTH. The 22 ALLOT then allo-
cated another 22 bytes, for a total of 24
bytes, or 2.12 cells. We next proceeded
to init ialize the values that were allocated
by explicitly calculating the offsets and
storing in the appropriate location.
Finally, we defined DAYS/MONTH as a
colon definition which performs arith-
metic on the index, adds it to the start of
the table, and fetches the result.

Now, let's look at another way of doing

this that requires less typing and is also
more general. We wi l l f irst define a word
called TABLE which wi l l aid us in the cre-
ation of tables like the one above. What
we w i l l do i s f i rst place the in i t ia l vdues
of the TABLE on the stack, together with
the number of the in i t ia l values. Then, we
wil l define TABLE to copy thew into the
dictionary. Here ia how it works:

: TABLE (Nn Nn-1 ... N1 n ---I
0 DO, LOOP ;

CREATE 'DAYS/MONTH
31 30 31 30 31 31 30 31 30 31 28

31 12 TABLE

: DAYS/MONTH (INDEX --- VALUE)
1- 2* 'DAYS/MONTH + @ ;

Now ?%is is considerably less typing than
the first way of doing it, but notice that I
had to reverse the order of the days per
month since that is the way stacks be-
have. 1 used CREATE instead of VARI-
ABLE because it does not allocate any
space for the in i t ia l value, but otherwise
behaves just l ike VARIABLE. The acceas
word DAYS/MONTH is identical to before.

I am st i l l not satisfied, however, so
let's t ry it yet another way. Instead o f
defining TABLE to add valuea to the dic-
tionary with , (comma) why not just use ,
directly?

CREATE DAYSIMONTH
3 1 , 2 8 . 31 , j O , 3 1 ,30,

31 , 5 1 , 30 , 31 , 3 0 , 31 ,

: DAYS/MDNTH (INDEX --- VALUE)
1- 2. 'DAYSIMONTH + @ :

Now we are getting somewhere!! If we
simply use the FORTH word , (comma) t o
add the value to the dictionary, see how
simple and readable it becomes. The
values are just typed in and separated by
commas! Is i t possible to improve even on
this? Funny you should ask. There is a
quality that can be abstracted from the
definition of DAYS/MONTH, namely that
of table lookup. Wouldn't it be nice if we
didn't need to create that extra name
'DAYS/MONTH simply so we could access
it later in our : definition. Well, that i s
where our friend CREATE WED comes
in.

Instead of defining a particular in-
stance of a TABLE, we wi l l create a new
Defining Word called TABLE, which acts
as follows. It creates a new entry in the
dictionary which when executed, uses the
value that was placed on the stack 88 an
index into itself and returns the contents
of that location. It would be coded as fol-
lows:

: TABLE
CREATE (---)
DOE9 (NOEX --- VALUE)

SWAP 1- 2. t @ i

TABLE DAYS/MONTH
31 , 2 e , 11,30,3i , 3 0 ,

31,31,30,31 ,30 ,31 ,

Now we have truly generalized the
problem and rolve it in an elegant way.
We have defined a new data type, called
TABLE, which is capable of defining new
wordr. Part of the definition of TABLE
was specifying the tun-time behavior of
the word being defined. This is the coda
following the DOED. We then uw the ,
(comma) technique discovered above to
init ialize the table. Note that
DAYS/MONTH is now just a special case
of TABLE, and is in fact defined by the
new defining word TABLE.

The above examples illustrate the im-
mense divemity available in FORTH.
There is no obvious right or wrong, and the
simplest and usually most general solution
to a given problem must be discovered,
usually by t r ia l and error. FORTH8 big-
gest virtue, in my opinion, is that it makes
the tr ia l and error process extremely ef-
ficient, and therefore, allows people to
experiment and discover the best solution
for themwlves.

HELP WANTED

Programmers needted to produce new
polyFORTH systems and applications.
Two to three years extenrive FORTH
experience working with minilmicro
computers and peripherals.

Contact: Patricia Jones

FORTH, INC.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 572-8493

figFORTH NOVA GROUP

Mr. Francis Saint, 2218 Lulu, Wichita,
KS 67211, (316) 261-6280 (days) has
formed a FIG Group to trade information
and assistance between fig-FORTH NOVA
users.

Pub. Comment: Hope to see a new,
clean listing. How about some other
specific groups!

FORTH OIMRJSIONS m/S Page 151

THEGAhAEffREVERS
M. Burton

REVERSE is a number game written in
FORTH, primarily 80 an exercise in array
manipulation. The object of REVERSE is
to arrange a list of numbers (1 through 9)
in ascending numerical order from left to
right. Moveo are made by reversing a wb-
set of the list (from the left). For
example, if the current list is

2 3 4 5 1 6 7 0 9

and four numbem are reversed, the list
will be

5 4 3 2 1 6 7 0 9

then if five numben are reveroed, the
game is won.

1 2 5 4 5 6 7 0 9

To leave a game that is in progress,
simply reverse zero numbers.

REVERSE Clwary

SEED --
The number seed for the pacudorandom
number generator. SEED is initialized
as the REVERSE words are compiled,
by hitting any key on the console.

Keeps track of the number of moves
mads in a REVERSE game. If more
than fifteen m v e a are made to win,
you haven't got the hang of the game.

The pseudorandom number generator,
courteay of FORTH DIMENSIONS.
RNO generates random.number in the
range 0 through range-1. RND is uaed
to scramble the number list.

MOVES --

RND range -- random.number

DIM n --
A defining word med in the form

Produces M n+l length word array
named XXXX, with elements 0 through
n. For the REVERSE application,
element 0 is not used.

n DIM xxxx

Y IN -- flag
Solicits an input string from the con-
sole, then checks the first character of
the string for an uppercase or lower-

SCR 228
0 (Tho G.H of Rovorso [SEED. mVE8. W . DIM, Y/Nl 101201-I(Ps
1
2 0 VARIABLE SEm (80.d for numbor gonorotor)

3 0 VARIASLL W E B t Numbor of rovorsos SO far 1
4 CR ." Phase dopross 8ny koy:" (F o r t i l i s o tho s o d)
5 KSY SCCD I
6
7 : RW t R8ndw nurkr gonorotor rurgs -- rnde b
8 SCm 0 269 3 + 32767 W W P SEED I 32767 ;
9

A 0 : DIH (ROSOWO M intogor word arroy n -- I
11 <WIu)S I+ 2 A W T
1 2 DOCS> ;
13
1 4 : Y/N t Got 8 Y or N rospoaso -- f l a g I
13 PAD eo EXPECT PAD co Q OL 9s A#) e9 - ; -->

OCR 230
0 (Tho G r o of Rovorso [ARRAY op.rations1 Ao1201-nw I
1
2 9 DIM ARRAY t Rosorvo 0 ton word a r ray)
3
4 : A@ t Fotch M u r a y word index -- arr.y.v81uo 1
5 2 * A R M Y + O ;
6
7 : A l t Otoro mn arroy vord arry.voluo\ indox --)

0 2 . A R R A Y + I ;
9

A 0 : AINIT I l b i t i 8 1 i S O ARMY -- I
11 10 1 DO I W? A1 D P ;
12
13 : A. t ? r i n t ARRAY -- b
14 Q ." Tho list i s #mu..."
15 G 6 SPACEB 10 1 DO I A@ 3 . R WOP ; -->

f ig-KMM Vorsion A. AS W . Burton

Page 152

231
o t t h o 0-0 of Rovorso I M R A Y opormtioaa, aont.1 100701-WD
1
2 : ASCILAIBLC t nir up tho uray vmluaa -- I
3 l 9 DO I W l+ (Colauloto K b
4 I A0 t Q o t rnRAYtIl vmlu. b
5 W R h0 t Qot M M Y t K l voluo)
6 I A t (Storo MRAYtKl i n AIlurtIl I
7 Y A ? A1 -1 t Otoio A R M Y t I l An A I l U r I K l)
0 +Loo? ;
9

10 : Q C T I N t Got w u n t t o rworao -- n)
11 BWIN a ." Rovorso how many? "
12 ?AD 00 #PCCT PAD 0 40 -
13 DUP O< O V R 9 > OR W?
14 IF ." Only 0 through 9 i s mllavod. ' T H U *
15 UNTIL CR ; -->

SCR + 232
o (Tho G r o of Rovorso [A R M Y opormtioas. aont.1 10070l-MPB
1
2 : ULVRSL t Rovorso submot d A R M Y n -- 1
3 W? 2 1 l+ 1 t Loop limits uo 1 t o t n / l l + l I
4 DO DUP I - l+ (Colculoto i n b r n-I+l)
5 DUP A0 IIYAP t Got ARMYln-I+ll 1
6 I A 0 t Got A M A Y t I l 1
7 SUAP A t t Storo AluAYtI1 i n AIMrtn-I+l l)
e I A t t Storo MRAYta-I+ll Ln AlUAr111)
9 LOOP DROP ;

10
11 : ACWSCK (Chock for asuoAaLb~ soq. -- f1.g)
12 1 1 0 1 D O
13 I DU? A 0 - Iw)
14 UK)? :
15 -->

SCR + 233
0 Tho G m of Rovorso IRIVUtSB dofini t ion1 1012m1-nn
1
2 : R N E R S E (Play t h o gmo 1
3 INSTRUCT AINIT
4 BEGIN
5 ASCRANBLG 0 M V C S I
6 BEGIN
7 A. G E T I N DUP 0-
0 IF 1 eLsc
9 MRlWSE 1 MOVES +I ACHE=

10 Tnpl
11 UNTIL
12 A . CR ." You mado ., MOVES 0 . .* rovorsals. ' CR
13 CR ." Coro t o play again? ' Y/N 0-
14 UNTIL
15 CR . " Thanks for ploying REVWSE... * CR ; ;8

fig-FORM Vorolon 1.15 H. Burton 1 ok

c u e IYI.

=tor, the f i q ir falm.

Prinb the rum of the game n d then
ukr i f i n r t ruc t iw am required. If
yon, intructlotu am dirplayed.

If a lY' ir pmeont, t b flag
l m t u w d ir true. For m y other chu-

INSTRUCT --

ARRAY -
A tNl word u ray thrt IXntcliM the
numbor lirt thrt REVERSE work8 m.
E l o m t zero of the ilrt ir not uoed.

Index - array.valw
Fateher the Index array.valw of
ARRAY and Ioavc# it m the data
otsck.

S t o m array.va1ue into the index ale-
m t of ARRAY.

Initializer ARRAY with the nunbra 1
th- nlm in game wiming order.

A. -
Dirplryr ARRAY in n underatmdoble
format.

A! uray.valw index -
)

A M I

AXRAMBLE I

Udng R W , scrambler the numbera in
ARRAY for a new REVERSE game.

Sollcita the number of elements of the
l is t to mvcrw. If any character other
thm 0 through 9 i s entered, GETIN
printa "only 0 through 9 i s allowed.",
md aollcib mother number.

GETIN -- n

1

AREVERSE n --
Heverrer the nth length subsat of
ARRAY, rtarting from element 1.

ACHECK --flq
Checks ARRAY for proper aacendinq
numerical order. I f ARRAY i s in the
proper order, ACHECK returns a true
flag.

The game dcfinitim. Usea all pre-
viourly defined words to play the game
of REVERSE.

REVERSE --

TI€ 31 CAW
Written by Tony Lewis 11/81

The "31 Game" is an attempt to use
FORTH fundamentals to produce an enter-
taining result. The object is to entice you
into anlyzinq both the game itslef and the
methods ueed to produce it. The game
buffs might wish to know that 1 have been
an avid "player" (not gambler!) for over 50
years and have made extensive practical
studies of various games. Any phone
communication is welcome. I am two
yearr behind in my written corres-
pondence; so sending me letters which
require replies will prove futile. The pro-
gram is my first effort in FORTH. Haw-
ever, I have had extensive experience with
rix different main frame assemblers plus a
little COBOL of the late 60's vintage.
Any constructive suggestions on general
style and technique are welcome, hut I am
not really interested in being told that I
could have shaved 100 microseconds from
my run time or saved fifteen bytes of
memory. In fact, there are indeed extran-
eous "Cr's" which were included to get
good hard copy, also.

This program was written in micro-
motion (c) FORTH-79 Version 1.2 to be
run on a 48K *Apple lI.

Therefore, the following words nre
m-standard but included in the micro-
motion FORTH.

Home - position the cursor to the
upper left comer of the CRT ond clev the
CRT to blanks.

CV and CH are wed to position the
input cursor anywhwem m the text win-
dow per Ex. 4 CV 10 CH moves the cursor
to the 4th (pun) row 10th column of

SETINV, SETFLASH, and SETNORM
rat flags in the Apple output wbroutiner
which respectively cause a11 rubsaquent
characters to be displayed on the text
screen inverse, flashing and rmrmrl mods
without affecting charc ten already dis-
played.

In closing, I wish to thank Bill Rqsdnle
for his gracious w o r t and I especially
acknowledge the incredibIy patient treat-
ment 1 received from Phil Wewon of
Micromotion as he neatly led me throuph
my FORTH initiation.

screen.

Tony Lewis
100 Mariner Green Or.
Corte Madern, CA 94925

(415) 924-4216 (late hours)
(415) 924-1481

*Apple is I registered trademark of Apple
Computer, Inc.

SCRN51
: HOUTO:l HOIY (31 CIWE-TONY LEWIS) .-
':l' IS PLIVED WITH LI DECC OF 2 4 W D S
CONTAININING P L V THE K € S T I R U SIXES.
E W H OF TWO PLAVERS IYTERWTELV DRIYIS

b RUNNING TOT& IS LEPT OF THE C W I M E D '

Sun OF THE CARDS Dk6bW-I. THE PLnVER Yo

I F NEITHLR FLAVPR CIW M h E 31 EXWTLV.
THEN THE PLAYER W40 MUST 00 M h 31
LOSES' 1% O W E W V APF'EM T W EASV. BUT
1 1 IS DECEPTIVE. Y E N [OR IF"] VW HAVE'

WON TWEE GLlIiES. 1RV TO BEAT T H E PtWGRW
FOF T M B I G BET' Bf TVPING I N 'B'
RL.THER T W V OR 'N. UMEN ' N U -7'

SERIES. Y O U GO FIRST I N OIVE 1 IWD
SECiUUD I N G&Mt 2. V W MAV EE SURPRISED"
Ch Ch CR .' H I 1 Wf bET TO BEGIN'
hET bFcff nocY 6 CV : --
Kh.52
4 YOlcDS OF W I S D M Z1 BY TONV LEWIS)
t TI+€ W S M R PAGE IS W I T . IT WESN'T
REWlRE I W V S k I L L TO FIGURE W T -1 THE

CWSTWTS REALLY &RE' THEV M E ENCODED
50 T W T V W Clu l ENTER IWD COMPILE THE
Wtl€ WIT)(ouT D I S C W E R I l O I T 6 PRINCIPLE.

WAS TG Ml V W TO FIRST EICMINE TI€ IMIU!
b v PLhVING I T . THEN F I W R E OUT MOU TO
(LPPROLLCH THE P R J k E M OF -1NG IT.
AND F I W L V 00 L(Iu W D COW- V M
M i T H O D s TO MINE. THE GLVE IS MUSIN6
AND IS n LITTLE KNOWN CINCH en^ BET. IF
V W T W E THE 11- TO ENTER I T ONTO V O U I
FORTH DISC. V W SWOUD MU€ FUW BOTH
W V Z I N G IT IWD TCEN ENTERTAINING C O A
HUSTLING1 FRIENDS lylD FLyl ILV WITM I T .

USE I\ RE& DECh OF URDB Mi I T U W L D
PROEA6LV TEND TO DI8UWFc(YIE YlYiERIlO IF

BY TONI LEWIS 5 1 GlvE

CWDS FW THE DECK. ON CMD nT n TIM.

n w i v E s AT THE sum OF 31 EXKTLV WINS.

(0 1 ~ s UP. THE 'BIG FIET IS n TWO O(VE

REMEMEW. THE PURPOSE OF Tnxs PROJECT

OF c a m s YEN PUVING n i I) S(YI YOU WST

IOU YYY~LD BRING YOUR *MICRO* win v0u.b --
SCR.5:
(ENCODED CaYSTIWTS 31 BY TONY LEYISI

t NOIEI T H E M CWSl IWTS M E USED ONLY
TO CONCEIY THE S a U T I O N OF THE 6ME.
NOT TO W E THE CODING WlIRD TO FOLLOW')

LI CONSTIWT t I
Ll CONSTIWT c 2
&I CONSllylT tZ.
u CONSTIWT t 4

H f r
t COMCONS

CD EF I tlb Bc I - 41CB - ' I 1 '
UC FE I EA CB I - 4K7 - . C2 '
C E E D e L Y B D I - S F b - ' b 3 '
EC M 8 CA DB I - IFDO - ' K 4 ' 1

DECInnL --
SCR*J4
(SETUP W UTIL ITV WORDS 31-TONV LEYISJ
CREOTE DECI
' J . 4 . 4 . 4 . 4 . 4 . 4 . 0 .
V M I M L E CAkDSWl V I Y l I U L E QIUESWON

I NWWfUi t FIRST. N E W DECC)

7 1 W I 2 I D E C k + 4 S Y C I P ' L O O P
O C I Y I D W (r ' HCNlE 4 C V :

8 y*YDECtu Ic (CR CR ." THE DECI Woy UYI1I)INS
7 i DO I (NOT J * * I a

DEct + co r DUC~ DO) wp
I F 1* 1 Ck W J . LOOP
ELSE WKlP
THEN

LOOP l? CH
. * THE RUNNINO TOTIY IS " C M M a . :
: enwLnv

i FLM EAD K n v) o CR CR .' B6D TYPE-IN" WOWDECABUI : --

31 EV TONV LEUIS)

SCR4I60

: HVBIOBETI CR CR
MAINLINE UORDB CON1. 31 BY 1ONV L.EYIS)

h l DUP CWWSUM CS + CI - k I HOD -
W P UPMTEDEUSUW 0-

IF DROP k3 DUP WD~TEDEChSUM DROP
THEN . " M* PLAY 16 . OHOWWCKIWI 3 I

I HVbIGIETZ CR CR
I F D W WWTEMCKSUl DROP
ELSt k l ChRDBUr(C3 k 2 - I 1 HOD - OW'

UPDATEDEC#WU 0-
I F DROP k4 LlLlP WDATEDLCKWM D R W
T%N

THEN .I- MV P L n v IS * . SCKHIWCLSUM 3 I
- - \

PEDIN CR CR

I F ." ."
iLsE . " 0.''
TCEN CR ." V W Y T Y l N f Y B 10 "

.* PLAY BIS I T .
T M N

ELBE NoRIIIys1
THEN

THEN
UNTIL I

I 31rwls (uwlO31 coD€cow llnxNs1 :

FoRTHcussEs

LAXEN AND HARRIS, bJc.
2 4 x 1 Southlend Drive
Heyward, CA 94545
(415) 887-2894

Introductory cl-es
Procaw control
Application8 prognmming
Systems level programming

GREG STEVENSON
Anaheim, CA
(714) 523-4202

Introductory classes

KNOWARE INSTITUTE OF TECH-
NOLOGY
Box 8222
Stanford, CA 94305
(408) 338-2720

Introductory classes
Graphics classes

MNER ACCESS CORPORATION
Belmont, CA
(415) 591-8295

Introductory classes

FORTH, NC.
2309 Pacific Coast Highway
Hennoaa Beach, CA 90291
(213) 372-8493

Introductory classes
Advanced clauses

S m A T E D T ' E K T R W C S
4010 GRAPHCS

WITH FORTH
by Timothy h a n g

Portland, OR 97211

In this article, I am going to tell a true
story. For those people wh think FORTH
is a religion, they might just consider this
to be my testimony.

Last November, I had accegl to a very
little known, but well built microcomputer -- MX 964/2 by Columbia Data Productr,
Inc. of Maryland. This little machine has
two Z-BOA C W s . One is for the Host and
the other for terminal. There are 64 K of
RAM in the Host, and 32 K of the Ter-
minal RAM is dedicated to the 512 x 256
bit mapped graphics. I t also includes a 9"
CRT, 2 double density drives, keyboard, 4
serial ports, and 4 parallel ports. I t 8 all in
one piece. It boots up with whatever
operating syitem is on the disk af ter
powered up and the carriage return key
has been pressed. Beautiful isn't it?

However, there is a big problem, a s
with most microcomputer companies. the
instruction manuals are terrible. And I
mean terrible! Let me just give you om
examle: "For this information, please me
figure -", only to find there was no such
figure and no page number.

Graphics are o m of the mast impor-
tant featurea with this machim. 512 x
256 bit mapped graphic Is the best that
can be expected under the price a1-
lowance. There a re quite a few w d l known
microcomputera on the market claiming
High Resolution Graphics. But t b HI*
Resolution cmea a m just like a big blob
compared with the individual pixel that bit
mapped. So, I have a nice machine with
all the fancy graphic capabilitim, but
lacking the key to open it. Anxiety
mounts up quickly.

I have a friend who's an excellent
8080/Z80 assembly programmer. k b im-
plemented UCSD PwcaI for a microcom-
puter. Naturally, since he w w the f l n t
one, it seemed logical to seek his help.
W i t h a poorly written computer marnml

S c r e e n @ 1 0
0 Video controls Lor C o l u m o r r H I ? b 4 TLJI 111OT111 t

S c r e e n 1 1
0 * Grapbrc PaEkA(e - i T3K

L?-: I Enit

1%

I
i i r e e n t 1 6

0

4

c

a
P

; 0
1 1
: 1 .,
.,
. I

I .

. . .
. . . . , I I C I

- - - I .
21' .

. *Ti?: ,

- - -

,&

(we at least knew that the graphic part
simulates Tektronics 4010), he spent a
whole week just trying to draw one mere
quare along the edges of the CRT. Seem-
ingly It would be M easy job, but even so
it never came near to what he would have
liked. Later on, 1 apent a couple of weeks
twiddling with Microsoft BASIC compiler
and it alw, produced lousy results.

At the name time, I received my 8080
fig-FORTH lirting. So, 1 typed the whole
60 K of auembiy listing with the lousiest
text editor (Lo., ED. COM). It was a mon-
umental job. Nevertheless, I had the fig-
FORTH up and running.

By now, I waa very desperate to get it
going. Equipped with the FORTH power
and the poor manual, I set forth to t ry the
graphics again. Again, I sought help from
a friend who works for Tektronics and is
experienced with FORTH. W i t h FORTH,
the whole task turned into a very simple
job, compamd to the previous attempts we
had with the aasembly and BASIC. Thus,
now 1 am steadfast in my belief in
FORTH.

Screen 10 and 11 sets up the variables
and the Columbia Mx964 hardware depen-
dent words. The X-coordinate starts at
the lower le f t corner as 0, far right as
1025, while Y = 0 starts at the lower le f t
comer to the top as 779. Screen 12 to 14
defines the basic words, which draw the
line, move the cursor, relative draw and
move. Screen 15 defines the words to
draw a aquare and the erasing of it.
Screen 16 lets me draw many squares.

I know that there are s t i l l a lot of nice
words that can be written, such as, to
draw triangles, curve lines, etc. But, from
this small exercise, I am totally convinced
the FORTH is the one I will use from now
on.

r 7 ,
i PLATANOS
'BAhlANAS &-

AWXOVERSIONffMASTERMMl
David Butler

Dorado Systems

The writing of this program mrved as
my introduction to FORTH. Using the fig-
FORTH Installation Manual, 1 stumbled my
way through the basic concepts of FORTH
and eventually arrived at this video
Master Mind game. The game is derived
completely frum the original board version
of Mmter Mind, therefore, ail credit for
the game i tml f goer to the Invicta Garme
Company.

The program contaim many of the
functions found in video editom, including
cursor management and character col-
lectioh The mquence of this computer
version of the game is as follow: After
displaying the directions, the program
prompb the player to enter his skill level.
Then a 'secret code' is generated with the
help of the player tapping the pace bar.
The screen i s cleared, and a 'mask' of the
Master Mind playing board i s dirplayed.
The cursor l a d at the location where the
player i s to begin entering his quean. The
program retains control of the cumor, re-
ponding to tho player's key strokar.
Backpacing and tabbing am allowed, en-

SCR # 1s
0 (Master Mind i n F o r t h by Dav id A. B u t l e r
1 -->
L D a v i d a. B u t l e r
3 33300 R i s s i o n B l v d

5 Un ion C i t y . CA. 94587
6 (4 15) 407-6034
7

4 a r t 126

DCIB-17nov80 1

8
9 ***I)* A n o t e about s t y l e : I f t h e r e is any. i t i s an acc iden t .

10 T h i s was my f i r s t a r r l i c a t i o n i n F o r t h . so i t NY l a c k
1 1 some eledance.
1L
1 3 ***)+* Requirements: A v i d e o d i s r l a y 80 x 24 charac te rs .
14 c u r s o r add ress ind and c l e a r screen
15 f u n c t i o n s .

SCR # 19
(3 (Master Mind -notes- DLIB-17novSO)

1 -->
2 T h i s is an imp lemen ta t i on o f R a s t e r Mind by I n v i c t a .
3 The same is v e r y r o r u l a r because i t is easy t o l e a r n and a
4 c h a l l e n s e t o r l a v . There is a b i t o f l u c k t o i t . h u t i t I S
5 m a i n l y an e x e r c i s e i n l o s i c a l deduct ion. A " s e c r e t " code is
6 denerated. and i t is "cracked" b y a n a l y z i n d a se t o f c lues .
7
8 Those f a m i l i a r w i t h t h e o r i d i n a l boa rd dame u i l l have n*>
0 d i f f i c u l t y a d J u s t i n * t o t h e computer ve rs ion . To newcomers.

10 f o l l o w t h e d i r e c t i o n s c a r e f u l l y and YOU w i l l have i t i n no
1 1 t ime. The F o r t h v e r s i o n is f u n c t i o n a l l y i d e n t i c a l t o t h e
12 board ve rs ion . I t IS w r i t t e n i n f i d - F o r t h . and has been r u n
13 s u c c e s s f u l l y on 6502. 8080, 280. and 68000 crocessors. I t
14 i s a dood demons t ra t i on r rod ram as w11 as an enJoyable dame.
15

SCR # 20
0 (Master Mind s e t UP some v a r i a b l e s DCIB-17novSO 1
1
2 : TASK : (FORGETTABLE M E R 1
3
4 o v a m a s E COLORS 28 &LOT COLORS 30 ELMS
5
6 0 vmxa*E 2 &LOT o VCINIM~LE GUESS 'r KLOI
7 0 VCIRIABLE SECRET 2 ALLOT
8 0 VCIRXCIBLE BLKKER 0 VARIABLE W I T E N
9 6 vaRxamE COLORS

1 1:)
11 3 VARIABLE CUR.RW 23 VARIABLE CUR.COL
12 I v a m a m E XLOC 1 vaRxamE YLOC o vmxataLE 1 7 0 ~
13 -->
14
19

SCR il 21
0 (R a s t e r Mind s e t UP - cont. DAB-17novMJ)

2 : C.CONSThN1 ." YELLOWRED BLACK GREEN W I T E BLUE
3
4 0 VARIABLE COLOR.KEY 6 &LOT (" c o l o r s " t a b l e 1
s
6 (Use t h e sum 0 6 t h e ASCII code o f t h e f i r s t 3 l e t t e r s)

8
7 (1.e. BLUE m "B" + "L" + "U" 46 + 76 + 85 = 227)

9 234 COLOR.KEY C ' 219 COLOR.KEY l+ C !

227 COLOR.KEY s + c !
10 207 COLOR.KEY 2 + C!
11 232 COLOR.KEY a + c!
12 96 COLOR.KEY 6 + C !
13
14 0 VCIRIABLE MTTEMPPTS (used t o keep sco re 1
15 -->

222 COLOR.KEY 3 + C!

SCR # 22
0 (Master H i n d r r o m r t and randomize DA8-17nOV80) .bllnp the player to keep changing hi8
1 (There d e f i n i t i o n s s e t t h e random v a l u o r f o r the Sam) purr until he ir ratisfied that it is conrir-
2 tent wlth the cher he ha8 thug far receiv-
3 I NEWCOUNT (CCOLORW + 1 3) DUP #COLORS e < ed. A correct gww i s the rerult o f the
4 I F l + ELSE DROP 1 THEN I plryer'r loglcrl deduction (or very good
5 luck) baaed on his pmviwr clues. The
6 : RAND 1 BEQIN NEWCOUNT ?TERMINAL U N T I L KEY DROP I directions on c m e n 5 1 explain the mean-
7
H I ASR.FOR.RANDOH .I' To randomize* t a r sraco bar 4 t ines ."
9 4 0 DO RAND I SCQDE + C! LOOP CR 1 when the player dgnalr he is ready,

1 0 tho program compare8 the playerh guess
1 1 : C18K. FOR. LEVEL to the secret code which war rtored away
12 CR . " Level 1 or 2 7 I' KEY WP EMIT KEY EMIT aulier. clues are generated and dis-
13 YO = I F 7 #COLORS ! ELSE Q YCULLlRS ! THEN CR 1 plryed, indicating to the player how ciore
14 h I8 to the solution. The player ha8 ten

chances to deduce the mcmt code. 15 --:>
SCR # 23
0 (Master Wind t r a n s l a t e c o l o r t o numeric DCIB-lhOV8C) Them am many improvements which
1 c w l d k made to thir program to take ad-
2 : COLOR.FIND (LCOLORYI ---- t 3 TYPES COLOR F"I #) vantage of . more of FORTH'S built-in
3 1 - 6 a C.CONSlAN1 3 + + Q TYPE I vocrbuluy -- moot notably PAD and m-
4 I m t d words. For those short of memory,
C; : TRANSLATE.CODE note that the directions could be short-
6 (c o n v e r t s c o l o r Y f r o m SCODE. t o CWOR.KEY 1 mod, Iaft out, or mad from disk with no
7 (numeric v 4 l u e i n array "SECREl" f change to the overall logic of the pro-
8 4 0 DO SCODE I + Ct! 1 - COLOR.KEY + C(L SECRE.1 gram.
U I + C ! LOOP :

Further note8 M d comments may be

inp Of the tWO type8 O f ChJe8.

10
11
12
1 '?

1s --_
:;l:R # 24

found in the source acreens.

14 : .J R:- R.' R:, CC:OMPILEI R sww .>R SWAP >.H sww i~ :

1.1 (Master Mind c u r s o r mo t ion DCIB-17noveO 1
1 (O f course. CRT dependent. Here I S Herth:) - (*** s t a r t I X T dependent wards 4*4)
3 : C'I-IHSI~IR (CY] C X J - - - L] AP30Ll.lTE CltRSClR F O S I T I i I N)
4 31 + SWW 31 + SV 27 €HIT F M I ' I EMXI EWiT :
5
6. : 8:LEAR (C:LEAR L-KT SC:RE.EN) 27 EM1 f t.9 f l l T :
7

(*it* end ot !::FC.l dePcnder*t words ***)

: SHI~IW.Ci>LCIRS (pISF'LcIY l>OLClR CHOICE$;)

7 1 ti6 I Z + 58 CURSOR I CTJLiM. FINCt LOOP
12 #I:.CILCIH!; @ 7 = I F 4 5'7 CIJRSCIR . " r:EtLfihiY>" ELSE THFN
1 .:: - 1 1 TF: I:UR'I;OR ." TAP between c o l o r s . "
14 1 3 48 CUR>;ClR ." PkTIJRN t o Set s - 1 lJ25. " ?
17 --

-.I- R # 2:s .= -.
0 I Master- Wind hoard l r v n u t mask T"2- 17r- nv90)

1
,I : t(&R . " : I ' : : DCISH . '* .-" : (BOdRLI SVrltCDLC~ I
? : 1 I T L E 21 .pAi:E!:; . I I ---- _ _ _ _ r(A 5, T E R fl I N El = = = = ' I : 4
5 : tI,qs;HER 2 zi ' i -1~80~ BAR 32 I? DO . I* - 0 1 Loop I.R :
b : CLINE DUP 21 C'UHSCIR B&R 54 C:IJRSOk PAR :
I
8 : 'jPACER 21 CURSOR .I' _ _ _ _ _ _ _ "'__-_--- ."----- -- ------* I .I

: CBLOCI: DUP CLINE 1+ SPACER :
: HItlD€N .3 23 CL1RSI:IR ." X X X Y X X X X X X X X Y X X X X X I Y X I X X " :

11
12 : DISPLAY. BCiARD
13 C:LECIR T I T L E DASHER HIDDEN 24 5 Ui.1 I CBLOCK 2 +LCIoF.'
14 SHOW. C-OLORS :
1s --:>

3CR 0 26
0 f Master Mind c u r s o r trackins definitions D(18-17nov80)
1
2 : X XLOC Q : : Y YLM: B :

4 : XBIJMP X 52 =
'T I F 23 DUP C M . C O L ! XLOC !

? I F X CUR.COL ' THEN
::: THEN i

0

k. ELSE 1 XLOC + I x CIJR.CUL e 8 + =

i,

13 : IJNBIJflPX X 23 I F SZ X L C X I ELSE -1 XLOC + ! THEN i
11
11 : TAB CUR.COL B 4 7 =
1 3 IF 23 CUR.CUL '
14 ELSE 8 CUR.COL + I
15 THEN LUR.COL Q XLOC ' DROP Y X CURSOR i --L::.

SC:R W 27
Ct (Master M i n d character collection/editinr DCIB-17nov8G)

1 : BCICC'SPACE X C1JR.COL e =
2 I F DROP
3 ELSE UNhUMPX Y X CURSOR SPACE Y X CURSOR DROP
4 3i' C:clLORS x + 2.3 - i"
6.
7 : PROCESS ([CHAR] -- [I PROCESSES CHAR, WNAGEY t.:URSOH)

:3 DUP EMIT COLORS X + 2.3 - C" XBUMP Y X CURSCIR :

THEN I c

9

10 : GET.CHCIk KEY DUP 1 2 7 =
11 I F BACKSPACE ELSE ClclP 9 =
12 I F TAB
1.3 I F 1 DONE ' DRDP
1 4 ELSE PROCESS THEN THEN THEN :
15 -->

SCR 0 28

ELSE UUF' 1.3 =

0 (Master f l ind guess / r o w section l3AB-17r10v80)

1
2
'3
4 : I N I T I A L 2 3 + rxlP YLOC ' CUR.RW ' 23 2 3 XLClC
S ' CUR.COL ! Y X CURSm
b 30 0 DO 32 I COLORS + C! LOOP :
7
8 : OET.COLORS INITICU. 0 DONE ! BEGIN SitT.i'HAH DCJNE @ U N T I L i
4

10 : PARSE.CiUESS 4 0 Is0 I 8 COLLRS + C.e
1 1 I 8 0 COLORS I+ + ce
12 I 8 CClLLW:-' 2 + + CB
13 + + I GUESS + C ! L O W :
1 4 -->
1s

SCR W 29
0 (Master Mind C l u e ¶eneration DAB-17nov80)

1
2 : CLUE.C:HECK
3 o BLACKER l e e - o WHITEI; 1 (INITIALIZE COUNTC:
4 4 0 ti0
5 SEC:RET I + C.e GUESS 1 + i (P = (CHECK FOH UrREC:T HIT)
t IF 1 BLAC:KER + I 0 I W E Y S + C !
7 THEN LOOP
8 4oDc1 GI-ESS 1 + I::@ 0 > I F (IF NO HIT
'5 4 0 DO

1 0 GUESS I + i:C SECRET J + CC = (CHECK FUR W I IF.)

1 1 IF 1 WHITE& + I 1 I GUESS + c:! LEAVE
12 THEN
1 2 LOOP THEN
1 4 L O W i
1s --:>

a

SCR 4t 30
0 (Master Mind rrerent c l u e s DAB-l7novO 1
1
2 : GIVE. CLUES PARSE. QUESS CLUE. CHECK
'3 Y 1 C:URSOR BLACKER a - . I ' BLACK "
4 WHITER 0 . ." WHITE " I
S : UNMCISk. .3 23 CURSOR

7 IF . " " ELSE . " " THEN LOOP 23 1 CURSOR I
8
'3 : %GAIN 20 98 CURSOR . ' I TYPE MCISTER TO" 21 58 CURSOR

1 0 . " PLAY AGCIIN. " UNMSK 23 1 CURSOR ;
1 1 : LOSER 16 98 CURSOR . " NICE TRY PUT" 17 58 CURSOR
12 .I ' NO CIGAR." WGCIIN 1
1 1: : WINNER 16 58 CURSOR . " PRECISELY. " M T T E W T S ?
14 . ' I TRYS. 'I 7AGCIIN :
1'; --:,

SCH # 31

4 o DO I SCODE + cc COLOR.FIND I 3 -

0 (Plaster Mind Directions t o rlaver lMB-17novM1)
1
L .I . DIRECTIONS CLECIR CR CR CR OR CR
3 1 0 0 DO LOOP . " We1 comv to MCISTER MIND. CR CR
4 . " The object o f Master Mind 1s t o break t h e secret code."
5 CR . " The c o m p u t e r will rick the secret code. and YOU must"
t. CH ." figure it out. Two kinds o+ clues are aiven:" CR
.i CK . I ' (1) Y BLCICK means that YOU havv # reds c o r r e c t " r R
::: in both c o l o r and rorition." CR CR ." (2) Y WHITE mean5 that YOU have 0 reds o f the " OR

10 correct color that l i re incorrectly '* CR
1 1 P1.C.d. " CR CR
12 . " Be sure t o spell the colors corructlv. You may tab .mound "

1:: 1C-H . " the 4 ~ o s i t l o n s until YOU"VC make Your hert duess." C:R
1 4 CR . " 'IY.PC CRETURNI t o rece ive clues." CR C:H .*I Oood-luck."
15 I:R c'H : -->

,: - L R # '3;.
C I (

1
.- :. . . .
4

7

4
E

M a s t e r Mind ++ F l N A L ++ DLIB-17nov80)

AHJouNaMpm

N E W JERSEV FIG CHAPTER BEING
FORMED

lntemmted partiw drwld contact:
G e a p 6. Lyon
280 kbndonon st.
(212) 696-7- - b y 8
(201) 451-2905 - eve8

BOSTON FIG CHAPTER SEEKING
MEMBERS

lntemmted partiem &odd contacctt
R. I. h m m w
P. 0. Box 1S8, Blv. Sta.
Andover, M A 01810
(617) 3896000 x 198 - W&
(617) 664-5796 - home

MOUNTAIN WEST FIG CHAPTER
ORGANIZDJC

lnteremted putiem in tha greater Salt Lake
City ema mhould contacctt
Bill l-bywood
(801) 942-8000

TECHMCAL PRODUCTS W. MOVES

New addrama
P. 0. Box 2358
BOUIB, NC 28607-2358

FIG N E W YORK ClTY MEETING
CONTACT

Jamem Bamilc
40 Circle Drive
Westbury, NY 115900
(516) 333-1298

DALLAS-FT. WORTH METROPLEX FIG
MEETING CHANGE

Meetings now being held at:
Software Automation, Inc.
1005 Businem8 Parkway
Richardson, TX

contact:
Marvin Eider (214) 231-9142
Bill Driamel(214) 264-9680

TRANSFER OF FORTH SCREENS
BY MOOEM

Guy T. Crotke
Forth Gear

San Dieqo, CA

Here IS E simple but hopefully useful
set of definitions for serial transfer of
FORTH screens between machines.
Several o f us in the San Diego FIG are in-
terested in sharing software, but we have
been unable to do so because of all the
different disk formats in use. While only a
few had access to similar machines, we
took a poll and found that more than 90%
had f?S-232 ports. The following two
screens permit unidirectional transfer
with a modem over telephone lines at 300
baud or hardwired at 19,200 baud. The
definitions are not particularly sophisti-
cated. Theye is no error checking or
ack/nack with retry. Since it is source
code which is being transferred, some
editing wil l probably be necessary anyway,
so such safeguards aren't worth the ef for t
to write them.

There are four definitions which are
entirely system dependent in each
screen. These are SOUTPUT, COUTPUT,
SINPUT, and CINWT. Respectively, they
direct output to the serial port, output to
the console, input from the serial port,
and input from the console. I f your sys-
tern doesn't use I/O flags or vectors, you
may have to write serial port drivers and
point KEY and EMIT to them for
SOUTPUT and SINWT. In screen 80,
these four words are defined for an
APPLE running a serial interface in slot
two (driver at SCZOO). In screen 58, they
are defined for an Ohio Scientific with the
normal serial port found in the personal
models. These are examples of vectored
and flagged 1/0 redirection.

The remaining definitions should be
quite universal among f ig (and other)
systems. Screen 80 contain8 all that is
necessary to receive screens under the
control of the sender. FIMSHED and
RECEIVE simply redirect input and out-
put. The word P redefines the f ig editor
word P to do the same thing except with
I/O redirection. Note that these three
definitions are simple and fool-proof
enough that they could be sent to another
computer i f that computer was first told
to accept all input from the serial transfer
line. Once these definitions were com-
piled by the receiving system, screen
transfer could begin. In screen 58, the
word WAIT waits for anything to be sent
back from the receiver with a carriage
return on the end. The word OK is defined
just in case the receiver sends one or more
OK's back to the sender b r i n g transfers.
SEND-SCREEN wi l l send a screen to the
receiver, one line at a time, by emulating
a user entering lines with the receiver's
line editor. First SEND-SCREEN asks the
receiver to list the screen being sent.

-
Page

This insurer that the proper disk blocks
are reddent. Af ter the LIST, the receiver
wi l l reply "OK" followed by a carriage re-
turn. WAIT makes the transmitter wait
for this carriage return. This is the only The pmof that it work8 ia before you:
handshaking needed. Each lit-& text is the different E m e n formato and distant
sent preceded with the let ter P and a screen ~'Wmbors reflect the fact that
space, and followed by a carriage return. acreen 58 written on mY osI and rent
WAIT causes the transmitter to wait for to my APPLE to be printed. 1 have rued
the receiver to reply WOKII each lim these definitions to .end a 6502 aaaembler,
i s sent. SENO is a multi-screen t r a m i t - a databarn manager, and several hundred
term Note that the range of w m e m re- data entries between my machine8 with no
ceivad and recorded on disk w i l l corms- troubb.
pond exactly to tha screen numbers sent.

If that is inconvenient, a variable contain-
ing an o f f w t or r tar t ing receiver ocreen
number could be added.

ri.il Screen l r a n s t e r -- s e n d i n g GTG 7-UZ-81
I H t X

-' : 50111'PUl 7. 2122 c1 ; (StND OUTPUT TO SERIAL + CONSOLE t

'. : CULlTPUT 2 2x22 C' : (SEND OUTPUl ONLY TO CONSOLE
4 : SINPUT 1 2321 C ' ; (GET INPUT FROM SERlAL
5 : CINPIIT 2 2321 C ' : (GET ZNPUT FRW? CONSOLE
o : 5 U U l SOU'IPLIT 1:INPUT ; : S I N COUTPUT SINPUT ;
.' : 01.. ; : WAIT S I N QUERY ;
8 : SEND . SCREEN (SCRI --, n o t h i n g l e f t J

9 SULJT DUP . . " COUTPUT L I S T SOUTPUT " CH WA17
I OVER . L I N E CR 1 0 111, 0 DO I SOUT . . " P 'I

11 WAIT CINPUT ?TERMINAL IF LEAVE THEN Loor :
12 : SEND I FIRS1 SCFW / LAST SCR* -- n o t h i n g l e f t t
1: 1+ SWAP DO I SEND.SCREEN 3TERMINCIL I F LEAVE THEN LOOP
14 SOLJT CR W W I l SOU1 :' F I N I S H E D '' CR COUTPUl ;
15 DECIMAL :S

bCh' 1 81-1

1.) (CONSULEiSERIAL I / O)

1 FORTH D E F I N I l I O N S HE4
2 : UNLINK FDFO 56 ! F D l B S8 ! ;
.I. : SOGTPUT c2o1:) 56 1 ;
4 : LCIUTPLJl FDFO 3b ! :
5 : SINPUT C 2 0 0 38 ' :
b : ClNPUT F D l h 38 ' :
7
H EI)ITOR D E F I N I T IONS
V

It.# : F I N I S H E D CINPUT COUTPUT FLUSH ;
11 : P COUTPUT P SOUTPUT ;
12 : RECEIVE COUTPUT SINPUT ;
1; FORTH DEFIN IT IONS EDITOR
14 DECIMCIL
15 i s

W W A N T E D

Part-time - New Yar(rhbw S a a y ~ r s e FORTH pmgrrmmsrr to im-
A m i d internationally known sound plement Marx FORTH for TRS-80, -1%

ertist, Max Nwhaus, develop additional CP/M and other sydems. Royaltier paid
eoftware for micro computer controlled for b e d implementation with mob m-
sound synthesis system. FORTH con- hencements. Great oppatmi ty for thc
trolling 32 synthesize? from CRT Light competitive programmer who, like mc.
Pen Terminal. would l ike to make a living at home ad

not have to move to California to do it.
Moderate fees, travel possibilities, Cmtach
hardware experience preferred. Marc Perkel
Send informarim or resume to: Perkel Softwant Systems

Springfield, MO 65803
Max Neuheus 1636 N. Sherman
210 5th Avenue
New York, NY 10010 (417) 862-9830

FORTH DIMENSIONS

SOR~ER-FORTH
by Quality Softwarn

For about a year, I have been wing an
excellent version of flg-FORTH tailored
for the Exidy Sorcerer. It is a product of
Quality Software, 6660 Reseda Blvd.,
Suite 105, Reaeda, CA 91335.

FORTH for the Sorcerer implements
Release 1.1 of 8080 fig-FORTH. It in-
cludes a full screen editor and input/-
output routines for the keyboard, acreen,
and both serial and Centronics printers.
The Sorcerer's excellent graphic8 are also
available.

Disc storage i s simulated in RAM. A
32 K Sorcerer can hold 14 screens-with
48 K, up to 30 screens. Tape-handling
routines are provided, to move date t o and
from the simulated disk space. The CP/M
disk interface routines are present, but
not implemented.

One of the nicest features of Quality
Software's FORTH i s its documentation.
The 126-page manual is well-written, and
relatively complete. I t includes sufficient
information for a FORTH neophyte,
though it does not delve too deeply into
system operations.

Quality Software permits--even en-
courages--users to market application
proqrams incorporating Sorcerer FORTH.
They do ask that written permission be
obtained frist, but promise that permission
wil l normally be granted after review of a
sample of the program.

I highly recommend this excellent pro-
duct, and ask that you include i t in your
periodic listing of available software.

C. Kevin McCabe
1560 N. Sandburg Terr. 14105
Chicago, IL 60610
(312) 664-1632

A COWARISON OF TRANSFORTH
WITH FORTH

lnsof t
Medford, OR

A question we've been hearing a lot
lately is "How does TransFORTH compare
with fig-FORTH?" In structure, Trans-
FORTH is similar to most version of
FORTH, but i s is not a FORTH-79 Stand-
ard System. The major differences are
outlined in this paper.

Floating-point numbers

In TransFORTH, the stack itself con-
tains floating-point numbers, with 9 digits
of accuracy. No special sequences are
required to retrieve floating-point
values. Words are available for storing or
retrieving single bytes and two-byte cells,
but all values are stored on the stack in

floating-point format. Numbers can be a8
large as 1E38, and (u rmall 18 1E-38.

Transcendental functions

The floating-point format mentioned
above makes TramFORTH a natural l a p -
uage for trarucendental functionr. Func-
tions included in the syrtem whlch are not
found in moat verdons of FORTH
include: sine, coslne, tangent, arctangent,
natural logarithm, exponential, qua rn
root, and powers.

Date structures

TransFORTH contalnr words that w i l l
store or fetch 5-byte floating-point
valuea, 2-byte cells, and s l p l a bytes from
any location in memory. TrmaFORTH
does not have the fig-FORTH <BUILDS,
0 0 E 9 construction, but instead uses a
powerful built-in array declaration.
Arrays can either fil l space in the dictlon-
my, or be located abwlutely in memory.
Arrays with any number of dimension8
may be declared, and each dimefaion can
have any length, within the l imi ts of
available memory.

Strings

Strings are merely arrays (of any di-
mension and size) with an element length
of one. Each character occupies one byte,
i.e., one element of the array. Built-in
string functions included.

Disk access and the editor

TransFORTH does not use the virtual
memory arrangement found in most ver-
sions of FORTH. Instead a standard DOS
3.3 format is used, and files are called
from the disk by name.

TransFORTH includes a straightfor-
ward line-based text editor. The editor is
not added to the dictionary as a l ist of de-
fined words, but is included as a separate
module callable from TransFORTH. DOS
text files are used for saving source
files. This means that any text editor that
uses 00s text files may be used for edit-
inq TransFORTH programs. In addition,
TransFORTH prograw data may be shared
with other programs and languages.

Grahics

Two graphics uti l i t ies along with a
couple of graphics demo programs are in-
cluded on the system diskette. One ut i l i ty
contains high-resolution graphics and
Turtlegraphics commands, and the other
has low resolution graphics commands.
The graphics capabilities are added to the
system by compiling these uti l i t ies into
the dictionary. The hi-res package in-
cludes a call to a module which allows
text and graphics to appear together any-
where on the screen.

Vocabulary

TransFORTH is a single-vocabulary

system. Related programs can be grouped
together in disk files, rather than in wp-
arate vocabularies. (Multiple vocabularies
find their moat usage in multi-uaer sys-
tems.)

Compilation end weed

A i l entrier in TransFORTH are com-
plied directly into 6502 machine language
for greater speed. No addrew interpreter
is used. Even immediate keyboard entries
are compiled before being executed. This
means that ro,Jtines can be tested at the
knyboard for speed before being added as
colon definitions.

TransFORTH is fast. It is not as fast
an integer versions of FORTH, becausa it
handles 5 bytes with every stack manipu-
lation instead of two. TransFORTH pro-
grams wil l run faster than similar Apple-
soft programs, and show a great increase
in wead when longer programs are com-
pared.

While TransFORTH works much like
Fig-FORTH, the differences between the
two become readily apparent under closer
examination. FORTH programmers w i l l
pick up TransFORTH with l i t t le trouble,
but nearly ell FORTH programs wi l l re-
quire translation into TransFORTH to
take advantage of i t s powerful features.
These features are accessible with a min-
imum of work from the user, bringing a
FORTH-like environment into the realm
of practical scientific and business pro-
gramminq for the first time.

EDITORS RESPONSE TO
TRANSFORTH

The above material i s extracted from
explanatory sales material from the pro-
gram vendor. Commentary we have indi-
cated from TransFORTH uwrs can be
summarized:

1. This implementation should be
named as one of the CONVERS group
of languages, as it compiles t o as-
sembly language rather than tClreaded
code.
2. It is easier to add floating point
math to FORTH, than to alter Trans-
FORTH to use integers for execution
speed improvements. Why not both?
3. I f the implementor had done his
005 3.3 interface using the standard
FORTH word BLOCK, an immense gain
in value would result. Direct access
- and DOS compatibility.
4. <BUILDS D O E 9 probably could be
added but apparently the implementor
doesn't know how or chooses to deprive
his customers of this powerful struc-
ture. Arrays are definitely not equiva-
lent technically or philosophically.

In conclusion, it appears that
TransFORTH i s a reverse POLISH
BASIC, with names rather than
labels. A small amount of additional
ef for t would have built upon FORTH,
rather than strip out major attributes.-
-ed.

FORTH DIMENSIONS III l5 P a g W

FLEXFORTH

Complete compiler/interpreter, assem-
bler, editor, operating system for:

APPLE 11 computers $25.00
KIM computers $2 1 .M)

FLEX-FORTH is a complete structured
language with compiler, interpreter,
editor, agembler and operating system for
any APPLE II or APPLE 114 computer with
48K and diak or KIM with 16K of mem-
ory. Moat application programs run in less
than 16K starting at 1000 HEX and often
as l i t t le as 12K, including the FLEX-
FORTH system, itself.

This is a full-featured FORTH follow-
ing the F.I.G. standard, and contains a
6502 assembler for encoding machine
language algorithms if desired. The
assembler permits macros BEGIN ... UNTIL,
BEG IN... AGAIN, BECIN...WHILE...
REPEAT, IF... ENDIF, and IF...ELSE. ..
ENDIF. Editor and virtual memory files
are linked to the Apple D O S 3.2. An ap-
plication note for upgrading to DO5 3.3 i s
included. Object code on disk with uaer
manual sells for $25.00. (APPLE) or on
cawette with user manual for $21.00
(KIM).

A complete source listing is available
to purchasers of FLEX-FORTH for
$20.00. The m r c e is valuable in both
ahowing how FORTH works and in giving
examplea of FORTH code and integrated
aaaembly code.

Order from: GEOTEC, 1920 N. W.
Mi l ford Way, Seattle, WA 98177. Be sure
t o apecify machine.

MARX FORTH Vl.1
Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

(417) 862-9830

Enhanced 280 f igFORTH implemented
for Northetar System enhancements in-
clude link fields in front of name for fast
compile rpeed; dynamic vocabulary nlink-
ing; coact; stgumants-mults wi th 'to' vari-
ables: and more. 79-Standard package in-
cludes eaay to use acreen editor.

R i c e r mm
Smart sgembler, meta-compiler and

m r c e code (in FORTH) aold separately.
Call for information.

TM)NmPRooucTsFRoM
uu<ENAN)HARRIs,Nc.

Laxen and Harris, Inc.
24501 Southland Drive
Hayward, CA 94545

(415) 887-2894
1. Working FORTH

Release 2.1

"Starting FORTH' compatible FORTH
software for a 8080 or Z80 computer
system with the CP/M (TM) operating
system.

Copyright (C) 1981 by Laxen and Harris,
Inc. All rights rererved.

This FORTH implementation is com-
patible with the popular book "Starting
FORTH' by Leo Brodie. It is intended to
be a companion to the book to aid leaning
FORTH. It is also a complete environ-
ment for developing and executing FORTH
programs. I t containa:

Compilers
Disk operating syrtem
Ful l names stored, up to 31 characters
Str ing handling
Enhanced error checking
16-bit and 32-bit integer arithmetic
and input/output
This is a single-user, single-task sys-

tem which is not ROM-able as supplied.
Floating point arithmetic and CP/M file
access ere not wpported.

This system as supplied runs comfort-
ably in a 8080 or 280 computer system
with at least 32K bytes of RAM memory,
at least one floppy disk drive (8" single
density, single sided, soft sectored format
is ammad), and the "BIOS" part of the
CP/M operating rystem. The use of a
printer is wpported but not required. This
aoftware may be easily modified to use
other memory sizer or diak formatr. It
requires 14K bytes of memory which in-
cludes 4K byte8 o f didc buffers.

This FORTH rystem was adapted from
the fig-FORTH model but is not fully
compatible with that language dialect. It
ir also not fully compatible with the
FORTH-79 Standard. The three dialects
are similar, but the Starting-FORTH ver-
sion har advantages over the othar two.

Price: $33.00 - p h $2.00 - Patage and

CP/M is a registered trademark of Digital
Research, Inc.

2. Learning FORTH
Learning FORTH ir a computer aided

inatruction package that interactively
teaches the student the fundamentals of
the FORTH programming language and
philoaophy. It consists of a set of
FORTH acreens that contain program
source code and instruction text. It is
based on the book, "Starting FORTH," by
Leo Rrodie. It wil l run with any Starting
FORTH compatible system, as well as fig-
FORTH system. The manual is only one
page long and describer how to load the
system. After that, everything is self
explanatory. It is wpplied on 8" single
density diskettes in IBM 5740 format. Ths
price b $33.00 if ordered together with
the Working FORTH Diak. Please add
$2.00 for shipping and handling, and allow
at least 3 weeks for delivery.

~ota: ~ u y both tor ~ 5 . 0 0 pku ~ r n
poatzqe d hmdliq.

POLYMORPMC FORTH
Abstract Systems, etc.
1686 West Main Soad
Portsmouth, R I 02871

(401) 683-0845
Ralph E. Kenyon, Jr.

Product Description: FORTH (Polv-
Morphic fig-FORTH 1.1.0). 8080 fig-
FORTH 1.1 without asmb. or Editor (uses
PolyMorphic resident editor.)

A demo application which computes a
table of values for a general quadra:ic
equation is included.

PolyMorphic Systems 8815, 8810 needs
only 16K. Documentation on FORTH not
included.

Manual: documentation covers parti-
cular implementation details for f ty-
FORTH to interface to the PolyMorphic
Systems Microcomputer. Sorted VLIST
included.

Implementation document available
separately. Separate document avaiiable
for cost of postage. Product data avail-
able on PolyMorphic SSSD 5" diskette
format. 4 copies sold to date. Price:
$40.00, includes shipping, diskette, (R.I.
residents add 6% sales tax!. Warranty
l imited to replacement of a diskette
damaged in shipment. (We'll try to f ix any
bugs discovered.) Orders shipped out
within 3 days of receipt (usually next day).

t-EATH HB9 FORTH
MCA

8 Newfield Lane
Newtown, Conn. 06470

MCA announces the availability of
FORTH for the Heath H89 computer.
MCA FORTH is 8080 fig-FORTH V1.l
configured to run on a single disk HE9 with
32K or more of memory, utilizing HDOS
1.6 or later.

MCA FORTH provides the standard
FORTH facilities plus the following
special features: HDOS fi le manipulation
capability, a control character to restart
FORTH (recover from loops), on-line
tailoring of FORTH facilities (e.g., num-
ber of disk buffers), ability to hook to sep-
arately assembled routines, and use of
Heath DBUG.

Items supplied with FORTH include the
fig-Editor, an 8080 structured assembler,
and two games provided as examples of
FORTH programming.

The documentation wpplied with MCA
FORTH is suitable for experienced
FORTH programmers; however, a bibli-
ography of documentation for beginners ia
provided.

MCA FORTH b available from MCA
m a 5 4 4 " di& for $25 including dDac
m m t a t i a Documentatim is availBL.
for $&.at. (Conn. residents please add
sales tax).

FORTH OIMENSIONS lnl5

NEwPRooucTsmoM
brEER ACCESS CORWRATlON

1. Fig-FORTH compiler/interpreter for
PDP-11 for RT11, RSXllM or stand-
alone with source code in native 88-
sembler. Included in this package are
an assembler and editor written in
FORTH and installation documenta-
tion. Price: $90.00

This is available on a one 8" single
density diskette only.

Reference Manual for PDP-11 fig-
FORTH above. Price: $20.00

2. Fig-FORTH compiIer/interpreter for
CPIM or CROMEMCO CDOS system
comes complete with source code writ-
ten in native assembler. Included in
this package are an assembler and
editor written in FORTH and instal-
lation documentation. Pr i i : $90.00

Al l diskettes are single density, with 5-
I/&'' diskettes in 128 byte, 18 sector/-
track format and 8" diskettes in 128
byte. 26 sector/track (IBM) format.

Released on two 5-1/4" diskettes with
source in 8080 assembIer.

Released on one 8" diskette with
source in 8080 assembler.

Released on two 5-1/4If diskettes with
source in Z80 assembler.

Released on one 8" diskette with
source i n Z80 assembler.

Manual for CP/M (or Cromemco) fig-
FORTH above. Price: $20.00

T. M E T A F O R T H ~ ~ Cross-compiler for
CPlM or Cromemco CDOS to produce
79-Standard FORTH on a target
machine. The target can include an
application without dictionary heads
and link words. It is available on single
density diskettes with 128 byte 26
sector/track format. Target compiles
may be readily produced for any of the
followinq machines:

CROMEMCO-all models
TRS80 Model I1 under CP/M
Northstar Horizon
Prolog Z80

Released on two 5-1/4" diskettes or on
one 8" diskette.

Price: #50nO

4. Complete Zilog (AMD) 28002 develop-
ment system that can be run under
CP/M or Cromemco C System
includes a METAFOHTH"&oss com-
piler which produces a 28002 79-
Standard FORTH compiler/interpreter
for the Zilog 28000 Development
Module. Package includes a 28002
assembler, a Tektronix download
program and a number of utilities.

Released on two 5-114" diskettes or on

one 8" diskette.

Rice: si,mrn
5. Zilog 28002 Development Module fig-

FORTH RDM set. Conteins 79-Stand-
ard FORTH with 28002 assembler and
editor in 4 (2716) PROMS. Rm:
)zaom

cooE9
Arthur M. Gorski

2240 S. Evenston Avenue
Tulsa, OK 74114

(918) 743-0113

CODE9 is a M6809 Assembler for use
with any fig-FORTH system. I t features
all M6809 addressing modes except long
relative branch instructions. I t performs
syntax error checking a t agKmbly time.
Memory requirenents: 4.75K bytes f ree
RAM above FORTH. CODE9 is distribut-
ed as a commented source lilting and
manual. Ri: tm#1

by

Datatronic AB
Box 42094

5-126 12 Stockholm
Sweden

Peter Bengtson

Product Description: Extended fig-
FORTH for the Commodore CBM/PET
computer series.

Screen editor, utilizing the p e c i a l CBM
screen editing possibilities for compact-
ness and ease of use, macro-assembler,
double-precision extensions, CRT hand-
ling, random numbers, real-time clock, a
very complete string package, IEEE con-
trol words, integer trig functions.

An expansion disk (coming soon) will con-
tain floating point arithmetic including
complex numbers, transparent overlay
control words for data and program
segments, a file system, and more. A
METAFORTH compiler will shortly be
available.

Runs on CBM 8032 plus an 8050 dual disk
drive. Other configurations coming: 4032,
4040, VIC. and MicroMainFreme.

8032 version runs in 32K only. 4032
versions will run in either 16 or 32K.

Manual Description: 322 pages, including
all source code.

Complete introduction to FORTH. Special
chaptern cover the asembkr, <BUILDS and
DOES>, IEEE handling, strings etc.

Manual is available separately.

Separate prrchrs price i r $40.00. This is - not creditable towards la ter purchaw.

Product/Ordering Data: Shipped a s disk-
ette and an accompanying recurity R O W
holding par t of the Kernel.

PET-FORTH

(0)-8-744 59 20

Currently, there are approximately 75 in-
stallations, af ter 2 months on the market.

R i @9Om Includes diakette, ROM,
manual, shipping and taxes.

PET-FORTH, as all other DatatKmic a f t -
ware, carries a life-time guarantee. All
future versions will be distributed to the
registered owners without any coat what-
soever. -
Delivery is immediate.

US dealers are invited. UK sole distrib-
utor is Petalect Electronic Services Ltd,
33/35 Portugal Road, Woking Surrey. You
may also order directly from us.

Diskette of FORTH &#icotim Moddm
from

Timin Engineering Company
9575 Genessee Avenue, Ste. E-2

Sen Diego, CA 92121
(714) 455-9008

The diskette of FORTH application
modules, a new product by Timin Engin-
eering, is a variety package of FORTH
source code. It contains hundreds of
FORTH definitians not previously pub-
lished. Included on the diskette are data
structures, software development aids,
string manipulators, an expanded 32-bit
vocabulary, a screen calculator, a typing
practice program, and a menu gener-
ation/selection program. In addition, the
diskette provides examples of recursion,
<BUILDS. ..DOES usage, output number
formatting, assembler definitions, and
conversational programs. One hundred
screens of software and one hundred
screens of instructional documentation are
supplied on the diskette. Every screen is
in exemplary FORTH programming style.

The FORTH screens, written by Scott
Pickett, may be used with Timin FORTH
or other fig-FORTH. The price far the
di.keCte of FORTH gpliatim &lea i.
VS.00 (if ather ulan 8- d m d d W, add
$15.00). To order the FORTH modules.
write Timin Engineering Company, 9575
Genesee Avenue, Suite E-2, San Diego,
CA 92121, or call (714) 455-9008.

Au)IO TAPES OF
1980 FORM CONERENCE
AN) 1980 FIG CONVENTION

1. FORTH-79 Discussion, 200 min. Price:
$35.00

2. Purpose of FIG, 37 min. Rice : $10.00

3. Charles Moore, 63 min. Rice: sS#1

4. FORTH, Alan Taylor, 47 min. Rice:
$Ism

caple t8 .I)t s6sm
edu-FORTH
1142-A Walnut Street, t3J2
Berkeley, CA 94709

Peg= 165- FORTH DIMENSIONS III/S

FORTH

The following vendors have v e d m of
FORTH available oc M armltmts. (FlG
makes no judgment on y products.)

ALPHAMICRO
Professional Management b r v i m
724 Arartradero Rd. 1109
Palo Alto, CA 94306
(415) 858-2218

Sierra Computer Co.
617 Mark NE
Albuquerque, NM 87123

APRE
lDpC Company
P. 0. Box 11594
Philadelphia, PA 19116
(215) 676-3235

I lJS (Cep'n Software)
281 Arlington Avenue
Berkeley, CA 94704
(415) 525-9452

George Lyms
280 Henderson St.
Jersey City, NJ 07302
(201) 451-2905

Microblotion
12077 W i l h r r s B l v d 8506
Los Angela. CA 90025
(213) 821-4340

CROSS C m P k m S
Nautilus Systems
P.O. Box 1098
Smta Crur, CA 95061
(408) 475-7461

P O W ~ ~
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermwa Beach, CA 90254
(213) 372-8493

LYNX
3301 Ocean Park I301
Smta Monica, CA 90405

M & B Desipn
820 Sweetbay Drive
Sumyvele, CA 94086

Shew Labs, Ltd.
P. 0. Box 3471
Hayward, CA 94540

(213) 450-2466

Merapolk

(415) 276-6050

The Softwaro works, Inc.
P. 0. Box 4386
Mountain View, CA 94040
(408) 736-4938

Mmhstu

law-11
Laboratory Software syrt.mr, hc.
3634 Mandeville C y a n 46
Lor Angeles, CA 90049
(213) 472-6995

09
Consumer Computsn
8907 LaMesa Blvd
LaMara, CA 92041
(7 14) 698-8088

Software Fsd.~Um

Arlington H.IQM.. P, u#y

Techicol Roducta Co.
P. 0. Box 12983
Caimville, FL 32604
(904) 372-8439

44 University or.
(312) 259-1355

Tom Zimmer
292 Falcoto Or.
Milpitar, CA 95035

mz
FSS
P. 0. Box 8403
Austin, TX 78712
(512) 477-2207

6mo&6w9
Kenyon Micm8yrt.m
1927 Curtis A w n w
RedmdoBeach,CA 90278
(213) 376-9941

TRsdo
The Micro works
P. 0. Box 1110
0 0 1 Mu, CA 92014
(714) 942-2400

Miller b4icmcompuL.r SrVier
61 Loke shon R d
Natick, MA 01760
(617) 653-6136

The Software Farm
P. 0. Box 2304
Rwton, VA 22090

Sirium Syrtems
7528 Oak Ridge Hwy.
Knoxville, TN 37921
(615) 693-6583

rwn
Eric C. Rohnke
540 S. R r r h View Clrcl. #61
Anhslm Hills, CA 9ZOB7

%turn softwar., Ltb
P. 0. Bbx 397
New W ~ m l n i r t s r , 8c
v n 4 ~ 7 CANADA

Ldorrtay Micmyr(mw
4147 Beethavm x
Lor angel^ CA 90066
(213) 390-9292

Timin Engineering Co.
9575 AVO. IE-2
Sm Disgo, CA 92121
(714) 455-9008

aallmmmm

ApgTdmpdup.
-syI
2150 Shttuck A m u
Meley, CA W704
(415) 8436114

D.cirion R.aurca Cap
28203 Ridgefmm Ct.
Rncho PI10 V d , C A 9Q274
(213) 377-3533

ClQlO
Emperical Rea. Grp.
P. 0. Box 1176
Milton, WA 98354
(206) 631-4855

~ B l l m h m d -
Datr icm
7911 NE 33rd Dr.
Portland, OR 97211
(sox 284-8277

Forward Technology
2595 Mmrtin Avanm
Santa Clara, CA 95050
(408) 293-8993

Rodtwell I n t e m a t i o d
Microelectronics D o v i m
P.O. Box 3669
AMheim, CA 92803
(714) 632-2862

ZmnQx Corp.
6398 Dougherty Rd.
(Mlin, CA 99566

hteractive Computu System, hc.
6403 Oi Marco Rd.
Tampa, FL 33614

Mountain View Prua
P. 0. Box 46%
Manta in View, CA wo40
(415) 961-4103

Supersoft Aemciates
P.O. &r* 1628
Champaign, R 61820

VUi&ydFORMRoductr

(217) 359-2112

cmJtr*r
Creative Solutions, Inc.
4801 Rand~lph Rd.
Rockville, M3 20852

Dave Boulton
581 Oakridge Or.
Redwood City, CA 94062
(415) 360-3257

Go FORTH
504 Lakemead Way
Redwood City, CA 94062
(415) 366-6124

Inner Accew
517K Marine View
&Imont, CA 94002
(415) 591-8295

John S. James
P. 0. Box 340
Berkeley, CA 94701

Lum h Harris, Inc.
24301 b u t h l d Drlve, 1303
l-kyward, CA 94%)

Microryatems, Inc.
2500 E. Foothill Blvd., #lo2
P.u&no, CA 91107

(415) 887-2894

(213) 577-1471

w CLU

FORTH mmEnSlOns
FORTH INTEREST OROUP
P.O. Box 1 105
San Carlos, CA 94070

Volume Ill
Number 6

Price: $2.50

168 Letters

170 Tec hnotes

174 Techniques Journal:
Execution Vectors
Henry Laxon

175 Charles Moore’s BASIC
Compiler Revisited
M.i chael Perry

180 8080 Assembler
John Cassady

102 Skewed Sectors for CPM
Roger 0. Knapp

106 Graphic Graphics
Bob Gotsch

107 Cases Continued

195 FORTH Standard Team Meeting

196 1982 Rochester Conference

FOATH O I ~ E ~ S I I ~ S
Published by Forth Interest Group

Volume Ill No. 6

Publisher
Editor

Editorial Review Board

FROM THE EDITOR

Hi! I'm happy to say that starting with this issue, I'll be
nerving as regular editor of FORTH Dimensions. I'd like to thank
Carl Street, the previous editor, who has been a great help to me
during the transition. Carl has ma& several important contr!hu-
tions to FORTH Dimensions, such as the writer's k i t for helping
you wbmit articles. Carl wi l l rejoin FORTH Dimensions RS our
advertising director beginning later this year. MarchlApril 1982

Roy C. Martens
Leo Brodie

I'd also like to thank Roy Martens, the publisher, for su9-
gesting that I take the editork post, and for teaching me some of
the facts of l i fe in magazine publication.

Bi l l Ragsdale
Dave Boulton
Kim Harris
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumqamer
Gary Feierbach
Bob Berkey

FORTH DIMENSIONS solicits editorial material, comment8
and letters. No responsibility is assumed for accuracy of materlal
submitted. MOST MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS N THE PUBLIC DOMAIN. Information in
FORTH DIMENSIONS may be reproduced with credit given to the
author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with membership
in the Forth Interest Group at 515.1Xl per year (527.a) foreign
air). For membership, change of addreso and/or to abmit
material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

I hope to make this magazine as useful as possible to the
greatest wmber o f people. Since most of our readers are s t i l l
learning FORTH at one level or another, 1 intend to encourage the
publication of tutorials (such as Henry Laxen's excellent series
which continues with th i s issue), application stories (sure, FORTH
is fun, but letb show the world what we can & with it!), exarnples
of well-written FORTH code (the best way to learn style IS by
reading elegant examples), and any ideas, discoveries, impressiorrs
or feelings you care to express (this is ywr magazine, after all!).

In short, we'll be concentrating on how to use FORTH in
solving problems.

By contrast, system implementation details are more the
renponsibillty of the individual vendors' documentation. In
addition, the FORTH community boasts two organizations
devoted to improving and extending the language: the Standards
Team and the FORTH Modification Laboratory (FORML). Each
o f them grarps convenes annually, and the proceedings of these
conventions (available thmugh FIG) are extremely valuable docu-
mentr for the advanced study of FORTH.

I'm looking to each of y w to help make th i s the kind of
maquins you want it to be, by contributing articles, examples,
and letters. We don't have a staff of writers, so everything we
print comer from you. (If you want to contribute but don't know
what or how, drop me a line. 1'11 send you the information k i t that
Carl put together, and answer any questions you may have.)

to heu from a l l of yw.
I hope you enjoy FORTH Dimensions. And remember, 1 hope

FORTH was created by Mr. Charles H. Moore in 1969 at the
National Radio Astronomy Observatory, Charlottesville, V A It
was created out of dissatisfaction with available programming
tools, especially for obeervatory automation.

Leo Brodie

Mr. Moore and several associates formed FORTH, Inc. in 1973
fo the purpose o f licensing and support o f the FORTH Operating
System and Programming Languege, and to wpply application
programming to meet customers' unique requinmenb.

The Forth Interest Group is centered in Northern Callford&
Our membership is over 3,500 worldwide. It was formed in 1978
by FORTH programmers to encourage use of the language by the
interchange of ideas through seminars and publicatian.

PUBUC NOTICE

Although the FORTH Interest Group pscifies al l I ts pubk8-
tims are non-copyright (public domain), aeveral exceptions
exist. As a matter of record, we would like to note that the
copyright has been retained on the 6809 Aaaembly listing by
Talbott Microsystems and the Alpha-Micro Aaaembly listing by
Robert Berkey. Several conference papers have hsd copyright
reserved. The general statement by FIG cannot be taken an
absolute, where the author states otherwise.

NEW POUCY

The 79-Standard has been voted on and adopted to serve as a
common denominator for transportable FORTH code and for
future dincumtion of FORTH systems. Beginning with the next
iswe, FORTH DIMENSIONS wil l give preference to articles that
adopt the 79-Standard

Listings which UCJ words that are not 79-Standard are
welcome, but if possible explain such words in a brief glossary
with a note that they are not 79-Standard. For instance, i f your
application addrews the name field of a definition (which i s
illegal in the Standard), you should supply a glossary description
of NFA

I f powible, also include the definition of such a word. High
level rarm is preferred, but i f necessary, the definition may be
written in assembler.

We hope this policy wil l encourage unification, eliminate
ambiguity, and simplify explenations.

Page 167 FORTH DIMENSIONS Ill16

LETTERS
FORTH Applicatim ubmry

>ear fig,

As distributors in the u< for F O R M
IT., with a rapidly growing customer
-ase, we are potentially interested in any
aDplication software that is generally
-seful .

Most of our customers are in the pro-
:ess control/industrial/scientific sectors
hiich, by their nature, require fairly ape-
: .alized and customized software. Never-
:heless, we are sure there are many areas
:f commonly useful software and that
s x h software would be useful even if only
3 s a starting point or guideline, in order to
;void too much reinvention of the wheel!

Such software might be offered as free
m d unsupported, a t media cost, or as a
:.largeable product. Whichever way, it
-'eeds to have at least some documenta-
:.on, (i.e., overview and glossary) but it
:xs not have t o be a professional pack-
:?e.

We have an initial enquiry from a user
#YO needs a 3-term controller program for
servo control, and some process mathe-
--a:ics for numerical filtering and linear
:onversion. As he said to us, "surely
someone has done this before and written
I up enough to be useful?". So can you
TIP? If you're offering something free,
xrhaos we can do a trade for somethinq

YJ wwld like.

If people are interested in application
?Kchanging we would be happy to act as a
-ode' for making contacts. And where
aameone has some software that has a
Tarketable value, we are interested in
xloing t o create and promote viable
2ackages. We'll not make any firmer plans
I- suagestions until we hear from you!

Nic Vine
Director
COMSOL
Treway House
Hanworth Lane
Chertsey, Surrey KT16 9LA

Benchmark BattIes

3ear Fig:

I believe that the primary considera-
'.on of an implementation be fluency of
>se, and not speed or size except when
soecific problems arise. But after reading
: i e "Product Review" in FORTH Dirnen-
-ions IW1, page 11 and seeing some
-enchmarks, I couldn't resist trying the
same on my own home-brew implementa-
"on: 4 m M 2-80, S-100 bus (one wait
j t a te on all memory ref%). These are the
-esults I got, plus another column correct-
TJ for my slower clock (but not for the

wait state). I gueu I designed for geed.

h s t want to stick up for the 01' 2-80.
If other people can brag about how com-
pact their implementatiw am* can't I
brag about how fast mine is?

LOOPTEST 23 2.9
-TEST 5.9 7A
*TEST 44n 54.9
/TEST 74.3 88.6

Barudb 4.61
LOOPTEST 1.7 1.1
-TEST 6.8 4.5
*TEST 17.5 11.7
/TEST 29.4 19.6

Note

Al l times in seconds. Each test involves
32767 iterations.

Timln mncm

-

No, I don't use any p e d a l hardware.
I s t the normal 2-80 instruction set. That
mulitply threw me off when I f irst timed
it, but the cycles add up &out right. I
just can't figure out why everyone e lm is
so slow.

I don't have m a s storage. That's why I
skipped the last two benchmarks. I store
everything in EPROMs. Much faster than
those clumsy mechanical devices.

Allan Bonadio
1521 Acton St.
Berkeley, CA 94702

Editor's Note:

Here is the code for the benchmarks
published in Volume 111, No. 1:

: LOOPTEST
7FFF 0 DO LOOP ;

: -TEST
7FFF 0 0 0 I DUP - DROP LOOP ;

: *TEST
7FFF- 0 00 I CUP DROP LOOP :

: /TEST
7FFFODO7FFF I / DROPLOOP;

To 'W or not to

Dear Fig,

I would like to comment on the "Start-
ing FORTH Editor." The "MI command is
bad for reasons of safety and philowphy.
It takes a line from the current a m ,
and puts it "out there" somewhere. If it
goes to the wrong place (them things hep-
pen), good luck finding it.

A far better alternative b the inverse
command, which I call "G" for "get." G
takes the seme parametera as M (block/
line-) and gets a line onlo the currant
screen. I believe that only the amen

being edited ahould change.
this rule* G daer not.

M vioiabs

One further point: G inmrts the new
line g the current line, not under it. This
allows you to alter line 0, which M cannot.

The next extension is BRING , which
gets several lines. It takes (block/line/
count-). I find G and BRING extremely
useful. Commenta are solicited.

Mike Perry

I agree: G is more satisfyinq from the
uaer's point of view. W i t h MI I find myself
checking back and forth between the
source and destination blocks repeatedly.

The problem of copying a line onto line
zero with I'M" reminds me of the =me
problem one has with W" (also in the
"Starting FORTH' editor). I'd like to point
out a simple way to 8'push" a line onto line
zero, moving the current line zero and
everything else down:

0 T U This wi l l be the new line zero
O T X U

The second phrase swaps lines zero and
m.--ed.

FORTH in i ts ckm Write

Dear Fig,

The two paragraphs below appeared in
m article in BYTE Magazins on pg. 109 of
the August 1980 issue. When it first
appeared, 1 agreed with what it was saying
but did not feel the need to point it out to
others. Now, however, 1 think that it's
time to remind al l of us about FORTH and
what it isn't. Clearly it isn't any other
language.

The most important criticiam of
FORTH is that i t s source pro-
grams are diff icult to read.
Same of this impression results
from unfamiliarity with a lan-
guage different from others in
common use. However, much of
it results from its historical
development in systems work end
in read-only -memory -based
machine control, where very
tight programming that sacrifices
clarity for memory economy can
be justified. Todayb trend is
strongly toward adequate com-
menting and design for readabil-
ity.

FORTH benefits most from a
new, different programming
style; techniques blindly carried
over from other environments
can produce cumbersome results.

'ORTH DIMENSIONS 11116 Page 168

It a t i l l eludes me as to why people
insist on building things into FORTH which
are "imports" from other language struc-
tures and that in most places do not have
any logical place in FORTH. Surely they
would not be used by a good FORTH pro-
grammer. Take as a simple example spec-
ings. FORTH does not impose indentation
or strict spacing requirements as do some
other constructs, so why do people insist
on indenting? I disagree that this contri-
butes to the readability of the language as
FORTH is one of the most terse con-
structs in existence. One might say that a
first attempt lo improve the readability of
FORTH should center around removing the
cryptological do-dads that are used. For
instance, I@'' should be renamed
"FETCH'. Likewise, " : " should be re-
named "STORE" and "." changed to
"PRINT".

Obviously this is absurd and so is the
notion of indentation and other pseudo
spacing requirements that some say con-
tribute to "good prograrnming style."
Good programming style is writing clear,
concise, fast code that does simple things
and then u s i T that and Other code to
construct more complex definitions. This
is the premise upon which FORTH was
based. I have seen readable code that was
sloppily written, too big for the job that it
attempted t o accomplish and in a single
word was abominable. However, it
"looked neat and clean."

When the FORTH 19 standard was
released I applauded. We are a l l aware of
the small ambiguities and possible defi-
ciencies in the standard. However, the
standards team must be commended mere-
ly becauae they exist and they at least
attempted to create a standard o f some
kind. Why then don't people write in stan-
dard code? It aggravates me to see code
in your journal prefixed or post-addended
by a phrase similar to "all you need to do
to bring this code up to the standard
is..." Why not write standard code in the
first place?

This letter is purposely provocative
and I sincerely hope that you decide to
publish it. Through it 1 hope to force a re-
evaluation of the way some individuals
look at FORTH. Some of us st i l l think
that FORTH is elegant because of i ts
simplicity. It is unfortunate that many
refuse to see FORTH as the beautiful
language that it is, but see it only as
another language that they'd like to
rese &lee

J.T. Currie, Jr.
Virginia Polytechnic Institute
Blecksburg, VA 24061

WeUexpressed, on both points! Regarding
the use of the 79-Standard, see our "New
Policy" at the front o f this issue.--ed.

Dear fig,

Greetings from the Frozen Wasteland!

This letter is to inform y w of the
formation of a Minnesota chapter of the
FORTH Interest Group. We have had two
meetings so far, with attendances of
twelve and sixteen respectively. We plan
to be meeting once a month. Anyone who
is interested should get in contact with US
f irst at the above address.

We hope to $tart some kind of news-
letter in the near future. I've heard that
it's possible to get copies o f program list-
ings and other handouts which have
appeared at Northern California meet-
ings. C w l d y w please let us know how we
go about getting copies? I have enclowd a
SASE for you to respond.

one of our members is running a Con-
ference Tree (a Flagship for The Commui-
Tree Group) which we hope to use for
interchange of ideas, programr, etc. at-
side the general meeting, end to comple-
ment the newsletter. The phona number
for that Tree is (612) 227-0307. The
FORTH branch is very garse right now,
however, since we are Nst getting off the
ground.

We are also contacting local computer
groups about jointly qonming FORTH
tutorials for specific machines, and pro-
viding a public-domin, turn-key FORTH
system that wi l l turn on their machines.
We currently have such software for the
Apple II, SYM-1, are clow on an Osborne-
1, clone on an OS1, end are seeking out a
TRS-80 version.

Well, that% our plans for the next few
months. We w w l d appreciate your cur-
rent mailing l ist o f Minnesota rerkknts
(55xxx and 56xxx zip codes, I believe).

Hope to hear from you so&

Mark Abbott
Fred Olmn
Co-founders o f MNfig

Happy to hear ebwt your new
chapter! Your mailing l i o t is on i ts way.
And yes, handouts from the Northern Cali-
fornia Chapter meetings are availeble.
Here's how to obtain them:

John Camady of the Northern Cali-
fornia chapter has agreed to serve ad a
clearinghouse. The Secretory of any FIG
Chapter c m mail, each mth, handouts
from his own Chapter's meetings to M.
Cassady. In return, John wil l send back
One set of al l handwts he receives each
month, including those from the Northern
California meetings. Even i f a local
Chepter has no handouts, the Secretary
must sent a t least 8 pastcard to indicate
the Chapter's continued interest. The

Page 169

local chapter% Secretary wil l make the
neceMery copier to distribute to members
of that Chapter.

So, le tb see those handouts from all
the Cheptera! Write to:

John Cassady
339 15th Street
Oakland, CA 94612

Brain-System

Dear fig,

The special FORTH issue of Dr. Dobb's
Journal made a deep impression on me and
on my son. M y son is since 12 years a
system programmer and knows more than
a dozen computer programming lan-
~ u 4 e s . I am a logician and engineer, code
designer and the developer of the only
existing proto-model of Interdisciplinary
Unified Science and I t s computer-
compatible language, the UNICODE.

Thus, I represent a radically different
path of scientific development--dlsre-
garded by many because it does not
promise immediate financial returns.

My approach is centered on a new and
far more encompassing system-idea of the
temporary name "brain-system" having a
physical-hetero-categorical genetically
ordered sequence of models of logic. This
sequence has a specific case for present-
day formal logic and a corresponding sim-
plif ied variant of the system-idea: this i s
&he system-idee of the digital computer.

UNICODE is the first' gec i f ic brain-
system programming language. It IS a
content oriented language, it has powerful
semantics and register-techniques. It has
"words" which are at the same time total
programs for the generation of the invars
and "content" the term intends to com-
municate.

I think to study UNICODE wil l lead to
unauspected breakthrwgh in the develop-
ment o f programming, especially i f think-
ing has been made elastic and modular by
studying FORTH.

I w w l d like to receive the private
addresses of a few creative FORTH fanr
In the hope of your early reply, 1 remain...

Prof. Dipl. Ing. D.L. Szekely
P.O. Box 1364
91013 hrusalem, Israel
December 1981

Anyon, follow that?--ed.

TECHNOTES

p x 3 L o 9 ~ L b n
f a 6502

Andy Bipps
41, Lode Way
Haddenham
Ely, Cambs
cB6 3UL
England

On converting my 6502 fig-FORTH
(V1.1) to work with 256 byte disc mcton, I
discovered (after many system hang-ups)
that WFR's 'ENCLOSE' primitive b not
guaranteed to work with d i e sector 8kw
greater than or equal to 256 bytea in sirs.

In his 'ENCLOSE,' B i l l ums the 6502 Y
register to index through the input text
stream, but this register is only 8 bib, II
i f the text stream contains a block of
delimiter characters, eq, 'space' bigger
than 256, it wil l loop forever, as I fwnd to
my cost:

When will this occur? Never from the
terminal input buffer, which b only BO
characters long.

W i t h a disc sector size of 256 or
bigger, i f you have cn entire sector of
spaces in a load screen, then the load wil l
hang up on th i s chunk o f spaces.

I f your a c t o r size is bigger than 256, then
any chunk of spaces 256 or bigger wil l
hang it.

or...

I encountered this becaue I decided to
emulate John &meal method used on the
POP-11 version, where R/W' handles 1K
every time, so as far as BLOCK, BUFFER,
and ENCLOSE are concerned, the dhc
block i s 1024 bytes, and compiling hung up
on any text gap bigger than 256 bytes!

Anyway, I ENCLOSE (ha ha) a revised
version of the ENCLOSE primitive which I
am now using, which !ws full 16 b i t index-
ing. I'm sure some assembly language
progmmmer could produce a neater ver-
sion, but at least I know that thh One
works.

Keep up the good work.

By the way, I'm w i l l i q to act as a fig
software exchange/librery in the u<,
unless there is someone already doing i t?

L313

XXXl

L 3 l l

L 3 2 6

L 3 2 7

xxxs

. EYTE

.vop.F

.VDRD

L DA
JSR
TXA
SEC
SBC
TAX
STY
STY

DEV
DEC
DEC
I NV
BNE
I NC
I NC
L DA
CW?
BE0

s TV
L DA
STA

1 DA
BNE

STY
STY
L DA
STA
TVA
CWP
SNE
1 DA
CW?
BNE
I NC
BNE
1 NC
JWP

PHA
STY
L DA
STA
1 NV
8NE
I NC
I NC
r LA

t87.'LHCLOSE'
L 2 4 3
**2

Cr82
SSETUP

eS8

s 3 . x
SI .x

sn*3
S l .x
XXXl
t N + 3
81 .x
(SW*S).V
SN
L 3 1 3

t4 .X
$1 .x
t6.X

(S N * Z) .v
L 3 2 7

t 2 . x
s0.x
$1 .x
s3.x

$4 .x
L 3 2 6
$1 .x
S6.X
L 3 2 6
s 2 . x
1 3 2 6
s 3 . x
NEXT

t2 .X
$1 .x
s3.x

XXXS
$1 .x
SN*3

CW? t W
BIE L 3 1 8
STY t 8 . X
JWP NEXT

I I I T I A L I S E AS BEFORE
SETTING H I INDEX - d
?RIME THESE VAPIABLES FOR LOO?

II(CREMENT H l ADDRESS

GET CHARACTER FROM lN?UT STREAM
AND H I INDEX

IS I T DE-IMITLR 7
LOOP IF TRUE

NOW-DELIMITIR SO ?UT FIRST
RESULT ON I+€ STACK

GET CHAUMCTZR ASAlN
BRANCH I F HOT 1. MULL

TIDY LIP RESJLTS FOR 'PULL' EXIT

IF FIP.ST AN3 LAST INDEXES ARE EOUAL

THEN

INSREWENT THIS RESULT

SAVE CHARACTER

SAVE CURP.ENT IN?FX AS OFFSET TO
FIRST DELIMITER AFTI:!l TEXT

INCREMENT 1 W E X
AND H1 ADDRESS
RECOVER C HAZAC TEF.

: I F NOT D E L I ~ I T E P .
: THEN Lo(,
: ELSE E x i ' r

FORM DIMENSIONS W 6 Page 170

TRANSEN1 DEFINITIDNS
Phillip W a s m

Editor’s Note: This article eppeared in
the last issue, but, unfortunately, without
the source code. Here is the article a s i t
should have appeared. Our apologies.

These utiliites allow you to hsve tern-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) in the dictionary during
compilation and then remove them after
compilation. The word TRANSIENT
moves the dictionary pointer to the
“transient area“ which must be above the.
end o f the current dictionary. The tern-
porary definitions are then compiled into
this area. Next , the word PERMANENT
restores the dictionary to its normal
location. Now the application program is
compiled and the temporary definitions
are removed with the word DISWSE.
DISPOSE will take a few seconds because
it goes through every link (including vo-
cabulary link3 and patches them to bypasa
all words above the dictionary pointer.

NOTE: These words are written in
MicroMotionb FORTH-79 but some
non-79-Standard .words am used. The
non-Standard words have the fig-
FORTH definitions.

F I R S T 1000 - CONSTAW TAREA (Transient area addruss)

VARIABLE I” TAREA TP ! (Tramimt pointer 1
t TRAPJSZENT f --- A m 1

HERE T P B DP I i
I PERMANENT (ADDR ---)

HERE: TP ! DP I I
8 DISPOSE (---

TAREA TP ! W - L I N K
EECIN DUP

BEGIN e w TAREA u(UNTIL DUP ROT WP o-
LINTIL DROP VOC-LINK
BEGIN DUP 4 -

UNTIL. DLJP ROT PFA LFA ! DUP O m
UNTIL DROP Q WP 01

U W I L CROP LCOnPILE FORTH DEFINITION8 t

(Examr)* 1
TRANS I ENT
I CASE 8 , . t
: OF .., I
I ENDClF 8 * * t
; ENDCASE 8
PERMANENT
: DEMO1

1,. CASE
* * * OF WWF
e e e OF ENDOF

ENDCASE #

TRANSIENT
t EQUATE (N --- 1

CREATE t INMEDIATE
DOES) B STATE 0

I F CCOWILE LITERAL THEN I
7 EQUATE SOME-LONC-WORD-WP1E
f ERMANENT
: DEMO2 (SOME-LONC-WORD-NAME i s conwild)

SOME-LONC-WORD-M . t (as a Iit+ral 1

D1-E (RMV- th. ~ 0 - s E W a r =-LONC-WORD-NAPIED)
(CAsc, OF^ ENDOF, and ENDCASE t b)
(dictionary. 1

DEMO2 7 OX (T e s t DEMO29 i t mints a ~~vIc). 1

RENEW TODAY!

NOVA b q a

Jdm K. Gotwals
Computer Technology Department

South Campus Cwrb C
Purdue b i ve rs i t y

W. Lafayette, IN 47907

I have just finished installing fig-
FORTH on my NOVA 1200, using the
listing 1 received from fig. Instead of
running it standalone, as the fig listing
does, I run it as a task under RDOS Rev.
5.00.

So far I have found four bugs or omis-
sions in the listing. They are as follows:

Page 10 of the listing - EMIT does not
increment OUT.

[COMPILE 1 does not work properly. It
can be fixed by removing CFA, from
line 07 on page 42 of the listing.

VCCABULARY does not work proper-
ly. This can be fixed by adding CFA
between AT and COMMA on line 53 of
page 44.

!FLUSH) can not be accessed until a
missing <51> is inserted after FLUSH
on line 13 of page 52.

After installim fig FORTH, I entered
the CYBOS editor from the keyboard and
used this editor to boot the fig editor
listed in the installation manual. After
this experience, I am somewhat pessimis-
tic about FORTH's portability between
word and byte addressing machines. I had
to make quite a few changes before the
fig editor ww ld run. Some examples:

BLANKS expects a word address and
word count.

COUNT expects a word address and
returns a byte address.

HOLD and PAD both return word
addresses.

If any RDOS NOVA uSers ww ld like a
copy of my "fig-FORTH," they should feel
free t o contact me.

FORMSLndubComsr

Robert L. Smith

DO, LOOP, and +LOOP

There have been some complaints
ebwt the way that +LOOP is defined in
the FORTH-79 Standard. The first
obvious problem is that the Standard does
not define the action to be taken when the
increment n is equal to zero. Presumably
that was either an oversight, or a typogm-
phical error. The most likely correction is
to treat the n=O case the same as m,
since the arithmetic is defined to be two's
complement, and for that arithmetic, the
sign of 0 may be considered to be posi-
tive. I am aware of other possibilities, but
they seem to be fairly diff icult to imple-
ment or explain.

The second point that is mentioned is
that the parameter range seems to have a
strange asymmetry. When a positive in-
crement is used, the DO-LOOP index I
may not reach the specified limit. How-
ever when a negative increment is used,
the index I may be equal to the specified
increment. Users of fig-FORTH systems
have pointed out that the fig +LOOP is
symmetric in the sense that for either
negative or positive increments the l imit
value is never reached. One may consider
that the Standard version terminates when
the boundary between the l imit n and n-1
is crossed, whether the increment is
positive or negative.

Finally it has been noted that the
Standard LOOP and *LOOP depend on
signed arithmetic. Many, but not all,
FORTHs use a modular or circular arith-
metic on 00-LOOPS, allowing the index I
to directly address memory. The use of I
to address memory in a Standard LOOP
may result in a non-trannqortable program
unless a certain amount o f care is taken.
The Standard version is easier to define
than one involving circular arithmetic.
Note also that the Standard version allows
approximately twice the range of most
circular loops (such as in fig-FORTH).

The best suggestions for new looping
methods can be found in a paper given by
Robert Berkey at the recent FORML
Conference. The paper is entitled "A
Generalized FORTH Looping Structure." I
recommend that readers interested in the
topic get a copy of this pwer and imple-
ment h is suggested words. I wqwld like to
slightly modify his rewlts for the current
discussion. Berkey essentially 8hows a
technique for looping in which the incre-
ment for +LOOP may alternate between
positive and negative values w i t h w t
necessarily terminating the loop. Modular
arithmetic is used so that either signed or
unsigned use of the index I may be
employed. The increment may be any
value. The terminating condition is when

the boundary batwem n d -1 (-
n+l in Beri(ey'r pqmd ia c-
cally. The implementation w n to be
even more efficient than that dscr&d by
Brodie end Sanderaon ("Division, Reh-
tions, and Loops," Rochester C o n f e r n ,
1981). The only apparent dimdvanteqe of
the implementation is that tha index is
computed by addition or wbtraction. A
novel feature of Berkeyb implementation
i s that when the word LEAVE is executed,
the loop is terminated at that point Lo.,
LEAVE actually leaves). Berkey also
sugqests that for normal positive
incrementinq loops that the index range
should include the upper limit, in a manner
more consistent with other languages as
well as typical uae in the fig-FORTH
INDEX. Finally, he suggests a construct
ao that a loop may be skipped entirely i f a
cwnting parameter is zero.

The work disussed above is o f poten-
t ia l interest to future directions in
FORTH. It shows that FORTH is st i l l
evolving, even though it cannot effect the
current Standard.

Podtian Wmbd

I am looking for a aoftware engineering
position with another compmy that uses
FORTH. I would like to work for a f irm
using FORTH to develop state-of-the-art
systems software; specifically, a FORTH-
based developmcnt and -rating system
environment to compete head on with
UNIX.

Brent Hoffman
13533 37th N.E.
Seattle, WA 98125
(206) 363-0642

FORTH DIMENSIONS nIl6 Page 172

9900 nmco

%inr F. Lrnk
Loemdeiner Rlnq 17

6501 Woerrstadt
Carmaiiy

I h a w had mrne t r o h l e qetLiilq tny
99W FORTH running.

To ease the findiiiy of i:rrors I wrote a
proqrein to d ig lay all irrportarit vectors
(IP, W, CODE, r i , SP) and thL. f i rst 7 stack
contents. Even the stack's qrowintl is
visible.

1 would l ike to cnttributc: it to YUI, JI

you can o f fe r it to ell YYIW) usera wi th H

AM3M or similar board.

It was a qrnat luck for ine that I did
not need the addresses >57C wid >5711, WH!
could u& it for a branch to ttin STAIIJ!,
prmram. This o rmram IS switc:trctd o f f hv

44
46
48
4A
4c
4E
3)
52

BE
V1:l
9 2
9 4
9b

9 A
9C
9E
AO

A 4
A 6

118
M

?n

a2

. -
the code HEX 455 %4 : and switched 00 by
HEX 457 384 ! .

aE 92 TEXT " u-"
84 63 l C X l " L l l n t - "
6C 5 4 l C X 1 A=**
C? S', I L X l " SI'-"

A TECHNIQUES TUTORIAL: EXECUTION VECTORS

This month, we contlnw our axplorr-
tion of FORTH pmgmmmlng technlqwr
by taking a look at a concept known 08
Execution Vectors. Thb la really a fancy
name for very simple concept, ~ w l y
using a variable to hold a pointer to a
routine that is to be executed later.

It is only fair to warn you that the
dialect of FORTH that I am using is the
one discumed in Starting FORTH by Leo
Brodie. It has several differences from
figFORTH, not the least of which is the
fact that in figFORTH EXECUTE operates
on code field addremes (cfa's), while in
Starting FORTH EXECUTE operates on
parameter field add rees (pfab). This
may not seem like a big deal, but i f you
have ever fed EXECUTE a pfe when it was
expecting a cfa, you have undobtedly
remembered the result. Anyway, my
EXECUTE uses pfab. Its function is to
perform or EXECUTE the word that thb
pfa points to. An example wil l clear this
up. Swpow we have the following:

: GREET ." HELLO, HOW ARE YOU' ;
' GREET (LEAVE THE PFA OF

GREET ON THE STACK)
EXECUTE (AND NOW PERFORM IT)

the result is:

HELLO, HOW ARE YOU

vhich is the same reauk as just typing
GREET.

The above may not seem too signifi-
cant, bct the implicationr are tremen-
dous. Consider the following examples:

VARIABLE 'EMIT

: EMJT (CHAR --)
'EMIT @ EXECUTE;

' (EMIT) 'EMIT!

I amume that (EMIT) is a routine which
takes a character from the stack and
sends it to the terminal. By defining EMIT
to use 'EMIT as an execution vector, we
now have the ability to redirect the output
of FORTH in any manner we choon. For
example, ruppoae we want al l control
character8 that are sent to the screen to
be prefixed with a caret. We could do the
following:

I co(lIIQ-RIIT , om ---)
ow 32 t LY I < IF t Catro1 mu?)

94 ..) IEMITI I V n , n i t an I
64 (-11 A - I I (.nd cmrrt L t I

7)IEN
(EMIT) ;

' Q Y T I Y L f M l T 'EM11 !

Now all regular characters wil l fa i l the
test, since they wi l l be larger than blanks;

t-kwlry Lmm
Laxm a Hnrrlr hc.

24301 Southllnd B l v a
Haymrd,CA 94545

however, control c b ~ c b n wll l rrccoad
and wi l l be lncnmented by 64, mJtlnq
them dlsplayabb.

There are mveral other FORTH words
that have proven uaful to vector. %ma
of thaw include:

KEY input from keyboard primitive

CREATE change header structures

LOAD ussful for many utl l l t ler

R/W didc i/o primitive

For example, i f LOAD were vectored,
then by redefining it to print a acreen
instead of loading it, you could write a
print ut i l i ty which prints acream in I d
order by LOADing a load s m e n md rode-
fining LOAD to print. CREATE could be
changed to add the screen number of each
&finition to the dictionary header so tbt
it c w l d later be retrieved with VIEW or
the equivalent. KEY may be changed to
get i ts characters from a f l le somewham
instead of the keyboard. In ohart, there
are a thousand and one ums for Execution
vectors.

But be careful, I may have opened
Pandora's box with the above selling job.
There is a price to be paid for execution
vectors, and that is complexity, the arch-
enemy of reliability. Every word that you
decide to vector a t least doubles the com-
plexity of the FORTH system you are
running, since it introduces at least two or
more states that the system can be in.
You must now also know what the version
is of each execution vector you are
using. If you have 3 different EMITS and 2
different KEYS and S different LO-,
you have a total o f 18 different states
that the system can be in just on thew
vectors alone. So urn vectors garingly,
otherwbe y w wil l Ion, control of the
complexity very very quickly.

Having decided to u n execution vec-
ton, we're now faced with different
approeches towards implementing them.
The one described above works, and is
umd by many people, but it has one unfor-
tunate property, namely the need to name
a variable which is basically overhead.
Here is another way to accomplish the
same thing withart.having to define a
variable. Consider the following:

I DIE I --- 3

I Emcurer
I -1. THIS YOUD W -0). 1

-re I -- I
c . 1 O I L ,

w.> I -- I
a E l E E V R 1

1 I. t cca --- I
* ! ,

DIE Is u r d to a n d m UTW -,_o
the termlrul md M t tiu FORTH
into a clean stab. D(0CuTE: m a ack
lng word which Initlallrw i td f o o&
but hopefully wi l l be dungad lmtar by (hr
umr. Word8 defined with EXECUTE: cm
be changed with IS as fol low:

EXECUTE: EMIT

(EMIT) I S EMIT (or perhaps)
CONTROL-EMIT IS EMIT

What EXECUTE has done is combined
the variable MITIO with the Execution
Vector name into one name. IS is used as
a convenience, w that the user c m forget
the internal structure of words defined by
EXECUTE:. Alw it provides m extremely
readable way of redefining Execution
Vectors. Notice that as defined, I S may
only be uwd during interpretation. 1 leave
it aa an exercise for the reader to define
an IS that may be compiled within : defini-
tions.

Another approech to redefining execu-
It tion vectora is via the word ASSIGN.

could be defined as follows:

It would be used as follows:

When UPPER-ONLY is executed, EMIT
is redefined to execute the code followinq
the ASSIGN, which wil l convert all lower
cam chamcters to upper caw, and send
them to the terminal. Note that unlike IS,
ASSIGN may only be used within : defini-
tions.

That's el l for now, good luck, and m y
the FORTH be with you.

Page 174 F O R M DIMENSlONS W6

CHARLES MOORE'S BASIC COMPILER REVISITED
M i c h d Perry

In this paper I will dincur neveml
interesting featuren of the "BASIC
Compi!er in FORTH" by Charles Moore
(198i FORML Proceedings).

Why is a BASIC compiler interesting?
There are a number of reasons. Foremost
of them is that BASIC is in many ways
typical o f a variety of popular languagen,
particularly FORTRAN, PASCAL, and
ADA. Conspicuous features of them lan-
guages are algebraic notation, lack of
access to the underlying hardware, poor
input and output facilities, and nmaxten-
sibility. FORTRAN and BASiC also suffer
from poor structuring due to the extensive
u& of GOTO. These languages ali tend to
be best at solving equationn. Other prom-
inent features of BASIC are it s une of
statement numbem as labels, low peed,
and its um of a few complicated functimn
(e.g., PRINT) rather thm many simple
ones.

Why is it slow? BASIC interpreten
usually convert source code ntatementa to
an intermediate form, where keyword8
become tokens. The token interpreter is
slow because tokenn munt be deciphered
(translated into actions) a t run time. This
BASIC to F O R M compiler producer code
which runs unuwaily fant. This is becaum
it produces FORTH object code, im., aa-
quences of addrennen of code routines.

You should look a t the example pm-
grams (blocks 80-82) before reading the
text. You will notice that each BASIC
program becomes a FORTH word named
RUN. It is executed by typing it8 name,
i-e., RUN. Wn in how BASIC ururlly
works: you type RUN to execute the
program. It nerves to dsmmntmte that
from FORTH's point of view, BASIC only
known one "word," RUN. In it not mom
useful and flexible to let routinen have my
name, and to be able to execute any of
them by typing i tn name? Yes, and that in
a key feature of FORTH.

How It Works

I will refrain from c o m m t i n g m the
intrinsic value of a BASIC compiler; that
has already been covered well in Mooreb
paper. Ttm principal featursn I will db-
cuss are the handling of operator prece-
dence, variables in algebraic equat im,
and the use of the FORTH compiler. The
most important part of this BASIC com-
piler is its ability to convert algebraic
(infix) scurce code to r e v e r r polish (pont-
fix) object code.

A BASIC proghm in compiled imide
the colon cbfinitim of a word Mmsd
RUN. Thls means that the FORTH nyatem
is in its compile state, and any words to be

executed during complhtim must be
immediate. Thin uaa of the FORTH com-
piler wan perhmn my gmateot lemon from
studying thin BASIC compiler. The ordi-
nary FORTH compiler in far more VOW-
tile thrn 1 had realized. If I had written
this compiler, it would doubtkrr have run
in the executim state end would hevs
been far more complicated an a mwlt.

statement
10 LET X = A + B
will be compiied into object cads OqUiVa-
lent to the FORTH exprenim
X A@B@+SWAP!
where X, A, and 8 ara vari lbn. b Of
the varilblen (X) return m addma, th
rent return valuer (with a fetch). The add
is compiled after the fetchen of the v a h n
to be added. The equals becoma8 the

SWAP ! a t the end. Ekcaus the murce
code (in BASIC) in in algebbnk notatim,
and the (FORTH) object code h in mveme
polilh order, m m way b needed to
change the order of operation8 when com-
piling the BASIC program. The mecha-
ninm which controls the compihtim order
in bawd m the idea of operator p m e -
&me, which meam that nome operatorn
am asnigned higher priority thm oth.rr.

Let's look at m example. The BASIC

PRECEDOJCE

The idm of operator precedence b a
prominent feature of mo$t computer Ian-
guagen (FORTH in a notabla excsptiod.
Operatlmn are not neceuerily performed
in the order you w i l y . An exampb will
help. The equation X s 5 + 7 2 cauld
mom either X t (5 + 7) * 2 or X I S +
(7 21, uwally the latter. In FORTH thin
would be 7 2 * 5 + X : w h s r s the order in
explicit. In a 4 e b n k I r w ~ u q e n
method b needed to clarify the order of
evaluatim of operatorn in exprer im.
That in what prscedonce doer. Each oper-
e t im in arrignsd a precedence level.
Operatlonn with higher prscedence are
performed earlier.

b r i n g compiiatim of the BASIC pro-
gram (the FORTH word mmed R W the
compilation of many words in deferred.
Thh al low the order of word8 to differ
between the wrce code end the object
code. Tdce an m exanpb. TO dater
cowpilation of '+I a new word ia created
which b immediate (md m mecub8 at
compile time). When thb new word b
m w t e d , it haven tb addrew of I+' on
the stack, and an top It &aves the pme-
denca v a h of '+I. fhs &fining word
PRECEDENCE creamn the new word an
foilown: It 2 PRECEDENCE + * . Thb
creates a new, immediate word ~ m d I+',

which will leave the adcimn of the old
word '+I under tha value 2.

The word which decider how long to
defer compilatim in DEFER. DEFER
lookn a t two pairs of numbern m the
ntack. Each pair connintd of an addreso
and e precedence value. If the precedence
of the top pair in larger than that of the
lower, DEFER doer nothing. If tha top
procadence is lea than or equal to the one
below, the addrerr part of the lower pair
in compiled, and its precedence is dis-
carded. DEFER will cmtinue to compile
until the upper precedence in larger than
the Lower.

So how do you get started? Esnen-
tially, moot BASIC keywords (arch as LET)
execute START wqhich leaves NOTHING
0 m the ntack, where W T H l f f i is the
addreas of a do muling routine and 0 is its
precedence. Thin pair will remain on the
ntack during the compilation of that
statement, becaurs everything has higher
than zero precedence.

A t the end of each line, RPN in execut
ed. It performn a 0 1 DEFER, which
forcer the compilatim of MY deferred
wordn, becane every aperator ha8 a pre-
cedence of a t leaot I. RPN then connumes
the 0 and executen NOTMNC. Actually,
each ntatement in ended by the start of
the next. BASIC keyword8 arch an LET
execute STATEMENT, which cmtains
RPN (to fininh the previoun statement) and
START (to begin the rwxt).

BRANCHING

Three new branching primitive8 are
u a d . They are compiled by varioun higher
Level wordn. JUMP is uned by GDTO.
SKIP end JUMP am ursd by IF-THEN.
JUMP in cwrpiled followed by an abmolute
addreso. When executed i t nimply loads
that addrem into the IP (virtual machine
inntmctim pointer). When SKIP executen,
it taken a boolean off the ntack. If true it

following JUMP.

(NEXT) in u s d for FOR-NEXT loops.
It b compiled followed by m obsolte
addrow. When executed it taken three
parametem from the ntack: final value of
the loq, hdex, ntep nize, and the addrenn
of the veriabb containing the current
vabo of the bop index. It addn the ntep
(p ~ p QC minurr) to the variable, md loopn
until the Wax p a a m the limit.

Adding GOSUB would require another
b m r h h g primitive, CALL.

8dd8 4 to t h IP, dC@ing (UWdly) the

Page 175 F O R M DIhENsfoNS m/ 6

STATEMENT NUMBERS

Each BASIC statement must be pre-
ceded by a number. This number acts as a
label, allowing branches between lines. In
this compiler, the numericd value of the
labels does not af fect execution order.
When a statement number is encountered,
i t IS compiled in line as a literal. The
address of LIT i s compiled followed by the
l iteral value 10. For example, when the
statment "10 REM" is encountered, 10 is
compiled as a literal. The keyword REM
IS immediate, and so is executed. It
beqins by executing STATEMENT, which,
amongst otber things, fetches the value o f
:he l i n e number just compiled (lo), and
enters it into the statement number table
~/\S,' along with the address (HERE) o f the
start o f that statement. STATEMENT
t9en deallocates the space used by the
l i teral 10 (wi th a 4 ALLOT). It scans the
table and resolves any forward references
t o the new statement. When a forward
reference occurs, as in "GOTO 50" before
statement 50 is compiled, GOTO compiles
'JUMP 0'. The zero w i l l later be replaced
by the address of line 50. The reference is
entered into the table wi th the address to
i e patched instead o f the actual address
r.f statement 50. Additional forward
-eferences to the same point w i l l be
rhained to each other. To indicate that
this is a forward reference, the address in
:he table is negated. This means that
3AS!C programs must be compiled below
?COCH, so that a l l addresses appear to be
Dosi!ive. Here simplicity was chosen over
qenenlitv.

VARIABLES

There are two particularly interesting
:5ings to notice about variables. They are
Immediate, and they know which side of
an equation they are on. Three types o f
variablps are supported: integers, arrays,
and two dimensional arrays. Variables
must b e declared (defined) before use.
The BASIC expressions: LET X = A + B
(where X, A, and E are variables) compiles
into the following FORTH equivalent:
X A@!@+SWAP!
Notice that when an integer appears on
the lef t o f an equals sign, it must compile
i t s address, and when on the r ight side, i t s
value (address, fetch). Also note that only
one can appear on the left, while many
can be on the right.

The way this is implemented is wr-
prisingly simple. The variable ADDRESS
contains a flag which indicates which side
of the equals sign a variable is on. The
word LET sets ADDRESS to 1. "INTEGER
XI' creates a variable named X, which is
immediate. When X is executed it com-
piles i ts address. X then examines
ADDRESS. I f it is true (non-zero), X
simply makes it zero. If ADDRESS is
false, X compiles a @ af ter the addresn,
thereby rturning the value when the
BASIC program is run.

Notlce thrt tho .quL, .cI *
role in this p roma: waryU&q b -m
keywords (e.g., LET) md v u t . b l r

Futum Directions

Many more featurer can artily be
added to this BASIC compiler. &t why port.bl.
bother? A much more fruitful line of 00- m
endeavor w w l d be to make uw o f the of 1- m d L
lessons learned in this compiler t o wr i te w s qwmmc?w W -
compilers for other, more uaeful, Ian- Whether the eorrpulrr
guages such as C. A C compiler which is
easy to modify and extend, and just as them.
portable as FORTH is, could actually be

uaeful or not, it b rmrolllr ,-a
(acreens on f obnu i rq -1

Marc Perkel
Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

FORTH DIMENSIONS II1/6 Page 176

This art ic le is rn enhancement o f the
idea presented by Kim Heris a t the
Rochester FORTH Conference (from the
Conference Proceedings, page 97).
Basically, the art ic le proposes a wordset
of pr imit ives for defining control words
such as IF , ELSE, THEN, DO, LOOP,
BEGIN , WHILE , REPEAT , UNTIL ,
AGAIN, CASE , etc. Kim points out that
these strucures are either compiling a
branch to a location not yet defined (such
as IF --> THEN) or back to a location
previously defined (BEGIN <- UNTIL 1.
There are two steps in compiling either
k ind o f branch: marklog the f i r s t place
compiled and then later n w l v i n g the
branch. Thh observation leads t o four of
Kim's words:

>MARK Marks the source o f forward
branch and leaves a qep.

>RESOLVE Resolves forward branch and
leaves a gep.

<MARK Marks destination o f back-
ward branch.

<RESOLVE Rewlves backward branch.

I complement Kim a t this point for his
excellent choice o f names. Here's where

compiler necurity comes in.

The word >RESOLVE is filling a gap
le f t by >MARK . If >RESOLVE were t o
f i rs t check to make sure a gap was there
(W P @ 0 ?PAIRS it w w l d help enam
that the value on the stack was indeed le f t
by >MARK. Likewise, i f <RESOLVE made
sure that the point where it branches back
to does not have a gap (DUP @ NOT
0 ?PAIRS) it would guarantee tha t it was
not answering a >MARK . This method
allows dme compiler security where it is
important not to carry pairs on the stack.

Example:

>MARK HERE 0 , ;
>RESOLVE

<MARK HERE;
<RESOLVE DUP 69 NOT 0 ?PAIRS, ;
IF C, >MARK;
ENOIF >RESOLVE;
ELSE C3 IF SWAP ENDF ;
BEGIN <MARK;
UNTIL C, (RESOLVE ;
AGAIN C3 UNTIL :

OUP @ 0 ?PAIRS HERE
SWAP !;

WHILE IF;
REPEAT SWAP AGAIN ENDF ;

llicbrrl Pwry !98:

78
0 I Charles More's BLSlC co~pilw, lnpat and Output)
: : RSK
2 : PUT
3 : IINPUTI
4 : (, I I n) (, I I4 OVER - SPACES TIP€ SPACE ;
5 : , I n) "NORE ' (, I I MFER ; IlWlEDlATE
6 : ' [CWIPILEI .' ZDROP ; IllllEDlATE
7 INPUT DEFlMlTIOffi
8 : , '16N8RE RPN 0 (I W W T) 1 RDOFXSS ' ; IIIIILPIIITE
9

10 MITHETIC DEFlMlTlM
1: : WllMT STATERENT EOllPILE CR ' (, I I ; I H E D I I T E
I ? : IIIPUT STRTEAENT ?DROP C W I L E RSK ' IIWUT) 0 IRUT
1: ! ADDRESS ; I M D I N E
14
15

.' -J ' WRY ;
(MI#) SYnP ! ;

CWlPILE PUT ;

80
0 Dwycr, page 17, Proqraa 11 SCR
1 IWTEMR J IWTELR K
?
5 : R'JW STRRT

5 20 FOR K = 1 To 4
6 ?O PR!WT ' NOTHINS CW 60'
; 40 FOR J = : TO 5
8 5P P R X ' Y R M '
9 69 EIT 3

10 70 LIT I!
I : 80 END
I?
13 RFW
14
! 5

4 IC PRINT TIIS IS n CO~PIJTER*

82
? : basic: i n p u t l w i n t I
1 LNTEEER K
2 IWfE6E4 I
? INTE5EQ V
4
5 : RUN STRRT
a :? IWPUT I , v
7 20 LET r = 1 t v i t 3

SER

8 40 PRINT X , V , k
9 80 END

1? ;s
: I
1 .) .A

bRIT)II(ETIC DEFlWlTlMls

: t l I n n - n l 1 WID0 IMRILOI I ;
6 PRECEDENCE 111
5 PRECEDENCE 11
4 PRECEDENCE I 4 PRECEXEE ,! 4 PRECEDENCE I/
3 PRECEDENCE + 3 PRECEDENCE -
2 PRECEDEKE (2 PRECEDENCE

: * I a n 1 W P ! ; IPRECEDEKE.

81
[basic: ar ray d n o 1
INTE6ER K
? ARlMV COOllDlllllTE

ECR

: RWI START
10 FORK = 1 TO 7
20 LET CWRDIllATE K = I 10 - K I 11 3
40 PRINT CWlRDlMlE K + 5
60 WEIT K
80 EllD

:

Illllllllltlltllllllllllllllllllllllllllllllllllll
I I
I Kicharl Perrv I
I l 44h Stinnage Are. I
I BerLe!ev, C a l i f . 94102 I
I 14151 5 2 b - W b I
I I
lllollllllllltlllllllllllllllllll~llllllllllllllI

1.

:4

llichael P s r y l?El

A ROUNDTABLE ON RECURSION
Recursion, as it applies to FORTH, is

the technique of defining a word in such a
way that it calls itself. One of the nicest
examples I've seen of a good use for
recursion can be fwnd in Douglas R.
Hofstadter's book Godel, Escher, Bach.
He describes a system which can produce
gramatically correct phrases out of parts
o f speech.

I'll use FORTH to describe his
example:

: FANCY-NOUN
4 CHOOSE
(select random number 0-5)
C ASE

0 OF NOUN ENDOF
1 OF

NOUN PRONOUN
VERB FANCY-NOUN ENOOF

2 OF
NOUN PRONOUN
FANCY-NOUN VERB ENDOF

3 OF
NOUN PREPOSITION
FANCY-NOUN ENGOF

ENDCASE ;

Three of the four possible variations on
FANCY-NOUN include a call on FANCY-
VOUN itself. Case 0 might produce
"books." Case 1 might produce "man who
reads books." But Case 1 might also
oroduce something more complicated, like
'man who reads books that explain alge-
bra," if the iner call to FANCY-NOUN
decides to get fancy.

Normally FORTH deliberately prevents
recursion so that you c8n call an existing
word inside the definition of a new defini-
tion o f the same name. For example:

+ SHOW-STACY t SHOW-STACK ;

This example might be a redefinition
of plus to teach beginners what the stack
locks like before and after addition. The
olus that is called in the middle of the
&finition is the oriqinal + , not the one
7eing defined.

FORTH prevents recursion with a word
called SMUDGE . This word usually tog-
qles a bit in the name field o f the word
most recently defined. With this b i t tog-
g!ed, the name is "smudged"; that is, un-
recognizable. In the definition of t above,
the colon lays down a head in the diction-
<%ry. and then executes SMUDGE before
compilinq the rest of the definition.

When the second t is encountered, the
compiler searches the dictionary for a
word of that name. The new head with
the same name is bypassed only because it
has been smudged.

At the end of the definition, =mi-
colon again executes SMUDGE . This
toggles the b i t back to i ts original state,
so that the name is again findable.

There are various means of circum-
venting FORTH's protection against recur-
sion. Here are two recent contributions
from our readers:

A Rowmion Tschnisus

Christoph P. Kukulies
Aachen, West Germany

Here is my mlution to the problem of
recursion in FORTH shown in a poasible
way to implement the ACKERMANN'a
function (see FORTH DIMENSIONS, Vol.
111, No. 3, p. 89).

First test i f y w r FORTH-syatem is
"crashproof" with the following sequencer

:CRASH [SMUDGE 1 CRASH:
SMUDGE CRASH

After having recovered from CRASH
yoit should try this:

(m n -> ACKERMANN (m,d
:ACKERMAW (m n - ACK)
[SMUDGE 1 SWAP DUP O= IF DROP 1+

ELSE SWAP DUP
O= IF DROP 1 - 1 ACKERMANN

ELSE OVER SWAP
1 - ACKERMANN SWAP
1 - SWAP ACKERMANN

THEN
THEN ; SMUDGE

Be aware o f typing
3 4 ACKERMANN .

Amthsr RecMim

Arthur J. Smith
Osahewa Canada LIG 6P7

Regarding the recursion probbm, I
think that I have found a more elegant
solution. The aoohrtion involves an
immediately executed word to re-
SMUDGE the word being defined.

I define a word RECURS as follows:

: RECURS SMUDGE ; IMMEDIATE

then UJI) the word to bracket the recuraive
self definition as in the example:

: SUM
W P 1- DUP IF RECURS SUM RECURS
ENOff
+

9

1 uae the RECURS word in tree
sea rch .

Editor's note:

The technique that is generally pre-
ferred was decrribed by Joel Petersen in
the original article. It defines MYSELF as

: MYSELF
LATEST PF A CFA , ; IMMEDlATt

or, for mme other versions such as poly-
FORTH:

: MYSELF
LAST @ @ 2t , ; IMMEDIATE

MYSELF simply compiles the code
field of the latest header in the dictionary
(the word being defined) into the defini-
tion.

The problem with using the word
SMUDGE insids a definition is 1) it's not
readable, since smudging has nothing to do
with what the definition is about, and 2)
i t s behavior is different on different sys-
tems.

Simllarly, having to say RECURS
ACKERMANN RECURS is not quite as
readable as simply MYSELF.

An even more readable solution is this:

: :R

: R ;
[COMPILE] : SMUDGE; IMMEDIATE

SMUDGE [COMPILE] ; ; IMMEDIATE

Here a qmcial veraion o f colon end of
memicolon named :R and R; are defined to
allow recursion without any other hoopla.

RENEW

RENEW TODAY I

Page 179 FORTH DtMavsloNs IU/ 6

8080 ASSEMBLER
JohnJ.cacwdy
339 15th Street

Oakl.nd,CA 94612

This 8080 assembler has been available
in a slightly different form for approxi-
mately one and one-half yeare. It appears
to be bug-free.

ENDIF 's have been replaced by THEN,
and AGAIN has been removed in conform-
ance with FORTH-79. 1 have never had
occasion to use AGAIN : I doubt if 1'11
miss it.

! have removed the compiler security.
We frequent!y want non-structured control
mechanisms at the code level. The
?PAIRS really gets in :he way.

1 have introduced three macros: NEXT
PSHl and PSH2. They emplace, respec-
tively, a jump to NEXT , a jump to the
byte before NEXT and a jump t o two bytes
before NEXT . Literally, PSHl means
push one level (HL) and fa l l into NEXT. I
5elieve this i s a more traditional approach
and the source code has a cleaner appear-
ance.

The actual address o f NEXT is stored
in (NEXT! . I t s value is plucked from ;S .

technique was suggested by Patrick
Swayne of the Heath User's Group. I say
"suggested" because Swayne's method is a
b i t different.

! have le f t out the conditional
CALLS. I never used them and they can
always be " C, I' 'd in. The conditional
jumps are, o f course, handled automatic-
ally by the conditionals: IF WHILE and
UNTIL, in conjunction wi th the f lag
testers: 0 = CS PE 0 < and N O T .

I have opted to retain the immediate
instructions MVI and L V I as opposed to an
immediate flag #.

The 1MI 2MI etc stands for "number
one machine instruction" etc. The first
cut of this assembler was wri t ten when
three let ter names were the craze.

! have a selfish motive in publishing
this assembler. I hope that this w i l l fluah
out assemblers for other processors end
that there w i l l be a "rush to prklish."
There is a good reason to do this besides
vanity. I f someone else publishes the
assembler for the "xyzl' chip that you use,
and it becomes established, it means that
you w i l l have to change your code t o CMI-
form with the quirks o f the "established"
version. It pays to get there first.

S c r e e n 48 3 0 H
0 (FIGFORTH 8080 ASSEMBLER 1 8 1 A U G 1 7 J J C 80MAR04)
1 HEX VOCABULARY ASSEMBLER IMMEDIATE : 8. DUP + DUP + DUP + ;
2 ASSEnBLER CFA ;CODE 8 + ! (PATCH ;CODE IN NUCLEUS)
3 : CODE ?EXEC CREATE [C O M P I L E] ASSEMBLER !CSP * IMMEDIATE
4 : c ; C U R R E N T s CONTEXT I ?EXEC ?CSP SMUDGE ; ~ M M E D I A T E

6 ! C S P * IMMEDIATE ASSEMBLER D E F I N I T I O N S
7 4 CONSTAN; H 5 CONSTANT L 7 CONSTANT A 6 CONSTANT PSM
9 2 CONSTANT D 3 CONSTANT E 0 CONSTANT B 1 CONSTANT C
9 6 CONSTANT M 6 CONSTANT S P ' ;S OB + e CONSTANT (NEXT)

5 : LABEL ?EXEC 0 VARIABLE SMUDGE -2 ALLOT [C O M P I L E] ASSEMBLER

1 0 : IMI <BUILDS c , DOES) cc c , - : 2 ~ 1 <BUILDS c , DOES) ce + c , ;
1 1 : 3MI < B U I L D S C , DOES> C e SWAC 8. + C , ;
1 2 : 4MI < B U I L D S C , DOES> C$ C , C , ;
13 : 5YI < B U I L D S C , DOES> C e C , , ; : P S H l C 3 C , (NEXT) 1 - , ;
1 4 : P S H 2 C 3 C , (N E X T) 2 - , ; : NEXT C 3 C , (N E X T) , ;
15 ;S

S c r e e n 49 3 1 H
0 (F I C F O R T H 8080 ASSEMBLER 2
1 00 1MI N3P
2 07 1MI RLC
3 E 9 1MI PCHL
4 27 1 M I DAA
5 80 2MI ADD
6 A0 2YI A N A
7 09 3MI DAD
9 OA 3MI LDAX
9 OB 3MI DCX

10 C 6 4MI AD1
1 1 E 6 431 A N 1
12 22 5MI SHLD
13 CD 5MI CALL
1 4
15

76 1MI HLT
O F 1MI RRC
F 9 1MI S P H L
2F 1MI CMA
88 2MI ADC
A3 2 H I X R A
C 1 3MI POP
0 4 3MI I N R
C 7 3YI RST
CE 4MI A C I
EE 4MI X R I
2A 5MI LHLD
;s

81MAR22 J J C 80MAR04 1
F3 1MI D I F B 1MI E I
1 7 1MI RAL 1 F 1MI R A R
E 3 1MI XTHL E B 191 XCHC
37 1MI S T C 3F 1MI CMC
90 2 H 1 SUB 98 2 Y I S B B

B 8 2MI CWP BO 2MI ORA
C 5 3MI PUSH 02 3MI STAX
05 3MI DCR 03 3MI I N X
D 3 4WI OUT DB 4MI IN
D6 4MI SUI DE 4 H I SBI
F 6 4MI O R 1 F E 4MI C P I
32 5MI STA 3A 5 Y I LDA

S c r e e n 50 3 2 H
0 (F I C F O R T H 8090 ASSEMBLER 3 8 1 A U C 1 7 J J C 80MARO4)
1 C 9 1 Y I RET C 3 5 H I J M P - C 2 CONSTANT 0s D 2 CONSTANr C S
2 E 2 CONSTANT PE F2 CONSTANT O< : NOT 9 + ;
3 : MOV 8' 40 + + C , ; : M V I 8. 6 + C , C , ; : L X I 8' 1 + C , , ;
4 : THEN HERE SWAP ! : : I F C . HERE 0 , ;
5 : ELSE c3 IF SWAP THEN ; : BEGIN HERE ;
6 : UNTIL C . , : : WHILE I F ;
7 : REPEAT SWAP.C3 C , THEN ;
8 ;S
9

10
11
1 2
13
1 4
15

Page 180 FORTH DIMENSIONS In16

Screen 51 3 3 H
0 (EXAMPLES USING FORTH 8080 ASSEMBLER 1 8 1 A U G 1 7 J J C 8 0 H A R 1 2)
1 FORTH D E F I N I T I O N S HEX
2 CODE CSWAP (WORD-I--- S U A P S HI AND LOU BYTE OF WORD ON STACK)
3 H POP L A MOV H L MOV A H MOV P S H l C ;
4 CODE LCFOLD (FROM-2 QTY-1--- CONVERTS LOWER CASE TO UPPER)
5 D POP H POP
6 BEGIN D A MOV E ORA Oo NOT
7 WHILE M A MOV 60 C P I C S NOT
8 I F 20 SUI A M MOV
9 THEN D DCX H I N X

1 0 REPEAT NEXT C ;
1 1 ;s
12
13
14
15
Screen 5 2 34H

0 (EXAMPLES USING FORTH 8080 ASSEMBLER 2 8 1 A U G 1 7 J J C 8 0 M A R 1 2)

2 C L MOV B H YOV B POP D POP XTHL
3 BEGIN B A MOV C ORA 0.r NOT
4 WHILE M A MOV H I N X D STAX D I N X B DCX
5 REPEAT B POP NEXT C ;

T L L '1OV B H YOV B POP XCHC
3 4 !I' 3 DAD XCHG XTHL B DAD
3 9kGIV B A MOV C ORA O= NOT

1 CODE CXOVE (FROM-3 TO-2 QTY-l--- SAME AS I N NUCLEUS)

6 CODE -CMOVE (FROM-3 TO-2 QTY-l--- SAME BUT OPP D I R E C T I O N)

10 WHILE H DCX M A MOV D DCX D STAX B DCX
1 1 REPFAT B POP NEXT C ;
12 : MOVt (FRO'I-3 TI-! J ; Y - l - - - SMART MOVE, DOES NOT OVERLAY)
1 3 > R 2DUP R > ROT ROT -
1 4 I F -:MOVE ELSE CMOVE THEN ;
15 :S
Screen 53 35H

0 (EXAMPLES USING FORTS 8080 ASSEMBLER 3 8 1 A U G 1 7 J J C 80MAR12)
1 80 CONSTANT CMMD (COMMAND BYTE 1
2 FO CONSTANT CMMDPORT (COMMAND PORT)
3 F1 CONSTANT STATUSPORT (STATUS PORT

5 BEGIN D DCX D A YOV E ORA O= UNTIL RET C ;
5 CODE STATUS
I i POF CYMD A M V I CYNDPORT OUT
? 113.4 . LK: 3ELAY CALL
9 BEGIN

4 LABEL DELAY (--- DELAY CONSTANT I N DE, DON'T USE THE STACK)

(B I T MASK-I---

10 STATUSPORT I N L ANA 0- NOT

12 ;s
1 1 wrn. N E X T c ;

Sbve of Gmtoatams
inMRTH

Mitchell E. Timin
Timin Engineering Co.

The enclosed versim of Eratosthenes
S we was written for an implementation
o f Timin FORTH release 3. I was pleased
that it executed in 75.9 econds, as com-
pared to the 85 seconds of figFORTH.
Mine was run on a 4 MHZ Z-80 machine,
a3 were the othern in the BYTE magazine
article.

The speed improvement is primarily
h e to the array handling capability of
T:inin FORTH release 3. FLAGS is
created with the &fining word STRING;
n T A G S leaves the a d d e r of the nth
elsment of FLAGS. This calculatim
occurs in machine code.

"ege 181

sm.s
0 L The Siovo of E r a t o s t h m n r aftor J. C l l b r w t h t W E 9/81)

2 : PRIME 0 Fuc8 SIZE 1 F I U (start br r t t l n o tkr f l m)
3 0 (c m t o counter which r c v i m on tw of stack)
4 SIZE 0 Do (rwut fol lorlm loor Dip0 ti-)
S I F W CO < fetch n e x t f lro to tor of stack)
6 IF (If f lro is tnn L k m do the tollorlno:)
7 I OW 3 (calculate ths rriw nurbrc)

(stack is1 countOP* n i w r K) 8 wp I *
9 =GIN W P SIZE < WILE (r m a t for K < 8190)

18190 COSTANT SIZE SIZE STRING FLMS t Y k . anar Of (1-)

10 0 o V o R I I Q) C ! < clcrr Kth f1.o)
w E R * (add rriw to K) 1 1

12
13 DROP #K)p I* (6.W K L w i v e tm-t c-ter)
14 ENDIF
IS LOOP 3 SPMES . .* PREMES I (finishe d l v l u c o c n t)

0 (testinn the sirvo alaoritk) 0 M I A B L E *ouI(T

2 . NEU-LINE a, 0 OUT I I
3 8 NEU-LINE'? OUT 0 70 > IF W - L I N E -IF I
4
S 1 PRXlQ-TEST BELL (f1mt .M4 t b kl1)
6 100 DO PRIlz LOOP BELL run tk. wimn flndrr 10 X)
7 (above is for tiaino test, blow i s for vallbtion 1
B 0 m)(JhlT 1 NEU-LINE (clear CotmtWD v t a r t nee line 1
9 SIZE 0 00 (chrck o u h flaa)

10 IFLACS C@ (u. i f it's set 1
11 IF I O W * 3 * (calculate ths rriw)
12 7 .R WN-LIE? (diwlav i t)

13 1 KOUCT *!
14 W I F
IS LOOP CR K W ? . ' P U I m ' I < d1Wlu tkr C a t)

m.36

1 : BELL7rnIr.I

(count I t 1

FORTH DIMENS#3NS W 6

I

w

In w a r d to Michael Bur tmh article in
FORTH DIMENSIONS, nV2, pago 53, "h-
creasing fig-FORTH Dink Accsr Speed," I
erclom a simple mod to the 8080 or 280
arsmbly lid to effect the CP/M & o w 4
sector dbk VO. The FORM routinsr 1
ured to tent the tcheme am included. Ttm
f i rr t cluder or r m e n b of fwt by 52 me-
tom w that the operating q r t s m & t rm-
p m n t and ocreens 0 a d 1 hold the d h c -
tory. I move the m e r q o r r e e n s to
SCRl 24 a d 25 leaving 2-20 for the
F O R T H binary program run by CP/M or
CDOS.

In order to check m y incream in dbk
access. weed I timed the following opera-
tion with a 10 sreen buffer:

20 210 10 MCOPY 20 210 10 MCOPY
20 270 10 MCOPY

E l q & d times were 204 a d 138 meondr
for straight and akewed k c t o m mgec-
tively. Note that this nf lecta dbk accem
Teed for reed/write of reveral sequential
kc to rs and in no way compenaater for
inadequate planning or poor programming
in other disk l/O applications.

If this seem8 trivial, then you have no
need for CP/M f i le compatible VO. My
motive for these changes ir the Qrin to
write the assembler program for fig-
F O R T H via modem (easy to implement in
FORTH) to friends m d colleagues. AEJ
added value my diak 1/0 can be faster.

SKEWED SECTORS FOR CPIM

FORM DIMENSIONS IIl/ 6 P.ge 182

. I .

737
LD
C U L
POP
JP

TFTRL: DB
Da

96
G3
93
D';

SSKEU: Db!
PCIP
LD
AD3
L3
PlJSY
JP

I

DP

29

DE.SETDSK : SEN3 DRIVE TO CP/H
10s - - -
RC ; RESTORE (I P)
NEXT

4

f i . 1 ,7 ,1?,1~,25,5,11,17.2? ,?,9 ?
15.21 , 2 .PI 14,Zn. 26.6 , !2 , 18.24 4,10,16,22 j

P'IH ; S-SKEW
'S-SKE'
'\!'+FC)H
SETDRV-I:!

I
I

A M E D i AFTER ' **SET DRIVEN s+ 2
DE ; SECTPf! SEPJEt:TIF.L
HL ,TRTGL
PI. ,DE
E,(HL)
DE ; SECTOR RANSLATED
NEXT

; TPA!!SLATI?!I TABLE ABOVE
; ADD3 OF HEW SECTnR i

R7 H : TlCSCALC
' TISC P.L '

D" AT

DWRLE OEtISITY
DM LIT,BUPDRZ

D;: ZBR.11 ,TSCALS-f

DU L I T ,F'XDRV-l
D!Y X I t!
D!.! bUP ,DR1 VE
DU

D A STIQE :9!!EP

11 CODE SET-DRIVE (n --- '
1 2 H PQP, B PUSP. L c LD, ! Q ~f LDPI, !ns CALL. e POP.
13 ftEXT, C;
1 4
15

2 : CTkRLE (bytes i re TABLE)
3 WILDS o 03 c, LnOP DOES> + t o ;
4 22 16 10 4 24 !k 12 6 26 20 14 P 2 21 15 9 22 17 11 5 25 10
5 13 7 1 D 27 CTARLE S-SKEV (fo r CP/H CliiStWS

\

SCR # 90

0 (.EUW TDH 7/11/81
1 DECIHAL
2 : .SUPS (dlaplay nflr of a11 buffer8
3 CR .* # Atldr(hex) U d Eloak# So- -wb'
ci
5
6
7
8
9
10
11
12
17
I&
1 5

FIRST #BUFF l+ 1 DO'
CR I 2 .R 2 S P A C E S
DUP 2+ HEX 6 0 SYAP D.R DECIMAL 3 SPACIB
DUP 0 32768 AND

O= 0- 72 + P l I T 2 S P A C B
DUP 32767 AND DUP 6 .R 4 SPA-

R h C R /llOD 5 .R & SPACES 2 .R
172 + ?TERMINAL I F LEAVE THHEw
rmp DROP CR ;

oc . BtPS
Adtlr(hex) W p d
1 3E82
2 YO6
7 P B A
4 4008
5 4092
6 4116
7 b19A
8 121E
9 b2A2

Block#
720
721
722
723
724
725
726
727

0

Screen -mh
90 0
90 1
90 2

g . 2
90
90 7
0 0

DlqrmLicrmDU<mn

Timothy l-hmng
9529 NE Gortz Circle
Portlmd,OR 97211

While I was In the p r a e r r of explaining
t)a diakiq to am friends, I found it.
would be nice to show them acme sort of
rmpmmtation which l irts all the d i l
buffer status. This hart program was
than w r l t t a for this purpose.

The flgFORTH uses the memory above
USER arm for the d i l buffer. This disk
buffer fire8 h further divided into ueveral
blocks with ths length of each block equal
to B / W F + 4 bytes. There BE some im-
plementations that set B/BUF to be 1024
bytes md am, like 8080 CP/M, that s t
It to be 128 bytes. Another consteqt
beside B/WF frequently referred in diak-
l q b the B/SCR (buffer8 per acreen). For
B/BUF = 1024, the B/SCR = 1 m d for
B/BUF = 128, B/!iCR = 8.

G c h block needs 2 bytes in front of i t
m the header which containr the update
bit (bit 15) md block number (lower 0-14
bltr). k a l a n e d r a Z-byte tail to end the
bbck.

The word BLOCK wil l put the begin-
ning oddrer of a given block (assuming
the block number on rtack before exe-
cuting BLOCK 1. W i t h them simplc words,
virtual memory can be utilized, but it is
beyand the @cope of this short article.

4'' The rhort program wil l display the
rtatur o f oech d i l block unti l it ir cx-
hwsted or you terminate it by pnasing
any key. The first thing it does is print
out the title line (line 4). Line 5 n t s up
the boundary f a the DO ... LOOP. Line 6
prints the buffer number while line 7
printr tho beginning address of each buffer
in hex. Lines 8 a d 9 check the buffer
q h t e s b t u r If it has been updated, then
M " : " will be printed in the upd
column. Lines 10 end 11 calculate the
b W number, acreen number and the -a&
mmbm. The mason for teh -rub it
because for my system, B/LBUF = 128.
8/xR = 8, there are 8 blocks to mJte a
rrhob acreen. So, 1 thought it would be
M i e r to know which *art of a given
acreen the bkck I want.

Lines 12 n d 11 check the early termi-
mtion md finish the definition.

FLOATING POINT ON THE TRS-80
Kalrnn Fajes

Kalth Mlcmryderm
W Box 5457, Sta t i on F

Ottawa, Ontario K2C 3Jl
Canada

Most FORTH systems have no pmvi-
sions for handling floating piont numbem,
although most popular micros have the
necessary routines hidden in thsir ROM-
based BASIC interpreter. Thew are fast
routines written in assembler. The foilow-
ing is to demonstrate how these can be
accesned and used to implement single
precision floating pint arithmetics for the
TRS-80 in MMSFORTH, Version 1.8.

Single precision floating point data is
stored as a normalized binary fraction,
with an assumed decimal point before the
most significant bit. The most significant
bit also doubles as a sign bit.

A binary exponent takes one byte in
each floating point number. It is kept in
excess 128 form; that is, 128 is added to
the actual binary exponent needed.

The binary mantissa is 24 bits long, the
most significant bit representing the sign
bit. It IS stored as 3 bytes normally with
the least significant byte (LSB) stored
first and the most significant byte (MSB)
last, followed by the exponent.

hmbers should be entered using the
notation specified for the TRS-80 L2
BASIC. Integers and dobule precision
numbers are converted to and stored in-
ternally as single precision numbers.

The complete vocabulary and listing o f
the source screens for either MMSFORTH
or figFORTY (specify) is available for $7
(US.) from Kalth microsystems. It in-
cludes both single and double precision,
trigonometric and log functiom, floating
point constant, variable and stack opera-
tors, conversion routines to/from integers
(FORTH type) and floating piont numbers.

GLOSSARY

Single Precision Floating Point

F c (F l F 1 - F) Add

F - (F Z F l - - F) Slrbtract

(F=FZ+Fl)

(F=F l -F l)

F + (F 2 F l - - F) WIt ip 1 y
(F=FZ*Fl)

F / (F l F 1 - F) Divide
(F=FZ/Fl)

RLOCK 9
0 (FTP #l :KIP 8 1 0 8 1 6) FORGET FTASK : FTASK * HEX
1 (SINGLE PRIEC. FLOATING POINT FOR TRS-80 IN MHSbRTH V1.8)
2 : E X X D 9 C , ;
3 CODE F.& EXX OFBD CALL 28A7 CALL EXX NEXT
4 CODE F#& EXX HL POP 2 RST OE6C CALL
5 OAR1 CALL EXX NMT
6 : Po DUP 2 + 8 SWAP 8 4 40AF C I ;
7 : PI DUP ROT SWAP t 2 + I 4 40AF C I ;
8 : A S 4121 Po *
9 : F#O HERE 0 6VER 3E FILL BL WORD F#& A S '

1 0 : MIN 0 PAD DUP 1+ 6 3 EXPECT P#& .4 6 ;

1 3 : F. S A F.& 4 40AF C: ;
1 4 : lOFT ; DECIHAL
15

BLOCK 10

1 1 : F#l PAC0 SWAP (L) (L) (L) (L) ia : FR STATE co IF FBI i31.i~ F#O T H ~ " ; ' IHHEDIATE

0 (PLOT. PT. 62 :IF 810816) FORGET lOPT : lOFT ;
1 HEX
2 CODE F+br EXX DE POP BC POP 716 CALL EXX NMT

4 CODE P& EXX DE POP EC POP 847 CALL EXX NEXT
5 CODE w& EXX DE POP BC POP 8A2 CALL EXX NFXT

3 CODE P-& EXX DE POP BC POP 713 CALL WX NMT

6
7
8
9

1 0
1 1
12
13
14
IS

F #

F # IN

F @

F !

: F + S A F+& A S ; : F - S A F-6 A S ;
: I n S A In& A S ; : F / S A F/& A S ;
DECIHAL

(SAHPLE AND TEST ROII'FINE)
: FTEST FCIN CR F# 2 F+ FB 200.OE-2 F-

F# 5000.1 P P# 5.0001E+3- F/
PAD F! PAD Po P. ;

;S

(- - F)
Takes a number from the current
buffer, converts it to single pre-
cision floating point number and
leaves it on the stack.

(- F)
Anks for a floating pint number
from the keyboard, and leaves it
on the stack.

(A - F)
Floating point fetch. Takes a
floating point number from
memory at addrenn and leaves it
on the stack.

(F A - -)
Floating point store. Stores the
floating point number on stack in
memory at location A.

F TEST (- 1
A sample program to demon-
strate the use of these floating
point operators. It asks for a
floating point number from the
keyboard, manipulates it using al l
the operators defined and prints
the renult. (It should be the name
number that was nupplied.)

Notes: A -- 16 bit addrenn

F, F1, F2 -- are single precision
floating pint numbers (two 16-bit
words each).

FORTH DIMENSIONS IIII6 Page 18C

TURNING THE STACK INTO LOCAL VARIABLES

Occasionally in writing a definition, I
find that 1 need to do unwieldly stack
juggling. For example, s w o s e you come
into a word with the length, width, and
height of a box and want to return the
volume, surface area, and length of
edqes. Try it:

For this kind of siuatim 1 developed
my ARGUMENTS-RESULTS words. The
middle block fo the triad shows my s l u -
tion to the box problem.

The phrase '9 ARGUMENTS" assigns
the names o f local variables 1 through 9 to
nine stack positions, wtih S1, S2 and S3
returning the top 3 stack values that were
there before 3 ARGUMENTS was exe-
cuted. s4 through S9 are zero-filled and
the stackpointer is set to just below S9.

S1 thorugh S9 act as local variables
returning their contents, not their
addresses. To write. to them you preceda
them with the word " TO 'I. For example,
5 TO 54 writes a 5 into S4. Execution of
S4 returns a 5 to the stack.

After a l l calculating ir done, the
phram "3 RESULTS" leaves that many
results on the stack mlative to the stack
positim when ARGUMENTS was axe-
cuted. Al l intermediate stack values are
lost, which is good becauaa you can leave
the stack "dirty" and it d a m ' t matter.

Marc perkel
Perkel s0ftw.m sytltamr

1636 N. Sh.rma
Springfield, MO 65803

4
2 tARG S2 5 0 tARG S 1

6 0 tARG S 5 A +ARG S6
7 10 +ARG S9 ($TO
8
9 : TO 1 CTOI 1 i (XSE
A : t T O -1 CTOI ! i (%SE
F

5CR # B
0 (8**< ARGUMENTS-RESULTS >%8%)
1 VARIABLE CAR01 VARIABLE KT03
2 : +ARG CREATE I DOES. P LAROY F SWAP - CT03 @ +DUP
3 I F 0 ' I F tI ELSE 1 ENDIF ELSE F ENDIF 0 L T O I I i

4 tARG S3 6 tARG S4
C tARG S7 E tARG S8

VARIABLES%)

S STORE FLAG FOR tARGX)

S +STORE F L A G FOR +RRG$)

DUP CARG3 I 12 - SF@ S J P P
i

I 'R i

C : ARGUMFNTS R> CARGI F 'R R 7% SPI!
I) - 2 / 0 DO 0 LOOF 0 CTOI
E : RESULTS 2 t CARGI @ SUAF - SPO - ?/
F 0 DO DROP LOOP R R ' CARG3

SCR # C
0 (AROUHENT EXAMPLE --- FOX COMES I N U I r H HEIGHT, LENGTH
1 8 WIDTH ANtl LEAVES VOLUMEt SURFACE AREA 8 LENGTH OF EDGES)
?
3 : BOX 3 ARGUMENTS
4 VOLH) Si S 2 S3 % t TO S4

6 EDGE) S 1 4 % S2 4 t S3 4 % t t TO S3
7 55 TO 52
9 5 4 TO Sl
9 3 RESULTS i
A
B
C
0
E
F

F SURF) Sl $32 2 % % S3 S3 2 t 8 S1 S3 2 t X t t TO S'.,

SCR # 20
0 : T4SK i
1 : n I S K @ l 5 ARGIJHENTS
2 S1 S 2 0400 U/MLln 1t TO Sl TO S?
3 PEGIN S4 0
4 UHI1.F S 1 BLUCK F? t S3
s S'i IF SWAP UPDATE ENDIF
6 S4 0400 52 - H I M DUP TO S 6 CMCWE
7 S6 +TO S3
8 56 NEGATE +TO $4
9 1 +TO S1
a 0 TO S?
B REPEAT
C 0 RESULTS i
D : DISK@ 0 D I S K @ ' i
E : DISk' 1 DISK@l :
F --.

ias FORTH DIMENSIONS IIV6

I
I

t
t
I
e
P
6
a
1

t
t

b
C

u

c

9
n

d
ir
m

U

U
el
t C
m
9'

th
ve
9r
db
to
he
Is
DI
g:

th
urn
U i

ari
OA

Accompanying these comments are
several graphic specimens drawn on Apple
computer using FORTH and printed on a
dot-matrix printer. They range from logo-
type design to experiments in geometry
and pattern. One can generate real-time
motion graphics on the Apple in which
color and action partially compensate for
the low resolution of 280 by 192 pixela.
Hardcopy, whether pr inwt or color photo,
im't the f i n a l product. The interactive,
sequenced and timed display on the acreen
is the designed product, likely to diaplace
the medium of print on paper in the
future.

While these graphic samples cwld have
been programmed in other languages, 1
have found the advantages of using
FORTH are both practical and
expressive: immediate and modular ex-
perimentation with the peculiarities and
limitations of the Apple video display, and
orchestration of complex viwal effects
with self-named procedures rather than
the tedious plots and pokes to undis-
tinguished addresses. With this ease of
wieldiog visual ideas, FORTH might lead
to a new era of computer graphics, even
creative expression.

It may remain individual and personal
expression, however, wi thwt graphics
standards. Transportability of grahics-
generating code may be neither possible
nor desirable considering the differences
in video display generation, alternate
character sets, shape tables, display lists,
interrlpts, available colors, etc., between
microcomputers. Each h a s some individ-
ual features to exploit. Most have, how-
ever, such limited memory for graphics as
to make machine-dependent economy an
overriding aspect of programming for
graphics.

Despite t h e rarity of FORTH graphics
thus far, I'm convinced it is m excellent
vehicle for bringing out undiscovered
graphics potential of each micro. In ad-
dition, the visibility gained by some ef for t
to evolve grahic ideas in FORTH wwld
help in both spreading and teaching the
language. Perhaps this issue of FORTH
DIMENSIONS will stimulate just such
activity.

Editor's Note: The author te11s me
that Osborne/McGraw-Hill publishers have
used his patterns, generated on Apple n
using Cap'n Software FORTH, as cover
artwork for their book "Some Common
BASIC Programs":

GRAPHIC GRAPHICS
Bob Gotrch

Calltornia College of Arts and Crafts

- _-l______l____________...-.. -
FORTH DIMENSIONS In/6 Page 186

CASES CONTINUED
Editorb Note: In Volume I& M d e r 3,

FORTH DIMENSIONS pblished the m u i t s
of FIG% CASE Statement Contest. As we
had hoped, the variety of reapmres has
stimulated further work m the abject.
Here am four additional CASE cmatructes
sdmi t ted by our readen.

f3cln-b CASE fw we0

John J. Carredy

Here k an 8080 (280) version o f the
keyed case statement by Charles Esker
that was prklished in FORTH DIMEN-
SIONS W3, page 37. I have found it very
useful.

0 (CASE STATEMENT BY CHARLES EAKER FD I1 3 39 JJC 81AUG09 1
1 : CASE ?CWP CSP e ICSP 4 ; IMMEDIATE
2 CODE (O F) H POP D POP - 8 + CALL L A MOV H ORA 0 .
3 I F B INX B IlX NEXT ENDIF D PUSH ' BRANCH JMP C;
4 : OF 4 ? P A I R S COMPILE (O F) HERE 0 , 5 ; IMMEDIATE
5 : ENDOF 5 ?PAIRS COMPILE BRANCH HERE 0 ,
6 SWAP 2 [COMPILEI THEN 4 * IMMEDIATE
7 : ENDCASE 4 ?PAIRS COMPILE h 0 P

9 WHILE 2 [COMPILE1 THEN
10 REPEAT CSP I : IMMEDIATE

'

8 BEGIN s p c CSP e = o=

11 : TEST CASE 41 OF ." A " ENDOF
12 42 OF ." B " ENDOF
13 65 OF .I c ENDOF EWDCASE :
14 (41 TEST A OK 1
15

u r n * CASE AupmartDd

Alfred J. Monroe
3769 Grandview Blvd.

Lor, Angelas, CA 90066

I was delighted with Or. Edtar's
CASE construction (FORTH DIMEN-
SIONS, Vol. II, NO. 3, p. 37) md imple-
mented it immediately. Recently I have
found it desirable to augment CASE with
three additional constructs in order to
treat ranges of variables. It has occurred
to me that other FORTH usem may be
interested in the same extension, henee
t h i s short note.

Screen 144 lists Or. Enkerb CASE
construct with one s l ight modificatim.
OF has been modified to uw (OF). The
original OF compiled to ten bytes. The
revised OF compiles to six bytes. Thb
forty percent reduction in code L not as
impressive as that which occun udng Or.
Eaker's CODE word (OF) cmstruct,but
it does have the advantage that it b highly
portable. (OF) tests f a equality end
leaves a true or false flag on the stack.
Note that it drops the test va lw if the
test is true.

Screen 145 lists the extension8 that I
have found useful, <OF, >OF, m d RNG-
OF. <OF d w s a "lem than" test.)(x does
a "greater than" test. RMEOF doer an
inclusive range test. <OF and are
tr ivial modificatim of OF md (W).
RANGE and RNG-OF are constructed in
the same virit as (W) and O F .

Screen 144 compiles to 175 bytes.
Screen 145 compiles t o 223 bytes.

Sc- 147 iU~*mteo pm-E&er
robtion ta t h Loign of an interactive
terrninl input ttut phew a hexsdeclmal
rumbar tho stack, and which provides
for e m bbctlon and error recovery. It
io, of cwm written in my ulurrl sloppy,
urnnotatad, wml-read&b faahion.

Screen 148 offern a neater olutim In
tern of <Of and W. It is definitely
mom madWe. Screen 149 offers 8 still
neater wlution In terms of RNG-OF.

Screen 147 compiles to 160 bytes,
meen 148 ta 176 bytes, and acmn 149 to
144 bytes. N e d I my more?

. -.

>

SEND A CHECK TO FIG TODAVI
MAKE THIS YOUR BEQINNING!

RENEW NOW

RENEW TODAY!

Page 188 FORTH DIMENSIONS IW6

CASE ea 8 Defining Word

Dan Lerner

After reading the CASE conteat artl-
cles and looking for a ainple function, I
am compelled to submit a simple CASE
statement. These words are feat to
compile and execute, compact, simpla,
generate minimum code, and very aim-
ple. There is no error checking since the
form is 50 simple the most novice pro-
grammer can u s e it.

CASE is analogous to vectored GOT0
in other languages. Its usage with my
words is:

CASE NAME
A IS FUNCTION A
B IS FUNCTIONB
C IS FUNCTIONC
(etc.)
OTHERS ERROR FUNCTION

General usage wwld be as a menu
selector; for example, you print a menu:

1 BREAKFAST
2 LUNCH
3 DINNER

SELECTION -->

The user types a number which goas n
the stack, then executes the CASE word
MEAL. MEAL selects BREAKFAST,
LUNCH or DINNER, or ABORTS on
error. The source is:

CASE MEAL
1 IS BREAKFAST
2 IS LUNCH
3 IS DINNER
OTHERS NOMEAL

Y w have previously defined BREAK-
FAST, LUNCH, DINNER and No MEAL.

How CASE is Structured

CASE builds an array using IS end
OTHERS to fill and complete the values in
the array. A t execution, the DOES>
portion of CASE takes a value from the
stack and looks through the array for It.
A match executes the word, no match
executes the word after OTHERS in
source .

The form of CASE is a new clam of
words, as CONSTANT , VARIABLE ,
MSG , etc. ape. The code executed to teat
the array is minimal.

106
0 (CASE NANE
1 A I S FUNCTION-A PAIR = VALUE-A
2 E I S FUNCTION-B ADDR OF FUNCTION4
3 c I S FUNCTION-D
4 ETC .
e OTHERS ERRORFUNCTION)

6
7 : CASE CREATE HERE 0 . I (AT CONPILATION BUILDS HEADERvLINK
8 POINTS TO ADDR OF P OF PAIRS
9 HERE SET TO ADDR OF VALUE-1)

10 DOES) (AT EXECUTION, ADDR OF +OF PAIRS)
11 i ROT ROT DUP 2+ SWAP C
12 0 DO 2DUP C = I F DUP 2+ C (COHPAIRS INPUT VALUE)
13 EXECUTE ROT DROP 0 ROT ROT (WITH VALUE A, B, C, ETC, AND)
14 LEAVE ELSE 2+ 2+ THEN LOOP (EXECUTES ASSOCIATED FUNCTION)

15 ROT I F C EXECUTE ELSE DROP THEN DROP i

107
0 (CASE WORDS)
1 : I S , ' i+ ? (HERE, PAIR9 -- HERE, NEXT-PAIR9)

2 : OTHERS , swap T I (HERE, C-OF-PAIRS)

3
4
5
6
7
El
9

10
11
12
13
14
15

THIS IS THE END!
THE END OF VOLUME I II

THE END OF YOUR MEMBERSHIP?
'- DON'T LET IT HAPPEN1

RENEW TODAY!

"age 189 FORTHOEMENSSONS III/6

E.H. Fey

htmductial

The CASE CONTEST held by FIG last
year ended with some excellent
contributions to the FORTH literature.
The judges noted however that few people
tried tc devise a gefteral case Structure
encompassing both the positional type,
where the case is selected by an integer
denoting i ts position in the l i s t of cases
(ala FORTRAN's cemputed GO TO), and
the more general keyed type of structure,
where the case selector key is tested for a
match in the case words key list.

This article discusses a general case
structure which combines the positional
and keyed types. Like FORTH itself, the
case structure is extensible. I have added
a third type called range where the case
selector key is tested to be within the
range of pairs of values in the case words
key list.

=or any of the three types of
structures, the user is also provided with
t'le option of using headerlese high level
code sequences to specify the execution
behavior o f the individual cases.

A complete source listing in fig-
FORTH is given on screens 165 to 180
with illustrative examples on screens 180
and 181. The source code listings may
seem lengthier than usual but it is the
author's practice t o include the Glossary
&finition right with the source and to
annotate the source code with notes on
the status of the parameter stack. When
t5is oractice is followed, I find FORTH to
be an emrninently readable language, even
months after the particular coding has
been orepared. However, th is style of
coding requires a good FORTH video
editor. With a good case structure in
FORTH, that is not diff icult to develop.

Backgmud

In the Aug. '80 issue of Byte, K im
Harris introduced a very simple positionel
type of case compiler. A slightly revised
version of his compiler is

: CASE: <LIST DOE9 IX @ EXECUTE ;

where

: <LIST <BUILDS SMUDGE !CSP 1 ;
: IX (k pfa ... adr 1 SWAP 1 MAX

1 - W P + + ;

and is used in the form:

CASE8 xxxx c f a l cfa2 ".. cfan ;

to define a caw mlector word nmmd

When the new word, xxx , is executed

k xxxx (k=l,2,. ..,n)

xxxx.

in the form

the k'th word in the list w i l l be executed.
For example, deflns the following words,
COW , CHICK , PIG , and BARN :

: cow ."Moooooo" :
: CHICK ."Peep" ;
: PIG ."Oink" ;

CASE: BARN COW PIG CHICK ;

If we now execute the aequence 2
BARN , Oink wil l be typed. Similarly 1
BARN wil l type MooOOoo.

Although there are no error checkr,
this case structure u easy to uk, executes
fast and requires a minimum of dictionary
space for each case word, xxx. Bilobran,
eta1 have used CASE: extensively in
developing a FORTH fi le aystem with
named record components (1980 FORML
proc. pp 188, Nov. 1980). I have done
likewise following their example.

The interesting part of the definition
of CASE: is the <BUILDS part which I have
called <LIST for obvious reasons. It
creates the dictionary entry for xxxx.
Then, after executing SMUDGE and ! CSP
which am part of fig-FORTH's compiler
security, it executes 1 which forces
FORTH into the compilation state m that
the uaec can enter the list. Tht list is
terminated by ; which completes the
definition of xxxx .

For CASE: words, the list is a l i s t of
code field addresaes o f previously defined
FORTH words. Since FORTH is in the
compilation state when the list is being
entered, all the user has to do is list the
names of the case select words (COW PIG
CMCK in the example of BARN).
FORTH then compiler their code field
addresser, as long as they are not special
IMMEDIATE words which execute during
compilation.

Now suppom that we knew beforehand
that the code field addresr, of PIG was say
14382. The same definition of BARN
c w l d then have been achieved by

CASE: BARN COW [14382 , 1 CHICK ;

where [stopped the compilation state,
14382 was entered to the stack, the word,
(comma) , compiled it and ? resumed the
compilation state.

The point is that <LIST i s a powerful
word for entering named lists and data of
al l mr t s to the dictionary. The method of
retrieval of the data is determined by the

W E 9 part of the compiler. Hence if we
simply change tho dsfinitim of tho DOE9
part of CASE8 , wa csn transform it into a
general purpow caw compiler.

The hMti-Rmpoaa Cam Conpbr

The method utilized to develop a
generalized cam compiler is to compile a
number for the cam type as the first byte
in the parameter field of xxx . A t
execution time, the number is retrieved
and u w d to wlect the appropriate DOES>
part for the cam type o f xxxx . The type
number is tranaparent t o the uaer.

The definition of the new caw
compiler is:

: MCASE: WILDS SMUDGE !CSP
HERE 1 C, 0 C, 1

DOES> DUP C@ OOESPART ;

where DOESPART is a case selector word
defined by CASE:.

The <BUILDS part o f I~CASE: compiles
a ''1'' for the default case type (positional)
and a "0" for the count of the number of
cases entered into the caw list. It also
leaves the parameter field address of the
newly defined word on the stack so that it
can be found later during the compilation
prom?= even though Its name field i s
smudged.

I f the newly defined case word, aay
xxxx , is to be other than the positional
type, it is immediately followed by the
word KEYED or RANGE to define the
type of xxxx as keyed type = 3 or range
type = 5.

:KEYED 3 OVER C!; IMMEDIATE
:RANGE 5 OVER C!; IMMEDIATE

The case list wbuequently entered
must agree with the case type qecified.

Two options are provided for the
execution elements of the case list. The
first or default option is the single word
execution as in CASE: . The second option
allows a headerless sequence of FORTH
words to be defined as the execution
elements of each case. The two may not
be mixed.

A default case at the end of the case
l i s t is mandatory, although it may be a
null word. The default case must be
preceded by the word DEFAULT: whose
definition is

: DEFAULT: ?COMP EOL , HERE
OVER cp [DEFI ; IMME~IATE

where EOL is an end of l i s t terminator
constant defined by

' ;S CFA CONSTANT EOL

FORTH DIMENSIONS Il'U6 Page 190

and Dff] is a cam wlector word L f i d
by CASE: .

DEFAULT: fire checks to aee that you
are in the compile state since you should
be compiling xxxx , It then enters the end
of list terminator, EOL , to the diction-
ary. Finally it takes the parameter field
address of xxxx left on the stack by the
<BUILDS part of MCASE: , gets the type
of xxxx and executes the cam mlector
word [Off 1 &pending on the type of xxxx . I f the type is 1, 3 or 5, IDff 1 c o m b
the number of cases entered and stores it
in the second byte o f the parameter field
of xxxx . If the case type is 2,4 or 6, then
t!w execution elements are headerlem
code sequences. Hence for these types,
[D G] initiates the process of &fining
the default code sequence.

Execution of Cea Sebctor

All case elector words, xxxx , defined
by MCASE: are executed in the form:

k xxxx

where the key, k , is an integer. The
interpretation of k in selecting the cam
depends on the case list type.

W i t h three case list typm and two
options for each type, there are actually 6
different form of cane lists availeble.
Let's consider first the lista with single
word execution elements.

S i n g b w I Y d E x a ! u t i u n ~ b

(1) Positional type

MCASE: is umd in the form:

MCASE: xxxx c f a l c f d ... c f m
DEFAULT: cfad ;

When xxxx is executed in the f m k
xxxx , the caae cfak wil l be selected if
k = l , 2, ...,n . Otherwise tha d c f w l t
case, cfad, wi l l be elected md
executed.

(2) Keyed type

MCASE: xxxx KEYED
[kl , 1 c f a l
[k2 ,] cfa2

[ko , 3 cfan
DfFAULT: cfad ;

...

When xxxx is later executed in the
form k xxxx , the cam cfai will k
executed if a value o f k=ki Is found in
the list. Othemiw, the ds fw l t cam,
cfad , wil l be executed.

165 0
165 1
163 2
163 3
165 4
165 5
165 6
163 7
i65 8
165 9

165 1c
165 11
165 i2
165 13
165 A4
165 15
166 C
A65 1
165 2
166 3
166 4
166 5
166 6
166 7

166 9
166 10
166 11
166 12
166 13
166 14
166 15
167 0
167 1
167 2

167 3
167 4
167 5
167 6
167 7

167 9
167 10
167 it
167 12
167 13
167 14
167 15
168 0
168 1

168 1

168 4
163 5
168 6
168 7
168 8
168 9
168 10
168 11
163 12
166 13
168 14
169 15
169 0
169 1
169 2
169 5
169 4
169 S
169 6
169 7
169 8
169 9

166 a

167 a

168 s

(GEUEIUU. CASE STRUCTUUE EHF i o m m 1

(EXECUTION VAUIhBLES AN:, ARRAYS a la Kir Harris(Bvte Aur '8C 1
(CP 184 alss see R, A. NcCourtI FD 1114 PP 109. EHF 5/11;a1)

: I X (k rfa...ad: 1 (CoaPutes abr of index I(= 1r2tl..tn 1
WAF 1 RAX (..,rfa huaxl)
1 - D U F ' t t i (..+ r f a t X k - 1 3 1

: (;LIST (Generai i:LLiLDS word t o construct nitred l i 5 t 5)
QUXLUS SHUUCE !CSF 3 i

' : CFA 0 CONSTAN: CULUY (For headerless co5e de f i n i t i ons)
' i S CFA CONSTANT EOL End of list d p l l h i t W 1

: CASE: LIST D35D I X 0 EXECtTE i
(Used i n the for r : CASE: XSAX c f s l cfa2...cfar~ i 1

t o create an execbtion a w a r xxx): u i t h i n i t a i ; v i iues c f 3 l r i
(~ f i 2 ~ . . t c f e n uhich are cooe f i e i d abdresses o f r r e v i o ~ s l r)
(befined uords. Exex t ins X>:i:x in the f O 7 h : k xxx,:
(w i l l rrociuce the we:ution o f cfak 8 k = lr?r.tt,n)

--;

: LIST: <LIST D K S > I X F i
(Used i n forr: LIST: xxxx L n i t h2 I n3 I.... I 3 i)
(to create P list of constants Whed xxxx , Exeait ins ex>:>: i
(i n the for r : k xxxx u l i l leave n l Ofi the s task ,)

: XEOVAR: (LIST DOES @ EXECUTE i
(Used i n the for r : XEQVAR: xxcx c fa i)

(t o create an execution var iab le xxxx v i t h an i n i t i a ; vaiuo i
(cfa usich is an ex is t inn uord. Executins XXEX causes --I
(cfs t o be executed, The word c f a L I Y be charm6 b r usahs 1
(INSTALL nnnn AT xxx)ox where nnhn i s the new uorb. i

: INSTALL (rlrcfa) LCS)!WLEI ' STATE E I F COZPILE CFA ELSE CFA
THEN i INMfiIAiE

: AT (Cfait.1 CCONPILEI ' STATE P I F CJWPIiE 2 t C O W : i E !
ELSE 2 t ! THEN i ItiXPiCITE

: (4TKIN) (I(cfa pfa. . .) R3: 1 RAX 2 S t ! i (Stores c f a a t 1
(8br82KtPfa uhore W=lr2t.+.tn Cowi ied bu A T A i N ,)

: 'ATKIN (k cfa...) CC!l?l?ILEl ' STATE 0 I F C3RPILE (ATKIk)
ELSE (ATKIN) THEN i IHiiE3IA:E
(Use6 i n fo?a: I(IHSTALL c f a AThIN xxxx)
(uhrre xxxx is an execIition array defined bu CASE: t c f a i --,
t i s the neu word t o be i n s t a l l e d as e ie r rn t k=lt2ttr.tn 1

: mi i --'>

(NOTE: NcCwrt's i w l e r r n t a t i o n o f the f'onction INSTALL A T K X .
(does not u!r& ins ide : definition. The above docs,

HCASE: 9 A GENERALIZED EXTENSION Of CASE:

1. Throe t w o s of case stucturer:
a* POSITIOMAL (default 1
be KEYED
C. RANGE

2, Two skucture options fo r each t w o :
a. SIN=LE Y3RD EXECUTION (dofault)
b, HIGH LEUEL HEAOERLESS COPE SEOEIYCE

(h f i n e WESPAR1 and LPEFI as Execution u r a w t o be f i l l e d 1
(in later 1

CASE: DOESFART D3N DUN Dun DJ!l DUN D33 G'JIZ i (6 Cases)

cA8E: LDEFJ DUN DUN DUN PJR DU5 D!IR Of& i

: MA#: (The Swrrahzrd case cob r i l e r)
<BUILDS SNUUGE !CSP HERE (Leave Pfa on star& 1

Page 191 FORTH DfMbr(Si0N S W6

(3) Rangetype

MCASE: xxxx RANGE
I L1 , Hi , 1 c f d
r L2 , H2 , 1 C f d
[b , m , I C f m
DEFAULT2 c f rd ;

For thL type each of the n cmtrler to
the cam l i s t conrirb of a pair of
value8 specifying the upper a d lower
limits of the range , Li and Hi ,
followed by the execution element,
cfai.

When xxxx is later executed In the
form k xxxx , the caw cfai wlll k
selected i f the condition

Li <= k <= Hi

is found during a search o f the list. If
not, the default caw, c f d , wl l l be
executed.

Hsadarbr code E X ~ t h Ebmntr

Instead of gecifying the executlon
elements as previously defined FORTH
words, the elements may be peci f led nr a
sequence of FORTH words in the form:

W seq ;H

or as

DEFAULT:seq.... ;

where seq is the sequence of
sxecutab!e FORTH words.

Again we have the three applicable
case l i s t types, the default type, position,
the keyed type and the renge type.
Examples of the structure of each o f these
types is

(1) Positional type

MCASE: xxxx
H: ...seq l... ;H
H ...saq 2... ;H

H: ...seq n... ;H
DEFAULT: seqd.., ;

...

(2) Keyed type

MCASE: xxxx KEYED
[k l , 1 H: ... -1,. ;H
[k2 , 1 i-t ... q2., ;H

kn , 1 H: ... seqn,. ;H
DEFAULT; ... q d . . , ;

...

149 10
149 11
149 12
149 13
149 14
149 13
170 0
110 1
170 2
176 3
17C 4
170 5
170 6
170 7

170 8
170 9
176 10
170 11
170 12
170 13
170 i4
170 : Z
17i G
171 1
171 2

171 4
17; 3

17; 5
17i 6
17i 7
171 8
171 9
171 1G
171 ;;
171 ; 2
17; 13
17; i4
17i i s
172 c

1;: 1
1:: ?
17; 3

.I d. 4
172 5
17: 6
172 7

172 7
172 1C
172 11
172 1:
172 13
* I & 14
17; i5
173 0
173 1.
173 2
173 3
173 4
173 5
173 b
173 7
173 8
173 9
173 1C
173 I1
173 12
i73 13
173 14
173 15
174 6
174 i
174 2
174 3
174 4
174 S

.--I

172 a

* --

f

1 C c (Default 8 1)
0 C t (Nubbe: o f cases i n list = 0)

DOESPART i (Executes r r p r o r r i r t e search)

3 (Enter c o w l i e state for l i s t 1
DOES) WP ce (Gets lure)

--
DEFAULT: (C f P o * +) (fbndatO."Y Word Used i b f t Q : c r ~ e l i & t i a)
(an KASE: L t i n i t i o n . Cowales i s .
?CONP EOL I HERE OVER CP
IDEFI i IHMDIATE

(. . , r f i , ai:h t w e)

: UYEG (rfooo.rfo) (Used after n%SC: KW: t o sot CbCCtYP0'5/

: RANGE (Pfa O D D P ~ ~) (Usad after HtASE:):>:):A t o set t u r M i

3 OVER CI i IHHEDIATE

INMEDIATE 5 OVER C! 1

: N? (n P f r l ~ t n P f r f) (Checks for v a l i d casezosntt n I u i th 1
(count i n CBSe l is t u i t h rfa specified. True i f val id. 1
OVER OVER it ce (p fa n count)
OVEh 1 C >R > R>, OR O r i -->

(r fa n count

(POSITIO?(AL TYPE WITH S I K i E Y9RD EXECUTION OPTIONc TYFE 1)

: PSFIND (n Pfa.0.) lure 1 case f o r DOESPARTt f inds and)
(executes case n 0: de fac l t if n < l or nzcasecount To: 1
(MCASE: list rfi,. S i r i l a r t o I X f o r CASE:)

N? I F (Val id n) 2 t SUAY +,,rfst2 n)
ELSE DUP CP >R 6 t SiiAF DROF' R> (e t 6 ~ t i t b c 1
THEN 1 - DUP t t
e EXECUTE i

: PSDEF (rfa adrdsf...) (Counts # cares entered and stores 1
(i n carecocnt a t r f a t l * The address o f the defaul t c f a i s)
(a t adrdef = r f a t6 tXn-13)

OVER 6 t - 2 / (. . .Pf i n-1)
I t SYAF' 1t C! i - ->

i INSTALL PSCIND bTh1N DIE5"k?;
1 INSTALL PBDSF ATA!N LGEFJ

(POSITIO!;X- T Y E G i T H H i i 3 LEVEL DEF I N LIST, TYFE 2 1

: 2FIND (n rfa.r.abrrl) (Find; ad5j:oss~ sdrn P o f n th h i l h)

(ieve; c03r se~1~ience~ 5 t ~ t a t Ffa O+ l i s t . Return & f a b i t ;
(code adFe5s i f n::: 0: rLcaiecojr,:)
N? O= I F (def 1 ? R B!iJ? I? lt iX 1t R; THEK (..,ntf rfa 1
SUFI? r E 4 t 0 BEGIN i t (... ~ f a t 4 ltSave n t f #

R OVER = O= (..,rfat4 1 f)
WHILE (cow& aot=ntf

(2 caselist, F f a . E1:esute defaul t If out o f ranse. 1
2FINC EXECL;TE i

FORTH DIMENSIONS 1 1 6 Page 192

(3) Range type

MCASE: xxxx RANGE
[L1 , Hi , I H ... ma... $4
[~2 , H2 , I H: ... seql. .. ;H

[LJ-I , l-h , 1 H: ... sqn... ;H
DEFAULT: ... seqd... ;

...

The interpretation of k in caw
selecting is the same as previously
discussed for the single word execution of
the same case type. The only difference
is that a FORTH sequence, ... seqi-. is
executed instead of a single FORTH word,
cfai .
Examplea

Examples of all 6 possible
combinations of case structures are g ivm
on Screens 180 and 181. If the screen is
loaded and examples tested, typical
tlxecution results should be:

EXECUTE RESULT TYPED

1 BARN MOO
2 BARN OINU

18 BARN PEEP (Default)

1 zoo PEEP PEEP PEEP
5 zoo PEEP PEEP MOO

-6 ZOO 0 1 M 01lW 01w

1 FARM O M (Default)

(Default)

77 FARM MOO

-10 CASE MOOOINK PEEP
(Default)

77 CASE MOOoooOOO

-10 CORRAL PEEP PEEP
-1CORRAL O M O I N K

309 CORRAL PEEP OM(MOO
310 CORRAL MOO (Default)

COMMENTS

1. Kim Herrid caw compiler, C A K :
avoids the uw of OVER = IF mop
ELSE ... THEN for every case as used in
many of the other CASE conrtructs.
The result is shorter compiled code in
the application. The compiler,
MCASE: presented here is an extension
of CASE: and conaquently shares this
feature,

2. The compiler, CASE: and the
Execution Array introduced by MA.
McCourt in FD II/4 pp 109 pro
functionally equivalent. Furthe?, the
Execution Variable, XEQVAR , Of
McCourt turns out to be a deg~nemte
case of CASE: with only rn element
in the case list. The dsfinitions

: XEQARRAY CASE: ;
: XEQVAR <LIST DOE9 @ E X E C U E ;

174 b
174 7
174 8
174 9
174 10
174 11
174 12
174 13
174 14
;74 15
i i 5 C
i73 i
::s 2
* # J 3
1:: 4

1;: 6
l X i
:;5 6
175 9

. -fc

.-c c A, .I .I

.-I . A
A, J A',
. 7 * ,,
&#.I A A

1:: : 2
1:s ;3
;,-: ;4
;75 1z
i:u 0
i:i 1
i;b 2
i:4 3
;;c. 4
176 5
i i b 6
176 7
i76 0

176 9
i76 11;
176 1;

176 i Z
136 13
176 14
176 15
i i i G
i77 1
177 2
177 3

177 4
* , I 5

177 6
177 7
177 8
177 9
177 10
i 77 11

1;: ;3
;?7 :4
177 i5
1X 0
176 1

178 3
17C 4
i76 5
i7C 6
178 7
178 8
17r 9

178 I1

178 :3

. -7

.?7 4 ,
A d 2 * A

178 2

178 i b

178 12

S IMSTA-L RSFIND A T I I N D9ESPATIT
S INSTALL RSDEF ATKIN CDZF3

(RkNiE O f T I O N Y I T H HIGH LEVEL DEF IN LIST, TYPE 6 1

: RHFiNU (K Pfa...) (Searches t w o 6 l i s t for. f i r s t oxurr - t
(cnce o f I(u i t h i n Pair o f ranae values. I f fomd, executes)
(tollowins high leve l seouencev e lse executes dof seaue:lcc)
Z t BEGIN 1 >F: US? F EOL - (...ti ad71 f)

IF (not ED-) OVER OVER RANGE? (... k adr i s)

IF (i n ranre) 6 t (.. .I(adFl t6 1
ELSE R.; 1 - 3R 4 t e THEN (, . . h adrnxt 1

U S E (EOL) 3 (..,k id rdef)

P.ga 193 FORTH DIMENSlUNS W 6

: c

are flg-FORTH tunctluwl equlvabnta
of McCwrtb definition. l-bnce
CASE: can be umd a8 an Execution
Array a8 8ugga8tad by McCwrt. fho
definition8 of AT , A T K N M d
INSTALL on rreenm 167 and 168 can
be uaed ala McCwrt to change the
elements in CASE: lilt words.
are uccd in the form

k INSTAL yyyy ATKIN xxxx

t o change the k'th aiement in a cmo
list, xxxx defined by CASE: to the code
field address of yyyy . Now whenever
k x x x x is encountered, the word yyyy
will he executed rnther than the
oriqinal word in the kith porkion of the
caw List.

tlsinq the previous CASE: example of
BARN, i f we execute

2 INSTALL. COW ATKIN BARN

the second case in BARN wil l be
changed from PIG to COW. Later
execution o f 2 RARN unyywhan in the
progrein will then type MoooooO
instead of Oink.

Althouqh this is non-structured
proqramrninq, it is a t i l l a valuable
pmqramminq tool h e n uaed
properly. Thr! present definitions of
INSTALI. and ATKIN can be ua?d
within a color^ definition.

Please note that the use of the
Fxecution Array in the develapment of
MCASII: on acreen 169 is purely
stylistic. It is not a necessary'feature
of the development.

3. The essentially uniqiie feature of
FOHTI-i i s that i t is extendabic by the
user. W i t h m expandinq FOIITH
literature, it is clear to this author
that FORTH will iinprove with tiim
faster than all other lanqu~ges and
that there is iw upper l imit to i ts
iinpmveineiit. It has h e n leg, than 18
months since I first qot FCRTH up and
runninq. In that ahort period of time,
thanks to the flq literature, the
FORTH system I have runiinq now is,
in my opinion, vastly superior to any
other Innqoaqqc? I have ever seen. Aml
i t wil l qot hetter:

178 11
178 1s
179 0

179 1
179 2
179 3
179 4
179 S
179 6
177 7
l7P 8
179 0
179 10
i i p i i
1;f i:
175' i 3
177 14
179 :5
1c3 0
1CP 1
1c;i 2
lC3 3
ic7 4
183 'j
ics I
18; 7
18; s
185 9
16; 1 0
183 1;
160 i:

1c; i 3
1C1 i4
12'; 15
18i 0
181 1
18i 2
181 5
18; 4
181 5
16i 6
1CI 7
181 8
If1 9
161 14
1Ci 1;
1:; 1:
161 13
181 14
1 E l 15

Page 194 _-- --

FORTH DIMENSIONS IN6

A FORTH Standards Team meeting
will be held in Bethesda, MD, from May 11
through May 14. The m e e t i q is Open to
the current Standards Team members and
a limited number of observers. The site
will be the National 4H Center, a self-
contained educational facility, just outside
Washington, DC. The campus-like Center
has meeting rooms, dining facilities and
c'ormitory accommodations.

This four-day meeting will allow
world-wide Team members to consider
proposals and corrections for the current
FORTH Standard and develop future stan-
dards policy. Participation is possible by
submittal and attendance. Written sub-
mittals received by April 30 will be
distributed to attendees before the
meeting. Late receipts will be distribued
a t the team meeting. Those wishing to
attend must apply without delay, as apace
is severely limited.

Applicants (other than team members)
must sllbmit a biography by April 15 for
consideration by the credentials com-
mittee. You should include:

1. Your skills and comprehension of
multiple FORTH dialects and their
application.

Why your views are repremntative
of a significmt por t im of thc
FORTH community.

Accommodations are $41 to $47 per
day, per person, including meals. Send a
refundable $100 deposit (m d biography for
observers) to the meeting coordinator.
You will receive further details on choices
in housing and meals.

2.

Sllbmittals are eaaential if Team
actions are to represent the broadening
scope of FORTH uaers. Specific cm-
sideratim will be given to m addendrm
correcting FORTH-79, the Team Charter,
and alliance with other standards group%
Those not attending may receive copies of
stbmittals by sending $30 to the meeting
coordinator.

All submittals and reservations should
be directed to the meeting coordinator:

Pam Totta
Creative Solutions
4801 Randolph Road
Rockville, MD 20852
(301) 984-0262

FORTH DIMENSIONS
VOLUME IV

BEGINS NEXT ISSUE

From the Editor:

Beginning with the next iaaue, each
edit im of FORTH DIMENSIONS will high-
light a apecial theme. Our M a y / h n e issue
will feature several articles on complex
arithmetic routines in FORTH such as
fixed-point trig, q u a r e root, and floating
point. Of course, the remainder of each
issue will contain the usual technotes,
product reviews, tutorials, letters, etc.

Suggestions for future themes include:

Process Control Applications
Database System Applications
Teaching FORTH
Data Acquisition and Analysis
FORTH in the Arts
CP/M
Laboratory Workstations
Serial Communications
Metacompilation and its Alternatives
The FORTH Environment

Your input to these topics is greatly
needed!

RENEW TODAY!
Page 195 FORTH DIMENSIONS 1/6

LECTURES ON APPLIED FORTH

I two dry 8ominrr on Forth and It$ rpplkruOn

and t ho

1982 ROCHESTER FORTH CONFERENCE ON DATA BASES AND PROCESS CONTROL

Ury 17 through Urg 21, 1982
University of Rochortor Rochestor, New York

k p a r t of t h e 1982 Rochester FORTXI Conformca 011 Data Bare. md Prows
Control thore w i l l be a two day r d m r on Applied FORRI. Hauqerr and pro-
g ramera w i l l f i nd there l ec tu re s vory usoful f o r o m l o r i n g FORTH a p p l i u t i o l u
and programing concepts. Each l e c t u r e r w i l l rlao lead a Workfng Group at the
subrequent Conference. Pa r t i c ipan t s ihould ham a copy of Leo Brodie'r book,
S t a r t i a x FORTH, which i r ava i l ab le from Xountain View Preoa, PO Box 4656, nt.
V i e w , CA 94040 f o r $16.00.

Lao Brodie, author of S t a r t ing FORTH, on ''Beginning FORTE".
Kin! Harrir, of L u e n 6 b r r i a , Inc., on ''FORTE Programing Stylo".
&.nr Niouwenhuijzen, of the Univeroity of Utrecht, on ''FORTH P r o 8 r l r i a g

Lorry Forsley, of t he Laboratory f o r h e a r dnorgotico, on "Ext.nriblo

David Beers of Aregon Syr t em, Inc., OD "A Leqe Programing Project Cue

Steven Marcus of K i t t Peak National Obaervatory, on " h s c l b l e r a 6 Croor

James Hamood of t he I n a t i t u t e f o r h t r o m m y a t t h e University of buaii,

Roger Stapleton of S t . Andrews Obsematory, Scotland, on '%rdwme Control

Raymnd Desaey of Virginia Polytechnic I n a t i t u t e . on "Concurrency. Wet-

Lecturers f o r the two day seminar are:

Environment 'I.

Control and Data Structure".

Study: Building a Relat ional Da tabua in FORTE".

Assemblers".

on "Computation Tradeoffs".

with FORTH".

working and Instrument Control".
REGISTRATION FoRn
(must be received by Apri l 23, 1982)

Name

Address

c i t y S ta t e Z I P

Phone (Days) (1 -
CBOICES TO BE MADE

- Applied FORTH Seminar. May 17 6 18 $200.00

- 1982 Rochester FORTH Conference, May 19-21 100.00

Bouning for : (circle dates) Hay 16 17 18 19 20 21 $ 13.00/porroa dbl
16.50/perrm 001

-
TUTU AUOUNT ENCLOSED $

W e c h e h payable to: "University of Rachester/FORTB W e r e n c o "

Send check and Regis t ra t ion to:

For inforumtion call: Barbara Ruadrcrt (716) 275-2357
Hrs. B. Rueckert. Lab f o r Laser Energetic., 250 B Rivor Rd. R o c h m t a , 1R 10623

FORTH DIMENSIONS IW6 P W 1%

NEW PRODUCTS
Marx FORTH fa r Northabr

now Available
Marx FORTH is a fast, powerful

FORTH system written in 2-80 code.
Pack age includes se If -compiler, complete
source code, screen editor, and "smart"
assembler. Some of the features include
calls to the N+ directory functims allow-
ing creation, deletion and listing of
directories and ease of writing FORTH
programs that operate on files created b)
N* BASIC. Some of the performance fea-
tures include very fast compile speeds,
very fast math, 31-character variable
length names, case compiler security,
arguments-results, link field in front of
name, and many machine code definitions
for high speed.

The self-compiler allows you to change
anything. !f y o u donZ like how I do it,
change it! Add anything you want. Price
is $85 on N* single density diskette.
Source listinq available separately for $25.

Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803
(117) 862-9830

FORTH Rogmmming A i L

FORTH Programming Aids are high
level FORTH routines which enhance the
development and debugging of FORTH
programs and complement cross compiler
and meta compiler operations with the
following features:

- A command to decompile high level
FORTH words from RAM into struc-
tured FORTH source code including
structure cantrol words. ?his
command is useful to examine the
actual source code of a FORTH
word, or to obtAln variations of
FORTH words by deconpiling to
disk, editing, and recompiling the
modified m r c e code.

- A command to find words called by a
specified word to $ mating levels.

- Commands to patch improvements
into compiled words and to merge
infrequently called words for in-
creased program speed.

- Complete source code and 40-page
manual a re provided.

Requires a FORTH nucleus udng the
fig-FORTH model; a minimum of 3K bytes
and a recommended 1SK bytes of free dic-
tionary space. $150 single C W license;
$25 for manual alone (credit applied
toward program purchase). California
residents add 6.5% tax. Add $15 for
foreign air shipments. Available on 8-inch
=/sd disks (FORTH screens or CP/M 2.2

file of ecmma), d Apple 3.2 m d 3.3
dlaka; inquite about other formal..

Bsn curry
Curry AItocletes
PO Box 11324
Palo Alto, CA 94306

NEwBaok: htroductimroFoRTH

Introduction to FORTH, 8 1 4 2 - e
textbook by Ken KnecM, pmmb the
moat complete information available on
the MMS FORTH version of ule FORTH
language. It is written for my- who
wants to learn how to write computer
mftware udng FORTH.

No previous knowledge of FMiTH is
required, but some exposure to Micromft
Level n BASIC will be hepful. AlLhargh
the book is designed p s i f i c s l l y for the
MMFOHTH venion of FORTH for ths
Radio Shack TRS-80 Models I md 1% most
program axampler can be adapted to run
m other microcomprtela that u- dif-
ferent versions of FORTH.

RENEW NOW

FORTH for Oh& *btific

We've received from Technical
Products Co. a copy of their newsbtter.
Thb iawe contains product MWI and
update srsem for FORTH-79. We
applaud t h i r intat of good customer
support, but note technical errors in
definitiin of meral atmdard WO&
(W O R D , R@ , D S - C O D E , ZCONSTANT
,D< 1. lhb OSI-FORTH operatsr with
Ohio Scientific 05-650 3.3 operating
aystsm mleaa.

Their new addrew ia Technical
Products co, ax 2158, Boans, Nc
28607 -ad.

RENEW TODAY!

Mcz, ms, UDS FORTH

FORTH m now running M Zilog MCZ,
ZDS, and Multitech U 3 S microcomputer
rystems. It has compiler, editor,
amembler, text interpreter, and VO drives
for floppy diak, Centronics printer, and
RS232 Qvices.

Assembly w u r c t listing is available
now for $10. Source code on d i d e t t e is
$50 (specify W Z , mS, or UDS). b e r h
manual will accompany each order.

send checks to Thomas Y . Lo, Electri-
cal Engineering Department, Chung Yuan
Christian Lhivenity, Chung Li, Taiwan,
Rapllblic of China.

Sof twM for 09 C1P

Shoot The Teacher - Find the teacher and
shoot him with your water pistol.
(Teaches basic grephing) $6.95

Speed0 Math - Race the computer with
your car. (Drills basic addition and
multiplication) $6.95

K a d a z e Education Pack - Four pro-
grams in m. Addition, X Tables,
Spelling, end Place Value Drill. Answer a
question and your men go an their last
miasion. $11.95.

That% Crazy - A takeoff from a famous
TV Show when you r i d your life to jump
over can and a canyon. A spelling
program that provides h w r s of enter-
tainment. IS11.95 (specify grade level)

Wmt Ads Life Skilh - A program that
helps slow reedera understand the Want
Ads. Five levels of difficulty. $7.95

Rescue Ship - Transport injured mldiers to
the hopital . &rt the enemy has covered
the ocean with mines. One of them could
dastroy you.

Addition - $11.95
W t n c t i m - $11.95
Multiplication - $11.95
(all three on tape - $28.00)

Plea= include $1.00 to cover postage and
hndling md send to:

Hanry Svec
668 Shemrw Terrace
London Ontario Canada
N6H 3K1

F C X N !XMD\ISIONS IW6 Page 197

FORTH VENDORS
T h followlnp v r d o n how v r n l m of
FORTH avalllbk or sm Cmuttnta. (FIG
m&ar no judgmrnt on my producto.1

KPHAMlCRO
Pmferimal Maqonmnt Sorvlcn
724 Anrtndem R d 1109
Palo Alto, CA 94506

Sierra Compubr C a
617 Mvlc NE
Albuquerqw, NM 87123

IDPC Ccmpmy
P. 0. Box 11594
Philadelphia, PA 19116
(215) 676-3235

U S (Cq’n Softwmro)
281 Arlinptm Avenue
Borkelsy, CA 94704

(408) 252-2218

ApRl

(415) 525-9452

c.orgs LY-
280 l-bnderwn st.
kmey City, NJ 0 7 x 2
(201) 451-2905

MlmMotion
12077 Wilrhiro Blvd. 1%
L a Anpslm, CA 90025
(213) 821-4Y40

CROSSMMPLERS
Nmtilua Systewm
P.O. Box 1098
S a n b CNZ, CA 95061
(408) 475-7461

m m
FORTH, Inc.

Her- Beach, CA 90254
(213) 372-8493

LYNX
3301 OC- P& # m i
Sant. Monlcs, CA 90405

M&BDsalg,
820 Sweatbay Drive
Sumyvale, CA 94086

Show Lab$, Ltd.
P. 0. Box 3471
Hayward, CA 94540
(415) 276-6050

zM9 Pacific cant Hwy.

(213) 450-2466

Maopallr

Nnthstr
The Software Wakr, lnc.
P. 0. Box 4386
Mountain View, CA 94WO
(408) 736-49x

Labbaatory Soft- Systems, br.
MY4 Mmdoville Cmym Rd.
L a Angelm, CA 90049

mP-11

(213) 472-6995

w
Consumer Crmplten
8907 L a h h a Bivd.
L a b , CA 92041
(714) 698-8088

Sottwrn Fdnrotlon
44 lJnlvomlty Or.
Arlington blghtr, II m
(512) 259-1555

TIchnlcrl Roduct8 Co.
P. 0. Box 12985
Crinavill0, FL 526w
(9w) 572-8459

Tom LImnur
292 Falcrta Dr.
Miipitm, CA 95055

mz
FSS
P. 0. Box 0403
Aubln, TX 78712
(512) 477-2207

6ao&cuo,
Tolbot Mlcroy*M*
1927 Curtlm A v w u
R.dmdo8..ch,CA 90278
(213) Y76-9941

TRRSID
Th. hncm W a b (Cola c0mplt.r)
P. 0. Box 1110
DsIMor,CA 92014
(714) 942-2000

MII~CW Mlcnmnpumr %?vim
61 Lake Shore R d
Notick, MA 01760
(617) 651-6156

The k f t w u e Farm
P. 0.- 2m4
R d m , VA 22090

Urlua syrtem
7528 0.k R i e Hwy.
Kmxvillo, TN 37921
(615) 69Y-6583

6502
Glc C. R W e
540 S. Rmch View Circle 161
ANhsim Hllla, CA 92087

Sstum Software, Ltd.
P. 0. Box 397
Irbw Weatminister, BC
V X 4Y7 CANADA

alwzmmm
L&oratwy M1cmryrt.M
4147 Besthoven St.
L a Angalg, CA 90066
(213) 390-9292

Timin Engineering C a
9575 AVO. K-2
Sm Diepo, CA 92121
(714) 455-#)08

A p p l t a t i o n m q r
Innosyr
2150 Shattudc Avenue
Berkeley, CA 94704
(415) 843-8114

Decision Reaurrsr Cap.
28203 Ridgatem Ct.
Rancho Palo Verd~, CA 90274
(213) 377-3533

OQlO
Emporlcrl Roa. Ow.
P. 0. Box 1176
Milton, WA 98354
(206) 6514055

Omtrlcon
7911 NE 53rd Or.
Portlmd, OR 97211

Forward 1.Chnology
2595 Mortin Avmw
Smtr Clara, CA 95050
(4W 291-8995

Rockwell I nkmt lo ru l
Mlcrc~loctmnicr D o v i m
P.O. Box M 6 9
m l m , CA 92005
014) 652-2062

2.nd.X corp.
6398 Doughorty Rd.
Dublln, CA 94566

ht.Nct ln conlputer syrtm#, Inc.

Flrm*.n.Boar&mld-

(soy) 284-8277

V a w y O t F o R T H ~

6403 Dl MUM Rd.
Tampa, FL 3M14

Mountain View Pma
P. 0.Box 4656
Mountoin View, CA 9Qwo
(415) 961-4103

srpsmft Aroclrt..
P.O. Box 1628
cmpig,, n 61820
(217) 359-2112

crmlt.nol
Creative Solutiam, k.
4801 Randolph Rd.
Rocltville, MD 20852

oavo earlton
581 Ookrldgo Dr.
Redwood City, CA 94062
(415) 368-3257

Leo Bmdie
9720 &den Avmw
Chatrworth, CA 91511
(213) 99-302

Go FORTH
504 Lakemaad Way
Redwood City, CA 94062
(415) 566-6124

lmer Amma
517K Marina View
Belmont, CA 94002
(415) 591-8295

Laxen & Herrb, Inc.
24301 Sarthlond Drive, 1303
Hr/ward,CA 94545

Micmayatmna, Inc.
2500 E. Foothill Blvd., 1102
Pasadena. CA 91107

(415) 887-2894

(213) 577-1471

FIG CHAPTERS

How to form a FIG Chapter:

1. You k i c k on a time and place for the
first meeting in your area. (Allow a t least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on one
side of 8-J2 x 11 paper (ens copy is
enough). Alao send list of ZIP numbers
that you want mailed to (uee first three
digits if it works for you).

3. FIG will print, address and mail to
members with the ZIPS you want from
San Carlos, CA.

4. When you've had your first meeting with 5
or more attendees then FIG will provide
you with names in your area. You have to
tell us when you have 5 or more.

Northern California
4th Sat FIG Monthly Meeting, 1:OO p.m, at

~arth~end shopping Ctr., Heyward,
CA. FORML Workshop a t 1o:m am.

Southern California
Loa Angeles
4th Sat FIG Meeting, 11:OO a.m., Allstate

Savings, 8800 So. Sepulveda, L.A.
Philip Wasaon, (213) 649-1428.

orange county
3rd Sat FIG Meeting, 12:M) noon, Fullerton

Savings, 18020 Brockhorst, Fountain
Valley, CA. (714) 896-2016.

Sm Diego
Thur FIG Meeting, 12:OO noon. Guy

Kelly, (714) 268-3100, ~4784 for
dte.

Northwsst
Seattle Chuck Pliske or Dwight Vandenburg,

(206) 542-7611.

New Ensland
Boston
1st Wed FIG Meeting, 7:oO p.m, Mitre Corp,

Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198.

Boston
3rd Wed MMSFORTH Usen Gmup, 7 m p.m,

Cochituate, MA. Dick Miller, (617)
653-6136 for site.

swthwest
Phoenix Peter Bstsr at (602) 996-8398.

Tulsa
3rd Tues FIG Meeting, 750 p.m, The

Computer Store, 4343 So. Peoria,

9304 or Art Goraki, (918) 743-0111.
Tulsa, OK. Bob G i h , (918) 599-

Austin John Hettings, (512) 327-5864.

D a l h
Ft. Worth
4th Thur FIG Meeting, 7:OO p.m., Software

Automation, 1005 Burinem
Parkway, Richardmn, TX. Marvin
Elder, (214) 231-9142 or Bill Driaael
(214) 264-9680.

Mountain West
Salt Lake City

Bill Haygood, (801) 942-8000

Mid Atlsntic
Potomac Joel Shprentz, (703) 437-9218.

New Jersey George Lyons (201) 451-2905.

Nsw York Tom ;lung, (212) 746-4062.

Midwest
Detroit b a n Vieau, (313) 493-5105.

Mirmsmta
1st Mon FIG Meeting. Mark Abbott (day&

588-9532. Call for meeting place
or write to: MNFIG, 1156 Lincoln
Avenue, St. Paul, MN 55105.

(612) 854-8776 OT Fred Ol-, (612)

Foreiqn
Australia Lance Collinr (03) 292600.

England FORTH Interest Group, c /o 38,
Wwrley Road, Frimley, Camberby,
Surrey, GU16 5AU, E n g l d

FORTH Interest Group, B.ba-bldg.
8F, 3-23-8, Nishi-Shimbashi,
Minato-ku, Toyko, 105 hpm.

Canada - Qusbec
Gilles Paillard, (418) 871-1960 Q
643-2561.

w. &.mwnyWolf Gervert, Roter Hshn 29, D-2
Hsmburg 72, Wort Garrne,(040)
644-3985.

I SIGN UP A FRIEND

START A FIG Q1ApTER

PUT TBE ORDBR FORM a 'lgg -IN BOAUD

'i

t

Page 199 FORTH MMbrls1oNs In/ 6

