Annotation of gforth/doc/vmgen.texi, revision 1.12

1.10      anton       1: \input texinfo    @c -*-texinfo-*-
                      2: @comment %**start of header
                      3: @setfilename vmgen.info
1.1       anton       4: @include version.texi
1.10      anton       5: @settitle Vmgen (Gforth @value{VERSION})
                      6: @c @syncodeindex pg cp
                      7: @comment %**end of header
                      8: @copying
                      9: This manual is for Vmgen
                     10: (version @value{VERSION}, @value{UPDATED}),
                     11: the virtual machine interpreter generator
                     12: 
                     13: Copyright @copyright{} 2002 Free Software Foundation, Inc.
                     14: 
                     15: @quotation
                     16: Permission is granted to copy, distribute and/or modify this document
                     17: under the terms of the GNU Free Documentation License, Version 1.1 or
                     18: any later version published by the Free Software Foundation; with no
                     19: Invariant Sections, with the Front-Cover texts being ``A GNU Manual,''
                     20: and with the Back-Cover Texts as in (a) below.  A copy of the
                     21: license is included in the section entitled ``GNU Free Documentation
                     22: License.''
                     23: 
                     24: (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
                     25: this GNU Manual, like GNU software.  Copies published by the Free
                     26: Software Foundation raise funds for GNU development.''
                     27: @end quotation
                     28: @end copying
                     29: 
                     30: @dircategory GNU programming tools
                     31: @direntry
1.11      anton      32: * Vmgen: (vmgen).               Interpreter generator
1.10      anton      33: @end direntry
                     34: 
                     35: @titlepage
                     36: @title Vmgen
                     37: @subtitle for Gforth version @value{VERSION}, @value{UPDATED}
1.11      anton      38: @author M. Anton Ertl (@email{anton@@mips.complang.tuwien.ac.at})
1.10      anton      39: @page
                     40: @vskip 0pt plus 1filll
                     41: @insertcopying
                     42: @end titlepage
                     43: 
                     44: @contents
                     45: 
                     46: @ifnottex
                     47: @node Top, Introduction, (dir), (dir)
                     48: @top Vmgen
                     49: 
                     50: @insertcopying
                     51: @end ifnottex
                     52: 
                     53: @menu
                     54: * Introduction::                What can Vmgen do for you?
                     55: * Why interpreters?::           Advantages and disadvantages
                     56: * Concepts::                    VM interpreter background
1.11      anton      57: * Invoking Vmgen::              
1.10      anton      58: * Example::                     
                     59: * Input File Format::           
                     60: * Using the generated code::    
                     61: * Changes::                     from earlier versions
                     62: * Contact::                     Bug reporting etc.
                     63: * Copying This Manual::         Manual License
                     64: * Index::                       
                     65: 
                     66: @detailmenu
                     67:  --- The Detailed Node Listing ---
                     68: 
                     69: Concepts
                     70: 
                     71: * Front end and VM interpreter::  Modularizing an interpretive system
                     72: * Data handling::               Stacks, registers, immediate arguments
                     73: * Dispatch::                    From one VM instruction to the next
                     74: 
                     75: Example
                     76: 
                     77: * Example overview::            
                     78: * Using profiling to create superinstructions::  
                     79: 
                     80: Input File Format
                     81: 
                     82: * Input File Grammar::          
                     83: * Simple instructions::         
                     84: * Superinstructions::           
1.11      anton      85: * Register Machines::           How to define register VM instructions
1.10      anton      86: 
                     87: Simple instructions
                     88: 
                     89: * C Code Macros::               Macros recognized by Vmgen
                     90: * C Code restrictions::         Vmgen makes assumptions about C code
                     91: 
                     92: Using the generated code
                     93: 
                     94: * VM engine::                   Executing VM code
                     95: * VM instruction table::        
                     96: * VM code generation::          Creating VM code (in the front-end)
                     97: * Peephole optimization::       Creating VM superinstructions
                     98: * VM disassembler::             for debugging the front end
                     99: * VM profiler::                 for finding worthwhile superinstructions
                    100: 
                    101: Copying This Manual
                    102: 
                    103: * GNU Free Documentation License::  License for copying this manual.
                    104: 
                    105: @end detailmenu
                    106: @end menu
1.1       anton     107: 
                    108: @c @ifnottex
1.11      anton     109: @c This file documents Vmgen (Gforth @value{VERSION}).
1.1       anton     110: 
1.10      anton     111: @c ************************************************************
                    112: @node Introduction, Why interpreters?, Top, Top
1.2       anton     113: @chapter Introduction
1.1       anton     114: 
                    115: Vmgen is a tool for writing efficient interpreters.  It takes a simple
                    116: virtual machine description and generates efficient C code for dealing
                    117: with the virtual machine code in various ways (in particular, executing
                    118: it).  The run-time efficiency of the resulting interpreters is usually
                    119: within a factor of 10 of machine code produced by an optimizing
                    120: compiler.
                    121: 
1.11      anton     122: The interpreter design strategy supported by Vmgen is to divide the
1.1       anton     123: interpreter into two parts:
                    124: 
                    125: @itemize @bullet
                    126: 
                    127: @item The @emph{front end} takes the source code of the language to be
                    128: implemented, and translates it into virtual machine code.  This is
                    129: similar to an ordinary compiler front end; typically an interpreter
                    130: front-end performs no optimization, so it is relatively simple to
                    131: implement and runs fast.
                    132: 
                    133: @item The @emph{virtual machine interpreter} executes the virtual
                    134: machine code.
                    135: 
                    136: @end itemize
                    137: 
                    138: Such a division is usually used in interpreters, for modularity as well
1.6       anton     139: as for efficiency.  The virtual machine code is typically passed between
                    140: front end and virtual machine interpreter in memory, like in a
1.1       anton     141: load-and-go compiler; this avoids the complexity and time cost of
                    142: writing the code to a file and reading it again.
                    143: 
                    144: A @emph{virtual machine} (VM) represents the program as a sequence of
                    145: @emph{VM instructions}, following each other in memory, similar to real
                    146: machine code.  Control flow occurs through VM branch instructions, like
                    147: in a real machine.
                    148: 
1.12    ! anton     149: @cindex functionality features overview
1.11      anton     150: In this setup, Vmgen can generate most of the code dealing with virtual
1.1       anton     151: machine instructions from a simple description of the virtual machine
1.11      anton     152: instructions (@pxref{Input File Format}), in particular:
1.1       anton     153: 
1.11      anton     154: @table @asis
1.1       anton     155: 
                    156: @item VM instruction execution
                    157: 
                    158: @item VM code generation
                    159: Useful in the front end.
                    160: 
                    161: @item VM code decompiler
                    162: Useful for debugging the front end.
                    163: 
                    164: @item VM code tracing
                    165: Useful for debugging the front end and the VM interpreter.  You will
                    166: typically provide other means for debugging the user's programs at the
                    167: source level.
                    168: 
                    169: @item VM code profiling
1.12    ! anton     170: Useful for optimizing the VM interpreter with superinstructions
1.11      anton     171: (@pxref{VM profiler}).
1.1       anton     172: 
                    173: @end table
                    174: 
1.12    ! anton     175: @cindex efficiency features overview
1.11      anton     176: @noindent
                    177: Vmgen supports efficient interpreters though various optimizations, in
1.1       anton     178: particular
                    179: 
1.11      anton     180: @itemize @bullet
1.1       anton     181: 
                    182: @item Threaded code
                    183: 
                    184: @item Caching the top-of-stack in a register
                    185: 
                    186: @item Combining VM instructions into superinstructions
                    187: 
                    188: @item
                    189: Replicating VM (super)instructions for better BTB prediction accuracy
                    190: (not yet in vmgen-ex, but already in Gforth).
                    191: 
                    192: @end itemize
                    193: 
1.12    ! anton     194: @cindex speed for JVM
1.11      anton     195: As a result, Vmgen-based interpreters are only about an order of
                    196: magnitude slower than native code from an optimizing C compiler on small
1.1       anton     197: benchmarks; on large benchmarks, which spend more time in the run-time
1.2       anton     198: system, the slowdown is often less (e.g., the slowdown of a
                    199: Vmgen-generated JVM interpreter over the best JVM JIT compiler we
                    200: measured is only a factor of 2-3 for large benchmarks; some other JITs
                    201: and all other interpreters we looked at were slower than our
                    202: interpreter).
1.1       anton     203: 
                    204: VMs are usually designed as stack machines (passing data between VM
1.11      anton     205: instructions on a stack), and Vmgen supports such designs especially
1.12    ! anton     206: well; however, you can also use Vmgen for implementing a register VM
        !           207: (@pxref{Register Machines}) and still benefit from most of the advantages
        !           208: offered by Vmgen.
1.1       anton     209: 
1.2       anton     210: There are many potential uses of the instruction descriptions that are
                    211: not implemented at the moment, but we are open for feature requests, and
                    212: we will implement new features if someone asks for them; so the feature
                    213: list above is not exhaustive.
1.1       anton     214: 
1.2       anton     215: @c *********************************************************************
1.10      anton     216: @node Why interpreters?, Concepts, Introduction, Top
1.2       anton     217: @chapter Why interpreters?
1.12    ! anton     218: @cindex interpreters, advantages
        !           219: @cindex advantages of interpreters
        !           220: @cindex advantages of vmgen
1.2       anton     221: 
                    222: Interpreters are a popular language implementation technique because
                    223: they combine all three of the following advantages:
                    224: 
1.11      anton     225: @itemize @bullet
1.2       anton     226: 
                    227: @item Ease of implementation
                    228: 
                    229: @item Portability
                    230: 
                    231: @item Fast edit-compile-run cycle
                    232: 
                    233: @end itemize
                    234: 
1.12    ! anton     235: Vmgen makes it even easier to implement interpreters.
        !           236: 
        !           237: @cindex speed of interpreters
1.2       anton     238: The main disadvantage of interpreters is their run-time speed.  However,
                    239: there are huge differences between different interpreters in this area:
                    240: the slowdown over optimized C code on programs consisting of simple
                    241: operations is typically a factor of 10 for the more efficient
                    242: interpreters, and a factor of 1000 for the less efficient ones (the
                    243: slowdown for programs executing complex operations is less, because the
                    244: time spent in libraries for executing complex operations is the same in
                    245: all implementation strategies).
                    246: 
1.12    ! anton     247: Vmgen supports techniques for building efficient interpreters.
1.2       anton     248: 
                    249: @c ********************************************************************
1.11      anton     250: @node Concepts, Invoking Vmgen, Why interpreters?, Top
1.2       anton     251: @chapter Concepts
                    252: 
1.10      anton     253: @menu
                    254: * Front end and VM interpreter::  Modularizing an interpretive system
                    255: * Data handling::               Stacks, registers, immediate arguments
                    256: * Dispatch::                    From one VM instruction to the next
                    257: @end menu
                    258: 
1.2       anton     259: @c --------------------------------------------------------------------
1.10      anton     260: @node Front end and VM interpreter, Data handling, Concepts, Concepts
                    261: @section Front end and VM interpreter
1.12    ! anton     262: @cindex modularization of interpreters
1.2       anton     263: 
                    264: @cindex front-end
                    265: Interpretive systems are typically divided into a @emph{front end} that
                    266: parses the input language and produces an intermediate representation
                    267: for the program, and an interpreter that executes the intermediate
                    268: representation of the program.
                    269: 
                    270: @cindex virtual machine
                    271: @cindex VM
1.12    ! anton     272: @cindex VM instruction
1.2       anton     273: @cindex instruction, VM
1.12    ! anton     274: @cindex VM branch instruction
        !           275: @cindex branch instruction, VM
        !           276: @cindex VM register
        !           277: @cindex register, VM
        !           278: @cindex opcode, VM instruction
        !           279: @cindex immediate argument, VM instruction
1.2       anton     280: For efficient interpreters the intermediate representation of choice is
                    281: virtual machine code (rather than, e.g., an abstract syntax tree).
                    282: @emph{Virtual machine} (VM) code consists of VM instructions arranged
                    283: sequentially in memory; they are executed in sequence by the VM
1.12    ! anton     284: interpreter, but VM branch instructions can change the control flow and
        !           285: are used for implementing control structures.  The conceptual similarity
        !           286: to real machine code results in the name @emph{virtual machine}.
        !           287: Various terms similar to terms for real machines are used; e.g., there
        !           288: are @emph{VM registers} (like the instruction pointer and stack
        !           289: pointer(s)), and the VM instruction consists of an @emph{opcode} and
        !           290: @emph{immediate arguments}.
1.2       anton     291: 
1.11      anton     292: In this framework, Vmgen supports building the VM interpreter and any
1.2       anton     293: other component dealing with VM instructions.  It does not have any
                    294: support for the front end, apart from VM code generation support.  The
                    295: front end can be implemented with classical compiler front-end
1.3       anton     296: techniques, supported by tools like @command{flex} and @command{bison}.
1.2       anton     297: 
                    298: The intermediate representation is usually just internal to the
                    299: interpreter, but some systems also support saving it to a file, either
                    300: as an image file, or in a full-blown linkable file format (e.g., JVM).
                    301: Vmgen currently has no special support for such features, but the
                    302: information in the instruction descriptions can be helpful, and we are
                    303: open for feature requests and suggestions.
1.3       anton     304: 
1.10      anton     305: @c --------------------------------------------------------------------
                    306: @node Data handling, Dispatch, Front end and VM interpreter, Concepts
1.3       anton     307: @section Data handling
                    308: 
                    309: @cindex stack machine
                    310: @cindex register machine
                    311: Most VMs use one or more stacks for passing temporary data between VM
                    312: instructions.  Another option is to use a register machine architecture
                    313: for the virtual machine; however, this option is either slower or
                    314: significantly more complex to implement than a stack machine architecture.
                    315: 
                    316: Vmgen has special support and optimizations for stack VMs, making their
                    317: implementation easy and efficient.
                    318: 
1.11      anton     319: You can also implement a register VM with Vmgen (@pxref{Register
                    320: Machines}), and you will still profit from most Vmgen features.
1.3       anton     321: 
                    322: @cindex stack item size
                    323: @cindex size, stack items
                    324: Stack items all have the same size, so they typically will be as wide as
                    325: an integer, pointer, or floating-point value.  Vmgen supports treating
                    326: two consecutive stack items as a single value, but anything larger is
                    327: best kept in some other memory area (e.g., the heap), with pointers to
                    328: the data on the stack.
                    329: 
                    330: @cindex instruction stream
                    331: @cindex immediate arguments
                    332: Another source of data is immediate arguments VM instructions (in the VM
                    333: instruction stream).  The VM instruction stream is handled similar to a
1.11      anton     334: stack in Vmgen.
1.3       anton     335: 
                    336: @cindex garbage collection
                    337: @cindex reference counting
1.12    ! anton     338: Vmgen has no built-in support for, nor restrictions against
        !           339: @emph{garbage collection}.  If you need garbage collection, you need to
        !           340: provide it in your run-time libraries.  Using @emph{reference counting}
        !           341: is probably harder, but might be possible (contact us if you are
        !           342: interested).
1.3       anton     343: @c reference counting might be possible by including counting code in 
                    344: @c the conversion macros.
                    345: 
1.10      anton     346: @c --------------------------------------------------------------------
                    347: @node Dispatch,  , Data handling, Concepts
1.6       anton     348: @section Dispatch
1.12    ! anton     349: @cindex Dispatch of VM instructions
        !           350: @cindex main interpreter loop
1.6       anton     351: 
1.11      anton     352: Understanding this section is probably not necessary for using Vmgen,
1.6       anton     353: but it may help.  You may want to skip it now, and read it if you find statements about dispatch methods confusing.
                    354: 
                    355: After executing one VM instruction, the VM interpreter has to dispatch
1.11      anton     356: the next VM instruction (Vmgen calls the dispatch routine @samp{NEXT}).
1.6       anton     357: Vmgen supports two methods of dispatch:
                    358: 
1.11      anton     359: @table @asis
1.6       anton     360: 
                    361: @item switch dispatch
1.12    ! anton     362: @cindex switch dispatch
1.6       anton     363: In this method the VM interpreter contains a giant @code{switch}
                    364: statement, with one @code{case} for each VM instruction.  The VM
1.12    ! anton     365: instruction opcodes are represented by integers (e.g., produced by an
        !           366: @code{enum}) in the VM code, and dispatch occurs by loading the next
        !           367: opcode, @code{switch}ing on it, and continuing at the appropriate
        !           368: @code{case}; after executing the VM instruction, the VM interpreter
        !           369: jumps back to the dispatch code.
1.6       anton     370: 
                    371: @item threaded code
1.12    ! anton     372: @cindex threaded code
        !           373: This method represents a VM instruction opcode by the address of the
        !           374: start of the machine code fragment for executing the VM instruction.
1.6       anton     375: Dispatch consists of loading this address, jumping to it, and
                    376: incrementing the VM instruction pointer.  Typically the threaded-code
                    377: dispatch code is appended directly to the code for executing the VM
                    378: instruction.  Threaded code cannot be implemented in ANSI C, but it can
1.11      anton     379: be implemented using GNU C's labels-as-values extension (@pxref{Labels
                    380: as Values, , Labels as Values, gcc.info, GNU C Manual}).
1.6       anton     381: 
                    382: @end table
                    383: 
1.12    ! anton     384: Threaded code can be twice as fast as switch dispatch, depending on the
        !           385: interpreter, the benchmark, and the machine.
        !           386: 
1.3       anton     387: @c *************************************************************
1.11      anton     388: @node Invoking Vmgen, Example, Concepts, Top
                    389: @chapter Invoking Vmgen
1.12    ! anton     390: @cindex Invoking Vmgen
1.3       anton     391: 
1.11      anton     392: The usual way to invoke Vmgen is as follows:
1.3       anton     393: 
                    394: @example
                    395: vmgen @var{infile}
                    396: @end example
                    397: 
                    398: Here @var{infile} is the VM instruction description file, which usually
                    399: ends in @file{.vmg}.  The output filenames are made by taking the
                    400: basename of @file{infile} (i.e., the output files will be created in the
                    401: current working directory) and replacing @file{.vmg} with @file{-vm.i},
                    402: @file{-disasm.i}, @file{-gen.i}, @file{-labels.i}, @file{-profile.i},
1.12    ! anton     403: and @file{-peephole.i}.  E.g., @command{vmgen hack/foo.vmg} will create
1.3       anton     404: @file{foo-vm.i} etc.
                    405: 
1.11      anton     406: The command-line options supported by Vmgen are
1.3       anton     407: 
                    408: @table @option
                    409: 
                    410: @cindex -h, command-line option
                    411: @cindex --help, command-line option
                    412: @item --help
                    413: @itemx -h
                    414: Print a message about the command-line options
                    415: 
                    416: @cindex -v, command-line option
                    417: @cindex --version, command-line option
                    418: @item --version
                    419: @itemx -v
                    420: Print version and exit
                    421: @end table
                    422: 
                    423: @c env vars GFORTHDIR GFORTHDATADIR
                    424: 
1.5       anton     425: @c ****************************************************************
1.11      anton     426: @node Example, Input File Format, Invoking Vmgen, Top
1.5       anton     427: @chapter Example
1.12    ! anton     428: @cindex example of a Vmgen-based interpreter
1.5       anton     429: 
1.10      anton     430: @menu
                    431: * Example overview::            
                    432: * Using profiling to create superinstructions::  
                    433: @end menu
                    434: 
                    435: @c --------------------------------------------------------------------
                    436: @node Example overview, Using profiling to create superinstructions, Example, Example
1.5       anton     437: @section Example overview
1.12    ! anton     438: @cindex example overview
        !           439: @cindex @file{vmgen-ex}
        !           440: @cindex @file{vmgen-ex2}
1.5       anton     441: 
1.11      anton     442: There are two versions of the same example for using Vmgen:
1.5       anton     443: @file{vmgen-ex} and @file{vmgen-ex2} (you can also see Gforth as
                    444: example, but it uses additional (undocumented) features, and also
                    445: differs in some other respects).  The example implements @emph{mini}, a
                    446: tiny Modula-2-like language with a small JavaVM-like virtual machine.
1.12    ! anton     447: 
1.5       anton     448: The difference between the examples is that @file{vmgen-ex} uses many
                    449: casts, and @file{vmgen-ex2} tries to avoids most casts and uses unions
1.12    ! anton     450: instead.  In the rest of this manual we usually mention just files in
        !           451: @file{vmgen-ex}; if you want to use unions, use the equivalent file in
        !           452: @file{vmgen-ex2}.
        !           453: @cindex unions example
        !           454: @cindex casts example
1.5       anton     455: 
                    456: The files provided with each example are:
1.12    ! anton     457: @cindex example files
1.5       anton     458: 
                    459: @example
                    460: Makefile
                    461: README
                    462: disasm.c           wrapper file
                    463: engine.c           wrapper file
                    464: peephole.c         wrapper file
                    465: profile.c          wrapper file
                    466: mini-inst.vmg      simple VM instructions
                    467: mini-super.vmg     superinstructions (empty at first)
                    468: mini.h             common declarations
                    469: mini.l             scanner
                    470: mini.y             front end (parser, VM code generator)
                    471: support.c          main() and other support functions
                    472: fib.mini           example mini program
                    473: simple.mini        example mini program
                    474: test.mini          example mini program (tests everything)
                    475: test.out           test.mini output
                    476: stat.awk           script for aggregating profile information
                    477: peephole-blacklist list of instructions not allowed in superinstructions
                    478: seq2rule.awk       script for creating superinstructions
                    479: @end example
                    480: 
                    481: For your own interpreter, you would typically copy the following files
                    482: and change little, if anything:
1.12    ! anton     483: @cindex wrapper files
1.5       anton     484: 
                    485: @example
                    486: disasm.c           wrapper file
                    487: engine.c           wrapper file
                    488: peephole.c         wrapper file
                    489: profile.c          wrapper file
                    490: stat.awk           script for aggregating profile information
                    491: seq2rule.awk       script for creating superinstructions
                    492: @end example
                    493: 
1.11      anton     494: @noindent
1.5       anton     495: You would typically change much in or replace the following files:
                    496: 
                    497: @example
                    498: Makefile
                    499: mini-inst.vmg      simple VM instructions
                    500: mini.h             common declarations
                    501: mini.l             scanner
                    502: mini.y             front end (parser, VM code generator)
                    503: support.c          main() and other support functions
                    504: peephole-blacklist list of instructions not allowed in superinstructions
                    505: @end example
                    506: 
                    507: You can build the example by @code{cd}ing into the example's directory,
1.12    ! anton     508: and then typing @code{make}; you can check that it works with @code{make
1.5       anton     509: check}.  You can run run mini programs like this:
                    510: 
                    511: @example
                    512: ./mini fib.mini
                    513: @end example
                    514: 
1.12    ! anton     515: To learn about the options, type @code{./mini -h}.
1.5       anton     516: 
1.10      anton     517: @c --------------------------------------------------------------------
                    518: @node Using profiling to create superinstructions,  , Example overview, Example
1.5       anton     519: @section Using profiling to create superinstructions
1.12    ! anton     520: @cindex profiling example
        !           521: @cindex superinstructions example
1.5       anton     522: 
                    523: I have not added rules for this in the @file{Makefile} (there are many
                    524: options for selecting superinstructions, and I did not want to hardcode
                    525: one into the @file{Makefile}), but there are some supporting scripts, and
                    526: here's an example:
                    527: 
                    528: Suppose you want to use @file{fib.mini} and @file{test.mini} as training
                    529: programs, you get the profiles like this:
                    530: 
                    531: @example
                    532: make fib.prof test.prof #takes a few seconds
                    533: @end example
                    534: 
                    535: You can aggregate these profiles with @file{stat.awk}:
                    536: 
                    537: @example
                    538: awk -f stat.awk fib.prof test.prof
                    539: @end example
                    540: 
                    541: The result contains lines like:
                    542: 
                    543: @example
                    544:       2      16        36910041 loadlocal lit
                    545: @end example
                    546: 
                    547: This means that the sequence @code{loadlocal lit} statically occurs a
                    548: total of 16 times in 2 profiles, with a dynamic execution count of
                    549: 36910041.
                    550: 
                    551: The numbers can be used in various ways to select superinstructions.
                    552: E.g., if you just want to select all sequences with a dynamic
                    553: execution count exceeding 10000, you would use the following pipeline:
                    554: 
                    555: @example
                    556: awk -f stat.awk fib.prof test.prof|
                    557: awk '$3>=10000'|                #select sequences
                    558: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
1.12    ! anton     559: awk -f seq2rule.awk|  #transform sequences into superinstruction rules
1.5       anton     560: sort -k 3 >mini-super.vmg       #sort sequences
                    561: @end example
                    562: 
                    563: The file @file{peephole-blacklist} contains all instructions that
                    564: directly access a stack or stack pointer (for mini: @code{call},
                    565: @code{return}); the sort step is necessary to ensure that prefixes
                    566: preceed larger superinstructions.
                    567: 
                    568: Now you can create a version of mini with superinstructions by just
                    569: saying @samp{make}
                    570: 
1.10      anton     571: 
1.3       anton     572: @c ***************************************************************
1.10      anton     573: @node Input File Format, Using the generated code, Example, Top
1.3       anton     574: @chapter Input File Format
1.12    ! anton     575: @cindex input file format
        !           576: @cindex format, input file
1.3       anton     577: 
                    578: Vmgen takes as input a file containing specifications of virtual machine
                    579: instructions.  This file usually has a name ending in @file{.vmg}.
                    580: 
1.5       anton     581: Most examples are taken from the example in @file{vmgen-ex}.
1.3       anton     582: 
1.10      anton     583: @menu
                    584: * Input File Grammar::          
                    585: * Simple instructions::         
                    586: * Superinstructions::           
1.11      anton     587: * Register Machines::           How to define register VM instructions
1.10      anton     588: @end menu
                    589: 
                    590: @c --------------------------------------------------------------------
                    591: @node Input File Grammar, Simple instructions, Input File Format, Input File Format
1.3       anton     592: @section Input File Grammar
1.12    ! anton     593: @cindex grammar, input file
        !           594: @cindex input file grammar
1.3       anton     595: 
                    596: The grammar is in EBNF format, with @code{@var{a}|@var{b}} meaning
                    597: ``@var{a} or @var{b}'', @code{@{@var{c}@}} meaning 0 or more repetitions
                    598: of @var{c} and @code{[@var{d}]} meaning 0 or 1 repetitions of @var{d}.
                    599: 
1.12    ! anton     600: @cindex free-format, not
1.3       anton     601: Vmgen input is not free-format, so you have to take care where you put
                    602: spaces and especially newlines; it's not as bad as makefiles, though:
                    603: any sequence of spaces and tabs is equivalent to a single space.
                    604: 
                    605: @example
1.11      anton     606: description: @{instruction|comment|eval-escape@}
1.3       anton     607: 
                    608: instruction: simple-inst|superinst
                    609: 
1.12    ! anton     610: simple-inst: ident ' (' stack-effect ' )' newline c-code newline newline
1.3       anton     611: 
1.12    ! anton     612: stack-effect: @{ident@} ' --' @{ident@}
1.3       anton     613: 
1.12    ! anton     614: super-inst: ident ' =' ident @{ident@}  
1.3       anton     615: 
1.12    ! anton     616: comment:      '\ '  text newline
1.3       anton     617: 
1.12    ! anton     618: eval-escape:  '\e ' text newline
1.3       anton     619: @end example
                    620: @c \+ \- \g \f \c
                    621: 
                    622: Note that the @code{\}s in this grammar are meant literally, not as
1.5       anton     623: C-style encodings for non-printable characters.
1.3       anton     624: 
                    625: The C code in @code{simple-inst} must not contain empty lines (because
1.11      anton     626: Vmgen would mistake that as the end of the simple-inst.  The text in
1.3       anton     627: @code{comment} and @code{eval-escape} must not contain a newline.
                    628: @code{Ident} must conform to the usual conventions of C identifiers
1.11      anton     629: (otherwise the C compiler would choke on the Vmgen output).
1.3       anton     630: 
                    631: Vmgen understands a few extensions beyond the grammar given here, but
                    632: these extensions are only useful for building Gforth.  You can find a
                    633: description of the format used for Gforth in @file{prim}.
                    634: 
1.10      anton     635: @subsection Eval escapes
1.12    ! anton     636: @cindex escape to Forth
        !           637: @cindex eval escape
        !           638: 
1.3       anton     639: @c woanders?
                    640: The text in @code{eval-escape} is Forth code that is evaluated when
1.11      anton     641: Vmgen reads the line.  If you do not know (and do not want to learn)
1.3       anton     642: Forth, you can build the text according to the following grammar; these
1.11      anton     643: rules are normally all Forth you need for using Vmgen:
1.3       anton     644: 
                    645: @example
                    646: text: stack-decl|type-prefix-decl|stack-prefix-decl
                    647: 
1.12    ! anton     648: stack-decl: 'stack ' ident ident ident
1.3       anton     649: type-prefix-decl: 
1.12    ! anton     650:     's" ' string '" ' ('single'|'double') ident 'type-prefix' ident
        !           651: stack-prefix-decl:  ident 'stack-prefix' string
1.3       anton     652: @end example
                    653: 
                    654: Note that the syntax of this code is not checked thoroughly (there are
                    655: many other Forth program fragments that could be written there).
                    656: 
                    657: If you know Forth, the stack effects of the non-standard words involved
                    658: are:
1.12    ! anton     659: @findex stack
        !           660: @findex type-prefix
        !           661: @findex single
        !           662: @findex double
        !           663: @findex stack-prefix
1.3       anton     664: @example
                    665: stack        ( "name" "pointer" "type" -- )
                    666:              ( name execution: -- stack )
                    667: type-prefix  ( addr u xt1 xt2 n stack "prefix" -- )
                    668: single       ( -- xt1 xt2 n )
                    669: double       ( -- xt1 xt2 n )
                    670: stack-prefix ( stack "prefix" -- )
                    671: @end example
                    672: 
1.5       anton     673: 
1.10      anton     674: @c --------------------------------------------------------------------
                    675: @node Simple instructions, Superinstructions, Input File Grammar, Input File Format
1.3       anton     676: @section Simple instructions
1.12    ! anton     677: @cindex simple VM instruction
        !           678: @cindex instruction, simple VM
1.3       anton     679: 
                    680: We will use the following simple VM instruction description as example:
                    681: 
                    682: @example
                    683: sub ( i1 i2 -- i )
                    684: i = i1-i2;
                    685: @end example
                    686: 
                    687: The first line specifies the name of the VM instruction (@code{sub}) and
                    688: its stack effect (@code{i1 i2 -- i}).  The rest of the description is
                    689: just plain C code.
                    690: 
                    691: @cindex stack effect
1.12    ! anton     692: @cindex effect, stack
1.3       anton     693: The stack effect specifies that @code{sub} pulls two integers from the
1.12    ! anton     694: data stack and puts them in the C variables @code{i1} and @code{i2}
        !           695: (with the rightmost item (@code{i2}) taken from the top of stack;
        !           696: intuition: if you push @code{i1}, then @code{i2} on the stack, the
        !           697: resulting stack picture is @code{i1 i2}) and later pushes one integer
        !           698: (@code{i}) on the data stack (the rightmost item is on the top
        !           699: afterwards).
        !           700: 
        !           701: @cindex prefix, type
        !           702: @cindex type prefix
        !           703: @cindex default stack of a type prefix
1.3       anton     704: How do we know the type and stack of the stack items?  Vmgen uses
                    705: prefixes, similar to Fortran; in contrast to Fortran, you have to
                    706: define the prefix first:
                    707: 
                    708: @example
                    709: \E s" Cell"   single data-stack type-prefix i
                    710: @end example
                    711: 
                    712: This defines the prefix @code{i} to refer to the type @code{Cell}
                    713: (defined as @code{long} in @file{mini.h}) and, by default, to the
                    714: @code{data-stack}.  It also specifies that this type takes one stack
                    715: item (@code{single}).  The type prefix is part of the variable name.
                    716: 
1.12    ! anton     717: @cindex stack definition
        !           718: @cindex defining a stack
1.3       anton     719: Before we can use @code{data-stack} in this way, we have to define it:
                    720: 
                    721: @example
                    722: \E stack data-stack sp Cell
                    723: @end example
                    724: @c !! use something other than Cell
                    725: 
1.12    ! anton     726: @cindex stack basic type
        !           727: @cindex basic type of a stack
        !           728: @cindex type of a stack, basic
        !           729: @cindex stack growth direction
1.3       anton     730: This line defines the stack @code{data-stack}, which uses the stack
                    731: pointer @code{sp}, and each item has the basic type @code{Cell}; other
                    732: types have to fit into one or two @code{Cell}s (depending on whether the
1.12    ! anton     733: type is @code{single} or @code{double} wide), and are cast from and to
        !           734: Cells on accessing the @code{data-stack} with type cast macros
1.11      anton     735: (@pxref{VM engine}).  Stacks grow towards lower addresses in
                    736: Vmgen-erated interpreters.
1.3       anton     737: 
1.12    ! anton     738: @cindex stack prefix
        !           739: @cindex prefix, stack
1.3       anton     740: We can override the default stack of a stack item by using a stack
                    741: prefix.  E.g., consider the following instruction:
                    742: 
                    743: @example
                    744: lit ( #i -- i )
                    745: @end example
                    746: 
                    747: The VM instruction @code{lit} takes the item @code{i} from the
1.5       anton     748: instruction stream (indicated by the prefix @code{#}), and pushes it on
1.3       anton     749: the (default) data stack.  The stack prefix is not part of the variable
                    750: name.  Stack prefixes are defined like this:
                    751: 
                    752: @example
                    753: \E inst-stream stack-prefix #
                    754: @end example
                    755: 
1.5       anton     756: This definition defines that the stack prefix @code{#} specifies the
1.3       anton     757: ``stack'' @code{inst-stream}.  Since the instruction stream behaves a
                    758: little differently than an ordinary stack, it is predefined, and you do
                    759: not need to define it.
                    760: 
1.12    ! anton     761: @cindex instruction stream
1.3       anton     762: The instruction stream contains instructions and their immediate
                    763: arguments, so specifying that an argument comes from the instruction
                    764: stream indicates an immediate argument.  Of course, instruction stream
                    765: arguments can only appear to the left of @code{--} in the stack effect.
                    766: If there are multiple instruction stream arguments, the leftmost is the
                    767: first one (just as the intuition suggests).
                    768: 
1.10      anton     769: @menu
                    770: * C Code Macros::               Macros recognized by Vmgen
                    771: * C Code restrictions::         Vmgen makes assumptions about C code
                    772: @end menu
                    773: 
                    774: @c --------------------------------------------------------------------
                    775: @node C Code Macros, C Code restrictions, Simple instructions, Simple instructions
                    776: @subsection C Code Macros
1.12    ! anton     777: @cindex macros recognized by Vmgen
        !           778: @cindex basic block, VM level
1.5       anton     779: 
                    780: Vmgen recognizes the following strings in the C code part of simple
                    781: instructions:
                    782: 
1.12    ! anton     783: @table @code
1.5       anton     784: 
                    785: @item SET_IP
1.12    ! anton     786: @findex SET_IP
1.11      anton     787: As far as Vmgen is concerned, a VM instruction containing this ends a VM
1.5       anton     788: basic block (used in profiling to delimit profiled sequences).  On the C
                    789: level, this also sets the instruction pointer.
                    790: 
                    791: @item SUPER_END
1.12    ! anton     792: @findex SUPER_END
        !           793: This ends a basic block (for profiling), even if the instruction
        !           794: contains no @code{SET_IP}.
1.5       anton     795: 
                    796: @item TAIL;
1.12    ! anton     797: @findex TAIL;
1.5       anton     798: Vmgen replaces @samp{TAIL;} with code for ending a VM instruction and
1.12    ! anton     799: dispatching the next VM instruction.  Even without a @samp{TAIL;} this
        !           800: happens automatically when control reaches the end of the C code.  If
        !           801: you want to have this in the middle of the C code, you need to use
        !           802: @samp{TAIL;}.  A typical example is a conditional VM branch:
1.5       anton     803: 
                    804: @example
1.11      anton     805: if (branch_condition) @{
1.5       anton     806:   SET_IP(target); TAIL;
1.11      anton     807: @}
1.5       anton     808: /* implicit tail follows here */
                    809: @end example
                    810: 
                    811: In this example, @samp{TAIL;} is not strictly necessary, because there
                    812: is another one implicitly after the if-statement, but using it improves
                    813: branch prediction accuracy slightly and allows other optimizations.
                    814: 
                    815: @item SUPER_CONTINUE
1.12    ! anton     816: @findex SUPER_CONTINUE
1.5       anton     817: This indicates that the implicit tail at the end of the VM instruction
                    818: dispatches the sequentially next VM instruction even if there is a
                    819: @code{SET_IP} in the VM instruction.  This enables an optimization that
                    820: is not yet implemented in the vmgen-ex code (but in Gforth).  The
                    821: typical application is in conditional VM branches:
                    822: 
                    823: @example
1.11      anton     824: if (branch_condition) @{
1.5       anton     825:   SET_IP(target); TAIL; /* now this TAIL is necessary */
1.11      anton     826: @}
1.5       anton     827: SUPER_CONTINUE;
                    828: @end example
                    829: 
                    830: @end table
                    831: 
1.11      anton     832: Note that Vmgen is not smart about C-level tokenization, comments,
1.5       anton     833: strings, or conditional compilation, so it will interpret even a
                    834: commented-out SUPER_END as ending a basic block (or, e.g.,
1.11      anton     835: @samp{RETAIL;} as @samp{TAIL;}).  Conversely, Vmgen requires the literal
                    836: presence of these strings; Vmgen will not see them if they are hiding in
1.5       anton     837: a C preprocessor macro.
                    838: 
                    839: 
1.10      anton     840: @c --------------------------------------------------------------------
                    841: @node C Code restrictions,  , C Code Macros, Simple instructions
                    842: @subsection C Code restrictions
1.12    ! anton     843: @cindex C code restrictions
        !           844: @cindex restrictions on C code
        !           845: @cindex assumptions about C code
        !           846: 
        !           847: @cindex accessing stack (pointer)
        !           848: @cindex stack pointer, access
        !           849: @cindex instruction pointer, access
1.5       anton     850: Vmgen generates code and performs some optimizations under the
                    851: assumption that the user-supplied C code does not access the stack
                    852: pointers or stack items, and that accesses to the instruction pointer
                    853: only occur through special macros.  In general you should heed these
                    854: restrictions.  However, if you need to break these restrictions, read
                    855: the following.
                    856: 
                    857: Accessing a stack or stack pointer directly can be a problem for several
                    858: reasons: 
1.12    ! anton     859: @cindex stack caching, restriction on C code
        !           860: @cindex superinstructions, restrictions on components
1.5       anton     861: 
1.11      anton     862: @itemize @bullet
1.5       anton     863: 
                    864: @item
1.12    ! anton     865: Vmgen optionally supports caching the top-of-stack item in a local
        !           866: variable (that is allocated to a register).  This is the most frequent
        !           867: source of trouble.  You can deal with it either by not using
        !           868: top-of-stack caching (slowdown factor 1-1.4, depending on machine), or
        !           869: by inserting flushing code (e.g., @samp{IF_spTOS(sp[...] = spTOS);}) at
        !           870: the start and reloading code (e.g., @samp{IF_spTOS(spTOS = sp[0])}) at
        !           871: the end of problematic C code.  Vmgen inserts a stack pointer update
        !           872: before the start of the user-supplied C code, so the flushing code has
        !           873: to use an index that corrects for that.  In the future, this flushing
        !           874: may be done automatically by mentioning a special string in the C code.
1.5       anton     875: @c sometimes flushing and/or reloading unnecessary
                    876: 
                    877: @item
1.11      anton     878: The Vmgen-erated code loads the stack items from stack-pointer-indexed
1.5       anton     879: memory into variables before the user-supplied C code, and stores them
                    880: from variables to stack-pointer-indexed memory afterwards.  If you do
                    881: any writes to the stack through its stack pointer in your C code, it
                    882: will not affact the variables, and your write may be overwritten by the
                    883: stores after the C code.  Similarly, a read from a stack using a stack
                    884: pointer will not reflect computations of stack items in the same VM
                    885: instruction.
                    886: 
                    887: @item
                    888: Superinstructions keep stack items in variables across the whole
                    889: superinstruction.  So you should not include VM instructions, that
1.12    ! anton     890: access a stack or stack pointer, as components of superinstructions
        !           891: (@pxref{VM profiler}).
1.5       anton     892: 
                    893: @end itemize
                    894: 
                    895: You should access the instruction pointer only through its special
                    896: macros (@samp{IP}, @samp{SET_IP}, @samp{IPTOS}); this ensure that these
                    897: macros can be implemented in several ways for best performance.
                    898: @samp{IP} points to the next instruction, and @samp{IPTOS} is its
                    899: contents.
                    900: 
                    901: 
1.10      anton     902: @c --------------------------------------------------------------------
1.11      anton     903: @node Superinstructions, Register Machines, Simple instructions, Input File Format
1.3       anton     904: @section Superinstructions
1.12    ! anton     905: @cindex superinstructions, defining
        !           906: @cindex defining superinstructions
1.5       anton     907: 
1.8       anton     908: Note: don't invest too much work in (static) superinstructions; a future
1.11      anton     909: version of Vmgen will support dynamic superinstructions (see Ian
1.8       anton     910: Piumarta and Fabio Riccardi, @cite{Optimizing Direct Threaded Code by
                    911: Selective Inlining}, PLDI'98), and static superinstructions have much
1.12    ! anton     912: less benefit in that context (preliminary results indicate only a factor
        !           913: 1.1 speedup).
1.8       anton     914: 
1.5       anton     915: Here is an example of a superinstruction definition:
                    916: 
                    917: @example
                    918: lit_sub = lit sub
                    919: @end example
                    920: 
                    921: @code{lit_sub} is the name of the superinstruction, and @code{lit} and
                    922: @code{sub} are its components.  This superinstruction performs the same
                    923: action as the sequence @code{lit} and @code{sub}.  It is generated
                    924: automatically by the VM code generation functions whenever that sequence
1.11      anton     925: occurs, so if you want to use this superinstruction, you just need to
                    926: add this definition (and even that can be partially automatized,
                    927: @pxref{VM profiler}).
1.5       anton     928: 
1.12    ! anton     929: @cindex prefixes of superinstructions
1.5       anton     930: Vmgen requires that the component instructions are simple instructions
1.11      anton     931: defined before superinstructions using the components.  Currently, Vmgen
1.5       anton     932: also requires that all the subsequences at the start of a
                    933: superinstruction (prefixes) must be defined as superinstruction before
                    934: the superinstruction.  I.e., if you want to define a superinstruction
                    935: 
                    936: @example
1.12    ! anton     937: foo4 = load add sub mul
1.5       anton     938: @end example
                    939: 
1.12    ! anton     940: you first have to define @code{load}, @code{add}, @code{sub} and
        !           941: @code{mul}, plus
1.5       anton     942: 
                    943: @example
1.12    ! anton     944: foo2 = load add
        !           945: foo3 = load add sub
1.5       anton     946: @end example
                    947: 
                    948: Here, @code{sumof4} is the longest prefix of @code{sumof5}, and @code{sumof3}
                    949: is the longest prefix of @code{sumof4}.
                    950: 
1.11      anton     951: Note that Vmgen assumes that only the code it generates accesses stack
1.5       anton     952: pointers, the instruction pointer, and various stack items, and it
                    953: performs optimizations based on this assumption.  Therefore, VM
1.12    ! anton     954: instructions where your C code changes the instruction pointer should
        !           955: only be used as last component; a VM instruction where your C code
        !           956: accesses a stack pointer should not be used as component at all.  Vmgen
        !           957: does not check these restrictions, they just result in bugs in your
        !           958: interpreter.
1.5       anton     959: 
1.12    ! anton     960: @c -------------------------------------------------------------------
1.11      anton     961: @node Register Machines,  , Superinstructions, Input File Format
                    962: @section Register Machines
1.12    ! anton     963: @cindex Register VM
        !           964: @cindex Superinstructions for register VMs
        !           965: @cindex tracing of register VMs
1.11      anton     966: 
                    967: If you want to implement a register VM rather than a stack VM with
                    968: Vmgen, there are two ways to do it: Directly and through
                    969: superinstructions.
                    970: 
                    971: If you use the direct way, you define instructions that take the
                    972: register numbers as immediate arguments, like this:
                    973: 
                    974: @example
                    975: add3 ( #src1 #src2 #dest -- )
                    976: reg[dest] = reg[src1]+reg[src2];
                    977: @end example
                    978: 
1.12    ! anton     979: A disadvantage of this method is that during tracing you only see the
        !           980: register numbers, but not the register contents.  Actually, with an
        !           981: appropriate definition of @code{printarg_src} (@pxref{VM engine}), you
        !           982: can print the values of the source registers on entry, but you cannot
        !           983: print the value of the destination register on exit.
        !           984: 
1.11      anton     985: If you use superinstructions to define a register VM, you define simple
                    986: instructions that use a stack, and then define superinstructions that
                    987: have no overall stack effect, like this:
                    988: 
                    989: @example
                    990: loadreg ( #src -- n )
                    991: n = reg[src];
                    992: 
                    993: storereg ( n #dest -- )
                    994: reg[dest] = n;
                    995: 
                    996: adds ( n1 n2 -- n )
                    997: n = n1+n2;
                    998: 
                    999: add3 = loadreg loadreg adds storereg
                   1000: @end example
                   1001: 
                   1002: An advantage of this method is that you see the values and not just the
1.12    ! anton    1003: register numbers in tracing.  A disadvantage of this method is that
1.11      anton    1004: currently you cannot generate superinstructions directly, but only
                   1005: through generating a sequence of simple instructions (we might change
                   1006: this in the future if there is demand).
                   1007: 
                   1008: Could the register VM support be improved, apart from the issues
                   1009: mentioned above?  It is hard to see how to do it in a general way,
                   1010: because there are a number of different designs that different people
                   1011: mean when they use the term @emph{register machine} in connection with
                   1012: VM interpreters.  However, if you have ideas or requests in that
                   1013: direction, please let me know (@pxref{Contact}).
                   1014: 
1.5       anton    1015: @c ********************************************************************
1.10      anton    1016: @node Using the generated code, Changes, Input File Format, Top
1.5       anton    1017: @chapter Using the generated code
1.12    ! anton    1018: @cindex generated code, usage
        !          1019: @cindex Using vmgen-erated code
1.5       anton    1020: 
1.11      anton    1021: The easiest way to create a working VM interpreter with Vmgen is
1.12    ! anton    1022: probably to start with @file{vmgen-ex}, and modify it for your purposes.
        !          1023: This chapter is just the reference manual for the macros etc. used by
        !          1024: the generated code, the other context expected by the generated code,
        !          1025: and what you can do with the various generated files.
1.5       anton    1026: 
1.10      anton    1027: @menu
                   1028: * VM engine::                   Executing VM code
                   1029: * VM instruction table::        
                   1030: * VM code generation::          Creating VM code (in the front-end)
                   1031: * Peephole optimization::       Creating VM superinstructions
                   1032: * VM disassembler::             for debugging the front end
                   1033: * VM profiler::                 for finding worthwhile superinstructions
                   1034: @end menu
1.6       anton    1035: 
1.10      anton    1036: @c --------------------------------------------------------------------
                   1037: @node VM engine, VM instruction table, Using the generated code, Using the generated code
1.5       anton    1038: @section VM engine
1.12    ! anton    1039: @cindex VM instruction execution
        !          1040: @cindex engine
        !          1041: @cindex executing VM code
        !          1042: @cindex @file{engine.c}
        !          1043: @cindex @file{-vm.i} output file
1.5       anton    1044: 
                   1045: The VM engine is the VM interpreter that executes the VM code.  It is
                   1046: essential for an interpretive system.
                   1047: 
1.6       anton    1048: Vmgen supports two methods of VM instruction dispatch: @emph{threaded
                   1049: code} (fast, but gcc-specific), and @emph{switch dispatch} (slow, but
                   1050: portable across C compilers); you can use conditional compilation
                   1051: (@samp{defined(__GNUC__)}) to choose between these methods, and our
                   1052: example does so.
                   1053: 
                   1054: For both methods, the VM engine is contained in a C-level function.
                   1055: Vmgen generates most of the contents of the function for you
                   1056: (@file{@var{name}-vm.i}), but you have to define this function, and
                   1057: macros and variables used in the engine, and initialize the variables.
                   1058: In our example the engine function also includes
                   1059: @file{@var{name}-labels.i} (@pxref{VM instruction table}).
                   1060: 
1.12    ! anton    1061: @cindex tracing VM code
        !          1062: In addition to executing the code, the VM engine can optionally also
        !          1063: print out a trace of the executed instructions, their arguments and
        !          1064: results.  For superinstructions it prints the trace as if only component
        !          1065: instructions were executed; this allows to introduce new
        !          1066: superinstructions while keeping the traces comparable to old ones
        !          1067: (important for regression tests).
        !          1068: 
        !          1069: It costs significant performance to check in each instruction whether to
        !          1070: print tracing code, so we recommend producing two copies of the engine:
        !          1071: one for fast execution, and one for tracing.  See the rules for
        !          1072: @file{engine.o} and @file{engine-debug.o} in @file{vmgen-ex/Makefile}
        !          1073: for an example.
        !          1074: 
1.6       anton    1075: The following macros and variables are used in @file{@var{name}-vm.i}:
1.5       anton    1076: 
                   1077: @table @code
                   1078: 
1.12    ! anton    1079: @findex LABEL
1.5       anton    1080: @item LABEL(@var{inst_name})
                   1081: This is used just before each VM instruction to provide a jump or
1.11      anton    1082: @code{switch} label (the @samp{:} is provided by Vmgen).  For switch
1.5       anton    1083: dispatch this should expand to @samp{case @var{label}}; for
1.12    ! anton    1084: threaded-code dispatch this should just expand to @samp{@var{label}}.
        !          1085: In either case @var{label} is usually the @var{inst_name} with some
        !          1086: prefix or suffix to avoid naming conflicts.
1.5       anton    1087: 
1.12    ! anton    1088: @findex LABEL2
1.9       anton    1089: @item LABEL2(@var{inst_name})
                   1090: This will be used for dynamic superinstructions; at the moment, this
                   1091: should expand to nothing.
                   1092: 
1.12    ! anton    1093: @findex NAME
1.5       anton    1094: @item NAME(@var{inst_name_string})
                   1095: Called on entering a VM instruction with a string containing the name of
                   1096: the VM instruction as parameter.  In normal execution this should be a
                   1097: noop, but for tracing this usually prints the name, and possibly other
                   1098: information (several VM registers in our example).
                   1099: 
1.12    ! anton    1100: @findex DEF_CA
1.5       anton    1101: @item DEF_CA
                   1102: Usually empty.  Called just inside a new scope at the start of a VM
                   1103: instruction.  Can be used to define variables that should be visible
                   1104: during every VM instruction.  If you define this macro as non-empty, you
                   1105: have to provide the finishing @samp{;} in the macro.
                   1106: 
1.12    ! anton    1107: @findex NEXT_P0
        !          1108: @findex NEXT_P1
        !          1109: @findex NEXT_P2
1.5       anton    1110: @item NEXT_P0 NEXT_P1 NEXT_P2
                   1111: The three parts of instruction dispatch.  They can be defined in
                   1112: different ways for best performance on various processors (see
                   1113: @file{engine.c} in the example or @file{engine/threaded.h} in Gforth).
1.12    ! anton    1114: @samp{NEXT_P0} is invoked right at the start of the VM instruction (but
1.5       anton    1115: after @samp{DEF_CA}), @samp{NEXT_P1} right after the user-supplied C
                   1116: code, and @samp{NEXT_P2} at the end.  The actual jump has to be
                   1117: performed by @samp{NEXT_P2}.
                   1118: 
                   1119: The simplest variant is if @samp{NEXT_P2} does everything and the other
                   1120: macros do nothing.  Then also related macros like @samp{IP},
                   1121: @samp{SET_IP}, @samp{IP}, @samp{INC_IP} and @samp{IPTOS} are very
                   1122: straightforward to define.  For switch dispatch this code consists just
1.12    ! anton    1123: of a jump to the dispatch code (@samp{goto next_inst;} in our example);
1.5       anton    1124: for direct threaded code it consists of something like
1.11      anton    1125: @samp{(@{cfa=*ip++; goto *cfa;@})}.
1.5       anton    1126: 
1.12    ! anton    1127: Pulling code (usually the @samp{cfa=*ip++;}) up into @samp{NEXT_P1}
1.5       anton    1128: usually does not cause problems, but pulling things up into
                   1129: @samp{NEXT_P0} usually requires changing the other macros (and, at least
                   1130: for Gforth on Alpha, it does not buy much, because the compiler often
                   1131: manages to schedule the relevant stuff up by itself).  An even more
                   1132: extreme variant is to pull code up even further, into, e.g., NEXT_P1 of
                   1133: the previous VM instruction (prefetching, useful on PowerPCs).
                   1134: 
1.12    ! anton    1135: @findex INC_IP
1.5       anton    1136: @item INC_IP(@var{n})
1.8       anton    1137: This increments @code{IP} by @var{n}.
                   1138: 
1.12    ! anton    1139: @findex SET_IP
1.8       anton    1140: @item SET_IP(@var{target})
                   1141: This sets @code{IP} to @var{target}.
1.5       anton    1142: 
1.12    ! anton    1143: @cindex type cast macro
        !          1144: @findex vm_@var{A}2@var{B}
1.5       anton    1145: @item vm_@var{A}2@var{B}(a,b)
                   1146: Type casting macro that assigns @samp{a} (of type @var{A}) to @samp{b}
                   1147: (of type @var{B}).  This is mainly used for getting stack items into
                   1148: variables and back.  So you need to define macros for every combination
                   1149: of stack basic type (@code{Cell} in our example) and type-prefix types
                   1150: used with that stack (in both directions).  For the type-prefix type,
                   1151: you use the type-prefix (not the C type string) as type name (e.g.,
                   1152: @samp{vm_Cell2i}, not @samp{vm_Cell2Cell}).  In addition, you have to
1.12    ! anton    1153: define a vm_@var{X}2@var{X} macro for the stack's basic type @var{X}
        !          1154: (used in superinstructions).
1.5       anton    1155: 
1.12    ! anton    1156: @cindex instruction stream, basic type
1.5       anton    1157: The stack basic type for the predefined @samp{inst-stream} is
                   1158: @samp{Cell}.  If you want a stack with the same item size, making its
                   1159: basic type @samp{Cell} usually reduces the number of macros you have to
                   1160: define.
                   1161: 
1.12    ! anton    1162: @cindex unions in type cast macros
        !          1163: @cindex casts in type cast macros
        !          1164: @cindex type casting between floats and integers
1.5       anton    1165: Here our examples differ a lot: @file{vmgen-ex} uses casts in these
                   1166: macros, whereas @file{vmgen-ex2} uses union-field selection (or
1.12    ! anton    1167: assignment to union fields).  Note that casting floats into integers and
        !          1168: vice versa changes the bit pattern (and you do not want that).  In this
        !          1169: case your options are to use a (temporary) union, or to take the address
        !          1170: of the value, cast the pointer, and dereference that (not always
        !          1171: possible, and sometimes expensive).
1.5       anton    1172: 
1.12    ! anton    1173: @findex vm_two@var{A}2@var{B}
        !          1174: @findex vm_@var{B}2two@var{A}
1.5       anton    1175: @item vm_two@var{A}2@var{B}(a1,a2,b)
                   1176: @item vm_@var{B}2two@var{A}(b,a1,a2)
1.12    ! anton    1177: Type casting between two stack items (@code{a1}, @code{a2}) and a
1.5       anton    1178: variable @code{b} of a type that takes two stack items.  This does not
1.12    ! anton    1179: occur in our small examples, but you can look at Gforth for examples
        !          1180: (see @code{vm_twoCell2d} in @file{engine/forth.h}).
1.5       anton    1181: 
1.12    ! anton    1182: @cindex stack pointer definition
        !          1183: @cindex instruction pointer definition
1.5       anton    1184: @item @var{stackpointer}
                   1185: For each stack used, the stackpointer name given in the stack
                   1186: declaration is used.  For a regular stack this must be an l-expression;
                   1187: typically it is a variable declared as a pointer to the stack's basic
                   1188: type.  For @samp{inst-stream}, the name is @samp{IP}, and it can be a
                   1189: plain r-value; typically it is a macro that abstracts away the
1.12    ! anton    1190: differences between the various implementations of @code{NEXT_P*}.
1.5       anton    1191: 
1.12    ! anton    1192: @cindex top of stack caching
        !          1193: @cindex stack caching
        !          1194: @cindex TOS
        !          1195: @findex IPTOS
1.5       anton    1196: @item @var{stackpointer}TOS
                   1197: The top-of-stack for the stack pointed to by @var{stackpointer}.  If you
                   1198: are using top-of-stack caching for that stack, this should be defined as
                   1199: variable; if you are not using top-of-stack caching for that stack, this
                   1200: should be a macro expanding to @samp{@var{stackpointer}[0]}.  The stack
                   1201: pointer for the predefined @samp{inst-stream} is called @samp{IP}, so
                   1202: the top-of-stack is called @samp{IPTOS}.
                   1203: 
1.12    ! anton    1204: @findex IF_@var{stackpointer}TOS
1.5       anton    1205: @item IF_@var{stackpointer}TOS(@var{expr})
                   1206: Macro for executing @var{expr}, if top-of-stack caching is used for the
                   1207: @var{stackpointer} stack.  I.e., this should do @var{expr} if there is
                   1208: top-of-stack caching for @var{stackpointer}; otherwise it should do
                   1209: nothing.
                   1210: 
1.12    ! anton    1211: @findex SUPER_END
1.8       anton    1212: @item SUPER_END
                   1213: This is used by the VM profiler (@pxref{VM profiler}); it should not do
                   1214: anything in normal operation, and call @code{vm_count_block(IP)} for
                   1215: profiling.
                   1216: 
1.12    ! anton    1217: @findex SUPER_CONTINUE
1.8       anton    1218: @item SUPER_CONTINUE
1.11      anton    1219: This is just a hint to Vmgen and does nothing at the C level.
1.8       anton    1220: 
1.12    ! anton    1221: @findex VM_DEBUG
1.5       anton    1222: @item VM_DEBUG
                   1223: If this is defined, the tracing code will be compiled in (slower
                   1224: interpretation, but better debugging).  Our example compiles two
                   1225: versions of the engine, a fast-running one that cannot trace, and one
                   1226: with potential tracing and profiling.
                   1227: 
1.12    ! anton    1228: @findex vm_debug
1.5       anton    1229: @item vm_debug
                   1230: Needed only if @samp{VM_DEBUG} is defined.  If this variable contains
                   1231: true, the VM instructions produce trace output.  It can be turned on or
                   1232: off at any time.
                   1233: 
1.12    ! anton    1234: @findex vm_out
1.5       anton    1235: @item vm_out
                   1236: Needed only if @samp{VM_DEBUG} is defined.  Specifies the file on which
                   1237: to print the trace output (type @samp{FILE *}).
                   1238: 
1.12    ! anton    1239: @findex printarg_@var{type}
1.5       anton    1240: @item printarg_@var{type}(@var{value})
                   1241: Needed only if @samp{VM_DEBUG} is defined.  Macro or function for
                   1242: printing @var{value} in a way appropriate for the @var{type}.  This is
                   1243: used for printing the values of stack items during tracing.  @var{Type}
                   1244: is normally the type prefix specified in a @code{type-prefix} definition
                   1245: (e.g., @samp{printarg_i}); in superinstructions it is currently the
                   1246: basic type of the stack.
                   1247: 
                   1248: @end table
                   1249: 
1.6       anton    1250: 
1.10      anton    1251: @c --------------------------------------------------------------------
                   1252: @node VM instruction table, VM code generation, VM engine, Using the generated code
                   1253: @section VM instruction table
1.12    ! anton    1254: @cindex instruction table
        !          1255: @cindex opcode definition
        !          1256: @cindex labels for threaded code
        !          1257: @cindex @code{vm_prim}, definition
        !          1258: @cindex @file{-labels.i} output file
1.6       anton    1259: 
                   1260: For threaded code we also need to produce a table containing the labels
                   1261: of all VM instructions.  This is needed for VM code generation
                   1262: (@pxref{VM code generation}), and it has to be done in the engine
                   1263: function, because the labels are not visible outside.  It then has to be
                   1264: passed outside the function (and assigned to @samp{vm_prim}), to be used
                   1265: by the VM code generation functions.
                   1266: 
                   1267: This means that the engine function has to be called first to produce
                   1268: the VM instruction table, and later, after generating VM code, it has to
                   1269: be called again to execute the generated VM code (yes, this is ugly).
                   1270: In our example program, these two modes of calling the engine function
                   1271: are differentiated by the value of the parameter ip0 (if it equals 0,
                   1272: then the table is passed out, otherwise the VM code is executed); in our
                   1273: example, we pass the table out by assigning it to @samp{vm_prim} and
                   1274: returning from @samp{engine}.
                   1275: 
1.12    ! anton    1276: In our example (@file{vmgen-ex/engine.c}), we also build such a table for
        !          1277: switch dispatch; this is mainly done for uniformity.
1.6       anton    1278: 
                   1279: For switch dispatch, we also need to define the VM instruction opcodes
                   1280: used as case labels in an @code{enum}.
                   1281: 
                   1282: For both purposes (VM instruction table, and enum), the file
1.11      anton    1283: @file{@var{name}-labels.i} is generated by Vmgen.  You have to define
1.6       anton    1284: the following macro used in this file:
1.5       anton    1285: 
1.12    ! anton    1286: @table @code
1.5       anton    1287: 
1.12    ! anton    1288: @findex INST_ADDR
1.5       anton    1289: @item INST_ADDR(@var{inst_name})
                   1290: For switch dispatch, this is just the name of the switch label (the same
1.6       anton    1291: name as used in @samp{LABEL(@var{inst_name})}), for both uses of
                   1292: @file{@var{name}-labels.i}.  For threaded-code dispatch, this is the
                   1293: address of the label defined in @samp{LABEL(@var{inst_name})}); the
1.11      anton    1294: address is taken with @samp{&&} (@pxref{Labels as Values, , Labels as
                   1295: Values, gcc.info, GNU C Manual}).
1.5       anton    1296: 
                   1297: @end table
                   1298: 
                   1299: 
1.10      anton    1300: @c --------------------------------------------------------------------
                   1301: @node VM code generation, Peephole optimization, VM instruction table, Using the generated code
1.6       anton    1302: @section VM code generation
1.12    ! anton    1303: @cindex VM code generation
        !          1304: @cindex code generation, VM
        !          1305: @cindex @file{-gen.i} output file
1.6       anton    1306: 
                   1307: Vmgen generates VM code generation functions in @file{@var{name}-gen.i}
                   1308: that the front end can call to generate VM code.  This is essential for
                   1309: an interpretive system.
                   1310: 
1.12    ! anton    1311: @findex gen_@var{inst}
1.11      anton    1312: For a VM instruction @samp{x ( #a b #c -- d )}, Vmgen generates a
1.6       anton    1313: function with the prototype
                   1314: 
                   1315: @example
                   1316: void gen_x(Inst **ctp, a_type a, c_type c)
                   1317: @end example
                   1318: 
                   1319: The @code{ctp} argument points to a pointer to the next instruction.
                   1320: @code{*ctp} is increased by the generation functions; i.e., you should
                   1321: allocate memory for the code to be generated beforehand, and start with
                   1322: *ctp set at the start of this memory area.  Before running out of
                   1323: memory, allocate a new area, and generate a VM-level jump to the new
1.12    ! anton    1324: area (this overflow handling is not implemented in our examples).
1.6       anton    1325: 
1.12    ! anton    1326: @cindex immediate arguments, VM code generation
1.6       anton    1327: The other arguments correspond to the immediate arguments of the VM
                   1328: instruction (with their appropriate types as defined in the
                   1329: @code{type_prefix} declaration.
                   1330: 
                   1331: The following types, variables, and functions are used in
                   1332: @file{@var{name}-gen.i}:
                   1333: 
1.12    ! anton    1334: @table @code
1.6       anton    1335: 
1.12    ! anton    1336: @findex Inst
1.6       anton    1337: @item Inst
                   1338: The type of the VM instruction; if you use threaded code, this is
                   1339: @code{void *}; for switch dispatch this is an integer type.
                   1340: 
1.12    ! anton    1341: @cindex @code{vm_prim}, use
1.6       anton    1342: @item vm_prim
                   1343: The VM instruction table (type: @code{Inst *}, @pxref{VM instruction table}).
                   1344: 
1.12    ! anton    1345: @findex gen_inst
1.6       anton    1346: @item gen_inst(Inst **ctp, Inst i)
                   1347: This function compiles the instruction @code{i}.  Take a look at it in
                   1348: @file{vmgen-ex/peephole.c}.  It is trivial when you don't want to use
                   1349: superinstructions (just the last two lines of the example function), and
                   1350: slightly more complicated in the example due to its ability to use
                   1351: superinstructions (@pxref{Peephole optimization}).
                   1352: 
1.12    ! anton    1353: @findex genarg_@var{type_prefix}
1.6       anton    1354: @item genarg_@var{type_prefix}(Inst **ctp, @var{type} @var{type_prefix})
                   1355: This compiles an immediate argument of @var{type} (as defined in a
                   1356: @code{type-prefix} definition).  These functions are trivial to define
                   1357: (see @file{vmgen-ex/support.c}).  You need one of these functions for
                   1358: every type that you use as immediate argument.
                   1359: 
                   1360: @end table
                   1361: 
1.12    ! anton    1362: @findex BB_BOUNDARY
1.6       anton    1363: In addition to using these functions to generate code, you should call
                   1364: @code{BB_BOUNDARY} at every basic block entry point if you ever want to
                   1365: use superinstructions (or if you want to use the profiling supported by
1.12    ! anton    1366: Vmgen; but this support is also useful mainly for selecting
        !          1367: superinstructions).  If you use @code{BB_BOUNDARY}, you should also
        !          1368: define it (take a look at its definition in @file{vmgen-ex/mini.y}).
1.6       anton    1369: 
                   1370: You do not need to call @code{BB_BOUNDARY} after branches, because you
                   1371: will not define superinstructions that contain branches in the middle
                   1372: (and if you did, and it would work, there would be no reason to end the
                   1373: superinstruction at the branch), and because the branches announce
                   1374: themselves to the profiler.
                   1375: 
                   1376: 
1.10      anton    1377: @c --------------------------------------------------------------------
                   1378: @node Peephole optimization, VM disassembler, VM code generation, Using the generated code
1.6       anton    1379: @section Peephole optimization
1.12    ! anton    1380: @cindex peephole optimization
        !          1381: @cindex superinstructions, generating
        !          1382: @cindex @file{peephole.c}
        !          1383: @cindex @file{-peephole.i} output file
1.6       anton    1384: 
                   1385: You need peephole optimization only if you want to use
                   1386: superinstructions.  But having the code for it does not hurt much if you
                   1387: do not use superinstructions.
                   1388: 
                   1389: A simple greedy peephole optimization algorithm is used for
                   1390: superinstruction selection: every time @code{gen_inst} compiles a VM
1.12    ! anton    1391: instruction, it checks if it can combine it with the last VM instruction
1.6       anton    1392: (which may also be a superinstruction resulting from a previous peephole
                   1393: optimization); if so, it changes the last instruction to the combined
                   1394: instruction instead of laying down @code{i} at the current @samp{*ctp}.
                   1395: 
                   1396: The code for peephole optimization is in @file{vmgen-ex/peephole.c}.
                   1397: You can use this file almost verbatim.  Vmgen generates
                   1398: @file{@var{file}-peephole.i} which contains data for the peephoile
                   1399: optimizer.
                   1400: 
1.12    ! anton    1401: @findex init_peeptable
1.6       anton    1402: You have to call @samp{init_peeptable()} after initializing
                   1403: @samp{vm_prim}, and before compiling any VM code to initialize data
                   1404: structures for peephole optimization.  After that, compiling with the VM
                   1405: code generation functions will automatically combine VM instructions
                   1406: into superinstructions.  Since you do not want to combine instructions
                   1407: across VM branch targets (otherwise there will not be a proper VM
                   1408: instruction to branch to), you have to call @code{BB_BOUNDARY}
                   1409: (@pxref{VM code generation}) at branch targets.
                   1410: 
                   1411: 
1.10      anton    1412: @c --------------------------------------------------------------------
                   1413: @node VM disassembler, VM profiler, Peephole optimization, Using the generated code
1.6       anton    1414: @section VM disassembler
1.12    ! anton    1415: @cindex VM disassembler
        !          1416: @cindex disassembler, VM code
        !          1417: @cindex @file{disasm.c}
        !          1418: @cindex @file{-disasm.i} output file
1.6       anton    1419: 
                   1420: A VM code disassembler is optional for an interpretive system, but
                   1421: highly recommended during its development and maintenance, because it is
                   1422: very useful for detecting bugs in the front end (and for distinguishing
                   1423: them from VM interpreter bugs).
                   1424: 
                   1425: Vmgen supports VM code disassembling by generating
                   1426: @file{@var{file}-disasm.i}.  This code has to be wrapped into a
1.12    ! anton    1427: function, as is done in @file{vmgen-ex/disasm.c}.  You can use this file
1.6       anton    1428: almost verbatim.  In addition to @samp{vm_@var{A}2@var{B}(a,b)},
                   1429: @samp{vm_out}, @samp{printarg_@var{type}(@var{value})}, which are
                   1430: explained above, the following macros and variables are used in
                   1431: @file{@var{file}-disasm.i} (and you have to define them):
                   1432: 
1.12    ! anton    1433: @table @code
1.6       anton    1434: 
                   1435: @item ip
                   1436: This variable points to the opcode of the current VM instruction.
                   1437: 
1.12    ! anton    1438: @cindex @code{IP}, @code{IPTOS} in disassmbler
1.6       anton    1439: @item IP IPTOS
                   1440: @samp{IPTOS} is the first argument of the current VM instruction, and
                   1441: @samp{IP} points to it; this is just as in the engine, but here
                   1442: @samp{ip} points to the opcode of the VM instruction (in contrast to the
                   1443: engine, where @samp{ip} points to the next cell, or even one further).
                   1444: 
1.12    ! anton    1445: @findex VM_IS_INST
1.6       anton    1446: @item VM_IS_INST(Inst i, int n)
                   1447: Tests if the opcode @samp{i} is the same as the @samp{n}th entry in the
                   1448: VM instruction table.
                   1449: 
                   1450: @end table
                   1451: 
                   1452: 
1.10      anton    1453: @c --------------------------------------------------------------------
                   1454: @node VM profiler,  , VM disassembler, Using the generated code
1.7       anton    1455: @section VM profiler
1.12    ! anton    1456: @cindex VM profiler
        !          1457: @cindex profiling for selecting superinstructions
        !          1458: @cindex superinstructions and profiling
        !          1459: @cindex @file{profile.c}
        !          1460: @cindex @file{-profile.i} output file
1.7       anton    1461: 
                   1462: The VM profiler is designed for getting execution and occurence counts
                   1463: for VM instruction sequences, and these counts can then be used for
                   1464: selecting sequences as superinstructions.  The VM profiler is probably
1.8       anton    1465: not useful as profiling tool for the interpretive system.  I.e., the VM
1.7       anton    1466: profiler is useful for the developers, but not the users of the
1.8       anton    1467: interpretive system.
1.7       anton    1468: 
1.8       anton    1469: The output of the profiler is: for each basic block (executed at least
                   1470: once), it produces the dynamic execution count of that basic block and
                   1471: all its subsequences; e.g.,
1.7       anton    1472: 
1.8       anton    1473: @example
                   1474:        9227465  lit storelocal 
                   1475:        9227465  storelocal branch 
                   1476:        9227465  lit storelocal branch 
                   1477: @end example
1.7       anton    1478: 
1.8       anton    1479: I.e., a basic block consisting of @samp{lit storelocal branch} is
                   1480: executed 9227465 times.
1.6       anton    1481: 
1.12    ! anton    1482: @cindex @file{stat.awk}
        !          1483: @cindex @file{seq2rule.awk}
1.8       anton    1484: This output can be combined in various ways.  E.g.,
1.12    ! anton    1485: @file{vmgen-ex/stat.awk} adds up the occurences of a given sequence wrt
1.8       anton    1486: dynamic execution, static occurence, and per-program occurence.  E.g.,
1.3       anton    1487: 
1.8       anton    1488: @example
                   1489:       2      16        36910041 loadlocal lit 
                   1490: @end example
1.2       anton    1491: 
1.12    ! anton    1492: @noindent
1.8       anton    1493: indicates that the sequence @samp{loadlocal lit} occurs in 2 programs,
                   1494: in 16 places, and has been executed 36910041 times.  Now you can select
                   1495: superinstructions in any way you like (note that compile time and space
                   1496: typically limit the number of superinstructions to 100--1000).  After
                   1497: you have done that, @file{vmgen/seq2rule.awk} turns lines of the form
1.11      anton    1498: above into rules for inclusion in a Vmgen input file.  Note that this
1.8       anton    1499: script does not ensure that all prefixes are defined, so you have to do
                   1500: that in other ways.  So, an overall script for turning profiles into
                   1501: superinstructions can look like this:
1.2       anton    1502: 
1.8       anton    1503: @example
                   1504: awk -f stat.awk fib.prof test.prof|
                   1505: awk '$3>=10000'|                #select sequences
                   1506: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
                   1507: awk -f seq2rule.awk|            #turn into superinstructions
                   1508: sort -k 3 >mini-super.vmg       #sort sequences
                   1509: @end example
1.2       anton    1510: 
1.8       anton    1511: Here the dynamic count is used for selecting sequences (preliminary
                   1512: results indicate that the static count gives better results, though);
1.12    ! anton    1513: the third line eliminates sequences containing instructions that must not
1.8       anton    1514: occur in a superinstruction, because they access a stack directly.  The
                   1515: dynamic count selection ensures that all subsequences (including
                   1516: prefixes) of longer sequences occur (because subsequences have at least
                   1517: the same count as the longer sequences); the sort in the last line
                   1518: ensures that longer superinstructions occur after their prefixes.
                   1519: 
1.12    ! anton    1520: But before using this, you have to have the profiler.  Vmgen supports its
1.8       anton    1521: creation by generating @file{@var{file}-profile.i}; you also need the
                   1522: wrapper file @file{vmgen-ex/profile.c} that you can use almost verbatim.
                   1523: 
1.12    ! anton    1524: @cindex @code{SUPER_END} in profiling
        !          1525: @cindex @code{BB_BOUNDARY} in profiling
1.8       anton    1526: The profiler works by recording the targets of all VM control flow
                   1527: changes (through @code{SUPER_END} during execution, and through
                   1528: @code{BB_BOUNDARY} in the front end), and counting (through
                   1529: @code{SUPER_END}) how often they were targeted.  After the program run,
                   1530: the numbers are corrected such that each VM basic block has the correct
1.12    ! anton    1531: count (entering a block without executing a branch does not increase the
        !          1532: count, and the correction fixes that), then the subsequences of all
        !          1533: basic blocks are printed.  To get all this, you just have to define
        !          1534: @code{SUPER_END} (and @code{BB_BOUNDARY}) appropriately, and call
        !          1535: @code{vm_print_profile(FILE *file)} when you want to output the profile
        !          1536: on @code{file}.
1.8       anton    1537: 
1.12    ! anton    1538: @cindex @code{VM_IS_INST} in profiling
        !          1539: The @file{@var{file}-profile.i} is similar to the disassembler file, and
1.8       anton    1540: it uses variables and functions defined in @file{vmgen-ex/profile.c},
                   1541: plus @code{VM_IS_INST} already defined for the VM disassembler
                   1542: (@pxref{VM disassembler}).
                   1543: 
1.10      anton    1544: 
                   1545: @c **********************************************************
                   1546: @node Changes, Contact, Using the generated code, Top
1.8       anton    1547: @chapter Changes
1.12    ! anton    1548: @cindex Changes from old versions
1.8       anton    1549: 
1.11      anton    1550: Users of the gforth-0.5.9-20010501 version of Vmgen need to change
1.8       anton    1551: several things in their source code to use the current version.  I
                   1552: recommend keeping the gforth-0.5.9-20010501 version until you have
                   1553: completed the change (note that you can have several versions of Gforth
                   1554: installed at the same time).  I hope to avoid such incompatible changes
                   1555: in the future.
1.2       anton    1556: 
1.8       anton    1557: The required changes are:
                   1558: 
                   1559: @table @code
1.2       anton    1560: 
1.12    ! anton    1561: @cindex @code{vm_@var{A}2@var{B}}, changes
1.8       anton    1562: @item vm_@var{A}2@var{B}
                   1563: now takes two arguments.
                   1564: 
1.12    ! anton    1565: @cindex @code{vm_two@var{A}2@var{B}}, changes
1.8       anton    1566: @item vm_two@var{A}2@var{B}(b,a1,a2);
                   1567: changed to vm_two@var{A}2@var{B}(a1,a2,b) (note the absence of the @samp{;}).
                   1568: 
                   1569: @end table
1.2       anton    1570: 
1.8       anton    1571: Also some new macros have to be defined, e.g., @code{INST_ADDR}, and
                   1572: @code{LABEL}; some macros have to be defined in new contexts, e.g.,
                   1573: @code{VM_IS_INST} is now also needed in the disassembler.
1.4       anton    1574: 
1.12    ! anton    1575: @c *********************************************************
1.10      anton    1576: @node Contact, Copying This Manual, Changes, Top
1.8       anton    1577: @chapter Contact
1.4       anton    1578: 
1.12    ! anton    1579: @c ***********************************************************
1.10      anton    1580: @node Copying This Manual, Index, Contact, Top
                   1581: @appendix Copying This Manual
                   1582: 
                   1583: @menu
                   1584: * GNU Free Documentation License::  License for copying this manual.
                   1585: @end menu
                   1586: 
                   1587: @include fdl.texi
                   1588: 
                   1589: 
                   1590: @node Index,  , Copying This Manual, Top
                   1591: @unnumbered Index
                   1592: 
                   1593: @printindex cp
                   1594: 
                   1595: @bye

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>