File:  [gforth] / gforth / prim
Revision 1.67: download - view: text, annotated - select for diffs
Wed Dec 13 10:15:26 2000 UTC (23 years, 4 months ago) by anton
Branches: MAIN
CVS tags: HEAD
prims2x.fs can now process \E (for EVALUATE) "comments"
moved prefix declarations to prims2x.fs (into \E comments).

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995,1996,1997,1998,2000 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	( stack effect )	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ Note: Fields in brackets are optional.  Word specifications have to
   36: \ be separated by at least one empty line
   37: \
   38: \ Both pronounciation and stack items (in the stack effect) must
   39: \ conform to the C identifier syntax or the C compiler will complain.
   40: \ If you don't have a pronounciation field, the Forth name is used,
   41: \ and has to conform to the C identifier syntax.
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ wid.*		WID
   76: \ f83name.*	F83Name *
   77: 
   78: \E get-current prefixes set-current
   79: \E 
   80: \E s" Bool"		single data-stack type-prefix f
   81: \E s" Char"		single data-stack type-prefix c
   82: \E s" Cell"		single data-stack type-prefix n
   83: \E s" Cell"		single data-stack type-prefix w
   84: \E s" UCell"		single data-stack type-prefix u
   85: \E s" DCell"		double data-stack type-prefix d
   86: \E s" UDCell"		double data-stack type-prefix ud
   87: \E s" Float"		single fp-stack   type-prefix r
   88: \E s" Cell *"		single data-stack type-prefix a_
   89: \E s" Char *"		single data-stack type-prefix c_
   90: \E s" Float *"		single data-stack type-prefix f_
   91: \E s" DFloat *"		single data-stack type-prefix df_
   92: \E s" SFloat *"		single data-stack type-prefix sf_
   93: \E s" Xt"		single data-stack type-prefix xt
   94: \E s" WID"		single data-stack type-prefix wid
   95: \E s" struct F83Name *"	single data-stack type-prefix f83name
   96: \E 
   97: \E return-stack stack-prefix R:
   98: \E inst-stream  stack-prefix #
   99: \E 
  100: \E set-current
  101: 
  102: \ 
  103: \ 
  104: \ 
  105: \ In addition the following names can be used:
  106: \ ip	the instruction pointer
  107: \ sp	the data stack pointer
  108: \ rp	the parameter stack pointer
  109: \ lp	the locals stack pointer
  110: \ NEXT	executes NEXT
  111: \ cfa	
  112: \ NEXT1	executes NEXT1
  113: \ FLAG(x)	makes a Forth flag from a C flag
  114: \ 
  115: \ 
  116: \ 
  117: \ Percentages in comments are from Koopmans book: average/maximum use
  118: \ (taken from four, not very representative benchmarks)
  119: \ 
  120: \ 
  121: \ 
  122: \ To do:
  123: \ 
  124: \ throw execute, cfa and NEXT1 out?
  125: \ macroize *ip, ip++, *ip++ (pipelining)?
  126: 
  127: \ these m4 macros would collide with identifiers
  128: undefine(`index')
  129: undefine(`shift')
  130: 
  131: noop	( -- )		gforth
  132: ;
  133: :
  134:  ;
  135: 
  136: lit	( -- w )		gforth
  137: w = (Cell)NEXT_INST;
  138: INC_IP(1);
  139: :
  140:  r> dup @ swap cell+ >r ;
  141: 
  142: execute	( xt -- )		core
  143: ""Perform the semantics represented by the execution token, @i{xt}.""
  144: ip=IP;
  145: IF_spTOS(spTOS = sp[0]);
  146: EXEC(xt);
  147: 
  148: perform	( a_addr -- )	gforth
  149: ""@code{@@ execute}.""
  150: /* and pfe */
  151: ip=IP;
  152: IF_spTOS(spTOS = sp[0]);
  153: EXEC(*(Xt *)a_addr);
  154: :
  155:  @ execute ;
  156: 
  157: \fhas? skipbranchprims 0= [IF]
  158: \+glocals
  159: 
  160: branch-lp+!#	( -- )	gforth	branch_lp_plus_store_number
  161: /* this will probably not be used */
  162: lp += (Cell)(IP[1]);
  163: goto branch;
  164: 
  165: \+
  166: 
  167: branch	( -- )		gforth
  168: branch:
  169: SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  170: :
  171:  r> dup @ + >r ;
  172: 
  173: \ condbranch(forthname,restline,code,forthcode)
  174: \ this is non-syntactical: code must open a brace that is closed by the macro
  175: define(condbranch,
  176: $1	$2
  177: $3	SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  178: TAIL;
  179: }
  180: else
  181:     INC_IP(1);
  182: $4
  183: 
  184: \+glocals
  185: 
  186: $1-lp+!#	$2_lp_plus_store_number
  187: $3    lp += (Cell)(IP[1]);
  188: SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  189: TAIL;
  190: }
  191: else
  192:     INC_IP(2);
  193: 
  194: \+
  195: )
  196: 
  197: condbranch(?branch,( f -- )		f83	question_branch,
  198: if (f==0) {
  199: ,:
  200:  0= dup     \ !f !f
  201:  r> dup @   \ !f !f IP branchoffset
  202:  rot and +  \ !f IP|IP+branchoffset
  203:  swap 0= cell and + \ IP''
  204:  >r ;)
  205: 
  206: \ we don't need an lp_plus_store version of the ?dup-stuff, because it
  207: \ is only used in if's (yet)
  208: 
  209: \+xconds
  210: 
  211: ?dup-?branch	( f -- f )	new	question_dupe_question_branch
  212: ""The run-time procedure compiled by @code{?DUP-IF}.""
  213: if (f==0) {
  214:   sp++;
  215:   IF_spTOS(spTOS = sp[0]);
  216:   SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  217:   NEXT;
  218: }
  219: else
  220:   INC_IP(1);
  221: 
  222: ?dup-0=-?branch	( f -- )	new	question_dupe_zero_equals_question_branch
  223: ""The run-time procedure compiled by @code{?DUP-0=-IF}.""
  224: /* the approach taken here of declaring the word as having the stack
  225: effect ( f -- ) and correcting for it in the branch-taken case costs a
  226: few cycles in that case, but is easy to convert to a CONDBRANCH
  227: invocation */
  228: if (f!=0) {
  229:   sp--;
  230:   SET_IP((Xt *)(((Cell)IP)+(Cell)NEXT_INST));
  231:   NEXT;
  232: }
  233: else
  234:   INC_IP(1);
  235: 
  236: \+
  237: \f[THEN]
  238: \fhas? skiploopprims 0= [IF]
  239: 
  240: condbranch((next),( R:n1 -- R:n2 )		cmFORTH	paren_next,
  241: n2=n1-1;
  242: if (n1) {
  243: ,:
  244:  r> r> dup 1- >r
  245:  IF dup @ + >r ELSE cell+ >r THEN ;)
  246: 
  247: condbranch((loop),( R:nlimit R:n1 -- R:nlimit R:n2 )	gforth	paren_loop,
  248: n2=n1+1;
  249: if (n2 != nlimit) {
  250: ,:
  251:  r> r> 1+ r> 2dup =
  252:  IF >r 1- >r cell+ >r
  253:  ELSE >r >r dup @ + >r THEN ;)
  254: 
  255: condbranch((+loop),( n R:nlimit R:n1 -- R:nlimit R:n2 )	gforth paren_plus_loop,
  256: /* !! check this thoroughly */
  257: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  258: /* dependent upon two's complement arithmetic */
  259: Cell olddiff = n1-nlimit;
  260: n2=n1+n;	
  261: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  262:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  263: ,:
  264:  r> swap
  265:  r> r> 2dup - >r
  266:  2 pick r@ + r@ xor 0< 0=
  267:  3 pick r> xor 0< 0= or
  268:  IF    >r + >r dup @ + >r
  269:  ELSE  >r >r drop cell+ >r THEN ;)
  270: 
  271: \+xconds
  272: 
  273: condbranch((-loop),( u R:nlimit R:n1 -- R:nlimit R:n2 )	gforth	paren_minus_loop,
  274: UCell olddiff = n1-nlimit;
  275: n2=n1-u;
  276: if (olddiff>u) {
  277: ,)
  278: 
  279: condbranch((s+loop),( n R:nlimit R:n1 -- R:nlimit R:n2 )		gforth	paren_symmetric_plus_loop,
  280: ""The run-time procedure compiled by S+LOOP. It loops until the index
  281: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  282: version of (+LOOP).""
  283: /* !! check this thoroughly */
  284: Cell diff = n1-nlimit;
  285: Cell newdiff = diff+n;
  286: if (n<0) {
  287:     diff = -diff;
  288:     newdiff = -newdiff;
  289: }
  290: n2=n1+n;
  291: if (diff>=0 || newdiff<0) {
  292: ,)
  293: 
  294: \+
  295: 
  296: unloop	( R:w1 R:w2 -- )	core
  297: /* !! alias for 2rdrop */
  298: :
  299:  r> rdrop rdrop >r ;
  300: 
  301: (for)	( ncount -- R:nlimit R:ncount )		cmFORTH		paren_for
  302: /* or (for) = >r -- collides with unloop! */
  303: nlimit=0;
  304: :
  305:  r> swap 0 >r >r >r ;
  306: 
  307: (do)	( nlimit nstart -- R:nlimit R:nstart )	gforth		paren_do
  308: :
  309:  r> swap rot >r >r >r ;
  310: 
  311: (?do)	( nlimit nstart -- R:nlimit R:nstart )	gforth	paren_question_do
  312: if (nstart == nlimit) {
  313:     IF_spTOS(spTOS = sp[0]);
  314:     goto branch;
  315:     }
  316: else {
  317:     INC_IP(1);
  318: }
  319: :
  320:   2dup =
  321:   IF   r> swap rot >r >r
  322:        dup @ + >r
  323:   ELSE r> swap rot >r >r
  324:        cell+ >r
  325:   THEN ;				\ --> CORE-EXT
  326: 
  327: \+xconds
  328: 
  329: (+do)	( nlimit nstart -- R:nlimit R:nstart )	gforth	paren_plus_do
  330: if (nstart >= nlimit) {
  331:     IF_spTOS(spTOS = sp[0]);
  332:     goto branch;
  333:     }
  334: else {
  335:     INC_IP(1);
  336: }
  337: :
  338:  swap 2dup
  339:  r> swap >r swap >r
  340:  >=
  341:  IF
  342:      dup @ +
  343:  ELSE
  344:      cell+
  345:  THEN  >r ;
  346: 
  347: (u+do)	( ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_plus_do
  348: if (ustart >= ulimit) {
  349:     IF_spTOS(spTOS = sp[0]);
  350:     goto branch;
  351:     }
  352: else {
  353:     INC_IP(1);
  354: }
  355: :
  356:  swap 2dup
  357:  r> swap >r swap >r
  358:  u>=
  359:  IF
  360:      dup @ +
  361:  ELSE
  362:      cell+
  363:  THEN  >r ;
  364: 
  365: (-do)	( nlimit nstart -- R:nlimit R:nstart )	gforth	paren_minus_do
  366: if (nstart <= nlimit) {
  367:     IF_spTOS(spTOS = sp[0]);
  368:     goto branch;
  369:     }
  370: else {
  371:     INC_IP(1);
  372: }
  373: :
  374:  swap 2dup
  375:  r> swap >r swap >r
  376:  <=
  377:  IF
  378:      dup @ +
  379:  ELSE
  380:      cell+
  381:  THEN  >r ;
  382: 
  383: (u-do)	( ulimit ustart -- R:ulimit R:ustart )	gforth	paren_u_minus_do
  384: if (ustart <= ulimit) {
  385:     IF_spTOS(spTOS = sp[0]);
  386:     goto branch;
  387:     }
  388: else {
  389:     INC_IP(1);
  390: }
  391: :
  392:  swap 2dup
  393:  r> swap >r swap >r
  394:  u<=
  395:  IF
  396:      dup @ +
  397:  ELSE
  398:      cell+
  399:  THEN  >r ;
  400: 
  401: \+
  402: 
  403: \ don't make any assumptions where the return stack is!!
  404: \ implement this in machine code if it should run quickly!
  405: 
  406: i	( R:n -- R:n n )		core
  407: :
  408: \ rp@ cell+ @ ;
  409:   r> r> tuck >r >r ;
  410: 
  411: i'	( R:w R:w2 -- R:w R:w2 w )		gforth		i_tick
  412: :
  413: \ rp@ cell+ cell+ @ ;
  414:   r> r> r> dup itmp ! >r >r >r itmp @ ;
  415: variable itmp
  416: 
  417: j	( R:n R:d1 -- n R:n R:d1 )		core
  418: :
  419: \ rp@ cell+ cell+ cell+ @ ;
  420:   r> r> r> r> dup itmp ! >r >r >r >r itmp @ ;
  421: [IFUNDEF] itmp variable itmp [THEN]
  422: 
  423: k	( R:n R:d1 R:d2 -- n R:n R:d1 R:d2 )		gforth
  424: :
  425: \ rp@ [ 5 cells ] Literal + @ ;
  426:   r> r> r> r> r> r> dup itmp ! >r >r >r >r >r >r itmp @ ;
  427: [IFUNDEF] itmp variable itmp [THEN]
  428: 
  429: \f[THEN]
  430: 
  431: \ digit is high-level: 0/0%
  432: 
  433: move	( c_from c_to ucount -- )		core
  434: ""Copy the contents of @i{ucount} aus at @i{c-from} to
  435: @i{c-to}. @code{move} works correctly even if the two areas overlap.""
  436: /* !! note that the standard specifies addr, not c-addr */
  437: memmove(c_to,c_from,ucount);
  438: /* make an Ifdef for bsd and others? */
  439: :
  440:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  441: 
  442: cmove	( c_from c_to u -- )	string	c_move
  443: ""Copy the contents of @i{ucount} characters from data space at
  444: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  445: from low address to high address; i.e., for overlapping areas it is
  446: safe if @i{c-to}=<@i{c-from}.""
  447: while (u-- > 0)
  448:   *c_to++ = *c_from++;
  449: :
  450:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  451: 
  452: cmove>	( c_from c_to u -- )	string	c_move_up
  453: ""Copy the contents of @i{ucount} characters from data space at
  454: @i{c-from} to @i{c-to}. The copy proceeds @code{char}-by-@code{char}
  455: from high address to low address; i.e., for overlapping areas it is
  456: safe if @i{c-to}>=@i{c-from}.""
  457: while (u-- > 0)
  458:   c_to[u] = c_from[u];
  459: :
  460:  dup 0= IF  drop 2drop exit  THEN
  461:  rot over + -rot bounds swap 1-
  462:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  463: 
  464: fill	( c_addr u c -- )	core
  465: ""Store @i{c} in @i{u} chars starting at @i{c-addr}.""
  466: memset(c_addr,c,u);
  467: :
  468:  -rot bounds
  469:  ?DO  dup I c!  LOOP  drop ;
  470: 
  471: compare	( c_addr1 u1 c_addr2 u2 -- n )	string
  472: ""Compare two strings lexicographically. If they are equal, @i{n} is 0; if
  473: the first string is smaller, @i{n} is -1; if the first string is larger, @i{n}
  474: is 1. Currently this is based on the machine's character
  475: comparison. In the future, this may change to consider the current
  476: locale and its collation order.""
  477: /* close ' to keep fontify happy */ 
  478: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  479: if (n==0)
  480:   n = u1-u2;
  481: if (n<0)
  482:   n = -1;
  483: else if (n>0)
  484:   n = 1;
  485: :
  486:  rot 2dup swap - >r min swap -text dup
  487:  IF  rdrop  ELSE  drop r> sgn  THEN ;
  488: : sgn ( n -- -1/0/1 )
  489:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  490: 
  491: -text	( c_addr1 u c_addr2 -- n )	new	dash_text
  492: n = memcmp(c_addr1, c_addr2, u);
  493: if (n<0)
  494:   n = -1;
  495: else if (n>0)
  496:   n = 1;
  497: :
  498:  swap bounds
  499:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  500:  ELSE  c@ I c@ - unloop  THEN  sgn ;
  501: : sgn ( n -- -1/0/1 )
  502:  dup 0= IF EXIT THEN  0< 2* 1+ ;
  503: 
  504: toupper	( c1 -- c2 )	gforth
  505: ""If @i{c1} is a lower-case character (in the current locale), @i{c2}
  506: is the equivalent upper-case character. All other characters are unchanged.""
  507: c2 = toupper(c1);
  508: :
  509:  dup [char] a - [ char z char a - 1 + ] Literal u<  bl and - ;
  510: 
  511: capscomp	( c_addr1 u c_addr2 -- n )	new
  512: n = memcasecmp(c_addr1, c_addr2, u); /* !! use something that works in all locales */
  513: if (n<0)
  514:   n = -1;
  515: else if (n>0)
  516:   n = 1;
  517: :
  518:  swap bounds
  519:  ?DO  dup c@ I c@ <>
  520:      IF  dup c@ toupper I c@ toupper =
  521:      ELSE  true  THEN  WHILE  1+  LOOP  drop 0
  522:  ELSE  c@ toupper I c@ toupper - unloop  THEN  sgn ;
  523: 
  524: -trailing	( c_addr u1 -- c_addr u2 )		string	dash_trailing
  525: ""Adjust the string specified by @i{c-addr, u1} to remove all trailing
  526: spaces. @i{u2} is the length of the modified string.""
  527: u2 = u1;
  528: while (u2>0 && c_addr[u2-1] == ' ')
  529:   u2--;
  530: :
  531:  BEGIN  1- 2dup + c@ bl =  WHILE
  532:         dup  0= UNTIL  ELSE  1+  THEN ;
  533: 
  534: /string	( c_addr1 u1 n -- c_addr2 u2 )	string	slash_string
  535: ""Adjust the string specified by @i{c-addr1, u1} to remove @i{n}
  536: characters from the start of the string.""
  537: c_addr2 = c_addr1+n;
  538: u2 = u1-n;
  539: :
  540:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  541: 
  542: +	( n1 n2 -- n )		core	plus
  543: n = n1+n2;
  544: 
  545: \ PFE-0.9.14 has it differently, but the next release will have it as follows
  546: under+	( n1 n2 n3 -- n n2 )	gforth	under_plus
  547: ""add @i{n3} to @i{n1} (giving @i{n})""
  548: n = n1+n3;
  549: :
  550:  rot + swap ;
  551: 
  552: -	( n1 n2 -- n )		core	minus
  553: n = n1-n2;
  554: :
  555:  negate + ;
  556: 
  557: negate	( n1 -- n2 )		core
  558: /* use minus as alias */
  559: n2 = -n1;
  560: :
  561:  invert 1+ ;
  562: 
  563: 1+	( n1 -- n2 )		core		one_plus
  564: n2 = n1+1;
  565: :
  566:  1 + ;
  567: 
  568: 1-	( n1 -- n2 )		core		one_minus
  569: n2 = n1-1;
  570: :
  571:  1 - ;
  572: 
  573: max	( n1 n2 -- n )	core
  574: if (n1<n2)
  575:   n = n2;
  576: else
  577:   n = n1;
  578: :
  579:  2dup < IF swap THEN drop ;
  580: 
  581: min	( n1 n2 -- n )	core
  582: if (n1<n2)
  583:   n = n1;
  584: else
  585:   n = n2;
  586: :
  587:  2dup > IF swap THEN drop ;
  588: 
  589: abs	( n -- u )	core
  590: if (n<0)
  591:   u = -n;
  592: else
  593:   u = n;
  594: :
  595:  dup 0< IF negate THEN ;
  596: 
  597: *	( n1 n2 -- n )		core	star
  598: n = n1*n2;
  599: :
  600:  um* drop ;
  601: 
  602: /	( n1 n2 -- n )		core	slash
  603: n = n1/n2;
  604: :
  605:  /mod nip ;
  606: 
  607: mod	( n1 n2 -- n )		core
  608: n = n1%n2;
  609: :
  610:  /mod drop ;
  611: 
  612: /mod	( n1 n2 -- n3 n4 )		core		slash_mod
  613: n4 = n1/n2;
  614: n3 = n1%n2; /* !! is this correct? look into C standard! */
  615: :
  616:  >r s>d r> fm/mod ;
  617: 
  618: 2*	( n1 -- n2 )		core		two_star
  619: ""Shift left by 1; also works on unsigned numbers""
  620: n2 = 2*n1;
  621: :
  622:  dup + ;
  623: 
  624: 2/	( n1 -- n2 )		core		two_slash
  625: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  626: division by 2 (note that @code{/} not necessarily floors).""
  627: n2 = n1>>1;
  628: :
  629:  dup MINI and IF 1 ELSE 0 THEN
  630:  [ bits/byte cell * 1- ] literal 
  631:  0 DO 2* swap dup 2* >r MINI and 
  632:      IF 1 ELSE 0 THEN or r> swap
  633:  LOOP nip ;
  634: 
  635: fm/mod	( d1 n1 -- n2 n3 )		core		f_m_slash_mod
  636: ""Floored division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, @i{n1}>@i{n2}>=0 or 0>=@i{n2}>@i{n1}.""
  637: #ifdef BUGGY_LONG_LONG
  638: DCell r = fmdiv(d1,n1);
  639: n2=r.hi;
  640: n3=r.lo;
  641: #else
  642: /* assumes that the processor uses either floored or symmetric division */
  643: n3 = d1/n1;
  644: n2 = d1%n1;
  645: /* note that this 1%-3>0 is optimized by the compiler */
  646: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  647:   n3--;
  648:   n2+=n1;
  649: }
  650: #endif
  651: :
  652:  dup >r dup 0< IF  negate >r dnegate r>  THEN
  653:  over       0< IF  tuck + swap  THEN
  654:  um/mod
  655:  r> 0< IF  swap negate swap  THEN ;
  656: 
  657: sm/rem	( d1 n1 -- n2 n3 )		core		s_m_slash_rem
  658: ""Symmetric division: @i{d1} = @i{n3}*@i{n1}+@i{n2}, sign(@i{n2})=sign(@i{d1}) or 0.""
  659: #ifdef BUGGY_LONG_LONG
  660: DCell r = smdiv(d1,n1);
  661: n2=r.hi;
  662: n3=r.lo;
  663: #else
  664: /* assumes that the processor uses either floored or symmetric division */
  665: n3 = d1/n1;
  666: n2 = d1%n1;
  667: /* note that this 1%-3<0 is optimized by the compiler */
  668: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  669:   n3++;
  670:   n2-=n1;
  671: }
  672: #endif
  673: :
  674:  over >r dup >r abs -rot
  675:  dabs rot um/mod
  676:  r> r@ xor 0< IF       negate       THEN
  677:  r>        0< IF  swap negate swap  THEN ;
  678: 
  679: m*	( n1 n2 -- d )		core	m_star
  680: #ifdef BUGGY_LONG_LONG
  681: d = mmul(n1,n2);
  682: #else
  683: d = (DCell)n1 * (DCell)n2;
  684: #endif
  685: :
  686:  2dup      0< and >r
  687:  2dup swap 0< and >r
  688:  um* r> - r> - ;
  689: 
  690: um*	( u1 u2 -- ud )		core	u_m_star
  691: /* use u* as alias */
  692: #ifdef BUGGY_LONG_LONG
  693: ud = ummul(u1,u2);
  694: #else
  695: ud = (UDCell)u1 * (UDCell)u2;
  696: #endif
  697: :
  698:    >r >r 0 0 r> r> [ 8 cells ] literal 0
  699:    DO
  700:        over >r dup >r 0< and d2*+ drop
  701:        r> 2* r> swap
  702:    LOOP 2drop ;
  703: : d2*+ ( ud n -- ud+n c )
  704:    over MINI
  705:    and >r >r 2dup d+ swap r> + swap r> ;
  706: 
  707: um/mod	( ud u1 -- u2 u3 )		core	u_m_slash_mod
  708: ""ud=u3*u1+u2, u1>u2>=0""
  709: #ifdef BUGGY_LONG_LONG
  710: UDCell r = umdiv(ud,u1);
  711: u2=r.hi;
  712: u3=r.lo;
  713: #else
  714: u3 = ud/u1;
  715: u2 = ud%u1;
  716: #endif
  717: :
  718:    0 swap [ 8 cells 1 + ] literal 0
  719:    ?DO /modstep
  720:    LOOP drop swap 1 rshift or swap ;
  721: : /modstep ( ud c R: u -- ud-?u c R: u )
  722:    >r over r@ u< 0= or IF r@ - 1 ELSE 0 THEN  d2*+ r> ;
  723: : d2*+ ( ud n -- ud+n c )
  724:    over MINI
  725:    and >r >r 2dup d+ swap r> + swap r> ;
  726: 
  727: m+	( d1 n -- d2 )		double		m_plus
  728: #ifdef BUGGY_LONG_LONG
  729: d2.lo = d1.lo+n;
  730: d2.hi = d1.hi - (n<0) + (d2.lo<d1.lo);
  731: #else
  732: d2 = d1+n;
  733: #endif
  734: :
  735:  s>d d+ ;
  736: 
  737: d+	( d1 d2 -- d )		double	d_plus
  738: #ifdef BUGGY_LONG_LONG
  739: d.lo = d1.lo+d2.lo;
  740: d.hi = d1.hi + d2.hi + (d.lo<d1.lo);
  741: #else
  742: d = d1+d2;
  743: #endif
  744: :
  745:  rot + >r tuck + swap over u> r> swap - ;
  746: 
  747: d-	( d1 d2 -- d )		double		d_minus
  748: #ifdef BUGGY_LONG_LONG
  749: d.lo = d1.lo - d2.lo;
  750: d.hi = d1.hi-d2.hi-(d1.lo<d2.lo);
  751: #else
  752: d = d1-d2;
  753: #endif
  754: :
  755:  dnegate d+ ;
  756: 
  757: dnegate	( d1 -- d2 )		double	d_negate
  758: /* use dminus as alias */
  759: #ifdef BUGGY_LONG_LONG
  760: d2 = dnegate(d1);
  761: #else
  762: d2 = -d1;
  763: #endif
  764: :
  765:  invert swap negate tuck 0= - ;
  766: 
  767: d2*	( d1 -- d2 )		double		d_two_star
  768: ""Shift left by 1; also works on unsigned numbers""
  769: #ifdef BUGGY_LONG_LONG
  770: d2.lo = d1.lo<<1;
  771: d2.hi = (d1.hi<<1) | (d1.lo>>(CELL_BITS-1));
  772: #else
  773: d2 = 2*d1;
  774: #endif
  775: :
  776:  2dup d+ ;
  777: 
  778: d2/	( d1 -- d2 )		double		d_two_slash
  779: ""Arithmetic shift right by 1.  For signed numbers this is a floored
  780: division by 2.""
  781: #ifdef BUGGY_LONG_LONG
  782: d2.hi = d1.hi>>1;
  783: d2.lo= (d1.lo>>1) | (d1.hi<<(CELL_BITS-1));
  784: #else
  785: d2 = d1>>1;
  786: #endif
  787: :
  788:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  789:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  790: 
  791: and	( w1 w2 -- w )		core
  792: w = w1&w2;
  793: 
  794: or	( w1 w2 -- w )		core
  795: w = w1|w2;
  796: :
  797:  invert swap invert and invert ;
  798: 
  799: xor	( w1 w2 -- w )		core	x_or
  800: w = w1^w2;
  801: 
  802: invert	( w1 -- w2 )		core
  803: w2 = ~w1;
  804: :
  805:  MAXU xor ;
  806: 
  807: rshift	( u1 n -- u2 )		core	r_shift
  808: ""Logical shift right by @i{n} bits.""
  809:   u2 = u1>>n;
  810: :
  811:     0 ?DO 2/ MAXI and LOOP ;
  812: 
  813: lshift	( u1 n -- u2 )		core	l_shift
  814:   u2 = u1<<n;
  815: :
  816:     0 ?DO 2* LOOP ;
  817: 
  818: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  819: define(comparisons,
  820: $1=	( $2 -- f )		$6	$3equals
  821: f = FLAG($4==$5);
  822: :
  823:     [ char $1x char 0 = [IF]
  824: 	] IF false ELSE true THEN [
  825:     [ELSE]
  826: 	] xor 0= [
  827:     [THEN] ] ;
  828: 
  829: $1<>	( $2 -- f )		$7	$3not_equals
  830: f = FLAG($4!=$5);
  831: :
  832:     [ char $1x char 0 = [IF]
  833: 	] IF true ELSE false THEN [
  834:     [ELSE]
  835: 	] xor 0<> [
  836:     [THEN] ] ;
  837: 
  838: $1<	( $2 -- f )		$8	$3less_than
  839: f = FLAG($4<$5);
  840: :
  841:     [ char $1x char 0 = [IF]
  842: 	] MINI and 0<> [
  843:     [ELSE] char $1x char u = [IF]
  844: 	]   2dup xor 0<  IF nip ELSE - THEN 0<  [
  845: 	[ELSE]
  846: 	    ] MINI xor >r MINI xor r> u< [
  847: 	[THEN]
  848:     [THEN] ] ;
  849: 
  850: $1>	( $2 -- f )		$9	$3greater_than
  851: f = FLAG($4>$5);
  852: :
  853:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  854:     $1< ;
  855: 
  856: $1<=	( $2 -- f )		gforth	$3less_or_equal
  857: f = FLAG($4<=$5);
  858: :
  859:     $1> 0= ;
  860: 
  861: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  862: f = FLAG($4>=$5);
  863: :
  864:     [ char $1x char 0 = [IF] ] negate [ [ELSE] ] swap [ [THEN] ]
  865:     $1<= ;
  866: 
  867: )
  868: 
  869: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  870: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  871: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  872: 
  873: \ dcomparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  874: define(dcomparisons,
  875: $1=	( $2 -- f )		$6	$3equals
  876: #ifdef BUGGY_LONG_LONG
  877: f = FLAG($4.lo==$5.lo && $4.hi==$5.hi);
  878: #else
  879: f = FLAG($4==$5);
  880: #endif
  881: 
  882: $1<>	( $2 -- f )		$7	$3not_equals
  883: #ifdef BUGGY_LONG_LONG
  884: f = FLAG($4.lo!=$5.lo || $4.hi!=$5.hi);
  885: #else
  886: f = FLAG($4!=$5);
  887: #endif
  888: 
  889: $1<	( $2 -- f )		$8	$3less_than
  890: #ifdef BUGGY_LONG_LONG
  891: f = FLAG($4.hi==$5.hi ? $4.lo<$5.lo : $4.hi<$5.hi);
  892: #else
  893: f = FLAG($4<$5);
  894: #endif
  895: 
  896: $1>	( $2 -- f )		$9	$3greater_than
  897: #ifdef BUGGY_LONG_LONG
  898: f = FLAG($4.hi==$5.hi ? $4.lo>$5.lo : $4.hi>$5.hi);
  899: #else
  900: f = FLAG($4>$5);
  901: #endif
  902: 
  903: $1<=	( $2 -- f )		gforth	$3less_or_equal
  904: #ifdef BUGGY_LONG_LONG
  905: f = FLAG($4.hi==$5.hi ? $4.lo<=$5.lo : $4.hi<=$5.hi);
  906: #else
  907: f = FLAG($4<=$5);
  908: #endif
  909: 
  910: $1>=	( $2 -- f )		gforth	$3greater_or_equal
  911: #ifdef BUGGY_LONG_LONG
  912: f = FLAG($4.hi==$5.hi ? $4.lo>=$5.lo : $4.hi>=$5.hi);
  913: #else
  914: f = FLAG($4>=$5);
  915: #endif
  916: 
  917: )
  918: 
  919: \+dcomps
  920: 
  921: dcomparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  922: dcomparisons(d0, d, d_zero_, d, DZERO, double, gforth, double, gforth)
  923: dcomparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  924: 
  925: \+
  926: 
  927: within	( u1 u2 u3 -- f )		core-ext
  928: ""u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2).  This works for
  929: unsigned and signed numbers (but not a mixture).  Another way to think
  930: about this word is to consider the numbers as a circle (wrapping
  931: around from @code{max-u} to 0 for unsigned, and from @code{max-n} to
  932: min-n for signed numbers); now consider the range from u2 towards
  933: increasing numbers up to and excluding u3 (giving an empty range if
  934: u2=u3); if u1 is in this range, @code{within} returns true.""
  935: f = FLAG(u1-u2 < u3-u2);
  936: :
  937:  over - >r - r> u< ;
  938: 
  939: sp@	( -- a_addr )		gforth		sp_fetch
  940: a_addr = sp+1;
  941: 
  942: sp!	( a_addr -- )		gforth		sp_store
  943: sp = a_addr;
  944: /* works with and without spTOS caching */
  945: 
  946: rp@	( -- a_addr )		gforth		rp_fetch
  947: a_addr = rp;
  948: 
  949: rp!	( a_addr -- )		gforth		rp_store
  950: rp = a_addr;
  951: 
  952: \+floating
  953: 
  954: fp@	( -- f_addr )	gforth	fp_fetch
  955: f_addr = fp;
  956: 
  957: fp!	( f_addr -- )	gforth	fp_store
  958: fp = f_addr;
  959: 
  960: \+
  961: 
  962: ;s	( R:w -- )		gforth	semis
  963: ""The primitive compiled by @code{EXIT}.""
  964: SET_IP((Xt *)w);
  965: 
  966: >r	( w -- R:w )		core	to_r
  967: :
  968:  (>r) ;
  969: : (>r)  rp@ cell+ @ rp@ ! rp@ cell+ ! ;
  970: 
  971: r>	( R:w -- w )		core	r_from
  972: :
  973:  rp@ cell+ @ rp@ @ rp@ cell+ ! (rdrop) rp@ ! ;
  974: Create (rdrop) ' ;s A,
  975: 
  976: rdrop	( R:w -- )		gforth
  977: :
  978:  r> r> drop >r ;
  979: 
  980: 2>r	( w1 w2 -- R:w1 R:w2 )	core-ext	two_to_r
  981: :
  982:  swap r> swap >r swap >r >r ;
  983: 
  984: 2r>	( R:w1 R:w2 -- w1 w2 )	core-ext	two_r_from
  985: :
  986:  r> r> swap r> swap >r swap ;
  987: 
  988: 2r@	( R:w1 R:w2 -- R:w1 R:w2 w1 w2 )	core-ext	two_r_fetch
  989: :
  990:  i' j ;
  991: 
  992: 2rdrop	(  R:w1 R:w2 -- )		gforth	two_r_drop
  993: :
  994:  r> r> drop r> drop >r ;
  995: 
  996: over	( w1 w2 -- w1 w2 w1 )		core
  997: :
  998:  sp@ cell+ @ ;
  999: 
 1000: drop	( w -- )		core
 1001: :
 1002:  IF THEN ;
 1003: 
 1004: swap	( w1 w2 -- w2 w1 )		core
 1005: :
 1006:  >r (swap) ! r> (swap) @ ;
 1007: Variable (swap)
 1008: 
 1009: dup	( w -- w w )		core	dupe
 1010: :
 1011:  sp@ @ ;
 1012: 
 1013: rot	( w1 w2 w3 -- w2 w3 w1 )	core	rote
 1014: :
 1015: [ defined? (swap) [IF] ]
 1016:     (swap) ! (rot) ! >r (rot) @ (swap) @ r> ;
 1017: Variable (rot)
 1018: [ELSE] ]
 1019:     >r swap r> swap ;
 1020: [THEN]
 1021: 
 1022: -rot	( w1 w2 w3 -- w3 w1 w2 )	gforth	not_rote
 1023: :
 1024:  rot rot ;
 1025: 
 1026: nip	( w1 w2 -- w2 )		core-ext
 1027: :
 1028:  swap drop ;
 1029: 
 1030: tuck	( w1 w2 -- w2 w1 w2 )	core-ext
 1031: :
 1032:  swap over ;
 1033: 
 1034: ?dup	( w -- w )			core	question_dupe
 1035: ""Actually the stack effect is: @code{( w -- 0 | w w )}.  It performs a
 1036: @code{dup} if w is nonzero.""
 1037: if (w!=0) {
 1038:   IF_spTOS(*sp-- = w;)
 1039: #ifndef USE_TOS
 1040:   *--sp = w;
 1041: #endif
 1042: }
 1043: :
 1044:  dup IF dup THEN ;
 1045: 
 1046: pick	( u -- w )			core-ext
 1047: ""Actually the stack effect is @code{ x0 ... xu u -- x0 ... xu x0 }.""
 1048: w = sp[u+1];
 1049: :
 1050:  1+ cells sp@ + @ ;
 1051: 
 1052: 2drop	( w1 w2 -- )		core	two_drop
 1053: :
 1054:  drop drop ;
 1055: 
 1056: 2dup	( w1 w2 -- w1 w2 w1 w2 )	core	two_dupe
 1057: :
 1058:  over over ;
 1059: 
 1060: 2over	( w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 )	core	two_over
 1061: :
 1062:  3 pick 3 pick ;
 1063: 
 1064: 2swap	( w1 w2 w3 w4 -- w3 w4 w1 w2 )	core	two_swap
 1065: :
 1066:  rot >r rot r> ;
 1067: 
 1068: 2rot	( w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2 )	double-ext	two_rote
 1069: :
 1070:  >r >r 2swap r> r> 2swap ;
 1071: 
 1072: 2nip	( w1 w2 w3 w4 -- w3 w4 )	gforth	two_nip
 1073: :
 1074:  2swap 2drop ;
 1075: 
 1076: 2tuck	( w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4 )	gforth	two_tuck
 1077: :
 1078:  2swap 2over ;
 1079: 
 1080: \ toggle is high-level: 0.11/0.42%
 1081: 
 1082: @	( a_addr -- w )		core	fetch
 1083: ""@i{w} is the cell stored at @i{a_addr}.""
 1084: w = *a_addr;
 1085: 
 1086: !	( w a_addr -- )		core	store
 1087: ""Store @i{w} into the cell at @i{a-addr}.""
 1088: *a_addr = w;
 1089: 
 1090: +!	( n a_addr -- )		core	plus_store
 1091: ""Add @i{n} to the cell at @i{a-addr}.""
 1092: *a_addr += n;
 1093: :
 1094:  tuck @ + swap ! ;
 1095: 
 1096: c@	( c_addr -- c )		core	c_fetch
 1097: ""@i{c} is the char stored at @i{c_addr}.""
 1098: c = *c_addr;
 1099: :
 1100: [ bigendian [IF] ]
 1101:     [ cell>bit 4 = [IF] ]
 1102: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1103: 	IF  $FF and  ELSE  8>>  THEN  ;
 1104:     [ [ELSE] ]
 1105: 	dup [ cell 1- ] literal and
 1106: 	tuck - @ swap [ cell 1- ] literal xor
 1107:  	0 ?DO 8>> LOOP $FF and
 1108:     [ [THEN] ]
 1109: [ [ELSE] ]
 1110:     [ cell>bit 4 = [IF] ]
 1111: 	dup [ 0 cell - ] Literal and @ swap 1 and
 1112: 	IF  8>>  ELSE  $FF and  THEN
 1113:     [ [ELSE] ]
 1114: 	dup [ cell  1- ] literal and 
 1115: 	tuck - @ swap
 1116: 	0 ?DO 8>> LOOP 255 and
 1117:     [ [THEN] ]
 1118: [ [THEN] ]
 1119: ;
 1120: : 8>> 2/ 2/ 2/ 2/  2/ 2/ 2/ 2/ ;
 1121: 
 1122: c!	( c c_addr -- )		core	c_store
 1123: ""Store @i{c} into the char at @i{c-addr}.""
 1124: *c_addr = c;
 1125: :
 1126: [ bigendian [IF] ]
 1127:     [ cell>bit 4 = [IF] ]
 1128: 	tuck 1 and IF  $FF and  ELSE  8<<  THEN >r
 1129: 	dup -2 and @ over 1 and cells masks + @ and
 1130: 	r> or swap -2 and ! ;
 1131: 	Create masks $00FF , $FF00 ,
 1132:     [ELSE] ]
 1133: 	dup [ cell 1- ] literal and dup 
 1134: 	[ cell 1- ] literal xor >r
 1135: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1136: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1137:     [THEN]
 1138: [ELSE] ]
 1139:     [ cell>bit 4 = [IF] ]
 1140: 	tuck 1 and IF  8<<  ELSE  $FF and  THEN >r
 1141: 	dup -2 and @ over 1 and cells masks + @ and
 1142: 	r> or swap -2 and ! ;
 1143: 	Create masks $FF00 , $00FF ,
 1144:     [ELSE] ]
 1145: 	dup [ cell 1- ] literal and dup >r
 1146: 	- dup @ $FF r@ 0 ?DO 8<< LOOP invert and
 1147: 	rot $FF and r> 0 ?DO 8<< LOOP or swap ! ;
 1148:     [THEN]
 1149: [THEN]
 1150: : 8<< 2* 2* 2* 2*  2* 2* 2* 2* ;
 1151: 
 1152: 2!	( w1 w2 a_addr -- )		core	two_store
 1153: ""Store @i{w2} into the cell at @i{c-addr} and @i{w1} into the next cell.""
 1154: a_addr[0] = w2;
 1155: a_addr[1] = w1;
 1156: :
 1157:  tuck ! cell+ ! ;
 1158: 
 1159: 2@	( a_addr -- w1 w2 )		core	two_fetch
 1160: ""@i{w2} is the content of the cell stored at @i{a-addr}, @i{w1} is
 1161: the content of the next cell.""
 1162: w2 = a_addr[0];
 1163: w1 = a_addr[1];
 1164: :
 1165:  dup cell+ @ swap @ ;
 1166: 
 1167: cell+	( a_addr1 -- a_addr2 )	core	cell_plus
 1168: ""@code{1 cells +}""
 1169: a_addr2 = a_addr1+1;
 1170: :
 1171:  cell + ;
 1172: 
 1173: cells	( n1 -- n2 )		core
 1174: "" @i{n2} is the number of address units of @i{n1} cells.""
 1175: n2 = n1 * sizeof(Cell);
 1176: :
 1177:  [ cell
 1178:  2/ dup [IF] ] 2* [ [THEN]
 1179:  2/ dup [IF] ] 2* [ [THEN]
 1180:  2/ dup [IF] ] 2* [ [THEN]
 1181:  2/ dup [IF] ] 2* [ [THEN]
 1182:  drop ] ;
 1183: 
 1184: char+	( c_addr1 -- c_addr2 )	core	char_plus
 1185: ""@code{1 chars +}.""
 1186: c_addr2 = c_addr1 + 1;
 1187: :
 1188:  1+ ;
 1189: 
 1190: (chars)	( n1 -- n2 )	gforth	paren_chars
 1191: n2 = n1 * sizeof(Char);
 1192: :
 1193:  ;
 1194: 
 1195: count	( c_addr1 -- c_addr2 u )	core
 1196: ""@i{c-addr2} is the first character and @i{u} the length of the
 1197: counted string at @i{c-addr1}.""
 1198: u = *c_addr1;
 1199: c_addr2 = c_addr1+1;
 1200: :
 1201:  dup 1+ swap c@ ;
 1202: 
 1203: (f83find)	( c_addr u f83name1 -- f83name2 )	new	paren_f83find
 1204: for (; f83name1 != NULL; f83name1 = (struct F83Name *)(f83name1->next))
 1205:   if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1206:       memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1207:     break;
 1208: f83name2=f83name1;
 1209: :
 1210:     BEGIN  dup WHILE  (find-samelen)  dup  WHILE
 1211: 	>r 2dup r@ cell+ char+ capscomp  0=
 1212: 	IF  2drop r>  EXIT  THEN
 1213: 	r> @
 1214:     REPEAT  THEN  nip nip ;
 1215: : (find-samelen) ( u f83name1 -- u f83name2/0 )
 1216:     BEGIN  2dup cell+ c@ $1F and <> WHILE  @  dup 0= UNTIL  THEN ;
 1217: 
 1218: \+hash
 1219: 
 1220: (hashfind)	( c_addr u a_addr -- f83name2 )	new	paren_hashfind
 1221: struct F83Name *f83name1;
 1222: f83name2=NULL;
 1223: while(a_addr != NULL)
 1224: {
 1225:    f83name1=(struct F83Name *)(a_addr[1]);
 1226:    a_addr=(Cell *)(a_addr[0]);
 1227:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1228:        memcasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1229:      {
 1230: 	f83name2=f83name1;
 1231: 	break;
 1232:      }
 1233: }
 1234: :
 1235:  BEGIN  dup  WHILE
 1236:         2@ >r >r dup r@ cell+ c@ $1F and =
 1237:         IF  2dup r@ cell+ char+ capscomp 0=
 1238: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1239: 	rdrop r>
 1240:  REPEAT nip nip ;
 1241: 
 1242: (tablefind)	( c_addr u a_addr -- f83name2 )	new	paren_tablefind
 1243: ""A case-sensitive variant of @code{(hashfind)}""
 1244: struct F83Name *f83name1;
 1245: f83name2=NULL;
 1246: while(a_addr != NULL)
 1247: {
 1248:    f83name1=(struct F83Name *)(a_addr[1]);
 1249:    a_addr=(Cell *)(a_addr[0]);
 1250:    if ((UCell)F83NAME_COUNT(f83name1)==u &&
 1251:        memcmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
 1252:      {
 1253: 	f83name2=f83name1;
 1254: 	break;
 1255:      }
 1256: }
 1257: :
 1258:  BEGIN  dup  WHILE
 1259:         2@ >r >r dup r@ cell+ c@ $1F and =
 1260:         IF  2dup r@ cell+ char+ -text 0=
 1261: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
 1262: 	rdrop r>
 1263:  REPEAT nip nip ;
 1264: 
 1265: (hashkey)	( c_addr u1 -- u2 )		gforth	paren_hashkey
 1266: u2=0;
 1267: while(u1--)
 1268:    u2+=(Cell)toupper(*c_addr++);
 1269: :
 1270:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
 1271: 
 1272: (hashkey1)	( c_addr u ubits -- ukey )		gforth	paren_hashkey1
 1273: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
 1274: /* this hash function rotates the key at every step by rot bits within
 1275:    ubits bits and xors it with the character. This function does ok in
 1276:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
 1277:    ASCII strings (larger if ubits is large), and should share no
 1278:    divisors with ubits.
 1279: */
 1280: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
 1281: Char *cp = c_addr;
 1282: for (ukey=0; cp<c_addr+u; cp++)
 1283:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
 1284: 	     ^ toupper(*cp))
 1285: 	    & ((1<<ubits)-1));
 1286: :
 1287:  dup rot-values + c@ over 1 swap lshift 1- >r
 1288:  tuck - 2swap r> 0 2swap bounds
 1289:  ?DO  dup 4 pick lshift swap 3 pick rshift or
 1290:       I c@ toupper xor
 1291:       over and  LOOP
 1292:  nip nip nip ;
 1293: Create rot-values
 1294:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
 1295:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
 1296:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
 1297:   7 c, 5 c, 5 c,
 1298: 
 1299: \+
 1300: 
 1301: (parse-white)	( c_addr1 u1 -- c_addr2 u2 )	gforth	paren_parse_white
 1302: /* use !isgraph instead of isspace? */
 1303: Char *endp = c_addr1+u1;
 1304: while (c_addr1<endp && isspace(*c_addr1))
 1305:   c_addr1++;
 1306: if (c_addr1<endp) {
 1307:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
 1308:     ;
 1309:   u2 = c_addr1-c_addr2;
 1310: }
 1311: else {
 1312:   c_addr2 = c_addr1;
 1313:   u2 = 0;
 1314: }
 1315: :
 1316:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1317:  REPEAT  THEN  2dup
 1318:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1319:  REPEAT  THEN  nip - ;
 1320: 
 1321: aligned	( c_addr -- a_addr )	core
 1322: "" @i{a-addr} is the first aligned address greater than or equal to @i{c-addr}.""
 1323: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1324: :
 1325:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1326: 
 1327: faligned	( c_addr -- f_addr )	float	f_aligned
 1328: "" @i{f-addr} is the first float-aligned address greater than or equal to @i{c-addr}.""
 1329: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1330: :
 1331:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1332: 
 1333: >body	( xt -- a_addr )	core	to_body
 1334: "" Get the address of the body of the word represented by @i{xt} (the address
 1335: of the word's data field).""
 1336: a_addr = PFA(xt);
 1337: :
 1338:     2 cells + ;
 1339: 
 1340: \ threading stuff is currently only interesting if we have a compiler
 1341: \fhas? standardthreading has? compiler and [IF]
 1342: 
 1343: >code-address	( xt -- c_addr )		gforth	to_code_address
 1344: ""@i{c-addr} is the code address of the word @i{xt}.""
 1345: /* !! This behaves installation-dependently for DOES-words */
 1346: c_addr = (Address)CODE_ADDRESS(xt);
 1347: :
 1348:     @ ;
 1349: 
 1350: >does-code	( xt -- a_addr )		gforth	to_does_code
 1351: ""If @i{xt} is the execution token of a child of a @code{DOES>} word,
 1352: @i{a-addr} is the start of the Forth code after the @code{DOES>};
 1353: Otherwise @i{a-addr} is 0.""
 1354: a_addr = (Cell *)DOES_CODE(xt);
 1355: :
 1356:     cell+ @ ;
 1357: 
 1358: code-address!	( c_addr xt -- )		gforth	code_address_store
 1359: ""Create a code field with code address @i{c-addr} at @i{xt}.""
 1360: MAKE_CF(xt, c_addr);
 1361: CACHE_FLUSH(xt,(size_t)PFA(0));
 1362: :
 1363:     ! ;
 1364: 
 1365: does-code!	( a_addr xt -- )		gforth	does_code_store
 1366: ""Create a code field at @i{xt} for a child of a @code{DOES>}-word;
 1367: @i{a-addr} is the start of the Forth code after @code{DOES>}.""
 1368: MAKE_DOES_CF(xt, a_addr);
 1369: CACHE_FLUSH(xt,(size_t)PFA(0));
 1370: :
 1371:     dodoes: over ! cell+ ! ;
 1372: 
 1373: does-handler!	( a_addr -- )	gforth	does_handler_store
 1374: ""Create a @code{DOES>}-handler at address @i{a-addr}. Normally,
 1375: @i{a-addr} points just behind a @code{DOES>}.""
 1376: MAKE_DOES_HANDLER(a_addr);
 1377: CACHE_FLUSH((caddr_t)a_addr,DOES_HANDLER_SIZE);
 1378: :
 1379:     drop ;
 1380: 
 1381: /does-handler	( -- n )	gforth	slash_does_handler
 1382: ""The size of a @code{DOES>}-handler (includes possible padding).""
 1383: /* !! a constant or environmental query might be better */
 1384: n = DOES_HANDLER_SIZE;
 1385: :
 1386:     2 cells ;
 1387: 
 1388: threading-method	( -- n )	gforth	threading_method
 1389: ""0 if the engine is direct threaded. Note that this may change during
 1390: the lifetime of an image.""
 1391: #if defined(DOUBLY_INDIRECT)
 1392: n=2;
 1393: #else
 1394: # if defined(DIRECT_THREADED)
 1395: n=0;
 1396: # else
 1397: n=1;
 1398: # endif
 1399: #endif
 1400: :
 1401:  1 ;
 1402: 
 1403: \f[THEN]
 1404: 
 1405: key-file	( wfileid -- n )		gforth	paren_key_file
 1406: #ifdef HAS_FILE
 1407: fflush(stdout);
 1408: n = key((FILE*)wfileid);
 1409: #else
 1410: n = key(stdin);
 1411: #endif
 1412: 
 1413: key?-file	( wfileid -- n )		facility	key_q_file
 1414: #ifdef HAS_FILE
 1415: fflush(stdout);
 1416: n = key_query((FILE*)wfileid);
 1417: #else
 1418: n = key_query(stdin);
 1419: #endif
 1420: 
 1421: \+os
 1422: 
 1423: stdin	( -- wfileid )	gforth
 1424: wfileid = (Cell)stdin;
 1425: 
 1426: stdout	( -- wfileid )	gforth
 1427: wfileid = (Cell)stdout;
 1428: 
 1429: stderr	( -- wfileid )	gforth
 1430: wfileid = (Cell)stderr;
 1431: 
 1432: form	( -- urows ucols )	gforth
 1433: ""The number of lines and columns in the terminal. These numbers may change
 1434: with the window size.""
 1435: /* we could block SIGWINCH here to get a consistent size, but I don't
 1436:  think this is necessary or always beneficial */
 1437: urows=rows;
 1438: ucols=cols;
 1439: 
 1440: flush-icache	( c_addr u -- )	gforth	flush_icache
 1441: ""Make sure that the instruction cache of the processor (if there is
 1442: one) does not contain stale data at @i{c-addr} and @i{u} bytes
 1443: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1444: automatically. Caveat: @code{flush-icache} might not work on your
 1445: installation; this is usually the case if direct threading is not
 1446: supported on your machine (take a look at your @file{machine.h}) and
 1447: your machine has a separate instruction cache. In such cases,
 1448: @code{flush-icache} does nothing instead of flushing the instruction
 1449: cache.""
 1450: FLUSH_ICACHE(c_addr,u);
 1451: 
 1452: (bye)	( n -- )	gforth	paren_bye
 1453: return (Label *)n;
 1454: 
 1455: (system)	( c_addr u -- wretval wior )	gforth	peren_system
 1456: #ifndef MSDOS
 1457: int old_tp=terminal_prepped;
 1458: deprep_terminal();
 1459: #endif
 1460: wretval=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
 1461: wior = IOR(wretval==-1 || (wretval==127 && errno != 0));
 1462: #ifndef MSDOS
 1463: if (old_tp)
 1464:   prep_terminal();
 1465: #endif
 1466: 
 1467: getenv	( c_addr1 u1 -- c_addr2 u2 )	gforth
 1468: ""The string @i{c-addr1 u1} specifies an environment variable. The string @i{c-addr2 u2}
 1469: is the host operating system's expansion of that environment variable. If the
 1470: environment variable does not exist, @i{c-addr2 u2} specifies a string 0 characters
 1471: in length.""
 1472: /* close ' to keep fontify happy */
 1473: c_addr2 = getenv(cstr(c_addr1,u1,1));
 1474: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
 1475: 
 1476: open-pipe	( c_addr u wfam -- wfileid wior )	gforth	open_pipe
 1477: wfileid=(Cell)popen(cstr(c_addr,u,1),fileattr[wfam]); /* ~ expansion of 1st arg? */
 1478: wior = IOR(wfileid==0); /* !! the man page says that errno is not set reliably */
 1479: 
 1480: close-pipe	( wfileid -- wretval wior )		gforth	close_pipe
 1481: wretval = pclose((FILE *)wfileid);
 1482: wior = IOR(wretval==-1);
 1483: 
 1484: time&date	( -- nsec nmin nhour nday nmonth nyear )	facility-ext	time_and_date
 1485: ""Report the current time of day. Seconds, minutes and hours are numbered from 0.
 1486: Months are numbered from 1.""
 1487: struct timeval time1;
 1488: struct timezone zone1;
 1489: struct tm *ltime;
 1490: gettimeofday(&time1,&zone1);
 1491: /* !! Single Unix specification: 
 1492:    If tzp is not a null pointer, the behaviour is unspecified. */
 1493: ltime=localtime((time_t *)&time1.tv_sec);
 1494: nyear =ltime->tm_year+1900;
 1495: nmonth=ltime->tm_mon+1;
 1496: nday  =ltime->tm_mday;
 1497: nhour =ltime->tm_hour;
 1498: nmin  =ltime->tm_min;
 1499: nsec  =ltime->tm_sec;
 1500: 
 1501: ms	( n -- )	facility-ext
 1502: ""Wait at least @i{n} milli-second.""
 1503: struct timeval timeout;
 1504: timeout.tv_sec=n/1000;
 1505: timeout.tv_usec=1000*(n%1000);
 1506: (void)select(0,0,0,0,&timeout);
 1507: 
 1508: allocate	( u -- a_addr wior )	memory
 1509: ""Allocate @i{u} address units of contiguous data space. The initial
 1510: contents of the data space is undefined. If the allocation is successful,
 1511: @i{a-addr} is the start address of the allocated region and @i{wior}
 1512: is 0. If the allocation fails, @i{a-addr} is undefined and @i{wior}
 1513: is a non-zero I/O result code.""
 1514: a_addr = (Cell *)malloc(u?u:1);
 1515: wior = IOR(a_addr==NULL);
 1516: 
 1517: free	( a_addr -- wior )		memory
 1518: ""Return the region of data space starting at @i{a-addr} to the system.
 1519: The region must originally have been obtained using @code{allocate} or
 1520: @code{resize}. If the operational is successful, @i{wior} is 0.
 1521: If the operation fails, @i{wior} is a non-zero I/O result code.""
 1522: free(a_addr);
 1523: wior = 0;
 1524: 
 1525: resize	( a_addr1 u -- a_addr2 wior )	memory
 1526: ""Change the size of the allocated area at @i{a-addr1} to @i{u}
 1527: address units, possibly moving the contents to a different
 1528: area. @i{a-addr2} is the address of the resulting area.
 1529: If the operation is successful, @i{wior} is 0.
 1530: If the operation fails, @i{wior} is a non-zero
 1531: I/O result code. If @i{a-addr1} is 0, Gforth's (but not the Standard)
 1532: @code{resize} @code{allocate}s @i{u} address units.""
 1533: /* the following check is not necessary on most OSs, but it is needed
 1534:    on SunOS 4.1.2. */
 1535: /* close ' to keep fontify happy */
 1536: if (a_addr1==NULL)
 1537:   a_addr2 = (Cell *)malloc(u);
 1538: else
 1539:   a_addr2 = (Cell *)realloc(a_addr1, u);
 1540: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
 1541: 
 1542: strerror	( n -- c_addr u )	gforth
 1543: c_addr = strerror(n);
 1544: u = strlen(c_addr);
 1545: 
 1546: strsignal	( n -- c_addr u )	gforth
 1547: c_addr = strsignal(n);
 1548: u = strlen(c_addr);
 1549: 
 1550: call-c	( w -- )	gforth	call_c
 1551: ""Call the C function pointed to by @i{w}. The C function has to
 1552: access the stack itself. The stack pointers are exported in the global
 1553: variables @code{SP} and @code{FP}.""
 1554: /* This is a first attempt at support for calls to C. This may change in
 1555:    the future */
 1556: IF_fpTOS(fp[0]=fpTOS);
 1557: FP=fp;
 1558: SP=sp;
 1559: ((void (*)())w)();
 1560: sp=SP;
 1561: fp=FP;
 1562: IF_spTOS(spTOS=sp[0]);
 1563: IF_fpTOS(fpTOS=fp[0]);
 1564: 
 1565: \+
 1566: \+file
 1567: 
 1568: close-file	( wfileid -- wior )		file	close_file
 1569: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1570: 
 1571: open-file	( c_addr u wfam -- wfileid wior )	file	open_file
 1572: wfileid = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[wfam]);
 1573: wior =  IOR(wfileid == 0);
 1574: 
 1575: create-file	( c_addr u wfam -- wfileid wior )	file	create_file
 1576: Cell	fd;
 1577: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_TRUNC|ufileattr[wfam], 0666);
 1578: if (fd != -1) {
 1579:   wfileid = (Cell)fdopen(fd, fileattr[wfam]);
 1580:   wior = IOR(wfileid == 0);
 1581: } else {
 1582:   wfileid = 0;
 1583:   wior = IOR(1);
 1584: }
 1585: 
 1586: delete-file	( c_addr u -- wior )		file	delete_file
 1587: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1588: 
 1589: rename-file	( c_addr1 u1 c_addr2 u2 -- wior )	file-ext	rename_file
 1590: ""Rename file @i{c_addr1 u1} to new name @i{c_addr2 u2}""
 1591: char *s1=tilde_cstr(c_addr2, u2, 1);
 1592: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1593: 
 1594: file-position	( wfileid -- ud wior )	file	file_position
 1595: /* !! use tell and lseek? */
 1596: ud = LONG2UD(ftell((FILE *)wfileid));
 1597: wior = IOR(UD2LONG(ud)==-1);
 1598: 
 1599: reposition-file	( ud wfileid -- wior )	file	reposition_file
 1600: wior = IOR(fseek((FILE *)wfileid, UD2LONG(ud), SEEK_SET)==-1);
 1601: 
 1602: file-size	( wfileid -- ud wior )	file	file_size
 1603: struct stat buf;
 1604: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1605: ud = LONG2UD(buf.st_size);
 1606: 
 1607: resize-file	( ud wfileid -- wior )	file	resize_file
 1608: wior = IOR(ftruncate(fileno((FILE *)wfileid), UD2LONG(ud))==-1);
 1609: 
 1610: read-file	( c_addr u1 wfileid -- u2 wior )	file	read_file
 1611: /* !! fread does not guarantee enough */
 1612: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1613: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1614: /* !! is the value of ferror errno-compatible? */
 1615: if (wior)
 1616:   clearerr((FILE *)wfileid);
 1617: 
 1618: read-line	( c_addr u1 wfileid -- u2 flag wior )	file	read_line
 1619: ""this is only for backward compatibility""
 1620: Cell c;
 1621: flag=-1;
 1622: for(u2=0; u2<u1; u2++)
 1623: {
 1624:    c = getc((FILE *)wfileid);
 1625:    if (c=='\n') break;
 1626:    if (c=='\r') {
 1627:      if ((c = getc((FILE *)wfileid))!='\n')
 1628:        ungetc(c,(FILE *)wfileid);
 1629:      break;
 1630:    }
 1631:    if (c==EOF) {
 1632: 	flag=FLAG(u2!=0);
 1633: 	break;
 1634:      }
 1635:    c_addr[u2] = (Char)c;
 1636: }
 1637: wior=FILEIO(ferror((FILE *)wfileid));
 1638: 
 1639: \+
 1640: 
 1641: write-file	( c_addr u1 wfileid -- wior )	file	write_file
 1642: /* !! fwrite does not guarantee enough */
 1643: #ifdef HAS_FILE
 1644: {
 1645:   UCell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1646:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1647:   if (wior)
 1648:     clearerr((FILE *)wfileid);
 1649: }
 1650: #else
 1651: TYPE(c_addr, u1);
 1652: #endif
 1653: 
 1654: emit-file	( c wfileid -- wior )	gforth	emit_file
 1655: #ifdef HAS_FILE
 1656: wior = FILEIO(putc(c, (FILE *)wfileid)==EOF);
 1657: if (wior)
 1658:   clearerr((FILE *)wfileid);
 1659: #else
 1660: PUTC(c);
 1661: #endif
 1662: 
 1663: \+file
 1664: 
 1665: flush-file	( wfileid -- wior )		file-ext	flush_file
 1666: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1667: 
 1668: file-status	( c_addr u -- wfam wior )	file-ext	file_status
 1669: char *filename=tilde_cstr(c_addr, u, 1);
 1670: if (access (filename, F_OK) != 0) {
 1671:   wfam=0;
 1672:   wior=IOR(1);
 1673: }
 1674: else if (access (filename, R_OK | W_OK) == 0) {
 1675:   wfam=2; /* r/w */
 1676:   wior=0;
 1677: }
 1678: else if (access (filename, R_OK) == 0) {
 1679:   wfam=0; /* r/o */
 1680:   wior=0;
 1681: }
 1682: else if (access (filename, W_OK) == 0) {
 1683:   wfam=4; /* w/o */
 1684:   wior=0;
 1685: }
 1686: else {
 1687:   wfam=1; /* well, we cannot access the file, but better deliver a legal
 1688: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1689:   wior=0;
 1690: }
 1691: 
 1692: \+
 1693: \+floating
 1694: 
 1695: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1696: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1697: 
 1698: d>f	( d -- r )		float	d_to_f
 1699: #ifdef BUGGY_LONG_LONG
 1700: extern double ldexp(double x, int exp);
 1701: r = ldexp((Float)d.hi,CELL_BITS) + (Float)d.lo;
 1702: #else
 1703: r = d;
 1704: #endif
 1705: 
 1706: f>d	( r -- d )		float	f_to_d
 1707: #ifdef BUGGY_LONG_LONG
 1708: d.hi = ldexp(r,-(int)(CELL_BITS)) - (r<0);
 1709: d.lo = r-ldexp((Float)d.hi,CELL_BITS);
 1710: #else
 1711: d = r;
 1712: #endif
 1713: 
 1714: f!	( r f_addr -- )	float	f_store
 1715: ""Store @i{r} into the float at address @i{f-addr}.""
 1716: *f_addr = r;
 1717: 
 1718: f@	( f_addr -- r )	float	f_fetch
 1719: ""@i{r} is the float at address @i{f-addr}.""
 1720: r = *f_addr;
 1721: 
 1722: df@	( df_addr -- r )	float-ext	d_f_fetch
 1723: ""Fetch the double-precision IEEE floating-point value @i{r} from the address @i{df-addr}.""
 1724: #ifdef IEEE_FP
 1725: r = *df_addr;
 1726: #else
 1727: !! df@
 1728: #endif
 1729: 
 1730: df!	( r df_addr -- )	float-ext	d_f_store
 1731: ""Store @i{r} as double-precision IEEE floating-point value to the
 1732: address @i{df-addr}.""
 1733: #ifdef IEEE_FP
 1734: *df_addr = r;
 1735: #else
 1736: !! df!
 1737: #endif
 1738: 
 1739: sf@	( sf_addr -- r )	float-ext	s_f_fetch
 1740: ""Fetch the single-precision IEEE floating-point value @i{r} from the address @i{sf-addr}.""
 1741: #ifdef IEEE_FP
 1742: r = *sf_addr;
 1743: #else
 1744: !! sf@
 1745: #endif
 1746: 
 1747: sf!	( r sf_addr -- )	float-ext	s_f_store
 1748: ""Store @i{r} as single-precision IEEE floating-point value to the
 1749: address @i{sf-addr}.""
 1750: #ifdef IEEE_FP
 1751: *sf_addr = r;
 1752: #else
 1753: !! sf!
 1754: #endif
 1755: 
 1756: f+	( r1 r2 -- r3 )	float	f_plus
 1757: r3 = r1+r2;
 1758: 
 1759: f-	( r1 r2 -- r3 )	float	f_minus
 1760: r3 = r1-r2;
 1761: 
 1762: f*	( r1 r2 -- r3 )	float	f_star
 1763: r3 = r1*r2;
 1764: 
 1765: f/	( r1 r2 -- r3 )	float	f_slash
 1766: r3 = r1/r2;
 1767: 
 1768: f**	( r1 r2 -- r3 )	float-ext	f_star_star
 1769: ""@i{r3} is @i{r1} raised to the @i{r2}th power.""
 1770: r3 = pow(r1,r2);
 1771: 
 1772: fnegate	( r1 -- r2 )	float	f_negate
 1773: r2 = - r1;
 1774: 
 1775: fdrop	( r -- )		float	f_drop
 1776: 
 1777: fdup	( r -- r r )	float	f_dupe
 1778: 
 1779: fswap	( r1 r2 -- r2 r1 )	float	f_swap
 1780: 
 1781: fover	( r1 r2 -- r1 r2 r1 )	float	f_over
 1782: 
 1783: frot	( r1 r2 r3 -- r2 r3 r1 )	float	f_rote
 1784: 
 1785: fnip	( r1 r2 -- r2 )	gforth	f_nip
 1786: 
 1787: ftuck	( r1 r2 -- r2 r1 r2 )	gforth	f_tuck
 1788: 
 1789: float+	( f_addr1 -- f_addr2 )	float	float_plus
 1790: ""@code{1 floats +}.""
 1791: f_addr2 = f_addr1+1;
 1792: 
 1793: floats	( n1 -- n2 )	float
 1794: ""@i{n2} is the number of address units of @i{n1} floats.""
 1795: n2 = n1*sizeof(Float);
 1796: 
 1797: floor	( r1 -- r2 )	float
 1798: ""Round towards the next smaller integral value, i.e., round toward negative infinity.""
 1799: /* !! unclear wording */
 1800: r2 = floor(r1);
 1801: 
 1802: fround	( r1 -- r2 )	float	f_round
 1803: ""Round to the nearest integral value.""
 1804: /* !! unclear wording */
 1805: #ifdef HAVE_RINT
 1806: r2 = rint(r1);
 1807: #else
 1808: r2 = floor(r1+0.5);
 1809: /* !! This is not quite true to the rounding rules given in the standard */
 1810: #endif
 1811: 
 1812: fmax	( r1 r2 -- r3 )	float	f_max
 1813: if (r1<r2)
 1814:   r3 = r2;
 1815: else
 1816:   r3 = r1;
 1817: 
 1818: fmin	( r1 r2 -- r3 )	float	f_min
 1819: if (r1<r2)
 1820:   r3 = r1;
 1821: else
 1822:   r3 = r2;
 1823: 
 1824: represent	( r c_addr u -- n f1 f2 )	float
 1825: char *sig;
 1826: int flag;
 1827: int decpt;
 1828: sig=ecvt(r, u, &decpt, &flag);
 1829: n=(r==0 ? 1 : decpt);
 1830: f1=FLAG(flag!=0);
 1831: f2=FLAG(isdigit((unsigned)(sig[0]))!=0);
 1832: memmove(c_addr,sig,u);
 1833: 
 1834: >float	( c_addr u -- flag )	float	to_float
 1835: ""Actual stack effect: ( c_addr u -- r t | f ).  Attempt to convert the
 1836: character string @i{c-addr u} to internal floating-point
 1837: representation. If the string represents a valid floating-point number
 1838: @i{r} is placed on the floating-point stack and @i{flag} is
 1839: true. Otherwise, @i{flag} is false. A string of blanks is a special
 1840: case and represents the floating-point number 0.""
 1841: /* real signature: c_addr u -- r t / f */
 1842: Float r;
 1843: char *number=cstr(c_addr, u, 1);
 1844: char *endconv;
 1845: int sign = 0;
 1846: if(number[0]=='-') {
 1847:    sign = 1;
 1848:    number++;
 1849:    u--;
 1850: }
 1851: while(isspace((unsigned)(number[--u])) && u>0);
 1852: switch(number[u])
 1853: {
 1854:    case 'd':
 1855:    case 'D':
 1856:    case 'e':
 1857:    case 'E':  break;
 1858:    default :  u++; break;
 1859: }
 1860: number[u]='\0';
 1861: r=strtod(number,&endconv);
 1862: if((flag=FLAG(!(Cell)*endconv)))
 1863: {
 1864:    IF_fpTOS(fp[0] = fpTOS);
 1865:    fp += -1;
 1866:    fpTOS = sign ? -r : r;
 1867: }
 1868: else if(*endconv=='d' || *endconv=='D')
 1869: {
 1870:    *endconv='E';
 1871:    r=strtod(number,&endconv);
 1872:    if((flag=FLAG(!(Cell)*endconv)))
 1873:      {
 1874: 	IF_fpTOS(fp[0] = fpTOS);
 1875: 	fp += -1;
 1876: 	fpTOS = sign ? -r : r;
 1877:      }
 1878: }
 1879: 
 1880: fabs	( r1 -- r2 )	float-ext	f_abs
 1881: r2 = fabs(r1);
 1882: 
 1883: facos	( r1 -- r2 )	float-ext	f_a_cos
 1884: r2 = acos(r1);
 1885: 
 1886: fasin	( r1 -- r2 )	float-ext	f_a_sine
 1887: r2 = asin(r1);
 1888: 
 1889: fatan	( r1 -- r2 )	float-ext	f_a_tan
 1890: r2 = atan(r1);
 1891: 
 1892: fatan2	( r1 r2 -- r3 )	float-ext	f_a_tan_two
 1893: ""@i{r1/r2}=tan(@i{r3}). ANS Forth does not require, but probably
 1894: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1895: r3 = atan2(r1,r2);
 1896: 
 1897: fcos	( r1 -- r2 )	float-ext	f_cos
 1898: r2 = cos(r1);
 1899: 
 1900: fexp	( r1 -- r2 )	float-ext	f_e_x_p
 1901: r2 = exp(r1);
 1902: 
 1903: fexpm1	( r1 -- r2 )	float-ext	f_e_x_p_m_one
 1904: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1905: #ifdef HAVE_EXPM1
 1906: extern double
 1907: #ifdef NeXT
 1908:               const
 1909: #endif
 1910:                     expm1(double);
 1911: r2 = expm1(r1);
 1912: #else
 1913: r2 = exp(r1)-1.;
 1914: #endif
 1915: 
 1916: fln	( r1 -- r2 )	float-ext	f_l_n
 1917: r2 = log(r1);
 1918: 
 1919: flnp1	( r1 -- r2 )	float-ext	f_l_n_p_one
 1920: ""@i{r2}=ln(@i{r1}+1)""
 1921: #ifdef HAVE_LOG1P
 1922: extern double
 1923: #ifdef NeXT
 1924:               const
 1925: #endif
 1926:                     log1p(double);
 1927: r2 = log1p(r1);
 1928: #else
 1929: r2 = log(r1+1.);
 1930: #endif
 1931: 
 1932: flog	( r1 -- r2 )	float-ext	f_log
 1933: ""The decimal logarithm.""
 1934: r2 = log10(r1);
 1935: 
 1936: falog	( r1 -- r2 )	float-ext	f_a_log
 1937: ""@i{r2}=10**@i{r1}""
 1938: extern double pow10(double);
 1939: r2 = pow10(r1);
 1940: 
 1941: fsin	( r1 -- r2 )	float-ext	f_sine
 1942: r2 = sin(r1);
 1943: 
 1944: fsincos	( r1 -- r2 r3 )	float-ext	f_sine_cos
 1945: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1946: r2 = sin(r1);
 1947: r3 = cos(r1);
 1948: 
 1949: fsqrt	( r1 -- r2 )	float-ext	f_square_root
 1950: r2 = sqrt(r1);
 1951: 
 1952: ftan	( r1 -- r2 )	float-ext	f_tan
 1953: r2 = tan(r1);
 1954: :
 1955:  fsincos f/ ;
 1956: 
 1957: fsinh	( r1 -- r2 )	float-ext	f_cinch
 1958: r2 = sinh(r1);
 1959: :
 1960:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1961: 
 1962: fcosh	( r1 -- r2 )	float-ext	f_cosh
 1963: r2 = cosh(r1);
 1964: :
 1965:  fexp fdup 1/f f+ f2/ ;
 1966: 
 1967: ftanh	( r1 -- r2 )	float-ext	f_tan_h
 1968: r2 = tanh(r1);
 1969: :
 1970:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1971: 
 1972: fasinh	( r1 -- r2 )	float-ext	f_a_cinch
 1973: r2 = asinh(r1);
 1974: :
 1975:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1976: 
 1977: facosh	( r1 -- r2 )	float-ext	f_a_cosh
 1978: r2 = acosh(r1);
 1979: :
 1980:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1981: 
 1982: fatanh	( r1 -- r2 )	float-ext	f_a_tan_h
 1983: r2 = atanh(r1);
 1984: :
 1985:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1986:  r> IF  fnegate  THEN ;
 1987: 
 1988: sfloats	( n1 -- n2 )	float-ext	s_floats
 1989: ""@i{n2} is the number of address units of @i{n1}
 1990: single-precision IEEE floating-point numbers.""
 1991: n2 = n1*sizeof(SFloat);
 1992: 
 1993: dfloats	( n1 -- n2 )	float-ext	d_floats
 1994: ""@i{n2} is the number of address units of @i{n1}
 1995: double-precision IEEE floating-point numbers.""
 1996: n2 = n1*sizeof(DFloat);
 1997: 
 1998: sfaligned	( c_addr -- sf_addr )	float-ext	s_f_aligned
 1999: ""@i{sf-addr} is the first single-float-aligned address greater
 2000: than or equal to @i{c-addr}.""
 2001: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 2002: :
 2003:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 2004: 
 2005: dfaligned	( c_addr -- df_addr )	float-ext	d_f_aligned
 2006: ""@i{df-addr} is the first double-float-aligned address greater
 2007: than or equal to @i{c-addr}.""
 2008: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 2009: :
 2010:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 2011: 
 2012: \ The following words access machine/OS/installation-dependent
 2013: \   Gforth internals
 2014: \ !! how about environmental queries DIRECT-THREADED,
 2015: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 2016: 
 2017: \ local variable implementation primitives
 2018: \+
 2019: \+glocals
 2020: 
 2021: @local#	( -- w )	gforth	fetch_local_number
 2022: w = *(Cell *)(lp+(Cell)NEXT_INST);
 2023: INC_IP(1);
 2024: 
 2025: @local0	( -- w )	new	fetch_local_zero
 2026: w = *(Cell *)(lp+0*sizeof(Cell));
 2027: 
 2028: @local1	( -- w )	new	fetch_local_four
 2029: w = *(Cell *)(lp+1*sizeof(Cell));
 2030: 
 2031: @local2	( -- w )	new	fetch_local_eight
 2032: w = *(Cell *)(lp+2*sizeof(Cell));
 2033: 
 2034: @local3	( -- w )	new	fetch_local_twelve
 2035: w = *(Cell *)(lp+3*sizeof(Cell));
 2036: 
 2037: \+floating
 2038: 
 2039: f@local#	( -- r )	gforth	f_fetch_local_number
 2040: r = *(Float *)(lp+(Cell)NEXT_INST);
 2041: INC_IP(1);
 2042: 
 2043: f@local0	( -- r )	new	f_fetch_local_zero
 2044: r = *(Float *)(lp+0*sizeof(Float));
 2045: 
 2046: f@local1	( -- r )	new	f_fetch_local_eight
 2047: r = *(Float *)(lp+1*sizeof(Float));
 2048: 
 2049: \+
 2050: 
 2051: laddr#	( -- c_addr )	gforth	laddr_number
 2052: /* this can also be used to implement lp@ */
 2053: c_addr = (Char *)(lp+(Cell)NEXT_INST);
 2054: INC_IP(1);
 2055: 
 2056: lp+!#	( -- )	gforth	lp_plus_store_number
 2057: ""used with negative immediate values it allocates memory on the
 2058: local stack, a positive immediate argument drops memory from the local
 2059: stack""
 2060: lp += (Cell)NEXT_INST;
 2061: INC_IP(1);
 2062: 
 2063: lp-	( -- )	new	minus_four_lp_plus_store
 2064: lp += -sizeof(Cell);
 2065: 
 2066: lp+	( -- )	new	eight_lp_plus_store
 2067: lp += sizeof(Float);
 2068: 
 2069: lp+2	( -- )	new	sixteen_lp_plus_store
 2070: lp += 2*sizeof(Float);
 2071: 
 2072: lp!	( c_addr -- )	gforth	lp_store
 2073: lp = (Address)c_addr;
 2074: 
 2075: >l	( w -- )	gforth	to_l
 2076: lp -= sizeof(Cell);
 2077: *(Cell *)lp = w;
 2078: 
 2079: \+floating
 2080: 
 2081: f>l	( r -- )	gforth	f_to_l
 2082: lp -= sizeof(Float);
 2083: *(Float *)lp = r;
 2084: 
 2085: fpick	( u -- r )		gforth
 2086: ""Actually the stack effect is @code{ r0 ... ru u -- r0 ... ru r0 }.""
 2087: r = fp[u+1]; /* +1, because update of fp happens before this fragment */
 2088: :
 2089:  floats fp@ + f@ ;
 2090: 
 2091: \+
 2092: \+
 2093: 
 2094: \+OS
 2095: 
 2096: define(`uploop',
 2097:        `pushdef(`$1', `$2')_uploop(`$1', `$2', `$3', `$4', `$5')`'popdef(`$1')')
 2098: define(`_uploop',
 2099:        `ifelse($1, `$3', `$5',
 2100: 	       `$4`'define(`$1', incr($1))_uploop(`$1', `$2', `$3', `$4', `$5')')')
 2101: \ argflist(argnum): Forth argument list
 2102: define(argflist,
 2103:        `ifelse($1, 0, `',
 2104:                `uploop(`_i', 1, $1, `format(`u%d ', _i)', `format(`u%d ', _i)')')')
 2105: \ argdlist(argnum): declare C's arguments
 2106: define(argdlist,
 2107:        `ifelse($1, 0, `',
 2108:                `uploop(`_i', 1, $1, `Cell, ', `Cell')')')
 2109: \ argclist(argnum): pass C's arguments
 2110: define(argclist,
 2111:        `ifelse($1, 0, `',
 2112:                `uploop(`_i', 1, $1, `format(`u%d, ', _i)', `format(`u%d', _i)')')')
 2113: \ icall(argnum)
 2114: define(icall,
 2115: `icall$1	( argflist($1)u -- uret )	gforth
 2116: uret = (SYSCALL(Cell(*)(argdlist($1)))u)(argclist($1));
 2117: 
 2118: ')
 2119: define(fcall,
 2120: `fcall$1	( argflist($1)u -- rret )	gforth
 2121: rret = (SYSCALL(Float(*)(argdlist($1)))u)(argclist($1));
 2122: 
 2123: ')
 2124: 
 2125: \ close ' to keep fontify happy
 2126: 
 2127: open-lib	( c_addr1 u1 -- u2 )	gforth	open_lib
 2128: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2129: #ifndef RTLD_GLOBAL
 2130: #define RTLD_GLOBAL 0
 2131: #endif
 2132: u2=(UCell) dlopen(cstr(c_addr1, u1, 1), RTLD_GLOBAL | RTLD_LAZY);
 2133: #else
 2134: #  ifdef _WIN32
 2135: u2 = (Cell) GetModuleHandle(cstr(c_addr1, u1, 1));
 2136: #  else
 2137: #warning Define open-lib!
 2138: u2 = 0;
 2139: #  endif
 2140: #endif
 2141: 
 2142: lib-sym	( c_addr1 u1 u2 -- u3 )	gforth	lib_sym
 2143: #if defined(HAVE_LIBDL) || defined(HAVE_DLOPEN)
 2144: u3 = (UCell) dlsym((void*)u2,cstr(c_addr1, u1, 1));
 2145: #else
 2146: #  ifdef _WIN32
 2147: u3 = (Cell) GetProcAddress((HMODULE)u2, cstr(c_addr1, u1, 1));
 2148: #  else
 2149: #warning Define lib-sym!
 2150: u3 = 0;
 2151: #  endif
 2152: #endif
 2153: 
 2154: uploop(i, 0, 7, `icall(i)')
 2155: icall(20)
 2156: uploop(i, 0, 7, `fcall(i)')
 2157: fcall(20)
 2158: 
 2159: \+
 2160: 
 2161: up!	( a_addr -- )	gforth	up_store
 2162: UP=up=(char *)a_addr;
 2163: :
 2164:  up ! ;
 2165: Variable UP
 2166: 
 2167: wcall	( u -- )	gforth
 2168: IF_fpTOS(fp[0]=fpTOS);
 2169: FP=fp;
 2170: sp=(SYSCALL(Cell(*)(Cell *, void *))u)(sp, &FP);
 2171: fp=FP;
 2172: IF_spTOS(spTOS=sp[0];)
 2173: IF_fpTOS(fpTOS=fp[0]);
 2174: 
 2175: \+file
 2176: 
 2177: open-dir	( c_addr u -- wdirid wior )	gforth	open_dir
 2178: wdirid = (Cell)opendir(tilde_cstr(c_addr, u, 1));
 2179: wior =  IOR(wdirid == 0);
 2180: 
 2181: read-dir	( c_addr u1 wdirid -- u2 flag wior )	gforth	read_dir
 2182: struct dirent * dent;
 2183: dent = readdir((DIR *)wdirid);
 2184: wior = 0;
 2185: flag = -1;
 2186: if(dent == NULL) {
 2187:   u2 = 0;
 2188:   flag = 0;
 2189: } else {
 2190:   u2 = strlen(dent->d_name);
 2191:   if(u2 > u1)
 2192:     u2 = u1;
 2193:   memmove(c_addr, dent->d_name, u2);
 2194: }
 2195: 
 2196: close-dir	( wdirid -- wior )	gforth	close_dir
 2197: wior = IOR(closedir((DIR *)wdirid));
 2198: 
 2199: filename-match	( c_addr1 u1 c_addr2 u2 -- flag )	gforth	match_file
 2200: char * string = cstr(c_addr1, u1, 1);
 2201: char * pattern = cstr(c_addr2, u2, 0);
 2202: flag = FLAG(!fnmatch(pattern, string, 0));
 2203: 
 2204: \+
 2205: 
 2206: newline	( -- c_addr u )	gforth
 2207: ""String containing the newline sequence of the host OS""
 2208: char newline[] = {
 2209: #ifdef unix
 2210: '\n'
 2211: #else
 2212: '\r','\n'
 2213: #endif
 2214: };
 2215: c_addr=newline;
 2216: u=sizeof(newline);
 2217: :
 2218:  "newline count ;
 2219: Create "newline e? crlf [IF] 2 c, $0D c, [ELSE] 1 c, [THEN] $0A c,
 2220: 
 2221: \+os
 2222: 
 2223: utime	( -- dtime )	gforth
 2224: ""Report the current time in microseconds since some epoch.""
 2225: struct timeval time1;
 2226: gettimeofday(&time1,NULL);
 2227: dtime = timeval2us(&time1);
 2228: 
 2229: cputime ( -- duser dsystem ) gforth
 2230: ""duser and dsystem are the respective user- and system-level CPU
 2231: times used since the start of the Forth system (excluding child
 2232: processes), in microseconds (the granularity may be much larger,
 2233: however).  On platforms without the getrusage call, it reports elapsed
 2234: time (since some epoch) for duser and 0 for dsystem.""
 2235: #ifdef HAVE_GETRUSAGE
 2236: struct rusage usage;
 2237: getrusage(RUSAGE_SELF, &usage);
 2238: duser = timeval2us(&usage.ru_utime);
 2239: dsystem = timeval2us(&usage.ru_stime);
 2240: #else
 2241: struct timeval time1;
 2242: gettimeofday(&time1,NULL);
 2243: duser = timeval2us(&time1);
 2244: #ifndef BUGGY_LONG_LONG
 2245: dsystem = (DCell)0;
 2246: #else
 2247: dsystem=(DCell){0,0};
 2248: #endif
 2249: #endif
 2250: 
 2251: \+
 2252: 
 2253: \+floating
 2254: 
 2255: v*	( f_addr1 nstride1 f_addr2 nstride2 ucount -- r ) gforth v_star
 2256: ""dot-product: r=v1*v2.  The first element of v1 is at f_addr1, the
 2257: next at f_addr1+nstride1 and so on (similar for v2). Both vectors have
 2258: ucount elements.""
 2259: for (r=0.; ucount>0; ucount--) {
 2260:   r += *f_addr1 * *f_addr2;
 2261:   f_addr1 = (Float *)(((Address)f_addr1)+nstride1);
 2262:   f_addr2 = (Float *)(((Address)f_addr2)+nstride2);
 2263: }
 2264: :
 2265:  >r swap 2swap swap 0e r> 0 ?DO
 2266:      dup f@ over + 2swap dup f@ f* f+ over + 2swap
 2267:  LOOP 2drop 2drop ; 
 2268: 
 2269: faxpy	( ra f_x nstridex f_y nstridey ucount -- )	gforth
 2270: ""vy=ra*vx+vy""
 2271: for (; ucount>0; ucount--) {
 2272:   *f_y += ra * *f_x;
 2273:   f_x = (Float *)(((Address)f_x)+nstridex);
 2274:   f_y = (Float *)(((Address)f_y)+nstridey);
 2275: }
 2276: :
 2277:  >r swap 2swap swap r> 0 ?DO
 2278:      fdup dup f@ f* over + 2swap dup f@ f+ dup f! over + 2swap
 2279:  LOOP 2drop 2drop fdrop ;
 2280: 
 2281: \+
 2282: 
 2283: \+file
 2284: 
 2285: (read-line)	( c_addr u1 wfileid -- u2 flag u3 wior )	file	paren_read_line
 2286: Cell c;
 2287: flag=-1;
 2288: u3=0;
 2289: for(u2=0; u2<u1; u2++)
 2290: {
 2291:    c = getc((FILE *)wfileid);
 2292:    u3++;
 2293:    if (c=='\n') break;
 2294:    if (c=='\r') {
 2295:      if ((c = getc((FILE *)wfileid))!='\n')
 2296:        ungetc(c,(FILE *)wfileid);
 2297:      else
 2298:        u3++;
 2299:      break;
 2300:    }
 2301:    if (c==EOF) {
 2302: 	flag=FLAG(u2!=0);
 2303: 	break;
 2304:      }
 2305:    c_addr[u2] = (Char)c;
 2306: }
 2307: wior=FILEIO(ferror((FILE *)wfileid));
 2308: 
 2309: \+

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>