Annotation of gforth/engine/main.c, revision 1.122
1.1 anton 1: /* command line interpretation, image loading etc. for Gforth
2:
3:
1.103 anton 4: Copyright (C) 1995,1996,1997,1998,2000,2003 Free Software Foundation, Inc.
1.1 anton 5:
6: This file is part of Gforth.
7:
8: Gforth is free software; you can redistribute it and/or
9: modify it under the terms of the GNU General Public License
10: as published by the Free Software Foundation; either version 2
11: of the License, or (at your option) any later version.
12:
13: This program is distributed in the hope that it will be useful,
14: but WITHOUT ANY WARRANTY; without even the implied warranty of
15: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16: GNU General Public License for more details.
17:
18: You should have received a copy of the GNU General Public License
19: along with this program; if not, write to the Free Software
1.40 anton 20: Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
1.1 anton 21: */
22:
23: #include "config.h"
1.82 anton 24: #include "forth.h"
1.1 anton 25: #include <errno.h>
26: #include <ctype.h>
27: #include <stdio.h>
1.2 pazsan 28: #include <unistd.h>
1.1 anton 29: #include <string.h>
30: #include <math.h>
31: #include <sys/types.h>
1.32 pazsan 32: #ifndef STANDALONE
1.1 anton 33: #include <sys/stat.h>
1.32 pazsan 34: #endif
1.1 anton 35: #include <fcntl.h>
36: #include <assert.h>
37: #include <stdlib.h>
1.102 anton 38: #include <signal.h>
1.11 pazsan 39: #ifndef STANDALONE
1.1 anton 40: #if HAVE_SYS_MMAN_H
41: #include <sys/mman.h>
42: #endif
1.11 pazsan 43: #endif
1.1 anton 44: #include "io.h"
45: #include "getopt.h"
1.11 pazsan 46: #ifdef STANDALONE
47: #include <systypes.h>
48: #endif
1.1 anton 49:
1.121 anton 50: typedef enum prim_num {
1.119 anton 51: /* definitions of N_execute etc. */
52: #include "prim_num.i"
53: N_START_SUPER
1.121 anton 54: } PrimNum;
1.119 anton 55:
1.79 anton 56: /* global variables for engine.c
57: We put them here because engine.c is compiled several times in
58: different ways for the same engine. */
59: Cell *SP;
60: Float *FP;
61: Address UP=NULL;
62:
1.115 pazsan 63: #ifdef HAS_FFCALL
64: Cell *RP;
65: Address LP;
66:
67: #include <callback.h>
68:
69: va_alist clist;
70:
1.116 pazsan 71: void engine_callback(Xt* fcall, void * alist)
1.115 pazsan 72: {
1.120 pazsan 73: clist = (va_alist)alist;
1.115 pazsan 74: engine(fcall, SP, RP, FP, LP);
75: }
76: #endif
77:
1.79 anton 78: #ifdef GFORTH_DEBUGGING
79: /* define some VM registers as global variables, so they survive exceptions;
80: global register variables are not up to the task (according to the
81: GNU C manual) */
82: Xt *saved_ip;
83: Cell *rp;
84: #endif
85:
86: #ifdef NO_IP
87: Label next_code;
88: #endif
89:
90: #ifdef HAS_FILE
91: char* fileattr[6]={"rb","rb","r+b","r+b","wb","wb"};
92: char* pfileattr[6]={"r","r","r+","r+","w","w"};
93:
94: #ifndef O_BINARY
95: #define O_BINARY 0
96: #endif
97: #ifndef O_TEXT
98: #define O_TEXT 0
99: #endif
100:
101: int ufileattr[6]= {
102: O_RDONLY|O_BINARY, O_RDONLY|O_BINARY,
103: O_RDWR |O_BINARY, O_RDWR |O_BINARY,
104: O_WRONLY|O_BINARY, O_WRONLY|O_BINARY };
105: #endif
106: /* end global vars for engine.c */
107:
1.1 anton 108: #define PRIM_VERSION 1
109: /* increment this whenever the primitives change in an incompatible way */
110:
1.14 pazsan 111: #ifndef DEFAULTPATH
1.39 anton 112: # define DEFAULTPATH "."
1.14 pazsan 113: #endif
114:
1.1 anton 115: #ifdef MSDOS
116: jmp_buf throw_jmp_buf;
117: #endif
118:
1.56 anton 119: #if defined(DOUBLY_INDIRECT)
120: # define CFA(n) ({Cell _n = (n); ((Cell)(((_n & 0x4000) ? symbols : xts)+(_n&~0x4000UL)));})
1.1 anton 121: #else
1.56 anton 122: # define CFA(n) ((Cell)(symbols+((n)&~0x4000UL)))
1.1 anton 123: #endif
124:
125: #define maxaligned(n) (typeof(n))((((Cell)n)+sizeof(Float)-1)&-sizeof(Float))
126:
127: static UCell dictsize=0;
128: static UCell dsize=0;
129: static UCell rsize=0;
130: static UCell fsize=0;
131: static UCell lsize=0;
132: int offset_image=0;
1.4 anton 133: int die_on_signal=0;
1.13 pazsan 134: #ifndef INCLUDE_IMAGE
1.1 anton 135: static int clear_dictionary=0;
1.24 anton 136: UCell pagesize=1;
1.22 pazsan 137: char *progname;
138: #else
139: char *progname = "gforth";
140: int optind = 1;
1.13 pazsan 141: #endif
1.31 pazsan 142:
1.97 anton 143: #define CODE_BLOCK_SIZE (256*1024)
1.48 anton 144: Address code_area=0;
1.73 anton 145: Cell code_area_size = CODE_BLOCK_SIZE;
1.75 anton 146: Address code_here=NULL+CODE_BLOCK_SIZE; /* does for code-area what HERE
147: does for the dictionary */
1.100 anton 148: Address start_flush=NULL; /* start of unflushed code */
1.74 anton 149: Cell last_jump=0; /* if the last prim was compiled without jump, this
150: is it's number, otherwise this contains 0 */
1.48 anton 151:
1.60 anton 152: static int no_super=0; /* true if compile_prim should not fuse prims */
1.81 anton 153: static int no_dynamic=NO_DYNAMIC_DEFAULT; /* if true, no code is generated
154: dynamically */
1.110 anton 155: static int print_metrics=0; /* if true, print metrics on exit */
1.109 anton 156: static int static_super_number = 10000000; /* number of ss used if available */
1.110 anton 157: static int ss_greedy = 0; /* if true: use greedy, not optimal ss selection */
1.60 anton 158:
1.30 pazsan 159: #ifdef HAS_DEBUG
1.68 anton 160: int debug=0;
1.31 pazsan 161: #else
162: # define perror(x...)
163: # define fprintf(x...)
1.30 pazsan 164: #endif
1.31 pazsan 165:
1.24 anton 166: ImageHeader *gforth_header;
1.43 anton 167: Label *vm_prims;
1.53 anton 168: #ifdef DOUBLY_INDIRECT
169: Label *xts; /* same content as vm_prims, but should only be used for xts */
170: #endif
1.1 anton 171:
1.30 pazsan 172: #ifdef MEMCMP_AS_SUBROUTINE
173: int gforth_memcmp(const char * s1, const char * s2, size_t n)
174: {
175: return memcmp(s1, s2, n);
176: }
177: #endif
178:
1.1 anton 179: /* image file format:
1.15 pazsan 180: * "#! binary-path -i\n" (e.g., "#! /usr/local/bin/gforth-0.4.0 -i\n")
1.1 anton 181: * padding to a multiple of 8
1.84 anton 182: * magic: "Gforth3x" means format 0.6,
1.15 pazsan 183: * where x is a byte with
184: * bit 7: reserved = 0
185: * bit 6:5: address unit size 2^n octets
186: * bit 4:3: character size 2^n octets
187: * bit 2:1: cell size 2^n octets
188: * bit 0: endian, big=0, little=1.
189: * The magic are always 8 octets, no matter what the native AU/character size is
1.1 anton 190: * padding to max alignment (no padding necessary on current machines)
1.24 anton 191: * ImageHeader structure (see forth.h)
1.1 anton 192: * data (size in ImageHeader.image_size)
193: * tags ((if relocatable, 1 bit/data cell)
194: *
195: * tag==1 means that the corresponding word is an address;
196: * If the word is >=0, the address is within the image;
197: * addresses within the image are given relative to the start of the image.
198: * If the word =-1 (CF_NIL), the address is NIL,
199: * If the word is <CF_NIL and >CF(DODOES), it's a CFA (:, Create, ...)
200: * If the word =CF(DODOES), it's a DOES> CFA
201: * If the word =CF(DOESJUMP), it's a DOES JUMP (2 Cells after DOES>,
202: * possibly containing a jump to dodoes)
1.51 anton 203: * If the word is <CF(DOESJUMP) and bit 14 is set, it's the xt of a primitive
204: * If the word is <CF(DOESJUMP) and bit 14 is clear,
205: * it's the threaded code of a primitive
1.85 pazsan 206: * bits 13..9 of a primitive token state which group the primitive belongs to,
207: * bits 8..0 of a primitive token index into the group
1.1 anton 208: */
209:
1.115 pazsan 210: Cell groups[32] = {
1.85 pazsan 211: 0,
1.121 anton 212: 0
1.90 anton 213: #undef GROUP
1.115 pazsan 214: #undef GROUPADD
215: #define GROUPADD(n) +n
216: #define GROUP(x, n) , 0
1.86 anton 217: #include "prim_grp.i"
1.90 anton 218: #undef GROUP
1.115 pazsan 219: #undef GROUPADD
1.85 pazsan 220: #define GROUP(x, n)
1.115 pazsan 221: #define GROUPADD(n)
1.85 pazsan 222: };
223:
1.115 pazsan 224: void relocate(Cell *image, const unsigned char *bitstring,
1.90 anton 225: int size, Cell base, Label symbols[])
1.1 anton 226: {
1.16 pazsan 227: int i=0, j, k, steps=(size/sizeof(Cell))/RELINFOBITS;
1.11 pazsan 228: Cell token;
1.1 anton 229: char bits;
1.37 anton 230: Cell max_symbols;
1.46 jwilke 231: /*
1.85 pazsan 232: * A virtual start address that's the real start address minus
1.46 jwilke 233: * the one in the image
234: */
1.45 jwilke 235: Cell *start = (Cell * ) (((void *) image) - ((void *) base));
1.1 anton 236:
1.85 pazsan 237: /* group index into table */
1.115 pazsan 238: if(groups[31]==0) {
239: int groupsum=0;
240: for(i=0; i<32; i++) {
241: groupsum += groups[i];
242: groups[i] = groupsum;
243: /* printf("group[%d]=%d\n",i,groupsum); */
244: }
245: i=0;
246: }
1.46 jwilke 247:
248: /* printf("relocating to %x[%x] start=%x base=%x\n", image, size, start, base); */
1.37 anton 249:
1.121 anton 250: for (max_symbols=0; symbols[max_symbols]!=0; max_symbols++)
1.37 anton 251: ;
1.47 anton 252: max_symbols--;
1.35 pazsan 253: size/=sizeof(Cell);
254:
1.31 pazsan 255: for(k=0; k<=steps; k++) {
1.13 pazsan 256: for(j=0, bits=bitstring[k]; j<RELINFOBITS; j++, i++, bits<<=1) {
1.1 anton 257: /* fprintf(stderr,"relocate: image[%d]\n", i);*/
1.35 pazsan 258: if((i < size) && (bits & (1U << (RELINFOBITS-1)))) {
259: /* fprintf(stderr,"relocate: image[%d]=%d of %d\n", i, image[i], size/sizeof(Cell)); */
1.45 jwilke 260: token=image[i];
1.85 pazsan 261: if(token<0) {
262: int group = (-token & 0x3E00) >> 9;
263: if(group == 0) {
264: switch(token|0x4000) {
1.1 anton 265: case CF_NIL : image[i]=0; break;
266: #if !defined(DOUBLY_INDIRECT)
267: case CF(DOCOL) :
268: case CF(DOVAR) :
269: case CF(DOCON) :
270: case CF(DOUSER) :
271: case CF(DODEFER) :
1.11 pazsan 272: case CF(DOFIELD) : MAKE_CF(image+i,symbols[CF(token)]); break;
1.92 anton 273: case CF(DOESJUMP): image[i]=0; break;
1.1 anton 274: #endif /* !defined(DOUBLY_INDIRECT) */
275: case CF(DODOES) :
1.45 jwilke 276: MAKE_DOES_CF(image+i,(Xt *)(image[i+1]+((Cell)start)));
1.1 anton 277: break;
1.85 pazsan 278: default : /* backward compatibility */
1.56 anton 279: /* printf("Code field generation image[%x]:=CFA(%x)\n",
1.1 anton 280: i, CF(image[i])); */
1.55 anton 281: if (CF((token | 0x4000))<max_symbols) {
1.56 anton 282: image[i]=(Cell)CFA(CF(token));
283: #ifdef DIRECT_THREADED
284: if ((token & 0x4000) == 0) /* threade code, no CFA */
1.70 anton 285: compile_prim1(&image[i]);
1.56 anton 286: #endif
1.55 anton 287: } else
1.115 pazsan 288: fprintf(stderr,"Primitive %ld used in this image at $%lx (offset $%x) is not implemented by this\n engine (%s); executing this code will crash.\n",(long)CF(token),(long)&image[i], i, PACKAGE_VERSION);
1.1 anton 289: }
1.85 pazsan 290: } else {
291: int tok = -token & 0x1FF;
292: if (tok < (groups[group+1]-groups[group])) {
293: #if defined(DOUBLY_INDIRECT)
294: image[i]=(Cell)CFA(((groups[group]+tok) | (CF(token) & 0x4000)));
295: #else
296: image[i]=(Cell)CFA((groups[group]+tok));
297: #endif
298: #ifdef DIRECT_THREADED
299: if ((token & 0x4000) == 0) /* threade code, no CFA */
300: compile_prim1(&image[i]);
301: #endif
302: } else
1.115 pazsan 303: fprintf(stderr,"Primitive %lx, %d of group %d used in this image at $%lx (offset $%x) is not implemented by this\n engine (%s); executing this code will crash.\n", (long)-token, tok, group, (long)&image[i],i,PACKAGE_VERSION);
1.85 pazsan 304: }
305: } else {
1.101 anton 306: /* if base is > 0: 0 is a null reference so don't adjust*/
1.45 jwilke 307: if (token>=base) {
308: image[i]+=(Cell)start;
309: }
1.46 jwilke 310: }
1.1 anton 311: }
312: }
1.31 pazsan 313: }
1.70 anton 314: finish_code();
1.26 jwilke 315: ((ImageHeader*)(image))->base = (Address) image;
1.1 anton 316: }
317:
318: UCell checksum(Label symbols[])
319: {
320: UCell r=PRIM_VERSION;
321: Cell i;
322:
323: for (i=DOCOL; i<=DOESJUMP; i++) {
324: r ^= (UCell)(symbols[i]);
325: r = (r << 5) | (r >> (8*sizeof(Cell)-5));
326: }
327: #ifdef DIRECT_THREADED
328: /* we have to consider all the primitives */
329: for (; symbols[i]!=(Label)0; i++) {
330: r ^= (UCell)(symbols[i]);
331: r = (r << 5) | (r >> (8*sizeof(Cell)-5));
332: }
333: #else
334: /* in indirect threaded code all primitives are accessed through the
335: symbols table, so we just have to put the base address of symbols
336: in the checksum */
337: r ^= (UCell)symbols;
338: #endif
339: return r;
340: }
341:
1.3 anton 342: Address verbose_malloc(Cell size)
343: {
344: Address r;
345: /* leave a little room (64B) for stack underflows */
346: if ((r = malloc(size+64))==NULL) {
347: perror(progname);
348: exit(1);
349: }
350: r = (Address)((((Cell)r)+(sizeof(Float)-1))&(-sizeof(Float)));
351: if (debug)
352: fprintf(stderr, "malloc succeeds, address=$%lx\n", (long)r);
353: return r;
354: }
355:
1.33 anton 356: static Address next_address=0;
357: void after_alloc(Address r, Cell size)
358: {
359: if (r != (Address)-1) {
360: if (debug)
361: fprintf(stderr, "success, address=$%lx\n", (long) r);
362: if (pagesize != 1)
363: next_address = (Address)(((((Cell)r)+size-1)&-pagesize)+2*pagesize); /* leave one page unmapped */
364: } else {
365: if (debug)
366: fprintf(stderr, "failed: %s\n", strerror(errno));
367: }
368: }
369:
1.34 anton 370: #ifndef MAP_FAILED
371: #define MAP_FAILED ((Address) -1)
372: #endif
373: #ifndef MAP_FILE
374: # define MAP_FILE 0
375: #endif
376: #ifndef MAP_PRIVATE
377: # define MAP_PRIVATE 0
378: #endif
1.91 anton 379: #if !defined(MAP_ANON) && defined(MAP_ANONYMOUS)
380: # define MAP_ANON MAP_ANONYMOUS
381: #endif
1.34 anton 382:
383: #if defined(HAVE_MMAP)
384: static Address alloc_mmap(Cell size)
1.1 anton 385: {
386: Address r;
387:
388: #if defined(MAP_ANON)
389: if (debug)
390: fprintf(stderr,"try mmap($%lx, $%lx, ..., MAP_ANON, ...); ", (long)next_address, (long)size);
1.34 anton 391: r = mmap(next_address, size, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
1.1 anton 392: #else /* !defined(MAP_ANON) */
1.17 anton 393: /* Ultrix (at least) does not define MAP_FILE and MAP_PRIVATE (both are
394: apparently defaults) */
1.1 anton 395: static int dev_zero=-1;
396:
397: if (dev_zero == -1)
398: dev_zero = open("/dev/zero", O_RDONLY);
399: if (dev_zero == -1) {
1.34 anton 400: r = MAP_FAILED;
1.1 anton 401: if (debug)
402: fprintf(stderr, "open(\"/dev/zero\"...) failed (%s), no mmap; ",
403: strerror(errno));
404: } else {
405: if (debug)
406: fprintf(stderr,"try mmap($%lx, $%lx, ..., MAP_FILE, dev_zero, ...); ", (long)next_address, (long)size);
407: r=mmap(next_address, size, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_FILE|MAP_PRIVATE, dev_zero, 0);
408: }
409: #endif /* !defined(MAP_ANON) */
1.34 anton 410: after_alloc(r, size);
411: return r;
412: }
413: #endif
414:
415: Address my_alloc(Cell size)
416: {
417: #if HAVE_MMAP
418: Address r;
419:
420: r=alloc_mmap(size);
1.117 anton 421: if (r!=(Address)MAP_FAILED)
1.1 anton 422: return r;
423: #endif /* HAVE_MMAP */
1.3 anton 424: /* use malloc as fallback */
425: return verbose_malloc(size);
1.1 anton 426: }
427:
1.34 anton 428: Address dict_alloc_read(FILE *file, Cell imagesize, Cell dictsize, Cell offset)
1.33 anton 429: {
1.34 anton 430: Address image = MAP_FAILED;
1.33 anton 431:
1.56 anton 432: #if defined(HAVE_MMAP)
1.33 anton 433: if (offset==0) {
1.34 anton 434: image=alloc_mmap(dictsize);
1.33 anton 435: if (debug)
1.34 anton 436: fprintf(stderr,"try mmap($%lx, $%lx, ..., MAP_FIXED|MAP_FILE, imagefile, 0); ", (long)image, (long)imagesize);
437: image = mmap(image, imagesize, PROT_EXEC|PROT_READ|PROT_WRITE, MAP_FIXED|MAP_FILE|MAP_PRIVATE, fileno(file), 0);
438: after_alloc(image,dictsize);
1.33 anton 439: }
1.56 anton 440: #endif /* defined(HAVE_MMAP) */
1.117 anton 441: if (image == (Address)MAP_FAILED) {
1.56 anton 442: image = my_alloc(dictsize+offset)+offset;
1.33 anton 443: rewind(file); /* fseek(imagefile,0L,SEEK_SET); */
1.34 anton 444: fread(image, 1, imagesize, file);
1.33 anton 445: }
446: return image;
447: }
448:
1.10 pazsan 449: void set_stack_sizes(ImageHeader * header)
450: {
451: if (dictsize==0)
452: dictsize = header->dict_size;
453: if (dsize==0)
454: dsize = header->data_stack_size;
455: if (rsize==0)
456: rsize = header->return_stack_size;
457: if (fsize==0)
458: fsize = header->fp_stack_size;
459: if (lsize==0)
460: lsize = header->locals_stack_size;
461: dictsize=maxaligned(dictsize);
462: dsize=maxaligned(dsize);
463: rsize=maxaligned(rsize);
464: lsize=maxaligned(lsize);
465: fsize=maxaligned(fsize);
466: }
467:
468: void alloc_stacks(ImageHeader * header)
469: {
470: header->dict_size=dictsize;
471: header->data_stack_size=dsize;
472: header->fp_stack_size=fsize;
473: header->return_stack_size=rsize;
474: header->locals_stack_size=lsize;
475:
476: header->data_stack_base=my_alloc(dsize);
477: header->fp_stack_base=my_alloc(fsize);
478: header->return_stack_base=my_alloc(rsize);
479: header->locals_stack_base=my_alloc(lsize);
480: }
481:
1.44 pazsan 482: #warning You can ignore the warnings about clobbered variables in go_forth
1.11 pazsan 483: int go_forth(Address image, int stack, Cell *entries)
484: {
1.38 anton 485: volatile ImageHeader *image_header = (ImageHeader *)image;
1.18 anton 486: Cell *sp0=(Cell*)(image_header->data_stack_base + dsize);
1.44 pazsan 487: Cell *rp0=(Cell *)(image_header->return_stack_base + rsize);
1.18 anton 488: Float *fp0=(Float *)(image_header->fp_stack_base + fsize);
1.44 pazsan 489: #ifdef GFORTH_DEBUGGING
1.38 anton 490: volatile Cell *orig_rp0=rp0;
1.44 pazsan 491: #endif
1.18 anton 492: Address lp0=image_header->locals_stack_base + lsize;
493: Xt *ip0=(Xt *)(image_header->boot_entry);
1.13 pazsan 494: #ifdef SYSSIGNALS
1.11 pazsan 495: int throw_code;
1.13 pazsan 496: #endif
1.11 pazsan 497:
498: /* ensure that the cached elements (if any) are accessible */
1.41 anton 499: IF_spTOS(sp0--);
500: IF_fpTOS(fp0--);
1.11 pazsan 501:
502: for(;stack>0;stack--)
1.18 anton 503: *--sp0=entries[stack-1];
1.11 pazsan 504:
1.30 pazsan 505: #ifdef SYSSIGNALS
1.11 pazsan 506: get_winsize();
507:
508: install_signal_handlers(); /* right place? */
509:
510: if ((throw_code=setjmp(throw_jmp_buf))) {
511: static Cell signal_data_stack[8];
512: static Cell signal_return_stack[8];
513: static Float signal_fp_stack[1];
1.13 pazsan 514:
1.11 pazsan 515: signal_data_stack[7]=throw_code;
1.18 anton 516:
517: #ifdef GFORTH_DEBUGGING
1.97 anton 518: if (debug)
519: fprintf(stderr,"\ncaught signal, throwing exception %d, ip=%p rp=%p\n",
520: throw_code, saved_ip, rp);
1.38 anton 521: if (rp <= orig_rp0 && rp > (Cell *)(image_header->return_stack_base+5)) {
1.18 anton 522: /* no rstack overflow or underflow */
523: rp0 = rp;
1.63 anton 524: *--rp0 = (Cell)saved_ip;
1.18 anton 525: }
526: else /* I love non-syntactic ifdefs :-) */
1.97 anton 527: rp0 = signal_return_stack+8;
528: #else /* !defined(GFORTH_DEBUGGING) */
529: if (debug)
530: fprintf(stderr,"\ncaught signal, throwing exception %d\n", throw_code);
531: rp0 = signal_return_stack+8;
532: #endif /* !defined(GFORTH_DEBUGGING) */
1.25 anton 533: /* fprintf(stderr, "rp=$%x\n",rp0);*/
1.11 pazsan 534:
1.33 anton 535: return((int)(Cell)engine(image_header->throw_entry, signal_data_stack+7,
1.18 anton 536: rp0, signal_fp_stack, 0));
1.11 pazsan 537: }
1.13 pazsan 538: #endif
1.11 pazsan 539:
1.33 anton 540: return((int)(Cell)engine(ip0,sp0,rp0,fp0,lp0));
1.11 pazsan 541: }
542:
1.30 pazsan 543: #ifndef INCLUDE_IMAGE
1.21 anton 544: void print_sizes(Cell sizebyte)
545: /* print size information */
546: {
547: static char* endianstring[]= { " big","little" };
548:
549: fprintf(stderr,"%s endian, cell=%d bytes, char=%d bytes, au=%d bytes\n",
550: endianstring[sizebyte & 1],
551: 1 << ((sizebyte >> 1) & 3),
552: 1 << ((sizebyte >> 3) & 3),
553: 1 << ((sizebyte >> 5) & 3));
554: }
555:
1.106 anton 556: /* static superinstruction stuff */
557:
558: struct cost {
559: char loads; /* number of stack loads */
560: char stores; /* number of stack stores */
561: char updates; /* number of stack pointer updates */
562: short offset; /* offset into super2 table */
563: char length; /* number of components */
564: };
565:
1.121 anton 566: PrimNum super2[] = {
1.106 anton 567: #include "super2.i"
568: };
569:
570: struct cost super_costs[] = {
571: #include "costs.i"
572: };
573:
574: #define HASH_SIZE 256
575:
576: struct super_table_entry {
577: struct super_table_entry *next;
1.121 anton 578: PrimNum *start;
1.106 anton 579: short length;
1.121 anton 580: PrimNum super;
1.106 anton 581: } *super_table[HASH_SIZE];
582: int max_super=2;
583:
1.121 anton 584: int hash_super(PrimNum *start, int length)
1.106 anton 585: {
586: int i, r;
587:
588: for (i=0, r=0; i<length; i++) {
589: r <<= 1;
590: r += start[i];
591: }
592: return r & (HASH_SIZE-1);
593: }
594:
1.121 anton 595: int lookup_super(PrimNum *start, int length)
1.106 anton 596: {
597: int hash=hash_super(start,length);
598: struct super_table_entry *p = super_table[hash];
599:
600: assert(length >= 2);
601: for (; p!=NULL; p = p->next) {
602: if (length == p->length &&
1.121 anton 603: memcmp((char *)p->start, (char *)start, length*sizeof(PrimNum))==0)
1.106 anton 604: return p->super;
605: }
606: return -1;
607: }
608:
609: void prepare_super_table()
610: {
611: int i;
1.109 anton 612: int nsupers = 0;
1.106 anton 613:
614: for (i=0; i<sizeof(super_costs)/sizeof(super_costs[0]); i++) {
615: struct cost *c = &super_costs[i];
1.109 anton 616: if (c->length > 1 && nsupers < static_super_number) {
1.106 anton 617: int hash = hash_super(super2+c->offset, c->length);
618: struct super_table_entry **p = &super_table[hash];
619: struct super_table_entry *e = malloc(sizeof(struct super_table_entry));
620: e->next = *p;
621: e->start = super2 + c->offset;
622: e->length = c->length;
623: e->super = i;
624: *p = e;
625: if (c->length > max_super)
626: max_super = c->length;
1.109 anton 627: nsupers++;
1.106 anton 628: }
629: }
1.109 anton 630: if (debug)
631: fprintf(stderr, "Using %d static superinsts\n", nsupers);
1.106 anton 632: }
633:
634: /* dynamic replication/superinstruction stuff */
635:
1.70 anton 636: #define MAX_IMMARGS 2
637:
1.69 anton 638: #ifndef NO_DYNAMIC
1.47 anton 639: typedef struct {
640: Label start;
1.74 anton 641: Cell length; /* only includes the jump iff superend is true*/
642: Cell restlength; /* length of the rest (i.e., the jump or (on superend) 0) */
1.70 anton 643: char superend; /* true if primitive ends superinstruction, i.e.,
1.47 anton 644: unconditional branch, execute, etc. */
1.70 anton 645: Cell nimmargs;
646: struct immarg {
647: Cell offset; /* offset of immarg within prim */
648: char rel; /* true if immarg is relative */
649: } immargs[MAX_IMMARGS];
1.47 anton 650: } PrimInfo;
651:
652: PrimInfo *priminfos;
1.76 anton 653: PrimInfo **decomp_prims;
654:
1.90 anton 655: int compare_priminfo_length(const void *_a, const void *_b)
1.76 anton 656: {
1.90 anton 657: PrimInfo **a = (PrimInfo **)_a;
658: PrimInfo **b = (PrimInfo **)_b;
1.77 anton 659: Cell diff = (*a)->length - (*b)->length;
660: if (diff)
661: return diff;
662: else /* break ties by start address; thus the decompiler produces
663: the earliest primitive with the same code (e.g. noop instead
664: of (char) and @ instead of >code-address */
665: return (*b)->start - (*a)->start;
1.76 anton 666: }
1.112 anton 667: #endif /* !defined(NO_DYNAMIC) */
1.76 anton 668:
1.106 anton 669: static char superend[]={
670: #include "prim_superend.i"
671: };
1.107 anton 672:
673: Cell npriminfos=0;
1.76 anton 674:
1.114 anton 675: int compare_labels(const void *pa, const void *pb)
1.113 anton 676: {
1.114 anton 677: Label a = *(Label *)pa;
678: Label b = *(Label *)pb;
679: return a-b;
680: }
1.113 anton 681:
1.114 anton 682: Label bsearch_next(Label key, Label *a, UCell n)
683: /* a is sorted; return the label >=key that is the closest in a;
684: return NULL if there is no label in a >=key */
685: {
686: int mid = (n-1)/2;
687: if (n<1)
688: return NULL;
689: if (n == 1) {
690: if (a[0] < key)
691: return NULL;
692: else
693: return a[0];
694: }
695: if (a[mid] < key)
696: return bsearch_next(key, a+mid+1, n-mid-1);
697: else
698: return bsearch_next(key, a, mid+1);
1.113 anton 699: }
700:
1.47 anton 701: void check_prims(Label symbols1[])
702: {
703: int i;
1.90 anton 704: #ifndef NO_DYNAMIC
1.119 anton 705: Label *symbols2, *symbols3, *ends1, *ends1j, *ends1jsorted;
706: int nends1j;
1.90 anton 707: #endif
1.47 anton 708:
1.66 anton 709: if (debug)
710: #ifdef __VERSION__
711: fprintf(stderr, "Compiled with gcc-" __VERSION__ "\n");
712: #else
713: #define xstr(s) str(s)
714: #define str(s) #s
715: fprintf(stderr, "Compiled with gcc-" xstr(__GNUC__) "." xstr(__GNUC_MINOR__) "\n");
716: #endif
1.121 anton 717: for (i=0; symbols1[i]!=0; i++)
1.47 anton 718: ;
1.55 anton 719: npriminfos = i;
1.70 anton 720:
721: #ifndef NO_DYNAMIC
1.66 anton 722: if (no_dynamic)
723: return;
1.55 anton 724: symbols2=engine2(0,0,0,0,0);
1.70 anton 725: #if NO_IP
726: symbols3=engine3(0,0,0,0,0);
727: #else
728: symbols3=symbols1;
729: #endif
1.121 anton 730: ends1 = symbols1+i+1;
1.119 anton 731: ends1j = ends1+i;
1.121 anton 732: nends1j = i+1;
1.119 anton 733: ends1jsorted = (Label *)alloca(nends1j*sizeof(Label));
734: memcpy(ends1jsorted,ends1j,nends1j*sizeof(Label));
735: qsort(ends1jsorted, nends1j, sizeof(Label), compare_labels);
1.113 anton 736:
1.47 anton 737: priminfos = calloc(i,sizeof(PrimInfo));
1.121 anton 738: for (i=0; symbols1[i]!=0; i++) {
1.70 anton 739: int prim_len = ends1[i]-symbols1[i];
1.47 anton 740: PrimInfo *pi=&priminfos[i];
1.70 anton 741: int j=0;
742: char *s1 = (char *)symbols1[i];
743: char *s2 = (char *)symbols2[i];
744: char *s3 = (char *)symbols3[i];
1.119 anton 745: Label endlabel = bsearch_next(symbols1[i]+1,ends1jsorted,nends1j);
1.70 anton 746:
747: pi->start = s1;
1.121 anton 748: pi->superend = superend[i]|no_super;
1.70 anton 749: if (pi->superend)
1.113 anton 750: pi->length = endlabel-symbols1[i];
1.70 anton 751: else
752: pi->length = prim_len;
1.113 anton 753: pi->restlength = endlabel - symbols1[i] - pi->length;
1.70 anton 754: pi->nimmargs = 0;
755: if (debug)
1.98 anton 756: fprintf(stderr, "Prim %3d @ %p %p %p, length=%3ld restlength=%2ld superend=%1d",
757: i, s1, s2, s3, (long)(pi->length), (long)(pi->restlength), pi->superend);
1.114 anton 758: if (endlabel == NULL) {
759: pi->start = NULL; /* not relocatable */
1.122 ! anton 760: if (pi->length<0) pi->length=100;
1.114 anton 761: if (debug)
1.119 anton 762: fprintf(stderr,"\n non_reloc: no J label > start found\n");
1.114 anton 763: continue;
764: }
765: if (ends1[i] > endlabel && !pi->superend) {
1.113 anton 766: pi->start = NULL; /* not relocatable */
1.122 ! anton 767: pi->length = endlabel-symbols1[i];
1.113 anton 768: if (debug)
1.121 anton 769: fprintf(stderr,"\n non_reloc: there is a J label before the K label (restlength<0)\n");
1.113 anton 770: continue;
771: }
1.114 anton 772: if (ends1[i] < pi->start && !pi->superend) {
1.113 anton 773: pi->start = NULL; /* not relocatable */
1.122 ! anton 774: pi->length = endlabel-symbols1[i];
1.113 anton 775: if (debug)
1.119 anton 776: fprintf(stderr,"\n non_reloc: K label before I label (length<0)\n");
1.113 anton 777: continue;
778: }
1.70 anton 779: assert(prim_len>=0);
1.113 anton 780: assert(pi->restlength >=0);
1.74 anton 781: while (j<(pi->length+pi->restlength)) {
1.70 anton 782: if (s1[j]==s3[j]) {
783: if (s1[j] != s2[j]) {
784: pi->start = NULL; /* not relocatable */
785: if (debug)
786: fprintf(stderr,"\n non_reloc: engine1!=engine2 offset %3d",j);
1.74 anton 787: /* assert(j<prim_len); */
1.70 anton 788: break;
789: }
790: j++;
791: } else {
792: struct immarg *ia=&pi->immargs[pi->nimmargs];
793:
794: pi->nimmargs++;
795: ia->offset=j;
796: if ((~*(Cell *)&(s1[j]))==*(Cell *)&(s3[j])) {
797: ia->rel=0;
798: if (debug)
799: fprintf(stderr,"\n absolute immarg: offset %3d",j);
800: } else if ((&(s1[j]))+(*(Cell *)&(s1[j]))+4 ==
801: symbols1[DOESJUMP+1]) {
802: ia->rel=1;
803: if (debug)
804: fprintf(stderr,"\n relative immarg: offset %3d",j);
805: } else {
806: pi->start = NULL; /* not relocatable */
807: if (debug)
808: fprintf(stderr,"\n non_reloc: engine1!=engine3 offset %3d",j);
1.74 anton 809: /* assert(j<prim_len);*/
1.70 anton 810: break;
811: }
812: j+=4;
1.47 anton 813: }
814: }
1.70 anton 815: if (debug)
816: fprintf(stderr,"\n");
817: }
1.76 anton 818: decomp_prims = calloc(i,sizeof(PrimInfo *));
819: for (i=DOESJUMP+1; i<npriminfos; i++)
820: decomp_prims[i] = &(priminfos[i]);
821: qsort(decomp_prims+DOESJUMP+1, npriminfos-DOESJUMP-1, sizeof(PrimInfo *),
822: compare_priminfo_length);
1.70 anton 823: #endif
824: }
825:
1.74 anton 826: void flush_to_here(void)
827: {
1.93 anton 828: #ifndef NO_DYNAMIC
1.100 anton 829: if (start_flush)
830: FLUSH_ICACHE(start_flush, code_here-start_flush);
1.74 anton 831: start_flush=code_here;
1.93 anton 832: #endif
1.74 anton 833: }
834:
1.93 anton 835: #ifndef NO_DYNAMIC
1.74 anton 836: void append_jump(void)
837: {
838: if (last_jump) {
839: PrimInfo *pi = &priminfos[last_jump];
840:
841: memcpy(code_here, pi->start+pi->length, pi->restlength);
842: code_here += pi->restlength;
843: last_jump=0;
844: }
845: }
846:
1.75 anton 847: /* Gforth remembers all code blocks in this list. On forgetting (by
848: executing a marker) the code blocks are not freed (because Gforth does
849: not remember how they were allocated; hmm, remembering that might be
850: easier and cleaner). Instead, code_here etc. are reset to the old
851: value, and the "forgotten" code blocks are reused when they are
852: needed. */
853:
854: struct code_block_list {
855: struct code_block_list *next;
856: Address block;
857: Cell size;
858: } *code_block_list=NULL, **next_code_blockp=&code_block_list;
859:
1.74 anton 860: Address append_prim(Cell p)
861: {
862: PrimInfo *pi = &priminfos[p];
863: Address old_code_here = code_here;
864:
865: if (code_area+code_area_size < code_here+pi->length+pi->restlength) {
1.75 anton 866: struct code_block_list *p;
1.74 anton 867: append_jump();
1.93 anton 868: flush_to_here();
1.75 anton 869: if (*next_code_blockp == NULL) {
870: code_here = start_flush = code_area = my_alloc(code_area_size);
871: p = (struct code_block_list *)malloc(sizeof(struct code_block_list));
872: *next_code_blockp = p;
873: p->next = NULL;
874: p->block = code_here;
875: p->size = code_area_size;
876: } else {
877: p = *next_code_blockp;
878: code_here = start_flush = code_area = p->block;
879: }
1.74 anton 880: old_code_here = code_here;
1.75 anton 881: next_code_blockp = &(p->next);
1.74 anton 882: }
883: memcpy(code_here, pi->start, pi->length);
884: code_here += pi->length;
885: return old_code_here;
886: }
887: #endif
1.75 anton 888:
889: int forget_dyncode(Address code)
890: {
891: #ifdef NO_DYNAMIC
892: return -1;
893: #else
894: struct code_block_list *p, **pp;
895:
896: for (pp=&code_block_list, p=*pp; p!=NULL; pp=&(p->next), p=*pp) {
897: if (code >= p->block && code < p->block+p->size) {
898: next_code_blockp = &(p->next);
899: code_here = start_flush = code;
900: code_area = p->block;
901: last_jump = 0;
902: return -1;
903: }
904: }
1.78 anton 905: return -no_dynamic;
1.75 anton 906: #endif /* !defined(NO_DYNAMIC) */
907: }
908:
1.104 anton 909: long dyncodesize(void)
910: {
911: #ifndef NO_DYNAMIC
1.106 anton 912: struct code_block_list *p;
1.104 anton 913: long size=0;
914: for (p=code_block_list; p!=NULL; p=p->next) {
915: if (code_here >= p->block && code_here < p->block+p->size)
916: return size + (code_here - p->block);
917: else
918: size += p->size;
919: }
920: #endif /* !defined(NO_DYNAMIC) */
921: return 0;
922: }
923:
1.90 anton 924: Label decompile_code(Label _code)
1.75 anton 925: {
1.76 anton 926: #ifdef NO_DYNAMIC
1.90 anton 927: return _code;
1.76 anton 928: #else /* !defined(NO_DYNAMIC) */
929: Cell i;
1.77 anton 930: struct code_block_list *p;
1.90 anton 931: Address code=_code;
1.76 anton 932:
1.77 anton 933: /* first, check if we are in code at all */
934: for (p = code_block_list;; p = p->next) {
935: if (p == NULL)
936: return code;
937: if (code >= p->block && code < p->block+p->size)
938: break;
939: }
1.76 anton 940: /* reverse order because NOOP might match other prims */
941: for (i=npriminfos-1; i>DOESJUMP; i--) {
942: PrimInfo *pi=decomp_prims[i];
943: if (pi->start==code || (pi->start && memcmp(code,pi->start,pi->length)==0))
1.121 anton 944: return vm_prims[super2[super_costs[pi-priminfos].offset]];
1.118 anton 945: /* return pi->start;*/
1.76 anton 946: }
947: return code;
948: #endif /* !defined(NO_DYNAMIC) */
1.75 anton 949: }
1.74 anton 950:
1.70 anton 951: #ifdef NO_IP
952: int nbranchinfos=0;
953:
954: struct branchinfo {
955: Label *targetptr; /* *(bi->targetptr) is the target */
956: Cell *addressptr; /* store the target here */
957: } branchinfos[100000];
958:
959: int ndoesexecinfos=0;
960: struct doesexecinfo {
961: int branchinfo; /* fix the targetptr of branchinfos[...->branchinfo] */
962: Cell *xt; /* cfa of word whose does-code needs calling */
963: } doesexecinfos[10000];
964:
965: void set_rel_target(Cell *source, Label target)
966: {
967: *source = ((Cell)target)-(((Cell)source)+4);
968: }
969:
970: void register_branchinfo(Label source, Cell targetptr)
971: {
972: struct branchinfo *bi = &(branchinfos[nbranchinfos]);
973: bi->targetptr = (Label *)targetptr;
974: bi->addressptr = (Cell *)source;
975: nbranchinfos++;
976: }
977:
978: Cell *compile_prim1arg(Cell p)
979: {
980: int l = priminfos[p].length;
981: Address old_code_here=code_here;
982:
1.74 anton 983: assert(vm_prims[p]==priminfos[p].start);
984: append_prim(p);
1.70 anton 985: return (Cell*)(old_code_here+priminfos[p].immargs[0].offset);
986: }
987:
988: Cell *compile_call2(Cell targetptr)
989: {
990: Cell *next_code_target;
1.73 anton 991: PrimInfo *pi = &priminfos[N_call2];
1.74 anton 992: Address old_code_here = append_prim(N_call2);
1.70 anton 993:
1.74 anton 994: next_code_target = (Cell *)(old_code_here + pi->immargs[0].offset);
995: register_branchinfo(old_code_here + pi->immargs[1].offset, targetptr);
1.70 anton 996: return next_code_target;
997: }
998: #endif
999:
1000: void finish_code(void)
1001: {
1002: #ifdef NO_IP
1003: Cell i;
1004:
1005: compile_prim1(NULL);
1006: for (i=0; i<ndoesexecinfos; i++) {
1007: struct doesexecinfo *dei = &doesexecinfos[i];
1008: branchinfos[dei->branchinfo].targetptr = DOES_CODE1((dei->xt));
1009: }
1010: ndoesexecinfos = 0;
1011: for (i=0; i<nbranchinfos; i++) {
1012: struct branchinfo *bi=&branchinfos[i];
1013: set_rel_target(bi->addressptr, *(bi->targetptr));
1014: }
1015: nbranchinfos = 0;
1.48 anton 1016: #endif
1.93 anton 1017: flush_to_here();
1.48 anton 1018: }
1019:
1.108 anton 1020: #if 0
1.105 anton 1021: /* compile *start into a dynamic superinstruction, updating *start */
1022: void compile_prim_dyn(Cell *start)
1.48 anton 1023: {
1.108 anton 1024: #if defined(NO_IP)
1.70 anton 1025: static Cell *last_start=NULL;
1026: static Xt last_prim=NULL;
1027: /* delay work by one call in order to get relocated immargs */
1028:
1029: if (last_start) {
1030: unsigned i = last_prim-vm_prims;
1031: PrimInfo *pi=&priminfos[i];
1032: Cell *next_code_target=NULL;
1033:
1034: assert(i<npriminfos);
1.73 anton 1035: if (i==N_execute||i==N_perform||i==N_lit_perform) {
1036: next_code_target = compile_prim1arg(N_set_next_code);
1.70 anton 1037: }
1.73 anton 1038: if (i==N_call) {
1.70 anton 1039: next_code_target = compile_call2(last_start[1]);
1.73 anton 1040: } else if (i==N_does_exec) {
1.70 anton 1041: struct doesexecinfo *dei = &doesexecinfos[ndoesexecinfos++];
1.73 anton 1042: *compile_prim1arg(N_lit) = (Cell)PFA(last_start[1]);
1.70 anton 1043: /* we cannot determine the callee now (last_start[1] may be a
1044: forward reference), so just register an arbitrary target, and
1045: register in dei that we need to fix this before resolving
1046: branches */
1047: dei->branchinfo = nbranchinfos;
1048: dei->xt = (Cell *)(last_start[1]);
1049: next_code_target = compile_call2(NULL);
1050: } else if (pi->start == NULL) { /* non-reloc */
1.73 anton 1051: next_code_target = compile_prim1arg(N_set_next_code);
1052: set_rel_target(compile_prim1arg(N_abranch),*(Xt)last_prim);
1.70 anton 1053: } else {
1054: unsigned j;
1.74 anton 1055: Address old_code_here = append_prim(i);
1.70 anton 1056:
1057: for (j=0; j<pi->nimmargs; j++) {
1058: struct immarg *ia = &(pi->immargs[j]);
1059: Cell argval = last_start[pi->nimmargs - j]; /* !! specific to prims */
1060: if (ia->rel) { /* !! assumption: relative refs are branches */
1.74 anton 1061: register_branchinfo(old_code_here + ia->offset, argval);
1.70 anton 1062: } else /* plain argument */
1.74 anton 1063: *(Cell *)(old_code_here + ia->offset) = argval;
1.70 anton 1064: }
1065: }
1066: if (next_code_target!=NULL)
1067: *next_code_target = (Cell)code_here;
1068: }
1069: if (start) {
1070: last_prim = (Xt)*start;
1071: *start = (Cell)code_here;
1072: }
1073: last_start = start;
1074: return;
1075: #elif !defined(NO_DYNAMIC)
1076: Label prim=(Label)*start;
1.58 anton 1077: unsigned i;
1.74 anton 1078: Address old_code_here;
1.48 anton 1079:
1.58 anton 1080: i = ((Xt)prim)-vm_prims;
1.56 anton 1081: prim = *(Xt)prim;
1.70 anton 1082: if (no_dynamic) {
1083: *start = (Cell)prim;
1084: return;
1085: }
1.58 anton 1086: if (i>=npriminfos || priminfos[i].start == 0) { /* not a relocatable prim */
1.74 anton 1087: append_jump();
1.70 anton 1088: *start = (Cell)prim;
1089: return;
1.47 anton 1090: }
1.58 anton 1091: assert(priminfos[i].start = prim);
1.50 anton 1092: #ifdef ALIGN_CODE
1.87 anton 1093: /* ALIGN_CODE;*/
1.50 anton 1094: #endif
1.74 anton 1095: assert(prim==priminfos[i].start);
1096: old_code_here = append_prim(i);
1097: last_jump = (priminfos[i].superend) ? 0 : i;
1.70 anton 1098: *start = (Cell)old_code_here;
1099: return;
1.61 anton 1100: #else /* !defined(DOUBLY_INDIRECT), no code replication */
1.70 anton 1101: Label prim=(Label)*start;
1.61 anton 1102: #if !defined(INDIRECT_THREADED)
1.56 anton 1103: prim = *(Xt)prim;
1.61 anton 1104: #endif
1.70 anton 1105: *start = (Cell)prim;
1106: return;
1.54 anton 1107: #endif /* !defined(DOUBLY_INDIRECT) */
1.70 anton 1108: }
1.108 anton 1109: #endif /* 0 */
1110:
1111: Cell compile_prim_dyn(unsigned p)
1112: {
1.121 anton 1113: Cell static_prim = (Cell)vm_prims[p];
1.108 anton 1114: #if defined(NO_DYNAMIC)
1115: return static_prim;
1116: #else /* !defined(NO_DYNAMIC) */
1117: Address old_code_here;
1118:
1119: if (no_dynamic)
1120: return static_prim;
1121: if (p>=npriminfos || priminfos[p].start == 0) { /* not a relocatable prim */
1122: append_jump();
1123: return static_prim;
1124: }
1125: old_code_here = append_prim(p);
1126: last_jump = (priminfos[p].superend) ? 0 : p;
1127: return (Cell)old_code_here;
1128: #endif /* !defined(NO_DYNAMIC) */
1129: }
1.70 anton 1130:
1.109 anton 1131: #ifndef NO_DYNAMIC
1132: int cost_codesize(int prim)
1133: {
1.121 anton 1134: return priminfos[prim].length;
1.109 anton 1135: }
1136: #endif
1137:
1138: int cost_ls(int prim)
1139: {
1140: struct cost *c = super_costs+prim;
1141:
1142: return c->loads + c->stores;
1143: }
1144:
1145: int cost_lsu(int prim)
1146: {
1147: struct cost *c = super_costs+prim;
1148:
1149: return c->loads + c->stores + c->updates;
1150: }
1151:
1152: int cost_nexts(int prim)
1153: {
1154: return 1;
1155: }
1156:
1157: typedef int Costfunc(int);
1158: Costfunc *ss_cost = /* cost function for optimize_bb */
1159: #ifdef NO_DYNAMIC
1160: cost_lsu;
1161: #else
1162: cost_codesize;
1163: #endif
1164:
1.110 anton 1165: struct {
1166: Costfunc *costfunc;
1167: char *metricname;
1168: long sum;
1169: } cost_sums[] = {
1170: #ifndef NO_DYNAMIC
1171: { cost_codesize, "codesize", 0 },
1172: #endif
1173: { cost_ls, "ls", 0 },
1174: { cost_lsu, "lsu", 0 },
1175: { cost_nexts, "nexts", 0 }
1176: };
1177:
1.106 anton 1178: #define MAX_BB 128 /* maximum number of instructions in BB */
1179:
1.107 anton 1180: /* use dynamic programming to find the shortest paths within the basic
1181: block origs[0..ninsts-1]; optimals[i] contains the superinstruction
1182: on the shortest path to the end of the BB */
1.121 anton 1183: void optimize_bb(PrimNum origs[], PrimNum optimals[], int ninsts)
1.107 anton 1184: {
1.110 anton 1185: int i,j, mincost;
1.107 anton 1186: static int costs[MAX_BB+1];
1187:
1188: assert(ninsts<MAX_BB);
1189: costs[ninsts]=0;
1190: for (i=ninsts-1; i>=0; i--) {
1191: optimals[i] = origs[i];
1.110 anton 1192: costs[i] = mincost = costs[i+1] + ss_cost(optimals[i]);
1.107 anton 1193: for (j=2; j<=max_super && i+j<=ninsts ; j++) {
1194: int super, jcost;
1195:
1196: super = lookup_super(origs+i,j);
1197: if (super >= 0) {
1.109 anton 1198: jcost = costs[i+j] + ss_cost(super);
1.110 anton 1199: if (jcost <= mincost) {
1.107 anton 1200: optimals[i] = super;
1.110 anton 1201: mincost = jcost;
1202: if (!ss_greedy)
1203: costs[i] = jcost;
1.107 anton 1204: }
1205: }
1206: }
1207: }
1208: }
1209:
1210: /* rewrite the instructions pointed to by instps to use the
1211: superinstructions in optimals */
1.121 anton 1212: void rewrite_bb(Cell *instps[], PrimNum *optimals, int ninsts)
1.107 anton 1213: {
1.110 anton 1214: int i,j, nextdyn;
1.108 anton 1215: Cell inst;
1.107 anton 1216:
1217: for (i=0, nextdyn=0; i<ninsts; i++) {
1.108 anton 1218: if (i==nextdyn) { /* compile dynamically */
1.107 anton 1219: nextdyn += super_costs[optimals[i]].length;
1.108 anton 1220: inst = compile_prim_dyn(optimals[i]);
1.110 anton 1221: for (j=0; j<sizeof(cost_sums)/sizeof(cost_sums[0]); j++)
1222: cost_sums[j].sum += cost_sums[j].costfunc(optimals[i]);
1.108 anton 1223: } else { /* compile statically */
1.121 anton 1224: inst = (Cell)vm_prims[optimals[i]];
1.107 anton 1225: }
1.108 anton 1226: *(instps[i]) = inst;
1.107 anton 1227: }
1228: }
1229:
1.105 anton 1230: /* compile *start, possibly rewriting it into a static and/or dynamic
1231: superinstruction */
1232: void compile_prim1(Cell *start)
1.70 anton 1233: {
1.108 anton 1234: #if defined(DOUBLY_INDIRECT)
1235: Label prim=(Label)*start;
1236: if (prim<((Label)(xts+DOESJUMP)) || prim>((Label)(xts+npriminfos))) {
1237: fprintf(stderr,"compile_prim encountered xt %p\n", prim);
1238: *start=(Cell)prim;
1239: return;
1240: } else {
1241: *start = (Cell)(prim-((Label)xts)+((Label)vm_prims));
1242: return;
1243: }
1244: #elif defined(INDIRECT_THREADED)
1245: return;
1.112 anton 1246: #else /* !(defined(DOUBLY_INDIRECT) || defined(INDIRECT_THREADED)) */
1.107 anton 1247: static Cell *instps[MAX_BB];
1.121 anton 1248: static PrimNum origs[MAX_BB];
1249: static PrimNum optimals[MAX_BB];
1.106 anton 1250: static int ninsts=0;
1.121 anton 1251: PrimNum prim_num;
1.106 anton 1252:
1253: if (start==NULL)
1254: goto end_bb;
1255: prim_num = ((Xt)*start)-vm_prims;
1256: if (prim_num >= npriminfos)
1257: goto end_bb;
1258: assert(ninsts<MAX_BB);
1.107 anton 1259: instps[ninsts] = start;
1.121 anton 1260: origs[ninsts] = prim_num;
1.107 anton 1261: ninsts++;
1.121 anton 1262: if (ninsts >= MAX_BB || superend[prim_num]) {
1.106 anton 1263: end_bb:
1.107 anton 1264: optimize_bb(origs,optimals,ninsts);
1265: rewrite_bb(instps,optimals,ninsts);
1.106 anton 1266: ninsts=0;
1267: }
1.112 anton 1268: #endif /* !(defined(DOUBLY_INDIRECT) || defined(INDIRECT_THREADED)) */
1.47 anton 1269: }
1270:
1.1 anton 1271: Address loader(FILE *imagefile, char* filename)
1272: /* returns the address of the image proper (after the preamble) */
1273: {
1274: ImageHeader header;
1275: Address image;
1276: Address imp; /* image+preamble */
1.17 anton 1277: Char magic[8];
1278: char magic7; /* size byte of magic number */
1.1 anton 1279: Cell preamblesize=0;
1.6 pazsan 1280: Cell data_offset = offset_image ? 56*sizeof(Cell) : 0;
1.1 anton 1281: UCell check_sum;
1.15 pazsan 1282: Cell ausize = ((RELINFOBITS == 8) ? 0 :
1283: (RELINFOBITS == 16) ? 1 :
1284: (RELINFOBITS == 32) ? 2 : 3);
1285: Cell charsize = ((sizeof(Char) == 1) ? 0 :
1286: (sizeof(Char) == 2) ? 1 :
1287: (sizeof(Char) == 4) ? 2 : 3) + ausize;
1288: Cell cellsize = ((sizeof(Cell) == 1) ? 0 :
1289: (sizeof(Cell) == 2) ? 1 :
1290: (sizeof(Cell) == 4) ? 2 : 3) + ausize;
1.21 anton 1291: Cell sizebyte = (ausize << 5) + (charsize << 3) + (cellsize << 1) +
1292: #ifdef WORDS_BIGENDIAN
1293: 0
1294: #else
1295: 1
1296: #endif
1297: ;
1.1 anton 1298:
1.43 anton 1299: vm_prims = engine(0,0,0,0,0);
1.47 anton 1300: check_prims(vm_prims);
1.106 anton 1301: prepare_super_table();
1.1 anton 1302: #ifndef DOUBLY_INDIRECT
1.59 anton 1303: #ifdef PRINT_SUPER_LENGTHS
1304: print_super_lengths();
1305: #endif
1.43 anton 1306: check_sum = checksum(vm_prims);
1.1 anton 1307: #else /* defined(DOUBLY_INDIRECT) */
1.43 anton 1308: check_sum = (UCell)vm_prims;
1.1 anton 1309: #endif /* defined(DOUBLY_INDIRECT) */
1.10 pazsan 1310:
1311: do {
1312: if(fread(magic,sizeof(Char),8,imagefile) < 8) {
1.84 anton 1313: fprintf(stderr,"%s: image %s doesn't seem to be a Gforth (>=0.6) image.\n",
1.10 pazsan 1314: progname, filename);
1315: exit(1);
1.1 anton 1316: }
1.10 pazsan 1317: preamblesize+=8;
1.84 anton 1318: } while(memcmp(magic,"Gforth3",7));
1.17 anton 1319: magic7 = magic[7];
1.1 anton 1320: if (debug) {
1.17 anton 1321: magic[7]='\0';
1.21 anton 1322: fprintf(stderr,"Magic found: %s ", magic);
1323: print_sizes(magic7);
1.1 anton 1324: }
1325:
1.21 anton 1326: if (magic7 != sizebyte)
1327: {
1328: fprintf(stderr,"This image is: ");
1329: print_sizes(magic7);
1330: fprintf(stderr,"whereas the machine is ");
1331: print_sizes(sizebyte);
1.1 anton 1332: exit(-2);
1333: };
1334:
1335: fread((void *)&header,sizeof(ImageHeader),1,imagefile);
1.10 pazsan 1336:
1337: set_stack_sizes(&header);
1.1 anton 1338:
1339: #if HAVE_GETPAGESIZE
1340: pagesize=getpagesize(); /* Linux/GNU libc offers this */
1341: #elif HAVE_SYSCONF && defined(_SC_PAGESIZE)
1342: pagesize=sysconf(_SC_PAGESIZE); /* POSIX.4 */
1343: #elif PAGESIZE
1344: pagesize=PAGESIZE; /* in limits.h according to Gallmeister's POSIX.4 book */
1345: #endif
1346: if (debug)
1.5 jwilke 1347: fprintf(stderr,"pagesize=%ld\n",(unsigned long) pagesize);
1.1 anton 1348:
1.34 anton 1349: image = dict_alloc_read(imagefile, preamblesize+header.image_size,
1350: preamblesize+dictsize, data_offset);
1.33 anton 1351: imp=image+preamblesize;
1.57 anton 1352: alloc_stacks((ImageHeader *)imp);
1.1 anton 1353: if (clear_dictionary)
1.33 anton 1354: memset(imp+header.image_size, 0, dictsize-header.image_size);
1.90 anton 1355: if(header.base==0 || header.base == (Address)0x100) {
1.1 anton 1356: Cell reloc_size=((header.image_size-1)/sizeof(Cell))/8+1;
1357: char reloc_bits[reloc_size];
1.33 anton 1358: fseek(imagefile, preamblesize+header.image_size, SEEK_SET);
1.10 pazsan 1359: fread(reloc_bits, 1, reloc_size, imagefile);
1.90 anton 1360: relocate((Cell *)imp, reloc_bits, header.image_size, (Cell)header.base, vm_prims);
1.1 anton 1361: #if 0
1362: { /* let's see what the relocator did */
1363: FILE *snapshot=fopen("snapshot.fi","wb");
1364: fwrite(image,1,imagesize,snapshot);
1365: fclose(snapshot);
1366: }
1367: #endif
1.46 jwilke 1368: }
1369: else if(header.base!=imp) {
1370: fprintf(stderr,"%s: Cannot load nonrelocatable image (compiled for address $%lx) at address $%lx\n",
1371: progname, (unsigned long)header.base, (unsigned long)imp);
1372: exit(1);
1.1 anton 1373: }
1374: if (header.checksum==0)
1375: ((ImageHeader *)imp)->checksum=check_sum;
1376: else if (header.checksum != check_sum) {
1377: fprintf(stderr,"%s: Checksum of image ($%lx) does not match the executable ($%lx)\n",
1378: progname, (unsigned long)(header.checksum),(unsigned long)check_sum);
1379: exit(1);
1380: }
1.53 anton 1381: #ifdef DOUBLY_INDIRECT
1382: ((ImageHeader *)imp)->xt_base = xts;
1383: #endif
1.1 anton 1384: fclose(imagefile);
1385:
1.56 anton 1386: /* unnecessary, except maybe for CODE words */
1387: /* FLUSH_ICACHE(imp, header.image_size);*/
1.1 anton 1388:
1389: return imp;
1390: }
1391:
1.72 anton 1392: /* pointer to last '/' or '\' in file, 0 if there is none. */
1393: char *onlypath(char *filename)
1.10 pazsan 1394: {
1.72 anton 1395: return strrchr(filename, DIRSEP);
1.1 anton 1396: }
1397:
1398: FILE *openimage(char *fullfilename)
1.10 pazsan 1399: {
1400: FILE *image_file;
1.28 anton 1401: char * expfilename = tilde_cstr(fullfilename, strlen(fullfilename), 1);
1.10 pazsan 1402:
1.28 anton 1403: image_file=fopen(expfilename,"rb");
1.1 anton 1404: if (image_file!=NULL && debug)
1.28 anton 1405: fprintf(stderr, "Opened image file: %s\n", expfilename);
1.10 pazsan 1406: return image_file;
1.1 anton 1407: }
1408:
1.28 anton 1409: /* try to open image file concat(path[0:len],imagename) */
1.1 anton 1410: FILE *checkimage(char *path, int len, char *imagename)
1.10 pazsan 1411: {
1412: int dirlen=len;
1.1 anton 1413: char fullfilename[dirlen+strlen(imagename)+2];
1.10 pazsan 1414:
1.1 anton 1415: memcpy(fullfilename, path, dirlen);
1.71 pazsan 1416: if (fullfilename[dirlen-1]!=DIRSEP)
1417: fullfilename[dirlen++]=DIRSEP;
1.1 anton 1418: strcpy(fullfilename+dirlen,imagename);
1.10 pazsan 1419: return openimage(fullfilename);
1.1 anton 1420: }
1421:
1.10 pazsan 1422: FILE * open_image_file(char * imagename, char * path)
1.1 anton 1423: {
1.10 pazsan 1424: FILE * image_file=NULL;
1.28 anton 1425: char *origpath=path;
1.10 pazsan 1426:
1.71 pazsan 1427: if(strchr(imagename, DIRSEP)==NULL) {
1.10 pazsan 1428: /* first check the directory where the exe file is in !! 01may97jaw */
1429: if (onlypath(progname))
1.72 anton 1430: image_file=checkimage(progname, onlypath(progname)-progname, imagename);
1.10 pazsan 1431: if (!image_file)
1432: do {
1433: char *pend=strchr(path, PATHSEP);
1434: if (pend==NULL)
1435: pend=path+strlen(path);
1436: if (strlen(path)==0) break;
1437: image_file=checkimage(path, pend-path, imagename);
1438: path=pend+(*pend==PATHSEP);
1439: } while (image_file==NULL);
1440: } else {
1441: image_file=openimage(imagename);
1442: }
1.1 anton 1443:
1.10 pazsan 1444: if (!image_file) {
1445: fprintf(stderr,"%s: cannot open image file %s in path %s for reading\n",
1.28 anton 1446: progname, imagename, origpath);
1.10 pazsan 1447: exit(1);
1.7 anton 1448: }
1449:
1.10 pazsan 1450: return image_file;
1451: }
1.11 pazsan 1452: #endif
1453:
1454: #ifdef HAS_OS
1455: UCell convsize(char *s, UCell elemsize)
1456: /* converts s of the format [0-9]+[bekMGT]? (e.g. 25k) into the number
1457: of bytes. the letter at the end indicates the unit, where e stands
1458: for the element size. default is e */
1459: {
1460: char *endp;
1461: UCell n,m;
1462:
1463: m = elemsize;
1464: n = strtoul(s,&endp,0);
1465: if (endp!=NULL) {
1466: if (strcmp(endp,"b")==0)
1467: m=1;
1468: else if (strcmp(endp,"k")==0)
1469: m=1024;
1470: else if (strcmp(endp,"M")==0)
1471: m=1024*1024;
1472: else if (strcmp(endp,"G")==0)
1473: m=1024*1024*1024;
1474: else if (strcmp(endp,"T")==0) {
1475: #if (SIZEOF_CHAR_P > 4)
1.24 anton 1476: m=1024L*1024*1024*1024;
1.11 pazsan 1477: #else
1478: fprintf(stderr,"%s: size specification \"%s\" too large for this machine\n", progname, endp);
1479: exit(1);
1480: #endif
1481: } else if (strcmp(endp,"e")!=0 && strcmp(endp,"")!=0) {
1482: fprintf(stderr,"%s: cannot grok size specification %s: invalid unit \"%s\"\n", progname, s, endp);
1483: exit(1);
1484: }
1485: }
1486: return n*m;
1487: }
1.10 pazsan 1488:
1.109 anton 1489: enum {
1490: ss_number = 256,
1491: ss_min_codesize,
1492: ss_min_ls,
1493: ss_min_lsu,
1494: ss_min_nexts,
1495: };
1496:
1.10 pazsan 1497: void gforth_args(int argc, char ** argv, char ** path, char ** imagename)
1498: {
1499: int c;
1500:
1.1 anton 1501: opterr=0;
1502: while (1) {
1503: int option_index=0;
1504: static struct option opts[] = {
1.29 anton 1505: {"appl-image", required_argument, NULL, 'a'},
1.1 anton 1506: {"image-file", required_argument, NULL, 'i'},
1507: {"dictionary-size", required_argument, NULL, 'm'},
1508: {"data-stack-size", required_argument, NULL, 'd'},
1509: {"return-stack-size", required_argument, NULL, 'r'},
1510: {"fp-stack-size", required_argument, NULL, 'f'},
1511: {"locals-stack-size", required_argument, NULL, 'l'},
1512: {"path", required_argument, NULL, 'p'},
1513: {"version", no_argument, NULL, 'v'},
1514: {"help", no_argument, NULL, 'h'},
1515: /* put something != 0 into offset_image */
1516: {"offset-image", no_argument, &offset_image, 1},
1517: {"no-offset-im", no_argument, &offset_image, 0},
1518: {"clear-dictionary", no_argument, &clear_dictionary, 1},
1.4 anton 1519: {"die-on-signal", no_argument, &die_on_signal, 1},
1.1 anton 1520: {"debug", no_argument, &debug, 1},
1.60 anton 1521: {"no-super", no_argument, &no_super, 1},
1522: {"no-dynamic", no_argument, &no_dynamic, 1},
1.66 anton 1523: {"dynamic", no_argument, &no_dynamic, 0},
1.110 anton 1524: {"print-metrics", no_argument, &print_metrics, 1},
1.109 anton 1525: {"ss-number", required_argument, NULL, ss_number},
1526: #ifndef NO_DYNAMIC
1527: {"ss-min-codesize", no_argument, NULL, ss_min_codesize},
1528: #endif
1529: {"ss-min-ls", no_argument, NULL, ss_min_ls},
1530: {"ss-min-lsu", no_argument, NULL, ss_min_lsu},
1531: {"ss-min-nexts", no_argument, NULL, ss_min_nexts},
1.110 anton 1532: {"ss-greedy", no_argument, &ss_greedy, 1},
1.1 anton 1533: {0,0,0,0}
1534: /* no-init-file, no-rc? */
1535: };
1536:
1.36 pazsan 1537: c = getopt_long(argc, argv, "+i:m:d:r:f:l:p:vhoncsx", opts, &option_index);
1.1 anton 1538:
1539: switch (c) {
1.29 anton 1540: case EOF: return;
1541: case '?': optind--; return;
1542: case 'a': *imagename = optarg; return;
1.10 pazsan 1543: case 'i': *imagename = optarg; break;
1.1 anton 1544: case 'm': dictsize = convsize(optarg,sizeof(Cell)); break;
1545: case 'd': dsize = convsize(optarg,sizeof(Cell)); break;
1546: case 'r': rsize = convsize(optarg,sizeof(Cell)); break;
1547: case 'f': fsize = convsize(optarg,sizeof(Float)); break;
1548: case 'l': lsize = convsize(optarg,sizeof(Cell)); break;
1.10 pazsan 1549: case 'p': *path = optarg; break;
1.36 pazsan 1550: case 'o': offset_image = 1; break;
1551: case 'n': offset_image = 0; break;
1552: case 'c': clear_dictionary = 1; break;
1553: case 's': die_on_signal = 1; break;
1554: case 'x': debug = 1; break;
1.83 anton 1555: case 'v': fputs(PACKAGE_STRING"\n", stderr); exit(0);
1.109 anton 1556: case ss_number: static_super_number = atoi(optarg); break;
1557: #ifndef NO_DYNAMIC
1558: case ss_min_codesize: ss_cost = cost_codesize; break;
1559: #endif
1560: case ss_min_ls: ss_cost = cost_ls; break;
1561: case ss_min_lsu: ss_cost = cost_lsu; break;
1562: case ss_min_nexts: ss_cost = cost_nexts; break;
1.1 anton 1563: case 'h':
1.29 anton 1564: fprintf(stderr, "Usage: %s [engine options] ['--'] [image arguments]\n\
1.1 anton 1565: Engine Options:\n\
1.29 anton 1566: --appl-image FILE equivalent to '--image-file=FILE --'\n\
1.10 pazsan 1567: --clear-dictionary Initialize the dictionary with 0 bytes\n\
1568: -d SIZE, --data-stack-size=SIZE Specify data stack size\n\
1569: --debug Print debugging information during startup\n\
1570: --die-on-signal exit instead of CATCHing some signals\n\
1.66 anton 1571: --dynamic use dynamic native code\n\
1.10 pazsan 1572: -f SIZE, --fp-stack-size=SIZE Specify floating point stack size\n\
1573: -h, --help Print this message and exit\n\
1574: -i FILE, --image-file=FILE Use image FILE instead of `gforth.fi'\n\
1575: -l SIZE, --locals-stack-size=SIZE Specify locals stack size\n\
1576: -m SIZE, --dictionary-size=SIZE Specify Forth dictionary size\n\
1.60 anton 1577: --no-dynamic Use only statically compiled primitives\n\
1.10 pazsan 1578: --no-offset-im Load image at normal position\n\
1.60 anton 1579: --no-super No dynamically formed superinstructions\n\
1.10 pazsan 1580: --offset-image Load image at a different position\n\
1581: -p PATH, --path=PATH Search path for finding image and sources\n\
1.110 anton 1582: --print-metrics Print some code generation metrics on exit\n\
1.10 pazsan 1583: -r SIZE, --return-stack-size=SIZE Specify return stack size\n\
1.111 anton 1584: --ss-greedy greedy, not optimal superinst selection\n\
1585: --ss-min-codesize select superinsts for smallest native code\n\
1586: --ss-min-ls minimize loads and stores\n\
1587: --ss-min-lsu minimize loads, stores, and pointer updates\n\
1588: --ss-min-nexts minimize the number of static superinsts\n\
1589: --ss-number=N use N static superinsts (default max)\n\
1.66 anton 1590: -v, --version Print engine version and exit\n\
1.1 anton 1591: SIZE arguments consist of an integer followed by a unit. The unit can be\n\
1.10 pazsan 1592: `b' (byte), `e' (element; default), `k' (KB), `M' (MB), `G' (GB) or `T' (TB).\n",
1593: argv[0]);
1594: optind--;
1595: return;
1.1 anton 1596: }
1597: }
1.10 pazsan 1598: }
1.11 pazsan 1599: #endif
1.10 pazsan 1600:
1601: #ifdef INCLUDE_IMAGE
1602: extern Cell image[];
1603: extern const char reloc_bits[];
1604: #endif
1.67 pazsan 1605:
1.10 pazsan 1606: int main(int argc, char **argv, char **env)
1607: {
1.30 pazsan 1608: #ifdef HAS_OS
1.10 pazsan 1609: char *path = getenv("GFORTHPATH") ? : DEFAULTPATH;
1.30 pazsan 1610: #else
1611: char *path = DEFAULTPATH;
1612: #endif
1.13 pazsan 1613: #ifndef INCLUDE_IMAGE
1.10 pazsan 1614: char *imagename="gforth.fi";
1615: FILE *image_file;
1616: Address image;
1617: #endif
1618: int retvalue;
1619:
1.56 anton 1620: #if defined(i386) && defined(ALIGNMENT_CHECK)
1.10 pazsan 1621: /* turn on alignment checks on the 486.
1622: * on the 386 this should have no effect. */
1623: __asm__("pushfl; popl %eax; orl $0x40000, %eax; pushl %eax; popfl;");
1624: /* this is unusable with Linux' libc.4.6.27, because this library is
1625: not alignment-clean; we would have to replace some library
1626: functions (e.g., memcpy) to make it work. Also GCC doesn't try to keep
1627: the stack FP-aligned. */
1628: #endif
1629:
1630: /* buffering of the user output device */
1.11 pazsan 1631: #ifdef _IONBF
1.10 pazsan 1632: if (isatty(fileno(stdout))) {
1633: fflush(stdout);
1634: setvbuf(stdout,NULL,_IONBF,0);
1.1 anton 1635: }
1.11 pazsan 1636: #endif
1.1 anton 1637:
1.10 pazsan 1638: progname = argv[0];
1639:
1.11 pazsan 1640: #ifdef HAS_OS
1.10 pazsan 1641: gforth_args(argc, argv, &path, &imagename);
1.109 anton 1642: #ifndef NO_DYNAMIC
1643: if (no_dynamic && ss_cost == cost_codesize) {
1.122 ! anton 1644: ss_cost = cost_nexts;
! 1645: cost_sums[0] = cost_sums[1]; /* don't use cost_codesize for print-metrics */
1.109 anton 1646: if (debug)
1.122 ! anton 1647: fprintf(stderr, "--no-dynamic conflicts with --ss-min-codesize, reverting to --ss-min-nexts\n");
1.109 anton 1648: }
1649: #endif /* !defined(NO_DYNAMIC) */
1650: #endif /* defined(HAS_OS) */
1.10 pazsan 1651:
1652: #ifdef INCLUDE_IMAGE
1653: set_stack_sizes((ImageHeader *)image);
1.22 pazsan 1654: if(((ImageHeader *)image)->base != image)
1655: relocate(image, reloc_bits, ((ImageHeader *)image)->image_size,
1656: (Label*)engine(0, 0, 0, 0, 0));
1.10 pazsan 1657: alloc_stacks((ImageHeader *)image);
1658: #else
1659: image_file = open_image_file(imagename, path);
1660: image = loader(image_file, imagename);
1661: #endif
1.24 anton 1662: gforth_header=(ImageHeader *)image; /* used in SIGSEGV handler */
1.1 anton 1663:
1664: {
1.10 pazsan 1665: char path2[strlen(path)+1];
1.1 anton 1666: char *p1, *p2;
1667: Cell environ[]= {
1668: (Cell)argc-(optind-1),
1669: (Cell)(argv+(optind-1)),
1.10 pazsan 1670: (Cell)strlen(path),
1.1 anton 1671: (Cell)path2};
1672: argv[optind-1] = progname;
1673: /*
1674: for (i=0; i<environ[0]; i++)
1675: printf("%s\n", ((char **)(environ[1]))[i]);
1676: */
1677: /* make path OS-independent by replacing path separators with NUL */
1.10 pazsan 1678: for (p1=path, p2=path2; *p1!='\0'; p1++, p2++)
1.1 anton 1679: if (*p1==PATHSEP)
1680: *p2 = '\0';
1681: else
1682: *p2 = *p1;
1683: *p2='\0';
1.10 pazsan 1684: retvalue = go_forth(image, 4, environ);
1.102 anton 1685: #ifdef SIGPIPE
1686: bsd_signal(SIGPIPE, SIG_IGN);
1687: #endif
1.42 anton 1688: #ifdef VM_PROFILING
1689: vm_print_profile(stderr);
1690: #endif
1.1 anton 1691: deprep_terminal();
1.104 anton 1692: }
1.110 anton 1693: if (print_metrics) {
1694: int i;
1695: fprintf(stderr, "code size = %8ld\n", dyncodesize());
1696: for (i=0; i<sizeof(cost_sums)/sizeof(cost_sums[0]); i++)
1697: fprintf(stderr, "metric %8s: %8ld\n",
1698: cost_sums[i].metricname, cost_sums[i].sum);
1.1 anton 1699: }
1.13 pazsan 1700: return retvalue;
1.1 anton 1701: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>