Diff for /gforth/float.fs between versions 1.23 and 1.29

version 1.23, 1998/12/08 22:02:42 version 1.29, 1999/12/03 18:24:22
Line 43 Line 43
 \ [THEN]  \ [THEN]
   
 : sfalign ( -- ) \ float-ext s-f-align  : sfalign ( -- ) \ float-ext s-f-align
       \G If the data-space pointer is not single-float-aligned, reserve
       \G enough space to align it.
     here dup sfaligned swap ?DO  bl c,  LOOP ;      here dup sfaligned swap ?DO  bl c,  LOOP ;
 : dfalign ( -- ) \ float-ext d-f-align  : dfalign ( -- ) \ float-ext d-f-align
       \G If the data-space pointer is not double-float-aligned, reserve
       \G enough space to align it.
     here dup dfaligned swap ?DO  bl c,  LOOP ;      here dup dfaligned swap ?DO  bl c,  LOOP ;
   
 1 sfloats constant sfloat+ ( sf-addr1 -- sf-addr2 ) \ float-ext s-float-plus  1 sfloats constant sfloat+ ( sf-addr1 -- sf-addr2 ) \ float-ext s-float-plus
   \G Increment @i{sf-addr1} by the number of address units corresponding to the size of
   \G a single-precision IEEE floating-point number, to give @i{sf-addr2}.""
 dofield: lastxt code-address! \ change the constant into a field  dofield: lastxt code-address! \ change the constant into a field
   
 1 dfloats constant dfloat+ ( df-addr1 -- df-addr2 ) \ float-ext d-float-plus  1 dfloats constant dfloat+ ( df-addr1 -- df-addr2 ) \ float-ext d-float-plus
   \G Increment @i{df-addr1} by the number of address units corresponding to the size of
   \G a double-precision IEEE floating-point number, to give @i{df-addr2}.""
 dofield: lastxt code-address! \ change the constant into a field  dofield: lastxt code-address! \ change the constant into a field
   
 : f, ( f -- )  here 1 floats allot f! ;  : f, ( f -- ) \ gforth
       \G Reserve data space for one floating-point number and store
       \G @i{f} in the space.
       here 1 floats allot f! ;
   
 : fconstant  ( r "name" -- ) \ float  : fconstant  ( r "name" -- ) \ float f-constant
     Create f,      Create f,
 DOES> ( -- r )  DOES> ( -- r )
     f@ ;      f@ ;
   
 : fdepth  ( -- n )  fp0 @ fp@ - [ 1 floats ] Literal / ;  : fdepth ( -- +n ) \ float f-depth
       \G @i{+n} is the current number of (floating-point) values on the
       \G floating-point stack.
       fp0 @ fp@ - [ 1 floats ] Literal / ;
   
 : FLit ( -- r )  r> dup f@ float+ >r ;  : FLit ( -- r )  r> dup f@ float+ >r ;
 : FLiteral ( r -- )  : FLiteral ( compilation r -- ; run-time -- r ) \ float f-literal
   BEGIN  here cell+ dup faligned <>  WHILE  postpone noop  REPEAT      \G Compile appropriate code such that, at run-time, @i{r} is placed
   postpone FLit  f, ;  immediate      \G on the (floating-point) stack. Interpretation semantics are undefined.
       BEGIN  here cell+ dup faligned <>  WHILE  postpone noop  REPEAT
 &15 Value precision      postpone FLit  f, ;  immediate
 : set-precision  to precision ;  
   &15 Value precision ( -- u ) \ float-ext
   \G @i{u} is the number of significant digits currently used by
   \G @code{F.} @code{FE.} and @code{FS.} 
   : set-precision ( u -- ) \ float-ext
       \G Set the number of significant digits currently used by
       \G @code{F.} @code{FE.} and @code{FS.} to @i{u}.
       to precision ;
   
 : scratch ( r -- addr len )  : scratch ( r -- addr len )
   pad precision - precision ;    pad precision - precision ;
Line 82  DOES> ( -- r ) Line 103  DOES> ( -- r )
   IF  2drop  scratch 3 min type  rdrop  EXIT  THEN    IF  2drop  scratch 3 min type  rdrop  EXIT  THEN
   IF  '- emit  THEN ;    IF  '- emit  THEN ;
   
 : f.  ( r -- )  f$ dup >r 0<  : f.  ( r -- ) \ float-ext f-dot
   \G Display (the floating-point number) @i{r} using fixed-point notation,
   \G followed by a space.
     f$ dup >r 0<
   IF    '0 emit    IF    '0 emit
   ELSE  scratch r@ min type  r@ precision - zeros  THEN    ELSE  scratch r@ min type  r@ precision - zeros  THEN
   '. emit r@ negate zeros    '. emit r@ negate zeros
Line 90  DOES> ( -- r ) Line 114  DOES> ( -- r )
 \ I'm afraid this does not really implement ansi semantics wrt precision.  \ I'm afraid this does not really implement ansi semantics wrt precision.
 \ Shouldn't precision indicate the number of places shown after the point?  \ Shouldn't precision indicate the number of places shown after the point?
   
 : fe. ( r -- )  f$ 1- s>d 3 fm/mod 3 * >r 1+ >r  : fe. ( r -- ) \ float-ext f-e-dot
   \G Display @i{r} using engineering notation, followed by a space.
     f$ 1- s>d 3 fm/mod 3 * >r 1+ >r
   scratch r@ min type '. emit  scratch r> /string type    scratch r@ min type '. emit  scratch r> /string type
   'E emit r> . ;    'E emit r> . ;
   
 : fs. ( r -- )  f$ 1-  : fs. ( r -- ) \ float-ext f-s-dot
   \G Display @i{r} using scientific notation, followed by a space.
     f$ 1-
   scratch over c@ emit '. emit 1 /string type    scratch over c@ emit '. emit 1 /string type
   'E emit . ;    'E emit . ;
   
Line 131  IS compiler-notfound Line 159  IS compiler-notfound
     ENDIF ;      ENDIF ;
 IS interpreter-notfound  IS interpreter-notfound
   
 : fvariable ( "name" -- ) \ float  : fvariable ( "name" -- ) \ float f-variable
     Create 0.0E0 f, ;      Create 0.0E0 f, ;
     \ does> ( -- f-addr )      \ does> ( -- f-addr )
   
 1.0e0 fasin 2.0e0 f* fconstant pi  1.0e0 fasin 2.0e0 f* fconstant pi ( -- r ) \ gforth
   \G @code{Fconstant} -- @i{r} is the value pi; the ratio of a circle's area
 : f2*  2.0e0 f* ;  \G to its diameter.
 : f2/  0.5e0 f* ;  
 : 1/f  1.0e0 fswap f/ ;  : f2* ( r1 -- r2 ) \ gforth
       \G Multiply @i{r1} by 2.0e0
       2.0e0 f* ;
   
   : f2/ ( r1 -- r2 ) \ gforth
       \G Multiply @i{r1} by 0.5e0
       0.5e0 f* ;
   
   : 1/f ( r1 -- r2 ) \ gforth
       \G Divide 1.0e0 by @i{r1}.
       1.0e0 fswap f/ ;
   
   
 \ We now have primitives for these, so we need not define them  \ We now have primitives for these, so we need not define them
Line 155  IS interpreter-notfound Line 193  IS interpreter-notfound
 \ : facosh   fdup fdup f* 1.0e0 f- fsqrt f+ fln ;  \ : facosh   fdup fdup f* 1.0e0 f- fsqrt f+ fln ;
 \ : fasinh   fdup fdup f* 1.0e0 f+ fsqrt f/ fatanh ;  \ : fasinh   fdup fdup f* 1.0e0 f+ fsqrt f/ fatanh ;
   
 \ !! factor out parts  : f~abs ( r1 r2 r3 -- flag ) \ gforth
 : f~ ( f1 f2 f3 -- flag ) \ float-ext      \G Approximate equality with absolute error: |r1-r2|<r3.
       frot frot f- fabs fswap f< ;
   
   : f~rel ( r1 r2 r3 -- flag ) \ gforth
       \G Approximate equality with relative error: |r1-r2|<r3*|r1+r2|.
           frot frot fover fabs fover fabs f+ frot frot
           f- fabs frot frot f* f< ;
   
   : f~ ( r1 r2 r3 -- flag ) \ float-ext f-proximate
       \G ANS Forth medley: r3>0: @code{f~abs}; r3=0: r1=r2; r3<0: @code{fnegate f~abs}.
     fdup f0=      fdup f0=
     IF      IF
         fdrop f= EXIT          fdrop f=  \ !! this does not work, because 0=-0 with f= on Linux-Intel
                     \ the standard says they should compare unequal
                     \ the comparison should be done with COMPARE
           EXIT
     THEN      THEN
     fdup f0>      fdup f0>
     IF      IF
         frot frot f- fabs fswap          f~abs
     ELSE      ELSE
         fnegate frot frot fover fabs fover fabs f+ frot frot          fnegate f~rel
         f- fabs frot frot f*      THEN ;
     THEN  
     f< ;  
   
 : f.s  ." <" fdepth 0 .r ." > " fdepth 0 max maxdepth-.s @ min dup 0   : f.s ( -- ) \ gforth f-dot-s
   ?DO  dup i - 1- floats fp@ + f@ f.  LOOP  drop ;       \G Display the number of items on the floating-point stack,
       \G followed by a list of the items; TOS is the right-most item.
       ." <" fdepth 0 .r ." > " fdepth 0 max maxdepth-.s @ min dup 0 
       ?DO  dup i - 1- floats fp@ + f@ f.  LOOP  drop ; 

Removed from v.1.23  
changed lines
  Added in v.1.29


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>