Annotation of gforth/doc/gforth.ds, revision 1.5

1.1       anton       1: \input texinfo   @c -*-texinfo-*-
                      2: @comment The source is gforth.ds, from which gforth.texi is generated
                      3: @comment %**start of header (This is for running Texinfo on a region.)
                      4: @setfilename gforth.info
                      5: @settitle Gforth Manual
                      6: @dircategory GNU programming tools
                      7: @direntry
                      8: * Gforth: (gforth).             A fast interpreter for the Forth language.
                      9: @end direntry
                     10: @comment @setchapternewpage odd
1.3       anton      11: @macro progstyle {TEXT}
                     12: @quotation
                     13: {Programming style note:} \TEXT\
                     14: @end quotation
                     15: @end macro
1.1       anton      16: @comment %**end of header (This is for running Texinfo on a region.)
                     17: 
                     18: @ifinfo
1.5     ! anton      19: This file documents Gforth 0.4
1.1       anton      20: 
                     21: Copyright @copyright{} 1995-1997 Free Software Foundation, Inc.
                     22: 
                     23:      Permission is granted to make and distribute verbatim copies of
                     24:      this manual provided the copyright notice and this permission notice
                     25:      are preserved on all copies.
                     26:      
                     27: @ignore
                     28:      Permission is granted to process this file through TeX and print the
                     29:      results, provided the printed document carries a copying permission
                     30:      notice identical to this one except for the removal of this paragraph
                     31:      (this paragraph not being relevant to the printed manual).
                     32:      
                     33: @end ignore
                     34:      Permission is granted to copy and distribute modified versions of this
                     35:      manual under the conditions for verbatim copying, provided also that the
                     36:      sections entitled "Distribution" and "General Public License" are
                     37:      included exactly as in the original, and provided that the entire
                     38:      resulting derived work is distributed under the terms of a permission
                     39:      notice identical to this one.
                     40:      
                     41:      Permission is granted to copy and distribute translations of this manual
                     42:      into another language, under the above conditions for modified versions,
                     43:      except that the sections entitled "Distribution" and "General Public
                     44:      License" may be included in a translation approved by the author instead
                     45:      of in the original English.
                     46: @end ifinfo
                     47: 
                     48: @finalout
                     49: @titlepage
                     50: @sp 10
                     51: @center @titlefont{Gforth Manual}
                     52: @sp 2
1.5     ! anton      53: @center for version 0.4
1.1       anton      54: @sp 2
                     55: @center Anton Ertl
1.5     ! anton      56: @center Jens Wilke
1.1       anton      57: @center Bernd Paysan
                     58: @sp 3
                     59: @center This manual is under construction
                     60: 
                     61: @comment  The following two commands start the copyright page.
                     62: @page
                     63: @vskip 0pt plus 1filll
                     64: Copyright @copyright{} 1995--1997 Free Software Foundation, Inc.
                     65: 
                     66: @comment !! Published by ... or You can get a copy of this manual ...
                     67: 
                     68:      Permission is granted to make and distribute verbatim copies of
                     69:      this manual provided the copyright notice and this permission notice
                     70:      are preserved on all copies.
                     71:      
                     72:      Permission is granted to copy and distribute modified versions of this
                     73:      manual under the conditions for verbatim copying, provided also that the
                     74:      sections entitled "Distribution" and "General Public License" are
                     75:      included exactly as in the original, and provided that the entire
                     76:      resulting derived work is distributed under the terms of a permission
                     77:      notice identical to this one.
                     78:      
                     79:      Permission is granted to copy and distribute translations of this manual
                     80:      into another language, under the above conditions for modified versions,
                     81:      except that the sections entitled "Distribution" and "General Public
                     82:      License" may be included in a translation approved by the author instead
                     83:      of in the original English.
                     84: @end titlepage
                     85: 
                     86: 
                     87: @node Top, License, (dir), (dir)
                     88: @ifinfo
                     89: Gforth is a free implementation of ANS Forth available on many
1.5     ! anton      90: personal machines. This manual corresponds to version 0.4.
1.1       anton      91: @end ifinfo
                     92: 
                     93: @menu
                     94: * License::                     
                     95: * Goals::                       About the Gforth Project
                     96: * Other Books::                 Things you might want to read
                     97: * Invoking Gforth::             Starting Gforth
                     98: * Words::                       Forth words available in Gforth
                     99: * Tools::                       Programming tools
                    100: * ANS conformance::             Implementation-defined options etc.
                    101: * Model::                       The abstract machine of Gforth
                    102: * Integrating Gforth::          Forth as scripting language for applications
                    103: * Emacs and Gforth::            The Gforth Mode
                    104: * Image Files::                 @code{.fi} files contain compiled code
                    105: * Engine::                      The inner interpreter and the primitives
                    106: * Bugs::                        How to report them
                    107: * Origin::                      Authors and ancestors of Gforth
                    108: * Word Index::                  An item for each Forth word
                    109: * Concept Index::               A menu covering many topics
                    110: @end menu
                    111: 
                    112: @node License, Goals, Top, Top
                    113: @unnumbered GNU GENERAL PUBLIC LICENSE
                    114: @center Version 2, June 1991
                    115: 
                    116: @display
                    117: Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
                    118: 675 Mass Ave, Cambridge, MA 02139, USA
                    119: 
                    120: Everyone is permitted to copy and distribute verbatim copies
                    121: of this license document, but changing it is not allowed.
                    122: @end display
                    123: 
                    124: @unnumberedsec Preamble
                    125: 
                    126:   The licenses for most software are designed to take away your
                    127: freedom to share and change it.  By contrast, the GNU General Public
                    128: License is intended to guarantee your freedom to share and change free
                    129: software---to make sure the software is free for all its users.  This
                    130: General Public License applies to most of the Free Software
                    131: Foundation's software and to any other program whose authors commit to
                    132: using it.  (Some other Free Software Foundation software is covered by
                    133: the GNU Library General Public License instead.)  You can apply it to
                    134: your programs, too.
                    135: 
                    136:   When we speak of free software, we are referring to freedom, not
                    137: price.  Our General Public Licenses are designed to make sure that you
                    138: have the freedom to distribute copies of free software (and charge for
                    139: this service if you wish), that you receive source code or can get it
                    140: if you want it, that you can change the software or use pieces of it
                    141: in new free programs; and that you know you can do these things.
                    142: 
                    143:   To protect your rights, we need to make restrictions that forbid
                    144: anyone to deny you these rights or to ask you to surrender the rights.
                    145: These restrictions translate to certain responsibilities for you if you
                    146: distribute copies of the software, or if you modify it.
                    147: 
                    148:   For example, if you distribute copies of such a program, whether
                    149: gratis or for a fee, you must give the recipients all the rights that
                    150: you have.  You must make sure that they, too, receive or can get the
                    151: source code.  And you must show them these terms so they know their
                    152: rights.
                    153: 
                    154:   We protect your rights with two steps: (1) copyright the software, and
                    155: (2) offer you this license which gives you legal permission to copy,
                    156: distribute and/or modify the software.
                    157: 
                    158:   Also, for each author's protection and ours, we want to make certain
                    159: that everyone understands that there is no warranty for this free
                    160: software.  If the software is modified by someone else and passed on, we
                    161: want its recipients to know that what they have is not the original, so
                    162: that any problems introduced by others will not reflect on the original
                    163: authors' reputations.
                    164: 
                    165:   Finally, any free program is threatened constantly by software
                    166: patents.  We wish to avoid the danger that redistributors of a free
                    167: program will individually obtain patent licenses, in effect making the
                    168: program proprietary.  To prevent this, we have made it clear that any
                    169: patent must be licensed for everyone's free use or not licensed at all.
                    170: 
                    171:   The precise terms and conditions for copying, distribution and
                    172: modification follow.
                    173: 
                    174: @iftex
                    175: @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
                    176: @end iftex
                    177: @ifinfo
                    178: @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
                    179: @end ifinfo
                    180: 
                    181: @enumerate 0
                    182: @item
                    183: This License applies to any program or other work which contains
                    184: a notice placed by the copyright holder saying it may be distributed
                    185: under the terms of this General Public License.  The ``Program'', below,
                    186: refers to any such program or work, and a ``work based on the Program''
                    187: means either the Program or any derivative work under copyright law:
                    188: that is to say, a work containing the Program or a portion of it,
                    189: either verbatim or with modifications and/or translated into another
                    190: language.  (Hereinafter, translation is included without limitation in
                    191: the term ``modification''.)  Each licensee is addressed as ``you''.
                    192: 
                    193: Activities other than copying, distribution and modification are not
                    194: covered by this License; they are outside its scope.  The act of
                    195: running the Program is not restricted, and the output from the Program
                    196: is covered only if its contents constitute a work based on the
                    197: Program (independent of having been made by running the Program).
                    198: Whether that is true depends on what the Program does.
                    199: 
                    200: @item
                    201: You may copy and distribute verbatim copies of the Program's
                    202: source code as you receive it, in any medium, provided that you
                    203: conspicuously and appropriately publish on each copy an appropriate
                    204: copyright notice and disclaimer of warranty; keep intact all the
                    205: notices that refer to this License and to the absence of any warranty;
                    206: and give any other recipients of the Program a copy of this License
                    207: along with the Program.
                    208: 
                    209: You may charge a fee for the physical act of transferring a copy, and
                    210: you may at your option offer warranty protection in exchange for a fee.
                    211: 
                    212: @item
                    213: You may modify your copy or copies of the Program or any portion
                    214: of it, thus forming a work based on the Program, and copy and
                    215: distribute such modifications or work under the terms of Section 1
                    216: above, provided that you also meet all of these conditions:
                    217: 
                    218: @enumerate a
                    219: @item
                    220: You must cause the modified files to carry prominent notices
                    221: stating that you changed the files and the date of any change.
                    222: 
                    223: @item
                    224: You must cause any work that you distribute or publish, that in
                    225: whole or in part contains or is derived from the Program or any
                    226: part thereof, to be licensed as a whole at no charge to all third
                    227: parties under the terms of this License.
                    228: 
                    229: @item
                    230: If the modified program normally reads commands interactively
                    231: when run, you must cause it, when started running for such
                    232: interactive use in the most ordinary way, to print or display an
                    233: announcement including an appropriate copyright notice and a
                    234: notice that there is no warranty (or else, saying that you provide
                    235: a warranty) and that users may redistribute the program under
                    236: these conditions, and telling the user how to view a copy of this
                    237: License.  (Exception: if the Program itself is interactive but
                    238: does not normally print such an announcement, your work based on
                    239: the Program is not required to print an announcement.)
                    240: @end enumerate
                    241: 
                    242: These requirements apply to the modified work as a whole.  If
                    243: identifiable sections of that work are not derived from the Program,
                    244: and can be reasonably considered independent and separate works in
                    245: themselves, then this License, and its terms, do not apply to those
                    246: sections when you distribute them as separate works.  But when you
                    247: distribute the same sections as part of a whole which is a work based
                    248: on the Program, the distribution of the whole must be on the terms of
                    249: this License, whose permissions for other licensees extend to the
                    250: entire whole, and thus to each and every part regardless of who wrote it.
                    251: 
                    252: Thus, it is not the intent of this section to claim rights or contest
                    253: your rights to work written entirely by you; rather, the intent is to
                    254: exercise the right to control the distribution of derivative or
                    255: collective works based on the Program.
                    256: 
                    257: In addition, mere aggregation of another work not based on the Program
                    258: with the Program (or with a work based on the Program) on a volume of
                    259: a storage or distribution medium does not bring the other work under
                    260: the scope of this License.
                    261: 
                    262: @item
                    263: You may copy and distribute the Program (or a work based on it,
                    264: under Section 2) in object code or executable form under the terms of
                    265: Sections 1 and 2 above provided that you also do one of the following:
                    266: 
                    267: @enumerate a
                    268: @item
                    269: Accompany it with the complete corresponding machine-readable
                    270: source code, which must be distributed under the terms of Sections
                    271: 1 and 2 above on a medium customarily used for software interchange; or,
                    272: 
                    273: @item
                    274: Accompany it with a written offer, valid for at least three
                    275: years, to give any third party, for a charge no more than your
                    276: cost of physically performing source distribution, a complete
                    277: machine-readable copy of the corresponding source code, to be
                    278: distributed under the terms of Sections 1 and 2 above on a medium
                    279: customarily used for software interchange; or,
                    280: 
                    281: @item
                    282: Accompany it with the information you received as to the offer
                    283: to distribute corresponding source code.  (This alternative is
                    284: allowed only for noncommercial distribution and only if you
                    285: received the program in object code or executable form with such
                    286: an offer, in accord with Subsection b above.)
                    287: @end enumerate
                    288: 
                    289: The source code for a work means the preferred form of the work for
                    290: making modifications to it.  For an executable work, complete source
                    291: code means all the source code for all modules it contains, plus any
                    292: associated interface definition files, plus the scripts used to
                    293: control compilation and installation of the executable.  However, as a
                    294: special exception, the source code distributed need not include
                    295: anything that is normally distributed (in either source or binary
                    296: form) with the major components (compiler, kernel, and so on) of the
                    297: operating system on which the executable runs, unless that component
                    298: itself accompanies the executable.
                    299: 
                    300: If distribution of executable or object code is made by offering
                    301: access to copy from a designated place, then offering equivalent
                    302: access to copy the source code from the same place counts as
                    303: distribution of the source code, even though third parties are not
                    304: compelled to copy the source along with the object code.
                    305: 
                    306: @item
                    307: You may not copy, modify, sublicense, or distribute the Program
                    308: except as expressly provided under this License.  Any attempt
                    309: otherwise to copy, modify, sublicense or distribute the Program is
                    310: void, and will automatically terminate your rights under this License.
                    311: However, parties who have received copies, or rights, from you under
                    312: this License will not have their licenses terminated so long as such
                    313: parties remain in full compliance.
                    314: 
                    315: @item
                    316: You are not required to accept this License, since you have not
                    317: signed it.  However, nothing else grants you permission to modify or
                    318: distribute the Program or its derivative works.  These actions are
                    319: prohibited by law if you do not accept this License.  Therefore, by
                    320: modifying or distributing the Program (or any work based on the
                    321: Program), you indicate your acceptance of this License to do so, and
                    322: all its terms and conditions for copying, distributing or modifying
                    323: the Program or works based on it.
                    324: 
                    325: @item
                    326: Each time you redistribute the Program (or any work based on the
                    327: Program), the recipient automatically receives a license from the
                    328: original licensor to copy, distribute or modify the Program subject to
                    329: these terms and conditions.  You may not impose any further
                    330: restrictions on the recipients' exercise of the rights granted herein.
                    331: You are not responsible for enforcing compliance by third parties to
                    332: this License.
                    333: 
                    334: @item
                    335: If, as a consequence of a court judgment or allegation of patent
                    336: infringement or for any other reason (not limited to patent issues),
                    337: conditions are imposed on you (whether by court order, agreement or
                    338: otherwise) that contradict the conditions of this License, they do not
                    339: excuse you from the conditions of this License.  If you cannot
                    340: distribute so as to satisfy simultaneously your obligations under this
                    341: License and any other pertinent obligations, then as a consequence you
                    342: may not distribute the Program at all.  For example, if a patent
                    343: license would not permit royalty-free redistribution of the Program by
                    344: all those who receive copies directly or indirectly through you, then
                    345: the only way you could satisfy both it and this License would be to
                    346: refrain entirely from distribution of the Program.
                    347: 
                    348: If any portion of this section is held invalid or unenforceable under
                    349: any particular circumstance, the balance of the section is intended to
                    350: apply and the section as a whole is intended to apply in other
                    351: circumstances.
                    352: 
                    353: It is not the purpose of this section to induce you to infringe any
                    354: patents or other property right claims or to contest validity of any
                    355: such claims; this section has the sole purpose of protecting the
                    356: integrity of the free software distribution system, which is
                    357: implemented by public license practices.  Many people have made
                    358: generous contributions to the wide range of software distributed
                    359: through that system in reliance on consistent application of that
                    360: system; it is up to the author/donor to decide if he or she is willing
                    361: to distribute software through any other system and a licensee cannot
                    362: impose that choice.
                    363: 
                    364: This section is intended to make thoroughly clear what is believed to
                    365: be a consequence of the rest of this License.
                    366: 
                    367: @item
                    368: If the distribution and/or use of the Program is restricted in
                    369: certain countries either by patents or by copyrighted interfaces, the
                    370: original copyright holder who places the Program under this License
                    371: may add an explicit geographical distribution limitation excluding
                    372: those countries, so that distribution is permitted only in or among
                    373: countries not thus excluded.  In such case, this License incorporates
                    374: the limitation as if written in the body of this License.
                    375: 
                    376: @item
                    377: The Free Software Foundation may publish revised and/or new versions
                    378: of the General Public License from time to time.  Such new versions will
                    379: be similar in spirit to the present version, but may differ in detail to
                    380: address new problems or concerns.
                    381: 
                    382: Each version is given a distinguishing version number.  If the Program
                    383: specifies a version number of this License which applies to it and ``any
                    384: later version'', you have the option of following the terms and conditions
                    385: either of that version or of any later version published by the Free
                    386: Software Foundation.  If the Program does not specify a version number of
                    387: this License, you may choose any version ever published by the Free Software
                    388: Foundation.
                    389: 
                    390: @item
                    391: If you wish to incorporate parts of the Program into other free
                    392: programs whose distribution conditions are different, write to the author
                    393: to ask for permission.  For software which is copyrighted by the Free
                    394: Software Foundation, write to the Free Software Foundation; we sometimes
                    395: make exceptions for this.  Our decision will be guided by the two goals
                    396: of preserving the free status of all derivatives of our free software and
                    397: of promoting the sharing and reuse of software generally.
                    398: 
                    399: @iftex
                    400: @heading NO WARRANTY
                    401: @end iftex
                    402: @ifinfo
                    403: @center NO WARRANTY
                    404: @end ifinfo
                    405: 
                    406: @item
                    407: BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
                    408: FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
                    409: OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
                    410: PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
                    411: OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
                    412: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
                    413: TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
                    414: PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
                    415: REPAIR OR CORRECTION.
                    416: 
                    417: @item
                    418: IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                    419: WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
                    420: REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
                    421: INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
                    422: OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
                    423: TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
                    424: YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
                    425: PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
                    426: POSSIBILITY OF SUCH DAMAGES.
                    427: @end enumerate
                    428: 
                    429: @iftex
                    430: @heading END OF TERMS AND CONDITIONS
                    431: @end iftex
                    432: @ifinfo
                    433: @center END OF TERMS AND CONDITIONS
                    434: @end ifinfo
                    435: 
                    436: @page
                    437: @unnumberedsec How to Apply These Terms to Your New Programs
                    438: 
                    439:   If you develop a new program, and you want it to be of the greatest
                    440: possible use to the public, the best way to achieve this is to make it
                    441: free software which everyone can redistribute and change under these terms.
                    442: 
                    443:   To do so, attach the following notices to the program.  It is safest
                    444: to attach them to the start of each source file to most effectively
                    445: convey the exclusion of warranty; and each file should have at least
                    446: the ``copyright'' line and a pointer to where the full notice is found.
                    447: 
                    448: @smallexample
                    449: @var{one line to give the program's name and a brief idea of what it does.}
                    450: Copyright (C) 19@var{yy}  @var{name of author}
                    451: 
                    452: This program is free software; you can redistribute it and/or modify 
                    453: it under the terms of the GNU General Public License as published by 
                    454: the Free Software Foundation; either version 2 of the License, or 
                    455: (at your option) any later version.
                    456: 
                    457: This program is distributed in the hope that it will be useful,
                    458: but WITHOUT ANY WARRANTY; without even the implied warranty of
                    459: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    460: GNU General Public License for more details.
                    461: 
                    462: You should have received a copy of the GNU General Public License
                    463: along with this program; if not, write to the Free Software
                    464: Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
                    465: @end smallexample
                    466: 
                    467: Also add information on how to contact you by electronic and paper mail.
                    468: 
                    469: If the program is interactive, make it output a short notice like this
                    470: when it starts in an interactive mode:
                    471: 
                    472: @smallexample
                    473: Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
                    474: Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
                    475: type `show w'.  
                    476: This is free software, and you are welcome to redistribute it 
                    477: under certain conditions; type `show c' for details.
                    478: @end smallexample
                    479: 
                    480: The hypothetical commands @samp{show w} and @samp{show c} should show
                    481: the appropriate parts of the General Public License.  Of course, the
                    482: commands you use may be called something other than @samp{show w} and
                    483: @samp{show c}; they could even be mouse-clicks or menu items---whatever
                    484: suits your program.
                    485: 
                    486: You should also get your employer (if you work as a programmer) or your
                    487: school, if any, to sign a ``copyright disclaimer'' for the program, if
                    488: necessary.  Here is a sample; alter the names:
                    489: 
                    490: @smallexample
                    491: Yoyodyne, Inc., hereby disclaims all copyright interest in the program
                    492: `Gnomovision' (which makes passes at compilers) written by James Hacker.
                    493: 
                    494: @var{signature of Ty Coon}, 1 April 1989
                    495: Ty Coon, President of Vice
                    496: @end smallexample
                    497: 
                    498: This General Public License does not permit incorporating your program into
                    499: proprietary programs.  If your program is a subroutine library, you may
                    500: consider it more useful to permit linking proprietary applications with the
                    501: library.  If this is what you want to do, use the GNU Library General
                    502: Public License instead of this License.
                    503: 
                    504: @iftex
                    505: @unnumbered Preface
                    506: @cindex Preface
                    507: This manual documents Gforth. The reader is expected to know
                    508: Forth. This manual is primarily a reference manual. @xref{Other Books}
                    509: for introductory material.
                    510: @end iftex
                    511: 
                    512: @node    Goals, Other Books, License, Top
                    513: @comment node-name,     next,           previous, up
                    514: @chapter Goals of Gforth
                    515: @cindex Goals
                    516: The goal of the Gforth Project is to develop a standard model for
                    517: ANS Forth. This can be split into several subgoals:
                    518: 
                    519: @itemize @bullet
                    520: @item
                    521: Gforth should conform to the Forth standard (ANS Forth).
                    522: @item
                    523: It should be a model, i.e. it should define all the
                    524: implementation-dependent things.
                    525: @item
                    526: It should become standard, i.e. widely accepted and used. This goal
                    527: is the most difficult one.
                    528: @end itemize
                    529: 
                    530: To achieve these goals Gforth should be
                    531: @itemize @bullet
                    532: @item
                    533: Similar to previous models (fig-Forth, F83)
                    534: @item
                    535: Powerful. It should provide for all the things that are considered
                    536: necessary today and even some that are not yet considered necessary.
                    537: @item
                    538: Efficient. It should not get the reputation of being exceptionally
                    539: slow.
                    540: @item
                    541: Free.
                    542: @item
                    543: Available on many machines/easy to port.
                    544: @end itemize
                    545: 
                    546: Have we achieved these goals? Gforth conforms to the ANS Forth
                    547: standard. It may be considered a model, but we have not yet documented
                    548: which parts of the model are stable and which parts we are likely to
                    549: change. It certainly has not yet become a de facto standard. It has some
                    550: similarities and some differences to previous models. It has some
                    551: powerful features, but not yet everything that we envisioned. We
                    552: certainly have achieved our execution speed goals (@pxref{Performance}).
                    553: It is free and available on many machines.
                    554: 
                    555: @node Other Books, Invoking Gforth, Goals, Top
                    556: @chapter Other books on ANS Forth
                    557: @cindex books on Forth
                    558: 
                    559: As the standard is relatively new, there are not many books out yet. It
                    560: is not recommended to learn Forth by using Gforth and a book that is
                    561: not written for ANS Forth, as you will not know your mistakes from the
                    562: deviations of the book.
                    563: 
                    564: @cindex standard document for ANS Forth
                    565: @cindex ANS Forth document
                    566: There is, of course, the standard, the definite reference if you want to
                    567: write ANS Forth programs. It is available in printed form from the
                    568: National Standards Institute Sales Department (Tel.: USA (212) 642-4900;
                    569: Fax.: USA (212) 302-1286) as document @cite{X3.215-1994} for about $200. You
                    570: can also get it from Global Engineering Documents (Tel.: USA (800)
                    571: 854-7179; Fax.: (303) 843-9880) for about $300.
                    572: 
                    573: @cite{dpANS6}, the last draft of the standard, which was then submitted to ANSI
                    574: for publication is available electronically and for free in some MS Word
                    575: format, and it has been converted to HTML. Some pointers to these
                    576: versions can be found through
                    577: @*@url{http://www.complang.tuwien.ac.at/projects/forth.html}.
                    578: 
                    579: @cindex introductory book
                    580: @cindex book, introductory
                    581: @cindex Woehr, Jack: @cite{Forth: The New Model}
                    582: @cindex @cite{Forth: The new model} (book)
                    583: @cite{Forth: The New Model} by Jack Woehr (Prentice-Hall, 1993) is an
                    584: introductory book based on a draft version of the standard. It does not
                    585: cover the whole standard. It also contains interesting background
                    586: information (Jack Woehr was in the ANS Forth Technical Committee). It is
                    587: not appropriate for complete newbies, but programmers experienced in
                    588: other languages should find it ok.
                    589: 
                    590: @node Invoking Gforth, Words, Other Books, Top
                    591: @chapter Invoking Gforth
                    592: @cindex invoking Gforth
                    593: @cindex running Gforth
                    594: @cindex command-line options
                    595: @cindex options on the command line
                    596: @cindex flags on the command line
                    597: 
                    598: You will usually just say @code{gforth}. In many other cases the default
                    599: Gforth image will be invoked like this:
                    600: 
                    601: @example
                    602: gforth [files] [-e forth-code]
                    603: @end example
                    604: 
                    605: executing the contents of the files and the Forth code in the order they
                    606: are given.
                    607: 
                    608: In general, the command line looks like this:
                    609: 
                    610: @example
                    611: gforth [initialization options] [image-specific options]
                    612: @end example
                    613: 
                    614: The initialization options must come before the rest of the command
                    615: line. They are:
                    616: 
                    617: @table @code
                    618: @cindex -i, command-line option
                    619: @cindex --image-file, command-line option
                    620: @item --image-file @var{file}
                    621: @itemx -i @var{file}
                    622: Loads the Forth image @var{file} instead of the default
                    623: @file{gforth.fi} (@pxref{Image Files}).
                    624: 
                    625: @cindex --path, command-line option
                    626: @cindex -p, command-line option
                    627: @item --path @var{path}
                    628: @itemx -p @var{path}
                    629: Uses @var{path} for searching the image file and Forth source code files
                    630: instead of the default in the environment variable @code{GFORTHPATH} or
                    631: the path specified at installation time (e.g.,
                    632: @file{/usr/local/share/gforth/0.2.0:.}). A path is given as a list of
                    633: directories, separated by @samp{:} (on Unix) or @samp{;} (on other OSs).
                    634: 
                    635: @cindex --dictionary-size, command-line option
                    636: @cindex -m, command-line option
                    637: @cindex @var{size} parameters for command-line options
                    638: @cindex size of the dictionary and the stacks
                    639: @item --dictionary-size @var{size}
                    640: @itemx -m @var{size}
                    641: Allocate @var{size} space for the Forth dictionary space instead of
                    642: using the default specified in the image (typically 256K). The
                    643: @var{size} specification consists of an integer and a unit (e.g.,
                    644: @code{4M}). The unit can be one of @code{b} (bytes), @code{e} (element
                    645: size, in this case Cells), @code{k} (kilobytes), and @code{M}
                    646: (Megabytes). If no unit is specified, @code{e} is used.
                    647: 
                    648: @cindex --data-stack-size, command-line option
                    649: @cindex -d, command-line option
                    650: @item --data-stack-size @var{size}
                    651: @itemx -d @var{size}
                    652: Allocate @var{size} space for the data stack instead of using the
                    653: default specified in the image (typically 16K).
                    654: 
                    655: @cindex --return-stack-size, command-line option
                    656: @cindex -r, command-line option
                    657: @item --return-stack-size @var{size}
                    658: @itemx -r @var{size}
                    659: Allocate @var{size} space for the return stack instead of using the
                    660: default specified in the image (typically 15K).
                    661: 
                    662: @cindex --fp-stack-size, command-line option
                    663: @cindex -f, command-line option
                    664: @item --fp-stack-size @var{size}
                    665: @itemx -f @var{size}
                    666: Allocate @var{size} space for the floating point stack instead of
                    667: using the default specified in the image (typically 15.5K). In this case
                    668: the unit specifier @code{e} refers to floating point numbers.
                    669: 
                    670: @cindex --locals-stack-size, command-line option
                    671: @cindex -l, command-line option
                    672: @item --locals-stack-size @var{size}
                    673: @itemx -l @var{size}
                    674: Allocate @var{size} space for the locals stack instead of using the
                    675: default specified in the image (typically 14.5K).
                    676: 
                    677: @cindex -h, command-line option
                    678: @cindex --help, command-line option
                    679: @item --help
                    680: @itemx -h
                    681: Print a message about the command-line options
                    682: 
                    683: @cindex -v, command-line option
                    684: @cindex --version, command-line option
                    685: @item --version
                    686: @itemx -v
                    687: Print version and exit
                    688: 
                    689: @cindex --debug, command-line option
                    690: @item --debug
                    691: Print some information useful for debugging on startup.
                    692: 
                    693: @cindex --offset-image, command-line option
                    694: @item --offset-image
                    695: Start the dictionary at a slightly different position than would be used
                    696: otherwise (useful for creating data-relocatable images,
                    697: @pxref{Data-Relocatable Image Files}).
                    698: 
1.5     ! anton     699: @cindex --no-offset-im, command-line option
        !           700: @item --no-offset-im
        !           701: Start the dictionary at the normal position.
        !           702: 
1.1       anton     703: @cindex --clear-dictionary, command-line option
                    704: @item --clear-dictionary
                    705: Initialize all bytes in the dictionary to 0 before loading the image
                    706: (@pxref{Data-Relocatable Image Files}).
1.5     ! anton     707: 
        !           708: @cindex --die-on-signal, command-line-option
        !           709: @item --die-on-signal
        !           710: Normally Gforth handles most signals (e.g., the user interrupt SIGINT,
        !           711: or the segmentation violation SIGSEGV) by translating it into a Forth
        !           712: @code{THROW}. With this option, Gforth exits if it receives such a
        !           713: signal. This option is useful when the engine and/or the image might be
        !           714: severely broken (such that it causes another signal before recovering
        !           715: from the first); this option avoids endless loops in such cases.
1.1       anton     716: @end table
                    717: 
                    718: @cindex loading files at startup
                    719: @cindex executing code on startup
                    720: @cindex batch processing with Gforth
                    721: As explained above, the image-specific command-line arguments for the
                    722: default image @file{gforth.fi} consist of a sequence of filenames and
                    723: @code{-e @var{forth-code}} options that are interpreted in the sequence
                    724: in which they are given. The @code{-e @var{forth-code}} or
                    725: @code{--evaluate @var{forth-code}} option evaluates the forth
                    726: code. This option takes only one argument; if you want to evaluate more
                    727: Forth words, you have to quote them or use several @code{-e}s. To exit
                    728: after processing the command line (instead of entering interactive mode)
                    729: append @code{-e bye} to the command line.
                    730: 
                    731: @cindex versions, invoking other versions of Gforth
                    732: If you have several versions of Gforth installed, @code{gforth} will
                    733: invoke the version that was installed last. @code{gforth-@var{version}}
                    734: invokes a specific version. You may want to use the option
                    735: @code{--path}, if your environment contains the variable
                    736: @code{GFORTHPATH}.
                    737: 
                    738: Not yet implemented:
                    739: On startup the system first executes the system initialization file
                    740: (unless the option @code{--no-init-file} is given; note that the system
                    741: resulting from using this option may not be ANS Forth conformant). Then
                    742: the user initialization file @file{.gforth.fs} is executed, unless the
                    743: option @code{--no-rc} is given; this file is first searched in @file{.},
                    744: then in @file{~}, then in the normal path (see above).
                    745: 
                    746: @node Words, Tools, Invoking Gforth, Top
                    747: @chapter Forth Words
                    748: @cindex Words
                    749: 
                    750: @menu
                    751: * Notation::                    
                    752: * Arithmetic::                  
                    753: * Stack Manipulation::          
1.5     ! anton     754: * Memory::                      
1.1       anton     755: * Control Structures::          
                    756: * Locals::                      
                    757: * Defining Words::              
1.5     ! anton     758: * Structures::                  
        !           759: * Objects::                     
1.1       anton     760: * Tokens for Words::            
                    761: * Wordlists::                   
                    762: * Files::                       
                    763: * Blocks::                      
                    764: * Other I/O::                   
                    765: * Programming Tools::           
                    766: * Assembler and Code words::    
                    767: * Threading Words::             
1.5     ! anton     768: * Including Files::             
1.1       anton     769: @end menu
                    770: 
                    771: @node Notation, Arithmetic, Words, Words
                    772: @section Notation
                    773: @cindex notation of glossary entries
                    774: @cindex format of glossary entries
                    775: @cindex glossary notation format
                    776: @cindex word glossary entry format
                    777: 
                    778: The Forth words are described in this section in the glossary notation
                    779: that has become a de-facto standard for Forth texts, i.e.,
                    780: 
                    781: @format
                    782: @var{word}     @var{Stack effect}   @var{wordset}   @var{pronunciation}
                    783: @end format
                    784: @var{Description}
                    785: 
                    786: @table @var
                    787: @item word
                    788: @cindex case insensitivity
                    789: The name of the word. BTW, Gforth is case insensitive, so you can
                    790: type the words in in lower case (However, @pxref{core-idef}).
                    791: 
                    792: @item Stack effect
                    793: @cindex stack effect
                    794: The stack effect is written in the notation @code{@var{before} --
                    795: @var{after}}, where @var{before} and @var{after} describe the top of
                    796: stack entries before and after the execution of the word. The rest of
                    797: the stack is not touched by the word. The top of stack is rightmost,
                    798: i.e., a stack sequence is written as it is typed in. Note that Gforth
                    799: uses a separate floating point stack, but a unified stack
                    800: notation. Also, return stack effects are not shown in @var{stack
                    801: effect}, but in @var{Description}. The name of a stack item describes
                    802: the type and/or the function of the item. See below for a discussion of
                    803: the types.
                    804: 
                    805: All words have two stack effects: A compile-time stack effect and a
                    806: run-time stack effect. The compile-time stack-effect of most words is
                    807: @var{ -- }. If the compile-time stack-effect of a word deviates from
                    808: this standard behaviour, or the word does other unusual things at
                    809: compile time, both stack effects are shown; otherwise only the run-time
                    810: stack effect is shown.
                    811: 
                    812: @cindex pronounciation of words
                    813: @item pronunciation
                    814: How the word is pronounced.
                    815: 
                    816: @cindex wordset
                    817: @item wordset
                    818: The ANS Forth standard is divided into several wordsets. A standard
                    819: system need not support all of them. So, the fewer wordsets your program
                    820: uses the more portable it will be in theory. However, we suspect that
                    821: most ANS Forth systems on personal machines will feature all
                    822: wordsets. Words that are not defined in the ANS standard have
                    823: @code{gforth} or @code{gforth-internal} as wordset. @code{gforth}
                    824: describes words that will work in future releases of Gforth;
                    825: @code{gforth-internal} words are more volatile. Environmental query
                    826: strings are also displayed like words; you can recognize them by the
                    827: @code{environment} in the wordset field.
                    828: 
                    829: @item Description
                    830: A description of the behaviour of the word.
                    831: @end table
                    832: 
                    833: @cindex types of stack items
                    834: @cindex stack item types
                    835: The type of a stack item is specified by the character(s) the name
                    836: starts with:
                    837: 
                    838: @table @code
                    839: @item f
                    840: @cindex @code{f}, stack item type
                    841: Boolean flags, i.e. @code{false} or @code{true}.
                    842: @item c
                    843: @cindex @code{c}, stack item type
                    844: Char
                    845: @item w
                    846: @cindex @code{w}, stack item type
                    847: Cell, can contain an integer or an address
                    848: @item n
                    849: @cindex @code{n}, stack item type
                    850: signed integer
                    851: @item u
                    852: @cindex @code{u}, stack item type
                    853: unsigned integer
                    854: @item d
                    855: @cindex @code{d}, stack item type
                    856: double sized signed integer
                    857: @item ud
                    858: @cindex @code{ud}, stack item type
                    859: double sized unsigned integer
                    860: @item r
                    861: @cindex @code{r}, stack item type
                    862: Float (on the FP stack)
                    863: @item a_
                    864: @cindex @code{a_}, stack item type
                    865: Cell-aligned address
                    866: @item c_
                    867: @cindex @code{c_}, stack item type
                    868: Char-aligned address (note that a Char may have two bytes in Windows NT)
                    869: @item f_
                    870: @cindex @code{f_}, stack item type
                    871: Float-aligned address
                    872: @item df_
                    873: @cindex @code{df_}, stack item type
                    874: Address aligned for IEEE double precision float
                    875: @item sf_
                    876: @cindex @code{sf_}, stack item type
                    877: Address aligned for IEEE single precision float
                    878: @item xt
                    879: @cindex @code{xt}, stack item type
                    880: Execution token, same size as Cell
                    881: @item wid
                    882: @cindex @code{wid}, stack item type
                    883: Wordlist ID, same size as Cell
                    884: @item f83name
                    885: @cindex @code{f83name}, stack item type
                    886: Pointer to a name structure
                    887: @item "
                    888: @cindex @code{"}, stack item type
                    889: string in the input stream (not the stack). The terminating character is
                    890: a blank by default. If it is not a blank, it is shown in @code{<>}
                    891: quotes.
                    892: @end table
                    893: 
                    894: @node Arithmetic, Stack Manipulation, Notation, Words
                    895: @section Arithmetic
                    896: @cindex arithmetic words
                    897: 
                    898: @cindex division with potentially negative operands
                    899: Forth arithmetic is not checked, i.e., you will not hear about integer
                    900: overflow on addition or multiplication, you may hear about division by
                    901: zero if you are lucky. The operator is written after the operands, but
                    902: the operands are still in the original order. I.e., the infix @code{2-1}
                    903: corresponds to @code{2 1 -}. Forth offers a variety of division
                    904: operators. If you perform division with potentially negative operands,
                    905: you do not want to use @code{/} or @code{/mod} with its undefined
                    906: behaviour, but rather @code{fm/mod} or @code{sm/mod} (probably the
                    907: former, @pxref{Mixed precision}).
                    908: 
                    909: @menu
                    910: * Single precision::            
                    911: * Bitwise operations::          
                    912: * Mixed precision::             operations with single and double-cell integers
                    913: * Double precision::            Double-cell integer arithmetic
                    914: * Floating Point::              
                    915: @end menu
                    916: 
                    917: @node Single precision, Bitwise operations, Arithmetic, Arithmetic
                    918: @subsection Single precision
                    919: @cindex single precision arithmetic words
                    920: 
                    921: doc-+
                    922: doc--
                    923: doc-*
                    924: doc-/
                    925: doc-mod
                    926: doc-/mod
                    927: doc-negate
                    928: doc-abs
                    929: doc-min
                    930: doc-max
                    931: 
                    932: @node Bitwise operations, Mixed precision, Single precision, Arithmetic
                    933: @subsection Bitwise operations
                    934: @cindex bitwise operation words
                    935: 
                    936: doc-and
                    937: doc-or
                    938: doc-xor
                    939: doc-invert
                    940: doc-2*
                    941: doc-2/
                    942: 
                    943: @node Mixed precision, Double precision, Bitwise operations, Arithmetic
                    944: @subsection Mixed precision
                    945: @cindex mixed precision arithmetic words
                    946: 
                    947: doc-m+
                    948: doc-*/
                    949: doc-*/mod
                    950: doc-m*
                    951: doc-um*
                    952: doc-m*/
                    953: doc-um/mod
                    954: doc-fm/mod
                    955: doc-sm/rem
                    956: 
                    957: @node Double precision, Floating Point, Mixed precision, Arithmetic
                    958: @subsection Double precision
                    959: @cindex double precision arithmetic words
                    960: 
                    961: @cindex double-cell numbers, input format
                    962: @cindex input format for double-cell numbers
                    963: The outer (aka text) interpreter converts numbers containing a dot into
                    964: a double precision number. Note that only numbers with the dot as last
                    965: character are standard-conforming.
                    966: 
                    967: doc-d+
                    968: doc-d-
                    969: doc-dnegate
                    970: doc-dabs
                    971: doc-dmin
                    972: doc-dmax
                    973: 
                    974: @node Floating Point,  , Double precision, Arithmetic
                    975: @subsection Floating Point
                    976: @cindex floating point arithmetic words
                    977: 
                    978: @cindex floating-point numbers, input format
                    979: @cindex input format for floating-point numbers
                    980: The format of floating point numbers recognized by the outer (aka text)
                    981: interpreter is: a signed decimal number, possibly containing a decimal
                    982: point (@code{.}), followed by @code{E} or @code{e}, optionally followed
                    983: by a signed integer (the exponent). E.g., @code{1e} is the same as
                    984: @code{+1.0e+0}. Note that a number without @code{e}
                    985: is not interpreted as floating-point number, but as double (if the
                    986: number contains a @code{.}) or single precision integer. Also,
                    987: conversions between string and floating point numbers always use base
                    988: 10, irrespective of the value of @code{BASE}. If @code{BASE} contains a
                    989: value greater then 14, the @code{E} may be interpreted as digit and the
                    990: number will be interpreted as integer, unless it has a signed exponent
                    991: (both @code{+} and @code{-} are allowed as signs).
                    992: 
                    993: @cindex angles in trigonometric operations
                    994: @cindex trigonometric operations
                    995: Angles in floating point operations are given in radians (a full circle
                    996: has 2 pi radians). Note, that Gforth has a separate floating point
                    997: stack, but we use the unified notation.
                    998: 
                    999: @cindex floating-point arithmetic, pitfalls
                   1000: Floating point numbers have a number of unpleasant surprises for the
                   1001: unwary (e.g., floating point addition is not associative) and even a few
                   1002: for the wary. You should not use them unless you know what you are doing
                   1003: or you don't care that the results you get are totally bogus. If you
                   1004: want to learn about the problems of floating point numbers (and how to
                   1005: avoid them), you might start with @cite{David Goldberg, What Every
                   1006: Computer Scientist Should Know About Floating-Point Arithmetic, ACM
                   1007: Computing Surveys 23(1):5@minus{}48, March 1991}.
                   1008: 
                   1009: doc-f+
                   1010: doc-f-
                   1011: doc-f*
                   1012: doc-f/
                   1013: doc-fnegate
                   1014: doc-fabs
                   1015: doc-fmax
                   1016: doc-fmin
                   1017: doc-floor
                   1018: doc-fround
                   1019: doc-f**
                   1020: doc-fsqrt
                   1021: doc-fexp
                   1022: doc-fexpm1
                   1023: doc-fln
                   1024: doc-flnp1
                   1025: doc-flog
                   1026: doc-falog
                   1027: doc-fsin
                   1028: doc-fcos
                   1029: doc-fsincos
                   1030: doc-ftan
                   1031: doc-fasin
                   1032: doc-facos
                   1033: doc-fatan
                   1034: doc-fatan2
                   1035: doc-fsinh
                   1036: doc-fcosh
                   1037: doc-ftanh
                   1038: doc-fasinh
                   1039: doc-facosh
                   1040: doc-fatanh
                   1041: 
                   1042: @node Stack Manipulation, Memory, Arithmetic, Words
                   1043: @section Stack Manipulation
                   1044: @cindex stack manipulation words
                   1045: 
                   1046: @cindex floating-point stack in the standard
                   1047: Gforth has a data stack (aka parameter stack) for characters, cells,
                   1048: addresses, and double cells, a floating point stack for floating point
                   1049: numbers, a return stack for storing the return addresses of colon
                   1050: definitions and other data, and a locals stack for storing local
                   1051: variables. Note that while every sane Forth has a separate floating
                   1052: point stack, this is not strictly required; an ANS Forth system could
                   1053: theoretically keep floating point numbers on the data stack. As an
                   1054: additional difficulty, you don't know how many cells a floating point
                   1055: number takes. It is reportedly possible to write words in a way that
                   1056: they work also for a unified stack model, but we do not recommend trying
                   1057: it. Instead, just say that your program has an environmental dependency
                   1058: on a separate FP stack.
                   1059: 
                   1060: @cindex return stack and locals
                   1061: @cindex locals and return stack
                   1062: Also, a Forth system is allowed to keep the local variables on the
                   1063: return stack. This is reasonable, as local variables usually eliminate
                   1064: the need to use the return stack explicitly. So, if you want to produce
                   1065: a standard complying program and if you are using local variables in a
                   1066: word, forget about return stack manipulations in that word (see the
                   1067: standard document for the exact rules).
                   1068: 
                   1069: @menu
                   1070: * Data stack::                  
                   1071: * Floating point stack::        
                   1072: * Return stack::                
                   1073: * Locals stack::                
                   1074: * Stack pointer manipulation::  
                   1075: @end menu
                   1076: 
                   1077: @node Data stack, Floating point stack, Stack Manipulation, Stack Manipulation
                   1078: @subsection Data stack
                   1079: @cindex data stack manipulation words
                   1080: @cindex stack manipulations words, data stack
                   1081: 
                   1082: doc-drop
                   1083: doc-nip
                   1084: doc-dup
                   1085: doc-over
                   1086: doc-tuck
                   1087: doc-swap
                   1088: doc-rot
                   1089: doc--rot
                   1090: doc-?dup
                   1091: doc-pick
                   1092: doc-roll
                   1093: doc-2drop
                   1094: doc-2nip
                   1095: doc-2dup
                   1096: doc-2over
                   1097: doc-2tuck
                   1098: doc-2swap
                   1099: doc-2rot
                   1100: 
                   1101: @node Floating point stack, Return stack, Data stack, Stack Manipulation
                   1102: @subsection Floating point stack
                   1103: @cindex floating-point stack manipulation words
                   1104: @cindex stack manipulation words, floating-point stack
                   1105: 
                   1106: doc-fdrop
                   1107: doc-fnip
                   1108: doc-fdup
                   1109: doc-fover
                   1110: doc-ftuck
                   1111: doc-fswap
                   1112: doc-frot
                   1113: 
                   1114: @node Return stack, Locals stack, Floating point stack, Stack Manipulation
                   1115: @subsection Return stack
                   1116: @cindex return stack manipulation words
                   1117: @cindex stack manipulation words, return stack
                   1118: 
                   1119: doc->r
                   1120: doc-r>
                   1121: doc-r@
                   1122: doc-rdrop
                   1123: doc-2>r
                   1124: doc-2r>
                   1125: doc-2r@
                   1126: doc-2rdrop
                   1127: 
                   1128: @node Locals stack, Stack pointer manipulation, Return stack, Stack Manipulation
                   1129: @subsection Locals stack
                   1130: 
                   1131: @node Stack pointer manipulation,  , Locals stack, Stack Manipulation
                   1132: @subsection Stack pointer manipulation
                   1133: @cindex stack pointer manipulation words
                   1134: 
                   1135: doc-sp@
                   1136: doc-sp!
                   1137: doc-fp@
                   1138: doc-fp!
                   1139: doc-rp@
                   1140: doc-rp!
                   1141: doc-lp@
                   1142: doc-lp!
                   1143: 
                   1144: @node Memory, Control Structures, Stack Manipulation, Words
                   1145: @section Memory
                   1146: @cindex Memory words
                   1147: 
                   1148: @menu
                   1149: * Memory Access::      
                   1150: * Address arithmetic::          
                   1151: * Memory Blocks::         
                   1152: @end menu
                   1153: 
                   1154: @node Memory Access, Address arithmetic, Memory, Memory
                   1155: @subsection Memory Access
                   1156: @cindex memory access words
                   1157: 
                   1158: doc-@
                   1159: doc-!
                   1160: doc-+!
                   1161: doc-c@
                   1162: doc-c!
                   1163: doc-2@
                   1164: doc-2!
                   1165: doc-f@
                   1166: doc-f!
                   1167: doc-sf@
                   1168: doc-sf!
                   1169: doc-df@
                   1170: doc-df!
                   1171: 
                   1172: @node Address arithmetic, Memory Blocks, Memory Access, Memory
                   1173: @subsection Address arithmetic
                   1174: @cindex address arithmetic words
                   1175: 
                   1176: ANS Forth does not specify the sizes of the data types. Instead, it
                   1177: offers a number of words for computing sizes and doing address
                   1178: arithmetic. Basically, address arithmetic is performed in terms of
                   1179: address units (aus); on most systems the address unit is one byte. Note
                   1180: that a character may have more than one au, so @code{chars} is no noop
                   1181: (on systems where it is a noop, it compiles to nothing).
                   1182: 
                   1183: @cindex alignment of addresses for types
                   1184: ANS Forth also defines words for aligning addresses for specific
                   1185: types. Many computers require that accesses to specific data types
                   1186: must only occur at specific addresses; e.g., that cells may only be
                   1187: accessed at addresses divisible by 4. Even if a machine allows unaligned
                   1188: accesses, it can usually perform aligned accesses faster. 
                   1189: 
                   1190: For the performance-conscious: alignment operations are usually only
                   1191: necessary during the definition of a data structure, not during the
                   1192: (more frequent) accesses to it.
                   1193: 
                   1194: ANS Forth defines no words for character-aligning addresses. This is not
                   1195: an oversight, but reflects the fact that addresses that are not
                   1196: char-aligned have no use in the standard and therefore will not be
                   1197: created.
                   1198: 
                   1199: @cindex @code{CREATE} and alignment
                   1200: The standard guarantees that addresses returned by @code{CREATE}d words
                   1201: are cell-aligned; in addition, Gforth guarantees that these addresses
                   1202: are aligned for all purposes.
                   1203: 
                   1204: Note that the standard defines a word @code{char}, which has nothing to
                   1205: do with address arithmetic.
                   1206: 
                   1207: doc-chars
                   1208: doc-char+
                   1209: doc-cells
                   1210: doc-cell+
                   1211: doc-cell
                   1212: doc-align
                   1213: doc-aligned
                   1214: doc-floats
                   1215: doc-float+
                   1216: doc-float
                   1217: doc-falign
                   1218: doc-faligned
                   1219: doc-sfloats
                   1220: doc-sfloat+
                   1221: doc-sfalign
                   1222: doc-sfaligned
                   1223: doc-dfloats
                   1224: doc-dfloat+
                   1225: doc-dfalign
                   1226: doc-dfaligned
                   1227: doc-maxalign
                   1228: doc-maxaligned
                   1229: doc-cfalign
                   1230: doc-cfaligned
                   1231: doc-address-unit-bits
                   1232: 
                   1233: @node Memory Blocks,  , Address arithmetic, Memory
                   1234: @subsection Memory Blocks
                   1235: @cindex memory block words
                   1236: 
                   1237: doc-move
                   1238: doc-erase
                   1239: 
                   1240: While the previous words work on address units, the rest works on
                   1241: characters.
                   1242: 
                   1243: doc-cmove
                   1244: doc-cmove>
                   1245: doc-fill
                   1246: doc-blank
                   1247: 
                   1248: @node Control Structures, Locals, Memory, Words
                   1249: @section Control Structures
                   1250: @cindex control structures
                   1251: 
                   1252: Control structures in Forth cannot be used in interpret state, only in
                   1253: compile state@footnote{More precisely, they have no interpretation
                   1254: semantics (@pxref{Interpretation and Compilation Semantics})}, i.e., in
                   1255: a colon definition. We do not like this limitation, but have not seen a
                   1256: satisfying way around it yet, although many schemes have been proposed.
                   1257: 
                   1258: @menu
                   1259: * Selection::                   
                   1260: * Simple Loops::                
                   1261: * Counted Loops::               
                   1262: * Arbitrary control structures::  
                   1263: * Calls and returns::           
                   1264: * Exception Handling::          
                   1265: @end menu
                   1266: 
                   1267: @node Selection, Simple Loops, Control Structures, Control Structures
                   1268: @subsection Selection
                   1269: @cindex selection control structures
                   1270: @cindex control structures for selection
                   1271: 
                   1272: @cindex @code{IF} control structure
                   1273: @example
                   1274: @var{flag}
                   1275: IF
                   1276:   @var{code}
                   1277: ENDIF
                   1278: @end example
                   1279: or
                   1280: @example
                   1281: @var{flag}
                   1282: IF
                   1283:   @var{code1}
                   1284: ELSE
                   1285:   @var{code2}
                   1286: ENDIF
                   1287: @end example
                   1288: 
                   1289: You can use @code{THEN} instead of @code{ENDIF}. Indeed, @code{THEN} is
                   1290: standard, and @code{ENDIF} is not, although it is quite popular. We
                   1291: recommend using @code{ENDIF}, because it is less confusing for people
                   1292: who also know other languages (and is not prone to reinforcing negative
                   1293: prejudices against Forth in these people). Adding @code{ENDIF} to a
                   1294: system that only supplies @code{THEN} is simple:
                   1295: @example
                   1296: : endif   POSTPONE then ; immediate
                   1297: @end example
                   1298: 
                   1299: [According to @cite{Webster's New Encyclopedic Dictionary}, @dfn{then
                   1300: (adv.)}  has the following meanings:
                   1301: @quotation
                   1302: ... 2b: following next after in order ... 3d: as a necessary consequence
                   1303: (if you were there, then you saw them).
                   1304: @end quotation
                   1305: Forth's @code{THEN} has the meaning 2b, whereas @code{THEN} in Pascal
                   1306: and many other programming languages has the meaning 3d.]
                   1307: 
                   1308: Gforth also provides the words @code{?dup-if} and @code{?dup-0=-if}, so
                   1309: you can avoid using @code{?dup}. Using these alternatives is also more
                   1310: efficient than using @code{?dup}. Definitions in plain standard Forth
                   1311: for @code{ENDIF}, @code{?DUP-IF} and @code{?DUP-0=-IF} are provided in
                   1312: @file{compat/control.fs}.
                   1313: 
                   1314: @cindex @code{CASE} control structure
                   1315: @example
                   1316: @var{n}
                   1317: CASE
                   1318:   @var{n1} OF @var{code1} ENDOF
                   1319:   @var{n2} OF @var{code2} ENDOF
                   1320:   @dots{}
                   1321: ENDCASE
                   1322: @end example
                   1323: 
                   1324: Executes the first @var{codei}, where the @var{ni} is equal to
                   1325: @var{n}. A default case can be added by simply writing the code after
                   1326: the last @code{ENDOF}. It may use @var{n}, which is on top of the stack,
                   1327: but must not consume it.
                   1328: 
                   1329: @node Simple Loops, Counted Loops, Selection, Control Structures
                   1330: @subsection Simple Loops
                   1331: @cindex simple loops
                   1332: @cindex loops without count 
                   1333: 
                   1334: @cindex @code{WHILE} loop
                   1335: @example
                   1336: BEGIN
                   1337:   @var{code1}
                   1338:   @var{flag}
                   1339: WHILE
                   1340:   @var{code2}
                   1341: REPEAT
                   1342: @end example
                   1343: 
                   1344: @var{code1} is executed and @var{flag} is computed. If it is true,
                   1345: @var{code2} is executed and the loop is restarted; If @var{flag} is
                   1346: false, execution continues after the @code{REPEAT}.
                   1347: 
                   1348: @cindex @code{UNTIL} loop
                   1349: @example
                   1350: BEGIN
                   1351:   @var{code}
                   1352:   @var{flag}
                   1353: UNTIL
                   1354: @end example
                   1355: 
                   1356: @var{code} is executed. The loop is restarted if @code{flag} is false.
                   1357: 
                   1358: @cindex endless loop
                   1359: @cindex loops, endless
                   1360: @example
                   1361: BEGIN
                   1362:   @var{code}
                   1363: AGAIN
                   1364: @end example
                   1365: 
                   1366: This is an endless loop.
                   1367: 
                   1368: @node Counted Loops, Arbitrary control structures, Simple Loops, Control Structures
                   1369: @subsection Counted Loops
                   1370: @cindex counted loops
                   1371: @cindex loops, counted
                   1372: @cindex @code{DO} loops
                   1373: 
                   1374: The basic counted loop is:
                   1375: @example
                   1376: @var{limit} @var{start}
                   1377: ?DO
                   1378:   @var{body}
                   1379: LOOP
                   1380: @end example
                   1381: 
                   1382: This performs one iteration for every integer, starting from @var{start}
                   1383: and up to, but excluding @var{limit}. The counter, aka index, can be
                   1384: accessed with @code{i}. E.g., the loop
                   1385: @example
                   1386: 10 0 ?DO
                   1387:   i .
                   1388: LOOP
                   1389: @end example
                   1390: prints
                   1391: @example
                   1392: 0 1 2 3 4 5 6 7 8 9
                   1393: @end example
                   1394: The index of the innermost loop can be accessed with @code{i}, the index
                   1395: of the next loop with @code{j}, and the index of the third loop with
                   1396: @code{k}.
                   1397: 
                   1398: doc-i
                   1399: doc-j
                   1400: doc-k
                   1401: 
                   1402: The loop control data are kept on the return stack, so there are some
                   1403: restrictions on mixing return stack accesses and counted loop
                   1404: words. E.g., if you put values on the return stack outside the loop, you
                   1405: cannot read them inside the loop. If you put values on the return stack
                   1406: within a loop, you have to remove them before the end of the loop and
                   1407: before accessing the index of the loop.
                   1408: 
                   1409: There are several variations on the counted loop:
                   1410: 
                   1411: @code{LEAVE} leaves the innermost counted loop immediately.
                   1412: 
                   1413: If @var{start} is greater than @var{limit}, a @code{?DO} loop is entered
                   1414: (and @code{LOOP} iterates until they become equal by wrap-around
                   1415: arithmetic). This behaviour is usually not what you want. Therefore,
                   1416: Gforth offers @code{+DO} and @code{U+DO} (as replacements for
                   1417: @code{?DO}), which do not enter the loop if @var{start} is greater than
                   1418: @var{limit}; @code{+DO} is for signed loop parameters, @code{U+DO} for
                   1419: unsigned loop parameters.
                   1420: 
                   1421: @code{LOOP} can be replaced with @code{@var{n} +LOOP}; this updates the
                   1422: index by @var{n} instead of by 1. The loop is terminated when the border
                   1423: between @var{limit-1} and @var{limit} is crossed. E.g.:
                   1424: 
                   1425: @code{4 0 +DO  i .  2 +LOOP}   prints @code{0 2}
                   1426: 
                   1427: @code{4 1 +DO  i .  2 +LOOP}   prints @code{1 3}
                   1428: 
                   1429: @cindex negative increment for counted loops
                   1430: @cindex counted loops with negative increment
                   1431: The behaviour of @code{@var{n} +LOOP} is peculiar when @var{n} is negative:
                   1432: 
                   1433: @code{-1 0 ?DO  i .  -1 +LOOP}  prints @code{0 -1}
                   1434: 
                   1435: @code{ 0 0 ?DO  i .  -1 +LOOP}  prints nothing
                   1436: 
                   1437: Therefore we recommend avoiding @code{@var{n} +LOOP} with negative
                   1438: @var{n}. One alternative is @code{@var{u} -LOOP}, which reduces the
                   1439: index by @var{u} each iteration. The loop is terminated when the border
                   1440: between @var{limit+1} and @var{limit} is crossed. Gforth also provides
                   1441: @code{-DO} and @code{U-DO} for down-counting loops. E.g.:
                   1442: 
                   1443: @code{-2 0 -DO  i .  1 -LOOP}  prints @code{0 -1}
                   1444: 
                   1445: @code{-1 0 -DO  i .  1 -LOOP}  prints @code{0}
                   1446: 
                   1447: @code{ 0 0 -DO  i .  1 -LOOP}  prints nothing
                   1448: 
                   1449: Unfortunately, @code{+DO}, @code{U+DO}, @code{-DO}, @code{U-DO} and
                   1450: @code{-LOOP} are not in the ANS Forth standard. However, an
                   1451: implementation for these words that uses only standard words is provided
                   1452: in @file{compat/loops.fs}.
                   1453: 
                   1454: @code{?DO} can also be replaced by @code{DO}. @code{DO} always enters
                   1455: the loop, independent of the loop parameters. Do not use @code{DO}, even
                   1456: if you know that the loop is entered in any case. Such knowledge tends
                   1457: to become invalid during maintenance of a program, and then the
                   1458: @code{DO} will make trouble.
                   1459: 
                   1460: @code{UNLOOP} is used to prepare for an abnormal loop exit, e.g., via
                   1461: @code{EXIT}. @code{UNLOOP} removes the loop control parameters from the
                   1462: return stack so @code{EXIT} can get to its return address.
                   1463: 
                   1464: @cindex @code{FOR} loops
                   1465: Another counted loop is
                   1466: @example
                   1467: @var{n}
                   1468: FOR
                   1469:   @var{body}
                   1470: NEXT
                   1471: @end example
                   1472: This is the preferred loop of native code compiler writers who are too
                   1473: lazy to optimize @code{?DO} loops properly. In Gforth, this loop
                   1474: iterates @var{n+1} times; @code{i} produces values starting with @var{n}
                   1475: and ending with 0. Other Forth systems may behave differently, even if
                   1476: they support @code{FOR} loops. To avoid problems, don't use @code{FOR}
                   1477: loops.
                   1478: 
                   1479: @node Arbitrary control structures, Calls and returns, Counted Loops, Control Structures
                   1480: @subsection Arbitrary control structures
                   1481: @cindex control structures, user-defined
                   1482: 
                   1483: @cindex control-flow stack
                   1484: ANS Forth permits and supports using control structures in a non-nested
                   1485: way. Information about incomplete control structures is stored on the
                   1486: control-flow stack. This stack may be implemented on the Forth data
                   1487: stack, and this is what we have done in Gforth.
                   1488: 
                   1489: @cindex @code{orig}, control-flow stack item
                   1490: @cindex @code{dest}, control-flow stack item
                   1491: An @i{orig} entry represents an unresolved forward branch, a @i{dest}
                   1492: entry represents a backward branch target. A few words are the basis for
                   1493: building any control structure possible (except control structures that
                   1494: need storage, like calls, coroutines, and backtracking).
                   1495: 
                   1496: doc-if
                   1497: doc-ahead
                   1498: doc-then
                   1499: doc-begin
                   1500: doc-until
                   1501: doc-again
                   1502: doc-cs-pick
                   1503: doc-cs-roll
                   1504: 
                   1505: On many systems control-flow stack items take one word, in Gforth they
                   1506: currently take three (this may change in the future). Therefore it is a
                   1507: really good idea to manipulate the control flow stack with
                   1508: @code{cs-pick} and @code{cs-roll}, not with data stack manipulation
                   1509: words.
                   1510: 
                   1511: Some standard control structure words are built from these words:
                   1512: 
                   1513: doc-else
                   1514: doc-while
                   1515: doc-repeat
                   1516: 
                   1517: Gforth adds some more control-structure words:
                   1518: 
                   1519: doc-endif
                   1520: doc-?dup-if
                   1521: doc-?dup-0=-if
                   1522: 
                   1523: Counted loop words constitute a separate group of words:
                   1524: 
                   1525: doc-?do
                   1526: doc-+do
                   1527: doc-u+do
                   1528: doc--do
                   1529: doc-u-do
                   1530: doc-do
                   1531: doc-for
                   1532: doc-loop
                   1533: doc-+loop
                   1534: doc--loop
                   1535: doc-next
                   1536: doc-leave
                   1537: doc-?leave
                   1538: doc-unloop
                   1539: doc-done
                   1540: 
                   1541: The standard does not allow using @code{cs-pick} and @code{cs-roll} on
                   1542: @i{do-sys}. Our system allows it, but it's your job to ensure that for
                   1543: every @code{?DO} etc. there is exactly one @code{UNLOOP} on any path
                   1544: through the definition (@code{LOOP} etc. compile an @code{UNLOOP} on the
                   1545: fall-through path). Also, you have to ensure that all @code{LEAVE}s are
                   1546: resolved (by using one of the loop-ending words or @code{DONE}).
                   1547: 
                   1548: Another group of control structure words are
                   1549: 
                   1550: doc-case
                   1551: doc-endcase
                   1552: doc-of
                   1553: doc-endof
                   1554: 
                   1555: @i{case-sys} and @i{of-sys} cannot be processed using @code{cs-pick} and
                   1556: @code{cs-roll}.
                   1557: 
                   1558: @subsubsection Programming Style
                   1559: 
                   1560: In order to ensure readability we recommend that you do not create
                   1561: arbitrary control structures directly, but define new control structure
                   1562: words for the control structure you want and use these words in your
                   1563: program.
                   1564: 
                   1565: E.g., instead of writing
                   1566: 
                   1567: @example
                   1568: begin
                   1569:   ...
                   1570: if [ 1 cs-roll ]
                   1571:   ...
                   1572: again then
                   1573: @end example
                   1574: 
                   1575: we recommend defining control structure words, e.g.,
                   1576: 
                   1577: @example
                   1578: : while ( dest -- orig dest )
                   1579:  POSTPONE if
                   1580:  1 cs-roll ; immediate
                   1581: 
                   1582: : repeat ( orig dest -- )
                   1583:  POSTPONE again
                   1584:  POSTPONE then ; immediate
                   1585: @end example
                   1586: 
                   1587: and then using these to create the control structure:
                   1588: 
                   1589: @example
                   1590: begin
                   1591:   ...
                   1592: while
                   1593:   ...
                   1594: repeat
                   1595: @end example
                   1596: 
                   1597: That's much easier to read, isn't it? Of course, @code{REPEAT} and
                   1598: @code{WHILE} are predefined, so in this example it would not be
                   1599: necessary to define them.
                   1600: 
                   1601: @node Calls and returns, Exception Handling, Arbitrary control structures, Control Structures
                   1602: @subsection Calls and returns
                   1603: @cindex calling a definition
                   1604: @cindex returning from a definition
                   1605: 
1.3       anton    1606: @cindex recursive definitions
                   1607: A definition can be called simply be writing the name of the definition
                   1608: to be called. Note that normally a definition is invisible during its
                   1609: definition. If you want to write a directly recursive definition, you
                   1610: can use @code{recursive} to make the current definition visible.
                   1611: 
                   1612: doc-recursive
                   1613: 
                   1614: Another way to perform a recursive call is
                   1615: 
                   1616: doc-recurse
                   1617: 
                   1618: @c @progstyle{
                   1619: I prefer using @code{recursive} to @code{recurse}, because
                   1620: calling the definition by name is more descriptive (if the name is
                   1621: well-chosen) than the somewhat cryptic @code{recurse}.  E.g., in a
                   1622: quicksort implementation, it is much better to read (and think) ``now
                   1623: sort the partitions'' than to read ``now do a recursive call''.
                   1624: 
                   1625: For mutual recursion, use @code{defer}red words, like this:
                   1626: 
                   1627: @example
                   1628: defer foo
                   1629: 
                   1630: : bar ( ... -- ... )
                   1631:  ... foo ... ;
                   1632: 
                   1633: :noname ( ... -- ... )
                   1634:  ... bar ... ;
                   1635: IS foo
                   1636: @end example
                   1637: 
                   1638: When the end of the definition is reached, it returns. An earlier return
                   1639: can be forced using
1.1       anton    1640: 
                   1641: doc-exit
                   1642: 
                   1643: Don't forget to clean up the return stack and @code{UNLOOP} any
                   1644: outstanding @code{?DO}...@code{LOOP}s before @code{EXIT}ing. The
                   1645: primitive compiled by @code{EXIT} is
                   1646: 
                   1647: doc-;s
                   1648: 
                   1649: @node Exception Handling,  , Calls and returns, Control Structures
                   1650: @subsection Exception Handling
                   1651: @cindex Exceptions
                   1652: 
                   1653: doc-catch
                   1654: doc-throw
                   1655: 
                   1656: @node Locals, Defining Words, Control Structures, Words
                   1657: @section Locals
                   1658: @cindex locals
                   1659: 
                   1660: Local variables can make Forth programming more enjoyable and Forth
                   1661: programs easier to read. Unfortunately, the locals of ANS Forth are
                   1662: laden with restrictions. Therefore, we provide not only the ANS Forth
                   1663: locals wordset, but also our own, more powerful locals wordset (we
                   1664: implemented the ANS Forth locals wordset through our locals wordset).
                   1665: 
                   1666: The ideas in this section have also been published in the paper
                   1667: @cite{Automatic Scoping of Local Variables} by M. Anton Ertl, presented
                   1668: at EuroForth '94; it is available at
                   1669: @*@url{http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz}.
                   1670: 
                   1671: @menu
                   1672: * Gforth locals::               
                   1673: * ANS Forth locals::            
                   1674: @end menu
                   1675: 
                   1676: @node Gforth locals, ANS Forth locals, Locals, Locals
                   1677: @subsection Gforth locals
                   1678: @cindex Gforth locals
                   1679: @cindex locals, Gforth style
                   1680: 
                   1681: Locals can be defined with
                   1682: 
                   1683: @example
                   1684: @{ local1 local2 ... -- comment @}
                   1685: @end example
                   1686: or
                   1687: @example
                   1688: @{ local1 local2 ... @}
                   1689: @end example
                   1690: 
                   1691: E.g.,
                   1692: @example
                   1693: : max @{ n1 n2 -- n3 @}
                   1694:  n1 n2 > if
                   1695:    n1
                   1696:  else
                   1697:    n2
                   1698:  endif ;
                   1699: @end example
                   1700: 
                   1701: The similarity of locals definitions with stack comments is intended. A
                   1702: locals definition often replaces the stack comment of a word. The order
                   1703: of the locals corresponds to the order in a stack comment and everything
                   1704: after the @code{--} is really a comment.
                   1705: 
                   1706: This similarity has one disadvantage: It is too easy to confuse locals
                   1707: declarations with stack comments, causing bugs and making them hard to
                   1708: find. However, this problem can be avoided by appropriate coding
                   1709: conventions: Do not use both notations in the same program. If you do,
                   1710: they should be distinguished using additional means, e.g. by position.
                   1711: 
                   1712: @cindex types of locals
                   1713: @cindex locals types
                   1714: The name of the local may be preceded by a type specifier, e.g.,
                   1715: @code{F:} for a floating point value:
                   1716: 
                   1717: @example
                   1718: : CX* @{ F: Ar F: Ai F: Br F: Bi -- Cr Ci @}
                   1719: \ complex multiplication
                   1720:  Ar Br f* Ai Bi f* f-
                   1721:  Ar Bi f* Ai Br f* f+ ;
                   1722: @end example
                   1723: 
                   1724: @cindex flavours of locals
                   1725: @cindex locals flavours
                   1726: @cindex value-flavoured locals
                   1727: @cindex variable-flavoured locals
                   1728: Gforth currently supports cells (@code{W:}, @code{W^}), doubles
                   1729: (@code{D:}, @code{D^}), floats (@code{F:}, @code{F^}) and characters
                   1730: (@code{C:}, @code{C^}) in two flavours: a value-flavoured local (defined
                   1731: with @code{W:}, @code{D:} etc.) produces its value and can be changed
                   1732: with @code{TO}. A variable-flavoured local (defined with @code{W^} etc.)
                   1733: produces its address (which becomes invalid when the variable's scope is
                   1734: left). E.g., the standard word @code{emit} can be defined in terms of
                   1735: @code{type} like this:
                   1736: 
                   1737: @example
                   1738: : emit @{ C^ char* -- @}
                   1739:     char* 1 type ;
                   1740: @end example
                   1741: 
                   1742: @cindex default type of locals
                   1743: @cindex locals, default type
                   1744: A local without type specifier is a @code{W:} local. Both flavours of
                   1745: locals are initialized with values from the data or FP stack.
                   1746: 
                   1747: Currently there is no way to define locals with user-defined data
                   1748: structures, but we are working on it.
                   1749: 
                   1750: Gforth allows defining locals everywhere in a colon definition. This
                   1751: poses the following questions:
                   1752: 
                   1753: @menu
                   1754: * Where are locals visible by name?::  
                   1755: * How long do locals live?::    
                   1756: * Programming Style::           
                   1757: * Implementation::              
                   1758: @end menu
                   1759: 
                   1760: @node Where are locals visible by name?, How long do locals live?, Gforth locals, Gforth locals
                   1761: @subsubsection Where are locals visible by name?
                   1762: @cindex locals visibility
                   1763: @cindex visibility of locals
                   1764: @cindex scope of locals
                   1765: 
                   1766: Basically, the answer is that locals are visible where you would expect
                   1767: it in block-structured languages, and sometimes a little longer. If you
                   1768: want to restrict the scope of a local, enclose its definition in
                   1769: @code{SCOPE}...@code{ENDSCOPE}.
                   1770: 
                   1771: doc-scope
                   1772: doc-endscope
                   1773: 
                   1774: These words behave like control structure words, so you can use them
                   1775: with @code{CS-PICK} and @code{CS-ROLL} to restrict the scope in
                   1776: arbitrary ways.
                   1777: 
                   1778: If you want a more exact answer to the visibility question, here's the
                   1779: basic principle: A local is visible in all places that can only be
                   1780: reached through the definition of the local@footnote{In compiler
                   1781: construction terminology, all places dominated by the definition of the
                   1782: local.}. In other words, it is not visible in places that can be reached
                   1783: without going through the definition of the local. E.g., locals defined
                   1784: in @code{IF}...@code{ENDIF} are visible until the @code{ENDIF}, locals
                   1785: defined in @code{BEGIN}...@code{UNTIL} are visible after the
                   1786: @code{UNTIL} (until, e.g., a subsequent @code{ENDSCOPE}).
                   1787: 
                   1788: The reasoning behind this solution is: We want to have the locals
                   1789: visible as long as it is meaningful. The user can always make the
                   1790: visibility shorter by using explicit scoping. In a place that can
                   1791: only be reached through the definition of a local, the meaning of a
                   1792: local name is clear. In other places it is not: How is the local
                   1793: initialized at the control flow path that does not contain the
                   1794: definition? Which local is meant, if the same name is defined twice in
                   1795: two independent control flow paths?
                   1796: 
                   1797: This should be enough detail for nearly all users, so you can skip the
                   1798: rest of this section. If you really must know all the gory details and
                   1799: options, read on.
                   1800: 
                   1801: In order to implement this rule, the compiler has to know which places
                   1802: are unreachable. It knows this automatically after @code{AHEAD},
                   1803: @code{AGAIN}, @code{EXIT} and @code{LEAVE}; in other cases (e.g., after
                   1804: most @code{THROW}s), you can use the word @code{UNREACHABLE} to tell the
                   1805: compiler that the control flow never reaches that place. If
                   1806: @code{UNREACHABLE} is not used where it could, the only consequence is
                   1807: that the visibility of some locals is more limited than the rule above
                   1808: says. If @code{UNREACHABLE} is used where it should not (i.e., if you
                   1809: lie to the compiler), buggy code will be produced.
                   1810: 
                   1811: doc-unreachable
                   1812: 
                   1813: Another problem with this rule is that at @code{BEGIN}, the compiler
                   1814: does not know which locals will be visible on the incoming
                   1815: back-edge. All problems discussed in the following are due to this
                   1816: ignorance of the compiler (we discuss the problems using @code{BEGIN}
                   1817: loops as examples; the discussion also applies to @code{?DO} and other
                   1818: loops). Perhaps the most insidious example is:
                   1819: @example
                   1820: AHEAD
                   1821: BEGIN
                   1822:   x
                   1823: [ 1 CS-ROLL ] THEN
                   1824:   @{ x @}
                   1825:   ...
                   1826: UNTIL
                   1827: @end example
                   1828: 
                   1829: This should be legal according to the visibility rule. The use of
                   1830: @code{x} can only be reached through the definition; but that appears
                   1831: textually below the use.
                   1832: 
                   1833: From this example it is clear that the visibility rules cannot be fully
                   1834: implemented without major headaches. Our implementation treats common
                   1835: cases as advertised and the exceptions are treated in a safe way: The
                   1836: compiler makes a reasonable guess about the locals visible after a
                   1837: @code{BEGIN}; if it is too pessimistic, the
                   1838: user will get a spurious error about the local not being defined; if the
                   1839: compiler is too optimistic, it will notice this later and issue a
                   1840: warning. In the case above the compiler would complain about @code{x}
                   1841: being undefined at its use. You can see from the obscure examples in
                   1842: this section that it takes quite unusual control structures to get the
                   1843: compiler into trouble, and even then it will often do fine.
                   1844: 
                   1845: If the @code{BEGIN} is reachable from above, the most optimistic guess
                   1846: is that all locals visible before the @code{BEGIN} will also be
                   1847: visible after the @code{BEGIN}. This guess is valid for all loops that
                   1848: are entered only through the @code{BEGIN}, in particular, for normal
                   1849: @code{BEGIN}...@code{WHILE}...@code{REPEAT} and
                   1850: @code{BEGIN}...@code{UNTIL} loops and it is implemented in our
                   1851: compiler. When the branch to the @code{BEGIN} is finally generated by
                   1852: @code{AGAIN} or @code{UNTIL}, the compiler checks the guess and
                   1853: warns the user if it was too optimistic:
                   1854: @example
                   1855: IF
                   1856:   @{ x @}
                   1857: BEGIN
                   1858:   \ x ? 
                   1859: [ 1 cs-roll ] THEN
                   1860:   ...
                   1861: UNTIL
                   1862: @end example
                   1863: 
                   1864: Here, @code{x} lives only until the @code{BEGIN}, but the compiler
                   1865: optimistically assumes that it lives until the @code{THEN}. It notices
                   1866: this difference when it compiles the @code{UNTIL} and issues a
                   1867: warning. The user can avoid the warning, and make sure that @code{x}
                   1868: is not used in the wrong area by using explicit scoping:
                   1869: @example
                   1870: IF
                   1871:   SCOPE
                   1872:   @{ x @}
                   1873:   ENDSCOPE
                   1874: BEGIN
                   1875: [ 1 cs-roll ] THEN
                   1876:   ...
                   1877: UNTIL
                   1878: @end example
                   1879: 
                   1880: Since the guess is optimistic, there will be no spurious error messages
                   1881: about undefined locals.
                   1882: 
                   1883: If the @code{BEGIN} is not reachable from above (e.g., after
                   1884: @code{AHEAD} or @code{EXIT}), the compiler cannot even make an
                   1885: optimistic guess, as the locals visible after the @code{BEGIN} may be
                   1886: defined later. Therefore, the compiler assumes that no locals are
                   1887: visible after the @code{BEGIN}. However, the user can use
                   1888: @code{ASSUME-LIVE} to make the compiler assume that the same locals are
                   1889: visible at the BEGIN as at the point where the top control-flow stack
                   1890: item was created.
                   1891: 
                   1892: doc-assume-live
                   1893: 
                   1894: E.g.,
                   1895: @example
                   1896: @{ x @}
                   1897: AHEAD
                   1898: ASSUME-LIVE
                   1899: BEGIN
                   1900:   x
                   1901: [ 1 CS-ROLL ] THEN
                   1902:   ...
                   1903: UNTIL
                   1904: @end example
                   1905: 
                   1906: Other cases where the locals are defined before the @code{BEGIN} can be
                   1907: handled by inserting an appropriate @code{CS-ROLL} before the
                   1908: @code{ASSUME-LIVE} (and changing the control-flow stack manipulation
                   1909: behind the @code{ASSUME-LIVE}).
                   1910: 
                   1911: Cases where locals are defined after the @code{BEGIN} (but should be
                   1912: visible immediately after the @code{BEGIN}) can only be handled by
                   1913: rearranging the loop. E.g., the ``most insidious'' example above can be
                   1914: arranged into:
                   1915: @example
                   1916: BEGIN
                   1917:   @{ x @}
                   1918:   ... 0=
                   1919: WHILE
                   1920:   x
                   1921: REPEAT
                   1922: @end example
                   1923: 
                   1924: @node How long do locals live?, Programming Style, Where are locals visible by name?, Gforth locals
                   1925: @subsubsection How long do locals live?
                   1926: @cindex locals lifetime
                   1927: @cindex lifetime of locals
                   1928: 
                   1929: The right answer for the lifetime question would be: A local lives at
                   1930: least as long as it can be accessed. For a value-flavoured local this
                   1931: means: until the end of its visibility. However, a variable-flavoured
                   1932: local could be accessed through its address far beyond its visibility
                   1933: scope. Ultimately, this would mean that such locals would have to be
                   1934: garbage collected. Since this entails un-Forth-like implementation
                   1935: complexities, I adopted the same cowardly solution as some other
                   1936: languages (e.g., C): The local lives only as long as it is visible;
                   1937: afterwards its address is invalid (and programs that access it
                   1938: afterwards are erroneous).
                   1939: 
                   1940: @node Programming Style, Implementation, How long do locals live?, Gforth locals
                   1941: @subsubsection Programming Style
                   1942: @cindex locals programming style
                   1943: @cindex programming style, locals
                   1944: 
                   1945: The freedom to define locals anywhere has the potential to change
                   1946: programming styles dramatically. In particular, the need to use the
                   1947: return stack for intermediate storage vanishes. Moreover, all stack
                   1948: manipulations (except @code{PICK}s and @code{ROLL}s with run-time
                   1949: determined arguments) can be eliminated: If the stack items are in the
                   1950: wrong order, just write a locals definition for all of them; then
                   1951: write the items in the order you want.
                   1952: 
                   1953: This seems a little far-fetched and eliminating stack manipulations is
                   1954: unlikely to become a conscious programming objective. Still, the number
                   1955: of stack manipulations will be reduced dramatically if local variables
                   1956: are used liberally (e.g., compare @code{max} in @ref{Gforth locals} with
                   1957: a traditional implementation of @code{max}).
                   1958: 
                   1959: This shows one potential benefit of locals: making Forth programs more
                   1960: readable. Of course, this benefit will only be realized if the
                   1961: programmers continue to honour the principle of factoring instead of
                   1962: using the added latitude to make the words longer.
                   1963: 
                   1964: @cindex single-assignment style for locals
                   1965: Using @code{TO} can and should be avoided.  Without @code{TO},
                   1966: every value-flavoured local has only a single assignment and many
                   1967: advantages of functional languages apply to Forth. I.e., programs are
                   1968: easier to analyse, to optimize and to read: It is clear from the
                   1969: definition what the local stands for, it does not turn into something
                   1970: different later.
                   1971: 
                   1972: E.g., a definition using @code{TO} might look like this:
                   1973: @example
                   1974: : strcmp @{ addr1 u1 addr2 u2 -- n @}
                   1975:  u1 u2 min 0
                   1976:  ?do
                   1977:    addr1 c@@ addr2 c@@ -
                   1978:    ?dup-if
                   1979:      unloop exit
                   1980:    then
                   1981:    addr1 char+ TO addr1
                   1982:    addr2 char+ TO addr2
                   1983:  loop
                   1984:  u1 u2 - ;
                   1985: @end example
                   1986: Here, @code{TO} is used to update @code{addr1} and @code{addr2} at
                   1987: every loop iteration. @code{strcmp} is a typical example of the
                   1988: readability problems of using @code{TO}. When you start reading
                   1989: @code{strcmp}, you think that @code{addr1} refers to the start of the
                   1990: string. Only near the end of the loop you realize that it is something
                   1991: else.
                   1992: 
                   1993: This can be avoided by defining two locals at the start of the loop that
                   1994: are initialized with the right value for the current iteration.
                   1995: @example
                   1996: : strcmp @{ addr1 u1 addr2 u2 -- n @}
                   1997:  addr1 addr2
                   1998:  u1 u2 min 0 
                   1999:  ?do @{ s1 s2 @}
                   2000:    s1 c@@ s2 c@@ -
                   2001:    ?dup-if
                   2002:      unloop exit
                   2003:    then
                   2004:    s1 char+ s2 char+
                   2005:  loop
                   2006:  2drop
                   2007:  u1 u2 - ;
                   2008: @end example
                   2009: Here it is clear from the start that @code{s1} has a different value
                   2010: in every loop iteration.
                   2011: 
                   2012: @node Implementation,  , Programming Style, Gforth locals
                   2013: @subsubsection Implementation
                   2014: @cindex locals implementation
                   2015: @cindex implementation of locals
                   2016: 
                   2017: @cindex locals stack
                   2018: Gforth uses an extra locals stack. The most compelling reason for
                   2019: this is that the return stack is not float-aligned; using an extra stack
                   2020: also eliminates the problems and restrictions of using the return stack
                   2021: as locals stack. Like the other stacks, the locals stack grows toward
                   2022: lower addresses. A few primitives allow an efficient implementation:
                   2023: 
                   2024: doc-@local#
                   2025: doc-f@local#
                   2026: doc-laddr#
                   2027: doc-lp+!#
                   2028: doc-lp!
                   2029: doc->l
                   2030: doc-f>l
                   2031: 
                   2032: In addition to these primitives, some specializations of these
                   2033: primitives for commonly occurring inline arguments are provided for
                   2034: efficiency reasons, e.g., @code{@@local0} as specialization of
                   2035: @code{@@local#} for the inline argument 0. The following compiling words
                   2036: compile the right specialized version, or the general version, as
                   2037: appropriate:
                   2038: 
                   2039: doc-compile-@local
                   2040: doc-compile-f@local
                   2041: doc-compile-lp+!
                   2042: 
                   2043: Combinations of conditional branches and @code{lp+!#} like
                   2044: @code{?branch-lp+!#} (the locals pointer is only changed if the branch
                   2045: is taken) are provided for efficiency and correctness in loops.
                   2046: 
                   2047: A special area in the dictionary space is reserved for keeping the
                   2048: local variable names. @code{@{} switches the dictionary pointer to this
                   2049: area and @code{@}} switches it back and generates the locals
                   2050: initializing code. @code{W:} etc.@ are normal defining words. This
                   2051: special area is cleared at the start of every colon definition.
                   2052: 
                   2053: @cindex wordlist for defining locals
                   2054: A special feature of Gforth's dictionary is used to implement the
                   2055: definition of locals without type specifiers: every wordlist (aka
                   2056: vocabulary) has its own methods for searching
                   2057: etc. (@pxref{Wordlists}). For the present purpose we defined a wordlist
                   2058: with a special search method: When it is searched for a word, it
                   2059: actually creates that word using @code{W:}. @code{@{} changes the search
                   2060: order to first search the wordlist containing @code{@}}, @code{W:} etc.,
                   2061: and then the wordlist for defining locals without type specifiers.
                   2062: 
                   2063: The lifetime rules support a stack discipline within a colon
                   2064: definition: The lifetime of a local is either nested with other locals
                   2065: lifetimes or it does not overlap them.
                   2066: 
                   2067: At @code{BEGIN}, @code{IF}, and @code{AHEAD} no code for locals stack
                   2068: pointer manipulation is generated. Between control structure words
                   2069: locals definitions can push locals onto the locals stack. @code{AGAIN}
                   2070: is the simplest of the other three control flow words. It has to
                   2071: restore the locals stack depth of the corresponding @code{BEGIN}
                   2072: before branching. The code looks like this:
                   2073: @format
                   2074: @code{lp+!#} current-locals-size @minus{} dest-locals-size
                   2075: @code{branch} <begin>
                   2076: @end format
                   2077: 
                   2078: @code{UNTIL} is a little more complicated: If it branches back, it
                   2079: must adjust the stack just like @code{AGAIN}. But if it falls through,
                   2080: the locals stack must not be changed. The compiler generates the
                   2081: following code:
                   2082: @format
                   2083: @code{?branch-lp+!#} <begin> current-locals-size @minus{} dest-locals-size
                   2084: @end format
                   2085: The locals stack pointer is only adjusted if the branch is taken.
                   2086: 
                   2087: @code{THEN} can produce somewhat inefficient code:
                   2088: @format
                   2089: @code{lp+!#} current-locals-size @minus{} orig-locals-size
                   2090: <orig target>:
                   2091: @code{lp+!#} orig-locals-size @minus{} new-locals-size
                   2092: @end format
                   2093: The second @code{lp+!#} adjusts the locals stack pointer from the
                   2094: level at the @var{orig} point to the level after the @code{THEN}. The
                   2095: first @code{lp+!#} adjusts the locals stack pointer from the current
                   2096: level to the level at the orig point, so the complete effect is an
                   2097: adjustment from the current level to the right level after the
                   2098: @code{THEN}.
                   2099: 
                   2100: @cindex locals information on the control-flow stack
                   2101: @cindex control-flow stack items, locals information
                   2102: In a conventional Forth implementation a dest control-flow stack entry
                   2103: is just the target address and an orig entry is just the address to be
                   2104: patched. Our locals implementation adds a wordlist to every orig or dest
                   2105: item. It is the list of locals visible (or assumed visible) at the point
                   2106: described by the entry. Our implementation also adds a tag to identify
                   2107: the kind of entry, in particular to differentiate between live and dead
                   2108: (reachable and unreachable) orig entries.
                   2109: 
                   2110: A few unusual operations have to be performed on locals wordlists:
                   2111: 
                   2112: doc-common-list
                   2113: doc-sub-list?
                   2114: doc-list-size
                   2115: 
                   2116: Several features of our locals wordlist implementation make these
                   2117: operations easy to implement: The locals wordlists are organised as
                   2118: linked lists; the tails of these lists are shared, if the lists
                   2119: contain some of the same locals; and the address of a name is greater
                   2120: than the address of the names behind it in the list.
                   2121: 
                   2122: Another important implementation detail is the variable
                   2123: @code{dead-code}. It is used by @code{BEGIN} and @code{THEN} to
                   2124: determine if they can be reached directly or only through the branch
                   2125: that they resolve. @code{dead-code} is set by @code{UNREACHABLE},
                   2126: @code{AHEAD}, @code{EXIT} etc., and cleared at the start of a colon
                   2127: definition, by @code{BEGIN} and usually by @code{THEN}.
                   2128: 
                   2129: Counted loops are similar to other loops in most respects, but
                   2130: @code{LEAVE} requires special attention: It performs basically the same
                   2131: service as @code{AHEAD}, but it does not create a control-flow stack
                   2132: entry. Therefore the information has to be stored elsewhere;
                   2133: traditionally, the information was stored in the target fields of the
                   2134: branches created by the @code{LEAVE}s, by organizing these fields into a
                   2135: linked list. Unfortunately, this clever trick does not provide enough
                   2136: space for storing our extended control flow information. Therefore, we
                   2137: introduce another stack, the leave stack. It contains the control-flow
                   2138: stack entries for all unresolved @code{LEAVE}s.
                   2139: 
                   2140: Local names are kept until the end of the colon definition, even if
                   2141: they are no longer visible in any control-flow path. In a few cases
                   2142: this may lead to increased space needs for the locals name area, but
                   2143: usually less than reclaiming this space would cost in code size.
                   2144: 
                   2145: 
                   2146: @node ANS Forth locals,  , Gforth locals, Locals
                   2147: @subsection ANS Forth locals
                   2148: @cindex locals, ANS Forth style
                   2149: 
                   2150: The ANS Forth locals wordset does not define a syntax for locals, but
                   2151: words that make it possible to define various syntaxes. One of the
                   2152: possible syntaxes is a subset of the syntax we used in the Gforth locals
                   2153: wordset, i.e.:
                   2154: 
                   2155: @example
                   2156: @{ local1 local2 ... -- comment @}
                   2157: @end example
                   2158: or
                   2159: @example
                   2160: @{ local1 local2 ... @}
                   2161: @end example
                   2162: 
                   2163: The order of the locals corresponds to the order in a stack comment. The
                   2164: restrictions are:
                   2165: 
                   2166: @itemize @bullet
                   2167: @item
                   2168: Locals can only be cell-sized values (no type specifiers are allowed).
                   2169: @item
                   2170: Locals can be defined only outside control structures.
                   2171: @item
                   2172: Locals can interfere with explicit usage of the return stack. For the
                   2173: exact (and long) rules, see the standard. If you don't use return stack
                   2174: accessing words in a definition using locals, you will be all right. The
                   2175: purpose of this rule is to make locals implementation on the return
                   2176: stack easier.
                   2177: @item
                   2178: The whole definition must be in one line.
                   2179: @end itemize
                   2180: 
                   2181: Locals defined in this way behave like @code{VALUE}s (@xref{Simple
                   2182: Defining Words}). I.e., they are initialized from the stack. Using their
                   2183: name produces their value. Their value can be changed using @code{TO}.
                   2184: 
                   2185: Since this syntax is supported by Gforth directly, you need not do
                   2186: anything to use it. If you want to port a program using this syntax to
                   2187: another ANS Forth system, use @file{compat/anslocal.fs} to implement the
                   2188: syntax on the other system.
                   2189: 
                   2190: Note that a syntax shown in the standard, section A.13 looks
                   2191: similar, but is quite different in having the order of locals
                   2192: reversed. Beware!
                   2193: 
                   2194: The ANS Forth locals wordset itself consists of the following word
                   2195: 
                   2196: doc-(local)
                   2197: 
                   2198: The ANS Forth locals extension wordset defines a syntax, but it is so
                   2199: awful that we strongly recommend not to use it. We have implemented this
                   2200: syntax to make porting to Gforth easy, but do not document it here. The
                   2201: problem with this syntax is that the locals are defined in an order
                   2202: reversed with respect to the standard stack comment notation, making
                   2203: programs harder to read, and easier to misread and miswrite. The only
                   2204: merit of this syntax is that it is easy to implement using the ANS Forth
                   2205: locals wordset.
                   2206: 
1.5     ! anton    2207: @node Defining Words, Structures, Locals, Words
1.1       anton    2208: @section Defining Words
                   2209: @cindex defining words
                   2210: 
                   2211: @menu
                   2212: * Simple Defining Words::       
                   2213: * Colon Definitions::           
                   2214: * User-defined Defining Words::  
                   2215: * Supplying names::             
                   2216: * Interpretation and Compilation Semantics::  
                   2217: @end menu
                   2218: 
                   2219: @node Simple Defining Words, Colon Definitions, Defining Words, Defining Words
                   2220: @subsection Simple Defining Words
                   2221: @cindex simple defining words
                   2222: @cindex defining words, simple
                   2223: 
                   2224: doc-constant
                   2225: doc-2constant
                   2226: doc-fconstant
                   2227: doc-variable
                   2228: doc-2variable
                   2229: doc-fvariable
                   2230: doc-create
                   2231: doc-user
                   2232: doc-value
                   2233: doc-to
                   2234: doc-defer
                   2235: doc-is
                   2236: 
                   2237: @node Colon Definitions, User-defined Defining Words, Simple Defining Words, Defining Words
                   2238: @subsection Colon Definitions
                   2239: @cindex colon definitions
                   2240: 
                   2241: @example
                   2242: : name ( ... -- ... )
                   2243:     word1 word2 word3 ;
                   2244: @end example
                   2245: 
                   2246: creates a word called @code{name}, that, upon execution, executes
                   2247: @code{word1 word2 word3}. @code{name} is a @dfn{(colon) definition}.
                   2248: 
                   2249: The explanation above is somewhat superficial. @xref{Interpretation and
                   2250: Compilation Semantics} for an in-depth discussion of some of the issues
                   2251: involved.
                   2252: 
                   2253: doc-:
                   2254: doc-;
                   2255: 
                   2256: @node User-defined Defining Words, Supplying names, Colon Definitions, Defining Words
                   2257: @subsection User-defined Defining Words
                   2258: @cindex user-defined defining words
                   2259: @cindex defining words, user-defined
                   2260: 
                   2261: You can create new defining words simply by wrapping defining-time code
                   2262: around existing defining words and putting the sequence in a colon
                   2263: definition.
                   2264: 
                   2265: @cindex @code{CREATE} ... @code{DOES>}
                   2266: If you want the words defined with your defining words to behave
                   2267: differently from words defined with standard defining words, you can
                   2268: write your defining word like this:
                   2269: 
                   2270: @example
                   2271: : def-word ( "name" -- )
                   2272:     Create @var{code1}
                   2273: DOES> ( ... -- ... )
                   2274:     @var{code2} ;
                   2275: 
                   2276: def-word name
                   2277: @end example
                   2278: 
                   2279: Technically, this fragment defines a defining word @code{def-word}, and
                   2280: a word @code{name}; when you execute @code{name}, the address of the
                   2281: body of @code{name} is put on the data stack and @var{code2} is executed
                   2282: (the address of the body of @code{name} is the address @code{HERE}
                   2283: returns immediately after the @code{CREATE}).
                   2284: 
                   2285: In other words, if you make the following definitions:
                   2286: 
                   2287: @example
                   2288: : def-word1 ( "name" -- )
                   2289:     Create @var{code1} ;
                   2290: 
                   2291: : action1 ( ... -- ... )
                   2292:     @var{code2} ;
                   2293: 
                   2294: def-word name1
                   2295: @end example
                   2296: 
                   2297: Using @code{name1 action1} is equivalent to using @code{name}.
                   2298: 
                   2299: E.g., you can implement @code{Constant} in this way:
                   2300: 
                   2301: @example
                   2302: : constant ( w "name" -- )
                   2303:     create ,
                   2304: DOES> ( -- w )
                   2305:     @@ ;
                   2306: @end example
                   2307: 
                   2308: When you create a constant with @code{5 constant five}, first a new word
                   2309: @code{five} is created, then the value 5 is laid down in the body of
                   2310: @code{five} with @code{,}. When @code{five} is invoked, the address of
                   2311: the body is put on the stack, and @code{@@} retrieves the value 5.
                   2312: 
                   2313: @cindex stack effect of @code{DOES>}-parts
                   2314: @cindex @code{DOES>}-parts, stack effect
                   2315: In the example above the stack comment after the @code{DOES>} specifies
                   2316: the stack effect of the defined words, not the stack effect of the
                   2317: following code (the following code expects the address of the body on
                   2318: the top of stack, which is not reflected in the stack comment). This is
                   2319: the convention that I use and recommend (it clashes a bit with using
                   2320: locals declarations for stack effect specification, though).
                   2321: 
                   2322: @subsubsection Applications of @code{CREATE..DOES>}
                   2323: @cindex @code{CREATE} ... @code{DOES>}, applications
                   2324: 
                   2325: You may wonder how to use this feature. Here are some usage patterns:
                   2326: 
                   2327: @cindex factoring similar colon definitions
                   2328: When you see a sequence of code occurring several times, and you can
                   2329: identify a meaning, you will factor it out as a colon definition. When
                   2330: you see similar colon definitions, you can factor them using
                   2331: @code{CREATE..DOES>}. E.g., an assembler usually defines several words
                   2332: that look very similar:
                   2333: @example
                   2334: : ori, ( reg-target reg-source n -- )
                   2335:     0 asm-reg-reg-imm ;
                   2336: : andi, ( reg-target reg-source n -- )
                   2337:     1 asm-reg-reg-imm ;
                   2338: @end example
                   2339: 
                   2340: This could be factored with:
                   2341: @example
                   2342: : reg-reg-imm ( op-code -- )
                   2343:     create ,
                   2344: DOES> ( reg-target reg-source n -- )
                   2345:     @@ asm-reg-reg-imm ;
                   2346: 
                   2347: 0 reg-reg-imm ori,
                   2348: 1 reg-reg-imm andi,
                   2349: @end example
                   2350: 
                   2351: @cindex currying
                   2352: Another view of @code{CREATE..DOES>} is to consider it as a crude way to
                   2353: supply a part of the parameters for a word (known as @dfn{currying} in
                   2354: the functional language community). E.g., @code{+} needs two
                   2355: parameters. Creating versions of @code{+} with one parameter fixed can
                   2356: be done like this:
                   2357: @example
                   2358: : curry+ ( n1 -- )
                   2359:     create ,
                   2360: DOES> ( n2 -- n1+n2 )
                   2361:     @@ + ;
                   2362: 
                   2363:  3 curry+ 3+
                   2364: -2 curry+ 2-
                   2365: @end example
                   2366: 
                   2367: @subsubsection The gory details of @code{CREATE..DOES>}
                   2368: @cindex @code{CREATE} ... @code{DOES>}, details
                   2369: 
                   2370: doc-does>
                   2371: 
                   2372: @cindex @code{DOES>} in a separate definition
                   2373: This means that you need not use @code{CREATE} and @code{DOES>} in the
                   2374: same definition; E.g., you can put the @code{DOES>}-part in a separate
                   2375: definition. This allows us to, e.g., select among different DOES>-parts:
                   2376: @example
                   2377: : does1 
                   2378: DOES> ( ... -- ... )
                   2379:     ... ;
                   2380: 
                   2381: : does2
                   2382: DOES> ( ... -- ... )
                   2383:     ... ;
                   2384: 
                   2385: : def-word ( ... -- ... )
                   2386:     create ...
                   2387:     IF
                   2388:        does1
                   2389:     ELSE
                   2390:        does2
                   2391:     ENDIF ;
                   2392: @end example
                   2393: 
                   2394: @cindex @code{DOES>} in interpretation state
                   2395: In a standard program you can apply a @code{DOES>}-part only if the last
                   2396: word was defined with @code{CREATE}. In Gforth, the @code{DOES>}-part
                   2397: will override the behaviour of the last word defined in any case. In a
                   2398: standard program, you can use @code{DOES>} only in a colon
                   2399: definition. In Gforth, you can also use it in interpretation state, in a
                   2400: kind of one-shot mode:
                   2401: @example
                   2402: CREATE name ( ... -- ... )
                   2403:   @var{initialization}
                   2404: DOES>
                   2405:   @var{code} ;
                   2406: @end example
                   2407: This is equivalent to the standard
                   2408: @example
                   2409: :noname
                   2410: DOES>
                   2411:     @var{code} ;
                   2412: CREATE name EXECUTE ( ... -- ... )
                   2413:     @var{initialization}
                   2414: @end example
                   2415: 
                   2416: You can get the address of the body of a word with
                   2417: 
                   2418: doc->body
                   2419: 
                   2420: @node Supplying names, Interpretation and Compilation Semantics, User-defined Defining Words, Defining Words
                   2421: @subsection Supplying names for the defined words
                   2422: @cindex names for defined words
                   2423: @cindex defining words, name parameter
                   2424: 
                   2425: @cindex defining words, name given in a string
                   2426: By default, defining words take the names for the defined words from the
                   2427: input stream. Sometimes you want to supply the name from a string. You
                   2428: can do this with
                   2429: 
                   2430: doc-nextname
                   2431: 
                   2432: E.g.,
                   2433: 
                   2434: @example
                   2435: s" foo" nextname create
                   2436: @end example
                   2437: is equivalent to
                   2438: @example
                   2439: create foo
                   2440: @end example
                   2441: 
                   2442: @cindex defining words without name
                   2443: Sometimes you want to define a word without a name. You can do this with
                   2444: 
                   2445: doc-noname
                   2446: 
                   2447: @cindex execution token of last defined word
                   2448: To make any use of the newly defined word, you need its execution
                   2449: token. You can get it with
                   2450: 
                   2451: doc-lastxt
                   2452: 
                   2453: E.g., you can initialize a deferred word with an anonymous colon
                   2454: definition:
                   2455: @example
                   2456: Defer deferred
                   2457: noname : ( ... -- ... )
                   2458:   ... ;
                   2459: lastxt IS deferred
                   2460: @end example
                   2461: 
                   2462: @code{lastxt} also works when the last word was not defined as
                   2463: @code{noname}. 
                   2464: 
                   2465: The standard has also recognized the need for anonymous words and
                   2466: provides
                   2467: 
                   2468: doc-:noname
                   2469: 
                   2470: This leaves the execution token for the word on the stack after the
                   2471: closing @code{;}. You can rewrite the last example with @code{:noname}:
                   2472: @example
                   2473: Defer deferred
                   2474: :noname ( ... -- ... )
                   2475:   ... ;
                   2476: IS deferred
                   2477: @end example
                   2478: 
                   2479: @node Interpretation and Compilation Semantics,  , Supplying names, Defining Words
                   2480: @subsection Interpretation and Compilation Semantics
                   2481: @cindex semantics, interpretation and compilation
                   2482: 
                   2483: @cindex interpretation semantics
                   2484: The @dfn{interpretation semantics} of a word are what the text
                   2485: interpreter does when it encounters the word in interpret state. It also
                   2486: appears in some other contexts, e.g., the execution token returned by
                   2487: @code{' @var{word}} identifies the interpretation semantics of
                   2488: @var{word} (in other words, @code{' @var{word} execute} is equivalent to
                   2489: interpret-state text interpretation of @code{@var{word}}).
                   2490: 
                   2491: @cindex compilation semantics
                   2492: The @dfn{compilation semantics} of a word are what the text interpreter
                   2493: does when it encounters the word in compile state. It also appears in
                   2494: other contexts, e.g, @code{POSTPONE @var{word}} compiles@footnote{In
                   2495: standard terminology, ``appends to the current definition''.} the
                   2496: compilation semantics of @var{word}.
                   2497: 
                   2498: @cindex execution semantics
                   2499: The standard also talks about @dfn{execution semantics}. They are used
                   2500: only for defining the interpretation and compilation semantics of many
                   2501: words. By default, the interpretation semantics of a word are to
                   2502: @code{execute} its execution semantics, and the compilation semantics of
                   2503: a word are to @code{compile,} its execution semantics.@footnote{In
                   2504: standard terminology: The default interpretation semantics are its
                   2505: execution semantics; the default compilation semantics are to append its
                   2506: execution semantics to the execution semantics of the current
                   2507: definition.}
                   2508: 
                   2509: @cindex immediate words
                   2510: You can change the compilation semantics into @code{execute}ing the
                   2511: execution semantics with
                   2512: 
                   2513: doc-immediate
                   2514: 
                   2515: @cindex compile-only words
                   2516: You can remove the interpretation semantics of a word with
                   2517: 
                   2518: doc-compile-only
                   2519: doc-restrict
                   2520: 
                   2521: Note that ticking (@code{'}) compile-only words gives an error
                   2522: (``Interpreting a compile-only word'').
                   2523: 
                   2524: Gforth also allows you to define words with arbitrary combinations of
                   2525: interpretation and compilation semantics.
                   2526: 
                   2527: doc-interpret/compile:
                   2528: 
                   2529: This feature was introduced for implementing @code{TO} and @code{S"}. I
                   2530: recommend that you do not define such words, as cute as they may be:
                   2531: they make it hard to get at both parts of the word in some contexts.
                   2532: E.g., assume you want to get an execution token for the compilation
                   2533: part. Instead, define two words, one that embodies the interpretation
                   2534: part, and one that embodies the compilation part.
                   2535: 
                   2536: There is, however, a potentially useful application of this feature:
                   2537: Providing differing implementations for the default semantics. While
                   2538: this introduces redundancy and is therefore usually a bad idea, a
                   2539: performance improvement may be worth the trouble. E.g., consider the
                   2540: word @code{foobar}:
                   2541: 
                   2542: @example
                   2543: : foobar
                   2544:     foo bar ;
                   2545: @end example
                   2546: 
                   2547: Let us assume that @code{foobar} is called so frequently that the
                   2548: calling overhead would take a significant amount of the run-time. We can
                   2549: optimize it with @code{interpret/compile:}:
                   2550: 
                   2551: @example
                   2552: :noname
                   2553:    foo bar ;
                   2554: :noname
                   2555:    POSTPONE foo POSTPONE bar ;
                   2556: interpret/compile: foobar
                   2557: @end example
                   2558: 
                   2559: This definition has the same interpretation semantics and essentially
                   2560: the same compilation semantics as the simple definition of
                   2561: @code{foobar}, but the implementation of the compilation semantics is
                   2562: more efficient with respect to run-time.
                   2563: 
                   2564: @cindex state-smart words are a bad idea
                   2565: Some people try to use state-smart words to emulate the feature provided
                   2566: by @code{interpret/compile:} (words are state-smart if they check
                   2567: @code{STATE} during execution). E.g., they would try to code
                   2568: @code{foobar} like this:
                   2569: 
                   2570: @example
                   2571: : foobar
                   2572:   STATE @@
                   2573:   IF ( compilation state )
                   2574:     POSTPONE foo POSTPONE bar
                   2575:   ELSE
                   2576:     foo bar
                   2577:   ENDIF ; immediate
                   2578: @end example
                   2579: 
                   2580: While this works if @code{foobar} is processed only by the text
                   2581: interpreter, it does not work in other contexts (like @code{'} or
                   2582: @code{POSTPONE}). E.g., @code{' foobar} will produce an execution token
                   2583: for a state-smart word, not for the interpretation semantics of the
                   2584: original @code{foobar}; when you execute this execution token (directly
                   2585: with @code{EXECUTE} or indirectly through @code{COMPILE,}) in compile
                   2586: state, the result will not be what you expected (i.e., it will not
                   2587: perform @code{foo bar}). State-smart words are a bad idea. Simply don't
                   2588: write them!
                   2589: 
                   2590: @cindex defining words with arbitrary semantics combinations
                   2591: It is also possible to write defining words that define words with
                   2592: arbitrary combinations of interpretation and compilation semantics (or,
                   2593: preferably, arbitrary combinations of implementations of the default
                   2594: semantics). In general, this looks like:
                   2595: 
                   2596: @example
                   2597: : def-word
                   2598:     create-interpret/compile
                   2599:     @var{code1}
                   2600: interpretation>
                   2601:     @var{code2}
                   2602: <interpretation
                   2603: compilation>
                   2604:     @var{code3}
                   2605: <compilation ;
                   2606: @end example
                   2607: 
                   2608: For a @var{word} defined with @code{def-word}, the interpretation
                   2609: semantics are to push the address of the body of @var{word} and perform
                   2610: @var{code2}, and the compilation semantics are to push the address of
                   2611: the body of @var{word} and perform @var{code3}. E.g., @code{constant}
                   2612: can also be defined like this:
                   2613: 
                   2614: @example
                   2615: : constant ( n "name" -- )
                   2616:     create-interpret/compile
                   2617:     ,
                   2618: interpretation> ( -- n )
                   2619:     @@
                   2620: <interpretation
                   2621: compilation> ( compilation. -- ; run-time. -- n )
                   2622:     @@ postpone literal
                   2623: <compilation ;
                   2624: @end example
                   2625: 
                   2626: doc-create-interpret/compile
                   2627: doc-interpretation>
                   2628: doc-<interpretation
                   2629: doc-compilation>
                   2630: doc-<compilation
                   2631: 
                   2632: Note that words defined with @code{interpret/compile:} and
                   2633: @code{create-interpret/compile} have an extended header structure that
                   2634: differs from other words; however, unless you try to access them with
                   2635: plain address arithmetic, you should not notice this. Words for
                   2636: accessing the header structure usually know how to deal with this; e.g.,
                   2637: @code{' word >body} also gives you the body of a word created with
                   2638: @code{create-interpret/compile}.
                   2639: 
1.5     ! anton    2640: @c ----------------------------------------------------------
        !          2641: @node Structures, Objects, Defining Words, Words
        !          2642: @section  Structures
        !          2643: @cindex structures
        !          2644: @cindex records
        !          2645: 
        !          2646: This section presents the structure package that comes with Gforth. A
        !          2647: version of the package implemented in plain ANS Forth is available in
        !          2648: @file{compat/struct.fs}. This package was inspired by a posting on
        !          2649: comp.lang.forth in 1989 (unfortunately I don't remember, by whom;
        !          2650: possibly John Hayes). A version of this section has been published in
        !          2651: ???. Marcel Hendrix provided helpful comments.
        !          2652: 
        !          2653: @menu
        !          2654: * Why explicit structure support?::  
        !          2655: * Structure Usage::             
        !          2656: * Structure Naming Convention::  
        !          2657: * Structure Implementation::    
        !          2658: * Structure Glossary::          
        !          2659: @end menu
        !          2660: 
        !          2661: @node Why explicit structure support?, Structure Usage, Structures, Structures
        !          2662: @subsection Why explicit structure support?
        !          2663: 
        !          2664: @cindex address arithmetic for structures
        !          2665: @cindex structures using address arithmetic
        !          2666: If we want to use a structure containing several fields, we could simply
        !          2667: reserve memory for it, and access the fields using address arithmetic
        !          2668: (@pxref{Address arithmetic}). As an example, consider a structure with
        !          2669: the following fields
        !          2670: 
        !          2671: @table @code
        !          2672: @item a
        !          2673: is a float
        !          2674: @item b
        !          2675: is a cell
        !          2676: @item c
        !          2677: is a float
        !          2678: @end table
        !          2679: 
        !          2680: Given the (float-aligned) base address of the structure we get the
        !          2681: address of the field
        !          2682: 
        !          2683: @table @code
        !          2684: @item a
        !          2685: without doing anything further.
        !          2686: @item b
        !          2687: with @code{float+}
        !          2688: @item c
        !          2689: with @code{float+ cell+ faligned}
        !          2690: @end table
        !          2691: 
        !          2692: It is easy to see that this can become quite tiring. 
        !          2693: 
        !          2694: Moreover, it is not very readable, because seeing a
        !          2695: @code{cell+} tells us neither which kind of structure is
        !          2696: accessed nor what field is accessed; we have to somehow infer the kind
        !          2697: of structure, and then look up in the documentation, which field of
        !          2698: that structure corresponds to that offset.
        !          2699: 
        !          2700: Finally, this kind of address arithmetic also causes maintenance
        !          2701: troubles: If you add or delete a field somewhere in the middle of the
        !          2702: structure, you have to find and change all computations for the fields
        !          2703: afterwards.
        !          2704: 
        !          2705: So, instead of using @code{cell+} and friends directly, how
        !          2706: about storing the offsets in constants:
        !          2707: 
        !          2708: @example
        !          2709: 0 constant a-offset
        !          2710: 0 float+ constant b-offset
        !          2711: 0 float+ cell+ faligned c-offset
        !          2712: @end example
        !          2713: 
        !          2714: Now we can get the address of field @code{x} with @code{x-offset
        !          2715: +}. This is much better in all respects. Of course, you still
        !          2716: have to change all later offset definitions if you add a field. You can
        !          2717: fix this by declaring the offsets in the following way:
        !          2718: 
        !          2719: @example
        !          2720: 0 constant a-offset
        !          2721: a-offset float+ constant b-offset
        !          2722: b-offset cell+ faligned constant c-offset
        !          2723: @end example
        !          2724: 
        !          2725: Since we always use the offsets with @code{+}, using a defining
        !          2726: word @code{cfield} that includes the @code{+} in the
        !          2727: action of the defined word offers itself:
        !          2728: 
        !          2729: @example
        !          2730: : cfield ( n "name" -- )
        !          2731:     create ,
        !          2732: does> ( name execution: addr1 -- addr2 )
        !          2733:     @@ + ;
        !          2734: 
        !          2735: 0 cfield a
        !          2736: 0 a float+ cfield b
        !          2737: 0 b cell+ faligned cfield c
        !          2738: @end example
        !          2739: 
        !          2740: Instead of @code{x-offset +}, we now simply write @code{x}.
        !          2741: 
        !          2742: The structure field words now can be used quite nicely. However,
        !          2743: their definition is still a bit cumbersome: We have to repeat the
        !          2744: name, the information about size and alignment is distributed before
        !          2745: and after the field definitions etc.  The structure package presented
        !          2746: here addresses these problems.
        !          2747: 
        !          2748: @node Structure Usage, Structure Naming Convention, Why explicit structure support?, Structures
        !          2749: @subsection Structure Usage
        !          2750: @cindex structure usage
        !          2751: 
        !          2752: @cindex @code{field} usage
        !          2753: @cindex @code{struct} usage
        !          2754: @cindex @code{end-struct} usage
        !          2755: You can define a structure for a (data-less) linked list with
        !          2756: @example
        !          2757: struct
        !          2758:     cell% field list-next
        !          2759: end-struct list%
        !          2760: @end example
        !          2761: 
        !          2762: With the address of the list node on the stack, you can compute the
        !          2763: address of the field that contains the address of the next node with
        !          2764: @code{list-next}. E.g., you can determine the length of a list
        !          2765: with:
        !          2766: 
        !          2767: @example
        !          2768: : list-length ( list -- n )
        !          2769: \ "list" is a pointer to the first element of a linked list
        !          2770: \ "n" is the length of the list
        !          2771:     0 begin ( list1 n1 )
        !          2772:         over
        !          2773:     while ( list1 n1 )
        !          2774:         1+ swap list-next @@ swap
        !          2775:     repeat
        !          2776:     nip ;
        !          2777: @end example
        !          2778: 
        !          2779: You can reserve memory for a list node in the dictionary with
        !          2780: @code{list% %allot}, which leaves the address of the list node on the
        !          2781: stack. For the equivalent allocation on the heap you can use @code{list%
        !          2782: %alloc} (or, for an @code{allocate}-like stack effect (i.e., with ior),
        !          2783: use @code{list% %allocate}). You can also get the the size of a list
        !          2784: node with @code{list% %size} and it's alignment with @code{list%
        !          2785: %alignment}.
        !          2786: 
        !          2787: Note that in ANS Forth the body of a @code{create}d word is
        !          2788: @code{aligned} but not necessarily @code{faligned};
        !          2789: therefore, if you do a
        !          2790: @example
        !          2791: create @emph{name} foo% %allot
        !          2792: @end example
        !          2793: 
        !          2794: then the memory alloted for @code{foo%} is
        !          2795: guaranteed to start at the body of @code{@emph{name}} only if
        !          2796: @code{foo%} contains only character, cell and double fields.
        !          2797: 
        !          2798: @cindex strcutures containing structures
        !          2799: You can also include a structure @code{foo%} as field of
        !          2800: another structure, with:
        !          2801: @example
        !          2802: struct
        !          2803: ...
        !          2804:     foo% field ...
        !          2805: ...
        !          2806: end-struct ...
        !          2807: @end example
        !          2808: 
        !          2809: @cindex structure extension
        !          2810: @cindex extended records
        !          2811: Instead of starting with an empty structure, you can also extend an
        !          2812: existing structure. E.g., a plain linked list without data, as defined
        !          2813: above, is hardly useful; You can extend it to a linked list of integers,
        !          2814: like this:@footnote{This feature is also known as @emph{extended
        !          2815: records}. It is the main innovation in the Oberon language; in other
        !          2816: words, adding this feature to Modula-2 led Wirth to create a new
        !          2817: language, write a new compiler etc.  Adding this feature to Forth just
        !          2818: requires a few lines of code.}
        !          2819: 
        !          2820: @example
        !          2821: list%
        !          2822:     cell% field intlist-int
        !          2823: end-struct intlist%
        !          2824: @end example
        !          2825: 
        !          2826: @code{intlist%} is a structure with two fields:
        !          2827: @code{list-next} and @code{intlist-int}.
        !          2828: 
        !          2829: @cindex structures containing arrays
        !          2830: You can specify an array type containing @emph{n} elements of
        !          2831: type @code{foo%} like this:
        !          2832: 
        !          2833: @example
        !          2834: foo% @emph{n} *
        !          2835: @end example
        !          2836: 
        !          2837: You can use this array type in any place where you can use a normal
        !          2838: type, e.g., when defining a @code{field}, or with
        !          2839: @code{%allot}.
        !          2840: 
        !          2841: @cindex first field optimization
        !          2842: The first field is at the base address of a structure and the word
        !          2843: for this field (e.g., @code{list-next}) actually does not change
        !          2844: the address on the stack. You may be tempted to leave it away in the
        !          2845: interest of run-time and space efficiency. This is not necessary,
        !          2846: because the structure package optimizes this case and compiling such
        !          2847: words does not generate any code. So, in the interest of readability
        !          2848: and maintainability you should include the word for the field when
        !          2849: accessing the field.
        !          2850: 
        !          2851: @node Structure Naming Convention, Structure Implementation, Structure Usage, Structures
        !          2852: @subsection Structure Naming Convention
        !          2853: @cindex structure naming conventions
        !          2854: 
        !          2855: The field names that come to (my) mind are often quite generic, and,
        !          2856: if used, would cause frequent name clashes. E.g., many structures
        !          2857: probably contain a @code{counter} field. The structure names
        !          2858: that come to (my) mind are often also the logical choice for the names
        !          2859: of words that create such a structure.
        !          2860: 
        !          2861: Therefore, I have adopted the following naming conventions: 
        !          2862: 
        !          2863: @itemize @bullet
        !          2864: @cindex field naming convention
        !          2865: @item
        !          2866: The names of fields are of the form
        !          2867: @code{@emph{struct}-@emph{field}}, where
        !          2868: @code{@emph{struct}} is the basic name of the structure, and
        !          2869: @code{@emph{field}} is the basic name of the field. You can
        !          2870: think about field words as converting converts the (address of the)
        !          2871: structure into the (address of the) field.
        !          2872: 
        !          2873: @cindex structure naming convention
        !          2874: @item
        !          2875: The names of structures are of the form
        !          2876: @code{@emph{struct}%}, where
        !          2877: @code{@emph{struct}} is the basic name of the structure.
        !          2878: @end itemize
        !          2879: 
        !          2880: This naming convention does not work that well for fields of extended
        !          2881: structures; e.g., the integer list structure has a field
        !          2882: @code{intlist-int}, but has @code{list-next}, not
        !          2883: @code{intlist-next}.
        !          2884: 
        !          2885: @node Structure Implementation, Structure Glossary, Structure Naming Convention, Structures
        !          2886: @subsection Structure Implementation
        !          2887: @cindex structure implementation
        !          2888: @cindex implementation of structures
        !          2889: 
        !          2890: The central idea in the implementation is to pass the data about the
        !          2891: structure being built on the stack, not in some global
        !          2892: variable. Everything else falls into place naturally once this design
        !          2893: decision is made.
        !          2894: 
        !          2895: The type description on the stack is of the form @emph{align
        !          2896: size}. Keeping the size on the top-of-stack makes dealing with arrays
        !          2897: very simple.
        !          2898: 
        !          2899: @code{field} is a defining word that uses @code{create}
        !          2900: and @code{does>}. The body of the field contains the offset
        !          2901: of the field, and the normal @code{does>} action is
        !          2902: 
        !          2903: @example
        !          2904: @ +
        !          2905: @end example
        !          2906: 
        !          2907: i.e., add the offset to the address, giving the stack effect
        !          2908: @code{addr1 -- addr2} for a field.
        !          2909: 
        !          2910: @cindex first field optimization, implementation
        !          2911: This simple structure is slightly complicated by the optimization
        !          2912: for fields with offset 0, which requires a different
        !          2913: @code{does>}-part (because we cannot rely on there being
        !          2914: something on the stack if such a field is invoked during
        !          2915: compilation). Therefore, we put the different @code{does>}-parts
        !          2916: in separate words, and decide which one to invoke based on the
        !          2917: offset. For a zero offset, the field is basically a noop; it is
        !          2918: immediate, and therefore no code is generated when it is compiled.
        !          2919: 
        !          2920: @node Structure Glossary,  , Structure Implementation, Structures
        !          2921: @subsection Structure Glossary
        !          2922: @cindex structure glossary
        !          2923: 
        !          2924: doc-%align
        !          2925: doc-%alignment
        !          2926: doc-%alloc
        !          2927: doc-%allocate
        !          2928: doc-%allot
        !          2929: doc-cell%
        !          2930: doc-char%
        !          2931: doc-dfloat%
        !          2932: doc-double%
        !          2933: doc-end-struct
        !          2934: doc-field
        !          2935: doc-float%
        !          2936: doc-nalign
        !          2937: doc-sfloat%
        !          2938: doc-%size
        !          2939: doc-struct
        !          2940: 
        !          2941: @c -------------------------------------------------------------
        !          2942: @node Objects, Tokens for Words, Structures, Words
        !          2943: @section Objects
        !          2944: @cindex objects
        !          2945: @cindex object-oriented programming
        !          2946: 
        !          2947: @cindex @file{objects.fs}
        !          2948: @cindex @file{oof.fs}
        !          2949: Gforth comes with two packets for object-oriented programming,
        !          2950: @file{objects.fs} and @file{oof.fs}; none of them is preloaded, so you
        !          2951: have to @code{include} them before use. This section describes the
        !          2952: @file{objects.fs} packet. You can find a description (in German) of
        !          2953: @file{oof.fs} in @cite{Object oriented bigFORTH} by Bernd Paysan,
        !          2954: published in @cite{Vierte Dimension} 10(2), 1994. Both packets are
        !          2955: written in ANS Forth and can be used with any other standard Forth.
        !          2956: @c McKewan's and Zsoter's packages
        !          2957: @c this section is a variant of ...
        !          2958: 
        !          2959: This section assumes (in some places) that you have read @ref{Structures}.
        !          2960: 
        !          2961: @menu
        !          2962: * Properties of the Objects model::  
        !          2963: * Why object-oriented programming?::  
        !          2964: * Object-Oriented Terminology::  
        !          2965: * Basic Objects Usage::         
        !          2966: * The class Object::            
        !          2967: * Creating objects::            
        !          2968: * Object-Oriented Programming Style::  
        !          2969: * Class Binding::               
        !          2970: * Method conveniences::         
        !          2971: * Classes and Scoping::         
        !          2972: * Object Interfaces::           
        !          2973: * Objects Implementation::      
        !          2974: * Comparison with other object models::  
        !          2975: * Objects Glossary::            
        !          2976: @end menu
        !          2977: 
        !          2978: Marcel Hendrix provided helpful comments on this section. Andras Zsoter
        !          2979: and Bernd Paysan helped me with the related works section.
        !          2980: 
        !          2981: @node Properties of the Objects model, Why object-oriented programming?, Objects, Objects
        !          2982: @subsection Properties of the @file{objects.fs} model
        !          2983: @cindex @file{objects.fs} properties
        !          2984: 
        !          2985: @itemize @bullet
        !          2986: @item
        !          2987: It is straightforward to pass objects on the stack. Passing
        !          2988: selectors on the stack is a little less convenient, but possible.
        !          2989: 
        !          2990: @item
        !          2991: Objects are just data structures in memory, and are referenced by
        !          2992: their address. You can create words for objects with normal defining
        !          2993: words like @code{constant}. Likewise, there is no difference
        !          2994: between instance variables that contain objects and those
        !          2995: that contain other data.
        !          2996: 
        !          2997: @item
        !          2998: Late binding is efficient and easy to use.
        !          2999: 
        !          3000: @item
        !          3001: It avoids parsing, and thus avoids problems with state-smartness
        !          3002: and reduced extensibility; for convenience there are a few parsing
        !          3003: words, but they have non-parsing counterparts. There are also a few
        !          3004: defining words that parse. This is hard to avoid, because all standard
        !          3005: defining words parse (except @code{:noname}); however, such
        !          3006: words are not as bad as many other parsing words, because they are not
        !          3007: state-smart.
        !          3008: 
        !          3009: @item
        !          3010: It does not try to incorporate everything. It does a few things
        !          3011: and does them well (IMO). In particular, I did not intend to support
        !          3012: information hiding with this model (although it has features that may
        !          3013: help); you can use a separate package for achieving this.
        !          3014: 
        !          3015: @item
        !          3016: It is layered; you don't have to learn and use all features to use this
        !          3017: model. Only a few features are necessary (@xref{Basic Objects Usage},
        !          3018: @xref{The class Object}, @xref{Creating objects}.), the others
        !          3019: are optional and independent of each other.
        !          3020: 
        !          3021: @item
        !          3022: An implementation in ANS Forth is available.
        !          3023: 
        !          3024: @end itemize
        !          3025: 
        !          3026: I have used the technique, on which this model is based, for
        !          3027: implementing the parser generator Gray; we have also used this technique
        !          3028: in Gforth for implementing the various flavours of wordlists (hashed or
        !          3029: not, case-sensitive or not, special-purpose wordlists for locals etc.).
        !          3030: 
        !          3031: @node Why object-oriented programming?, Object-Oriented Terminology, Properties of the Objects model, Objects
        !          3032: @subsection Why object-oriented programming?
        !          3033: @cindex object-oriented programming motivation
        !          3034: @cindex motivation for object-oriented programming
        !          3035: 
        !          3036: Often we have to deal with several data structures (@emph{objects}),
        !          3037: that have to be treated similarly in some respects, but differ in
        !          3038: others. Graphical objects are the textbook example: circles,
        !          3039: triangles, dinosaurs, icons, and others, and we may want to add more
        !          3040: during program development. We want to apply some operations to any
        !          3041: graphical object, e.g., @code{draw} for displaying it on the
        !          3042: screen. However, @code{draw} has to do something different for
        !          3043: every kind of object.
        !          3044: 
        !          3045: We could implement @code{draw} as a big @code{CASE}
        !          3046: control structure that executes the appropriate code depending on the
        !          3047: kind of object to be drawn. This would be not be very elegant, and,
        !          3048: moreover, we would have to change @code{draw} every time we add
        !          3049: a new kind of graphical object (say, a spaceship).
        !          3050: 
        !          3051: What we would rather do is: When defining spaceships, we would tell
        !          3052: the system: "Here's how you @code{draw} a spaceship; you figure
        !          3053: out the rest."
        !          3054: 
        !          3055: This is the problem that all systems solve that (rightfully) call
        !          3056: themselves object-oriented, and the object-oriented package I present
        !          3057: here also solves this problem (and not much else).
        !          3058: 
        !          3059: @node Object-Oriented Terminology, Basic Objects Usage, Why object-oriented programming?, Objects
        !          3060: @subsection Object-Oriented Terminology
        !          3061: @cindex object-oriented terminology
        !          3062: @cindex terminology for object-oriented programming
        !          3063: 
        !          3064: This section is mainly for reference, so you don't have to understand
        !          3065: all of it right away.  The terminology is mainly Smalltalk-inspired.  In
        !          3066: short:
        !          3067: 
        !          3068: @table @emph
        !          3069: @cindex class
        !          3070: @item class
        !          3071: a data structure definition with some extras.
        !          3072: 
        !          3073: @cindex object
        !          3074: @item object
        !          3075: an instance of the data structure described by the class definition.
        !          3076: 
        !          3077: @cindex instance variables
        !          3078: @item instance variables
        !          3079: fields of the data structure.
        !          3080: 
        !          3081: @cindex selector
        !          3082: @cindex method selector
        !          3083: @cindex virtual function
        !          3084: @item selector
        !          3085: (or @emph{method selector}) a word (e.g.,
        !          3086: @code{draw}) for performing an operation on a variety of data
        !          3087: structures (classes). A selector describes @emph{what} operation to
        !          3088: perform. In C++ terminology: a (pure) virtual function.
        !          3089: 
        !          3090: @cindex method
        !          3091: @item method
        !          3092: the concrete definition that performs the operation
        !          3093: described by the selector for a specific class. A method specifies
        !          3094: @emph{how} the operation is performed for a specific class.
        !          3095: 
        !          3096: @cindex selector invocation
        !          3097: @cindex message send
        !          3098: @cindex invoking a selector
        !          3099: @item selector invocation
        !          3100: a call of a selector. One argument of the call (the TOS (top-of-stack))
        !          3101: is used for determining which method is used. In Smalltalk terminology:
        !          3102: a message (consisting of the selector and the other arguments) is sent
        !          3103: to the object.
        !          3104: 
        !          3105: @cindex receiving object
        !          3106: @item receiving object
        !          3107: the object used for determining the method executed by a selector
        !          3108: invocation. In our model it is the object that is on the TOS when the
        !          3109: selector is invoked. (@emph{Receiving} comes from Smalltalks
        !          3110: @emph{message} terminology.)
        !          3111: 
        !          3112: @cindex child class
        !          3113: @cindex parent class
        !          3114: @cindex inheritance
        !          3115: @item child class
        !          3116: a class that has (@emph{inherits}) all properties (instance variables,
        !          3117: selectors, methods) from a @emph{parent class}. In Smalltalk
        !          3118: terminology: The subclass inherits from the superclass. In C++
        !          3119: terminology: The derived class inherits from the base class.
        !          3120: 
        !          3121: @end table
        !          3122: 
        !          3123: @c If you wonder about the message sending terminology, it comes from
        !          3124: @c a time when each object had it's own task and objects communicated via
        !          3125: @c message passing; eventually the Smalltalk developers realized that
        !          3126: @c they can do most things through simple (indirect) calls. They kept the
        !          3127: @c terminology.
        !          3128: 
        !          3129: @node Basic Objects Usage, The class Object, Object-Oriented Terminology, Objects
        !          3130: @subsection Basic Objects Usage
        !          3131: @cindex basic objects usage
        !          3132: @cindex objects, basic usage
        !          3133: 
        !          3134: You can define a class for graphical objects like this:
        !          3135: 
        !          3136: @cindex @code{class} usage
        !          3137: @cindex @code{end-class} usage
        !          3138: @cindex @code{selector} usage
        !          3139: @example
        !          3140: object class \ "object" is the parent class
        !          3141:   selector draw ( x y graphical -- )
        !          3142: end-class graphical
        !          3143: @end example
        !          3144: 
        !          3145: This code defines a class @code{graphical} with an
        !          3146: operation @code{draw}.  We can perform the operation
        !          3147: @code{draw} on any @code{graphical} object, e.g.:
        !          3148: 
        !          3149: @example
        !          3150: 100 100 t-rex draw
        !          3151: @end example
        !          3152: 
        !          3153: where @code{t-rex} is a word (say, a constant) that produces a
        !          3154: graphical object.
        !          3155: 
        !          3156: @cindex abstract class
        !          3157: How do we create a graphical object? With the present definitions,
        !          3158: we cannot create a useful graphical object. The class
        !          3159: @code{graphical} describes graphical objects in general, but not
        !          3160: any concrete graphical object type (C++ users would call it an
        !          3161: @emph{abstract class}); e.g., there is no method for the selector
        !          3162: @code{draw} in the class @code{graphical}.
        !          3163: 
        !          3164: For concrete graphical objects, we define child classes of the
        !          3165: class @code{graphical}, e.g.:
        !          3166: 
        !          3167: @cindex @code{overrides} usage
        !          3168: @cindex @code{field} usage in class definition
        !          3169: @example
        !          3170: graphical class \ "graphical" is the parent class
        !          3171:   cell% field circle-radius
        !          3172: 
        !          3173: :noname ( x y circle -- )
        !          3174:   circle-radius @@ draw-circle ;
        !          3175: overrides draw
        !          3176: 
        !          3177: :noname ( n-radius circle -- )
        !          3178:   circle-radius ! ;
        !          3179: overrides construct
        !          3180: 
        !          3181: end-class circle
        !          3182: @end example
        !          3183: 
        !          3184: Here we define a class @code{circle} as a child of @code{graphical},
        !          3185: with a field @code{circle-radius} (which behaves just like a field in
        !          3186: @pxref{Structures}); it defines new methods for the selectors
        !          3187: @code{draw} and @code{construct} (@code{construct} is defined in
        !          3188: @code{object}, the parent class of @code{graphical}).
        !          3189: 
        !          3190: Now we can create a circle on the heap (i.e.,
        !          3191: @code{allocate}d memory) with
        !          3192: 
        !          3193: @cindex @code{heap-new} usage
        !          3194: @example
        !          3195: 50 circle heap-new constant my-circle
        !          3196: @end example
        !          3197: 
        !          3198: @code{heap-new} invokes @code{construct}, thus
        !          3199: initializing the field @code{circle-radius} with 50. We can draw
        !          3200: this new circle at (100,100) with
        !          3201: 
        !          3202: @example
        !          3203: 100 100 my-circle draw
        !          3204: @end example
        !          3205: 
        !          3206: @cindex selector invocation, restrictions
        !          3207: @cindex class definition, restrictions
        !          3208: Note: You can invoke a selector only if the object on the TOS
        !          3209: (the receiving object) belongs to the class where the selector was
        !          3210: defined or one of its descendents; e.g., you can invoke
        !          3211: @code{draw} only for objects belonging to @code{graphical}
        !          3212: or its descendents (e.g., @code{circle}).  Immediately before
        !          3213: @code{end-class}, the search order has to be the same as
        !          3214: immediately after @code{class}.
        !          3215: 
        !          3216: @node The class Object, Creating objects, Basic Objects Usage, Objects
        !          3217: @subsection The class @code{object}
        !          3218: @cindex @code{object} class
        !          3219: 
        !          3220: When you define a class, you have to specify a parent class.  So how do
        !          3221: you start defining classes? There is one class available from the start:
        !          3222: @code{object}. You can use it as ancestor for all classes. It is the
        !          3223: only class that has no parent. It has two selectors: @code{construct}
        !          3224: and @code{print}.
        !          3225: 
        !          3226: @node Creating objects, Object-Oriented Programming Style, The class Object, Objects
        !          3227: @subsection Creating objects
        !          3228: @cindex creating objects
        !          3229: @cindex object creation
        !          3230: @cindex object allocation options
        !          3231: 
        !          3232: @cindex @code{heap-new} discussion
        !          3233: @cindex @code{dict-new} discussion
        !          3234: @cindex @code{construct} discussion
        !          3235: You can create and initialize an object of a class on the heap with
        !          3236: @code{heap-new} ( ... class -- object ) and in the dictionary
        !          3237: (allocation with @code{allot}) with @code{dict-new} (
        !          3238: ... class -- object ). Both words invoke @code{construct}, which
        !          3239: consumes the stack items indicated by "..." above.
        !          3240: 
        !          3241: @cindex @code{init-object} discussion
        !          3242: @cindex @code{class-inst-size} discussion
        !          3243: If you want to allocate memory for an object yourself, you can get its
        !          3244: alignment and size with @code{class-inst-size 2@@} ( class --
        !          3245: align size ). Once you have memory for an object, you can initialize
        !          3246: it with @code{init-object} ( ... class object -- );
        !          3247: @code{construct} does only a part of the necessary work.
        !          3248: 
        !          3249: @node Object-Oriented Programming Style, Class Binding, Creating objects, Objects
        !          3250: @subsection Object-Oriented Programming Style
        !          3251: @cindex object-oriented programming style
        !          3252: 
        !          3253: This section is not exhaustive.
        !          3254: 
        !          3255: @cindex stack effects of selectors
        !          3256: @cindex selectors and stack effects
        !          3257: In general, it is a good idea to ensure that all methods for the
        !          3258: same selector have the same stack effect: when you invoke a selector,
        !          3259: you often have no idea which method will be invoked, so, unless all
        !          3260: methods have the same stack effect, you will not know the stack effect
        !          3261: of the selector invocation.
        !          3262: 
        !          3263: One exception to this rule is methods for the selector
        !          3264: @code{construct}. We know which method is invoked, because we
        !          3265: specify the class to be constructed at the same place. Actually, I
        !          3266: defined @code{construct} as a selector only to give the users a
        !          3267: convenient way to specify initialization. The way it is used, a
        !          3268: mechanism different from selector invocation would be more natural
        !          3269: (but probably would take more code and more space to explain).
        !          3270: 
        !          3271: @node Class Binding, Method conveniences, Object-Oriented Programming Style, Objects
        !          3272: @subsection Class Binding
        !          3273: @cindex class binding
        !          3274: @cindex early binding
        !          3275: 
        !          3276: @cindex late binding
        !          3277: Normal selector invocations determine the method at run-time depending
        !          3278: on the class of the receiving object (late binding).
        !          3279: 
        !          3280: Sometimes we want to invoke a different method. E.g., assume that
        !          3281: you want to use the simple method for @code{print}ing
        !          3282: @code{object}s instead of the possibly long-winded
        !          3283: @code{print} method of the receiver class. You can achieve this
        !          3284: by replacing the invocation of @code{print} with
        !          3285: 
        !          3286: @cindex @code{[bind]} usage
        !          3287: @example
        !          3288: [bind] object print
        !          3289: @end example
        !          3290: 
        !          3291: in compiled code or
        !          3292: 
        !          3293: @cindex @code{bind} usage
        !          3294: @example
        !          3295: bind object print
        !          3296: @end example
        !          3297: 
        !          3298: @cindex class binding, alternative to
        !          3299: in interpreted code. Alternatively, you can define the method with a
        !          3300: name (e.g., @code{print-object}), and then invoke it through the
        !          3301: name. Class binding is just a (often more convenient) way to achieve
        !          3302: the same effect; it avoids name clutter and allows you to invoke
        !          3303: methods directly without naming them first.
        !          3304: 
        !          3305: @cindex superclass binding
        !          3306: @cindex parent class binding
        !          3307: A frequent use of class binding is this: When we define a method
        !          3308: for a selector, we often want the method to do what the selector does
        !          3309: in the parent class, and a little more. There is a special word for
        !          3310: this purpose: @code{[parent]}; @code{[parent]
        !          3311: @emph{selector}} is equivalent to @code{[bind] @emph{parent
        !          3312: selector}}, where @code{@emph{parent}} is the parent
        !          3313: class of the current class. E.g., a method definition might look like:
        !          3314: 
        !          3315: @cindex @code{[parent]} usage
        !          3316: @example
        !          3317: :noname
        !          3318:   dup [parent] foo \ do parent's foo on the receiving object
        !          3319:   ... \ do some more
        !          3320: ; overrides foo
        !          3321: @end example
        !          3322: 
        !          3323: @cindex class binding as optimization
        !          3324: In @cite{Object-oriented programming in ANS Forth} (Forth Dimensions,
        !          3325: March 1997), Andrew McKewan presents class binding as an optimization
        !          3326: technique. I recommend not using it for this purpose unless you are in
        !          3327: an emergency. Late binding is pretty fast with this model anyway, so the
        !          3328: benefit of using class binding is small; the cost of using class binding
        !          3329: where it is not appropriate is reduced maintainability.
        !          3330: 
        !          3331: While we are at programming style questions: You should bind
        !          3332: selectors only to ancestor classes of the receiving object. E.g., say,
        !          3333: you know that the receiving object is of class @code{foo} or its
        !          3334: descendents; then you should bind only to @code{foo} and its
        !          3335: ancestors.
        !          3336: 
        !          3337: @node Method conveniences, Classes and Scoping, Class Binding, Objects
        !          3338: @subsection Method conveniences
        !          3339: @cindex method conveniences
        !          3340: 
        !          3341: In a method you usually access the receiving object pretty often.  If
        !          3342: you define the method as a plain colon definition (e.g., with
        !          3343: @code{:noname}), you may have to do a lot of stack
        !          3344: gymnastics. To avoid this, you can define the method with @code{m:
        !          3345: ... ;m}. E.g., you could define the method for
        !          3346: @code{draw}ing a @code{circle} with
        !          3347: 
        !          3348: @cindex @code{this} usage
        !          3349: @cindex @code{m:} usage
        !          3350: @cindex @code{;m} usage
        !          3351: @example
        !          3352: m: ( x y circle -- )
        !          3353:   ( x y ) this circle-radius @@ draw-circle ;m
        !          3354: @end example
        !          3355: 
        !          3356: @cindex @code{exit} in @code{m: ... ;m}
        !          3357: @cindex @code{exitm} discussion
        !          3358: @cindex @code{catch} in @code{m: ... ;m}
        !          3359: When this method is executed, the receiver object is removed from the
        !          3360: stack; you can access it with @code{this} (admittedly, in this
        !          3361: example the use of @code{m: ... ;m} offers no advantage). Note
        !          3362: that I specify the stack effect for the whole method (i.e. including
        !          3363: the receiver object), not just for the code between @code{m:}
        !          3364: and @code{;m}. You cannot use @code{exit} in
        !          3365: @code{m:...;m}; instead, use
        !          3366: @code{exitm}.@footnote{Moreover, for any word that calls
        !          3367: @code{catch} and was defined before loading
        !          3368: @code{objects.fs}, you have to redefine it like I redefined
        !          3369: @code{catch}: @code{: catch this >r catch r> to-this ;}}
        !          3370: 
        !          3371: @cindex @code{inst-var} usage
        !          3372: You will frequently use sequences of the form @code{this
        !          3373: @emph{field}} (in the example above: @code{this
        !          3374: circle-radius}). If you use the field only in this way, you can
        !          3375: define it with @code{inst-var} and eliminate the
        !          3376: @code{this} before the field name. E.g., the @code{circle}
        !          3377: class above could also be defined with:
        !          3378: 
        !          3379: @example
        !          3380: graphical class
        !          3381:   cell% inst-var radius
        !          3382: 
        !          3383: m: ( x y circle -- )
        !          3384:   radius @@ draw-circle ;m
        !          3385: overrides draw
        !          3386: 
        !          3387: m: ( n-radius circle -- )
        !          3388:   radius ! ;m
        !          3389: overrides construct
        !          3390: 
        !          3391: end-class circle
        !          3392: @end example
        !          3393: 
        !          3394: @code{radius} can only be used in @code{circle} and its
        !          3395: descendent classes and inside @code{m:...;m}.
        !          3396: 
        !          3397: @cindex @code{inst-value} usage
        !          3398: You can also define fields with @code{inst-value}, which is
        !          3399: to @code{inst-var} what @code{value} is to
        !          3400: @code{variable}.  You can change the value of such a field with
        !          3401: @code{[to-inst]}.  E.g., we could also define the class
        !          3402: @code{circle} like this:
        !          3403: 
        !          3404: @example
        !          3405: graphical class
        !          3406:   inst-value radius
        !          3407: 
        !          3408: m: ( x y circle -- )
        !          3409:   radius draw-circle ;m
        !          3410: overrides draw
        !          3411: 
        !          3412: m: ( n-radius circle -- )
        !          3413:   [to-inst] radius ;m
        !          3414: overrides construct
        !          3415: 
        !          3416: end-class circle
        !          3417: @end example
        !          3418: 
        !          3419: 
        !          3420: @node Classes and Scoping, Object Interfaces, Method conveniences, Objects
        !          3421: @subsection Classes and Scoping
        !          3422: @cindex classes and scoping
        !          3423: @cindex scoping and classes
        !          3424: 
        !          3425: Inheritance is frequent, unlike structure extension. This exacerbates
        !          3426: the problem with the field name convention (@pxref{Structure Naming
        !          3427: Convention}): One always has to remember in which class the field was
        !          3428: originally defined; changing a part of the class structure would require
        !          3429: changes for renaming in otherwise unaffected code.
        !          3430: 
        !          3431: @cindex @code{inst-var} visibility
        !          3432: @cindex @code{inst-value} visibility
        !          3433: To solve this problem, I added a scoping mechanism (which was not in my
        !          3434: original charter): A field defined with @code{inst-var} (or
        !          3435: @code{inst-value}) is visible only in the class where it is defined and in
        !          3436: the descendent classes of this class.  Using such fields only makes
        !          3437: sense in @code{m:}-defined methods in these classes anyway.
        !          3438: 
        !          3439: This scoping mechanism allows us to use the unadorned field name,
        !          3440: because name clashes with unrelated words become much less likely.
        !          3441: 
        !          3442: @cindex @code{protected} discussion
        !          3443: @cindex @code{private} discussion
        !          3444: Once we have this mechanism, we can also use it for controlling the
        !          3445: visibility of other words: All words defined after
        !          3446: @code{protected} are visible only in the current class and its
        !          3447: descendents. @code{public} restores the compilation
        !          3448: (i.e. @code{current}) wordlist that was in effect before. If you
        !          3449: have several @code{protected}s without an intervening
        !          3450: @code{public} or @code{set-current}, @code{public}
        !          3451: will restore the compilation wordlist in effect before the first of
        !          3452: these @code{protected}s.
        !          3453: 
        !          3454: @node Object Interfaces, Objects Implementation, Classes and Scoping, Objects
        !          3455: @subsection Object Interfaces
        !          3456: @cindex object interfaces
        !          3457: @cindex interfaces for objects
        !          3458: 
        !          3459: In this model you can only call selectors defined in the class of the
        !          3460: receiving objects or in one of its ancestors. If you call a selector
        !          3461: with a receiving object that is not in one of these classes, the
        !          3462: result is undefined; if you are lucky, the program crashes
        !          3463: immediately.
        !          3464: 
        !          3465: @cindex selectors common to hardly-related classes
        !          3466: Now consider the case when you want to have a selector (or several)
        !          3467: available in two classes: You would have to add the selector to a
        !          3468: common ancestor class, in the worst case to @code{object}. You
        !          3469: may not want to do this, e.g., because someone else is responsible for
        !          3470: this ancestor class.
        !          3471: 
        !          3472: The solution for this problem is interfaces. An interface is a
        !          3473: collection of selectors. If a class implements an interface, the
        !          3474: selectors become available to the class and its descendents. A class
        !          3475: can implement an unlimited number of interfaces. For the problem
        !          3476: discussed above, we would define an interface for the selector(s), and
        !          3477: both classes would implement the interface.
        !          3478: 
        !          3479: As an example, consider an interface @code{storage} for
        !          3480: writing objects to disk and getting them back, and a class
        !          3481: @code{foo} foo that implements it. The code for this would look
        !          3482: like this:
        !          3483: 
        !          3484: @cindex @code{interface} usage
        !          3485: @cindex @code{end-interface} usage
        !          3486: @cindex @code{implementation} usage
        !          3487: @example
        !          3488: interface
        !          3489:   selector write ( file object -- )
        !          3490:   selector read1 ( file object -- )
        !          3491: end-interface storage
        !          3492: 
        !          3493: bar class
        !          3494:   storage implementation
        !          3495: 
        !          3496: ... overrides write
        !          3497: ... overrides read
        !          3498: ...
        !          3499: end-class foo
        !          3500: @end example
        !          3501: 
        !          3502: (I would add a word @code{read} ( file -- object ) that uses
        !          3503: @code{read1} internally, but that's beyond the point illustrated
        !          3504: here.)
        !          3505: 
        !          3506: Note that you cannot use @code{protected} in an interface; and
        !          3507: of course you cannot define fields.
        !          3508: 
        !          3509: In the Neon model, all selectors are available for all classes;
        !          3510: therefore it does not need interfaces. The price you pay in this model
        !          3511: is slower late binding, and therefore, added complexity to avoid late
        !          3512: binding.
        !          3513: 
        !          3514: @node Objects Implementation, Comparison with other object models, Object Interfaces, Objects
        !          3515: @subsection @file{objects.fs} Implementation
        !          3516: @cindex @file{objects.fs} implementation
        !          3517: 
        !          3518: @cindex @code{object-map} discussion
        !          3519: An object is a piece of memory, like one of the data structures
        !          3520: described with @code{struct...end-struct}. It has a field
        !          3521: @code{object-map} that points to the method map for the object's
        !          3522: class.
        !          3523: 
        !          3524: @cindex method map
        !          3525: @cindex virtual function table
        !          3526: The @emph{method map}@footnote{This is Self terminology; in C++
        !          3527: terminology: virtual function table.} is an array that contains the
        !          3528: execution tokens (XTs) of the methods for the object's class. Each
        !          3529: selector contains an offset into the method maps.
        !          3530: 
        !          3531: @cindex @code{selector} implementation, class
        !          3532: @code{selector} is a defining word that uses
        !          3533: @code{create} and @code{does>}. The body of the
        !          3534: selector contains the offset; the @code{does>} action for a
        !          3535: class selector is, basically:
        !          3536: 
        !          3537: @example
        !          3538: ( object addr ) @@ over object-map @@ + @@ execute
        !          3539: @end example
        !          3540: 
        !          3541: Since @code{object-map} is the first field of the object, it
        !          3542: does not generate any code. As you can see, calling a selector has a
        !          3543: small, constant cost.
        !          3544: 
        !          3545: @cindex @code{current-interface} discussion
        !          3546: @cindex class implementation and representation
        !          3547: A class is basically a @code{struct} combined with a method
        !          3548: map. During the class definition the alignment and size of the class
        !          3549: are passed on the stack, just as with @code{struct}s, so
        !          3550: @code{field} can also be used for defining class
        !          3551: fields. However, passing more items on the stack would be
        !          3552: inconvenient, so @code{class} builds a data structure in memory,
        !          3553: which is accessed through the variable
        !          3554: @code{current-interface}. After its definition is complete, the
        !          3555: class is represented on the stack by a pointer (e.g., as parameter for
        !          3556: a child class definition).
        !          3557: 
        !          3558: At the start, a new class has the alignment and size of its parent,
        !          3559: and a copy of the parent's method map. Defining new fields extends the
        !          3560: size and alignment; likewise, defining new selectors extends the
        !          3561: method map. @code{overrides} just stores a new XT in the method
        !          3562: map at the offset given by the selector.
        !          3563: 
        !          3564: @cindex class binding, implementation
        !          3565: Class binding just gets the XT at the offset given by the selector
        !          3566: from the class's method map and @code{compile,}s (in the case of
        !          3567: @code{[bind]}) it.
        !          3568: 
        !          3569: @cindex @code{this} implementation
        !          3570: @cindex @code{catch} and @code{this}
        !          3571: @cindex @code{this} and @code{catch}
        !          3572: I implemented @code{this} as a @code{value}. At the
        !          3573: start of an @code{m:...;m} method the old @code{this} is
        !          3574: stored to the return stack and restored at the end; and the object on
        !          3575: the TOS is stored @code{TO this}. This technique has one
        !          3576: disadvantage: If the user does not leave the method via
        !          3577: @code{;m}, but via @code{throw} or @code{exit},
        !          3578: @code{this} is not restored (and @code{exit} may
        !          3579: crash). To deal with the @code{throw} problem, I have redefined
        !          3580: @code{catch} to save and restore @code{this}; the same
        !          3581: should be done with any word that can catch an exception. As for
        !          3582: @code{exit}, I simply forbid it (as a replacement, there is
        !          3583: @code{exitm}).
        !          3584: 
        !          3585: @cindex @code{inst-var} implementation
        !          3586: @code{inst-var} is just the same as @code{field}, with
        !          3587: a different @code{does>} action:
        !          3588: @example
        !          3589: @@ this +
        !          3590: @end example
        !          3591: Similar for @code{inst-value}.
        !          3592: 
        !          3593: @cindex class scoping implementation
        !          3594: Each class also has a wordlist that contains the words defined with
        !          3595: @code{inst-var} and @code{inst-value}, and its protected
        !          3596: words. It also has a pointer to its parent. @code{class} pushes
        !          3597: the wordlists of the class an all its ancestors on the search order,
        !          3598: and @code{end-class} drops them.
        !          3599: 
        !          3600: @cindex interface implementation
        !          3601: An interface is like a class without fields, parent and protected
        !          3602: words; i.e., it just has a method map. If a class implements an
        !          3603: interface, its method map contains a pointer to the method map of the
        !          3604: interface. The positive offsets in the map are reserved for class
        !          3605: methods, therefore interface map pointers have negative
        !          3606: offsets. Interfaces have offsets that are unique throughout the
        !          3607: system, unlike class selectors, whose offsets are only unique for the
        !          3608: classes where the selector is available (invokable).
        !          3609: 
        !          3610: This structure means that interface selectors have to perform one
        !          3611: indirection more than class selectors to find their method. Their body
        !          3612: contains the interface map pointer offset in the class method map, and
        !          3613: the method offset in the interface method map. The
        !          3614: @code{does>} action for an interface selector is, basically:
        !          3615: 
        !          3616: @example
        !          3617: ( object selector-body )
        !          3618: 2dup selector-interface @@ ( object selector-body object interface-offset )
        !          3619: swap object-map @@ + @@ ( object selector-body map )
        !          3620: swap selector-offset @@ + @@ execute
        !          3621: @end example
        !          3622: 
        !          3623: where @code{object-map} and @code{selector-offset} are
        !          3624: first fields and generate no code.
        !          3625: 
        !          3626: As a concrete example, consider the following code:
        !          3627: 
        !          3628: @example
        !          3629: interface
        !          3630:   selector if1sel1
        !          3631:   selector if1sel2
        !          3632: end-interface if1
        !          3633: 
        !          3634: object class
        !          3635:   if1 implementation
        !          3636:   selector cl1sel1
        !          3637:   cell% inst-var cl1iv1
        !          3638: 
        !          3639: ' m1 overrides construct
        !          3640: ' m2 overrides if1sel1
        !          3641: ' m3 overrides if1sel2
        !          3642: ' m4 overrides cl1sel2
        !          3643: end-class cl1
        !          3644: 
        !          3645: create obj1 object dict-new drop
        !          3646: create obj2 cl1    dict-new drop
        !          3647: @end example
        !          3648: 
        !          3649: The data structure created by this code (including the data structure
        !          3650: for @code{object}) is shown in the <a
        !          3651: href="objects-implementation.eps">figure</a>, assuming a cell size of 4.
        !          3652: 
        !          3653: @node Comparison with other object models, Objects Glossary, Objects Implementation, Objects
        !          3654: @subsection Comparison with other object models
        !          3655: @cindex comparison of object models
        !          3656: @cindex object models, comparison
        !          3657: 
        !          3658: Many object-oriented Forth extensions have been proposed (@cite{A survey
        !          3659: of object-oriented Forths} (SIGPLAN Notices, April 1996) by Bradford
        !          3660: J. Rodriguez and W. F. S. Poehlman lists 17). Here I'll discuss the
        !          3661: relation of @file{objects.fs} to two well-known and two closely-related
        !          3662: (by the use of method maps) models.
        !          3663: 
        !          3664: @cindex Neon model
        !          3665: The most popular model currently seems to be the Neon model (see
        !          3666: @cite{Object-oriented programming in ANS Forth} (Forth Dimensions, March
        !          3667: 1997) by Andrew McKewan). The Neon model uses a @code{@emph{selector
        !          3668: object}} syntax, which makes it unnatural to pass objects on the
        !          3669: stack. It also requires that the selector parses the input stream (at
        !          3670: compile time); this leads to reduced extensibility and to bugs that are
        !          3671: hard to find. Finally, it allows using every selector to every object;
        !          3672: this eliminates the need for classes, but makes it harder to create
        !          3673: efficient implementations. A longer version of this critique can be
        !          3674: found in @cite{On Standardizing Object-Oriented Forth Extensions} (Forth
        !          3675: Dimensions, May 1997) by Anton Ertl.
        !          3676: 
        !          3677: @cindex Pountain's object-oriented model
        !          3678: Another well-known publication is @cite{Object-Oriented Forth} (Academic
        !          3679: Press, London, 1987) by Dick Pountain. However, it is not really about
        !          3680: object-oriented programming, because it hardly deals with late
        !          3681: binding. Instead, it focuses on features like information hiding and
        !          3682: overloading that are characteristic of modular languages like Ada (83).
        !          3683: 
        !          3684: @cindex Zsoter's object-oriented model
        !          3685: In @cite{Does late binding have to be slow?} (Forth Dimensions ??? 1996)
        !          3686: Andras Zsoter describes a model that makes heavy use of an active object
        !          3687: (like @code{this} in @file{objects.fs}): The active object is not only
        !          3688: used for accessing all fields, but also specifies the receiving object
        !          3689: of every selector invocation; you have to change the active object
        !          3690: explicitly with @code{@{ ... @}}, whereas in @file{objects.fs} it
        !          3691: changes more or less implicitly at @code{m: ... ;m}. Such a change at
        !          3692: the method entry point is unnecessary with the Zsoter's model, because
        !          3693: the receiving object is the active object already; OTOH, the explicit
        !          3694: change is absolutely necessary in that model, because otherwise no one
        !          3695: could ever change the active object. An ANS Forth implementation of this
        !          3696: model is available at @url{http://www.forth.org/fig/oopf.html}.
        !          3697: 
        !          3698: @cindex @file{oof.fs} object model
        !          3699: The @file{oof.fs} model combines information hiding and overloading
        !          3700: resolution (by keeping names in various wordlists) with object-oriented
        !          3701: programming. It sets the active object implicitly on method entry, but
        !          3702: also allows explicit changing (with @code{>o...o>} or with
        !          3703: @code{with...endwith}). It uses parsing and state-smart objects and
        !          3704: classes for resolving overloading and for early binding: the object or
        !          3705: class parses the selector and determines the method from this. If the
        !          3706: selector is not parsed by an object or class, it performs a call to the
        !          3707: selector for the active object (late binding), like Zsoter's model.
        !          3708: Fields are always accessed through the active object. The big
        !          3709: disadvantage of this model is the parsing and the state-smartness, which
        !          3710: reduces extensibility and increases the opportunities for subtle bugs;
        !          3711: essentially, you are only safe if you never tick or @code{postpone} an
        !          3712: object or class.
        !          3713: 
        !          3714: @node Objects Glossary,  , Comparison with other object models, Objects
        !          3715: @subsection @file{objects.fs} Glossary
        !          3716: @cindex @file{objects.fs} Glossary
        !          3717: 
        !          3718: doc-bind
        !          3719: doc-<bind>
        !          3720: doc-bind'
        !          3721: doc-[bind]
        !          3722: doc-class
        !          3723: doc-class->map
        !          3724: doc-class-inst-size
        !          3725: doc-class-override!
        !          3726: doc-construct
        !          3727: doc-current'
        !          3728: doc-[current]
        !          3729: doc-current-interface
        !          3730: doc-dict-new
        !          3731: doc-drop-order
        !          3732: doc-end-class
        !          3733: doc-end-class-noname
        !          3734: doc-end-interface
        !          3735: doc-end-interface-noname
        !          3736: doc-exitm
        !          3737: doc-heap-new
        !          3738: doc-implementation
        !          3739: doc-init-object
        !          3740: doc-inst-value
        !          3741: doc-inst-var
        !          3742: doc-interface
        !          3743: doc-;m
        !          3744: doc-m:
        !          3745: doc-method
        !          3746: doc-object
        !          3747: doc-overrides
        !          3748: doc-[parent]
        !          3749: doc-print
        !          3750: doc-protected
        !          3751: doc-public
        !          3752: doc-push-order
        !          3753: doc-selector
        !          3754: doc-this
        !          3755: doc-<to-inst>
        !          3756: doc-[to-inst]
        !          3757: doc-to-this
        !          3758: doc-xt-new
        !          3759: 
        !          3760: @c -------------------------------------------------------------
        !          3761: @node Tokens for Words, Wordlists, Objects, Words
1.1       anton    3762: @section Tokens for Words
                   3763: @cindex tokens for words
                   3764: 
                   3765: This chapter describes the creation and use of tokens that represent
                   3766: words on the stack (and in data space).
                   3767: 
                   3768: Named words have interpretation and compilation semantics. Unnamed words
                   3769: just have execution semantics.
                   3770: 
                   3771: @cindex execution token
                   3772: An @dfn{execution token} represents the execution semantics of an
                   3773: unnamed word. An execution token occupies one cell. As explained in
                   3774: section @ref{Supplying names}, the execution token of the last words
                   3775: defined can be produced with
                   3776: 
                   3777: short-lastxt
                   3778: 
                   3779: You can perform the semantics represented by an execution token with
                   3780: doc-execute
                   3781: You can compile the word with
                   3782: doc-compile,
                   3783: 
                   3784: @cindex code field address
                   3785: @cindex CFA
                   3786: In Gforth, the abstract data type @emph{execution token} is implemented
                   3787: as CFA (code field address).
                   3788: 
                   3789: The interpretation semantics of a named word are also represented by an
                   3790: execution token. You can get it with
                   3791: 
                   3792: doc-[']
                   3793: doc-'
                   3794: 
                   3795: For literals, you use @code{'} in interpreted code and @code{[']} in
                   3796: compiled code. Gforth's @code{'} and @code{[']} behave somewhat unusual
                   3797: by complaining about compile-only words. To get an execution token for a
                   3798: compiling word @var{X}, use @code{COMP' @var{X} drop} or @code{[COMP']
                   3799: @var{X} drop}.
                   3800: 
                   3801: @cindex compilation token
                   3802: The compilation semantics are represented by a @dfn{compilation token}
                   3803: consisting of two cells: @var{w xt}. The top cell @var{xt} is an
                   3804: execution token. The compilation semantics represented by the
                   3805: compilation token can be performed with @code{execute}, which consumes
                   3806: the whole compilation token, with an additional stack effect determined
                   3807: by the represented compilation semantics.
                   3808: 
                   3809: doc-[comp']
                   3810: doc-comp'
                   3811: 
                   3812: You can compile the compilation semantics with @code{postpone,}. I.e.,
                   3813: @code{COMP' @var{word} POSTPONE,} is equivalent to @code{POSTPONE
                   3814: @var{word}}.
                   3815: 
                   3816: doc-postpone,
                   3817: 
                   3818: At present, the @var{w} part of a compilation token is an execution
                   3819: token, and the @var{xt} part represents either @code{execute} or
                   3820: @code{compile,}. However, don't rely on that knowledge, unless necessary;
                   3821: we may introduce unusual compilation tokens in the future (e.g.,
                   3822: compilation tokens representing the compilation semantics of literals).
                   3823: 
                   3824: @cindex name token
                   3825: @cindex name field address
                   3826: @cindex NFA
                   3827: Named words are also represented by the @dfn{name token}. The abstract
                   3828: data type @emph{name token} is implemented as NFA (name field address).
                   3829: 
                   3830: doc-find-name
                   3831: doc-name>int
                   3832: doc-name?int
                   3833: doc-name>comp
                   3834: doc-name>string
                   3835: 
                   3836: @node Wordlists, Files, Tokens for Words, Words
                   3837: @section Wordlists
                   3838: 
                   3839: @node Files, Blocks, Wordlists, Words
                   3840: @section Files
                   3841: 
                   3842: @node Blocks, Other I/O, Files, Words
                   3843: @section Blocks
                   3844: 
                   3845: @node Other I/O, Programming Tools, Blocks, Words
                   3846: @section Other I/O
                   3847: 
                   3848: @node Programming Tools, Assembler and Code words, Other I/O, Words
                   3849: @section Programming Tools
                   3850: @cindex programming tools
                   3851: 
                   3852: @menu
                   3853: * Debugging::                   Simple and quick.
                   3854: * Assertions::                  Making your programs self-checking.
1.2       jwilke   3855: * Singlestep debugger::                Executing your program word by word.
1.1       anton    3856: @end menu
                   3857: 
                   3858: @node Debugging, Assertions, Programming Tools, Programming Tools
                   3859: @subsection Debugging
                   3860: @cindex debugging
                   3861: 
1.2       jwilke   3862: The simple debugging aids provided in @file{debugs.fs}
1.1       anton    3863: are meant to support a different style of debugging than the
                   3864: tracing/stepping debuggers used in languages with long turn-around
                   3865: times.
                   3866: 
                   3867: A much better (faster) way in fast-compiling languages is to add
                   3868: printing code at well-selected places, let the program run, look at
                   3869: the output, see where things went wrong, add more printing code, etc.,
                   3870: until the bug is found.
                   3871: 
                   3872: The word @code{~~} is easy to insert. It just prints debugging
                   3873: information (by default the source location and the stack contents). It
                   3874: is also easy to remove (@kbd{C-x ~} in the Emacs Forth mode to
                   3875: query-replace them with nothing). The deferred words
                   3876: @code{printdebugdata} and @code{printdebugline} control the output of
                   3877: @code{~~}. The default source location output format works well with
                   3878: Emacs' compilation mode, so you can step through the program at the
                   3879: source level using @kbd{C-x `} (the advantage over a stepping debugger
                   3880: is that you can step in any direction and you know where the crash has
                   3881: happened or where the strange data has occurred).
                   3882: 
                   3883: Note that the default actions clobber the contents of the pictured
                   3884: numeric output string, so you should not use @code{~~}, e.g., between
                   3885: @code{<#} and @code{#>}.
                   3886: 
                   3887: doc-~~
                   3888: doc-printdebugdata
                   3889: doc-printdebugline
                   3890: 
1.2       jwilke   3891: @node Assertions, Singlestep Debugger, Debugging, Programming Tools
1.1       anton    3892: @subsection Assertions
                   3893: @cindex assertions
                   3894: 
                   3895: It is a good idea to make your programs self-checking, in particular, if
                   3896: you use an assumption (e.g., that a certain field of a data structure is
                   3897: never zero) that may become wrong during maintenance. Gforth supports
                   3898: assertions for this purpose. They are used like this:
                   3899: 
                   3900: @example
                   3901: assert( @var{flag} )
                   3902: @end example
                   3903: 
                   3904: The code between @code{assert(} and @code{)} should compute a flag, that
                   3905: should be true if everything is alright and false otherwise. It should
                   3906: not change anything else on the stack. The overall stack effect of the
                   3907: assertion is @code{( -- )}. E.g.
                   3908: 
                   3909: @example
                   3910: assert( 1 1 + 2 = ) \ what we learn in school
                   3911: assert( dup 0<> ) \ assert that the top of stack is not zero
                   3912: assert( false ) \ this code should not be reached
                   3913: @end example
                   3914: 
                   3915: The need for assertions is different at different times. During
                   3916: debugging, we want more checking, in production we sometimes care more
                   3917: for speed. Therefore, assertions can be turned off, i.e., the assertion
                   3918: becomes a comment. Depending on the importance of an assertion and the
                   3919: time it takes to check it, you may want to turn off some assertions and
                   3920: keep others turned on. Gforth provides several levels of assertions for
                   3921: this purpose:
                   3922: 
                   3923: doc-assert0(
                   3924: doc-assert1(
                   3925: doc-assert2(
                   3926: doc-assert3(
                   3927: doc-assert(
                   3928: doc-)
                   3929: 
                   3930: @code{Assert(} is the same as @code{assert1(}. The variable
                   3931: @code{assert-level} specifies the highest assertions that are turned
                   3932: on. I.e., at the default @code{assert-level} of one, @code{assert0(} and
                   3933: @code{assert1(} assertions perform checking, while @code{assert2(} and
                   3934: @code{assert3(} assertions are treated as comments.
                   3935: 
                   3936: Note that the @code{assert-level} is evaluated at compile-time, not at
                   3937: run-time. I.e., you cannot turn assertions on or off at run-time, you
                   3938: have to set the @code{assert-level} appropriately before compiling a
                   3939: piece of code. You can compile several pieces of code at several
                   3940: @code{assert-level}s (e.g., a trusted library at level 1 and newly
                   3941: written code at level 3).
                   3942: 
                   3943: doc-assert-level
                   3944: 
                   3945: If an assertion fails, a message compatible with Emacs' compilation mode
                   3946: is produced and the execution is aborted (currently with @code{ABORT"}.
                   3947: If there is interest, we will introduce a special throw code. But if you
                   3948: intend to @code{catch} a specific condition, using @code{throw} is
                   3949: probably more appropriate than an assertion).
                   3950: 
1.2       jwilke   3951: @node Singlestep Debugger, , Assertions, Programming Tools
                   3952: @subsection Singlestep Debugger
                   3953: @cindex singlestep Debugger
                   3954: @cindex debugging Singlestep
                   3955: @cindex @code{dbg}
                   3956: @cindex @code{BREAK:}
                   3957: @cindex @code{BREAK"}
                   3958: 
                   3959: When a new word is created there's often the need to check whether it behaves
1.5     ! anton    3960: correctly or not. You can do this by typing @code{dbg badword}. This might
1.2       jwilke   3961: look like:
                   3962: @example
                   3963: : badword 0 DO i . LOOP ;  ok
                   3964: 2 dbg badword 
                   3965: : badword  
                   3966: Scanning code...
                   3967: 
                   3968: Nesting debugger ready!
                   3969: 
                   3970: 400D4738  8049BC4 0              -> [ 2 ] 00002 00000 
                   3971: 400D4740  8049F68 DO             -> [ 0 ] 
                   3972: 400D4744  804A0C8 i              -> [ 1 ] 00000 
                   3973: 400D4748 400C5E60 .              -> 0 [ 0 ] 
                   3974: 400D474C  8049D0C LOOP           -> [ 0 ] 
                   3975: 400D4744  804A0C8 i              -> [ 1 ] 00001 
                   3976: 400D4748 400C5E60 .              -> 1 [ 0 ] 
                   3977: 400D474C  8049D0C LOOP           -> [ 0 ] 
                   3978: 400D4758  804B384 ;              ->  ok
                   3979: @end example
                   3980: 
1.5     ! anton    3981: Each line displayed is one step. You always have to hit return to
        !          3982: execute the next word that is displayed. If you don't want to execute
        !          3983: the next word in a whole, you have to type @kbd{n} for @code{nest}. Here is
        !          3984: an overview what keys are available:
1.2       jwilke   3985: 
                   3986: @table @i
                   3987: 
1.4       anton    3988: @item <return>
1.5     ! anton    3989: Next; Execute the next word.
1.2       jwilke   3990: 
                   3991: @item n
1.5     ! anton    3992: Nest; Single step through next word.
1.2       jwilke   3993: 
                   3994: @item u
1.5     ! anton    3995: Unnest; Stop debugging and execute rest of word. If we got to this word
        !          3996: with nest, continue debugging with the calling word.
1.2       jwilke   3997: 
                   3998: @item d
1.5     ! anton    3999: Done; Stop debugging and execute rest.
1.2       jwilke   4000: 
                   4001: @item s
1.5     ! anton    4002: Stopp; Abort immediately.
1.2       jwilke   4003: 
                   4004: @end table
                   4005: 
                   4006: Debugging large application with this mechanism is very difficult, because
                   4007: you have to nest very deep into the program before the interesting part
                   4008: begins. This takes a lot of time. 
                   4009: 
                   4010: To do it more directly put a @code{BREAK:} command into your source code.
                   4011: When program execution reaches @code{BREAK:} the single step debugger is
                   4012: invoked and you have all the features described above.
                   4013: 
                   4014: If you have more than one part to debug it is useful to know where the
                   4015: program has stopped at the moment. You can do this by the 
                   4016: @code{BREAK" string"} command. This behaves like @code{BREAK:} except that
                   4017: string is typed out when the ``breakpoint'' is reached.
                   4018: 
1.1       anton    4019: @node Assembler and Code words, Threading Words, Programming Tools, Words
                   4020: @section Assembler and Code words
                   4021: @cindex assembler
                   4022: @cindex code words
                   4023: 
                   4024: Gforth provides some words for defining primitives (words written in
                   4025: machine code), and for defining the the machine-code equivalent of
                   4026: @code{DOES>}-based defining words. However, the machine-independent
                   4027: nature of Gforth poses a few problems: First of all, Gforth runs on
                   4028: several architectures, so it can provide no standard assembler. What's
                   4029: worse is that the register allocation not only depends on the processor,
                   4030: but also on the @code{gcc} version and options used.
                   4031: 
                   4032: The words that Gforth offers encapsulate some system dependences (e.g., the
                   4033: header structure), so a system-independent assembler may be used in
                   4034: Gforth. If you do not have an assembler, you can compile machine code
                   4035: directly with @code{,} and @code{c,}.
                   4036: 
                   4037: doc-assembler
                   4038: doc-code
                   4039: doc-end-code
                   4040: doc-;code
                   4041: doc-flush-icache
                   4042: 
                   4043: If @code{flush-icache} does not work correctly, @code{code} words
                   4044: etc. will not work (reliably), either.
                   4045: 
                   4046: These words are rarely used. Therefore they reside in @code{code.fs},
                   4047: which is usually not loaded (except @code{flush-icache}, which is always
                   4048: present). You can load them with @code{require code.fs}.
                   4049: 
                   4050: @cindex registers of the inner interpreter
                   4051: In the assembly code you will want to refer to the inner interpreter's
                   4052: registers (e.g., the data stack pointer) and you may want to use other
                   4053: registers for temporary storage. Unfortunately, the register allocation
                   4054: is installation-dependent.
                   4055: 
                   4056: The easiest solution is to use explicit register declarations
                   4057: (@pxref{Explicit Reg Vars, , Variables in Specified Registers, gcc.info,
                   4058: GNU C Manual}) for all of the inner interpreter's registers: You have to
                   4059: compile Gforth with @code{-DFORCE_REG} (configure option
                   4060: @code{--enable-force-reg}) and the appropriate declarations must be
                   4061: present in the @code{machine.h} file (see @code{mips.h} for an example;
                   4062: you can find a full list of all declarable register symbols with
                   4063: @code{grep register engine.c}). If you give explicit registers to all
                   4064: variables that are declared at the beginning of @code{engine()}, you
                   4065: should be able to use the other caller-saved registers for temporary
                   4066: storage. Alternatively, you can use the @code{gcc} option
                   4067: @code{-ffixed-REG} (@pxref{Code Gen Options, , Options for Code
                   4068: Generation Conventions, gcc.info, GNU C Manual}) to reserve a register
                   4069: (however, this restriction on register allocation may slow Gforth
                   4070: significantly).
                   4071: 
                   4072: If this solution is not viable (e.g., because @code{gcc} does not allow
                   4073: you to explicitly declare all the registers you need), you have to find
                   4074: out by looking at the code where the inner interpreter's registers
                   4075: reside and which registers can be used for temporary storage. You can
                   4076: get an assembly listing of the engine's code with @code{make engine.s}.
                   4077: 
                   4078: In any case, it is good practice to abstract your assembly code from the
                   4079: actual register allocation. E.g., if the data stack pointer resides in
                   4080: register @code{$17}, create an alias for this register called @code{sp},
                   4081: and use that in your assembly code.
                   4082: 
                   4083: @cindex code words, portable
                   4084: Another option for implementing normal and defining words efficiently
                   4085: is: adding the wanted functionality to the source of Gforth. For normal
                   4086: words you just have to edit @file{primitives} (@pxref{Automatic
                   4087: Generation}), defining words (equivalent to @code{;CODE} words, for fast
                   4088: defined words) may require changes in @file{engine.c}, @file{kernal.fs},
                   4089: @file{prims2x.fs}, and possibly @file{cross.fs}.
                   4090: 
                   4091: 
1.2       jwilke   4092: @node Threading Words, Including Files, Assembler and Code Words, Words
1.1       anton    4093: @section Threading Words
                   4094: @cindex threading words
                   4095: 
                   4096: @cindex code address
                   4097: These words provide access to code addresses and other threading stuff
                   4098: in Gforth (and, possibly, other interpretive Forths). It more or less
                   4099: abstracts away the differences between direct and indirect threading
                   4100: (and, for direct threading, the machine dependences). However, at
                   4101: present this wordset is still incomplete. It is also pretty low-level;
                   4102: some day it will hopefully be made unnecessary by an internals wordset
                   4103: that abstracts implementation details away completely.
                   4104: 
                   4105: doc->code-address
                   4106: doc->does-code
                   4107: doc-code-address!
                   4108: doc-does-code!
                   4109: doc-does-handler!
                   4110: doc-/does-handler
                   4111: 
                   4112: The code addresses produced by various defining words are produced by
                   4113: the following words:
                   4114: 
                   4115: doc-docol:
                   4116: doc-docon:
                   4117: doc-dovar:
                   4118: doc-douser:
                   4119: doc-dodefer:
                   4120: doc-dofield:
                   4121: 
                   4122: You can recognize words defined by a @code{CREATE}...@code{DOES>} word
                   4123: with @code{>DOES-CODE}. If the word was defined in that way, the value
                   4124: returned is different from 0 and identifies the @code{DOES>} used by the
                   4125: defining word.
1.2       jwilke   4126: 
                   4127: @node Including Files, , Threading Words, Words
1.5     ! anton    4128: @section Including Files
1.2       jwilke   4129: @cindex including files
                   4130: 
                   4131: @node Include and Require, Path handling, Including Files, Words
                   4132: @subsection Include and Requrie
                   4133: 
                   4134: There a two words to include the source files more intelligently.
                   4135: 
                   4136: doc-include
                   4137: doc-require
                   4138: 
                   4139: @node Path handling, ,Require, Words
                   4140: @subsection Path handling
                   4141: @cindex path handling
                   4142: 
                   4143: In larger program projects it is often neccassary to build up a structured
1.5     ! anton    4144: directory tree. Standard Forth programs are somewhere more central because
1.2       jwilke   4145: they must be accessed from some more other programs. To achieve this it is
1.5     ! anton    4146: possible to manipulate the search path in which Gforth tries to find the
1.2       jwilke   4147: source file.
                   4148: 
                   4149: doc-fpath+
                   4150: doc-fpath=
                   4151: doc-.fpath
                   4152: 
                   4153: Using fpath and require would look like:
                   4154: 
                   4155: @example
                   4156: 
                   4157: fpath= /usr/lib/forth/|./
                   4158: 
                   4159: require timer.fs
                   4160: 
                   4161: ...
                   4162: 
                   4163: @end example
                   4164: 
                   4165: @cindex ~+
                   4166: There is another nice feature which is similar to C's @code{include <...>}
                   4167: and @code{include "..."}. For example: You have a program seperated into
1.5     ! anton    4168: several files in a subdirectory and you want to include some other files
        !          4169: in this subdirectory from within the program. You have to tell Gforth that
        !          4170: you are now looking relative to the directory the current file comes from.
        !          4171: You can tell this Gforth by using the prefix @code{~+/} in front of the
1.2       jwilke   4172: filename. It is also possible to add it to the search path.
                   4173: 
1.5     ! anton    4174: If you have the need to look for a file in the Forth search path, you could
        !          4175: use this Gforth feature in your application.
1.2       jwilke   4176: 
                   4177: doc-open-fpath-file
                   4178: 
                   4179: It is even possible to use your own search paths. Create a search path like
                   4180: this:
                   4181: 
                   4182: @example
                   4183: 
                   4184: Make a buffer for the path:
                   4185: create mypath   100 chars ,     \ maximum length (is checked)
                   4186:                 0 ,             \ real len
                   4187:                 100 chars allot \ space for path
                   4188: 
                   4189: @end example
                   4190: 
                   4191: You have the same functions for the forth search path in an generic version
                   4192: for different pathes.
                   4193: 
                   4194: doc-path+
                   4195: doc-path=
                   4196: doc-.path
                   4197: doc-open-path-file
1.1       anton    4198: 
1.5     ! anton    4199: @c ******************************************************************
1.1       anton    4200: @node Tools, ANS conformance, Words, Top
                   4201: @chapter Tools
                   4202: 
                   4203: @menu
                   4204: * ANS Report::                  Report the words used, sorted by wordset.
                   4205: @end menu
                   4206: 
                   4207: See also @ref{Emacs and Gforth}.
                   4208: 
                   4209: @node ANS Report,  , Tools, Tools
                   4210: @section @file{ans-report.fs}: Report the words used, sorted by wordset
                   4211: @cindex @file{ans-report.fs}
                   4212: @cindex report the words used in your program
                   4213: @cindex words used in your program
                   4214: 
                   4215: If you want to label a Forth program as ANS Forth Program, you must
                   4216: document which wordsets the program uses; for extension wordsets, it is
                   4217: helpful to list the words the program requires from these wordsets
                   4218: (because Forth systems are allowed to provide only some words of them).
                   4219: 
                   4220: The @file{ans-report.fs} tool makes it easy for you to determine which
                   4221: words from which wordset and which non-ANS words your application
                   4222: uses. You simply have to include @file{ans-report.fs} before loading the
                   4223: program you want to check. After loading your program, you can get the
                   4224: report with @code{print-ans-report}. A typical use is to run this as
                   4225: batch job like this:
                   4226: @example
                   4227: gforth ans-report.fs myprog.fs -e "print-ans-report bye"
                   4228: @end example
                   4229: 
                   4230: The output looks like this (for @file{compat/control.fs}):
                   4231: @example
                   4232: The program uses the following words
                   4233: from CORE :
                   4234: : POSTPONE THEN ; immediate ?dup IF 0= 
                   4235: from BLOCK-EXT :
                   4236: \ 
                   4237: from FILE :
                   4238: ( 
                   4239: @end example
                   4240: 
                   4241: @subsection Caveats
                   4242: 
                   4243: Note that @file{ans-report.fs} just checks which words are used, not whether
                   4244: they are used in an ANS Forth conforming way!
                   4245: 
                   4246: Some words are defined in several wordsets in the
                   4247: standard. @file{ans-report.fs} reports them for only one of the
                   4248: wordsets, and not necessarily the one you expect. It depends on usage
                   4249: which wordset is the right one to specify. E.g., if you only use the
                   4250: compilation semantics of @code{S"}, it is a Core word; if you also use
                   4251: its interpretation semantics, it is a File word.
                   4252: 
                   4253: @c ******************************************************************
                   4254: @node ANS conformance, Model, Tools, Top
                   4255: @chapter ANS conformance
                   4256: @cindex ANS conformance of Gforth
                   4257: 
                   4258: To the best of our knowledge, Gforth is an
                   4259: 
                   4260: ANS Forth System
                   4261: @itemize @bullet
                   4262: @item providing the Core Extensions word set
                   4263: @item providing the Block word set
                   4264: @item providing the Block Extensions word set
                   4265: @item providing the Double-Number word set
                   4266: @item providing the Double-Number Extensions word set
                   4267: @item providing the Exception word set
                   4268: @item providing the Exception Extensions word set
                   4269: @item providing the Facility word set
                   4270: @item providing @code{MS} and @code{TIME&DATE} from the Facility Extensions word set
                   4271: @item providing the File Access word set
                   4272: @item providing the File Access Extensions word set
                   4273: @item providing the Floating-Point word set
                   4274: @item providing the Floating-Point Extensions word set
                   4275: @item providing the Locals word set
                   4276: @item providing the Locals Extensions word set
                   4277: @item providing the Memory-Allocation word set
                   4278: @item providing the Memory-Allocation Extensions word set (that one's easy)
                   4279: @item providing the Programming-Tools word set
                   4280: @item providing @code{;CODE}, @code{AHEAD}, @code{ASSEMBLER}, @code{BYE}, @code{CODE}, @code{CS-PICK}, @code{CS-ROLL}, @code{STATE}, @code{[ELSE]}, @code{[IF]}, @code{[THEN]} from the Programming-Tools Extensions word set
                   4281: @item providing the Search-Order word set
                   4282: @item providing the Search-Order Extensions word set
                   4283: @item providing the String word set
                   4284: @item providing the String Extensions word set (another easy one)
                   4285: @end itemize
                   4286: 
                   4287: @cindex system documentation
                   4288: In addition, ANS Forth systems are required to document certain
                   4289: implementation choices. This chapter tries to meet these
                   4290: requirements. In many cases it gives a way to ask the system for the
                   4291: information instead of providing the information directly, in
                   4292: particular, if the information depends on the processor, the operating
                   4293: system or the installation options chosen, or if they are likely to
                   4294: change during the maintenance of Gforth.
                   4295: 
                   4296: @comment The framework for the rest has been taken from pfe.
                   4297: 
                   4298: @menu
                   4299: * The Core Words::              
                   4300: * The optional Block word set::  
                   4301: * The optional Double Number word set::  
                   4302: * The optional Exception word set::  
                   4303: * The optional Facility word set::  
                   4304: * The optional File-Access word set::  
                   4305: * The optional Floating-Point word set::  
                   4306: * The optional Locals word set::  
                   4307: * The optional Memory-Allocation word set::  
                   4308: * The optional Programming-Tools word set::  
                   4309: * The optional Search-Order word set::  
                   4310: @end menu
                   4311: 
                   4312: 
                   4313: @c =====================================================================
                   4314: @node The Core Words, The optional Block word set, ANS conformance, ANS conformance
                   4315: @comment  node-name,  next,  previous,  up
                   4316: @section The Core Words
                   4317: @c =====================================================================
                   4318: @cindex core words, system documentation
                   4319: @cindex system documentation, core words
                   4320: 
                   4321: @menu
                   4322: * core-idef::                   Implementation Defined Options                   
                   4323: * core-ambcond::                Ambiguous Conditions                
                   4324: * core-other::                  Other System Documentation                  
                   4325: @end menu
                   4326: 
                   4327: @c ---------------------------------------------------------------------
                   4328: @node core-idef, core-ambcond, The Core Words, The Core Words
                   4329: @subsection Implementation Defined Options
                   4330: @c ---------------------------------------------------------------------
                   4331: @cindex core words, implementation-defined options
                   4332: @cindex implementation-defined options, core words
                   4333: 
                   4334: 
                   4335: @table @i
                   4336: @item (Cell) aligned addresses:
                   4337: @cindex cell-aligned addresses
                   4338: @cindex aligned addresses
                   4339: processor-dependent. Gforth's alignment words perform natural alignment
                   4340: (e.g., an address aligned for a datum of size 8 is divisible by
                   4341: 8). Unaligned accesses usually result in a @code{-23 THROW}.
                   4342: 
                   4343: @item @code{EMIT} and non-graphic characters:
                   4344: @cindex @code{EMIT} and non-graphic characters
                   4345: @cindex non-graphic characters and @code{EMIT}
                   4346: The character is output using the C library function (actually, macro)
                   4347: @code{putc}.
                   4348: 
                   4349: @item character editing of @code{ACCEPT} and @code{EXPECT}:
                   4350: @cindex character editing of @code{ACCEPT} and @code{EXPECT}
                   4351: @cindex editing in @code{ACCEPT} and @code{EXPECT}
                   4352: @cindex @code{ACCEPT}, editing
                   4353: @cindex @code{EXPECT}, editing
                   4354: This is modeled on the GNU readline library (@pxref{Readline
                   4355: Interaction, , Command Line Editing, readline, The GNU Readline
                   4356: Library}) with Emacs-like key bindings. @kbd{Tab} deviates a little by
                   4357: producing a full word completion every time you type it (instead of
                   4358: producing the common prefix of all completions).
                   4359: 
                   4360: @item character set:
                   4361: @cindex character set
                   4362: The character set of your computer and display device. Gforth is
                   4363: 8-bit-clean (but some other component in your system may make trouble).
                   4364: 
                   4365: @item Character-aligned address requirements:
                   4366: @cindex character-aligned address requirements
                   4367: installation-dependent. Currently a character is represented by a C
                   4368: @code{unsigned char}; in the future we might switch to @code{wchar_t}
                   4369: (Comments on that requested).
                   4370: 
                   4371: @item character-set extensions and matching of names:
                   4372: @cindex character-set extensions and matching of names
                   4373: @cindex case sensitivity for name lookup
                   4374: @cindex name lookup, case sensitivity
                   4375: @cindex locale and case sensitivity
                   4376: Any character except the ASCII NUL charcter can be used in a
                   4377: name. Matching is case-insensitive (except in @code{TABLE}s). The
                   4378: matching is performed using the C function @code{strncasecmp}, whose
                   4379: function is probably influenced by the locale. E.g., the @code{C} locale
                   4380: does not know about accents and umlauts, so they are matched
                   4381: case-sensitively in that locale. For portability reasons it is best to
                   4382: write programs such that they work in the @code{C} locale. Then one can
                   4383: use libraries written by a Polish programmer (who might use words
                   4384: containing ISO Latin-2 encoded characters) and by a French programmer
                   4385: (ISO Latin-1) in the same program (of course, @code{WORDS} will produce
                   4386: funny results for some of the words (which ones, depends on the font you
                   4387: are using)). Also, the locale you prefer may not be available in other
                   4388: operating systems. Hopefully, Unicode will solve these problems one day.
                   4389: 
                   4390: @item conditions under which control characters match a space delimiter:
                   4391: @cindex space delimiters
                   4392: @cindex control characters as delimiters
                   4393: If @code{WORD} is called with the space character as a delimiter, all
                   4394: white-space characters (as identified by the C macro @code{isspace()})
                   4395: are delimiters. @code{PARSE}, on the other hand, treats space like other
                   4396: delimiters. @code{PARSE-WORD} treats space like @code{WORD}, but behaves
                   4397: like @code{PARSE} otherwise. @code{(NAME)}, which is used by the outer
                   4398: interpreter (aka text interpreter) by default, treats all white-space
                   4399: characters as delimiters.
                   4400: 
                   4401: @item format of the control flow stack:
                   4402: @cindex control flow stack, format
                   4403: The data stack is used as control flow stack. The size of a control flow
                   4404: stack item in cells is given by the constant @code{cs-item-size}. At the
                   4405: time of this writing, an item consists of a (pointer to a) locals list
                   4406: (third), an address in the code (second), and a tag for identifying the
                   4407: item (TOS). The following tags are used: @code{defstart},
                   4408: @code{live-orig}, @code{dead-orig}, @code{dest}, @code{do-dest},
                   4409: @code{scopestart}.
                   4410: 
                   4411: @item conversion of digits > 35
                   4412: @cindex digits > 35
                   4413: The characters @code{[\]^_'} are the digits with the decimal value
                   4414: 36@minus{}41. There is no way to input many of the larger digits.
                   4415: 
                   4416: @item display after input terminates in @code{ACCEPT} and @code{EXPECT}:
                   4417: @cindex @code{EXPECT}, display after end of input
                   4418: @cindex @code{ACCEPT}, display after end of input
                   4419: The cursor is moved to the end of the entered string. If the input is
                   4420: terminated using the @kbd{Return} key, a space is typed.
                   4421: 
                   4422: @item exception abort sequence of @code{ABORT"}:
                   4423: @cindex exception abort sequence of @code{ABORT"}
                   4424: @cindex @code{ABORT"}, exception abort sequence
                   4425: The error string is stored into the variable @code{"error} and a
                   4426: @code{-2 throw} is performed.
                   4427: 
                   4428: @item input line terminator:
                   4429: @cindex input line terminator
                   4430: @cindex line terminator on input
                   4431: @cindex newline charcter on input
                   4432: For interactive input, @kbd{C-m} (CR) and @kbd{C-j} (LF) terminate
                   4433: lines. One of these characters is typically produced when you type the
                   4434: @kbd{Enter} or @kbd{Return} key.
                   4435: 
                   4436: @item maximum size of a counted string:
                   4437: @cindex maximum size of a counted string
                   4438: @cindex counted string, maximum size
                   4439: @code{s" /counted-string" environment? drop .}. Currently 255 characters
                   4440: on all ports, but this may change.
                   4441: 
                   4442: @item maximum size of a parsed string:
                   4443: @cindex maximum size of a parsed string
                   4444: @cindex parsed string, maximum size
                   4445: Given by the constant @code{/line}. Currently 255 characters.
                   4446: 
                   4447: @item maximum size of a definition name, in characters:
                   4448: @cindex maximum size of a definition name, in characters
                   4449: @cindex name, maximum length
                   4450: 31
                   4451: 
                   4452: @item maximum string length for @code{ENVIRONMENT?}, in characters:
                   4453: @cindex maximum string length for @code{ENVIRONMENT?}, in characters
                   4454: @cindex @code{ENVIRONMENT?} string length, maximum
                   4455: 31
                   4456: 
                   4457: @item method of selecting the user input device:
                   4458: @cindex user input device, method of selecting
                   4459: The user input device is the standard input. There is currently no way to
                   4460: change it from within Gforth. However, the input can typically be
                   4461: redirected in the command line that starts Gforth.
                   4462: 
                   4463: @item method of selecting the user output device:
                   4464: @cindex user output device, method of selecting
                   4465: @code{EMIT} and @code{TYPE} output to the file-id stored in the value
                   4466: @code{outfile-id} (@code{stdout} by default). Gforth uses buffered
                   4467: output, so output on a terminal does not become visible before the next
                   4468: newline or buffer overflow. Output on non-terminals is invisible until
                   4469: the buffer overflows.
                   4470: 
                   4471: @item methods of dictionary compilation:
                   4472: What are we expected to document here?
                   4473: 
                   4474: @item number of bits in one address unit:
                   4475: @cindex number of bits in one address unit
                   4476: @cindex address unit, size in bits
                   4477: @code{s" address-units-bits" environment? drop .}. 8 in all current
                   4478: ports.
                   4479: 
                   4480: @item number representation and arithmetic:
                   4481: @cindex number representation and arithmetic
                   4482: Processor-dependent. Binary two's complement on all current ports.
                   4483: 
                   4484: @item ranges for integer types:
                   4485: @cindex ranges for integer types
                   4486: @cindex integer types, ranges
                   4487: Installation-dependent. Make environmental queries for @code{MAX-N},
                   4488: @code{MAX-U}, @code{MAX-D} and @code{MAX-UD}. The lower bounds for
                   4489: unsigned (and positive) types is 0. The lower bound for signed types on
                   4490: two's complement and one's complement machines machines can be computed
                   4491: by adding 1 to the upper bound.
                   4492: 
                   4493: @item read-only data space regions:
                   4494: @cindex read-only data space regions
                   4495: @cindex data-space, read-only regions
                   4496: The whole Forth data space is writable.
                   4497: 
                   4498: @item size of buffer at @code{WORD}:
                   4499: @cindex size of buffer at @code{WORD}
                   4500: @cindex @code{WORD} buffer size
                   4501: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   4502: shared with the pictured numeric output string. If overwriting
                   4503: @code{PAD} is acceptable, it is as large as the remaining dictionary
                   4504: space, although only as much can be sensibly used as fits in a counted
                   4505: string.
                   4506: 
                   4507: @item size of one cell in address units:
                   4508: @cindex cell size
                   4509: @code{1 cells .}.
                   4510: 
                   4511: @item size of one character in address units:
                   4512: @cindex char size
                   4513: @code{1 chars .}. 1 on all current ports.
                   4514: 
                   4515: @item size of the keyboard terminal buffer:
                   4516: @cindex size of the keyboard terminal buffer
                   4517: @cindex terminal buffer, size
                   4518: Varies. You can determine the size at a specific time using @code{lp@@
                   4519: tib - .}. It is shared with the locals stack and TIBs of files that
                   4520: include the current file. You can change the amount of space for TIBs
                   4521: and locals stack at Gforth startup with the command line option
                   4522: @code{-l}.
                   4523: 
                   4524: @item size of the pictured numeric output buffer:
                   4525: @cindex size of the pictured numeric output buffer
                   4526: @cindex pictured numeric output buffer, size
                   4527: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   4528: shared with @code{WORD}.
                   4529: 
                   4530: @item size of the scratch area returned by @code{PAD}:
                   4531: @cindex size of the scratch area returned by @code{PAD}
                   4532: @cindex @code{PAD} size
                   4533: The remainder of dictionary space. @code{unused pad here - - .}.
                   4534: 
                   4535: @item system case-sensitivity characteristics:
                   4536: @cindex case-sensitivity characteristics
                   4537: Dictionary searches are case insensitive (except in
                   4538: @code{TABLE}s). However, as explained above under @i{character-set
                   4539: extensions}, the matching for non-ASCII characters is determined by the
                   4540: locale you are using. In the default @code{C} locale all non-ASCII
                   4541: characters are matched case-sensitively.
                   4542: 
                   4543: @item system prompt:
                   4544: @cindex system prompt
                   4545: @cindex prompt
                   4546: @code{ ok} in interpret state, @code{ compiled} in compile state.
                   4547: 
                   4548: @item division rounding:
                   4549: @cindex division rounding
                   4550: installation dependent. @code{s" floored" environment? drop .}. We leave
                   4551: the choice to @code{gcc} (what to use for @code{/}) and to you (whether
                   4552: to use @code{fm/mod}, @code{sm/rem} or simply @code{/}).
                   4553: 
                   4554: @item values of @code{STATE} when true:
                   4555: @cindex @code{STATE} values
                   4556: -1.
                   4557: 
                   4558: @item values returned after arithmetic overflow:
                   4559: On two's complement machines, arithmetic is performed modulo
                   4560: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   4561: arithmetic (with appropriate mapping for signed types). Division by zero
                   4562: typically results in a @code{-55 throw} (Floating-point unidentified
                   4563: fault), although a @code{-10 throw} (divide by zero) would be more
                   4564: appropriate.
                   4565: 
                   4566: @item whether the current definition can be found after @t{DOES>}:
                   4567: @cindex @t{DOES>}, visibility of current definition
                   4568: No.
                   4569: 
                   4570: @end table
                   4571: 
                   4572: @c ---------------------------------------------------------------------
                   4573: @node core-ambcond, core-other, core-idef, The Core Words
                   4574: @subsection Ambiguous conditions
                   4575: @c ---------------------------------------------------------------------
                   4576: @cindex core words, ambiguous conditions
                   4577: @cindex ambiguous conditions, core words
                   4578: 
                   4579: @table @i
                   4580: 
                   4581: @item a name is neither a word nor a number:
                   4582: @cindex name not found
                   4583: @cindex Undefined word
                   4584: @code{-13 throw} (Undefined word). Actually, @code{-13 bounce}, which
                   4585: preserves the data and FP stack, so you don't lose more work than
                   4586: necessary.
                   4587: 
                   4588: @item a definition name exceeds the maximum length allowed:
                   4589: @cindex Word name too long
                   4590: @code{-19 throw} (Word name too long)
                   4591: 
                   4592: @item addressing a region not inside the various data spaces of the forth system:
                   4593: @cindex Invalid memory address
                   4594: The stacks, code space and name space are accessible. Machine code space is
                   4595: typically readable. Accessing other addresses gives results dependent on
                   4596: the operating system. On decent systems: @code{-9 throw} (Invalid memory
                   4597: address).
                   4598: 
                   4599: @item argument type incompatible with parameter:
                   4600: @cindex Argument type mismatch
                   4601: This is usually not caught. Some words perform checks, e.g., the control
                   4602: flow words, and issue a @code{ABORT"} or @code{-12 THROW} (Argument type
                   4603: mismatch).
                   4604: 
                   4605: @item attempting to obtain the execution token of a word with undefined execution semantics:
                   4606: @cindex Interpreting a compile-only word, for @code{'} etc.
                   4607: @cindex execution token of words with undefined execution semantics
                   4608: @code{-14 throw} (Interpreting a compile-only word). In some cases, you
                   4609: get an execution token for @code{compile-only-error} (which performs a
                   4610: @code{-14 throw} when executed).
                   4611: 
                   4612: @item dividing by zero:
                   4613: @cindex dividing by zero
                   4614: @cindex floating point unidentified fault, integer division
                   4615: @cindex divide by zero
                   4616: typically results in a @code{-55 throw} (floating point unidentified
                   4617: fault), although a @code{-10 throw} (divide by zero) would be more
                   4618: appropriate.
                   4619: 
                   4620: @item insufficient data stack or return stack space:
                   4621: @cindex insufficient data stack or return stack space
                   4622: @cindex stack overflow
                   4623: @cindex Address alignment exception, stack overflow
                   4624: @cindex Invalid memory address, stack overflow
                   4625: Depending on the operating system, the installation, and the invocation
                   4626: of Gforth, this is either checked by the memory management hardware, or
                   4627: it is not checked. If it is checked, you typically get a @code{-9 throw}
                   4628: (Invalid memory address) as soon as the overflow happens. If it is not
                   4629: check, overflows typically result in mysterious illegal memory accesses,
                   4630: producing @code{-9 throw} (Invalid memory address) or @code{-23 throw}
                   4631: (Address alignment exception); they might also destroy the internal data
                   4632: structure of @code{ALLOCATE} and friends, resulting in various errors in
                   4633: these words.
                   4634: 
                   4635: @item insufficient space for loop control parameters:
                   4636: @cindex insufficient space for loop control parameters
                   4637: like other return stack overflows.
                   4638: 
                   4639: @item insufficient space in the dictionary:
                   4640: @cindex insufficient space in the dictionary
                   4641: @cindex dictionary overflow
                   4642: Depending on the operating system, the installation, and the invocation
                   4643: of Gforth, this is either checked by the memory management hardware, or
                   4644: it is not checked. Similar results as stack overflows. However,
                   4645: typically the error appears at a different place when one inserts or
                   4646: removes code. Also, the @code{THROW} does not relieve the situation (it
                   4647: does for stack overflows).
                   4648: 
                   4649: @item interpreting a word with undefined interpretation semantics:
                   4650: @cindex interpreting a word with undefined interpretation semantics
                   4651: @cindex Interpreting a compile-only word
                   4652: For some words, we have defined interpretation semantics. For the
                   4653: others: @code{-14 throw} (Interpreting a compile-only word).
                   4654: 
                   4655: @item modifying the contents of the input buffer or a string literal:
                   4656: @cindex modifying the contents of the input buffer or a string literal
                   4657: These are located in writable memory and can be modified.
                   4658: 
                   4659: @item overflow of the pictured numeric output string:
                   4660: @cindex overflow of the pictured numeric output string
                   4661: @cindex pictured numeric output string, overflow
                   4662: Not checked. Runs into the dictionary and destroys it (at least,
                   4663: partially).
                   4664: 
                   4665: @item parsed string overflow:
                   4666: @cindex parsed string overflow
                   4667: @code{PARSE} cannot overflow. @code{WORD} does not check for overflow.
                   4668: 
                   4669: @item producing a result out of range:
                   4670: @cindex result out of range
                   4671: On two's complement machines, arithmetic is performed modulo
                   4672: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   4673: arithmetic (with appropriate mapping for signed types). Division by zero
                   4674: typically results in a @code{-55 throw} (floatingpoint unidentified
                   4675: fault), although a @code{-10 throw} (divide by zero) would be more
                   4676: appropriate. @code{convert} and @code{>number} currently overflow
                   4677: silently.
                   4678: 
                   4679: @item reading from an empty data or return stack:
                   4680: @cindex stack empty
                   4681: @cindex stack underflow
                   4682: The data stack is checked by the outer (aka text) interpreter after
                   4683: every word executed. If it has underflowed, a @code{-4 throw} (Stack
                   4684: underflow) is performed. Apart from that, stacks may be checked or not,
                   4685: depending on operating system, installation, and invocation. The
                   4686: consequences of stack underflows are similar to the consequences of
                   4687: stack overflows. Note that even if the system uses checking (through the
                   4688: MMU), your program may have to underflow by a significant number of
                   4689: stack items to trigger the reaction (the reason for this is that the
                   4690: MMU, and therefore the checking, works with a page-size granularity).
                   4691: 
                   4692: @item unexpected end of the input buffer, resulting in an attempt to use a zero-length string as a name:
                   4693: @cindex unexpected end of the input buffer
                   4694: @cindex zero-length string as a name
                   4695: @cindex Attempt to use zero-length string as a name
                   4696: @code{Create} and its descendants perform a @code{-16 throw} (Attempt to
                   4697: use zero-length string as a name). Words like @code{'} probably will not
                   4698: find what they search. Note that it is possible to create zero-length
                   4699: names with @code{nextname} (should it not?).
                   4700: 
                   4701: @item @code{>IN} greater than input buffer:
                   4702: @cindex @code{>IN} greater than input buffer
                   4703: The next invocation of a parsing word returns a string with length 0.
                   4704: 
                   4705: @item @code{RECURSE} appears after @code{DOES>}:
                   4706: @cindex @code{RECURSE} appears after @code{DOES>}
                   4707: Compiles a recursive call to the defining word, not to the defined word.
                   4708: 
                   4709: @item argument input source different than current input source for @code{RESTORE-INPUT}:
                   4710: @cindex argument input source different than current input source for @code{RESTORE-INPUT}
                   4711: @cindex Argument type mismatch, @code{RESTORE-INPUT}
                   4712: @cindex @code{RESTORE-INPUT}, Argument type mismatch
                   4713: @code{-12 THROW}. Note that, once an input file is closed (e.g., because
                   4714: the end of the file was reached), its source-id may be
                   4715: reused. Therefore, restoring an input source specification referencing a
                   4716: closed file may lead to unpredictable results instead of a @code{-12
                   4717: THROW}.
                   4718: 
                   4719: In the future, Gforth may be able to restore input source specifications
                   4720: from other than the current input source.
                   4721: 
                   4722: @item data space containing definitions gets de-allocated:
                   4723: @cindex data space containing definitions gets de-allocated
                   4724: Deallocation with @code{allot} is not checked. This typically results in
                   4725: memory access faults or execution of illegal instructions.
                   4726: 
                   4727: @item data space read/write with incorrect alignment:
                   4728: @cindex data space read/write with incorrect alignment
                   4729: @cindex alignment faults
                   4730: @cindex Address alignment exception
                   4731: Processor-dependent. Typically results in a @code{-23 throw} (Address
                   4732: alignment exception). Under Linux on a 486 or later processor with
                   4733: alignment turned on, incorrect alignment results in a @code{-9 throw}
                   4734: (Invalid memory address). There are reportedly some processors with
                   4735: alignment restrictions that do not report them.
                   4736: 
                   4737: @item data space pointer not properly aligned, @code{,}, @code{C,}:
                   4738: @cindex data space pointer not properly aligned, @code{,}, @code{C,}
                   4739: Like other alignment errors.
                   4740: 
                   4741: @item less than u+2 stack items (@code{PICK} and @code{ROLL}):
                   4742: Like other stack underflows.
                   4743: 
                   4744: @item loop control parameters not available:
                   4745: @cindex loop control parameters not available
                   4746: Not checked. The counted loop words simply assume that the top of return
                   4747: stack items are loop control parameters and behave accordingly.
                   4748: 
                   4749: @item most recent definition does not have a name (@code{IMMEDIATE}):
                   4750: @cindex most recent definition does not have a name (@code{IMMEDIATE})
                   4751: @cindex last word was headerless
                   4752: @code{abort" last word was headerless"}.
                   4753: 
                   4754: @item name not defined by @code{VALUE} used by @code{TO}:
                   4755: @cindex name not defined by @code{VALUE} used by @code{TO}
                   4756: @cindex @code{TO} on non-@code{VALUE}s
                   4757: @cindex Invalid name argument, @code{TO}
                   4758: @code{-32 throw} (Invalid name argument) (unless name is a local or was
                   4759: defined by @code{CONSTANT}; in the latter case it just changes the constant).
                   4760: 
                   4761: @item name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}):
                   4762: @cindex name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]})
                   4763: @cindex Undefined word, @code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}
                   4764: @code{-13 throw} (Undefined word)
                   4765: 
                   4766: @item parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN}):
                   4767: @cindex parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN})
                   4768: Gforth behaves as if they were of the same type. I.e., you can predict
                   4769: the behaviour by interpreting all parameters as, e.g., signed.
                   4770: 
                   4771: @item @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}:
                   4772: @cindex @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}
                   4773: Assume @code{: X POSTPONE TO ; IMMEDIATE}. @code{X} performs the
                   4774: compilation semantics of @code{TO}.
                   4775: 
                   4776: @item String longer than a counted string returned by @code{WORD}:
                   4777: @cindex String longer than a counted string returned by @code{WORD}
                   4778: @cindex @code{WORD}, string overflow
                   4779: Not checked. The string will be ok, but the count will, of course,
                   4780: contain only the least significant bits of the length.
                   4781: 
                   4782: @item u greater than or equal to the number of bits in a cell (@code{LSHIFT}, @code{RSHIFT}):
                   4783: @cindex @code{LSHIFT}, large shift counts
                   4784: @cindex @code{RSHIFT}, large shift counts
                   4785: Processor-dependent. Typical behaviours are returning 0 and using only
                   4786: the low bits of the shift count.
                   4787: 
                   4788: @item word not defined via @code{CREATE}:
                   4789: @cindex @code{>BODY} of non-@code{CREATE}d words
                   4790: @code{>BODY} produces the PFA of the word no matter how it was defined.
                   4791: 
                   4792: @cindex @code{DOES>} of non-@code{CREATE}d words
                   4793: @code{DOES>} changes the execution semantics of the last defined word no
                   4794: matter how it was defined. E.g., @code{CONSTANT DOES>} is equivalent to
                   4795: @code{CREATE , DOES>}.
                   4796: 
                   4797: @item words improperly used outside @code{<#} and @code{#>}:
                   4798: Not checked. As usual, you can expect memory faults.
                   4799: 
                   4800: @end table
                   4801: 
                   4802: 
                   4803: @c ---------------------------------------------------------------------
                   4804: @node core-other,  , core-ambcond, The Core Words
                   4805: @subsection Other system documentation
                   4806: @c ---------------------------------------------------------------------
                   4807: @cindex other system documentation, core words
                   4808: @cindex core words, other system documentation
                   4809: 
                   4810: @table @i
                   4811: @item nonstandard words using @code{PAD}:
                   4812: @cindex @code{PAD} use by nonstandard words
                   4813: None.
                   4814: 
                   4815: @item operator's terminal facilities available:
                   4816: @cindex operator's terminal facilities available
                   4817: After processing the command line, Gforth goes into interactive mode,
                   4818: and you can give commands to Gforth interactively. The actual facilities
                   4819: available depend on how you invoke Gforth.
                   4820: 
                   4821: @item program data space available:
                   4822: @cindex program data space available
                   4823: @cindex data space available
                   4824: @code{UNUSED .} gives the remaining dictionary space. The total
                   4825: dictionary space can be specified with the @code{-m} switch
                   4826: (@pxref{Invoking Gforth}) when Gforth starts up.
                   4827: 
                   4828: @item return stack space available:
                   4829: @cindex return stack space available
                   4830: You can compute the total return stack space in cells with
                   4831: @code{s" RETURN-STACK-CELLS" environment? drop .}. You can specify it at
                   4832: startup time with the @code{-r} switch (@pxref{Invoking Gforth}).
                   4833: 
                   4834: @item stack space available:
                   4835: @cindex stack space available
                   4836: You can compute the total data stack space in cells with
                   4837: @code{s" STACK-CELLS" environment? drop .}. You can specify it at
                   4838: startup time with the @code{-d} switch (@pxref{Invoking Gforth}).
                   4839: 
                   4840: @item system dictionary space required, in address units:
                   4841: @cindex system dictionary space required, in address units
                   4842: Type @code{here forthstart - .} after startup. At the time of this
                   4843: writing, this gives 80080 (bytes) on a 32-bit system.
                   4844: @end table
                   4845: 
                   4846: 
                   4847: @c =====================================================================
                   4848: @node The optional Block word set, The optional Double Number word set, The Core Words, ANS conformance
                   4849: @section The optional Block word set
                   4850: @c =====================================================================
                   4851: @cindex system documentation, block words
                   4852: @cindex block words, system documentation
                   4853: 
                   4854: @menu
                   4855: * block-idef::                  Implementation Defined Options
                   4856: * block-ambcond::               Ambiguous Conditions               
                   4857: * block-other::                 Other System Documentation                 
                   4858: @end menu
                   4859: 
                   4860: 
                   4861: @c ---------------------------------------------------------------------
                   4862: @node block-idef, block-ambcond, The optional Block word set, The optional Block word set
                   4863: @subsection Implementation Defined Options
                   4864: @c ---------------------------------------------------------------------
                   4865: @cindex implementation-defined options, block words
                   4866: @cindex block words, implementation-defined options
                   4867: 
                   4868: @table @i
                   4869: @item the format for display by @code{LIST}:
                   4870: @cindex @code{LIST} display format
                   4871: First the screen number is displayed, then 16 lines of 64 characters,
                   4872: each line preceded by the line number.
                   4873: 
                   4874: @item the length of a line affected by @code{\}:
                   4875: @cindex length of a line affected by @code{\}
                   4876: @cindex @code{\}, line length in blocks
                   4877: 64 characters.
                   4878: @end table
                   4879: 
                   4880: 
                   4881: @c ---------------------------------------------------------------------
                   4882: @node block-ambcond, block-other, block-idef, The optional Block word set
                   4883: @subsection Ambiguous conditions
                   4884: @c ---------------------------------------------------------------------
                   4885: @cindex block words, ambiguous conditions
                   4886: @cindex ambiguous conditions, block words
                   4887: 
                   4888: @table @i
                   4889: @item correct block read was not possible:
                   4890: @cindex block read not possible
                   4891: Typically results in a @code{throw} of some OS-derived value (between
                   4892: -512 and -2048). If the blocks file was just not long enough, blanks are
                   4893: supplied for the missing portion.
                   4894: 
                   4895: @item I/O exception in block transfer:
                   4896: @cindex I/O exception in block transfer
                   4897: @cindex block transfer, I/O exception
                   4898: Typically results in a @code{throw} of some OS-derived value (between
                   4899: -512 and -2048).
                   4900: 
                   4901: @item invalid block number:
                   4902: @cindex invalid block number
                   4903: @cindex block number invalid
                   4904: @code{-35 throw} (Invalid block number)
                   4905: 
                   4906: @item a program directly alters the contents of @code{BLK}:
                   4907: @cindex @code{BLK}, altering @code{BLK}
                   4908: The input stream is switched to that other block, at the same
                   4909: position. If the storing to @code{BLK} happens when interpreting
                   4910: non-block input, the system will get quite confused when the block ends.
                   4911: 
                   4912: @item no current block buffer for @code{UPDATE}:
                   4913: @cindex @code{UPDATE}, no current block buffer
                   4914: @code{UPDATE} has no effect.
                   4915: 
                   4916: @end table
                   4917: 
                   4918: @c ---------------------------------------------------------------------
                   4919: @node block-other,  , block-ambcond, The optional Block word set
                   4920: @subsection Other system documentation
                   4921: @c ---------------------------------------------------------------------
                   4922: @cindex other system documentation, block words
                   4923: @cindex block words, other system documentation
                   4924: 
                   4925: @table @i
                   4926: @item any restrictions a multiprogramming system places on the use of buffer addresses:
                   4927: No restrictions (yet).
                   4928: 
                   4929: @item the number of blocks available for source and data:
                   4930: depends on your disk space.
                   4931: 
                   4932: @end table
                   4933: 
                   4934: 
                   4935: @c =====================================================================
                   4936: @node The optional Double Number word set, The optional Exception word set, The optional Block word set, ANS conformance
                   4937: @section The optional Double Number word set
                   4938: @c =====================================================================
                   4939: @cindex system documentation, double words
                   4940: @cindex double words, system documentation
                   4941: 
                   4942: @menu
                   4943: * double-ambcond::              Ambiguous Conditions              
                   4944: @end menu
                   4945: 
                   4946: 
                   4947: @c ---------------------------------------------------------------------
                   4948: @node double-ambcond,  , The optional Double Number word set, The optional Double Number word set
                   4949: @subsection Ambiguous conditions
                   4950: @c ---------------------------------------------------------------------
                   4951: @cindex double words, ambiguous conditions
                   4952: @cindex ambiguous conditions, double words
                   4953: 
                   4954: @table @i
                   4955: @item @var{d} outside of range of @var{n} in @code{D>S}:
                   4956: @cindex @code{D>S}, @var{d} out of range of @var{n} 
                   4957: The least significant cell of @var{d} is produced.
                   4958: 
                   4959: @end table
                   4960: 
                   4961: 
                   4962: @c =====================================================================
                   4963: @node The optional Exception word set, The optional Facility word set, The optional Double Number word set, ANS conformance
                   4964: @section The optional Exception word set
                   4965: @c =====================================================================
                   4966: @cindex system documentation, exception words
                   4967: @cindex exception words, system documentation
                   4968: 
                   4969: @menu
                   4970: * exception-idef::              Implementation Defined Options              
                   4971: @end menu
                   4972: 
                   4973: 
                   4974: @c ---------------------------------------------------------------------
                   4975: @node exception-idef,  , The optional Exception word set, The optional Exception word set
                   4976: @subsection Implementation Defined Options
                   4977: @c ---------------------------------------------------------------------
                   4978: @cindex implementation-defined options, exception words
                   4979: @cindex exception words, implementation-defined options
                   4980: 
                   4981: @table @i
                   4982: @item @code{THROW}-codes used in the system:
                   4983: @cindex @code{THROW}-codes used in the system
                   4984: The codes -256@minus{}-511 are used for reporting signals. The mapping
                   4985: from OS signal numbers to throw codes is -256@minus{}@var{signal}. The
                   4986: codes -512@minus{}-2047 are used for OS errors (for file and memory
                   4987: allocation operations). The mapping from OS error numbers to throw codes
                   4988: is -512@minus{}@code{errno}. One side effect of this mapping is that
                   4989: undefined OS errors produce a message with a strange number; e.g.,
                   4990: @code{-1000 THROW} results in @code{Unknown error 488} on my system.
                   4991: @end table
                   4992: 
                   4993: @c =====================================================================
                   4994: @node The optional Facility word set, The optional File-Access word set, The optional Exception word set, ANS conformance
                   4995: @section The optional Facility word set
                   4996: @c =====================================================================
                   4997: @cindex system documentation, facility words
                   4998: @cindex facility words, system documentation
                   4999: 
                   5000: @menu
                   5001: * facility-idef::               Implementation Defined Options               
                   5002: * facility-ambcond::            Ambiguous Conditions            
                   5003: @end menu
                   5004: 
                   5005: 
                   5006: @c ---------------------------------------------------------------------
                   5007: @node facility-idef, facility-ambcond, The optional Facility word set, The optional Facility word set
                   5008: @subsection Implementation Defined Options
                   5009: @c ---------------------------------------------------------------------
                   5010: @cindex implementation-defined options, facility words
                   5011: @cindex facility words, implementation-defined options
                   5012: 
                   5013: @table @i
                   5014: @item encoding of keyboard events (@code{EKEY}):
                   5015: @cindex keyboard events, encoding in @code{EKEY}
                   5016: @cindex @code{EKEY}, encoding of keyboard events
                   5017: Not yet implemented.
                   5018: 
                   5019: @item duration of a system clock tick:
                   5020: @cindex duration of a system clock tick
                   5021: @cindex clock tick duration
                   5022: System dependent. With respect to @code{MS}, the time is specified in
                   5023: microseconds. How well the OS and the hardware implement this, is
                   5024: another question.
                   5025: 
                   5026: @item repeatability to be expected from the execution of @code{MS}:
                   5027: @cindex repeatability to be expected from the execution of @code{MS}
                   5028: @cindex @code{MS}, repeatability to be expected
                   5029: System dependent. On Unix, a lot depends on load. If the system is
                   5030: lightly loaded, and the delay is short enough that Gforth does not get
                   5031: swapped out, the performance should be acceptable. Under MS-DOS and
                   5032: other single-tasking systems, it should be good.
                   5033: 
                   5034: @end table
                   5035: 
                   5036: 
                   5037: @c ---------------------------------------------------------------------
                   5038: @node facility-ambcond,  , facility-idef, The optional Facility word set
                   5039: @subsection Ambiguous conditions
                   5040: @c ---------------------------------------------------------------------
                   5041: @cindex facility words, ambiguous conditions
                   5042: @cindex ambiguous conditions, facility words
                   5043: 
                   5044: @table @i
                   5045: @item @code{AT-XY} can't be performed on user output device:
                   5046: @cindex @code{AT-XY} can't be performed on user output device
                   5047: Largely terminal dependent. No range checks are done on the arguments.
                   5048: No errors are reported. You may see some garbage appearing, you may see
                   5049: simply nothing happen.
                   5050: 
                   5051: @end table
                   5052: 
                   5053: 
                   5054: @c =====================================================================
                   5055: @node The optional File-Access word set, The optional Floating-Point word set, The optional Facility word set, ANS conformance
                   5056: @section The optional File-Access word set
                   5057: @c =====================================================================
                   5058: @cindex system documentation, file words
                   5059: @cindex file words, system documentation
                   5060: 
                   5061: @menu
                   5062: * file-idef::                   Implementation Defined Options
                   5063: * file-ambcond::                Ambiguous Conditions                
                   5064: @end menu
                   5065: 
                   5066: @c ---------------------------------------------------------------------
                   5067: @node file-idef, file-ambcond, The optional File-Access word set, The optional File-Access word set
                   5068: @subsection Implementation Defined Options
                   5069: @c ---------------------------------------------------------------------
                   5070: @cindex implementation-defined options, file words
                   5071: @cindex file words, implementation-defined options
                   5072: 
                   5073: @table @i
                   5074: @item file access methods used:
                   5075: @cindex file access methods used
                   5076: @code{R/O}, @code{R/W} and @code{BIN} work as you would
                   5077: expect. @code{W/O} translates into the C file opening mode @code{w} (or
                   5078: @code{wb}): The file is cleared, if it exists, and created, if it does
                   5079: not (with both @code{open-file} and @code{create-file}).  Under Unix
                   5080: @code{create-file} creates a file with 666 permissions modified by your
                   5081: umask.
                   5082: 
                   5083: @item file exceptions:
                   5084: @cindex file exceptions
                   5085: The file words do not raise exceptions (except, perhaps, memory access
                   5086: faults when you pass illegal addresses or file-ids).
                   5087: 
                   5088: @item file line terminator:
                   5089: @cindex file line terminator
                   5090: System-dependent. Gforth uses C's newline character as line
                   5091: terminator. What the actual character code(s) of this are is
                   5092: system-dependent.
                   5093: 
                   5094: @item file name format:
                   5095: @cindex file name format
                   5096: System dependent. Gforth just uses the file name format of your OS.
                   5097: 
                   5098: @item information returned by @code{FILE-STATUS}:
                   5099: @cindex @code{FILE-STATUS}, returned information
                   5100: @code{FILE-STATUS} returns the most powerful file access mode allowed
                   5101: for the file: Either @code{R/O}, @code{W/O} or @code{R/W}. If the file
                   5102: cannot be accessed, @code{R/O BIN} is returned. @code{BIN} is applicable
                   5103: along with the returned mode.
                   5104: 
                   5105: @item input file state after an exception when including source:
                   5106: @cindex exception when including source
                   5107: All files that are left via the exception are closed.
                   5108: 
                   5109: @item @var{ior} values and meaning:
                   5110: @cindex @var{ior} values and meaning
                   5111: The @var{ior}s returned by the file and memory allocation words are
                   5112: intended as throw codes. They typically are in the range
                   5113: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
                   5114: @var{ior}s is -512@minus{}@var{errno}.
                   5115: 
                   5116: @item maximum depth of file input nesting:
                   5117: @cindex maximum depth of file input nesting
                   5118: @cindex file input nesting, maximum depth
                   5119: limited by the amount of return stack, locals/TIB stack, and the number
                   5120: of open files available. This should not give you troubles.
                   5121: 
                   5122: @item maximum size of input line:
                   5123: @cindex maximum size of input line
                   5124: @cindex input line size, maximum
                   5125: @code{/line}. Currently 255.
                   5126: 
                   5127: @item methods of mapping block ranges to files:
                   5128: @cindex mapping block ranges to files
                   5129: @cindex files containing blocks
                   5130: @cindex blocks in files
                   5131: By default, blocks are accessed in the file @file{blocks.fb} in the
                   5132: current working directory. The file can be switched with @code{USE}.
                   5133: 
                   5134: @item number of string buffers provided by @code{S"}:
                   5135: @cindex @code{S"}, number of string buffers
                   5136: 1
                   5137: 
                   5138: @item size of string buffer used by @code{S"}:
                   5139: @cindex @code{S"}, size of string buffer
                   5140: @code{/line}. currently 255.
                   5141: 
                   5142: @end table
                   5143: 
                   5144: @c ---------------------------------------------------------------------
                   5145: @node file-ambcond,  , file-idef, The optional File-Access word set
                   5146: @subsection Ambiguous conditions
                   5147: @c ---------------------------------------------------------------------
                   5148: @cindex file words, ambiguous conditions
                   5149: @cindex ambiguous conditions, file words
                   5150: 
                   5151: @table @i
                   5152: @item attempting to position a file outside its boundaries:
                   5153: @cindex @code{REPOSITION-FILE}, outside the file's boundaries
                   5154: @code{REPOSITION-FILE} is performed as usual: Afterwards,
                   5155: @code{FILE-POSITION} returns the value given to @code{REPOSITION-FILE}.
                   5156: 
                   5157: @item attempting to read from file positions not yet written:
                   5158: @cindex reading from file positions not yet written
                   5159: End-of-file, i.e., zero characters are read and no error is reported.
                   5160: 
                   5161: @item @var{file-id} is invalid (@code{INCLUDE-FILE}):
                   5162: @cindex @code{INCLUDE-FILE}, @var{file-id} is invalid 
                   5163: An appropriate exception may be thrown, but a memory fault or other
                   5164: problem is more probable.
                   5165: 
                   5166: @item I/O exception reading or closing @var{file-id} (@code{INCLUDE-FILE}, @code{INCLUDED}):
                   5167: @cindex @code{INCLUDE-FILE}, I/O exception reading or closing @var{file-id}
                   5168: @cindex @code{INCLUDED}, I/O exception reading or closing @var{file-id}
                   5169: The @var{ior} produced by the operation, that discovered the problem, is
                   5170: thrown.
                   5171: 
                   5172: @item named file cannot be opened (@code{INCLUDED}):
                   5173: @cindex @code{INCLUDED}, named file cannot be opened
                   5174: The @var{ior} produced by @code{open-file} is thrown.
                   5175: 
                   5176: @item requesting an unmapped block number:
                   5177: @cindex unmapped block numbers
                   5178: There are no unmapped legal block numbers. On some operating systems,
                   5179: writing a block with a large number may overflow the file system and
                   5180: have an error message as consequence.
                   5181: 
                   5182: @item using @code{source-id} when @code{blk} is non-zero:
                   5183: @cindex @code{SOURCE-ID}, behaviour when @code{BLK} is non-zero
                   5184: @code{source-id} performs its function. Typically it will give the id of
                   5185: the source which loaded the block. (Better ideas?)
                   5186: 
                   5187: @end table
                   5188: 
                   5189: 
                   5190: @c =====================================================================
                   5191: @node  The optional Floating-Point word set, The optional Locals word set, The optional File-Access word set, ANS conformance
                   5192: @section The optional Floating-Point word set
                   5193: @c =====================================================================
                   5194: @cindex system documentation, floating-point words
                   5195: @cindex floating-point words, system documentation
                   5196: 
                   5197: @menu
                   5198: * floating-idef::               Implementation Defined Options
                   5199: * floating-ambcond::            Ambiguous Conditions            
                   5200: @end menu
                   5201: 
                   5202: 
                   5203: @c ---------------------------------------------------------------------
                   5204: @node floating-idef, floating-ambcond, The optional Floating-Point word set, The optional Floating-Point word set
                   5205: @subsection Implementation Defined Options
                   5206: @c ---------------------------------------------------------------------
                   5207: @cindex implementation-defined options, floating-point words
                   5208: @cindex floating-point words, implementation-defined options
                   5209: 
                   5210: @table @i
                   5211: @item format and range of floating point numbers:
                   5212: @cindex format and range of floating point numbers
                   5213: @cindex floating point numbers, format and range
                   5214: System-dependent; the @code{double} type of C.
                   5215: 
                   5216: @item results of @code{REPRESENT} when @var{float} is out of range:
                   5217: @cindex  @code{REPRESENT}, results when @var{float} is out of range
                   5218: System dependent; @code{REPRESENT} is implemented using the C library
                   5219: function @code{ecvt()} and inherits its behaviour in this respect.
                   5220: 
                   5221: @item rounding or truncation of floating-point numbers:
                   5222: @cindex rounding of floating-point numbers
                   5223: @cindex truncation of floating-point numbers
                   5224: @cindex floating-point numbers, rounding or truncation
                   5225: System dependent; the rounding behaviour is inherited from the hosting C
                   5226: compiler. IEEE-FP-based (i.e., most) systems by default round to
                   5227: nearest, and break ties by rounding to even (i.e., such that the last
                   5228: bit of the mantissa is 0).
                   5229: 
                   5230: @item size of floating-point stack:
                   5231: @cindex floating-point stack size
                   5232: @code{s" FLOATING-STACK" environment? drop .} gives the total size of
                   5233: the floating-point stack (in floats). You can specify this on startup
                   5234: with the command-line option @code{-f} (@pxref{Invoking Gforth}).
                   5235: 
                   5236: @item width of floating-point stack:
                   5237: @cindex floating-point stack width 
                   5238: @code{1 floats}.
                   5239: 
                   5240: @end table
                   5241: 
                   5242: 
                   5243: @c ---------------------------------------------------------------------
                   5244: @node floating-ambcond,  , floating-idef, The optional Floating-Point word set
                   5245: @subsection Ambiguous conditions
                   5246: @c ---------------------------------------------------------------------
                   5247: @cindex floating-point words, ambiguous conditions
                   5248: @cindex ambiguous conditions, floating-point words
                   5249: 
                   5250: @table @i
                   5251: @item @code{df@@} or @code{df!} used with an address that is not double-float  aligned:
                   5252: @cindex @code{df@@} or @code{df!} used with an address that is not double-float  aligned
                   5253: System-dependent. Typically results in a @code{-23 THROW} like other
                   5254: alignment violations.
                   5255: 
                   5256: @item @code{f@@} or @code{f!} used with an address that is not float  aligned:
                   5257: @cindex @code{f@@} used with an address that is not float aligned
                   5258: @cindex @code{f!} used with an address that is not float aligned
                   5259: System-dependent. Typically results in a @code{-23 THROW} like other
                   5260: alignment violations.
                   5261: 
                   5262: @item floating-point result out of range:
                   5263: @cindex floating-point result out of range
                   5264: System-dependent. Can result in a @code{-55 THROW} (Floating-point
                   5265: unidentified fault), or can produce a special value representing, e.g.,
                   5266: Infinity.
                   5267: 
                   5268: @item @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned:
                   5269: @cindex @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned
                   5270: System-dependent. Typically results in an alignment fault like other
                   5271: alignment violations.
                   5272: 
                   5273: @item @code{BASE} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.}):
                   5274: @cindex @code{BASE} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.})
                   5275: The floating-point number is converted into decimal nonetheless.
                   5276: 
                   5277: @item Both arguments are equal to zero (@code{FATAN2}):
                   5278: @cindex @code{FATAN2}, both arguments are equal to zero
                   5279: System-dependent. @code{FATAN2} is implemented using the C library
                   5280: function @code{atan2()}.
                   5281: 
                   5282: @item Using @code{FTAN} on an argument @var{r1} where cos(@var{r1}) is zero:
                   5283: @cindex @code{FTAN} on an argument @var{r1} where cos(@var{r1}) is zero
                   5284: System-dependent. Anyway, typically the cos of @var{r1} will not be zero
                   5285: because of small errors and the tan will be a very large (or very small)
                   5286: but finite number.
                   5287: 
                   5288: @item @var{d} cannot be presented precisely as a float in @code{D>F}:
                   5289: @cindex @code{D>F}, @var{d} cannot be presented precisely as a float
                   5290: The result is rounded to the nearest float.
                   5291: 
                   5292: @item dividing by zero:
                   5293: @cindex dividing by zero, floating-point
                   5294: @cindex floating-point dividing by zero
                   5295: @cindex floating-point unidentified fault, FP divide-by-zero
                   5296: @code{-55 throw} (Floating-point unidentified fault)
                   5297: 
                   5298: @item exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@}):
                   5299: @cindex exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@})
                   5300: System dependent. On IEEE-FP based systems the number is converted into
                   5301: an infinity.
                   5302: 
                   5303: @item @var{float}<1 (@code{FACOSH}):
                   5304: @cindex @code{FACOSH}, @var{float}<1
                   5305: @cindex floating-point unidentified fault, @code{FACOSH}
                   5306: @code{-55 throw} (Floating-point unidentified fault)
                   5307: 
                   5308: @item @var{float}=<-1 (@code{FLNP1}):
                   5309: @cindex @code{FLNP1}, @var{float}=<-1
                   5310: @cindex floating-point unidentified fault, @code{FLNP1}
                   5311: @code{-55 throw} (Floating-point unidentified fault). On IEEE-FP systems
                   5312: negative infinity is typically produced for @var{float}=-1.
                   5313: 
                   5314: @item @var{float}=<0 (@code{FLN}, @code{FLOG}):
                   5315: @cindex @code{FLN}, @var{float}=<0
                   5316: @cindex @code{FLOG}, @var{float}=<0
                   5317: @cindex floating-point unidentified fault, @code{FLN} or @code{FLOG}
                   5318: @code{-55 throw} (Floating-point unidentified fault). On IEEE-FP systems
                   5319: negative infinity is typically produced for @var{float}=0.
                   5320: 
                   5321: @item @var{float}<0 (@code{FASINH}, @code{FSQRT}):
                   5322: @cindex @code{FASINH}, @var{float}<0
                   5323: @cindex @code{FSQRT}, @var{float}<0
                   5324: @cindex floating-point unidentified fault, @code{FASINH} or @code{FSQRT}
                   5325: @code{-55 throw} (Floating-point unidentified fault). @code{fasinh}
                   5326: produces values for these inputs on my Linux box (Bug in the C library?)
                   5327: 
                   5328: @item |@var{float}|>1 (@code{FACOS}, @code{FASIN}, @code{FATANH}):
                   5329: @cindex @code{FACOS}, |@var{float}|>1
                   5330: @cindex @code{FASIN}, |@var{float}|>1
                   5331: @cindex @code{FATANH}, |@var{float}|>1
                   5332: @cindex floating-point unidentified fault, @code{FACOS}, @code{FASIN} or @code{FATANH}
                   5333: @code{-55 throw} (Floating-point unidentified fault).
                   5334: 
                   5335: @item integer part of float cannot be represented by @var{d} in @code{F>D}:
                   5336: @cindex @code{F>D}, integer part of float cannot be represented by @var{d}
                   5337: @cindex floating-point unidentified fault, @code{F>D}
                   5338: @code{-55 throw} (Floating-point unidentified fault).
                   5339: 
                   5340: @item string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.}):
                   5341: @cindex string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.})
                   5342: This does not happen.
                   5343: @end table
                   5344: 
                   5345: @c =====================================================================
                   5346: @node  The optional Locals word set, The optional Memory-Allocation word set, The optional Floating-Point word set, ANS conformance
                   5347: @section The optional Locals word set
                   5348: @c =====================================================================
                   5349: @cindex system documentation, locals words
                   5350: @cindex locals words, system documentation
                   5351: 
                   5352: @menu
                   5353: * locals-idef::                 Implementation Defined Options                 
                   5354: * locals-ambcond::              Ambiguous Conditions              
                   5355: @end menu
                   5356: 
                   5357: 
                   5358: @c ---------------------------------------------------------------------
                   5359: @node locals-idef, locals-ambcond, The optional Locals word set, The optional Locals word set
                   5360: @subsection Implementation Defined Options
                   5361: @c ---------------------------------------------------------------------
                   5362: @cindex implementation-defined options, locals words
                   5363: @cindex locals words, implementation-defined options
                   5364: 
                   5365: @table @i
                   5366: @item maximum number of locals in a definition:
                   5367: @cindex maximum number of locals in a definition
                   5368: @cindex locals, maximum number in a definition
                   5369: @code{s" #locals" environment? drop .}. Currently 15. This is a lower
                   5370: bound, e.g., on a 32-bit machine there can be 41 locals of up to 8
                   5371: characters. The number of locals in a definition is bounded by the size
                   5372: of locals-buffer, which contains the names of the locals.
                   5373: 
                   5374: @end table
                   5375: 
                   5376: 
                   5377: @c ---------------------------------------------------------------------
                   5378: @node locals-ambcond,  , locals-idef, The optional Locals word set
                   5379: @subsection Ambiguous conditions
                   5380: @c ---------------------------------------------------------------------
                   5381: @cindex locals words, ambiguous conditions
                   5382: @cindex ambiguous conditions, locals words
                   5383: 
                   5384: @table @i
                   5385: @item executing a named local in interpretation state:
                   5386: @cindex local in interpretation state
                   5387: @cindex Interpreting a compile-only word, for a local
                   5388: Locals have no interpretation semantics. If you try to perform the
                   5389: interpretation semantics, you will get a @code{-14 throw} somewhere
                   5390: (Interpreting a compile-only word). If you perform the compilation
                   5391: semantics, the locals access will be compiled (irrespective of state).
                   5392: 
                   5393: @item @var{name} not defined by @code{VALUE} or @code{(LOCAL)} (@code{TO}):
                   5394: @cindex name not defined by @code{VALUE} or @code{(LOCAL)} used by @code{TO}
                   5395: @cindex @code{TO} on non-@code{VALUE}s and non-locals
                   5396: @cindex Invalid name argument, @code{TO}
                   5397: @code{-32 throw} (Invalid name argument)
                   5398: 
                   5399: @end table
                   5400: 
                   5401: 
                   5402: @c =====================================================================
                   5403: @node  The optional Memory-Allocation word set, The optional Programming-Tools word set, The optional Locals word set, ANS conformance
                   5404: @section The optional Memory-Allocation word set
                   5405: @c =====================================================================
                   5406: @cindex system documentation, memory-allocation words
                   5407: @cindex memory-allocation words, system documentation
                   5408: 
                   5409: @menu
                   5410: * memory-idef::                 Implementation Defined Options                 
                   5411: @end menu
                   5412: 
                   5413: 
                   5414: @c ---------------------------------------------------------------------
                   5415: @node memory-idef,  , The optional Memory-Allocation word set, The optional Memory-Allocation word set
                   5416: @subsection Implementation Defined Options
                   5417: @c ---------------------------------------------------------------------
                   5418: @cindex implementation-defined options, memory-allocation words
                   5419: @cindex memory-allocation words, implementation-defined options
                   5420: 
                   5421: @table @i
                   5422: @item values and meaning of @var{ior}:
                   5423: @cindex  @var{ior} values and meaning
                   5424: The @var{ior}s returned by the file and memory allocation words are
                   5425: intended as throw codes. They typically are in the range
                   5426: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
                   5427: @var{ior}s is -512@minus{}@var{errno}.
                   5428: 
                   5429: @end table
                   5430: 
                   5431: @c =====================================================================
                   5432: @node  The optional Programming-Tools word set, The optional Search-Order word set, The optional Memory-Allocation word set, ANS conformance
                   5433: @section The optional Programming-Tools word set
                   5434: @c =====================================================================
                   5435: @cindex system documentation, programming-tools words
                   5436: @cindex programming-tools words, system documentation
                   5437: 
                   5438: @menu
                   5439: * programming-idef::            Implementation Defined Options            
                   5440: * programming-ambcond::         Ambiguous Conditions         
                   5441: @end menu
                   5442: 
                   5443: 
                   5444: @c ---------------------------------------------------------------------
                   5445: @node programming-idef, programming-ambcond, The optional Programming-Tools word set, The optional Programming-Tools word set
                   5446: @subsection Implementation Defined Options
                   5447: @c ---------------------------------------------------------------------
                   5448: @cindex implementation-defined options, programming-tools words
                   5449: @cindex programming-tools words, implementation-defined options
                   5450: 
                   5451: @table @i
                   5452: @item ending sequence for input following @code{;CODE} and @code{CODE}:
                   5453: @cindex @code{;CODE} ending sequence
                   5454: @cindex @code{CODE} ending sequence
                   5455: @code{END-CODE}
                   5456: 
                   5457: @item manner of processing input following @code{;CODE} and @code{CODE}:
                   5458: @cindex @code{;CODE}, processing input
                   5459: @cindex @code{CODE}, processing input
                   5460: The @code{ASSEMBLER} vocabulary is pushed on the search order stack, and
                   5461: the input is processed by the text interpreter, (starting) in interpret
                   5462: state.
                   5463: 
                   5464: @item search order capability for @code{EDITOR} and @code{ASSEMBLER}:
                   5465: @cindex @code{ASSEMBLER}, search order capability
                   5466: The ANS Forth search order word set.
                   5467: 
                   5468: @item source and format of display by @code{SEE}:
                   5469: @cindex @code{SEE}, source and format of output
                   5470: The source for @code{see} is the intermediate code used by the inner
                   5471: interpreter.  The current @code{see} tries to output Forth source code
                   5472: as well as possible.
                   5473: 
                   5474: @end table
                   5475: 
                   5476: @c ---------------------------------------------------------------------
                   5477: @node programming-ambcond,  , programming-idef, The optional Programming-Tools word set
                   5478: @subsection Ambiguous conditions
                   5479: @c ---------------------------------------------------------------------
                   5480: @cindex programming-tools words, ambiguous conditions
                   5481: @cindex ambiguous conditions, programming-tools words
                   5482: 
                   5483: @table @i
                   5484: 
                   5485: @item deleting the compilation wordlist (@code{FORGET}):
                   5486: @cindex @code{FORGET}, deleting the compilation wordlist
                   5487: Not implemented (yet).
                   5488: 
                   5489: @item fewer than @var{u}+1 items on the control flow stack (@code{CS-PICK}, @code{CS-ROLL}):
                   5490: @cindex @code{CS-PICK}, fewer than @var{u}+1 items on the control flow stack
                   5491: @cindex @code{CS-ROLL}, fewer than @var{u}+1 items on the control flow stack
                   5492: @cindex control-flow stack underflow
                   5493: This typically results in an @code{abort"} with a descriptive error
                   5494: message (may change into a @code{-22 throw} (Control structure mismatch)
                   5495: in the future). You may also get a memory access error. If you are
                   5496: unlucky, this ambiguous condition is not caught.
                   5497: 
                   5498: @item @var{name} can't be found (@code{FORGET}):
                   5499: @cindex @code{FORGET}, @var{name} can't be found
                   5500: Not implemented (yet).
                   5501: 
                   5502: @item @var{name} not defined via @code{CREATE}:
                   5503: @cindex @code{;CODE}, @var{name} not defined via @code{CREATE}
                   5504: @code{;CODE} behaves like @code{DOES>} in this respect, i.e., it changes
                   5505: the execution semantics of the last defined word no matter how it was
                   5506: defined.
                   5507: 
                   5508: @item @code{POSTPONE} applied to @code{[IF]}:
                   5509: @cindex @code{POSTPONE} applied to @code{[IF]}
                   5510: @cindex @code{[IF]} and @code{POSTPONE}
                   5511: After defining @code{: X POSTPONE [IF] ; IMMEDIATE}. @code{X} is
                   5512: equivalent to @code{[IF]}.
                   5513: 
                   5514: @item reaching the end of the input source before matching @code{[ELSE]} or @code{[THEN]}:
                   5515: @cindex @code{[IF]}, end of the input source before matching @code{[ELSE]} or @code{[THEN]}
                   5516: Continue in the same state of conditional compilation in the next outer
                   5517: input source. Currently there is no warning to the user about this.
                   5518: 
                   5519: @item removing a needed definition (@code{FORGET}):
                   5520: @cindex @code{FORGET}, removing a needed definition
                   5521: Not implemented (yet).
                   5522: 
                   5523: @end table
                   5524: 
                   5525: 
                   5526: @c =====================================================================
                   5527: @node  The optional Search-Order word set,  , The optional Programming-Tools word set, ANS conformance
                   5528: @section The optional Search-Order word set
                   5529: @c =====================================================================
                   5530: @cindex system documentation, search-order words
                   5531: @cindex search-order words, system documentation
                   5532: 
                   5533: @menu
                   5534: * search-idef::                 Implementation Defined Options                 
                   5535: * search-ambcond::              Ambiguous Conditions              
                   5536: @end menu
                   5537: 
                   5538: 
                   5539: @c ---------------------------------------------------------------------
                   5540: @node search-idef, search-ambcond, The optional Search-Order word set, The optional Search-Order word set
                   5541: @subsection Implementation Defined Options
                   5542: @c ---------------------------------------------------------------------
                   5543: @cindex implementation-defined options, search-order words
                   5544: @cindex search-order words, implementation-defined options
                   5545: 
                   5546: @table @i
                   5547: @item maximum number of word lists in search order:
                   5548: @cindex maximum number of word lists in search order
                   5549: @cindex search order, maximum depth
                   5550: @code{s" wordlists" environment? drop .}. Currently 16.
                   5551: 
                   5552: @item minimum search order:
                   5553: @cindex minimum search order
                   5554: @cindex search order, minimum
                   5555: @code{root root}.
                   5556: 
                   5557: @end table
                   5558: 
                   5559: @c ---------------------------------------------------------------------
                   5560: @node search-ambcond,  , search-idef, The optional Search-Order word set
                   5561: @subsection Ambiguous conditions
                   5562: @c ---------------------------------------------------------------------
                   5563: @cindex search-order words, ambiguous conditions
                   5564: @cindex ambiguous conditions, search-order words
                   5565: 
                   5566: @table @i
                   5567: @item changing the compilation wordlist (during compilation):
                   5568: @cindex changing the compilation wordlist (during compilation)
                   5569: @cindex compilation wordlist, change before definition ends
                   5570: The word is entered into the wordlist that was the compilation wordlist
                   5571: at the start of the definition. Any changes to the name field (e.g.,
                   5572: @code{immediate}) or the code field (e.g., when executing @code{DOES>})
                   5573: are applied to the latest defined word (as reported by @code{last} or
                   5574: @code{lastxt}), if possible, irrespective of the compilation wordlist.
                   5575: 
                   5576: @item search order empty (@code{previous}):
                   5577: @cindex @code{previous}, search order empty
                   5578: @cindex Vocstack empty, @code{previous}
                   5579: @code{abort" Vocstack empty"}.
                   5580: 
                   5581: @item too many word lists in search order (@code{also}):
                   5582: @cindex @code{also}, too many word lists in search order
                   5583: @cindex Vocstack full, @code{also}
                   5584: @code{abort" Vocstack full"}.
                   5585: 
                   5586: @end table
                   5587: 
                   5588: @c ***************************************************************
                   5589: @node Model, Integrating Gforth, ANS conformance, Top
                   5590: @chapter Model
                   5591: 
                   5592: This chapter has yet to be written. It will contain information, on
                   5593: which internal structures you can rely.
                   5594: 
                   5595: @c ***************************************************************
                   5596: @node Integrating Gforth, Emacs and Gforth, Model, Top
                   5597: @chapter Integrating Gforth into C programs
                   5598: 
                   5599: This is not yet implemented.
                   5600: 
                   5601: Several people like to use Forth as scripting language for applications
                   5602: that are otherwise written in C, C++, or some other language.
                   5603: 
                   5604: The Forth system ATLAST provides facilities for embedding it into
                   5605: applications; unfortunately it has several disadvantages: most
                   5606: importantly, it is not based on ANS Forth, and it is apparently dead
                   5607: (i.e., not developed further and not supported). The facilities
                   5608: provided by Gforth in this area are inspired by ATLASTs facilities, so
                   5609: making the switch should not be hard.
                   5610: 
                   5611: We also tried to design the interface such that it can easily be
                   5612: implemented by other Forth systems, so that we may one day arrive at a
                   5613: standardized interface. Such a standard interface would allow you to
                   5614: replace the Forth system without having to rewrite C code.
                   5615: 
                   5616: You embed the Gforth interpreter by linking with the library
                   5617: @code{libgforth.a} (give the compiler the option @code{-lgforth}).  All
                   5618: global symbols in this library that belong to the interface, have the
                   5619: prefix @code{forth_}. (Global symbols that are used internally have the
                   5620: prefix @code{gforth_}).
                   5621: 
                   5622: You can include the declarations of Forth types and the functions and
                   5623: variables of the interface with @code{#include <forth.h>}.
                   5624: 
                   5625: Types.
                   5626: 
                   5627: Variables.
                   5628: 
                   5629: Data and FP Stack pointer. Area sizes.
                   5630: 
                   5631: functions.
                   5632: 
                   5633: forth_init(imagefile)
                   5634: forth_evaluate(string) exceptions?
                   5635: forth_goto(address) (or forth_execute(xt)?)
                   5636: forth_continue() (a corountining mechanism)
                   5637: 
                   5638: Adding primitives.
                   5639: 
                   5640: No checking.
                   5641: 
                   5642: Signals?
                   5643: 
                   5644: Accessing the Stacks
                   5645: 
                   5646: @node Emacs and Gforth, Image Files, Integrating Gforth, Top
                   5647: @chapter Emacs and Gforth
                   5648: @cindex Emacs and Gforth
                   5649: 
                   5650: @cindex @file{gforth.el}
                   5651: @cindex @file{forth.el}
                   5652: @cindex Rydqvist, Goran
                   5653: @cindex comment editing commands
                   5654: @cindex @code{\}, editing with Emacs
                   5655: @cindex debug tracer editing commands
                   5656: @cindex @code{~~}, removal with Emacs
                   5657: @cindex Forth mode in Emacs
                   5658: Gforth comes with @file{gforth.el}, an improved version of
                   5659: @file{forth.el} by Goran Rydqvist (included in the TILE package). The
                   5660: improvements are a better (but still not perfect) handling of
                   5661: indentation. I have also added comment paragraph filling (@kbd{M-q}),
                   5662: commenting (@kbd{C-x \}) and uncommenting (@kbd{C-u C-x \}) regions and
                   5663: removing debugging tracers (@kbd{C-x ~}, @pxref{Debugging}). I left the
                   5664: stuff I do not use alone, even though some of it only makes sense for
                   5665: TILE. To get a description of these features, enter Forth mode and type
                   5666: @kbd{C-h m}.
                   5667: 
                   5668: @cindex source location of error or debugging output in Emacs
                   5669: @cindex error output, finding the source location in Emacs
                   5670: @cindex debugging output, finding the source location in Emacs
                   5671: In addition, Gforth supports Emacs quite well: The source code locations
                   5672: given in error messages, debugging output (from @code{~~}) and failed
                   5673: assertion messages are in the right format for Emacs' compilation mode
                   5674: (@pxref{Compilation, , Running Compilations under Emacs, emacs, Emacs
                   5675: Manual}) so the source location corresponding to an error or other
                   5676: message is only a few keystrokes away (@kbd{C-x `} for the next error,
                   5677: @kbd{C-c C-c} for the error under the cursor).
                   5678: 
                   5679: @cindex @file{TAGS} file
                   5680: @cindex @file{etags.fs}
                   5681: @cindex viewing the source of a word in Emacs
                   5682: Also, if you @code{include} @file{etags.fs}, a new @file{TAGS} file
                   5683: (@pxref{Tags, , Tags Tables, emacs, Emacs Manual}) will be produced that
                   5684: contains the definitions of all words defined afterwards. You can then
                   5685: find the source for a word using @kbd{M-.}. Note that emacs can use
                   5686: several tags files at the same time (e.g., one for the Gforth sources
                   5687: and one for your program, @pxref{Select Tags Table,,Selecting a Tags
                   5688: Table,emacs, Emacs Manual}). The TAGS file for the preloaded words is
                   5689: @file{$(datadir)/gforth/$(VERSION)/TAGS} (e.g.,
                   5690: @file{/usr/local/share/gforth/0.2.0/TAGS}).
                   5691: 
                   5692: @cindex @file{.emacs}
                   5693: To get all these benefits, add the following lines to your @file{.emacs}
                   5694: file:
                   5695: 
                   5696: @example
                   5697: (autoload 'forth-mode "gforth.el")
                   5698: (setq auto-mode-alist (cons '("\\.fs\\'" . forth-mode) auto-mode-alist))
                   5699: @end example
                   5700: 
                   5701: @node Image Files, Engine, Emacs and Gforth, Top
                   5702: @chapter Image Files
                   5703: @cindex image files
                   5704: @cindex @code{.fi} files
                   5705: @cindex precompiled Forth code
                   5706: @cindex dictionary in persistent form
                   5707: @cindex persistent form of dictionary
                   5708: 
                   5709: An image file is a file containing an image of the Forth dictionary,
                   5710: i.e., compiled Forth code and data residing in the dictionary.  By
                   5711: convention, we use the extension @code{.fi} for image files.
                   5712: 
                   5713: @menu
                   5714: * Image File Background::          Why have image files?
                   5715: * Non-Relocatable Image Files::    don't always work.
                   5716: * Data-Relocatable Image Files::   are better.
                   5717: * Fully Relocatable Image Files::  better yet.
                   5718: * Stack and Dictionary Sizes::     Setting the default sizes for an image.
                   5719: * Running Image Files::            @code{gforth -i @var{file}} or @var{file}.
                   5720: * Modifying the Startup Sequence:: and turnkey applications.
                   5721: @end menu
                   5722: 
                   5723: @node Image File Background, Non-Relocatable Image Files, Image Files, Image Files
                   5724: @section Image File Background
                   5725: @cindex image file background
                   5726: 
                   5727: Our Forth system consists not only of primitives, but also of
                   5728: definitions written in Forth. Since the Forth compiler itself belongs to
                   5729: those definitions, it is not possible to start the system with the
                   5730: primitives and the Forth source alone. Therefore we provide the Forth
                   5731: code as an image file in nearly executable form. At the start of the
                   5732: system a C routine loads the image file into memory, optionally
                   5733: relocates the addresses, then sets up the memory (stacks etc.) according
                   5734: to information in the image file, and starts executing Forth code.
                   5735: 
                   5736: The image file variants represent different compromises between the
                   5737: goals of making it easy to generate image files and making them
                   5738: portable.
                   5739: 
                   5740: @cindex relocation at run-time
                   5741: Win32Forth 3.4 and Mitch Bradleys @code{cforth} use relocation at
                   5742: run-time. This avoids many of the complications discussed below (image
                   5743: files are data relocatable without further ado), but costs performance
                   5744: (one addition per memory access).
                   5745: 
                   5746: @cindex relocation at load-time
                   5747: By contrast, our loader performs relocation at image load time. The
                   5748: loader also has to replace tokens standing for primitive calls with the
                   5749: appropriate code-field addresses (or code addresses in the case of
                   5750: direct threading).
                   5751: 
                   5752: There are three kinds of image files, with different degrees of
                   5753: relocatability: non-relocatable, data-relocatable, and fully relocatable
                   5754: image files.
                   5755: 
                   5756: @cindex image file loader
                   5757: @cindex relocating loader
                   5758: @cindex loader for image files
                   5759: These image file variants have several restrictions in common; they are
                   5760: caused by the design of the image file loader:
                   5761: 
                   5762: @itemize @bullet
                   5763: @item
                   5764: There is only one segment; in particular, this means, that an image file
                   5765: cannot represent @code{ALLOCATE}d memory chunks (and pointers to
                   5766: them). And the contents of the stacks are not represented, either.
                   5767: 
                   5768: @item
                   5769: The only kinds of relocation supported are: adding the same offset to
                   5770: all cells that represent data addresses; and replacing special tokens
                   5771: with code addresses or with pieces of machine code.
                   5772: 
                   5773: If any complex computations involving addresses are performed, the
                   5774: results cannot be represented in the image file. Several applications that
                   5775: use such computations come to mind:
                   5776: @itemize @minus
                   5777: @item
                   5778: Hashing addresses (or data structures which contain addresses) for table
                   5779: lookup. If you use Gforth's @code{table}s or @code{wordlist}s for this
                   5780: purpose, you will have no problem, because the hash tables are
                   5781: recomputed automatically when the system is started. If you use your own
                   5782: hash tables, you will have to do something similar.
                   5783: 
                   5784: @item
                   5785: There's a cute implementation of doubly-linked lists that uses
                   5786: @code{XOR}ed addresses. You could represent such lists as singly-linked
                   5787: in the image file, and restore the doubly-linked representation on
                   5788: startup.@footnote{In my opinion, though, you should think thrice before
                   5789: using a doubly-linked list (whatever implementation).}
                   5790: 
                   5791: @item
                   5792: The code addresses of run-time routines like @code{docol:} cannot be
                   5793: represented in the image file (because their tokens would be replaced by
                   5794: machine code in direct threaded implementations). As a workaround,
                   5795: compute these addresses at run-time with @code{>code-address} from the
                   5796: executions tokens of appropriate words (see the definitions of
                   5797: @code{docol:} and friends in @file{kernel.fs}).
                   5798: 
                   5799: @item
                   5800: On many architectures addresses are represented in machine code in some
                   5801: shifted or mangled form. You cannot put @code{CODE} words that contain
                   5802: absolute addresses in this form in a relocatable image file. Workarounds
                   5803: are representing the address in some relative form (e.g., relative to
                   5804: the CFA, which is present in some register), or loading the address from
                   5805: a place where it is stored in a non-mangled form.
                   5806: @end itemize
                   5807: @end itemize
                   5808: 
                   5809: @node  Non-Relocatable Image Files, Data-Relocatable Image Files, Image File Background, Image Files
                   5810: @section Non-Relocatable Image Files
                   5811: @cindex non-relocatable image files
                   5812: @cindex image files, non-relocatable
                   5813: 
                   5814: These files are simple memory dumps of the dictionary. They are specific
                   5815: to the executable (i.e., @file{gforth} file) they were created
                   5816: with. What's worse, they are specific to the place on which the
                   5817: dictionary resided when the image was created. Now, there is no
                   5818: guarantee that the dictionary will reside at the same place the next
                   5819: time you start Gforth, so there's no guarantee that a non-relocatable
                   5820: image will work the next time (Gforth will complain instead of crashing,
                   5821: though).
                   5822: 
                   5823: You can create a non-relocatable image file with
                   5824: 
                   5825: doc-savesystem
                   5826: 
                   5827: @node Data-Relocatable Image Files, Fully Relocatable Image Files, Non-Relocatable Image Files, Image Files
                   5828: @section Data-Relocatable Image Files
                   5829: @cindex data-relocatable image files
                   5830: @cindex image files, data-relocatable
                   5831: 
                   5832: These files contain relocatable data addresses, but fixed code addresses
                   5833: (instead of tokens). They are specific to the executable (i.e.,
                   5834: @file{gforth} file) they were created with. For direct threading on some
                   5835: architectures (e.g., the i386), data-relocatable images do not work. You
                   5836: get a data-relocatable image, if you use @file{gforthmi} with a
                   5837: Gforth binary that is not doubly indirect threaded (@pxref{Fully
                   5838: Relocatable Image Files}).
                   5839: 
                   5840: @node Fully Relocatable Image Files, Stack and Dictionary Sizes, Data-Relocatable Image Files, Image Files
                   5841: @section Fully Relocatable Image Files
                   5842: @cindex fully relocatable image files
                   5843: @cindex image files, fully relocatable
                   5844: 
                   5845: @cindex @file{kern*.fi}, relocatability
                   5846: @cindex @file{gforth.fi}, relocatability
                   5847: These image files have relocatable data addresses, and tokens for code
                   5848: addresses. They can be used with different binaries (e.g., with and
                   5849: without debugging) on the same machine, and even across machines with
                   5850: the same data formats (byte order, cell size, floating point
                   5851: format). However, they are usually specific to the version of Gforth
                   5852: they were created with. The files @file{gforth.fi} and @file{kernl*.fi}
                   5853: are fully relocatable.
                   5854: 
                   5855: There are two ways to create a fully relocatable image file:
                   5856: 
                   5857: @menu
                   5858: * gforthmi::            The normal way
                   5859: * cross.fs::                    The hard way
                   5860: @end menu
                   5861: 
                   5862: @node gforthmi, cross.fs, Fully Relocatable Image Files, Fully Relocatable Image Files
                   5863: @subsection @file{gforthmi}
                   5864: @cindex @file{comp-i.fs}
                   5865: @cindex @file{gforthmi}
                   5866: 
                   5867: You will usually use @file{gforthmi}. If you want to create an
                   5868: image @var{file} that contains everything you would load by invoking
                   5869: Gforth with @code{gforth @var{options}}, you simply say
                   5870: @example
                   5871: gforthmi @var{file} @var{options}
                   5872: @end example
                   5873: 
                   5874: E.g., if you want to create an image @file{asm.fi} that has the file
                   5875: @file{asm.fs} loaded in addition to the usual stuff, you could do it
                   5876: like this:
                   5877: 
                   5878: @example
                   5879: gforthmi asm.fi asm.fs
                   5880: @end example
                   5881: 
                   5882: @file{gforthmi} works like this: It produces two non-relocatable
                   5883: images for different addresses and then compares them. Its output
                   5884: reflects this: first you see the output (if any) of the two Gforth
                   5885: invocations that produce the nonrelocatable image files, then you see
                   5886: the output of the comparing program: It displays the offset used for
                   5887: data addresses and the offset used for code addresses;
                   5888: moreover, for each cell that cannot be represented correctly in the
                   5889: image files, it displays a line like the following one:
                   5890: 
                   5891: @example
                   5892:      78DC         BFFFFA50         BFFFFA40
                   5893: @end example
                   5894: 
                   5895: This means that at offset $78dc from @code{forthstart}, one input image
                   5896: contains $bffffa50, and the other contains $bffffa40. Since these cells
                   5897: cannot be represented correctly in the output image, you should examine
                   5898: these places in the dictionary and verify that these cells are dead
                   5899: (i.e., not read before they are written).
                   5900: 
                   5901: @cindex @code{savesystem} during @file{gforthmi}
                   5902: @cindex @code{bye} during @file{gforthmi}
                   5903: @cindex doubly indirect threaded code
                   5904: @cindex environment variable @code{GFORTHD}
                   5905: @cindex @code{GFORTHD} environment variable
                   5906: @cindex @code{gforth-ditc}
                   5907: There are a few wrinkles: After processing the passed @var{options}, the
                   5908: words @code{savesystem} and @code{bye} must be visible. A special doubly
                   5909: indirect threaded version of the @file{gforth} executable is used for
                   5910: creating the nonrelocatable images; you can pass the exact filename of
                   5911: this executable through the environment variable @code{GFORTHD}
                   5912: (default: @file{gforth-ditc}); if you pass a version that is not doubly
                   5913: indirect threaded, you will not get a fully relocatable image, but a
                   5914: data-relocatable image (because there is no code address offset).
                   5915: 
                   5916: @node cross.fs,  , gforthmi, Fully Relocatable Image Files
                   5917: @subsection @file{cross.fs}
                   5918: @cindex @file{cross.fs}
                   5919: @cindex cross-compiler
                   5920: @cindex metacompiler
                   5921: 
                   5922: You can also use @code{cross}, a batch compiler that accepts a Forth-like
                   5923: programming language. This @code{cross} language has to be documented
                   5924: yet.
                   5925: 
                   5926: @cindex target compiler
                   5927: @code{cross} also allows you to create image files for machines with
                   5928: different data sizes and data formats than the one used for generating
                   5929: the image file. You can also use it to create an application image that
                   5930: does not contain a Forth compiler. These features are bought with
                   5931: restrictions and inconveniences in programming. E.g., addresses have to
                   5932: be stored in memory with special words (@code{A!}, @code{A,}, etc.) in
                   5933: order to make the code relocatable.
                   5934: 
                   5935: 
                   5936: @node Stack and Dictionary Sizes, Running Image Files, Fully Relocatable Image Files, Image Files
                   5937: @section Stack and Dictionary Sizes
                   5938: @cindex image file, stack and dictionary sizes
                   5939: @cindex dictionary size default
                   5940: @cindex stack size default
                   5941: 
                   5942: If you invoke Gforth with a command line flag for the size
                   5943: (@pxref{Invoking Gforth}), the size you specify is stored in the
                   5944: dictionary. If you save the dictionary with @code{savesystem} or create
                   5945: an image with @file{gforthmi}, this size will become the default
                   5946: for the resulting image file. E.g., the following will create a
                   5947: fully relocatable version of gforth.fi with a 1MB dictionary:
                   5948: 
                   5949: @example
                   5950: gforthmi gforth.fi -m 1M
                   5951: @end example
                   5952: 
                   5953: In other words, if you want to set the default size for the dictionary
                   5954: and the stacks of an image, just invoke @file{gforthmi} with the
                   5955: appropriate options when creating the image.
                   5956: 
                   5957: @cindex stack size, cache-friendly
                   5958: Note: For cache-friendly behaviour (i.e., good performance), you should
                   5959: make the sizes of the stacks modulo, say, 2K, somewhat different. E.g.,
                   5960: the default stack sizes are: data: 16k (mod 2k=0); fp: 15.5k (mod
                   5961: 2k=1.5k); return: 15k(mod 2k=1k); locals: 14.5k (mod 2k=0.5k).
                   5962: 
                   5963: @node Running Image Files, Modifying the Startup Sequence, Stack and Dictionary Sizes, Image Files
                   5964: @section Running Image Files
                   5965: @cindex running image files
                   5966: @cindex invoking image files
                   5967: @cindex image file invocation
                   5968: 
                   5969: @cindex -i, invoke image file
                   5970: @cindex --image file, invoke image file
                   5971: You can invoke Gforth with an image file @var{image} instead of the
                   5972: default @file{gforth.fi} with the @code{-i} flag (@pxref{Invoking Gforth}):
                   5973: @example
                   5974: gforth -i @var{image}
                   5975: @end example
                   5976: 
                   5977: @cindex executable image file
                   5978: @cindex image files, executable
                   5979: If your operating system supports starting scripts with a line of the
                   5980: form @code{#! ...}, you just have to type the image file name to start
                   5981: Gforth with this image file (note that the file extension @code{.fi} is
                   5982: just a convention). I.e., to run Gforth with the image file @var{image},
                   5983: you can just type @var{image} instead of @code{gforth -i @var{image}}.
                   5984: 
                   5985: doc-#!
                   5986: 
                   5987: @node Modifying the Startup Sequence,  , Running Image Files, Image Files
                   5988: @section Modifying the Startup Sequence
                   5989: @cindex startup sequence for image file
                   5990: @cindex image file initialization sequence
                   5991: @cindex initialization sequence of image file
                   5992: 
                   5993: You can add your own initialization to the startup sequence through the
                   5994: deferred word
                   5995: 
                   5996: doc-'cold
                   5997: 
                   5998: @code{'cold} is invoked just before the image-specific command line
                   5999: processing (by default, loading files and evaluating (@code{-e}) strings)
                   6000: starts.
                   6001: 
                   6002: A sequence for adding your initialization usually looks like this:
                   6003: 
                   6004: @example
                   6005: :noname
                   6006:     Defers 'cold \ do other initialization stuff (e.g., rehashing wordlists)
                   6007:     ... \ your stuff
                   6008: ; IS 'cold
                   6009: @end example
                   6010: 
                   6011: @cindex turnkey image files
                   6012: @cindex image files, turnkey applications
                   6013: You can make a turnkey image by letting @code{'cold} execute a word
                   6014: (your turnkey application) that never returns; instead, it exits Gforth
                   6015: via @code{bye} or @code{throw}.
                   6016: 
                   6017: @cindex command-line arguments, access
                   6018: @cindex arguments on the command line, access
                   6019: You can access the (image-specific) command-line arguments through the
                   6020: variables @code{argc} and @code{argv}. @code{arg} provides conventient
                   6021: access to @code{argv}.
                   6022: 
                   6023: doc-argc
                   6024: doc-argv
                   6025: doc-arg
                   6026: 
                   6027: If @code{'cold} exits normally, Gforth processes the command-line
                   6028: arguments as files to be loaded and strings to be evaluated.  Therefore,
                   6029: @code{'cold} should remove the arguments it has used in this case.
                   6030: 
                   6031: @c ******************************************************************
                   6032: @node Engine, Bugs, Image Files, Top
                   6033: @chapter Engine
                   6034: @cindex engine
                   6035: @cindex virtual machine
                   6036: 
                   6037: Reading this section is not necessary for programming with Gforth. It
                   6038: may be helpful for finding your way in the Gforth sources.
                   6039: 
                   6040: The ideas in this section have also been published in the papers
                   6041: @cite{ANS fig/GNU/??? Forth} (in German) by Bernd Paysan, presented at
                   6042: the Forth-Tagung '93 and @cite{A Portable Forth Engine} by M. Anton
                   6043: Ertl, presented at EuroForth '93; the latter is available at
                   6044: @*@url{http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z}.
                   6045: 
                   6046: @menu
                   6047: * Portability::                 
                   6048: * Threading::                   
                   6049: * Primitives::                  
                   6050: * Performance::                 
                   6051: @end menu
                   6052: 
                   6053: @node Portability, Threading, Engine, Engine
                   6054: @section Portability
                   6055: @cindex engine portability
                   6056: 
                   6057: One of the main goals of the effort is availability across a wide range
                   6058: of personal machines. fig-Forth, and, to a lesser extent, F83, achieved
                   6059: this goal by manually coding the engine in assembly language for several
                   6060: then-popular processors. This approach is very labor-intensive and the
                   6061: results are short-lived due to progress in computer architecture.
                   6062: 
                   6063: @cindex C, using C for the engine
                   6064: Others have avoided this problem by coding in C, e.g., Mitch Bradley
                   6065: (cforth), Mikael Patel (TILE) and Dirk Zoller (pfe). This approach is
                   6066: particularly popular for UNIX-based Forths due to the large variety of
                   6067: architectures of UNIX machines. Unfortunately an implementation in C
                   6068: does not mix well with the goals of efficiency and with using
                   6069: traditional techniques: Indirect or direct threading cannot be expressed
                   6070: in C, and switch threading, the fastest technique available in C, is
                   6071: significantly slower. Another problem with C is that it is very
                   6072: cumbersome to express double integer arithmetic.
                   6073: 
                   6074: @cindex GNU C for the engine
                   6075: @cindex long long
                   6076: Fortunately, there is a portable language that does not have these
                   6077: limitations: GNU C, the version of C processed by the GNU C compiler
                   6078: (@pxref{C Extensions, , Extensions to the C Language Family, gcc.info,
                   6079: GNU C Manual}). Its labels as values feature (@pxref{Labels as Values, ,
                   6080: Labels as Values, gcc.info, GNU C Manual}) makes direct and indirect
                   6081: threading possible, its @code{long long} type (@pxref{Long Long, ,
                   6082: Double-Word Integers, gcc.info, GNU C Manual}) corresponds to Forth's
                   6083: double numbers@footnote{Unfortunately, long longs are not implemented
                   6084: properly on all machines (e.g., on alpha-osf1, long longs are only 64
                   6085: bits, the same size as longs (and pointers), but they should be twice as
1.4       anton    6086: long according to @pxref{Long Long, , Double-Word Integers, gcc.info, GNU
1.1       anton    6087: C Manual}). So, we had to implement doubles in C after all. Still, on
                   6088: most machines we can use long longs and achieve better performance than
                   6089: with the emulation package.}. GNU C is available for free on all
                   6090: important (and many unimportant) UNIX machines, VMS, 80386s running
                   6091: MS-DOS, the Amiga, and the Atari ST, so a Forth written in GNU C can run
                   6092: on all these machines.
                   6093: 
                   6094: Writing in a portable language has the reputation of producing code that
                   6095: is slower than assembly. For our Forth engine we repeatedly looked at
                   6096: the code produced by the compiler and eliminated most compiler-induced
                   6097: inefficiencies by appropriate changes in the source code.
                   6098: 
                   6099: @cindex explicit register declarations
                   6100: @cindex --enable-force-reg, configuration flag
                   6101: @cindex -DFORCE_REG
                   6102: However, register allocation cannot be portably influenced by the
                   6103: programmer, leading to some inefficiencies on register-starved
                   6104: machines. We use explicit register declarations (@pxref{Explicit Reg
                   6105: Vars, , Variables in Specified Registers, gcc.info, GNU C Manual}) to
                   6106: improve the speed on some machines. They are turned on by using the
                   6107: configuration flag @code{--enable-force-reg} (@code{gcc} switch
                   6108: @code{-DFORCE_REG}). Unfortunately, this feature not only depends on the
                   6109: machine, but also on the compiler version: On some machines some
                   6110: compiler versions produce incorrect code when certain explicit register
                   6111: declarations are used. So by default @code{-DFORCE_REG} is not used.
                   6112: 
                   6113: @node Threading, Primitives, Portability, Engine
                   6114: @section Threading
                   6115: @cindex inner interpreter implementation
                   6116: @cindex threaded code implementation
                   6117: 
                   6118: @cindex labels as values
                   6119: GNU C's labels as values extension (available since @code{gcc-2.0},
                   6120: @pxref{Labels as Values, , Labels as Values, gcc.info, GNU C Manual})
                   6121: makes it possible to take the address of @var{label} by writing
                   6122: @code{&&@var{label}}.  This address can then be used in a statement like
                   6123: @code{goto *@var{address}}. I.e., @code{goto *&&x} is the same as
                   6124: @code{goto x}.
                   6125: 
                   6126: @cindex NEXT, indirect threaded
                   6127: @cindex indirect threaded inner interpreter
                   6128: @cindex inner interpreter, indirect threaded
                   6129: With this feature an indirect threaded NEXT looks like:
                   6130: @example
                   6131: cfa = *ip++;
                   6132: ca = *cfa;
                   6133: goto *ca;
                   6134: @end example
                   6135: @cindex instruction pointer
                   6136: For those unfamiliar with the names: @code{ip} is the Forth instruction
                   6137: pointer; the @code{cfa} (code-field address) corresponds to ANS Forths
                   6138: execution token and points to the code field of the next word to be
                   6139: executed; The @code{ca} (code address) fetched from there points to some
                   6140: executable code, e.g., a primitive or the colon definition handler
                   6141: @code{docol}.
                   6142: 
                   6143: @cindex NEXT, direct threaded
                   6144: @cindex direct threaded inner interpreter
                   6145: @cindex inner interpreter, direct threaded
                   6146: Direct threading is even simpler:
                   6147: @example
                   6148: ca = *ip++;
                   6149: goto *ca;
                   6150: @end example
                   6151: 
                   6152: Of course we have packaged the whole thing neatly in macros called
                   6153: @code{NEXT} and @code{NEXT1} (the part of NEXT after fetching the cfa).
                   6154: 
                   6155: @menu
                   6156: * Scheduling::                  
                   6157: * Direct or Indirect Threaded?::  
                   6158: * DOES>::                       
                   6159: @end menu
                   6160: 
                   6161: @node Scheduling, Direct or Indirect Threaded?, Threading, Threading
                   6162: @subsection Scheduling
                   6163: @cindex inner interpreter optimization
                   6164: 
                   6165: There is a little complication: Pipelined and superscalar processors,
                   6166: i.e., RISC and some modern CISC machines can process independent
                   6167: instructions while waiting for the results of an instruction. The
                   6168: compiler usually reorders (schedules) the instructions in a way that
                   6169: achieves good usage of these delay slots. However, on our first tries
                   6170: the compiler did not do well on scheduling primitives. E.g., for
                   6171: @code{+} implemented as
                   6172: @example
                   6173: n=sp[0]+sp[1];
                   6174: sp++;
                   6175: sp[0]=n;
                   6176: NEXT;
                   6177: @end example
                   6178: the NEXT comes strictly after the other code, i.e., there is nearly no
                   6179: scheduling. After a little thought the problem becomes clear: The
                   6180: compiler cannot know that sp and ip point to different addresses (and
                   6181: the version of @code{gcc} we used would not know it even if it was
                   6182: possible), so it could not move the load of the cfa above the store to
                   6183: the TOS. Indeed the pointers could be the same, if code on or very near
                   6184: the top of stack were executed. In the interest of speed we chose to
                   6185: forbid this probably unused ``feature'' and helped the compiler in
                   6186: scheduling: NEXT is divided into the loading part (@code{NEXT_P1}) and
                   6187: the goto part (@code{NEXT_P2}). @code{+} now looks like:
                   6188: @example
                   6189: n=sp[0]+sp[1];
                   6190: sp++;
                   6191: NEXT_P1;
                   6192: sp[0]=n;
                   6193: NEXT_P2;
                   6194: @end example
                   6195: This can be scheduled optimally by the compiler.
                   6196: 
                   6197: This division can be turned off with the switch @code{-DCISC_NEXT}. This
                   6198: switch is on by default on machines that do not profit from scheduling
                   6199: (e.g., the 80386), in order to preserve registers.
                   6200: 
                   6201: @node Direct or Indirect Threaded?, DOES>, Scheduling, Threading
                   6202: @subsection Direct or Indirect Threaded?
                   6203: @cindex threading, direct or indirect?
                   6204: 
                   6205: @cindex -DDIRECT_THREADED
                   6206: Both! After packaging the nasty details in macro definitions we
                   6207: realized that we could switch between direct and indirect threading by
                   6208: simply setting a compilation flag (@code{-DDIRECT_THREADED}) and
                   6209: defining a few machine-specific macros for the direct-threading case.
                   6210: On the Forth level we also offer access words that hide the
                   6211: differences between the threading methods (@pxref{Threading Words}).
                   6212: 
                   6213: Indirect threading is implemented completely machine-independently.
                   6214: Direct threading needs routines for creating jumps to the executable
                   6215: code (e.g. to docol or dodoes). These routines are inherently
                   6216: machine-dependent, but they do not amount to many source lines. I.e.,
                   6217: even porting direct threading to a new machine is a small effort.
                   6218: 
                   6219: @cindex --enable-indirect-threaded, configuration flag
                   6220: @cindex --enable-direct-threaded, configuration flag
                   6221: The default threading method is machine-dependent. You can enforce a
                   6222: specific threading method when building Gforth with the configuration
                   6223: flag @code{--enable-direct-threaded} or
                   6224: @code{--enable-indirect-threaded}. Note that direct threading is not
                   6225: supported on all machines.
                   6226: 
                   6227: @node DOES>,  , Direct or Indirect Threaded?, Threading
                   6228: @subsection DOES>
                   6229: @cindex @code{DOES>} implementation
                   6230: 
                   6231: @cindex dodoes routine
                   6232: @cindex DOES-code
                   6233: One of the most complex parts of a Forth engine is @code{dodoes}, i.e.,
                   6234: the chunk of code executed by every word defined by a
                   6235: @code{CREATE}...@code{DOES>} pair. The main problem here is: How to find
                   6236: the Forth code to be executed, i.e. the code after the
                   6237: @code{DOES>} (the DOES-code)? There are two solutions:
                   6238: 
                   6239: In fig-Forth the code field points directly to the dodoes and the
                   6240: DOES-code address is stored in the cell after the code address (i.e. at
                   6241: @code{@var{cfa} cell+}). It may seem that this solution is illegal in
                   6242: the Forth-79 and all later standards, because in fig-Forth this address
                   6243: lies in the body (which is illegal in these standards). However, by
                   6244: making the code field larger for all words this solution becomes legal
                   6245: again. We use this approach for the indirect threaded version and for
                   6246: direct threading on some machines. Leaving a cell unused in most words
                   6247: is a bit wasteful, but on the machines we are targeting this is hardly a
                   6248: problem. The other reason for having a code field size of two cells is
                   6249: to avoid having different image files for direct and indirect threaded
                   6250: systems (direct threaded systems require two-cell code fields on many
                   6251: machines).
                   6252: 
                   6253: @cindex DOES-handler
                   6254: The other approach is that the code field points or jumps to the cell
                   6255: after @code{DOES}. In this variant there is a jump to @code{dodoes} at
                   6256: this address (the DOES-handler). @code{dodoes} can then get the
                   6257: DOES-code address by computing the code address, i.e., the address of
                   6258: the jump to dodoes, and add the length of that jump field. A variant of
                   6259: this is to have a call to @code{dodoes} after the @code{DOES>}; then the
                   6260: return address (which can be found in the return register on RISCs) is
                   6261: the DOES-code address. Since the two cells available in the code field
                   6262: are used up by the jump to the code address in direct threading on many
                   6263: architectures, we use this approach for direct threading on these
                   6264: architectures. We did not want to add another cell to the code field.
                   6265: 
                   6266: @node Primitives, Performance, Threading, Engine
                   6267: @section Primitives
                   6268: @cindex primitives, implementation
                   6269: @cindex virtual machine instructions, implementation
                   6270: 
                   6271: @menu
                   6272: * Automatic Generation::        
                   6273: * TOS Optimization::            
                   6274: * Produced code::               
                   6275: @end menu
                   6276: 
                   6277: @node Automatic Generation, TOS Optimization, Primitives, Primitives
                   6278: @subsection Automatic Generation
                   6279: @cindex primitives, automatic generation
                   6280: 
                   6281: @cindex @file{prims2x.fs}
                   6282: Since the primitives are implemented in a portable language, there is no
                   6283: longer any need to minimize the number of primitives. On the contrary,
                   6284: having many primitives has an advantage: speed. In order to reduce the
                   6285: number of errors in primitives and to make programming them easier, we
                   6286: provide a tool, the primitive generator (@file{prims2x.fs}), that
                   6287: automatically generates most (and sometimes all) of the C code for a
                   6288: primitive from the stack effect notation.  The source for a primitive
                   6289: has the following form:
                   6290: 
                   6291: @cindex primitive source format
                   6292: @format
                   6293: @var{Forth-name}       @var{stack-effect}      @var{category}  [@var{pronounc.}]
                   6294: [@code{""}@var{glossary entry}@code{""}]
                   6295: @var{C code}
                   6296: [@code{:}
                   6297: @var{Forth code}]
                   6298: @end format
                   6299: 
                   6300: The items in brackets are optional. The category and glossary fields
                   6301: are there for generating the documentation, the Forth code is there
                   6302: for manual implementations on machines without GNU C. E.g., the source
                   6303: for the primitive @code{+} is:
                   6304: @example
                   6305: +    n1 n2 -- n    core    plus
                   6306: n = n1+n2;
                   6307: @end example
                   6308: 
                   6309: This looks like a specification, but in fact @code{n = n1+n2} is C
                   6310: code. Our primitive generation tool extracts a lot of information from
                   6311: the stack effect notations@footnote{We use a one-stack notation, even
                   6312: though we have separate data and floating-point stacks; The separate
                   6313: notation can be generated easily from the unified notation.}: The number
                   6314: of items popped from and pushed on the stack, their type, and by what
                   6315: name they are referred to in the C code. It then generates a C code
                   6316: prelude and postlude for each primitive. The final C code for @code{+}
                   6317: looks like this:
                   6318: 
                   6319: @example
                   6320: I_plus:        /* + ( n1 n2 -- n ) */  /* label, stack effect */
                   6321: /*  */                          /* documentation */
                   6322: @{
                   6323: DEF_CA                          /* definition of variable ca (indirect threading) */
                   6324: Cell n1;                        /* definitions of variables */
                   6325: Cell n2;
                   6326: Cell n;
                   6327: n1 = (Cell) sp[1];              /* input */
                   6328: n2 = (Cell) TOS;
                   6329: sp += 1;                        /* stack adjustment */
                   6330: NAME("+")                       /* debugging output (with -DDEBUG) */
                   6331: @{
                   6332: n = n1+n2;                      /* C code taken from the source */
                   6333: @}
                   6334: NEXT_P1;                        /* NEXT part 1 */
                   6335: TOS = (Cell)n;                  /* output */
                   6336: NEXT_P2;                        /* NEXT part 2 */
                   6337: @}
                   6338: @end example
                   6339: 
                   6340: This looks long and inefficient, but the GNU C compiler optimizes quite
                   6341: well and produces optimal code for @code{+} on, e.g., the R3000 and the
                   6342: HP RISC machines: Defining the @code{n}s does not produce any code, and
                   6343: using them as intermediate storage also adds no cost.
                   6344: 
                   6345: There are also other optimizations, that are not illustrated by this
                   6346: example: Assignments between simple variables are usually for free (copy
                   6347: propagation). If one of the stack items is not used by the primitive
                   6348: (e.g.  in @code{drop}), the compiler eliminates the load from the stack
                   6349: (dead code elimination). On the other hand, there are some things that
                   6350: the compiler does not do, therefore they are performed by
                   6351: @file{prims2x.fs}: The compiler does not optimize code away that stores
                   6352: a stack item to the place where it just came from (e.g., @code{over}).
                   6353: 
                   6354: While programming a primitive is usually easy, there are a few cases
                   6355: where the programmer has to take the actions of the generator into
                   6356: account, most notably @code{?dup}, but also words that do not (always)
                   6357: fall through to NEXT.
                   6358: 
                   6359: @node TOS Optimization, Produced code, Automatic Generation, Primitives
                   6360: @subsection TOS Optimization
                   6361: @cindex TOS optimization for primitives
                   6362: @cindex primitives, keeping the TOS in a register
                   6363: 
                   6364: An important optimization for stack machine emulators, e.g., Forth
                   6365: engines, is keeping  one or more of the top stack items in
                   6366: registers.  If a word has the stack effect @var{in1}...@var{inx} @code{--}
                   6367: @var{out1}...@var{outy}, keeping the top @var{n} items in registers
                   6368: @itemize @bullet
                   6369: @item
                   6370: is better than keeping @var{n-1} items, if @var{x>=n} and @var{y>=n},
                   6371: due to fewer loads from and stores to the stack.
                   6372: @item is slower than keeping @var{n-1} items, if @var{x<>y} and @var{x<n} and
                   6373: @var{y<n}, due to additional moves between registers.
                   6374: @end itemize
                   6375: 
                   6376: @cindex -DUSE_TOS
                   6377: @cindex -DUSE_NO_TOS
                   6378: In particular, keeping one item in a register is never a disadvantage,
                   6379: if there are enough registers. Keeping two items in registers is a
                   6380: disadvantage for frequent words like @code{?branch}, constants,
                   6381: variables, literals and @code{i}. Therefore our generator only produces
                   6382: code that keeps zero or one items in registers. The generated C code
                   6383: covers both cases; the selection between these alternatives is made at
                   6384: C-compile time using the switch @code{-DUSE_TOS}. @code{TOS} in the C
                   6385: code for @code{+} is just a simple variable name in the one-item case,
                   6386: otherwise it is a macro that expands into @code{sp[0]}. Note that the
                   6387: GNU C compiler tries to keep simple variables like @code{TOS} in
                   6388: registers, and it usually succeeds, if there are enough registers.
                   6389: 
                   6390: @cindex -DUSE_FTOS
                   6391: @cindex -DUSE_NO_FTOS
                   6392: The primitive generator performs the TOS optimization for the
                   6393: floating-point stack, too (@code{-DUSE_FTOS}). For floating-point
                   6394: operations the benefit of this optimization is even larger:
                   6395: floating-point operations take quite long on most processors, but can be
                   6396: performed in parallel with other operations as long as their results are
                   6397: not used. If the FP-TOS is kept in a register, this works. If
                   6398: it is kept on the stack, i.e., in memory, the store into memory has to
                   6399: wait for the result of the floating-point operation, lengthening the
                   6400: execution time of the primitive considerably.
                   6401: 
                   6402: The TOS optimization makes the automatic generation of primitives a
                   6403: bit more complicated. Just replacing all occurrences of @code{sp[0]} by
                   6404: @code{TOS} is not sufficient. There are some special cases to
                   6405: consider:
                   6406: @itemize @bullet
                   6407: @item In the case of @code{dup ( w -- w w )} the generator must not
                   6408: eliminate the store to the original location of the item on the stack,
                   6409: if the TOS optimization is turned on.
                   6410: @item Primitives with stack effects of the form @code{--}
                   6411: @var{out1}...@var{outy} must store the TOS to the stack at the start.
                   6412: Likewise, primitives with the stack effect @var{in1}...@var{inx} @code{--}
                   6413: must load the TOS from the stack at the end. But for the null stack
                   6414: effect @code{--} no stores or loads should be generated.
                   6415: @end itemize
                   6416: 
                   6417: @node Produced code,  , TOS Optimization, Primitives
                   6418: @subsection Produced code
                   6419: @cindex primitives, assembly code listing
                   6420: 
                   6421: @cindex @file{engine.s}
                   6422: To see what assembly code is produced for the primitives on your machine
                   6423: with your compiler and your flag settings, type @code{make engine.s} and
                   6424: look at the resulting file @file{engine.s}.
                   6425: 
                   6426: @node  Performance,  , Primitives, Engine
                   6427: @section Performance
                   6428: @cindex performance of some Forth interpreters
                   6429: @cindex engine performance
                   6430: @cindex benchmarking Forth systems
                   6431: @cindex Gforth performance
                   6432: 
                   6433: On RISCs the Gforth engine is very close to optimal; i.e., it is usually
                   6434: impossible to write a significantly faster engine.
                   6435: 
                   6436: On register-starved machines like the 386 architecture processors
                   6437: improvements are possible, because @code{gcc} does not utilize the
                   6438: registers as well as a human, even with explicit register declarations;
                   6439: e.g., Bernd Beuster wrote a Forth system fragment in assembly language
                   6440: and hand-tuned it for the 486; this system is 1.19 times faster on the
                   6441: Sieve benchmark on a 486DX2/66 than Gforth compiled with
                   6442: @code{gcc-2.6.3} with @code{-DFORCE_REG}.
                   6443: 
                   6444: @cindex Win32Forth performance
                   6445: @cindex NT Forth performance
                   6446: @cindex eforth performance
                   6447: @cindex ThisForth performance
                   6448: @cindex PFE performance
                   6449: @cindex TILE performance
                   6450: However, this potential advantage of assembly language implementations
                   6451: is not necessarily realized in complete Forth systems: We compared
                   6452: Gforth (direct threaded, compiled with @code{gcc-2.6.3} and
                   6453: @code{-DFORCE_REG}) with Win32Forth 1.2093, LMI's NT Forth (Beta, May
                   6454: 1994) and Eforth (with and without peephole (aka pinhole) optimization
                   6455: of the threaded code); all these systems were written in assembly
                   6456: language. We also compared Gforth with three systems written in C:
                   6457: PFE-0.9.14 (compiled with @code{gcc-2.6.3} with the default
                   6458: configuration for Linux: @code{-O2 -fomit-frame-pointer -DUSE_REGS
                   6459: -DUNROLL_NEXT}), ThisForth Beta (compiled with gcc-2.6.3 -O3
                   6460: -fomit-frame-pointer; ThisForth employs peephole optimization of the
                   6461: threaded code) and TILE (compiled with @code{make opt}). We benchmarked
                   6462: Gforth, PFE, ThisForth and TILE on a 486DX2/66 under Linux. Kenneth
                   6463: O'Heskin kindly provided the results for Win32Forth and NT Forth on a
                   6464: 486DX2/66 with similar memory performance under Windows NT. Marcel
                   6465: Hendrix ported Eforth to Linux, then extended it to run the benchmarks,
                   6466: added the peephole optimizer, ran the benchmarks and reported the
                   6467: results.
                   6468:  
                   6469: We used four small benchmarks: the ubiquitous Sieve; bubble-sorting and
                   6470: matrix multiplication come from the Stanford integer benchmarks and have
                   6471: been translated into Forth by Martin Fraeman; we used the versions
                   6472: included in the TILE Forth package, but with bigger data set sizes; and
                   6473: a recursive Fibonacci number computation for benchmarking calling
                   6474: performance. The following table shows the time taken for the benchmarks
                   6475: scaled by the time taken by Gforth (in other words, it shows the speedup
                   6476: factor that Gforth achieved over the other systems).
                   6477: 
                   6478: @example
                   6479: relative      Win32-    NT       eforth       This-
                   6480:   time  Gforth Forth Forth eforth  +opt   PFE Forth  TILE
                   6481: sieve     1.00  1.39  1.14   1.39  0.85  1.58  3.18  8.58
                   6482: bubble    1.00  1.31  1.41   1.48  0.88  1.50        3.88
                   6483: matmul    1.00  1.47  1.35   1.46  0.74  1.58        4.09
                   6484: fib       1.00  1.52  1.34   1.22  0.86  1.74  2.99  4.30
                   6485: @end example
                   6486: 
                   6487: You may find the good performance of Gforth compared with the systems
                   6488: written in assembly language quite surprising. One important reason for
                   6489: the disappointing performance of these systems is probably that they are
                   6490: not written optimally for the 486 (e.g., they use the @code{lods}
                   6491: instruction). In addition, Win32Forth uses a comfortable, but costly
                   6492: method for relocating the Forth image: like @code{cforth}, it computes
                   6493: the actual addresses at run time, resulting in two address computations
                   6494: per NEXT (@pxref{Image File Background}).
                   6495: 
                   6496: Only Eforth with the peephole optimizer performs comparable to
                   6497: Gforth. The speedups achieved with peephole optimization of threaded
                   6498: code are quite remarkable. Adding a peephole optimizer to Gforth should
                   6499: cause similar speedups.
                   6500: 
                   6501: The speedup of Gforth over PFE, ThisForth and TILE can be easily
                   6502: explained with the self-imposed restriction of the latter systems to
                   6503: standard C, which makes efficient threading impossible (however, the
1.4       anton    6504: measured implementation of PFE uses a GNU C extension: @pxref{Global Reg
1.1       anton    6505: Vars, , Defining Global Register Variables, gcc.info, GNU C Manual}).
                   6506: Moreover, current C compilers have a hard time optimizing other aspects
                   6507: of the ThisForth and the TILE source.
                   6508: 
                   6509: Note that the performance of Gforth on 386 architecture processors
                   6510: varies widely with the version of @code{gcc} used. E.g., @code{gcc-2.5.8}
                   6511: failed to allocate any of the virtual machine registers into real
                   6512: machine registers by itself and would not work correctly with explicit
                   6513: register declarations, giving a 1.3 times slower engine (on a 486DX2/66
                   6514: running the Sieve) than the one measured above.
                   6515: 
                   6516: Note also that there have been several releases of Win32Forth since the
                   6517: release presented here, so the results presented here may have little
                   6518: predictive value for the performance of Win32Forth today.
                   6519: 
                   6520: @cindex @file{Benchres}
                   6521: In @cite{Translating Forth to Efficient C} by M. Anton Ertl and Martin
                   6522: Maierhofer (presented at EuroForth '95), an indirect threaded version of
                   6523: Gforth is compared with Win32Forth, NT Forth, PFE, and ThisForth; that
                   6524: version of Gforth is 2%@minus{}8% slower on a 486 than the direct
                   6525: threaded version used here. The paper available at
                   6526: @*@url{http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz};
                   6527: it also contains numbers for some native code systems. You can find a
                   6528: newer version of these measurements at
                   6529: @url{http://www.complang.tuwien.ac.at/forth/performance.html}. You can
                   6530: find numbers for Gforth on various machines in @file{Benchres}.
                   6531: 
                   6532: @node Bugs, Origin, Engine, Top
                   6533: @chapter Bugs
                   6534: @cindex bug reporting
                   6535: 
                   6536: Known bugs are described in the file BUGS in the Gforth distribution.
                   6537: 
                   6538: If you find a bug, please send a bug report to
                   6539: @email{bug-gforth@@gnu.ai.mit.edu}. A bug report should
                   6540: describe the Gforth version used (it is announced at the start of an
                   6541: interactive Gforth session), the machine and operating system (on Unix
                   6542: systems you can use @code{uname -a} to produce this information), the
                   6543: installation options (send the @file{config.status} file), and a
                   6544: complete list of changes you (or your installer) have made to the Gforth
                   6545: sources (if any); it should contain a program (or a sequence of keyboard
                   6546: commands) that reproduces the bug and a description of what you think
                   6547: constitutes the buggy behaviour.
                   6548: 
                   6549: For a thorough guide on reporting bugs read @ref{Bug Reporting, , How
                   6550: to Report Bugs, gcc.info, GNU C Manual}.
                   6551: 
                   6552: 
                   6553: @node Origin, Word Index, Bugs, Top
                   6554: @chapter Authors and Ancestors of Gforth
                   6555: 
                   6556: @section Authors and Contributors
                   6557: @cindex authors of Gforth
                   6558: @cindex contributors to Gforth
                   6559: 
                   6560: The Gforth project was started in mid-1992 by Bernd Paysan and Anton
                   6561: Ertl. The third major author was Jens Wilke.  Lennart Benschop (who was
                   6562: one of Gforth's first users, in mid-1993) and Stuart Ramsden inspired us
                   6563: with their continuous feedback. Lennart Benshop contributed
                   6564: @file{glosgen.fs}, while Stuart Ramsden has been working on automatic
                   6565: support for calling C libraries. Helpful comments also came from Paul
                   6566: Kleinrubatscher, Christian Pirker, Dirk Zoller, Marcel Hendrix, John
                   6567: Wavrik, Barrie Stott and Marc de Groot.
                   6568: 
                   6569: Gforth also owes a lot to the authors of the tools we used (GCC, CVS,
                   6570: and autoconf, among others), and to the creators of the Internet: Gforth
                   6571: was developed across the Internet, and its authors have not met
                   6572: physically yet.
                   6573: 
                   6574: @section Pedigree
                   6575: @cindex Pedigree of Gforth
                   6576: 
                   6577: Gforth descends from BigForth (1993) and fig-Forth. Gforth and PFE (by
                   6578: Dirk Zoller) will cross-fertilize each other. Of course, a significant
                   6579: part of the design of Gforth was prescribed by ANS Forth.
                   6580: 
                   6581: Bernd Paysan wrote BigForth, a descendent from TurboForth, an unreleased
                   6582: 32 bit native code version of VolksForth for the Atari ST, written
                   6583: mostly by Dietrich Weineck.
                   6584: 
                   6585: VolksForth descends from F83. It was written by Klaus Schleisiek, Bernd
                   6586: Pennemann, Georg Rehfeld and Dietrich Weineck for the C64 (called
                   6587: UltraForth there) in the mid-80s and ported to the Atari ST in 1986.
                   6588: 
                   6589: Henry Laxen and Mike Perry wrote F83 as a model implementation of the
                   6590: Forth-83 standard. !! Pedigree? When?
                   6591: 
                   6592: A team led by Bill Ragsdale implemented fig-Forth on many processors in
                   6593: 1979. Robert Selzer and Bill Ragsdale developed the original
                   6594: implementation of fig-Forth for the 6502 based on microForth.
                   6595: 
                   6596: The principal architect of microForth was Dean Sanderson. microForth was
                   6597: FORTH, Inc.'s first off-the-shelf product. It was developed in 1976 for
                   6598: the 1802, and subsequently implemented on the 8080, the 6800 and the
                   6599: Z80.
                   6600: 
                   6601: All earlier Forth systems were custom-made, usually by Charles Moore,
                   6602: who discovered (as he puts it) Forth during the late 60s. The first full
                   6603: Forth existed in 1971.
                   6604: 
                   6605: A part of the information in this section comes from @cite{The Evolution
                   6606: of Forth} by Elizabeth D. Rather, Donald R. Colburn and Charles
                   6607: H. Moore, presented at the HOPL-II conference and preprinted in SIGPLAN
                   6608: Notices 28(3), 1993.  You can find more historical and genealogical
                   6609: information about Forth there.
                   6610: 
                   6611: @node Word Index, Concept Index, Origin, Top
                   6612: @unnumbered Word Index
                   6613: 
                   6614: This index is as incomplete as the manual. Each word is listed with
                   6615: stack effect and wordset.
                   6616: 
                   6617: @printindex fn
                   6618: 
                   6619: @node Concept Index,  , Word Index, Top
                   6620: @unnumbered Concept and Word Index
                   6621: 
                   6622: This index is as incomplete as the manual. Not all entries listed are
                   6623: present verbatim in the text. Only the names are listed for the words
                   6624: here.
                   6625: 
                   6626: @printindex cp
                   6627: 
                   6628: @contents
                   6629: @bye
                   6630: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>