Annotation of gforth/doc/vmgen.texi, revision 1.11

1.10      anton       1: \input texinfo    @c -*-texinfo-*-
                      2: @comment %**start of header
                      3: @setfilename vmgen.info
1.1       anton       4: @include version.texi
1.10      anton       5: @settitle Vmgen (Gforth @value{VERSION})
                      6: @c @syncodeindex pg cp
                      7: @comment %**end of header
                      8: @copying
                      9: This manual is for Vmgen
                     10: (version @value{VERSION}, @value{UPDATED}),
                     11: the virtual machine interpreter generator
                     12: 
                     13: Copyright @copyright{} 2002 Free Software Foundation, Inc.
                     14: 
                     15: @quotation
                     16: Permission is granted to copy, distribute and/or modify this document
                     17: under the terms of the GNU Free Documentation License, Version 1.1 or
                     18: any later version published by the Free Software Foundation; with no
                     19: Invariant Sections, with the Front-Cover texts being ``A GNU Manual,''
                     20: and with the Back-Cover Texts as in (a) below.  A copy of the
                     21: license is included in the section entitled ``GNU Free Documentation
                     22: License.''
                     23: 
                     24: (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
                     25: this GNU Manual, like GNU software.  Copies published by the Free
                     26: Software Foundation raise funds for GNU development.''
                     27: @end quotation
                     28: @end copying
                     29: 
                     30: @dircategory GNU programming tools
                     31: @direntry
1.11    ! anton      32: * Vmgen: (vmgen).               Interpreter generator
1.10      anton      33: @end direntry
                     34: 
                     35: @titlepage
                     36: @title Vmgen
                     37: @subtitle for Gforth version @value{VERSION}, @value{UPDATED}
1.11    ! anton      38: @author M. Anton Ertl (@email{anton@@mips.complang.tuwien.ac.at})
1.10      anton      39: @page
                     40: @vskip 0pt plus 1filll
                     41: @insertcopying
                     42: @end titlepage
                     43: 
                     44: @contents
                     45: 
                     46: @ifnottex
                     47: @node Top, Introduction, (dir), (dir)
                     48: @top Vmgen
                     49: 
                     50: @insertcopying
                     51: @end ifnottex
                     52: 
                     53: @menu
                     54: * Introduction::                What can Vmgen do for you?
                     55: * Why interpreters?::           Advantages and disadvantages
                     56: * Concepts::                    VM interpreter background
1.11    ! anton      57: * Invoking Vmgen::              
1.10      anton      58: * Example::                     
                     59: * Input File Format::           
                     60: * Using the generated code::    
                     61: * Changes::                     from earlier versions
                     62: * Contact::                     Bug reporting etc.
                     63: * Copying This Manual::         Manual License
                     64: * Index::                       
                     65: 
                     66: @detailmenu
                     67:  --- The Detailed Node Listing ---
                     68: 
                     69: Concepts
                     70: 
                     71: * Front end and VM interpreter::  Modularizing an interpretive system
                     72: * Data handling::               Stacks, registers, immediate arguments
                     73: * Dispatch::                    From one VM instruction to the next
                     74: 
                     75: Example
                     76: 
                     77: * Example overview::            
                     78: * Using profiling to create superinstructions::  
                     79: 
                     80: Input File Format
                     81: 
                     82: * Input File Grammar::          
                     83: * Simple instructions::         
                     84: * Superinstructions::           
1.11    ! anton      85: * Register Machines::           How to define register VM instructions
1.10      anton      86: 
                     87: Simple instructions
                     88: 
                     89: * C Code Macros::               Macros recognized by Vmgen
                     90: * C Code restrictions::         Vmgen makes assumptions about C code
                     91: 
                     92: Using the generated code
                     93: 
                     94: * VM engine::                   Executing VM code
                     95: * VM instruction table::        
                     96: * VM code generation::          Creating VM code (in the front-end)
                     97: * Peephole optimization::       Creating VM superinstructions
                     98: * VM disassembler::             for debugging the front end
                     99: * VM profiler::                 for finding worthwhile superinstructions
                    100: 
                    101: Copying This Manual
                    102: 
                    103: * GNU Free Documentation License::  License for copying this manual.
                    104: 
                    105: @end detailmenu
                    106: @end menu
1.1       anton     107: 
                    108: @c @ifnottex
1.11    ! anton     109: @c This file documents Vmgen (Gforth @value{VERSION}).
1.1       anton     110: 
1.10      anton     111: @c ************************************************************
                    112: @node Introduction, Why interpreters?, Top, Top
1.2       anton     113: @chapter Introduction
1.1       anton     114: 
                    115: Vmgen is a tool for writing efficient interpreters.  It takes a simple
                    116: virtual machine description and generates efficient C code for dealing
                    117: with the virtual machine code in various ways (in particular, executing
                    118: it).  The run-time efficiency of the resulting interpreters is usually
                    119: within a factor of 10 of machine code produced by an optimizing
                    120: compiler.
                    121: 
1.11    ! anton     122: The interpreter design strategy supported by Vmgen is to divide the
1.1       anton     123: interpreter into two parts:
                    124: 
                    125: @itemize @bullet
                    126: 
                    127: @item The @emph{front end} takes the source code of the language to be
                    128: implemented, and translates it into virtual machine code.  This is
                    129: similar to an ordinary compiler front end; typically an interpreter
                    130: front-end performs no optimization, so it is relatively simple to
                    131: implement and runs fast.
                    132: 
                    133: @item The @emph{virtual machine interpreter} executes the virtual
                    134: machine code.
                    135: 
                    136: @end itemize
                    137: 
                    138: Such a division is usually used in interpreters, for modularity as well
1.6       anton     139: as for efficiency.  The virtual machine code is typically passed between
                    140: front end and virtual machine interpreter in memory, like in a
1.1       anton     141: load-and-go compiler; this avoids the complexity and time cost of
                    142: writing the code to a file and reading it again.
                    143: 
                    144: A @emph{virtual machine} (VM) represents the program as a sequence of
                    145: @emph{VM instructions}, following each other in memory, similar to real
                    146: machine code.  Control flow occurs through VM branch instructions, like
                    147: in a real machine.
                    148: 
1.11    ! anton     149: In this setup, Vmgen can generate most of the code dealing with virtual
1.1       anton     150: machine instructions from a simple description of the virtual machine
1.11    ! anton     151: instructions (@pxref{Input File Format}), in particular:
1.1       anton     152: 
1.11    ! anton     153: @table @asis
1.1       anton     154: 
                    155: @item VM instruction execution
                    156: 
                    157: @item VM code generation
                    158: Useful in the front end.
                    159: 
                    160: @item VM code decompiler
                    161: Useful for debugging the front end.
                    162: 
                    163: @item VM code tracing
                    164: Useful for debugging the front end and the VM interpreter.  You will
                    165: typically provide other means for debugging the user's programs at the
                    166: source level.
                    167: 
                    168: @item VM code profiling
                    169: Useful for optimizing the VM insterpreter with superinstructions
1.11    ! anton     170: (@pxref{VM profiler}).
1.1       anton     171: 
                    172: @end table
                    173: 
1.11    ! anton     174: @noindent
        !           175: Vmgen supports efficient interpreters though various optimizations, in
1.1       anton     176: particular
                    177: 
1.11    ! anton     178: @itemize @bullet
1.1       anton     179: 
                    180: @item Threaded code
                    181: 
                    182: @item Caching the top-of-stack in a register
                    183: 
                    184: @item Combining VM instructions into superinstructions
                    185: 
                    186: @item
                    187: Replicating VM (super)instructions for better BTB prediction accuracy
                    188: (not yet in vmgen-ex, but already in Gforth).
                    189: 
                    190: @end itemize
                    191: 
1.11    ! anton     192: As a result, Vmgen-based interpreters are only about an order of
        !           193: magnitude slower than native code from an optimizing C compiler on small
1.1       anton     194: benchmarks; on large benchmarks, which spend more time in the run-time
1.2       anton     195: system, the slowdown is often less (e.g., the slowdown of a
                    196: Vmgen-generated JVM interpreter over the best JVM JIT compiler we
                    197: measured is only a factor of 2-3 for large benchmarks; some other JITs
                    198: and all other interpreters we looked at were slower than our
                    199: interpreter).
1.1       anton     200: 
                    201: VMs are usually designed as stack machines (passing data between VM
1.11    ! anton     202: instructions on a stack), and Vmgen supports such designs especially
        !           203: well; however, you can also use Vmgen for implementing a register VM and
        !           204: still benefit from most of the advantages offered by Vmgen.
1.1       anton     205: 
1.2       anton     206: There are many potential uses of the instruction descriptions that are
                    207: not implemented at the moment, but we are open for feature requests, and
                    208: we will implement new features if someone asks for them; so the feature
                    209: list above is not exhaustive.
1.1       anton     210: 
1.2       anton     211: @c *********************************************************************
1.10      anton     212: @node Why interpreters?, Concepts, Introduction, Top
1.2       anton     213: @chapter Why interpreters?
                    214: 
                    215: Interpreters are a popular language implementation technique because
                    216: they combine all three of the following advantages:
                    217: 
1.11    ! anton     218: @itemize @bullet
1.2       anton     219: 
                    220: @item Ease of implementation
                    221: 
                    222: @item Portability
                    223: 
                    224: @item Fast edit-compile-run cycle
                    225: 
                    226: @end itemize
                    227: 
                    228: The main disadvantage of interpreters is their run-time speed.  However,
                    229: there are huge differences between different interpreters in this area:
                    230: the slowdown over optimized C code on programs consisting of simple
                    231: operations is typically a factor of 10 for the more efficient
                    232: interpreters, and a factor of 1000 for the less efficient ones (the
                    233: slowdown for programs executing complex operations is less, because the
                    234: time spent in libraries for executing complex operations is the same in
                    235: all implementation strategies).
                    236: 
                    237: Vmgen makes it even easier to implement interpreters.  It also supports
                    238: techniques for building efficient interpreters.
                    239: 
                    240: @c ********************************************************************
1.11    ! anton     241: @node Concepts, Invoking Vmgen, Why interpreters?, Top
1.2       anton     242: @chapter Concepts
                    243: 
1.10      anton     244: @menu
                    245: * Front end and VM interpreter::  Modularizing an interpretive system
                    246: * Data handling::               Stacks, registers, immediate arguments
                    247: * Dispatch::                    From one VM instruction to the next
                    248: @end menu
                    249: 
1.2       anton     250: @c --------------------------------------------------------------------
1.10      anton     251: @node Front end and VM interpreter, Data handling, Concepts, Concepts
                    252: @section Front end and VM interpreter
1.2       anton     253: 
                    254: @cindex front-end
                    255: Interpretive systems are typically divided into a @emph{front end} that
                    256: parses the input language and produces an intermediate representation
                    257: for the program, and an interpreter that executes the intermediate
                    258: representation of the program.
                    259: 
                    260: @cindex virtual machine
                    261: @cindex VM
                    262: @cindex instruction, VM
                    263: For efficient interpreters the intermediate representation of choice is
                    264: virtual machine code (rather than, e.g., an abstract syntax tree).
                    265: @emph{Virtual machine} (VM) code consists of VM instructions arranged
                    266: sequentially in memory; they are executed in sequence by the VM
                    267: interpreter, except for VM branch instructions, which implement control
                    268: structures.  The conceptual similarity to real machine code results in
                    269: the name @emph{virtual machine}.
                    270: 
1.11    ! anton     271: In this framework, Vmgen supports building the VM interpreter and any
1.2       anton     272: other component dealing with VM instructions.  It does not have any
                    273: support for the front end, apart from VM code generation support.  The
                    274: front end can be implemented with classical compiler front-end
1.3       anton     275: techniques, supported by tools like @command{flex} and @command{bison}.
1.2       anton     276: 
                    277: The intermediate representation is usually just internal to the
                    278: interpreter, but some systems also support saving it to a file, either
                    279: as an image file, or in a full-blown linkable file format (e.g., JVM).
                    280: Vmgen currently has no special support for such features, but the
                    281: information in the instruction descriptions can be helpful, and we are
                    282: open for feature requests and suggestions.
1.3       anton     283: 
1.10      anton     284: @c --------------------------------------------------------------------
                    285: @node Data handling, Dispatch, Front end and VM interpreter, Concepts
1.3       anton     286: @section Data handling
                    287: 
                    288: @cindex stack machine
                    289: @cindex register machine
                    290: Most VMs use one or more stacks for passing temporary data between VM
                    291: instructions.  Another option is to use a register machine architecture
                    292: for the virtual machine; however, this option is either slower or
                    293: significantly more complex to implement than a stack machine architecture.
                    294: 
                    295: Vmgen has special support and optimizations for stack VMs, making their
                    296: implementation easy and efficient.
                    297: 
1.11    ! anton     298: You can also implement a register VM with Vmgen (@pxref{Register
        !           299: Machines}), and you will still profit from most Vmgen features.
1.3       anton     300: 
                    301: @cindex stack item size
                    302: @cindex size, stack items
                    303: Stack items all have the same size, so they typically will be as wide as
                    304: an integer, pointer, or floating-point value.  Vmgen supports treating
                    305: two consecutive stack items as a single value, but anything larger is
                    306: best kept in some other memory area (e.g., the heap), with pointers to
                    307: the data on the stack.
                    308: 
                    309: @cindex instruction stream
                    310: @cindex immediate arguments
                    311: Another source of data is immediate arguments VM instructions (in the VM
                    312: instruction stream).  The VM instruction stream is handled similar to a
1.11    ! anton     313: stack in Vmgen.
1.3       anton     314: 
                    315: @cindex garbage collection
                    316: @cindex reference counting
                    317: Vmgen has no built-in support for nor restrictions against @emph{garbage
                    318: collection}.  If you need garbage collection, you need to provide it in
                    319: your run-time libraries.  Using @emph{reference counting} is probably
                    320: harder, but might be possible (contact us if you are interested).
                    321: @c reference counting might be possible by including counting code in 
                    322: @c the conversion macros.
                    323: 
1.10      anton     324: @c --------------------------------------------------------------------
                    325: @node Dispatch,  , Data handling, Concepts
1.6       anton     326: @section Dispatch
                    327: 
1.11    ! anton     328: Understanding this section is probably not necessary for using Vmgen,
1.6       anton     329: but it may help.  You may want to skip it now, and read it if you find statements about dispatch methods confusing.
                    330: 
                    331: After executing one VM instruction, the VM interpreter has to dispatch
1.11    ! anton     332: the next VM instruction (Vmgen calls the dispatch routine @samp{NEXT}).
1.6       anton     333: Vmgen supports two methods of dispatch:
                    334: 
1.11    ! anton     335: @table @asis
1.6       anton     336: 
                    337: @item switch dispatch
                    338: In this method the VM interpreter contains a giant @code{switch}
                    339: statement, with one @code{case} for each VM instruction.  The VM
                    340: instructions are represented by integers (e.g., produced by an
                    341: @code{enum}) in the VM code, and dipatch occurs by loading the next
                    342: integer from the VM code, @code{switch}ing on it, and continuing at the
                    343: appropriate @code{case}; after executing the VM instruction, jump back
                    344: to the dispatch code.
                    345: 
                    346: @item threaded code
                    347: This method represents a VM instruction in the VM code by the address of
                    348: the start of the machine code fragment for executing the VM instruction.
                    349: Dispatch consists of loading this address, jumping to it, and
                    350: incrementing the VM instruction pointer.  Typically the threaded-code
                    351: dispatch code is appended directly to the code for executing the VM
                    352: instruction.  Threaded code cannot be implemented in ANSI C, but it can
1.11    ! anton     353: be implemented using GNU C's labels-as-values extension (@pxref{Labels
        !           354: as Values, , Labels as Values, gcc.info, GNU C Manual}).
1.6       anton     355: 
                    356: @end table
                    357: 
1.3       anton     358: @c *************************************************************
1.11    ! anton     359: @node Invoking Vmgen, Example, Concepts, Top
        !           360: @chapter Invoking Vmgen
1.3       anton     361: 
1.11    ! anton     362: The usual way to invoke Vmgen is as follows:
1.3       anton     363: 
                    364: @example
                    365: vmgen @var{infile}
                    366: @end example
                    367: 
                    368: Here @var{infile} is the VM instruction description file, which usually
                    369: ends in @file{.vmg}.  The output filenames are made by taking the
                    370: basename of @file{infile} (i.e., the output files will be created in the
                    371: current working directory) and replacing @file{.vmg} with @file{-vm.i},
                    372: @file{-disasm.i}, @file{-gen.i}, @file{-labels.i}, @file{-profile.i},
                    373: and @file{-peephole.i}.  E.g., @command{bison hack/foo.vmg} will create
                    374: @file{foo-vm.i} etc.
                    375: 
1.11    ! anton     376: The command-line options supported by Vmgen are
1.3       anton     377: 
                    378: @table @option
                    379: 
                    380: @cindex -h, command-line option
                    381: @cindex --help, command-line option
                    382: @item --help
                    383: @itemx -h
                    384: Print a message about the command-line options
                    385: 
                    386: @cindex -v, command-line option
                    387: @cindex --version, command-line option
                    388: @item --version
                    389: @itemx -v
                    390: Print version and exit
                    391: @end table
                    392: 
                    393: @c env vars GFORTHDIR GFORTHDATADIR
                    394: 
1.5       anton     395: @c ****************************************************************
1.11    ! anton     396: @node Example, Input File Format, Invoking Vmgen, Top
1.5       anton     397: @chapter Example
                    398: 
1.10      anton     399: @menu
                    400: * Example overview::            
                    401: * Using profiling to create superinstructions::  
                    402: @end menu
                    403: 
                    404: @c --------------------------------------------------------------------
                    405: @node Example overview, Using profiling to create superinstructions, Example, Example
1.5       anton     406: @section Example overview
                    407: 
1.11    ! anton     408: There are two versions of the same example for using Vmgen:
1.5       anton     409: @file{vmgen-ex} and @file{vmgen-ex2} (you can also see Gforth as
                    410: example, but it uses additional (undocumented) features, and also
                    411: differs in some other respects).  The example implements @emph{mini}, a
                    412: tiny Modula-2-like language with a small JavaVM-like virtual machine.
                    413: The difference between the examples is that @file{vmgen-ex} uses many
                    414: casts, and @file{vmgen-ex2} tries to avoids most casts and uses unions
                    415: instead.
                    416: 
                    417: The files provided with each example are:
                    418: 
                    419: @example
                    420: Makefile
                    421: README
                    422: disasm.c           wrapper file
                    423: engine.c           wrapper file
                    424: peephole.c         wrapper file
                    425: profile.c          wrapper file
                    426: mini-inst.vmg      simple VM instructions
                    427: mini-super.vmg     superinstructions (empty at first)
                    428: mini.h             common declarations
                    429: mini.l             scanner
                    430: mini.y             front end (parser, VM code generator)
                    431: support.c          main() and other support functions
                    432: fib.mini           example mini program
                    433: simple.mini        example mini program
                    434: test.mini          example mini program (tests everything)
                    435: test.out           test.mini output
                    436: stat.awk           script for aggregating profile information
                    437: peephole-blacklist list of instructions not allowed in superinstructions
                    438: seq2rule.awk       script for creating superinstructions
                    439: @end example
                    440: 
                    441: For your own interpreter, you would typically copy the following files
                    442: and change little, if anything:
                    443: 
                    444: @example
                    445: disasm.c           wrapper file
                    446: engine.c           wrapper file
                    447: peephole.c         wrapper file
                    448: profile.c          wrapper file
                    449: stat.awk           script for aggregating profile information
                    450: seq2rule.awk       script for creating superinstructions
                    451: @end example
                    452: 
1.11    ! anton     453: @noindent
1.5       anton     454: You would typically change much in or replace the following files:
                    455: 
                    456: @example
                    457: Makefile
                    458: mini-inst.vmg      simple VM instructions
                    459: mini.h             common declarations
                    460: mini.l             scanner
                    461: mini.y             front end (parser, VM code generator)
                    462: support.c          main() and other support functions
                    463: peephole-blacklist list of instructions not allowed in superinstructions
                    464: @end example
                    465: 
                    466: You can build the example by @code{cd}ing into the example's directory,
                    467: and then typing @samp{make}; you can check that it works with @samp{make
                    468: check}.  You can run run mini programs like this:
                    469: 
                    470: @example
                    471: ./mini fib.mini
                    472: @end example
                    473: 
                    474: To learn about the options, type @samp{./mini -h}.
                    475: 
1.10      anton     476: @c --------------------------------------------------------------------
                    477: @node Using profiling to create superinstructions,  , Example overview, Example
1.5       anton     478: @section Using profiling to create superinstructions
                    479: 
                    480: I have not added rules for this in the @file{Makefile} (there are many
                    481: options for selecting superinstructions, and I did not want to hardcode
                    482: one into the @file{Makefile}), but there are some supporting scripts, and
                    483: here's an example:
                    484: 
                    485: Suppose you want to use @file{fib.mini} and @file{test.mini} as training
                    486: programs, you get the profiles like this:
                    487: 
                    488: @example
                    489: make fib.prof test.prof #takes a few seconds
                    490: @end example
                    491: 
                    492: You can aggregate these profiles with @file{stat.awk}:
                    493: 
                    494: @example
                    495: awk -f stat.awk fib.prof test.prof
                    496: @end example
                    497: 
                    498: The result contains lines like:
                    499: 
                    500: @example
                    501:       2      16        36910041 loadlocal lit
                    502: @end example
                    503: 
                    504: This means that the sequence @code{loadlocal lit} statically occurs a
                    505: total of 16 times in 2 profiles, with a dynamic execution count of
                    506: 36910041.
                    507: 
                    508: The numbers can be used in various ways to select superinstructions.
                    509: E.g., if you just want to select all sequences with a dynamic
                    510: execution count exceeding 10000, you would use the following pipeline:
                    511: 
                    512: @example
                    513: awk -f stat.awk fib.prof test.prof|
                    514: awk '$3>=10000'|                #select sequences
                    515: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
                    516: awk -f seq2rule.awk|      #transform sequences into superinstruction rules
                    517: sort -k 3 >mini-super.vmg       #sort sequences
                    518: @end example
                    519: 
                    520: The file @file{peephole-blacklist} contains all instructions that
                    521: directly access a stack or stack pointer (for mini: @code{call},
                    522: @code{return}); the sort step is necessary to ensure that prefixes
                    523: preceed larger superinstructions.
                    524: 
                    525: Now you can create a version of mini with superinstructions by just
                    526: saying @samp{make}
                    527: 
1.10      anton     528: 
1.3       anton     529: @c ***************************************************************
1.10      anton     530: @node Input File Format, Using the generated code, Example, Top
1.3       anton     531: @chapter Input File Format
                    532: 
                    533: Vmgen takes as input a file containing specifications of virtual machine
                    534: instructions.  This file usually has a name ending in @file{.vmg}.
                    535: 
1.5       anton     536: Most examples are taken from the example in @file{vmgen-ex}.
1.3       anton     537: 
1.10      anton     538: @menu
                    539: * Input File Grammar::          
                    540: * Simple instructions::         
                    541: * Superinstructions::           
1.11    ! anton     542: * Register Machines::           How to define register VM instructions
1.10      anton     543: @end menu
                    544: 
                    545: @c --------------------------------------------------------------------
                    546: @node Input File Grammar, Simple instructions, Input File Format, Input File Format
1.3       anton     547: @section Input File Grammar
                    548: 
                    549: The grammar is in EBNF format, with @code{@var{a}|@var{b}} meaning
                    550: ``@var{a} or @var{b}'', @code{@{@var{c}@}} meaning 0 or more repetitions
                    551: of @var{c} and @code{[@var{d}]} meaning 0 or 1 repetitions of @var{d}.
                    552: 
                    553: Vmgen input is not free-format, so you have to take care where you put
                    554: spaces and especially newlines; it's not as bad as makefiles, though:
                    555: any sequence of spaces and tabs is equivalent to a single space.
                    556: 
                    557: @example
1.11    ! anton     558: description: @{instruction|comment|eval-escape@}
1.3       anton     559: 
                    560: instruction: simple-inst|superinst
                    561: 
                    562: simple-inst: ident " (" stack-effect " )" newline c-code newline newline
                    563: 
1.11    ! anton     564: stack-effect: @{ident@} " --" @{ident@}
1.3       anton     565: 
1.11    ! anton     566: super-inst: ident " =" ident @{ident@}  
1.3       anton     567: 
                    568: comment:      "\ "  text newline
                    569: 
                    570: eval-escape:  "\e " text newline
                    571: @end example
                    572: @c \+ \- \g \f \c
                    573: 
                    574: Note that the @code{\}s in this grammar are meant literally, not as
1.5       anton     575: C-style encodings for non-printable characters.
1.3       anton     576: 
                    577: The C code in @code{simple-inst} must not contain empty lines (because
1.11    ! anton     578: Vmgen would mistake that as the end of the simple-inst.  The text in
1.3       anton     579: @code{comment} and @code{eval-escape} must not contain a newline.
                    580: @code{Ident} must conform to the usual conventions of C identifiers
1.11    ! anton     581: (otherwise the C compiler would choke on the Vmgen output).
1.3       anton     582: 
                    583: Vmgen understands a few extensions beyond the grammar given here, but
                    584: these extensions are only useful for building Gforth.  You can find a
                    585: description of the format used for Gforth in @file{prim}.
                    586: 
1.10      anton     587: @subsection Eval escapes
1.3       anton     588: @c woanders?
                    589: The text in @code{eval-escape} is Forth code that is evaluated when
1.11    ! anton     590: Vmgen reads the line.  If you do not know (and do not want to learn)
1.3       anton     591: Forth, you can build the text according to the following grammar; these
1.11    ! anton     592: rules are normally all Forth you need for using Vmgen:
1.3       anton     593: 
                    594: @example
                    595: text: stack-decl|type-prefix-decl|stack-prefix-decl
                    596: 
                    597: stack-decl: "stack " ident ident ident
                    598: type-prefix-decl: 
                    599:     's" ' string '" ' ("single"|"double") ident "type-prefix" ident
                    600: stack-prefix-decl:  ident "stack-prefix" string
                    601: @end example
                    602: 
                    603: Note that the syntax of this code is not checked thoroughly (there are
                    604: many other Forth program fragments that could be written there).
                    605: 
                    606: If you know Forth, the stack effects of the non-standard words involved
                    607: are:
                    608: 
                    609: @example
                    610: stack        ( "name" "pointer" "type" -- )
                    611:              ( name execution: -- stack )
                    612: type-prefix  ( addr u xt1 xt2 n stack "prefix" -- )
                    613: single       ( -- xt1 xt2 n )
                    614: double       ( -- xt1 xt2 n )
                    615: stack-prefix ( stack "prefix" -- )
                    616: @end example
                    617: 
1.5       anton     618: 
1.10      anton     619: @c --------------------------------------------------------------------
                    620: @node Simple instructions, Superinstructions, Input File Grammar, Input File Format
1.3       anton     621: @section Simple instructions
                    622: 
                    623: We will use the following simple VM instruction description as example:
                    624: 
                    625: @example
                    626: sub ( i1 i2 -- i )
                    627: i = i1-i2;
                    628: @end example
                    629: 
                    630: The first line specifies the name of the VM instruction (@code{sub}) and
                    631: its stack effect (@code{i1 i2 -- i}).  The rest of the description is
                    632: just plain C code.
                    633: 
                    634: @cindex stack effect
                    635: The stack effect specifies that @code{sub} pulls two integers from the
1.5       anton     636: data stack and puts them in the C variables @code{i1} and @code{i2} (with
1.3       anton     637: the rightmost item (@code{i2}) taken from the top of stack) and later
1.11    ! anton     638: pushes one integer (@code{i}) on the data stack (the rightmost item is
1.3       anton     639: on the top afterwards).
                    640: 
                    641: How do we know the type and stack of the stack items?  Vmgen uses
                    642: prefixes, similar to Fortran; in contrast to Fortran, you have to
                    643: define the prefix first:
                    644: 
                    645: @example
                    646: \E s" Cell"   single data-stack type-prefix i
                    647: @end example
                    648: 
                    649: This defines the prefix @code{i} to refer to the type @code{Cell}
                    650: (defined as @code{long} in @file{mini.h}) and, by default, to the
                    651: @code{data-stack}.  It also specifies that this type takes one stack
                    652: item (@code{single}).  The type prefix is part of the variable name.
                    653: 
                    654: Before we can use @code{data-stack} in this way, we have to define it:
                    655: 
                    656: @example
                    657: \E stack data-stack sp Cell
                    658: @end example
                    659: @c !! use something other than Cell
                    660: 
                    661: This line defines the stack @code{data-stack}, which uses the stack
                    662: pointer @code{sp}, and each item has the basic type @code{Cell}; other
                    663: types have to fit into one or two @code{Cell}s (depending on whether the
                    664: type is @code{single} or @code{double} wide), and are converted from and
1.11    ! anton     665: to Cells on accessing the @code{data-stack} with conversion macros
        !           666: (@pxref{VM engine}).  Stacks grow towards lower addresses in
        !           667: Vmgen-erated interpreters.
1.3       anton     668: 
                    669: We can override the default stack of a stack item by using a stack
                    670: prefix.  E.g., consider the following instruction:
                    671: 
                    672: @example
                    673: lit ( #i -- i )
                    674: @end example
                    675: 
                    676: The VM instruction @code{lit} takes the item @code{i} from the
1.5       anton     677: instruction stream (indicated by the prefix @code{#}), and pushes it on
1.3       anton     678: the (default) data stack.  The stack prefix is not part of the variable
                    679: name.  Stack prefixes are defined like this:
                    680: 
                    681: @example
                    682: \E inst-stream stack-prefix #
                    683: @end example
                    684: 
1.5       anton     685: This definition defines that the stack prefix @code{#} specifies the
1.3       anton     686: ``stack'' @code{inst-stream}.  Since the instruction stream behaves a
                    687: little differently than an ordinary stack, it is predefined, and you do
                    688: not need to define it.
                    689: 
                    690: The instruction stream contains instructions and their immediate
                    691: arguments, so specifying that an argument comes from the instruction
                    692: stream indicates an immediate argument.  Of course, instruction stream
                    693: arguments can only appear to the left of @code{--} in the stack effect.
                    694: If there are multiple instruction stream arguments, the leftmost is the
                    695: first one (just as the intuition suggests).
                    696: 
1.10      anton     697: @menu
                    698: * C Code Macros::               Macros recognized by Vmgen
                    699: * C Code restrictions::         Vmgen makes assumptions about C code
                    700: @end menu
                    701: 
                    702: @c --------------------------------------------------------------------
                    703: @node C Code Macros, C Code restrictions, Simple instructions, Simple instructions
                    704: @subsection C Code Macros
1.5       anton     705: 
                    706: Vmgen recognizes the following strings in the C code part of simple
                    707: instructions:
                    708: 
                    709: @table @samp
                    710: 
                    711: @item SET_IP
1.11    ! anton     712: As far as Vmgen is concerned, a VM instruction containing this ends a VM
1.5       anton     713: basic block (used in profiling to delimit profiled sequences).  On the C
                    714: level, this also sets the instruction pointer.
                    715: 
                    716: @item SUPER_END
                    717: This ends a basic block (for profiling), without a SET_IP.
                    718: 
                    719: @item TAIL;
                    720: Vmgen replaces @samp{TAIL;} with code for ending a VM instruction and
                    721: dispatching the next VM instruction.  This happens automatically when
                    722: control reaches the end of the C code.  If you want to have this in the
                    723: middle of the C code, you need to use @samp{TAIL;}.  A typical example
                    724: is a conditional VM branch:
                    725: 
                    726: @example
1.11    ! anton     727: if (branch_condition) @{
1.5       anton     728:   SET_IP(target); TAIL;
1.11    ! anton     729: @}
1.5       anton     730: /* implicit tail follows here */
                    731: @end example
                    732: 
                    733: In this example, @samp{TAIL;} is not strictly necessary, because there
                    734: is another one implicitly after the if-statement, but using it improves
                    735: branch prediction accuracy slightly and allows other optimizations.
                    736: 
                    737: @item SUPER_CONTINUE
                    738: This indicates that the implicit tail at the end of the VM instruction
                    739: dispatches the sequentially next VM instruction even if there is a
                    740: @code{SET_IP} in the VM instruction.  This enables an optimization that
                    741: is not yet implemented in the vmgen-ex code (but in Gforth).  The
                    742: typical application is in conditional VM branches:
                    743: 
                    744: @example
1.11    ! anton     745: if (branch_condition) @{
1.5       anton     746:   SET_IP(target); TAIL; /* now this TAIL is necessary */
1.11    ! anton     747: @}
1.5       anton     748: SUPER_CONTINUE;
                    749: @end example
                    750: 
                    751: @end table
                    752: 
1.11    ! anton     753: Note that Vmgen is not smart about C-level tokenization, comments,
1.5       anton     754: strings, or conditional compilation, so it will interpret even a
                    755: commented-out SUPER_END as ending a basic block (or, e.g.,
1.11    ! anton     756: @samp{RETAIL;} as @samp{TAIL;}).  Conversely, Vmgen requires the literal
        !           757: presence of these strings; Vmgen will not see them if they are hiding in
1.5       anton     758: a C preprocessor macro.
                    759: 
                    760: 
1.10      anton     761: @c --------------------------------------------------------------------
                    762: @node C Code restrictions,  , C Code Macros, Simple instructions
                    763: @subsection C Code restrictions
1.5       anton     764: 
                    765: Vmgen generates code and performs some optimizations under the
                    766: assumption that the user-supplied C code does not access the stack
                    767: pointers or stack items, and that accesses to the instruction pointer
                    768: only occur through special macros.  In general you should heed these
                    769: restrictions.  However, if you need to break these restrictions, read
                    770: the following.
                    771: 
                    772: Accessing a stack or stack pointer directly can be a problem for several
                    773: reasons: 
                    774: 
1.11    ! anton     775: @itemize @bullet
1.5       anton     776: 
                    777: @item
                    778: You may cache the top-of-stack item in a local variable (that is
                    779: allocated to a register).  This is the most frequent source of trouble.
                    780: You can deal with it either by not using top-of-stack caching (slowdown
                    781: factor 1-1.4, depending on machine), or by inserting flushing code
                    782: (e.g., @samp{IF_spTOS(sp[...] = spTOS);}) at the start and reloading
                    783: code (e.g., @samp{IF_spTOS(spTOS = sp[0])}) at the end of problematic C
                    784: code.  Vmgen inserts a stack pointer update before the start of the
                    785: user-supplied C code, so the flushing code has to use an index that
                    786: corrects for that.  In the future, this flushing may be done
                    787: automatically by mentioning a special string in the C code.
                    788: @c sometimes flushing and/or reloading unnecessary
                    789: 
                    790: @item
1.11    ! anton     791: The Vmgen-erated code loads the stack items from stack-pointer-indexed
1.5       anton     792: memory into variables before the user-supplied C code, and stores them
                    793: from variables to stack-pointer-indexed memory afterwards.  If you do
                    794: any writes to the stack through its stack pointer in your C code, it
                    795: will not affact the variables, and your write may be overwritten by the
                    796: stores after the C code.  Similarly, a read from a stack using a stack
                    797: pointer will not reflect computations of stack items in the same VM
                    798: instruction.
                    799: 
                    800: @item
                    801: Superinstructions keep stack items in variables across the whole
                    802: superinstruction.  So you should not include VM instructions, that
                    803: access a stack or stack pointer, as components of superinstructions.
                    804: 
                    805: @end itemize
                    806: 
                    807: You should access the instruction pointer only through its special
                    808: macros (@samp{IP}, @samp{SET_IP}, @samp{IPTOS}); this ensure that these
                    809: macros can be implemented in several ways for best performance.
                    810: @samp{IP} points to the next instruction, and @samp{IPTOS} is its
                    811: contents.
                    812: 
                    813: 
1.10      anton     814: @c --------------------------------------------------------------------
1.11    ! anton     815: @node Superinstructions, Register Machines, Simple instructions, Input File Format
1.3       anton     816: @section Superinstructions
1.5       anton     817: 
1.8       anton     818: Note: don't invest too much work in (static) superinstructions; a future
1.11    ! anton     819: version of Vmgen will support dynamic superinstructions (see Ian
1.8       anton     820: Piumarta and Fabio Riccardi, @cite{Optimizing Direct Threaded Code by
                    821: Selective Inlining}, PLDI'98), and static superinstructions have much
                    822: less benefit in that context.
                    823: 
1.5       anton     824: Here is an example of a superinstruction definition:
                    825: 
                    826: @example
                    827: lit_sub = lit sub
                    828: @end example
                    829: 
                    830: @code{lit_sub} is the name of the superinstruction, and @code{lit} and
                    831: @code{sub} are its components.  This superinstruction performs the same
                    832: action as the sequence @code{lit} and @code{sub}.  It is generated
                    833: automatically by the VM code generation functions whenever that sequence
1.11    ! anton     834: occurs, so if you want to use this superinstruction, you just need to
        !           835: add this definition (and even that can be partially automatized,
        !           836: @pxref{VM profiler}).
1.5       anton     837: 
                    838: Vmgen requires that the component instructions are simple instructions
1.11    ! anton     839: defined before superinstructions using the components.  Currently, Vmgen
1.5       anton     840: also requires that all the subsequences at the start of a
                    841: superinstruction (prefixes) must be defined as superinstruction before
                    842: the superinstruction.  I.e., if you want to define a superinstruction
                    843: 
                    844: @example
                    845: sumof5 = add add add add
                    846: @end example
                    847: 
                    848: you first have to define
                    849: 
                    850: @example
                    851: add ( n1 n2 -- n )
                    852: n = n1+n2;
                    853: 
                    854: sumof3 = add add
                    855: sumof4 = add add add
                    856: @end example
                    857: 
                    858: Here, @code{sumof4} is the longest prefix of @code{sumof5}, and @code{sumof3}
                    859: is the longest prefix of @code{sumof4}.
                    860: 
1.11    ! anton     861: Note that Vmgen assumes that only the code it generates accesses stack
1.5       anton     862: pointers, the instruction pointer, and various stack items, and it
                    863: performs optimizations based on this assumption.  Therefore, VM
                    864: instructions that change the instruction pointer should only be used as
                    865: last component; a VM instruction that accesses a stack pointer should
                    866: not be used as component at all.  Vmgen does not check these
                    867: restrictions, they just result in bugs in your interpreter.
                    868: 
1.11    ! anton     869: @node Register Machines,  , Superinstructions, Input File Format
        !           870: @section Register Machines
        !           871: 
        !           872: If you want to implement a register VM rather than a stack VM with
        !           873: Vmgen, there are two ways to do it: Directly and through
        !           874: superinstructions.
        !           875: 
        !           876: If you use the direct way, you define instructions that take the
        !           877: register numbers as immediate arguments, like this:
        !           878: 
        !           879: @example
        !           880: add3 ( #src1 #src2 #dest -- )
        !           881: reg[dest] = reg[src1]+reg[src2];
        !           882: @end example
        !           883: 
        !           884: If you use superinstructions to define a register VM, you define simple
        !           885: instructions that use a stack, and then define superinstructions that
        !           886: have no overall stack effect, like this:
        !           887: 
        !           888: @example
        !           889: loadreg ( #src -- n )
        !           890: n = reg[src];
        !           891: 
        !           892: storereg ( n #dest -- )
        !           893: reg[dest] = n;
        !           894: 
        !           895: adds ( n1 n2 -- n )
        !           896: n = n1+n2;
        !           897: 
        !           898: add3 = loadreg loadreg adds storereg
        !           899: @end example
        !           900: 
        !           901: An advantage of this method is that you see the values and not just the
        !           902: register numbers in tracing (actually, with an appropriate definition of
        !           903: @code{printarg_src} (@pxref{VM engine}), you can print the values of the
        !           904: source registers on entry, but you cannot print the value of the
        !           905: destination register on exit.  A disadvantage of this method is that
        !           906: currently you cannot generate superinstructions directly, but only
        !           907: through generating a sequence of simple instructions (we might change
        !           908: this in the future if there is demand).
        !           909: 
        !           910: Could the register VM support be improved, apart from the issues
        !           911: mentioned above?  It is hard to see how to do it in a general way,
        !           912: because there are a number of different designs that different people
        !           913: mean when they use the term @emph{register machine} in connection with
        !           914: VM interpreters.  However, if you have ideas or requests in that
        !           915: direction, please let me know (@pxref{Contact}).
        !           916: 
1.5       anton     917: @c ********************************************************************
1.10      anton     918: @node Using the generated code, Changes, Input File Format, Top
1.5       anton     919: @chapter Using the generated code
                    920: 
1.11    ! anton     921: The easiest way to create a working VM interpreter with Vmgen is
1.5       anton     922: probably to start with one of the examples, and modify it for your
                    923: purposes.  This chapter is just the reference manual for the macros
1.10      anton     924: etc. used by the generated code, the other context expected by the
1.5       anton     925: generated code, and what you can do with the various generated files.
                    926: 
1.10      anton     927: @menu
                    928: * VM engine::                   Executing VM code
                    929: * VM instruction table::        
                    930: * VM code generation::          Creating VM code (in the front-end)
                    931: * Peephole optimization::       Creating VM superinstructions
                    932: * VM disassembler::             for debugging the front end
                    933: * VM profiler::                 for finding worthwhile superinstructions
                    934: @end menu
1.6       anton     935: 
1.10      anton     936: @c --------------------------------------------------------------------
                    937: @node VM engine, VM instruction table, Using the generated code, Using the generated code
1.5       anton     938: @section VM engine
                    939: 
                    940: The VM engine is the VM interpreter that executes the VM code.  It is
                    941: essential for an interpretive system.
                    942: 
1.6       anton     943: Vmgen supports two methods of VM instruction dispatch: @emph{threaded
                    944: code} (fast, but gcc-specific), and @emph{switch dispatch} (slow, but
                    945: portable across C compilers); you can use conditional compilation
                    946: (@samp{defined(__GNUC__)}) to choose between these methods, and our
                    947: example does so.
                    948: 
                    949: For both methods, the VM engine is contained in a C-level function.
                    950: Vmgen generates most of the contents of the function for you
                    951: (@file{@var{name}-vm.i}), but you have to define this function, and
                    952: macros and variables used in the engine, and initialize the variables.
                    953: In our example the engine function also includes
                    954: @file{@var{name}-labels.i} (@pxref{VM instruction table}).
                    955: 
                    956: The following macros and variables are used in @file{@var{name}-vm.i}:
1.5       anton     957: 
                    958: @table @code
                    959: 
                    960: @item LABEL(@var{inst_name})
                    961: This is used just before each VM instruction to provide a jump or
1.11    ! anton     962: @code{switch} label (the @samp{:} is provided by Vmgen).  For switch
1.5       anton     963: dispatch this should expand to @samp{case @var{label}}; for
                    964: threaded-code dispatch this should just expand to @samp{case
                    965: @var{label}}.  In either case @var{label} is usually the @var{inst_name}
                    966: with some prefix or suffix to avoid naming conflicts.
                    967: 
1.9       anton     968: @item LABEL2(@var{inst_name})
                    969: This will be used for dynamic superinstructions; at the moment, this
                    970: should expand to nothing.
                    971: 
1.5       anton     972: @item NAME(@var{inst_name_string})
                    973: Called on entering a VM instruction with a string containing the name of
                    974: the VM instruction as parameter.  In normal execution this should be a
                    975: noop, but for tracing this usually prints the name, and possibly other
                    976: information (several VM registers in our example).
                    977: 
                    978: @item DEF_CA
                    979: Usually empty.  Called just inside a new scope at the start of a VM
                    980: instruction.  Can be used to define variables that should be visible
                    981: during every VM instruction.  If you define this macro as non-empty, you
                    982: have to provide the finishing @samp{;} in the macro.
                    983: 
                    984: @item NEXT_P0 NEXT_P1 NEXT_P2
                    985: The three parts of instruction dispatch.  They can be defined in
                    986: different ways for best performance on various processors (see
                    987: @file{engine.c} in the example or @file{engine/threaded.h} in Gforth).
                    988: @samp{NEXT_P0} is invoked right at the start of the VM isntruction (but
                    989: after @samp{DEF_CA}), @samp{NEXT_P1} right after the user-supplied C
                    990: code, and @samp{NEXT_P2} at the end.  The actual jump has to be
                    991: performed by @samp{NEXT_P2}.
                    992: 
                    993: The simplest variant is if @samp{NEXT_P2} does everything and the other
                    994: macros do nothing.  Then also related macros like @samp{IP},
                    995: @samp{SET_IP}, @samp{IP}, @samp{INC_IP} and @samp{IPTOS} are very
                    996: straightforward to define.  For switch dispatch this code consists just
                    997: of a jump to the dispatch code (@samp{goto next_inst;} in our example;
                    998: for direct threaded code it consists of something like
1.11    ! anton     999: @samp{(@{cfa=*ip++; goto *cfa;@})}.
1.5       anton    1000: 
                   1001: Pulling code (usually the @samp{cfa=*ip;}) up into @samp{NEXT_P1}
                   1002: usually does not cause problems, but pulling things up into
                   1003: @samp{NEXT_P0} usually requires changing the other macros (and, at least
                   1004: for Gforth on Alpha, it does not buy much, because the compiler often
                   1005: manages to schedule the relevant stuff up by itself).  An even more
                   1006: extreme variant is to pull code up even further, into, e.g., NEXT_P1 of
                   1007: the previous VM instruction (prefetching, useful on PowerPCs).
                   1008: 
                   1009: @item INC_IP(@var{n})
1.8       anton    1010: This increments @code{IP} by @var{n}.
                   1011: 
                   1012: @item SET_IP(@var{target})
                   1013: This sets @code{IP} to @var{target}.
1.5       anton    1014: 
                   1015: @item vm_@var{A}2@var{B}(a,b)
                   1016: Type casting macro that assigns @samp{a} (of type @var{A}) to @samp{b}
                   1017: (of type @var{B}).  This is mainly used for getting stack items into
                   1018: variables and back.  So you need to define macros for every combination
                   1019: of stack basic type (@code{Cell} in our example) and type-prefix types
                   1020: used with that stack (in both directions).  For the type-prefix type,
                   1021: you use the type-prefix (not the C type string) as type name (e.g.,
                   1022: @samp{vm_Cell2i}, not @samp{vm_Cell2Cell}).  In addition, you have to
                   1023: define a vm_@var{X}2@var{X} macro for the stack basic type (used in
                   1024: superinstructions).
                   1025: 
                   1026: The stack basic type for the predefined @samp{inst-stream} is
                   1027: @samp{Cell}.  If you want a stack with the same item size, making its
                   1028: basic type @samp{Cell} usually reduces the number of macros you have to
                   1029: define.
                   1030: 
                   1031: Here our examples differ a lot: @file{vmgen-ex} uses casts in these
                   1032: macros, whereas @file{vmgen-ex2} uses union-field selection (or
                   1033: assignment to union fields).
                   1034: 
                   1035: @item vm_two@var{A}2@var{B}(a1,a2,b)
                   1036: @item vm_@var{B}2two@var{A}(b,a1,a2)
                   1037: Conversions between two stack items (@code{a1}, @code{a2}) and a
                   1038: variable @code{b} of a type that takes two stack items.  This does not
                   1039: occur in our small examples, but you can look at Gforth for examples.
                   1040: 
                   1041: @item @var{stackpointer}
                   1042: For each stack used, the stackpointer name given in the stack
                   1043: declaration is used.  For a regular stack this must be an l-expression;
                   1044: typically it is a variable declared as a pointer to the stack's basic
                   1045: type.  For @samp{inst-stream}, the name is @samp{IP}, and it can be a
                   1046: plain r-value; typically it is a macro that abstracts away the
                   1047: differences between the various implementations of NEXT_P*.
                   1048: 
                   1049: @item @var{stackpointer}TOS
                   1050: The top-of-stack for the stack pointed to by @var{stackpointer}.  If you
                   1051: are using top-of-stack caching for that stack, this should be defined as
                   1052: variable; if you are not using top-of-stack caching for that stack, this
                   1053: should be a macro expanding to @samp{@var{stackpointer}[0]}.  The stack
                   1054: pointer for the predefined @samp{inst-stream} is called @samp{IP}, so
                   1055: the top-of-stack is called @samp{IPTOS}.
                   1056: 
                   1057: @item IF_@var{stackpointer}TOS(@var{expr})
                   1058: Macro for executing @var{expr}, if top-of-stack caching is used for the
                   1059: @var{stackpointer} stack.  I.e., this should do @var{expr} if there is
                   1060: top-of-stack caching for @var{stackpointer}; otherwise it should do
                   1061: nothing.
                   1062: 
1.8       anton    1063: @item SUPER_END
                   1064: This is used by the VM profiler (@pxref{VM profiler}); it should not do
                   1065: anything in normal operation, and call @code{vm_count_block(IP)} for
                   1066: profiling.
                   1067: 
                   1068: @item SUPER_CONTINUE
1.11    ! anton    1069: This is just a hint to Vmgen and does nothing at the C level.
1.8       anton    1070: 
1.5       anton    1071: @item VM_DEBUG
                   1072: If this is defined, the tracing code will be compiled in (slower
                   1073: interpretation, but better debugging).  Our example compiles two
                   1074: versions of the engine, a fast-running one that cannot trace, and one
                   1075: with potential tracing and profiling.
                   1076: 
                   1077: @item vm_debug
                   1078: Needed only if @samp{VM_DEBUG} is defined.  If this variable contains
                   1079: true, the VM instructions produce trace output.  It can be turned on or
                   1080: off at any time.
                   1081: 
                   1082: @item vm_out
                   1083: Needed only if @samp{VM_DEBUG} is defined.  Specifies the file on which
                   1084: to print the trace output (type @samp{FILE *}).
                   1085: 
                   1086: @item printarg_@var{type}(@var{value})
                   1087: Needed only if @samp{VM_DEBUG} is defined.  Macro or function for
                   1088: printing @var{value} in a way appropriate for the @var{type}.  This is
                   1089: used for printing the values of stack items during tracing.  @var{Type}
                   1090: is normally the type prefix specified in a @code{type-prefix} definition
                   1091: (e.g., @samp{printarg_i}); in superinstructions it is currently the
                   1092: basic type of the stack.
                   1093: 
                   1094: @end table
                   1095: 
1.6       anton    1096: 
1.10      anton    1097: @c --------------------------------------------------------------------
                   1098: @node VM instruction table, VM code generation, VM engine, Using the generated code
                   1099: @section VM instruction table
1.6       anton    1100: 
                   1101: For threaded code we also need to produce a table containing the labels
                   1102: of all VM instructions.  This is needed for VM code generation
                   1103: (@pxref{VM code generation}), and it has to be done in the engine
                   1104: function, because the labels are not visible outside.  It then has to be
                   1105: passed outside the function (and assigned to @samp{vm_prim}), to be used
                   1106: by the VM code generation functions.
                   1107: 
                   1108: This means that the engine function has to be called first to produce
                   1109: the VM instruction table, and later, after generating VM code, it has to
                   1110: be called again to execute the generated VM code (yes, this is ugly).
                   1111: In our example program, these two modes of calling the engine function
                   1112: are differentiated by the value of the parameter ip0 (if it equals 0,
                   1113: then the table is passed out, otherwise the VM code is executed); in our
                   1114: example, we pass the table out by assigning it to @samp{vm_prim} and
                   1115: returning from @samp{engine}.
                   1116: 
                   1117: In our example, we also build such a table for switch dispatch; this is
                   1118: mainly done for uniformity.
                   1119: 
                   1120: For switch dispatch, we also need to define the VM instruction opcodes
                   1121: used as case labels in an @code{enum}.
                   1122: 
                   1123: For both purposes (VM instruction table, and enum), the file
1.11    ! anton    1124: @file{@var{name}-labels.i} is generated by Vmgen.  You have to define
1.6       anton    1125: the following macro used in this file:
1.5       anton    1126: 
                   1127: @table @samp
                   1128: 
                   1129: @item INST_ADDR(@var{inst_name})
                   1130: For switch dispatch, this is just the name of the switch label (the same
1.6       anton    1131: name as used in @samp{LABEL(@var{inst_name})}), for both uses of
                   1132: @file{@var{name}-labels.i}.  For threaded-code dispatch, this is the
                   1133: address of the label defined in @samp{LABEL(@var{inst_name})}); the
1.11    ! anton    1134: address is taken with @samp{&&} (@pxref{Labels as Values, , Labels as
        !          1135: Values, gcc.info, GNU C Manual}).
1.5       anton    1136: 
                   1137: @end table
                   1138: 
                   1139: 
1.10      anton    1140: @c --------------------------------------------------------------------
                   1141: @node VM code generation, Peephole optimization, VM instruction table, Using the generated code
1.6       anton    1142: @section VM code generation
                   1143: 
                   1144: Vmgen generates VM code generation functions in @file{@var{name}-gen.i}
                   1145: that the front end can call to generate VM code.  This is essential for
                   1146: an interpretive system.
                   1147: 
1.11    ! anton    1148: For a VM instruction @samp{x ( #a b #c -- d )}, Vmgen generates a
1.6       anton    1149: function with the prototype
                   1150: 
                   1151: @example
                   1152: void gen_x(Inst **ctp, a_type a, c_type c)
                   1153: @end example
                   1154: 
                   1155: The @code{ctp} argument points to a pointer to the next instruction.
                   1156: @code{*ctp} is increased by the generation functions; i.e., you should
                   1157: allocate memory for the code to be generated beforehand, and start with
                   1158: *ctp set at the start of this memory area.  Before running out of
                   1159: memory, allocate a new area, and generate a VM-level jump to the new
                   1160: area (this is not implemented in our examples).
                   1161: 
                   1162: The other arguments correspond to the immediate arguments of the VM
                   1163: instruction (with their appropriate types as defined in the
                   1164: @code{type_prefix} declaration.
                   1165: 
                   1166: The following types, variables, and functions are used in
                   1167: @file{@var{name}-gen.i}:
                   1168: 
                   1169: @table @samp
                   1170: 
                   1171: @item Inst
                   1172: The type of the VM instruction; if you use threaded code, this is
                   1173: @code{void *}; for switch dispatch this is an integer type.
                   1174: 
                   1175: @item vm_prim
                   1176: The VM instruction table (type: @code{Inst *}, @pxref{VM instruction table}).
                   1177: 
                   1178: @item gen_inst(Inst **ctp, Inst i)
                   1179: This function compiles the instruction @code{i}.  Take a look at it in
                   1180: @file{vmgen-ex/peephole.c}.  It is trivial when you don't want to use
                   1181: superinstructions (just the last two lines of the example function), and
                   1182: slightly more complicated in the example due to its ability to use
                   1183: superinstructions (@pxref{Peephole optimization}).
                   1184: 
                   1185: @item genarg_@var{type_prefix}(Inst **ctp, @var{type} @var{type_prefix})
                   1186: This compiles an immediate argument of @var{type} (as defined in a
                   1187: @code{type-prefix} definition).  These functions are trivial to define
                   1188: (see @file{vmgen-ex/support.c}).  You need one of these functions for
                   1189: every type that you use as immediate argument.
                   1190: 
                   1191: @end table
                   1192: 
                   1193: In addition to using these functions to generate code, you should call
                   1194: @code{BB_BOUNDARY} at every basic block entry point if you ever want to
                   1195: use superinstructions (or if you want to use the profiling supported by
1.11    ! anton    1196: Vmgen; however, this is mainly useful for selecting superinstructions).
1.6       anton    1197: If you use @code{BB_BOUNDARY}, you should also define it (take a look at
                   1198: its definition in @file{vmgen-ex/mini.y}).
                   1199: 
                   1200: You do not need to call @code{BB_BOUNDARY} after branches, because you
                   1201: will not define superinstructions that contain branches in the middle
                   1202: (and if you did, and it would work, there would be no reason to end the
                   1203: superinstruction at the branch), and because the branches announce
                   1204: themselves to the profiler.
                   1205: 
                   1206: 
1.10      anton    1207: @c --------------------------------------------------------------------
                   1208: @node Peephole optimization, VM disassembler, VM code generation, Using the generated code
1.6       anton    1209: @section Peephole optimization
                   1210: 
                   1211: You need peephole optimization only if you want to use
                   1212: superinstructions.  But having the code for it does not hurt much if you
                   1213: do not use superinstructions.
                   1214: 
                   1215: A simple greedy peephole optimization algorithm is used for
                   1216: superinstruction selection: every time @code{gen_inst} compiles a VM
                   1217: instruction, it looks if it can combine it with the last VM instruction
                   1218: (which may also be a superinstruction resulting from a previous peephole
                   1219: optimization); if so, it changes the last instruction to the combined
                   1220: instruction instead of laying down @code{i} at the current @samp{*ctp}.
                   1221: 
                   1222: The code for peephole optimization is in @file{vmgen-ex/peephole.c}.
                   1223: You can use this file almost verbatim.  Vmgen generates
                   1224: @file{@var{file}-peephole.i} which contains data for the peephoile
                   1225: optimizer.
                   1226: 
                   1227: You have to call @samp{init_peeptable()} after initializing
                   1228: @samp{vm_prim}, and before compiling any VM code to initialize data
                   1229: structures for peephole optimization.  After that, compiling with the VM
                   1230: code generation functions will automatically combine VM instructions
                   1231: into superinstructions.  Since you do not want to combine instructions
                   1232: across VM branch targets (otherwise there will not be a proper VM
                   1233: instruction to branch to), you have to call @code{BB_BOUNDARY}
                   1234: (@pxref{VM code generation}) at branch targets.
                   1235: 
                   1236: 
1.10      anton    1237: @c --------------------------------------------------------------------
                   1238: @node VM disassembler, VM profiler, Peephole optimization, Using the generated code
1.6       anton    1239: @section VM disassembler
                   1240: 
                   1241: A VM code disassembler is optional for an interpretive system, but
                   1242: highly recommended during its development and maintenance, because it is
                   1243: very useful for detecting bugs in the front end (and for distinguishing
                   1244: them from VM interpreter bugs).
                   1245: 
                   1246: Vmgen supports VM code disassembling by generating
                   1247: @file{@var{file}-disasm.i}.  This code has to be wrapped into a
                   1248: function, as is done in @file{vmgen-ex/disasm.i}.  You can use this file
                   1249: almost verbatim.  In addition to @samp{vm_@var{A}2@var{B}(a,b)},
                   1250: @samp{vm_out}, @samp{printarg_@var{type}(@var{value})}, which are
                   1251: explained above, the following macros and variables are used in
                   1252: @file{@var{file}-disasm.i} (and you have to define them):
                   1253: 
                   1254: @table @samp
                   1255: 
                   1256: @item ip
                   1257: This variable points to the opcode of the current VM instruction.
                   1258: 
                   1259: @item IP IPTOS
                   1260: @samp{IPTOS} is the first argument of the current VM instruction, and
                   1261: @samp{IP} points to it; this is just as in the engine, but here
                   1262: @samp{ip} points to the opcode of the VM instruction (in contrast to the
                   1263: engine, where @samp{ip} points to the next cell, or even one further).
                   1264: 
                   1265: @item VM_IS_INST(Inst i, int n)
                   1266: Tests if the opcode @samp{i} is the same as the @samp{n}th entry in the
                   1267: VM instruction table.
                   1268: 
                   1269: @end table
                   1270: 
                   1271: 
1.10      anton    1272: @c --------------------------------------------------------------------
                   1273: @node VM profiler,  , VM disassembler, Using the generated code
1.7       anton    1274: @section VM profiler
                   1275: 
                   1276: The VM profiler is designed for getting execution and occurence counts
                   1277: for VM instruction sequences, and these counts can then be used for
                   1278: selecting sequences as superinstructions.  The VM profiler is probably
1.8       anton    1279: not useful as profiling tool for the interpretive system.  I.e., the VM
1.7       anton    1280: profiler is useful for the developers, but not the users of the
1.8       anton    1281: interpretive system.
1.7       anton    1282: 
1.8       anton    1283: The output of the profiler is: for each basic block (executed at least
                   1284: once), it produces the dynamic execution count of that basic block and
                   1285: all its subsequences; e.g.,
1.7       anton    1286: 
1.8       anton    1287: @example
                   1288:        9227465  lit storelocal 
                   1289:        9227465  storelocal branch 
                   1290:        9227465  lit storelocal branch 
                   1291: @end example
1.7       anton    1292: 
1.8       anton    1293: I.e., a basic block consisting of @samp{lit storelocal branch} is
                   1294: executed 9227465 times.
1.6       anton    1295: 
1.8       anton    1296: This output can be combined in various ways.  E.g.,
                   1297: @file{vmgen/stat.awk} adds up the occurences of a given sequence wrt
                   1298: dynamic execution, static occurence, and per-program occurence.  E.g.,
1.3       anton    1299: 
1.8       anton    1300: @example
                   1301:       2      16        36910041 loadlocal lit 
                   1302: @end example
1.2       anton    1303: 
1.8       anton    1304: indicates that the sequence @samp{loadlocal lit} occurs in 2 programs,
                   1305: in 16 places, and has been executed 36910041 times.  Now you can select
                   1306: superinstructions in any way you like (note that compile time and space
                   1307: typically limit the number of superinstructions to 100--1000).  After
                   1308: you have done that, @file{vmgen/seq2rule.awk} turns lines of the form
1.11    ! anton    1309: above into rules for inclusion in a Vmgen input file.  Note that this
1.8       anton    1310: script does not ensure that all prefixes are defined, so you have to do
                   1311: that in other ways.  So, an overall script for turning profiles into
                   1312: superinstructions can look like this:
1.2       anton    1313: 
1.8       anton    1314: @example
                   1315: awk -f stat.awk fib.prof test.prof|
                   1316: awk '$3>=10000'|                #select sequences
                   1317: fgrep -v -f peephole-blacklist| #eliminate wrong instructions
                   1318: awk -f seq2rule.awk|            #turn into superinstructions
                   1319: sort -k 3 >mini-super.vmg       #sort sequences
                   1320: @end example
1.2       anton    1321: 
1.8       anton    1322: Here the dynamic count is used for selecting sequences (preliminary
                   1323: results indicate that the static count gives better results, though);
                   1324: the third line eliminats sequences containing instructions that must not
                   1325: occur in a superinstruction, because they access a stack directly.  The
                   1326: dynamic count selection ensures that all subsequences (including
                   1327: prefixes) of longer sequences occur (because subsequences have at least
                   1328: the same count as the longer sequences); the sort in the last line
                   1329: ensures that longer superinstructions occur after their prefixes.
                   1330: 
                   1331: But before using it, you have to have the profiler.  Vmgen supports its
                   1332: creation by generating @file{@var{file}-profile.i}; you also need the
                   1333: wrapper file @file{vmgen-ex/profile.c} that you can use almost verbatim.
                   1334: 
                   1335: The profiler works by recording the targets of all VM control flow
                   1336: changes (through @code{SUPER_END} during execution, and through
                   1337: @code{BB_BOUNDARY} in the front end), and counting (through
                   1338: @code{SUPER_END}) how often they were targeted.  After the program run,
                   1339: the numbers are corrected such that each VM basic block has the correct
                   1340: count (originally entering a block without executing a branch does not
                   1341: increase the count), then the subsequences of all basic blocks are
                   1342: printed.  To get all this, you just have to define @code{SUPER_END} (and
                   1343: @code{BB_BOUNDARY}) appropriately, and call @code{vm_print_profile(FILE
                   1344: *file)} when you want to output the profile on @code{file}.
                   1345: 
                   1346: The @file{@var{file}-profile.i} is simular to the disassembler file, and
                   1347: it uses variables and functions defined in @file{vmgen-ex/profile.c},
                   1348: plus @code{VM_IS_INST} already defined for the VM disassembler
                   1349: (@pxref{VM disassembler}).
                   1350: 
1.10      anton    1351: 
                   1352: @c **********************************************************
                   1353: @node Changes, Contact, Using the generated code, Top
1.8       anton    1354: @chapter Changes
                   1355: 
1.11    ! anton    1356: Users of the gforth-0.5.9-20010501 version of Vmgen need to change
1.8       anton    1357: several things in their source code to use the current version.  I
                   1358: recommend keeping the gforth-0.5.9-20010501 version until you have
                   1359: completed the change (note that you can have several versions of Gforth
                   1360: installed at the same time).  I hope to avoid such incompatible changes
                   1361: in the future.
1.2       anton    1362: 
1.8       anton    1363: The required changes are:
                   1364: 
                   1365: @table @code
1.2       anton    1366: 
1.8       anton    1367: @item vm_@var{A}2@var{B}
                   1368: now takes two arguments.
                   1369: 
                   1370: @item vm_two@var{A}2@var{B}(b,a1,a2);
                   1371: changed to vm_two@var{A}2@var{B}(a1,a2,b) (note the absence of the @samp{;}).
                   1372: 
                   1373: @end table
1.2       anton    1374: 
1.8       anton    1375: Also some new macros have to be defined, e.g., @code{INST_ADDR}, and
                   1376: @code{LABEL}; some macros have to be defined in new contexts, e.g.,
                   1377: @code{VM_IS_INST} is now also needed in the disassembler.
1.4       anton    1378: 
1.10      anton    1379: @node Contact, Copying This Manual, Changes, Top
1.8       anton    1380: @chapter Contact
1.4       anton    1381: 
1.10      anton    1382: @node Copying This Manual, Index, Contact, Top
                   1383: @appendix Copying This Manual
                   1384: 
                   1385: @menu
                   1386: * GNU Free Documentation License::  License for copying this manual.
                   1387: @end menu
                   1388: 
                   1389: @include fdl.texi
                   1390: 
                   1391: 
                   1392: @node Index,  , Copying This Manual, Top
                   1393: @unnumbered Index
                   1394: 
                   1395: @printindex cp
                   1396: 
                   1397: @bye

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>