Annotation of gforth/doc/gforth.ds, revision 1.26

1.1       anton       1: \input texinfo   @c -*-texinfo-*-
                      2: @comment The source is gforth.ds, from which gforth.texi is generated
1.21      crook       3: @comment TODO: nac29jan99 - a list of things to add in the next edit:
                      4: @comment 1. x-ref all ambiguous or implementation-defined features
                      5: @comment 2. refer to all environment strings
                      6: @comment 3. gloss and info in blocks section
                      7: @comment 4. move file and blocks to common sub-section?
                      8: @comment 5. command-line editing, command completion etc.
                      9: @comment 6. document more of the words in require.fs
                     10: @comment 7. document the include files process (Describe the list,
                     11: @comment    including its scope)
                     12: @comment 8. Describe the use of Auser Avariable etc.
                     13: @comment 9. cross-compiler
                     14: @comment 10.words in miscellaneous section need a home.
                     15: @comment 11.Move structures and oof into their own chapters.
                     16: @comment 12.search for TODO for other minor works
1.1       anton      17: @comment %**start of header (This is for running Texinfo on a region.)
                     18: @setfilename gforth.info
                     19: @settitle Gforth Manual
                     20: @dircategory GNU programming tools
                     21: @direntry
                     22: * Gforth: (gforth).             A fast interpreter for the Forth language.
                     23: @end direntry
                     24: @comment @setchapternewpage odd
1.12      anton      25: @macro progstyle {}
                     26: Programming style note:
1.3       anton      27: @end macro
1.1       anton      28: @comment %**end of header (This is for running Texinfo on a region.)
                     29: 
1.10      anton      30: @include version.texi
                     31: 
1.1       anton      32: @ifinfo
1.11      anton      33: This file documents Gforth @value{VERSION}
1.1       anton      34: 
1.26    ! crook      35: Copyright @copyright{} 1995-1999 Free Software Foundation, Inc.
1.1       anton      36: 
                     37:      Permission is granted to make and distribute verbatim copies of
                     38:      this manual provided the copyright notice and this permission notice
                     39:      are preserved on all copies.
                     40:      
                     41: @ignore
                     42:      Permission is granted to process this file through TeX and print the
                     43:      results, provided the printed document carries a copying permission
                     44:      notice identical to this one except for the removal of this paragraph
                     45:      (this paragraph not being relevant to the printed manual).
                     46:      
                     47: @end ignore
                     48:      Permission is granted to copy and distribute modified versions of this
                     49:      manual under the conditions for verbatim copying, provided also that the
                     50:      sections entitled "Distribution" and "General Public License" are
                     51:      included exactly as in the original, and provided that the entire
                     52:      resulting derived work is distributed under the terms of a permission
                     53:      notice identical to this one.
                     54:      
                     55:      Permission is granted to copy and distribute translations of this manual
                     56:      into another language, under the above conditions for modified versions,
                     57:      except that the sections entitled "Distribution" and "General Public
                     58:      License" may be included in a translation approved by the author instead
                     59:      of in the original English.
                     60: @end ifinfo
                     61: 
                     62: @finalout
                     63: @titlepage
                     64: @sp 10
                     65: @center @titlefont{Gforth Manual}
                     66: @sp 2
1.11      anton      67: @center for version @value{VERSION}
1.1       anton      68: @sp 2
                     69: @center Anton Ertl
1.6       pazsan     70: @center Bernd Paysan
1.5       anton      71: @center Jens Wilke
1.23      crook      72: @center Neal Crook
1.1       anton      73: @sp 3
1.26    ! crook      74: @center This manual is permanently under construction and was last updated on 23-Mar-1999
1.1       anton      75: 
                     76: @comment  The following two commands start the copyright page.
                     77: @page
                     78: @vskip 0pt plus 1filll
1.13      pazsan     79: Copyright @copyright{} 1995--1998 Free Software Foundation, Inc.
1.1       anton      80: 
                     81: @comment !! Published by ... or You can get a copy of this manual ...
                     82: 
                     83:      Permission is granted to make and distribute verbatim copies of
                     84:      this manual provided the copyright notice and this permission notice
                     85:      are preserved on all copies.
                     86:      
                     87:      Permission is granted to copy and distribute modified versions of this
                     88:      manual under the conditions for verbatim copying, provided also that the
                     89:      sections entitled "Distribution" and "General Public License" are
                     90:      included exactly as in the original, and provided that the entire
                     91:      resulting derived work is distributed under the terms of a permission
                     92:      notice identical to this one.
                     93:      
                     94:      Permission is granted to copy and distribute translations of this manual
                     95:      into another language, under the above conditions for modified versions,
                     96:      except that the sections entitled "Distribution" and "General Public
                     97:      License" may be included in a translation approved by the author instead
                     98:      of in the original English.
                     99: @end titlepage
                    100: 
                    101: 
                    102: @node Top, License, (dir), (dir)
                    103: @ifinfo
                    104: Gforth is a free implementation of ANS Forth available on many
1.11      anton     105: personal machines. This manual corresponds to version @value{VERSION}.
1.1       anton     106: @end ifinfo
                    107: 
                    108: @menu
1.21      crook     109: * License::                     The GPL
1.26    ! crook     110: * Goals::                       About the Gforth Project
1.21      crook     111: * Introduction::                An introduction to ANS Forth
                    112: * Invoking Gforth::             Starting (and exiting) Gforth
1.1       anton     113: * Words::                       Forth words available in Gforth
1.24      anton     114: * Error messages::              How to interpret them
1.1       anton     115: * Tools::                       Programming tools
                    116: * ANS conformance::             Implementation-defined options etc.
                    117: * Model::                       The abstract machine of Gforth
                    118: * Integrating Gforth::          Forth as scripting language for applications
                    119: * Emacs and Gforth::            The Gforth Mode
                    120: * Image Files::                 @code{.fi} files contain compiled code
                    121: * Engine::                      The inner interpreter and the primitives
1.24      anton     122: * Binding to System Library::   
1.13      pazsan    123: * Cross Compiler::              The Cross Compiler
1.1       anton     124: * Bugs::                        How to report them
                    125: * Origin::                      Authors and ancestors of Gforth
1.21      crook     126: * Forth-related information::   Books and places to look on the WWW
1.1       anton     127: * Word Index::                  An item for each Forth word
                    128: * Concept Index::               A menu covering many topics
1.12      anton     129: 
1.24      anton     130: @detailmenu --- The Detailed Node Listing ---
1.12      anton     131: 
1.26    ! crook     132: Goals of Gforth
        !           133: 
        !           134: * Gforth Extensions Sinful?::
        !           135: 
1.24      anton     136: An Introduction to ANS Forth
                    137: 
                    138: * Introducing the Text Interpreter::
                    139: * Stacks and Postfix notation::
                    140: * Your first definition::
                    141: * How does that work?::
                    142: * Forth is written in Forth::
                    143: * Review - elements of a Forth system::
                    144: * Exercises::
                    145: 
1.12      anton     146: Forth Words
                    147: 
                    148: * Notation::                    
1.21      crook     149: * Comments::
                    150: * Boolean Flags::
1.12      anton     151: * Arithmetic::                  
                    152: * Stack Manipulation::          
                    153: * Memory::                      
                    154: * Control Structures::          
                    155: * Defining Words::              
1.21      crook     156: * The Text Interpreter::
1.12      anton     157: * Tokens for Words::            
1.21      crook     158: * Word Lists::                   
                    159: * Environmental Queries::
1.12      anton     160: * Files::                       
                    161: * Blocks::                      
                    162: * Other I/O::                   
                    163: * Programming Tools::           
                    164: * Assembler and Code Words::    
                    165: * Threading Words::             
1.26    ! crook     166: * Locals::                      
        !           167: * Structures::                  
        !           168: * Object-oriented Forth::       
1.21      crook     169: * Passing Commands to the OS::
                    170: * Miscellaneous Words::
1.12      anton     171: 
                    172: Arithmetic
                    173: 
                    174: * Single precision::            
                    175: * Bitwise operations::          
1.21      crook     176: * Double precision::            Double-cell integer arithmetic
                    177: * Numeric comparison::
1.12      anton     178: * Mixed precision::             operations with single and double-cell integers
                    179: * Floating Point::              
                    180: 
                    181: Stack Manipulation
                    182: 
                    183: * Data stack::                  
                    184: * Floating point stack::        
                    185: * Return stack::                
                    186: * Locals stack::                
                    187: * Stack pointer manipulation::  
                    188: 
                    189: Memory
                    190: 
                    191: * Memory Access::      
                    192: * Address arithmetic::          
                    193: * Memory Blocks::         
                    194: 
                    195: Control Structures
                    196: 
                    197: * Selection::                   
                    198: * Simple Loops::                
                    199: * Counted Loops::               
                    200: * Arbitrary control structures::  
                    201: * Calls and returns::           
                    202: * Exception Handling::          
                    203: 
                    204: Defining Words
                    205: 
                    206: * Simple Defining Words::       
                    207: * Colon Definitions::           
                    208: * User-defined Defining Words::  
                    209: * Supplying names::             
                    210: * Interpretation and Compilation Semantics::  
                    211: 
1.21      crook     212: The Text Interpreter
                    213: 
                    214: * Number Conversion::
                    215: * Interpret/Compile states::
                    216: * Literals::
                    217: * Interpreter Directives::
                    218: 
1.26    ! crook     219: Word Lists
        !           220: 
        !           221: * Why use word lists?::
        !           222: * Word list examples::
        !           223: 
        !           224: Files
        !           225: 
        !           226: * Forth source files::
        !           227: * General files::         
        !           228: * Search Paths::                 
        !           229: * Forth Search Paths::    
        !           230: * General Search Paths::        
        !           231: 
        !           232: Other I/O
        !           233: 
        !           234: * Simple numeric output::
        !           235: * Formatted numeric output::
        !           236: * String Formats::
        !           237: * Displaying characters and strings::
        !           238: * Input::
        !           239: 
        !           240: Programming Tools
        !           241: 
        !           242: * Debugging::                   Simple and quick.
        !           243: * Assertions::                  Making your programs self-checking.
        !           244: * Singlestep Debugger::                Executing your program word by word.
        !           245: 
        !           246: Locals
        !           247: 
        !           248: * Gforth locals::               
        !           249: * ANS Forth locals::            
        !           250: 
        !           251: Gforth locals
        !           252: 
        !           253: * Where are locals visible by name?::  
        !           254: * How long do locals live?::    
        !           255: * Programming Style::           
        !           256: * Implementation::              
        !           257: 
1.12      anton     258: Structures
                    259: 
                    260: * Why explicit structure support?::  
                    261: * Structure Usage::             
                    262: * Structure Naming Convention::  
                    263: * Structure Implementation::    
                    264: * Structure Glossary::          
                    265: 
                    266: Object-oriented Forth
                    267: 
1.24      anton     268: * Why object-oriented programming?::
                    269: * Object-Oriented Terminology::
                    270: * Objects::
                    271: * OOF::
                    272: * Mini-OOF::
1.23      crook     273: * Comparison with other object models::  
1.12      anton     274: 
1.24      anton     275: The @file{objects.fs} model
1.12      anton     276: 
                    277: * Properties of the Objects model::  
                    278: * Basic Objects Usage::         
1.23      crook     279: * The Objects base class::            
1.12      anton     280: * Creating objects::            
                    281: * Object-Oriented Programming Style::  
                    282: * Class Binding::               
                    283: * Method conveniences::         
                    284: * Classes and Scoping::         
                    285: * Object Interfaces::           
                    286: * Objects Implementation::      
                    287: * Objects Glossary::            
                    288: 
1.24      anton     289: The @file{oof.fs} model
1.12      anton     290: 
                    291: * Properties of the OOF model::
                    292: * Basic OOF Usage::
1.23      crook     293: * The OOF base class::
1.12      anton     294: * Class Declaration::
                    295: * Class Implementation::
                    296: 
1.24      anton     297: The @file{mini-oof.fs} model
1.23      crook     298: 
                    299: * Basic Mini-OOF Usage::
                    300: * Mini-OOF Example::
                    301: * Mini-OOF Implementation::
                    302: 
1.12      anton     303: Tools
                    304: 
                    305: * ANS Report::                  Report the words used, sorted by wordset.
                    306: 
                    307: ANS conformance
                    308: 
                    309: * The Core Words::              
                    310: * The optional Block word set::  
                    311: * The optional Double Number word set::  
                    312: * The optional Exception word set::  
                    313: * The optional Facility word set::  
                    314: * The optional File-Access word set::  
                    315: * The optional Floating-Point word set::  
                    316: * The optional Locals word set::  
                    317: * The optional Memory-Allocation word set::  
                    318: * The optional Programming-Tools word set::  
                    319: * The optional Search-Order word set::  
                    320: 
                    321: The Core Words
                    322: 
                    323: * core-idef::                   Implementation Defined Options                   
                    324: * core-ambcond::                Ambiguous Conditions                
                    325: * core-other::                  Other System Documentation                  
                    326: 
                    327: The optional Block word set
                    328: 
                    329: * block-idef::                  Implementation Defined Options
                    330: * block-ambcond::               Ambiguous Conditions               
                    331: * block-other::                 Other System Documentation                 
                    332: 
                    333: The optional Double Number word set
                    334: 
                    335: * double-ambcond::              Ambiguous Conditions              
                    336: 
                    337: The optional Exception word set
                    338: 
                    339: * exception-idef::              Implementation Defined Options              
                    340: 
                    341: The optional Facility word set
                    342: 
                    343: * facility-idef::               Implementation Defined Options               
                    344: * facility-ambcond::            Ambiguous Conditions            
                    345: 
                    346: The optional File-Access word set
                    347: 
                    348: * file-idef::                   Implementation Defined Options
                    349: * file-ambcond::                Ambiguous Conditions                
                    350: 
                    351: The optional Floating-Point word set
                    352: 
                    353: * floating-idef::               Implementation Defined Options
                    354: * floating-ambcond::            Ambiguous Conditions            
                    355: 
                    356: The optional Locals word set
                    357: 
                    358: * locals-idef::                 Implementation Defined Options                 
                    359: * locals-ambcond::              Ambiguous Conditions              
                    360: 
                    361: The optional Memory-Allocation word set
                    362: 
                    363: * memory-idef::                 Implementation Defined Options                 
                    364: 
                    365: The optional Programming-Tools word set
                    366: 
                    367: * programming-idef::            Implementation Defined Options            
                    368: * programming-ambcond::         Ambiguous Conditions         
                    369: 
                    370: The optional Search-Order word set
                    371: 
                    372: * search-idef::                 Implementation Defined Options                 
                    373: * search-ambcond::              Ambiguous Conditions              
                    374: 
                    375: Image Files
                    376: 
1.24      anton     377: * Image Licensing Issues::      Distribution terms for images.
                    378: * Image File Background::       Why have image files?
                    379: * Non-Relocatable Image Files::  don't always work.
                    380: * Data-Relocatable Image Files::  are better.
1.12      anton     381: * Fully Relocatable Image Files::  better yet.
1.24      anton     382: * Stack and Dictionary Sizes::  Setting the default sizes for an image.
                    383: * Running Image Files::         @code{gforth -i @var{file}} or @var{file}.
                    384: * Modifying the Startup Sequence::  and turnkey applications.
1.12      anton     385: 
                    386: Fully Relocatable Image Files
                    387: 
1.24      anton     388: * gforthmi::            The normal way
1.12      anton     389: * cross.fs::                    The hard way
                    390: 
                    391: Engine
                    392: 
                    393: * Portability::                 
                    394: * Threading::                   
                    395: * Primitives::                  
                    396: * Performance::                 
                    397: 
                    398: Threading
                    399: 
                    400: * Scheduling::                  
                    401: * Direct or Indirect Threaded?::  
                    402: * DOES>::                       
                    403: 
                    404: Primitives
                    405: 
                    406: * Automatic Generation::        
                    407: * TOS Optimization::            
                    408: * Produced code::               
1.13      pazsan    409: 
                    410: Cross Compiler
                    411: 
                    412: * Using the Cross Compiler::
                    413: * How the Cross Compiler Works::
                    414: 
1.24      anton     415: Other Forth-related information
1.21      crook     416: 
                    417: * Internet resources::
                    418: * Books::
                    419: * The Forth Interest Group::
                    420: * Conferences::
                    421: 
1.24      anton     422: @end detailmenu
1.1       anton     423: @end menu
                    424: 
1.26    ! crook     425: @node License, Goals, Top, Top
1.1       anton     426: @unnumbered GNU GENERAL PUBLIC LICENSE
                    427: @center Version 2, June 1991
                    428: 
                    429: @display
                    430: Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
                    431: 675 Mass Ave, Cambridge, MA 02139, USA
                    432: 
                    433: Everyone is permitted to copy and distribute verbatim copies
                    434: of this license document, but changing it is not allowed.
                    435: @end display
                    436: 
                    437: @unnumberedsec Preamble
                    438: 
                    439:   The licenses for most software are designed to take away your
                    440: freedom to share and change it.  By contrast, the GNU General Public
                    441: License is intended to guarantee your freedom to share and change free
                    442: software---to make sure the software is free for all its users.  This
                    443: General Public License applies to most of the Free Software
                    444: Foundation's software and to any other program whose authors commit to
                    445: using it.  (Some other Free Software Foundation software is covered by
                    446: the GNU Library General Public License instead.)  You can apply it to
                    447: your programs, too.
                    448: 
                    449:   When we speak of free software, we are referring to freedom, not
                    450: price.  Our General Public Licenses are designed to make sure that you
                    451: have the freedom to distribute copies of free software (and charge for
                    452: this service if you wish), that you receive source code or can get it
                    453: if you want it, that you can change the software or use pieces of it
                    454: in new free programs; and that you know you can do these things.
                    455: 
                    456:   To protect your rights, we need to make restrictions that forbid
                    457: anyone to deny you these rights or to ask you to surrender the rights.
                    458: These restrictions translate to certain responsibilities for you if you
                    459: distribute copies of the software, or if you modify it.
                    460: 
                    461:   For example, if you distribute copies of such a program, whether
                    462: gratis or for a fee, you must give the recipients all the rights that
                    463: you have.  You must make sure that they, too, receive or can get the
                    464: source code.  And you must show them these terms so they know their
                    465: rights.
                    466: 
                    467:   We protect your rights with two steps: (1) copyright the software, and
                    468: (2) offer you this license which gives you legal permission to copy,
                    469: distribute and/or modify the software.
                    470: 
                    471:   Also, for each author's protection and ours, we want to make certain
                    472: that everyone understands that there is no warranty for this free
                    473: software.  If the software is modified by someone else and passed on, we
                    474: want its recipients to know that what they have is not the original, so
                    475: that any problems introduced by others will not reflect on the original
                    476: authors' reputations.
                    477: 
                    478:   Finally, any free program is threatened constantly by software
                    479: patents.  We wish to avoid the danger that redistributors of a free
                    480: program will individually obtain patent licenses, in effect making the
                    481: program proprietary.  To prevent this, we have made it clear that any
                    482: patent must be licensed for everyone's free use or not licensed at all.
                    483: 
                    484:   The precise terms and conditions for copying, distribution and
                    485: modification follow.
                    486: 
                    487: @iftex
                    488: @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
                    489: @end iftex
                    490: @ifinfo
                    491: @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
                    492: @end ifinfo
                    493: 
                    494: @enumerate 0
                    495: @item
                    496: This License applies to any program or other work which contains
                    497: a notice placed by the copyright holder saying it may be distributed
                    498: under the terms of this General Public License.  The ``Program'', below,
                    499: refers to any such program or work, and a ``work based on the Program''
                    500: means either the Program or any derivative work under copyright law:
                    501: that is to say, a work containing the Program or a portion of it,
                    502: either verbatim or with modifications and/or translated into another
                    503: language.  (Hereinafter, translation is included without limitation in
                    504: the term ``modification''.)  Each licensee is addressed as ``you''.
                    505: 
                    506: Activities other than copying, distribution and modification are not
                    507: covered by this License; they are outside its scope.  The act of
                    508: running the Program is not restricted, and the output from the Program
                    509: is covered only if its contents constitute a work based on the
                    510: Program (independent of having been made by running the Program).
                    511: Whether that is true depends on what the Program does.
                    512: 
                    513: @item
                    514: You may copy and distribute verbatim copies of the Program's
                    515: source code as you receive it, in any medium, provided that you
                    516: conspicuously and appropriately publish on each copy an appropriate
                    517: copyright notice and disclaimer of warranty; keep intact all the
                    518: notices that refer to this License and to the absence of any warranty;
                    519: and give any other recipients of the Program a copy of this License
                    520: along with the Program.
                    521: 
                    522: You may charge a fee for the physical act of transferring a copy, and
                    523: you may at your option offer warranty protection in exchange for a fee.
                    524: 
                    525: @item
                    526: You may modify your copy or copies of the Program or any portion
                    527: of it, thus forming a work based on the Program, and copy and
                    528: distribute such modifications or work under the terms of Section 1
                    529: above, provided that you also meet all of these conditions:
                    530: 
                    531: @enumerate a
                    532: @item
                    533: You must cause the modified files to carry prominent notices
                    534: stating that you changed the files and the date of any change.
                    535: 
                    536: @item
                    537: You must cause any work that you distribute or publish, that in
                    538: whole or in part contains or is derived from the Program or any
                    539: part thereof, to be licensed as a whole at no charge to all third
                    540: parties under the terms of this License.
                    541: 
                    542: @item
                    543: If the modified program normally reads commands interactively
                    544: when run, you must cause it, when started running for such
                    545: interactive use in the most ordinary way, to print or display an
                    546: announcement including an appropriate copyright notice and a
                    547: notice that there is no warranty (or else, saying that you provide
                    548: a warranty) and that users may redistribute the program under
                    549: these conditions, and telling the user how to view a copy of this
                    550: License.  (Exception: if the Program itself is interactive but
                    551: does not normally print such an announcement, your work based on
                    552: the Program is not required to print an announcement.)
                    553: @end enumerate
                    554: 
                    555: These requirements apply to the modified work as a whole.  If
                    556: identifiable sections of that work are not derived from the Program,
                    557: and can be reasonably considered independent and separate works in
                    558: themselves, then this License, and its terms, do not apply to those
                    559: sections when you distribute them as separate works.  But when you
                    560: distribute the same sections as part of a whole which is a work based
                    561: on the Program, the distribution of the whole must be on the terms of
                    562: this License, whose permissions for other licensees extend to the
                    563: entire whole, and thus to each and every part regardless of who wrote it.
                    564: 
                    565: Thus, it is not the intent of this section to claim rights or contest
                    566: your rights to work written entirely by you; rather, the intent is to
                    567: exercise the right to control the distribution of derivative or
                    568: collective works based on the Program.
                    569: 
                    570: In addition, mere aggregation of another work not based on the Program
                    571: with the Program (or with a work based on the Program) on a volume of
                    572: a storage or distribution medium does not bring the other work under
                    573: the scope of this License.
                    574: 
                    575: @item
                    576: You may copy and distribute the Program (or a work based on it,
                    577: under Section 2) in object code or executable form under the terms of
                    578: Sections 1 and 2 above provided that you also do one of the following:
                    579: 
                    580: @enumerate a
                    581: @item
                    582: Accompany it with the complete corresponding machine-readable
                    583: source code, which must be distributed under the terms of Sections
                    584: 1 and 2 above on a medium customarily used for software interchange; or,
                    585: 
                    586: @item
                    587: Accompany it with a written offer, valid for at least three
                    588: years, to give any third party, for a charge no more than your
                    589: cost of physically performing source distribution, a complete
                    590: machine-readable copy of the corresponding source code, to be
                    591: distributed under the terms of Sections 1 and 2 above on a medium
                    592: customarily used for software interchange; or,
                    593: 
                    594: @item
                    595: Accompany it with the information you received as to the offer
                    596: to distribute corresponding source code.  (This alternative is
                    597: allowed only for noncommercial distribution and only if you
                    598: received the program in object code or executable form with such
                    599: an offer, in accord with Subsection b above.)
                    600: @end enumerate
                    601: 
                    602: The source code for a work means the preferred form of the work for
                    603: making modifications to it.  For an executable work, complete source
                    604: code means all the source code for all modules it contains, plus any
                    605: associated interface definition files, plus the scripts used to
                    606: control compilation and installation of the executable.  However, as a
                    607: special exception, the source code distributed need not include
                    608: anything that is normally distributed (in either source or binary
                    609: form) with the major components (compiler, kernel, and so on) of the
                    610: operating system on which the executable runs, unless that component
                    611: itself accompanies the executable.
                    612: 
                    613: If distribution of executable or object code is made by offering
                    614: access to copy from a designated place, then offering equivalent
                    615: access to copy the source code from the same place counts as
                    616: distribution of the source code, even though third parties are not
                    617: compelled to copy the source along with the object code.
                    618: 
                    619: @item
                    620: You may not copy, modify, sublicense, or distribute the Program
                    621: except as expressly provided under this License.  Any attempt
                    622: otherwise to copy, modify, sublicense or distribute the Program is
                    623: void, and will automatically terminate your rights under this License.
                    624: However, parties who have received copies, or rights, from you under
                    625: this License will not have their licenses terminated so long as such
                    626: parties remain in full compliance.
                    627: 
                    628: @item
                    629: You are not required to accept this License, since you have not
                    630: signed it.  However, nothing else grants you permission to modify or
                    631: distribute the Program or its derivative works.  These actions are
                    632: prohibited by law if you do not accept this License.  Therefore, by
                    633: modifying or distributing the Program (or any work based on the
                    634: Program), you indicate your acceptance of this License to do so, and
                    635: all its terms and conditions for copying, distributing or modifying
                    636: the Program or works based on it.
                    637: 
                    638: @item
                    639: Each time you redistribute the Program (or any work based on the
                    640: Program), the recipient automatically receives a license from the
                    641: original licensor to copy, distribute or modify the Program subject to
                    642: these terms and conditions.  You may not impose any further
                    643: restrictions on the recipients' exercise of the rights granted herein.
                    644: You are not responsible for enforcing compliance by third parties to
                    645: this License.
                    646: 
                    647: @item
                    648: If, as a consequence of a court judgment or allegation of patent
                    649: infringement or for any other reason (not limited to patent issues),
                    650: conditions are imposed on you (whether by court order, agreement or
                    651: otherwise) that contradict the conditions of this License, they do not
                    652: excuse you from the conditions of this License.  If you cannot
                    653: distribute so as to satisfy simultaneously your obligations under this
                    654: License and any other pertinent obligations, then as a consequence you
                    655: may not distribute the Program at all.  For example, if a patent
                    656: license would not permit royalty-free redistribution of the Program by
                    657: all those who receive copies directly or indirectly through you, then
                    658: the only way you could satisfy both it and this License would be to
                    659: refrain entirely from distribution of the Program.
                    660: 
                    661: If any portion of this section is held invalid or unenforceable under
                    662: any particular circumstance, the balance of the section is intended to
                    663: apply and the section as a whole is intended to apply in other
                    664: circumstances.
                    665: 
                    666: It is not the purpose of this section to induce you to infringe any
                    667: patents or other property right claims or to contest validity of any
                    668: such claims; this section has the sole purpose of protecting the
                    669: integrity of the free software distribution system, which is
                    670: implemented by public license practices.  Many people have made
                    671: generous contributions to the wide range of software distributed
                    672: through that system in reliance on consistent application of that
                    673: system; it is up to the author/donor to decide if he or she is willing
                    674: to distribute software through any other system and a licensee cannot
                    675: impose that choice.
                    676: 
                    677: This section is intended to make thoroughly clear what is believed to
                    678: be a consequence of the rest of this License.
                    679: 
                    680: @item
                    681: If the distribution and/or use of the Program is restricted in
                    682: certain countries either by patents or by copyrighted interfaces, the
                    683: original copyright holder who places the Program under this License
                    684: may add an explicit geographical distribution limitation excluding
                    685: those countries, so that distribution is permitted only in or among
                    686: countries not thus excluded.  In such case, this License incorporates
                    687: the limitation as if written in the body of this License.
                    688: 
                    689: @item
                    690: The Free Software Foundation may publish revised and/or new versions
                    691: of the General Public License from time to time.  Such new versions will
                    692: be similar in spirit to the present version, but may differ in detail to
                    693: address new problems or concerns.
                    694: 
                    695: Each version is given a distinguishing version number.  If the Program
                    696: specifies a version number of this License which applies to it and ``any
                    697: later version'', you have the option of following the terms and conditions
                    698: either of that version or of any later version published by the Free
                    699: Software Foundation.  If the Program does not specify a version number of
                    700: this License, you may choose any version ever published by the Free Software
                    701: Foundation.
                    702: 
                    703: @item
                    704: If you wish to incorporate parts of the Program into other free
                    705: programs whose distribution conditions are different, write to the author
                    706: to ask for permission.  For software which is copyrighted by the Free
                    707: Software Foundation, write to the Free Software Foundation; we sometimes
                    708: make exceptions for this.  Our decision will be guided by the two goals
                    709: of preserving the free status of all derivatives of our free software and
                    710: of promoting the sharing and reuse of software generally.
                    711: 
                    712: @iftex
                    713: @heading NO WARRANTY
                    714: @end iftex
                    715: @ifinfo
                    716: @center NO WARRANTY
                    717: @end ifinfo
                    718: 
                    719: @item
                    720: BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
                    721: FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
                    722: OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
                    723: PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
                    724: OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
                    725: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
                    726: TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
                    727: PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
                    728: REPAIR OR CORRECTION.
                    729: 
                    730: @item
                    731: IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                    732: WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
                    733: REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
                    734: INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
                    735: OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
                    736: TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
                    737: YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
                    738: PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
                    739: POSSIBILITY OF SUCH DAMAGES.
                    740: @end enumerate
                    741: 
                    742: @iftex
                    743: @heading END OF TERMS AND CONDITIONS
                    744: @end iftex
                    745: @ifinfo
                    746: @center END OF TERMS AND CONDITIONS
                    747: @end ifinfo
                    748: 
                    749: @page
                    750: @unnumberedsec How to Apply These Terms to Your New Programs
                    751: 
                    752:   If you develop a new program, and you want it to be of the greatest
                    753: possible use to the public, the best way to achieve this is to make it
                    754: free software which everyone can redistribute and change under these terms.
                    755: 
                    756:   To do so, attach the following notices to the program.  It is safest
                    757: to attach them to the start of each source file to most effectively
                    758: convey the exclusion of warranty; and each file should have at least
                    759: the ``copyright'' line and a pointer to where the full notice is found.
                    760: 
                    761: @smallexample
                    762: @var{one line to give the program's name and a brief idea of what it does.}
                    763: Copyright (C) 19@var{yy}  @var{name of author}
                    764: 
                    765: This program is free software; you can redistribute it and/or modify 
                    766: it under the terms of the GNU General Public License as published by 
                    767: the Free Software Foundation; either version 2 of the License, or 
                    768: (at your option) any later version.
                    769: 
                    770: This program is distributed in the hope that it will be useful,
                    771: but WITHOUT ANY WARRANTY; without even the implied warranty of
                    772: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    773: GNU General Public License for more details.
                    774: 
                    775: You should have received a copy of the GNU General Public License
                    776: along with this program; if not, write to the Free Software
                    777: Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
                    778: @end smallexample
                    779: 
                    780: Also add information on how to contact you by electronic and paper mail.
                    781: 
                    782: If the program is interactive, make it output a short notice like this
                    783: when it starts in an interactive mode:
                    784: 
                    785: @smallexample
                    786: Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
                    787: Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
                    788: type `show w'.  
                    789: This is free software, and you are welcome to redistribute it 
                    790: under certain conditions; type `show c' for details.
                    791: @end smallexample
                    792: 
                    793: The hypothetical commands @samp{show w} and @samp{show c} should show
                    794: the appropriate parts of the General Public License.  Of course, the
                    795: commands you use may be called something other than @samp{show w} and
                    796: @samp{show c}; they could even be mouse-clicks or menu items---whatever
                    797: suits your program.
                    798: 
                    799: You should also get your employer (if you work as a programmer) or your
                    800: school, if any, to sign a ``copyright disclaimer'' for the program, if
                    801: necessary.  Here is a sample; alter the names:
                    802: 
                    803: @smallexample
                    804: Yoyodyne, Inc., hereby disclaims all copyright interest in the program
                    805: `Gnomovision' (which makes passes at compilers) written by James Hacker.
                    806: 
                    807: @var{signature of Ty Coon}, 1 April 1989
                    808: Ty Coon, President of Vice
                    809: @end smallexample
                    810: 
                    811: This General Public License does not permit incorporating your program into
                    812: proprietary programs.  If your program is a subroutine library, you may
                    813: consider it more useful to permit linking proprietary applications with the
                    814: library.  If this is what you want to do, use the GNU Library General
                    815: Public License instead of this License.
                    816: 
                    817: @iftex
                    818: @unnumbered Preface
                    819: @cindex Preface
1.21      crook     820: This manual documents Gforth. Some introductory material is provided for
                    821: readers who are unfamiliar with Forth or who are migrating to Gforth
                    822: from other Forth compilers. However, this manual is primarily a
                    823: reference manual.
1.1       anton     824: @end iftex
                    825: 
1.26    ! crook     826: 
        !           827: @c ******************************************************************
        !           828: @node Goals, Introduction, License, Top
        !           829: @comment node-name,     next,           previous, up
        !           830: @chapter Goals of Gforth
        !           831: @cindex goals of the Gforth project
        !           832: The goal of the Gforth Project is to develop a standard model for
        !           833: ANS Forth. This can be split into several subgoals:
        !           834: 
        !           835: @itemize @bullet
        !           836: @item
        !           837: Gforth should conform to the ANS Forth Standard.
        !           838: @item
        !           839: It should be a model, i.e. it should define all the
        !           840: implementation-dependent things.
        !           841: @item
        !           842: It should become standard, i.e. widely accepted and used. This goal
        !           843: is the most difficult one.
        !           844: @end itemize
        !           845: 
        !           846: To achieve these goals Gforth should be
        !           847: @itemize @bullet
        !           848: @item
        !           849: Similar to previous models (fig-Forth, F83)
        !           850: @item
        !           851: Powerful. It should provide for all the things that are considered
        !           852: necessary today and even some that are not yet considered necessary.
        !           853: @item
        !           854: Efficient. It should not get the reputation of being exceptionally
        !           855: slow.
        !           856: @item
        !           857: Free.
        !           858: @item
        !           859: Available on many machines/easy to port.
        !           860: @end itemize
        !           861: 
        !           862: Have we achieved these goals? Gforth conforms to the ANS Forth
        !           863: standard. It may be considered a model, but we have not yet documented
        !           864: which parts of the model are stable and which parts we are likely to
        !           865: change. It certainly has not yet become a de facto standard, but it
        !           866: appears to be quite popular. It has some similarities to and some
        !           867: differences from previous models. It has some powerful features, but not
        !           868: yet everything that we envisioned. We certainly have achieved our
        !           869: execution speed goals (@pxref{Performance}).  It is free and available
        !           870: on many machines.
        !           871: 
        !           872: @menu
        !           873: * Gforth Extensions Sinful?::
        !           874: @end menu
        !           875: 
        !           876: @node Gforth Extensions Sinful?, , Goals, Goals
        !           877: @comment node-name,     next,           previous, up
        !           878: @section Is it a Sin to use Gforth Extensions?
        !           879: @cindex Gforth extensions
        !           880: 
        !           881: If you've been paying attention, you will have realised that there is an
        !           882: ANS (American National Standard) for Forth. As you read through the rest
        !           883: of this manual, you will see documentation for @var{Standard} words, and
        !           884: documentation for some appealing Gforth @var{extensions}. You might ask
        !           885: yourself the question: @var{``Given that there is a standard, would I be
        !           886: committing a sin to use (non-Standard) Gforth extensions?''}
        !           887: 
        !           888: The answer to that question is somewhat pragmatic and somewhat
        !           889: philosophical. Consider these points:
        !           890: 
        !           891: @itemize @bullet
        !           892: @item
        !           893: A number of the Gforth extensions can be implemented in ANS Forth using
        !           894: files provided in the @file{compat/} directory. These are mentioned in
        !           895: the text in passing.
        !           896: @item
        !           897: Forth has a rich historical precedent for programmers taking advantage
        !           898: of implementation-dependent features of their tools (for example,
        !           899: relying on a knowledge of the dictionary structure). Sometimes these
        !           900: techniques are necessary to extract every last bit of performance from
        !           901: the hardware, sometimes they are just a programming shorthand.
        !           902: @item
        !           903: The best way to break the rules is to know what the rules are. To learn
        !           904: the rules, there is no substitute for studying the text of the Standard
        !           905: itself. In particular, Appendix A of the Standard (@var{Rationale})
        !           906: provides a valuable insight into the thought processes of the technical
        !           907: committee.
        !           908: @item
        !           909: The best reason to break a rule is because you have to; because it's
        !           910: more productive to do that, because it makes your code run fast enough
        !           911: or because you can see no Standard way to achieve what you want to
        !           912: achieve.
        !           913: @end itemize
        !           914: 
        !           915: The tool @file{ans-report.fs} (@pxref{ANS Report}) makes it easy to
        !           916: analyse your program and determine what non-Standard definitions it
        !           917: relies upon.
        !           918: 
        !           919: @c ******************************************************************
        !           920: @node    Introduction, Invoking Gforth, Goals, Top
1.21      crook     921: @comment node-name,     next,           previous, up
                    922: @chapter An Introduction to ANS Forth
                    923: @cindex Forth - an introduction
                    924: 
                    925: The primary purpose of this manual is to document Gforth. However, since
                    926: Forth is not a widely-known language and there is a lack of up-to-date
                    927: teaching material, it seems worthwhile to provide some introductory
                    928: material. @xref{Forth-related information} for other sources of Forth-related
                    929: information.
                    930: 
1.26    ! crook     931: The examples in this section should work on any ANS Forth; the
        !           932: output shown was produced using Gforth. Each example attempts to
1.21      crook     933: reproduce the exact output that Gforth produces. If you try out the
                    934: examples (and you should), what you should type is shown @kbd{like this}
                    935: and Gforth's response is shown @code{like this}. The single exception is
                    936: that, where the example shows @kbd{<return>} it means that you should
1.26    ! crook     937: press the ``carriage return'' key. Unfortunately, some output formats for
1.21      crook     938: this manual cannot show the difference between @kbd{this} and
                    939: @code{this} which will make trying out the examples harder (but not
                    940: impossible).
                    941: 
                    942: Forth is an unusual language. It provides an interactive development
                    943: environment which includes both an interpreter and compiler. Forth
                    944: programming style encourages you to break a problem down into many
                    945: @cindex factoring
                    946: small fragments (@var{factoring}), and then to develop and test each
                    947: fragment interactively. Forth advocates assert that breaking the
                    948: edit-compile-test cycle used by conventional programming languages can
                    949: lead to great productivity improvements.
                    950: 
                    951: @menu
                    952: * Introducing the Text Interpreter::
                    953: * Stacks and Postfix notation::
                    954: * Your first definition::
                    955: * How does that work?::
                    956: * Forth is written in Forth::
                    957: * Review - elements of a Forth system::
                    958: * Exercises::
                    959: @end menu
                    960: 
                    961: @comment ----------------------------------------------
                    962: @node Introducing the Text Interpreter, Stacks and Postfix notation, Introduction, Introduction
                    963: @section Introducing the Text Interpreter
                    964: @cindex text interpreter
                    965: @cindex outer interpreter
                    966: 
                    967: When you invoke the Forth image, you will see a startup banner printed
                    968: and nothing else (if you have Gforth installed on your system, try
                    969: invoking it now, by typing @kbd{gforth<return>}). Forth is now running
                    970: its command line interpreter, which is called the @var{Text Interpreter}
1.26    ! crook     971: (also known as the @var{Outer Interpreter}).  (You will learn a lot
        !           972: about the text interpreter as you read through this chapter,
        !           973: but @pxref{The Text Interpreter} for more detail).
1.21      crook     974: 
1.26    ! crook     975: Although it's not obvious, Forth is actually waiting for your
1.21      crook     976: input. Type a number and press the <return> key:
                    977: 
                    978: @example
                    979: @kbd{45<return>}  ok
                    980: @end example
                    981: 
                    982: Rather than give you a prompt to invite you to input something, the text
                    983: interpreter prints a status message @var{after} it has processed a line
1.26    ! crook     984: of input. The status message in this case (``@code{ ok}'' followed by
1.21      crook     985: carriage-return) indicates that the text interpreter was able to process
                    986: all of your input successfully. Now type something illegal:
                    987: 
                    988: @example
                    989: @kbd{qwer341<return>}
1.26    ! crook     990: :1: Undefined word
        !           991: qwer341
1.21      crook     992: ^^^^^^^
1.26    ! crook     993: $400D2BA8 Bounce
        !           994: $400DBDA8 no.extensions
1.21      crook     995: @end example
                    996: 
1.26    ! crook     997: The exact text, other than the ``Undefined word'' may differ slightly on
        !           998: your system, but the effect is the same; when the text interpreter
        !           999: detects an error, it discards any remaining text on a line, resets
        !          1000: certain internal state and prints an error message.
        !          1001: 
        !          1002: The text interpreter waits for you to press carrage-return, and then
        !          1003: processes your input line. Starting at the beginning of the line, it
        !          1004: breaks the line into groups of characters separated by spaces. For each
        !          1005: group of characters in turn, it makes two attempts to do something:
1.21      crook    1006: 
                   1007: @itemize @bullet
                   1008: @item
                   1009: It tries to treat it as a command. It does this by searching a @var{name
                   1010: dictionary}. If the group of characters matches an entry in the name
                   1011: dictionary, the name dictionary provides the text interpreter with
                   1012: information that allows the text interpreter perform some actions. In
                   1013: Forth jargon, we say that the group
                   1014: @cindex word
                   1015: @cindex definition
                   1016: @cindex execution token
                   1017: @cindex xt
                   1018: of characters names a @var{word}, that the dictionary search returns an
                   1019: @var{execution token (xt)} corresponding to the @var{definition} of the
                   1020: word, and that the text interpreter executes the xt. Often, the terms
                   1021: @var{word} and @var{definition} are used interchangeably.
                   1022: @item
                   1023: If the text interpreter fails to find a match in the name dictionary, it
                   1024: tries to treat the group of characters as a number in the current number
                   1025: base (when you start up Forth, the current number base is base 10). If
                   1026: the group of characters legitimately represents a number, the text
                   1027: interpreter pushes the number onto a stack (we'll learn more about that
                   1028: in the next section).
                   1029: @end itemize
                   1030: 
                   1031: If the text interpreter is unable to do either of these things with any
1.26    ! crook    1032: group of characters, it discards the group of characters and the rest of
        !          1033: the line, then prints an error message. If the text interpreter reaches
        !          1034: the end of the line without error, it prints the status message ``@code{ ok}''
        !          1035: followed by carriage-return.
1.21      crook    1036: 
                   1037: This is the simplest command we can give to the text interpreter:
                   1038: 
                   1039: @example
                   1040: @kbd{<return>}  ok
                   1041: @end example
                   1042: 
                   1043: The text interpreter did everything we asked it to do (nothing) without
1.26    ! crook    1044: an error, so it said that everything is ``@code{ ok}''. Try a slightly longer
1.21      crook    1045: command:
                   1046: 
                   1047: @example
                   1048: @kbd{12 dup fred dup<return>}
1.26    ! crook    1049: :1: Undefined word
        !          1050: 12 dup fred dup
1.21      crook    1051:        ^^^^
1.26    ! crook    1052: $400D2BA8 Bounce
        !          1053: $400DBDA8 no.extensions
1.21      crook    1054: @end example
                   1055: 
1.26    ! crook    1056: When you press the carriage-return key, the text interpreter starts to
        !          1057: work its way along the line:
1.21      crook    1058: 
                   1059: @itemize @bullet
                   1060: @item
                   1061: When it gets to the space after the @code{2}, it takes the group of
                   1062: characters @code{12} and looks them up in the name
                   1063: dictionary@footnote{We can't tell if it found them or not, but assume
                   1064: for now that it did not}. There is no match for this group of characters
                   1065: in the name dictionary, so it tries to treat them as a number. It is
1.26    ! crook    1066: able to do this successfully, so it puts the number, 12, ``on the stack''
1.21      crook    1067: (whatever that means).
                   1068: @item
                   1069: The text interpreter resumes scanning the line and gets the next group
1.26    ! crook    1070: of characters, @code{dup}. It looks it up in the name dictionary and
        !          1071: (you'll have to take my word for this) finds it, and executes the word
1.21      crook    1072: @code{dup} (whatever that means).
                   1073: @item
                   1074: Once again, the text interpreter resumes scanning the line and gets the
                   1075: group of characters @code{fred}. It looks them up in the name
                   1076: dictionary, but can't find them. It tries to treat them as a number, but
                   1077: they don't represent any legal number.
                   1078: @end itemize
                   1079: 
                   1080: At this point, the text interpreter gives up and prints an error
                   1081: message. The error message shows exactly how far the text interpreter
                   1082: got in processing the line. In particular, it shows that the text
                   1083: interpreter made no attempt to do anything with the final character
                   1084: group, @code{dup}, even though we have good reason to believe that the
                   1085: text interpreter would have had no problems with looking that word up
                   1086: and executing it a second time.
                   1087: 
                   1088: 
                   1089: @comment ----------------------------------------------
                   1090: @node Stacks and Postfix notation, Your first definition, Introducing the Text Interpreter, Introduction
                   1091: @section Stacks, postfix notation and parameter passing
                   1092: @cindex text interpreter
                   1093: @cindex outer interpreter
                   1094: 
                   1095: In procedural programming languages (like C and Pascal), the
1.26    ! crook    1096: building-block of programs is the @var{function} or @var{procedure}. These
        !          1097: functions or procedures are called with @var{explicit parameters}. For
1.21      crook    1098: example, in C we might write:
                   1099: 
                   1100: @example
                   1101: total = total + new_volume(length,height,depth);
                   1102: @end example
                   1103: 
1.26    ! crook    1104: @noindent
        !          1105: where new_volume is a function-call to another piece of code, and total,
        !          1106: length, height and depth are all variables. length, height and depth are
        !          1107: parameters to the function-call.
1.21      crook    1108: 
1.26    ! crook    1109: In Forth, the equivalent of the function or procedure is the
1.21      crook    1110: @var{definition} and parameters are implicitly passed between
                   1111: definitions using a shared stack that is visible to the
                   1112: programmer. Although Forth does support variables, the existence of the
                   1113: stack means that they are used far less often than in most other
                   1114: programming languages. When the text interpreter encounters a number, it
                   1115: will place (@var{push}) it on the stack. There are several stacks (the
                   1116: actual number is implementation-dependent ..) and the particular stack
                   1117: used for any operation is implied unambiguously by the operation being
                   1118: performed. The stack used for all integer operations is called the @var{data
                   1119: stack} and, since this is the stack used most commonly, references to
1.26    ! crook    1120: ``the data stack'' are often abbreviated to ``the stack''.
1.21      crook    1121: 
                   1122: The stacks have a last-in, first-out (LIFO) organisation. If you type:
                   1123: 
                   1124: @example
                   1125: @kbd{1 2 3<return>}  ok
                   1126: @end example
                   1127: 
1.26    ! crook    1128: Then this instructs the text interpreter to placed three numbers on the
        !          1129: (data) stack. An analogy for the behaviour of the stack is to take a
        !          1130: pack of playing cards and deal out the ace (1), 2 and 3 into a pile on
        !          1131: the table. The 3 was the last card onto the pile (``last-in'') and if
        !          1132: you take a card off the pile then, unless you're prepared to fiddle a
        !          1133: bit, the card that you take off will be the 3 (``first-out''). The
        !          1134: number that will be first-out of the stack is called the @var{top of
        !          1135: stack}, which
        !          1136: @cindex TOS definition
1.21      crook    1137: is often abbreviated to @var{TOS}.
                   1138: 
1.26    ! crook    1139: To understand how parameters are passed in Forth, consider the
        !          1140: behaviour of the definition @code{+} (pronounced ``plus''). You will not
        !          1141: be surprised to learn that this definition performs addition. More
1.21      crook    1142: precisely, it adds two number together and produces a result. Where does
1.26    ! crook    1143: it get the two numbers from? It takes the top two numbers off the
1.21      crook    1144: stack. Where does it place the result? On the stack. You can act-out the
                   1145: behaviour of @code{+} with your playing cards like this:
                   1146: 
                   1147: @itemize @bullet
                   1148: @item
1.26    ! crook    1149: Pick up two cards from the stack on the table
1.21      crook    1150: @item
1.26    ! crook    1151: Stare at them intently and ask yourself ``what @var{is} the sum of these two
        !          1152: numbers''
1.21      crook    1153: @item
                   1154: Decide that the answer is 5
                   1155: @item
                   1156: Shuffle the two cards back into the pack and find a 5
                   1157: @item
                   1158: Put a 5 on the remaining ace that's on the table.
                   1159: @end itemize
                   1160: 
                   1161: If you don't have a pack of cards handy but you do have Forth running,
1.26    ! crook    1162: you can use the definition @code{.s} to show the current state of the stack,
1.21      crook    1163: without affecting the stack. Type:
                   1164: 
                   1165: @example
                   1166: @kbd{clearstack 1 2 3<return>} ok
1.26    ! crook    1167: @kbd{.s<return>} <3> 1 2 3  ok
1.21      crook    1168: @end example
                   1169: 
                   1170: The text interpreter looks up the word @code{clearstack} and executes
                   1171: it; it tidies up the stack and removes any entries that may have been
                   1172: left on it by earlier examples. The text interpreter pushes each of the
                   1173: three numbers in turn onto the stack. Finally, the text interpreter
                   1174: looks up the word @code{.s} and executes it. The effect of executing
1.26    ! crook    1175: @code{.s} is to print the ``<3>'' (the total number of items on the stack)
        !          1176: followed by a list of all the items on the stack; the item on the far
        !          1177: right-hand side is the TOS.
1.21      crook    1178: 
                   1179: You can now type:
                   1180: 
1.26    ! crook    1181: @example
        !          1182: @kbd{+ .s<return>} <2> 1 5  ok
        !          1183: @end example
1.21      crook    1184: 
1.26    ! crook    1185: @noindent
1.21      crook    1186: which is correct; there are now 2 items on the stack and the result of
                   1187: the addition is 5.
                   1188: 
1.26    ! crook    1189: If you're playing with cards, try doing a second addition: pick up the
1.21      crook    1190: two cards, work out that their sum is 6, shuffle them into the pack,
1.26    ! crook    1191: look for a 6 and place that on the table. You now have just one item on
        !          1192: the stack. What happens if you try to do a third addition? Pick up the
        !          1193: first card, pick up the second card -- ah! There is no second card. This
        !          1194: is called a @var{stack underflow} and consitutes an error. If you try to
        !          1195: do the same thing with Forth it will report an error (probably a Stack
        !          1196: Underflow or an Invalid Memory Address error).
        !          1197: 
        !          1198: The opposite situation to a stack underflow is a @var{stack overflow},
        !          1199: which simply accepts that there is a finite amount of storage space
        !          1200: reserved for the stack. To stretch the playing card analogy, if you had
        !          1201: enough packs of cards and you piled the cards up on the table, you would
        !          1202: eventually be unable to add another card; you'd hit the ceiling. Gforth
        !          1203: allows you to set the maximum size of the stacks. In general, the only
        !          1204: time that you will get a stack overflow is because a definition has a
        !          1205: bug in it and is generating data on the stack uncontrollably.
1.21      crook    1206: 
                   1207: There's one final use for the playing card analogy. If you model your
                   1208: stack using a pack of playing cards, the maximum number of items on
                   1209: your stack will be 52 (I assume you didn't use the Joker). The maximum
1.26    ! crook    1210: @var{value} of any item on the stack is 13 (the King). In fact, the only
1.21      crook    1211: possible numbers are positive integer numbers 1 through 13; you can't
                   1212: have (for example) 0 or 27 or 3.52 or -2. If you change the way you
                   1213: think about some of the cards, you can accommodate different
                   1214: numbers. For example, you could think of the Jack as representing 0,
                   1215: the Queen as representing -1 and the King as representing -2. Your
                   1216: *range* remains unchanged (you can still only represent a total of 13
                   1217: numbers) but the numbers that you can represent are -2 through 10.
                   1218: 
                   1219: In that analogy, the limit was the amount of information that a single
                   1220: stack entry could hold, and Forth has a similar limit. In Forth, the
1.26    ! crook    1221: size of a stack entry is called a @var{cell}. The actual size of a cell is
1.21      crook    1222: implementation dependent and affects the maximum value that a stack
                   1223: entry can hold. A Standard Forth provides a cell size of at least
                   1224: 16-bits, and most desktop systems use a cell size of 32-bits.
                   1225: 
                   1226: Forth does not do any type checking for you, so you are free to
                   1227: manipulate and combine stack items in any way you wish. A convenient
                   1228: ways of treating stack items is as 2's complement signed integers, and
1.26    ! crook    1229: that is what Standard words like ``+'' do. Therefore you can type:
1.21      crook    1230: 
1.26    ! crook    1231: @example
        !          1232: @kbd{-5 12 + .s<return>} <1> 7  ok
        !          1233: @end example
1.21      crook    1234: 
1.26    ! crook    1235: If you use numbers and definitions like ``+'' in order to turn Forth
1.21      crook    1236: into a great big pocket calculator, you will realise that it's rather
                   1237: different from a normal calculator. Rather than typing 2 + 3 = you had
1.26    ! crook    1238: to type 2 3 + (ignore the fact that you had to use @code{.s} to see the
1.21      crook    1239: result). The terminology used to describe this difference is to say
1.26    ! crook    1240: that your calculator uses @var{Infix Notation} (parameters and operators
        !          1241: are mixed) whilst Forth uses @var{Postfix Notation} (parameters and
        !          1242: operators are separate), also called @var{Reverse Polish Notation}.
1.21      crook    1243: 
                   1244: Whilst postfix notation might look confusing to begin with, it has
                   1245: several important advantages:
                   1246: 
1.26    ! crook    1247: @itemize @bullet
        !          1248: @item
        !          1249: it is unambiguous
        !          1250: @item
        !          1251: it is more concise
        !          1252: @item
        !          1253: it fits naturally with a stack-based system
        !          1254: @end itemize
1.21      crook    1255: 
                   1256: To examine these claims in more detail, consider these sums:
                   1257: 
1.26    ! crook    1258: @example
1.21      crook    1259: 6 + 5 * 4 =
                   1260: 4 * 5 + 6 =
1.26    ! crook    1261: @end example
1.21      crook    1262: 
                   1263: If you're just learning maths or your maths is very rusty, you will
                   1264: probably come up with the answer 44 for the first and 26 for the
                   1265: second. If you are a bit of a whizz at maths you will remember the
1.26    ! crook    1266: @var{convention} that multiplication takes precendence over addition, and
1.21      crook    1267: you'd come up with the answer 26 both times. To explain the answer 26
                   1268: to someone who got the answer 44, you'd probably rewrite the first sum
                   1269: like this:
                   1270: 
1.26    ! crook    1271: @example
1.21      crook    1272: 6 + (5 * 4) =
1.26    ! crook    1273: @end example
1.21      crook    1274: 
                   1275: If what you really wanted was to perform the addition before the
                   1276: multiplication, you would have to use parentheses to force it.
                   1277: 
                   1278: If you did the first two sums on a pocket calculator you would probably
                   1279: get the right answers, unless you were very cautious and entered them using
                   1280: these keystroke sequences:
                   1281: 
                   1282: 6 + 5 = * 4 =
                   1283: 4 * 5 = + 6 =
                   1284: 
                   1285: Postfix notation is unambiguous because the order that the operators
                   1286: are applied is always explicit; that also means that parentheses are
1.26    ! crook    1287: never required. The operators are @var{active} (the act of quoting the
        !          1288: operator makes the operation occur) which removes the need for ``=''.
1.21      crook    1289: 
                   1290: The sum 6 + 5 * 4 can be written (in postfix notation) in two
                   1291: equivalent ways:
                   1292: 
1.26    ! crook    1293: @example
1.21      crook    1294: 6 5 4 * +      or:
                   1295: 5 4 * 6 +
1.26    ! crook    1296: @end example
1.21      crook    1297: 
1.23      crook    1298: An important thing that you should notice about this notation is that
                   1299: the @var{order} of the numbers does not change; if you want to subtract
                   1300: 2 from 10 you type @code{10 2 -}.
                   1301: 
1.26    ! crook    1302: The reason that Forth uses postfix notation is very simple to explain: it
1.23      crook    1303: makes the implementation extremely simple, and it follows naturally from
                   1304: using the stack as a mechanism for passing parameters. Another way of
                   1305: thinking about this is to realise that all Forth definitions are
                   1306: @var{active}; they execute as they are encountered by the text
1.26    ! crook    1307: interpreter. The result of this is that the syntax of Forth is trivially
        !          1308: simple.
1.23      crook    1309: 
                   1310: 
                   1311: 
                   1312: @comment ----------------------------------------------
                   1313: @node Your first definition, How does that work?, Stacks and Postfix notation, Introduction
                   1314: @section Your first Forth definition
                   1315: @cindex first definition
1.21      crook    1316: 
1.23      crook    1317: Until now, the examples we've seen have been trivial; we've just been
                   1318: using Forth an a bigger-than-pocket calculator. Also, each calculation
1.26    ! crook    1319: we've shown has been a ``one-off'' -- to repeat it we'd need to type it in
1.23      crook    1320: again@footnote{That's not quite true. If you press the up-arrow key on
                   1321: your keyboard you should be able to scroll back to any earlier command,
                   1322: edit it and re-enter it.} In this section we'll see how to add new
                   1323: word to Forth's vocabulary.
                   1324: 
1.26    ! crook    1325: The easiest way to create a new word is to use a @var{colon
        !          1326: definition}. We'll define a few and try them out before we worry too
1.23      crook    1327: much about how they work. Try typing in these examples; be careful to
                   1328: copy the spaces accurately:
                   1329: 
                   1330: @example
                   1331: : add-two 2 + . ;
                   1332: : greet ." Hello and welcome" ;
                   1333: : demo 5 add-two ;
                   1334: @end example
1.21      crook    1335: 
1.23      crook    1336: @noindent
                   1337: Now try them out:
1.21      crook    1338: 
1.23      crook    1339: @example
                   1340: @kbd{greet<return>} Hello and welcome  ok
                   1341: @kbd{greet greet<return>} Hello and welcomeHello and welcome  ok
                   1342: @kbd{4 add-two<return>} 6  ok
                   1343: @kbd{demo<return>} 7  ok
                   1344: @kbd{9 greet demo add-two<return>} Hello and welcome7 11  ok
                   1345: @end example
1.21      crook    1346: 
1.23      crook    1347: The first new thing that we've introduced here is the pair of words
                   1348: @code{:} and @code{;}. These are used to start and terminate a new
                   1349: definition, respectively. The first word after the @code{:} is the name
                   1350: for the new definition.
1.21      crook    1351: 
1.23      crook    1352: As you can see from the examples, a definition is built up of words that
                   1353: have already been defined; Forth makes no distinction between
                   1354: definitions that existed when you started the system up, and those that
                   1355: you define yourself.
1.21      crook    1356: 
1.23      crook    1357: The examples also introduce the words @code{.} (dot), @code{."} (dot-quote)
                   1358: and @code{dup} (dewp). Dot takes the value from the top of the stack and
                   1359: displays it. It's like @code{.s} except that it only displays the top
                   1360: item of the stack and it is destructive; after it has executed the
                   1361: number is no longer on the top of the stack. There is always one space
                   1362: printed after the number, and no spaces before it. Dot-quote defines a
                   1363: string (a sequence of characters) that will be printed when the word is
                   1364: executed. The string can contain any printable characters except
                   1365: @code{"}. A @code{"} has a special function; it is not itself a Forth
                   1366: word but it acts as a delimiter. The way that it works is described in
                   1367: the next section. Finally, @code{dup} duplicates the value at the top of
                   1368: the stack. Try typing @code{5 dup .s} to see what it does.
1.21      crook    1369: 
1.23      crook    1370: We already know that the text interpreter searches through the
                   1371: dictionary to locate names. If you've followed the examples earlier, you
                   1372: will already have a definition called @code{add-two}. Lets try modifying
                   1373: it by typing in a new definition:
1.21      crook    1374: 
1.23      crook    1375: @example
                   1376: @kbd{: add-two dup . ." + 2 =" 2 + . ;<return>} redefined add-two  ok
                   1377: @end example
1.21      crook    1378: 
1.23      crook    1379: Forth recognised that we were defining a word that already exists, and
                   1380: printed a message to warn us of that fact. Let's try out the new
                   1381: definition:
1.21      crook    1382: 
1.23      crook    1383: @example
                   1384: @kbd{9 add-two<return>} 9 + 2 =11  ok
                   1385: @end example
1.21      crook    1386: 
1.23      crook    1387: @noindent
                   1388: All that we've actually done here, though, is to create a new
                   1389: definition, with a particular name. The fact that there was already a
                   1390: definition with the same name did not make any difference to the way
                   1391: that the new definition was created (except that Forth printed a warning
                   1392: message). The old definition of add-two still exists (try @code{demo}
                   1393: again to see that this is true). Any new definition will use the new
                   1394: definition of @code{add-two}, but old definitions continue to use the
                   1395: version that already existed at the time that they were @code{compiled}.
1.21      crook    1396: 
1.23      crook    1397: Before you go on to the next section, try defining and redefining some
                   1398: words of your own.
1.21      crook    1399: 
                   1400: @comment ----------------------------------------------
                   1401: @node How does that work?, Forth is written in Forth, Your first definition, Introduction
                   1402: @section How does that work?
                   1403: @cindex parsing words
                   1404: 
1.23      crook    1405: Now we're going to take another look at the definition of @code{add-two}
                   1406: from the previous section. From our knowledge of the way that the text
                   1407: interpreter works, we would have expected this result when we tried to
                   1408: define @code{add-two}:
1.21      crook    1409: 
1.23      crook    1410: @example
                   1411: @kbd{: add-two 2 + . " ;<return>}
                   1412:   ^^^^^^^
                   1413: Error: Undefined word
                   1414: @end example
1.21      crook    1415: 
1.23      crook    1416: The reason that this didn't happen is bound up in the way that @code{:}
                   1417: works. The word @code{:} does two special things. The first special
                   1418: thing that it does prevents the text interpreter from ever seeing the
                   1419: characters @code{add-two}. The text interpreter uses a variable called
                   1420: @cindex modifying >IN
                   1421: @code{>IN} (pronounced ''to-in'') to keep track of where it is in the
                   1422: input line. When it encounters the word @code{:} it behaves in exactly
                   1423: the same way as it does for any other word; it looks it up in the name
                   1424: dictionary, finds its xt and executes it. When @code{:} executes, it
                   1425: looks at the input buffer, finds the word @code{add-two} and advances the
                   1426: value of @code{>IN} to point past it. It then does some other stuff
                   1427: associated with creating the new definition (including creating an entry
                   1428: for @code{add-two} in the name dictionary). When the execution of @code{:}
                   1429: completes, control returns to the text interpreter, which is oblivious
                   1430: to the fact that it has been tricked into ignoring part of the input
                   1431: line.
1.21      crook    1432: 
1.23      crook    1433: @cindex parsing words
                   1434: Words like @code{:} -- words that advance the value of @code{>IN} and so
                   1435: prevent the text interpreter from acting on the whole of the input line
                   1436: -- are called @var{parsing words}.
                   1437: 
                   1438: @cindex state - effect on the text interpreter
                   1439: @cindex text interpreter - effect of state
                   1440: The second special thing that @code{:} does is to change the value of a
                   1441: variable called @code{state}, which affects the way that the text
                   1442: interpreter behaves. When Gforth starts up, @code{state} has the value
                   1443: 0, and the text interpreter is said to be in @var{interpret}
                   1444: mode. During a colon definition (started with @code{:}), @code{state} is
                   1445: set to -1 and the text interpreter is said to be in @var{compile}
                   1446: mode. The word @code{;} ends the definition -- one of the things that it
                   1447: does is to change the value of @code{state} back to 0.
                   1448: 
                   1449: When the text interpreter is in @var{interpret} mode, we already know
                   1450: how it behaves; it looks for each character sequence in the dictionary,
                   1451: finds its xt and executes it, or it converts it to a number and pushes
                   1452: it onto the stack, or it fails to do either and generates an error.
                   1453: 
                   1454: When the text interpreter is in @var{compile} mode, its behaviour is
                   1455: slightly different; it still looks for each character sequence in the
                   1456: dictionary and finds its xt, or converts it to a number, or fails to do
                   1457: either and generates an error. However, instead of executing the xt or
                   1458: pushing the number onto the stack it lays down (@var{compiles}) some
                   1459: magic to make that xt or number get executed or pushed at a later time;
                   1460: at the time that @code{add-two} is @var{executed}. Therefore, when you
                   1461: execute @code{add-two} its @var{run-time effect} is exactly the same as
                   1462: if you had typed @code{2 + .} outside of a definition, and pressed
1.26    ! crook    1463: carriage-return.
1.21      crook    1464: 
1.23      crook    1465: In Forth, every word or number can be described in terms of three
                   1466: properties:
1.21      crook    1467: 
                   1468: @itemize @bullet
                   1469: @item
1.23      crook    1470: Its behaviour at @var{compile} time
1.21      crook    1471: @item
1.23      crook    1472: Its behaviour at @var{interpret} time
1.21      crook    1473: @item
1.23      crook    1474: Its behaviour at @var{execution} time.
1.21      crook    1475: @end itemize
                   1476: 
1.23      crook    1477: These behaviours are called the @var{semantics} of the word or
                   1478: number. The value of @var{state} determines whether the text
                   1479: interpreter will use the compile or interpret semantics of a word or
                   1480: number that it encounters.
1.21      crook    1481: 
                   1482: @itemize @bullet
                   1483: @item
1.23      crook    1484: @cindex interpretation semantics
                   1485: When the text interpreter encounters a word or number in @var{interpret}
                   1486: state, it performs the @var{interpretation semantics} of the word or
                   1487: number.
1.21      crook    1488: @item
1.23      crook    1489: @cindex compilation semantics
                   1490: When the text interpreter encounters a word or number in @var{compile}
                   1491: state, it performs the @var{compilation semantics} of the word or
                   1492: number.
1.21      crook    1493: @end itemize
                   1494: 
1.23      crook    1495: The behaviour of numbers is always the same:
1.21      crook    1496: 
                   1497: @itemize @bullet
                   1498: @item
1.23      crook    1499: When the number is @var{compiled}, it is appended to the current
                   1500: definition so that its run-time behaviour is to execute. (In other
                   1501: words, the compilation semantics of a number are to postpone its
                   1502: execution semantics until the run-time of the definition that it is
                   1503: being compiled into.)
                   1504: @item
                   1505: When the number is @var{interpreted}, its behaviour is to execute. (In
                   1506: other words, the interpretation semantics of a number are to perform its
                   1507: execution semantics.)
1.21      crook    1508: @item
1.23      crook    1509: @cindex execution semantics
                   1510: When the number is @var{executed}, its behaviour is to push its value
                   1511: onto the stack. (In other words, the execution semantics of a number are
                   1512: to push its value onto the stack.)
1.21      crook    1513: @end itemize
                   1514: 
1.23      crook    1515: The behaviour of a word is not so regular, but the vast majority behave
                   1516: like this:
1.21      crook    1517: 
                   1518: @itemize @bullet
                   1519: @item
1.23      crook    1520: The @var{compilation semantics} of the word are to append its
                   1521: @var{execution semantics} to the current definition (so that its
                   1522: run-time behaviour is to execute).
1.21      crook    1523: @item
1.23      crook    1524: The @var{interpretation semantics} of the word are to execute.
                   1525: @item
                   1526: The @var{execution semantics} of the word are to do something useful.
1.21      crook    1527: @end itemize
                   1528: 
                   1529: 
1.23      crook    1530: The actual behaviour of any particular word depends upon the way in
                   1531: which it was defined. In all cases, the text interpreter decides what to
                   1532: do with the word; when it searches the name dictionary for a definition,
                   1533: it not only retrieves the xt for the word, it also retrieves a flag
                   1534: called the @var{immediate flag}. If the flag is set, the text
                   1535: interpreter will @var{execute} the word rather than @var{compiling}
                   1536: @cindex immediate words
                   1537: it. In other words, these so-called @var{immediate} words behave like
                   1538: this:
1.21      crook    1539: 
                   1540: @itemize @bullet
                   1541: @item
1.23      crook    1542: The @var{compilation semantics} of the word are to perform its
                   1543: @var{execution semantics} (so that its compile-time behaviour is to
                   1544: execute).
1.21      crook    1545: @item
1.23      crook    1546: The @var{interpretation semantics} of the word are to execute.
                   1547: @item
                   1548: The @var{execution semantics} of the word are to do something useful.
1.21      crook    1549: @end itemize
                   1550: 
1.23      crook    1551: This example shows the difference between an immediate and a
                   1552: non-immediate word:
1.21      crook    1553: 
                   1554: @example
1.23      crook    1555: : show-state state @ . ;
                   1556: : show-state-now show-state ; immediate
                   1557: : word1 show-state ;
                   1558: : word2 show-state-now ;
                   1559: @end example
                   1560: 
                   1561: The word @code{immediate} after the definition of @code{show-state-now}
                   1562: makes that word an immediate word. These definitions introduce a new
                   1563: word: @code{@@} (pronounced ''at''). This word fetches the value of a
                   1564: variable, and leaves it on the stack. Therefore, the behaviour of
                   1565: @code{show-state} is to print a number that represents the current value
                   1566: of @code{state}.
                   1567: 
                   1568: When you execute @code{word1}, it prints the number 0, indicating
                   1569: that the system is in interpret state. When the text interpreter
                   1570: compiled the definition of @code{word1}, it encountered
                   1571: @code{show-state} whose compilation semantics are to append its
                   1572: execution semantics to the current definition. When you execute
                   1573: @code{word1}, it performs the execution semantics of @code{show-state}.
                   1574: At the time that @code{word1} (and therefore @code{show-state}) are
                   1575: executed, the system is in interpret state.
                   1576: 
                   1577: When you pressed <return> after entering the definition of @code{word2},
                   1578: you should have seen the number -1 printed, followed by @code{ ok}. When
                   1579: the text interpreter compiled the definition of @code{word2}, it
                   1580: encountered @code{show-state-now}, an immediate word, whose compilation
                   1581: semantics are therefore to perform its execution semantics. It is
                   1582: executed straight away (even before the text interpreter has moved on
                   1583: to process another group of characters; the @code{;} in this
                   1584: example). The effect of executing it are to display the value of
                   1585: @code{state} @var{at the time that the definition of} @code{word2}
                   1586: @var{is being defined}. Printing -1 demonstrates that the system is in
                   1587: compilation state at this time. If you execute @code{word2} it does
                   1588: nothing at all.
                   1589: 
1.26    ! crook    1590: @cindex @code{."}, how it works
1.23      crook    1591: Before leaving the subject of immediate words, consider the behaviour of
                   1592: @code{."} in the definition of @code{greet}, in the previous
                   1593: section. This word is both a parsing word and an immediate word. Notice
                   1594: that there is a space between @code{."} and the start of the text
                   1595: @code{Hello and welcome}, but that there is no space between the last
                   1596: letter of @code{welcome} and the @code{"} character. The reason for this
                   1597: is that @code{."} is a Forth word; it must have a space after it so that
                   1598: the text interpreter can identify it. The @code{"} is not a Forth word;
                   1599: it is a @var{delimiter}. The examples earlier show that, when the string
                   1600: is displayed, there is neither a space before the @code{H} nor after the
                   1601: @code{e}. Since @code{."} is an immediate word, it executes at the time
1.26    ! crook    1602: that @code{greet} is defined. When it executes, it searches forward in
1.23      crook    1603: the input line looking for the delimiter. When it finds the delimiter,
                   1604: it updates @code{>in} to point past the delimiter. It also compiles some
                   1605: magic code into the definition of @code{greet}; the xt of a run-time
                   1606: routine that prints a text string. It compiles the string @code{Hello
                   1607: and welcome} into memory so that it is available to be printed
                   1608: later. When the text interpreter gains control, the next word it finds
                   1609: in the input stream is @code{;} and so it terminates the definition of
                   1610: @code{greet}.
1.21      crook    1611: 
                   1612: 
1.23      crook    1613: @comment ----------------------------------------------
                   1614: @node Forth is written in Forth, Review - elements of a Forth system, How does that work?, Introduction
                   1615: @section Forth is written in Forth
                   1616: @cindex structure of Forth programs
1.21      crook    1617: 
1.23      crook    1618: When you start up a Forth compiler, a large number of definitions
                   1619: already exist. In Forth, you develop a new application using bottom-up
                   1620: programming techniques to create new definitions that are defined in
                   1621: terms of existing definitions. As you create each definition you can
                   1622: test and debug it interactively.
                   1623: 
                   1624: If you have tried out the examples in this section, you will probably
                   1625: have typed them in by hand; when you leave Gforth, your definitions will
                   1626: be deleted. You can avoid this by using a text editor to enter Forth
                   1627: source code into a file, and then load all of the code from the file
1.26    ! crook    1628: using @code{include} (@xref{Forth source files}). A Forth source
1.23      crook    1629: file is processed by the text interpreter, just as though you had typed
                   1630: it in by hand@footnote{Actually, there are some subtle differences, like
                   1631: the fact that it doesn't print @code{ ok} at the end of each line}. 
                   1632: 
                   1633: Gforth also supports the traditional Forth alternative to using text
                   1634: files for program entry (@xref{Blocks}).
                   1635: 
                   1636: In common with many, if not most, Forth compilers, most of Gforth is
                   1637: actually written in Forth. All of the @code{.fs} files in the
                   1638: installation directory are Forth source files, and you can look at them
                   1639: to see examples of Forth programming.
                   1640: 
                   1641: Gforth maintains a history file that records every line that you
                   1642: type to the text interpreter. This file is preserved between sessions,
                   1643: and is used to provide the command-line recall facility. If you enter
                   1644: long definitions by hand, you can use a text editor to paste them out of
                   1645: the history file into a Forth source file for reuse at a later time.
                   1646: 
                   1647: @cindex history file
1.26    ! crook    1648: @cindex @file{.gforth-history}
        !          1649: @cindex @code{GFORTHHIST} environment variable
        !          1650: @cindex environment variables
1.23      crook    1651: You can find out the name of your history file using @code{history-file
                   1652: type }. On non-Unix systems you can find the location of the file using
1.26    ! crook    1653: @code{history-dir type }@footnote{The environment variable @code{GFORTHHIST}
1.23      crook    1654: determines the location of the file.}
1.21      crook    1655: 
                   1656: 
                   1657: 
1.23      crook    1658: @comment ----------------------------------------------
                   1659: @node Review - elements of a Forth system, Exercises, Forth is written in Forth, Introduction
                   1660: @section Review - elements of a Forth system
                   1661: @cindex elements of a Forth system
1.21      crook    1662: 
1.23      crook    1663: To summarise this chapter:
1.21      crook    1664: 
                   1665: 
1.23      crook    1666: @itemize @bullet
                   1667: @item
                   1668: Forth programs use @var{factoring} to break a problem down into small
                   1669: fragments called @var{words} or @var{definitions}.
                   1670: @item
                   1671: Forth program development is an interactive process.
                   1672: @item
                   1673: The main command loop that accepts input, and controls both
                   1674: interpretation and compilation, is called the @var{text interpreter}
1.26    ! crook    1675: (also known as the @var{outer interpreter}).
1.23      crook    1676: @item
                   1677: Forth has a very simple syntax, consisting of words and numbers
                   1678: separated by spaces or carriage-return characters. Any additional syntax
                   1679: is imposed by @var{parsing words}.
                   1680: @item
                   1681: Forth uses a stack to pass parameters between words. As a result, it
                   1682: uses postfix notation.
                   1683: @item
                   1684: To use a word that has previously been defined, the text interpreter
                   1685: searches for the word in the @var{name dictionary}.
                   1686: @item
                   1687: Words have @var{interpretation semantics}, @var{compilation semantics}
                   1688: and @var{execution semantics}.
                   1689: @item
                   1690: The text interpreter uses the value of @code{state} to select between
                   1691: the use of the @var{interpretation semantics} and the  @var{compilation
                   1692: semantics} of a word that it encounters.
                   1693: @item
                   1694: The relationship between the @var{interpretation semantics}, @var{compilation semantics}
                   1695: and @var{execution semantics} for a word depend upon the way in which
1.26    ! crook    1696: the word was defined (for example, whether it is an @var{immediate} word).
1.23      crook    1697: @item
                   1698: Forth definitions can be implemented in Forth (called @var{high-level
                   1699: definitions}) or in some other way (usually a lower-level language and
                   1700: as a result often called @var{low-level definitions}, @var{code
                   1701: definitions} or @var{primitives}).
                   1702: @item
                   1703: Many Forth systems are implemented mainly in Forth.
                   1704: @item
                   1705: You now know enough to read and understand the rest of this manual and
1.26    ! crook    1706: the ANS Forth document.
1.23      crook    1707: @end itemize
1.21      crook    1708: 
                   1709: 
1.23      crook    1710: @comment TODO - other defining words
                   1711: @comment other parsing words
                   1712: @comment Your first loop
                   1713: @comment syntax and semantics
                   1714: @comment DOES>
                   1715: @comment taste of other elements of Forth
1.21      crook    1716: 
                   1717: 
                   1718: 
                   1719: @comment ----------------------------------------------
1.23      crook    1720: @node Exercises, ,Review - elements of a Forth system, Introduction
                   1721: @section Exercises
1.21      crook    1722: @cindex elements of a Forth system
                   1723: 
1.23      crook    1724: Amazing as it may seem, if you have read (and understood) this far, you
                   1725: know almost all the fundamentals about the inner workings of a Forth
                   1726: system. You certainly know enough to be able to read and understand the
                   1727: rest of this manual, to learn more about the facilities that Gforth
                   1728: provides. Even scarier, you know almost enough to implement your own Forth
                   1729: system. However, that's not a good idea just yet.. better to try writing
                   1730: some programs in Gforth.
                   1731: 
1.26    ! crook    1732: The large number of Forth words available in ANS Forth and
1.23      crook    1733: Gforth make learning Forth somewhat daunting. To make the problem
                   1734: easier, use the index of this manual to learn more about these words:
1.21      crook    1735: 
1.23      crook    1736: ..levels of Forth words.
1.21      crook    1737: 
                   1738: 
                   1739: Ideally, provide a set of programming excercises linked into the stuff
                   1740: done already and into other sections of the manual. Provide solutions to
                   1741: all the exercises in a .fs file in the distribution. Get some
                   1742: inspiration from Starting Forth and Kelly&Spies.
                   1743: 
                   1744: 
1.26    ! crook    1745: @c ******************************************************************
        !          1746: @node Invoking Gforth, Words, Introduction, Top
        !          1747: @chapter Invoking Gforth
        !          1748: @cindex Gforth - invoking
        !          1749: @cindex invoking Gforth
        !          1750: @cindex running Gforth
        !          1751: @cindex command-line options
        !          1752: @cindex options on the command line
        !          1753: @cindex flags on the command line
        !          1754: 
        !          1755: You will usually just say @code{gforth}. In many other cases the default
        !          1756: Gforth image will be invoked like this:
        !          1757: @example
        !          1758: gforth [files] [-e forth-code]
        !          1759: @end example
        !          1760: This interprets the contents of the files and the Forth code in the order they
        !          1761: are given.
1.23      crook    1762: 
1.26    ! crook    1763: In general, the command line looks like this:
1.1       anton    1764: 
1.26    ! crook    1765: @example
        !          1766: gforth [initialization options] [image-specific options]
        !          1767: @end example
1.1       anton    1768: 
1.26    ! crook    1769: The initialization options must come before the rest of the command
        !          1770: line. They are:
1.1       anton    1771: 
1.26    ! crook    1772: @table @code
        !          1773: @cindex -i, command-line option
        !          1774: @cindex --image-file, command-line option
        !          1775: @item --image-file @var{file}
        !          1776: @itemx -i @var{file}
        !          1777: Loads the Forth image @var{file} instead of the default
        !          1778: @file{gforth.fi} (@pxref{Image Files}).
1.1       anton    1779: 
1.26    ! crook    1780: @cindex --path, command-line option
1.1       anton    1781: @cindex -p, command-line option
                   1782: @item --path @var{path}
                   1783: @itemx -p @var{path}
                   1784: Uses @var{path} for searching the image file and Forth source code files
                   1785: instead of the default in the environment variable @code{GFORTHPATH} or
                   1786: the path specified at installation time (e.g.,
                   1787: @file{/usr/local/share/gforth/0.2.0:.}). A path is given as a list of
                   1788: directories, separated by @samp{:} (on Unix) or @samp{;} (on other OSs).
                   1789: 
                   1790: @cindex --dictionary-size, command-line option
                   1791: @cindex -m, command-line option
                   1792: @cindex @var{size} parameters for command-line options
                   1793: @cindex size of the dictionary and the stacks
                   1794: @item --dictionary-size @var{size}
                   1795: @itemx -m @var{size}
                   1796: Allocate @var{size} space for the Forth dictionary space instead of
                   1797: using the default specified in the image (typically 256K). The
1.21      crook    1798: @var{size} specification for this and subsequent options consists of
                   1799: an integer and a unit (e.g.,
1.1       anton    1800: @code{4M}). The unit can be one of @code{b} (bytes), @code{e} (element
1.12      anton    1801: size, in this case Cells), @code{k} (kilobytes), @code{M} (Megabytes),
                   1802: @code{G} (Gigabytes), and @code{T} (Terabytes). If no unit is specified,
                   1803: @code{e} is used.
1.1       anton    1804: 
                   1805: @cindex --data-stack-size, command-line option
                   1806: @cindex -d, command-line option
                   1807: @item --data-stack-size @var{size}
                   1808: @itemx -d @var{size}
                   1809: Allocate @var{size} space for the data stack instead of using the
                   1810: default specified in the image (typically 16K).
                   1811: 
                   1812: @cindex --return-stack-size, command-line option
                   1813: @cindex -r, command-line option
                   1814: @item --return-stack-size @var{size}
                   1815: @itemx -r @var{size}
                   1816: Allocate @var{size} space for the return stack instead of using the
                   1817: default specified in the image (typically 15K).
                   1818: 
                   1819: @cindex --fp-stack-size, command-line option
                   1820: @cindex -f, command-line option
                   1821: @item --fp-stack-size @var{size}
                   1822: @itemx -f @var{size}
                   1823: Allocate @var{size} space for the floating point stack instead of
                   1824: using the default specified in the image (typically 15.5K). In this case
                   1825: the unit specifier @code{e} refers to floating point numbers.
                   1826: 
                   1827: @cindex --locals-stack-size, command-line option
                   1828: @cindex -l, command-line option
                   1829: @item --locals-stack-size @var{size}
                   1830: @itemx -l @var{size}
                   1831: Allocate @var{size} space for the locals stack instead of using the
                   1832: default specified in the image (typically 14.5K).
                   1833: 
                   1834: @cindex -h, command-line option
                   1835: @cindex --help, command-line option
                   1836: @item --help
                   1837: @itemx -h
                   1838: Print a message about the command-line options
                   1839: 
                   1840: @cindex -v, command-line option
                   1841: @cindex --version, command-line option
                   1842: @item --version
                   1843: @itemx -v
                   1844: Print version and exit
                   1845: 
                   1846: @cindex --debug, command-line option
                   1847: @item --debug
                   1848: Print some information useful for debugging on startup.
                   1849: 
                   1850: @cindex --offset-image, command-line option
                   1851: @item --offset-image
                   1852: Start the dictionary at a slightly different position than would be used
                   1853: otherwise (useful for creating data-relocatable images,
                   1854: @pxref{Data-Relocatable Image Files}).
                   1855: 
1.5       anton    1856: @cindex --no-offset-im, command-line option
                   1857: @item --no-offset-im
                   1858: Start the dictionary at the normal position.
                   1859: 
1.1       anton    1860: @cindex --clear-dictionary, command-line option
                   1861: @item --clear-dictionary
                   1862: Initialize all bytes in the dictionary to 0 before loading the image
                   1863: (@pxref{Data-Relocatable Image Files}).
1.5       anton    1864: 
                   1865: @cindex --die-on-signal, command-line-option
                   1866: @item --die-on-signal
                   1867: Normally Gforth handles most signals (e.g., the user interrupt SIGINT,
                   1868: or the segmentation violation SIGSEGV) by translating it into a Forth
                   1869: @code{THROW}. With this option, Gforth exits if it receives such a
                   1870: signal. This option is useful when the engine and/or the image might be
                   1871: severely broken (such that it causes another signal before recovering
                   1872: from the first); this option avoids endless loops in such cases.
1.1       anton    1873: @end table
                   1874: 
                   1875: @cindex loading files at startup
                   1876: @cindex executing code on startup
                   1877: @cindex batch processing with Gforth
                   1878: As explained above, the image-specific command-line arguments for the
                   1879: default image @file{gforth.fi} consist of a sequence of filenames and
                   1880: @code{-e @var{forth-code}} options that are interpreted in the sequence
                   1881: in which they are given. The @code{-e @var{forth-code}} or
1.21      crook    1882: @code{--evaluate @var{forth-code}} option evaluates the Forth
1.1       anton    1883: code. This option takes only one argument; if you want to evaluate more
1.26    ! crook    1884: Forth words, you have to quote them or use @code{-e} several times. To exit
1.1       anton    1885: after processing the command line (instead of entering interactive mode)
                   1886: append @code{-e bye} to the command line.
                   1887: 
                   1888: @cindex versions, invoking other versions of Gforth
                   1889: If you have several versions of Gforth installed, @code{gforth} will
                   1890: invoke the version that was installed last. @code{gforth-@var{version}}
                   1891: invokes a specific version. You may want to use the option
                   1892: @code{--path}, if your environment contains the variable
                   1893: @code{GFORTHPATH}.
                   1894: 
                   1895: Not yet implemented:
                   1896: On startup the system first executes the system initialization file
                   1897: (unless the option @code{--no-init-file} is given; note that the system
                   1898: resulting from using this option may not be ANS Forth conformant). Then
                   1899: the user initialization file @file{.gforth.fs} is executed, unless the
                   1900: option @code{--no-rc} is given; this file is first searched in @file{.},
                   1901: then in @file{~}, then in the normal path (see above).
                   1902: 
1.21      crook    1903: 
                   1904: @cindex Gforth - leaving
                   1905: @cindex leaving Gforth
                   1906: 
                   1907: You can leave Gforth by typing @code{bye} or (if you invoked Gforth with
                   1908: the @code{--die-on-signal} option) Ctrl-C. When you leave Gforth, all of
                   1909: your definitions and data are discarded. @xref{Image Files} for ways
                   1910: of saving the state of the system before leaving Gforth.
                   1911: 
                   1912: doc-bye
                   1913: 
                   1914: 
1.23      crook    1915: @comment TODO add section on environment variables.. find them by
                   1916: @comment grep for "getenv" -- they are:
                   1917: @comment GFORTHHIST
                   1918: @comment POSIXELY_CORRECT
                   1919: @comment TMP TEMP
                   1920: @comment HOME
                   1921: @comment LINES
                   1922: @comment COLUMNS
                   1923: @comment GFORTHPATH
                   1924: @comment FORTHSIZES ?? in INSTALL but cannot find it in the source
                   1925: @comment some are in .c files.
                   1926: 
                   1927: 
1.26    ! crook    1928: @c ******************************************************************
1.24      anton    1929: @node Words, Error messages, Invoking Gforth, Top
1.1       anton    1930: @chapter Forth Words
1.26    ! crook    1931: @cindex words
1.1       anton    1932: 
                   1933: @menu
                   1934: * Notation::                    
1.21      crook    1935: * Comments::
                   1936: * Boolean Flags::
1.1       anton    1937: * Arithmetic::                  
                   1938: * Stack Manipulation::          
1.5       anton    1939: * Memory::                      
1.1       anton    1940: * Control Structures::          
                   1941: * Defining Words::              
1.21      crook    1942: * The Text Interpreter::
1.12      anton    1943: * Tokens for Words::            
1.21      crook    1944: * Word Lists::                   
                   1945: * Environmental Queries::
1.12      anton    1946: * Files::                       
                   1947: * Blocks::                      
                   1948: * Other I/O::                   
                   1949: * Programming Tools::           
                   1950: * Assembler and Code Words::    
                   1951: * Threading Words::             
1.26    ! crook    1952: * Locals::                      
        !          1953: * Structures::                  
        !          1954: * Object-oriented Forth::       
1.21      crook    1955: * Passing Commands to the OS::
                   1956: * Miscellaneous Words::
1.1       anton    1957: @end menu
                   1958: 
1.21      crook    1959: @node Notation, Comments, Words, Words
1.1       anton    1960: @section Notation
                   1961: @cindex notation of glossary entries
                   1962: @cindex format of glossary entries
                   1963: @cindex glossary notation format
                   1964: @cindex word glossary entry format
                   1965: 
                   1966: The Forth words are described in this section in the glossary notation
                   1967: that has become a de-facto standard for Forth texts, i.e.,
                   1968: 
                   1969: @format
                   1970: @var{word}     @var{Stack effect}   @var{wordset}   @var{pronunciation}
                   1971: @end format
                   1972: @var{Description}
                   1973: 
                   1974: @table @var
                   1975: @item word
1.26    ! crook    1976: @cindex case-sensitivity
        !          1977: The name of the word. Gforth is case-insensitive, so you can type the
        !          1978: words in in lower case (However, @pxref{core-idef,
        !          1979: Implementation-defined options, Implementation-defined options}).
1.1       anton    1980: 
                   1981: @item Stack effect
                   1982: @cindex stack effect
                   1983: The stack effect is written in the notation @code{@var{before} --
                   1984: @var{after}}, where @var{before} and @var{after} describe the top of
                   1985: stack entries before and after the execution of the word. The rest of
                   1986: the stack is not touched by the word. The top of stack is rightmost,
                   1987: i.e., a stack sequence is written as it is typed in. Note that Gforth
                   1988: uses a separate floating point stack, but a unified stack
                   1989: notation. Also, return stack effects are not shown in @var{stack
                   1990: effect}, but in @var{Description}. The name of a stack item describes
                   1991: the type and/or the function of the item. See below for a discussion of
                   1992: the types.
                   1993: 
                   1994: All words have two stack effects: A compile-time stack effect and a
                   1995: run-time stack effect. The compile-time stack-effect of most words is
                   1996: @var{ -- }. If the compile-time stack-effect of a word deviates from
                   1997: this standard behaviour, or the word does other unusual things at
                   1998: compile time, both stack effects are shown; otherwise only the run-time
                   1999: stack effect is shown.
                   2000: 
                   2001: @cindex pronounciation of words
                   2002: @item pronunciation
                   2003: How the word is pronounced.
                   2004: 
                   2005: @cindex wordset
                   2006: @item wordset
1.21      crook    2007: The ANS Forth standard is divided into several word sets. A standard
                   2008: system need not support all of them. Therefore, in theory, the fewer
                   2009: word sets your program uses the more portable it will be. However, we
                   2010: suspect that most ANS Forth systems on personal machines will feature
1.26    ! crook    2011: all word sets. Words that are not defined in ANS Forth have
1.21      crook    2012: @code{gforth} or @code{gforth-internal} as word set. @code{gforth}
1.1       anton    2013: describes words that will work in future releases of Gforth;
                   2014: @code{gforth-internal} words are more volatile. Environmental query
                   2015: strings are also displayed like words; you can recognize them by the
1.21      crook    2016: @code{environment} in the word set field.
1.1       anton    2017: 
                   2018: @item Description
                   2019: A description of the behaviour of the word.
                   2020: @end table
                   2021: 
                   2022: @cindex types of stack items
                   2023: @cindex stack item types
                   2024: The type of a stack item is specified by the character(s) the name
                   2025: starts with:
                   2026: 
                   2027: @table @code
                   2028: @item f
                   2029: @cindex @code{f}, stack item type
                   2030: Boolean flags, i.e. @code{false} or @code{true}.
                   2031: @item c
                   2032: @cindex @code{c}, stack item type
                   2033: Char
                   2034: @item w
                   2035: @cindex @code{w}, stack item type
                   2036: Cell, can contain an integer or an address
                   2037: @item n
                   2038: @cindex @code{n}, stack item type
                   2039: signed integer
                   2040: @item u
                   2041: @cindex @code{u}, stack item type
                   2042: unsigned integer
                   2043: @item d
                   2044: @cindex @code{d}, stack item type
                   2045: double sized signed integer
                   2046: @item ud
                   2047: @cindex @code{ud}, stack item type
                   2048: double sized unsigned integer
                   2049: @item r
                   2050: @cindex @code{r}, stack item type
                   2051: Float (on the FP stack)
1.21      crook    2052: @item a-
1.1       anton    2053: @cindex @code{a_}, stack item type
                   2054: Cell-aligned address
1.21      crook    2055: @item c-
1.1       anton    2056: @cindex @code{c_}, stack item type
                   2057: Char-aligned address (note that a Char may have two bytes in Windows NT)
1.21      crook    2058: @item f-
1.1       anton    2059: @cindex @code{f_}, stack item type
                   2060: Float-aligned address
1.21      crook    2061: @item df-
1.1       anton    2062: @cindex @code{df_}, stack item type
                   2063: Address aligned for IEEE double precision float
1.21      crook    2064: @item sf-
1.1       anton    2065: @cindex @code{sf_}, stack item type
                   2066: Address aligned for IEEE single precision float
                   2067: @item xt
                   2068: @cindex @code{xt}, stack item type
                   2069: Execution token, same size as Cell
                   2070: @item wid
                   2071: @cindex @code{wid}, stack item type
1.21      crook    2072: Word list ID, same size as Cell
1.1       anton    2073: @item f83name
                   2074: @cindex @code{f83name}, stack item type
                   2075: Pointer to a name structure
                   2076: @item "
                   2077: @cindex @code{"}, stack item type
1.12      anton    2078: string in the input stream (not on the stack). The terminating character
                   2079: is a blank by default. If it is not a blank, it is shown in @code{<>}
1.1       anton    2080: quotes.
                   2081: @end table
                   2082: 
1.21      crook    2083: @node Comments, Boolean Flags, Notation, Words
                   2084: @section Comments
1.26    ! crook    2085: @cindex comments
1.21      crook    2086: 
1.26    ! crook    2087: Forth supports two styles of comment; the traditional @var{in-line} comment,
        !          2088: @code{(} and its modern cousin, the @var{comment to end of line}; @code{\}.
1.21      crook    2089: 
1.23      crook    2090: doc-(
1.21      crook    2091: doc-\
1.23      crook    2092: doc-\G
1.21      crook    2093: 
                   2094: @node Boolean Flags, Arithmetic, Comments, Words
                   2095: @section Boolean Flags
1.26    ! crook    2096: @cindex Boolean flags
1.21      crook    2097: 
                   2098: A Boolean flag is cell-sized. A cell with all bits clear represents the
                   2099: flag @code{false} and a flag with all bits set represents the flag
1.26    ! crook    2100: @code{true}. Words that check a flag (for example, @code{IF}) will treat
1.21      crook    2101: a cell that has @var{any} bit set as @code{true}.
                   2102: 
                   2103: doc-true
                   2104: doc-false
                   2105: 
                   2106: 
                   2107: @node Arithmetic, Stack Manipulation, Boolean Flags, Words
1.1       anton    2108: @section Arithmetic
                   2109: @cindex arithmetic words
                   2110: 
                   2111: @cindex division with potentially negative operands
                   2112: Forth arithmetic is not checked, i.e., you will not hear about integer
                   2113: overflow on addition or multiplication, you may hear about division by
                   2114: zero if you are lucky. The operator is written after the operands, but
                   2115: the operands are still in the original order. I.e., the infix @code{2-1}
                   2116: corresponds to @code{2 1 -}. Forth offers a variety of division
                   2117: operators. If you perform division with potentially negative operands,
                   2118: you do not want to use @code{/} or @code{/mod} with its undefined
                   2119: behaviour, but rather @code{fm/mod} or @code{sm/mod} (probably the
                   2120: former, @pxref{Mixed precision}).
1.26    ! crook    2121: @comment TODO discuss the different division forms and the std approach
1.1       anton    2122: 
                   2123: @menu
                   2124: * Single precision::            
                   2125: * Bitwise operations::          
1.21      crook    2126: * Double precision::            Double-cell integer arithmetic
                   2127: * Numeric comparison::
1.1       anton    2128: * Mixed precision::             operations with single and double-cell integers
                   2129: * Floating Point::              
                   2130: @end menu
                   2131: 
                   2132: @node Single precision, Bitwise operations, Arithmetic, Arithmetic
                   2133: @subsection Single precision
                   2134: @cindex single precision arithmetic words
                   2135: 
1.21      crook    2136: By default, numbers in Forth are single-precision integers that are 1
1.26    ! crook    2137: cell in size. They can be signed or unsigned, depending upon how you
1.21      crook    2138: treat them. @xref{Number Conversion} for the rules used by the text
                   2139: interpreter for recognising single-precision integers.
                   2140: 
1.1       anton    2141: doc-+
1.21      crook    2142: doc-1+
1.1       anton    2143: doc--
1.21      crook    2144: doc-1-
1.1       anton    2145: doc-*
                   2146: doc-/
                   2147: doc-mod
                   2148: doc-/mod
                   2149: doc-negate
                   2150: doc-abs
                   2151: doc-min
                   2152: doc-max
1.21      crook    2153: doc-d>s
1.1       anton    2154: 
1.21      crook    2155: @node Bitwise operations, Double precision, Single precision, Arithmetic
1.1       anton    2156: @subsection Bitwise operations
                   2157: @cindex bitwise operation words
                   2158: 
                   2159: doc-and
                   2160: doc-or
                   2161: doc-xor
                   2162: doc-invert
1.21      crook    2163: doc-lshift
                   2164: doc-rshift
1.1       anton    2165: doc-2*
1.21      crook    2166: doc-d2*
1.1       anton    2167: doc-2/
1.21      crook    2168: doc-d2/
                   2169: 
                   2170: @node Double precision, Numeric comparison, Bitwise operations, Arithmetic
                   2171: @subsection Double precision
                   2172: @cindex double precision arithmetic words
                   2173: 
                   2174: @xref{Number Conversion} for the rules used by the text interpreter for
                   2175: recognising double-precision integers.
                   2176: 
                   2177: A double precision number is represented by a cell pair, with the most
1.26    ! crook    2178: significant digit at the TOS. It is trivial to convert an unsigned
        !          2179: single to an (unsigned) double; simply push a @code{0} onto the
        !          2180: TOS. Since numbers are represented by Gforth using 2's complement
        !          2181: arithmetic, converting a signed single to a (signed) double requires
        !          2182: sign-extension across the most significant digit. This can be achieved
        !          2183: using @code{s>d}. The moral of the story is that you cannot convert a
        !          2184: number without knowing whether it represents an unsigned or a
        !          2185: signed number.
1.21      crook    2186: 
                   2187: doc-s>d
                   2188: doc-d+
                   2189: doc-d-
                   2190: doc-dnegate
                   2191: doc-dabs
                   2192: doc-dmin
                   2193: doc-dmax
                   2194: 
                   2195: @node Numeric comparison, Mixed precision, Double precision, Arithmetic
                   2196: @subsection Numeric comparison
                   2197: @cindex numeric comparison words
                   2198: 
                   2199: doc-0<
1.23      crook    2200: doc-0<=
1.21      crook    2201: doc-0<>
                   2202: doc-0=
1.23      crook    2203: doc-0>
                   2204: doc-0>=
1.21      crook    2205: doc-<
1.23      crook    2206: doc-<=
1.21      crook    2207: doc-<>
                   2208: doc-=
                   2209: doc->
1.23      crook    2210: doc->=
                   2211: 
1.21      crook    2212: doc-d0<
1.23      crook    2213: doc-d0<=
                   2214: doc-d0<>
1.21      crook    2215: doc-d0=
1.23      crook    2216: doc-d0>
                   2217: doc-d0>=
1.21      crook    2218: doc-d<
1.23      crook    2219: doc-d<=
                   2220: doc-d<>
1.21      crook    2221: doc-d=
1.23      crook    2222: doc-d>
                   2223: doc-d>=
                   2224: 
1.21      crook    2225: doc-u<
                   2226: doc-du<
                   2227: doc-u>
1.23      crook    2228: doc-u<=
                   2229: @comment why u<> and u= .. they are the same as <> and =
                   2230: doc-u<>
                   2231: doc-u=
                   2232: doc-u>=
1.21      crook    2233: doc-within
1.1       anton    2234: 
1.21      crook    2235: @node Mixed precision, Floating Point, Numeric comparison, Arithmetic
1.1       anton    2236: @subsection Mixed precision
                   2237: @cindex mixed precision arithmetic words
                   2238: 
                   2239: doc-m+
                   2240: doc-*/
                   2241: doc-*/mod
                   2242: doc-m*
                   2243: doc-um*
                   2244: doc-m*/
                   2245: doc-um/mod
                   2246: doc-fm/mod
                   2247: doc-sm/rem
                   2248: 
1.21      crook    2249: @node Floating Point,  , Mixed precision, Arithmetic
1.1       anton    2250: @subsection Floating Point
                   2251: @cindex floating point arithmetic words
                   2252: 
1.21      crook    2253: @xref{Number Conversion} for the rules used by the text interpreter for
                   2254: recognising floating-point numbers.
1.1       anton    2255: 
                   2256: @cindex angles in trigonometric operations
                   2257: @cindex trigonometric operations
                   2258: Angles in floating point operations are given in radians (a full circle
1.26    ! crook    2259: has 2 pi radians). Gforth has a separate floating point
        !          2260: stack, but the documentation uses the unified notation.
1.1       anton    2261: 
                   2262: @cindex floating-point arithmetic, pitfalls
                   2263: Floating point numbers have a number of unpleasant surprises for the
                   2264: unwary (e.g., floating point addition is not associative) and even a few
                   2265: for the wary. You should not use them unless you know what you are doing
                   2266: or you don't care that the results you get are totally bogus. If you
                   2267: want to learn about the problems of floating point numbers (and how to
                   2268: avoid them), you might start with @cite{David Goldberg, What Every
                   2269: Computer Scientist Should Know About Floating-Point Arithmetic, ACM
1.17      anton    2270: Computing Surveys 23(1):5@minus{}48, March 1991}
                   2271: (@url{http://www.validgh.com/goldberg/paper.ps}).
1.1       anton    2272: 
1.21      crook    2273: doc-d>f
                   2274: doc-f>d
1.1       anton    2275: doc-f+
                   2276: doc-f-
                   2277: doc-f*
                   2278: doc-f/
                   2279: doc-fnegate
                   2280: doc-fabs
                   2281: doc-fmax
                   2282: doc-fmin
                   2283: doc-floor
                   2284: doc-fround
                   2285: doc-f**
                   2286: doc-fsqrt
                   2287: doc-fexp
                   2288: doc-fexpm1
                   2289: doc-fln
                   2290: doc-flnp1
                   2291: doc-flog
                   2292: doc-falog
                   2293: doc-fsin
                   2294: doc-fcos
                   2295: doc-fsincos
                   2296: doc-ftan
                   2297: doc-fasin
                   2298: doc-facos
                   2299: doc-fatan
                   2300: doc-fatan2
                   2301: doc-fsinh
                   2302: doc-fcosh
                   2303: doc-ftanh
                   2304: doc-fasinh
                   2305: doc-facosh
                   2306: doc-fatanh
1.21      crook    2307: doc-pi
                   2308: doc-f0<
                   2309: doc-f0=
                   2310: doc-f<
                   2311: doc-f<=
                   2312: doc-f<>
                   2313: doc-f=
                   2314: doc-f>
                   2315: doc-f>=
                   2316: doc-f2*
                   2317: doc-f2/
                   2318: doc-1/f
                   2319: doc-f~
                   2320: doc-precision
                   2321: doc-set-precision
1.1       anton    2322: 
                   2323: @node Stack Manipulation, Memory, Arithmetic, Words
                   2324: @section Stack Manipulation
                   2325: @cindex stack manipulation words
                   2326: 
                   2327: @cindex floating-point stack in the standard
1.21      crook    2328: Gforth maintains a number of separate stacks:
                   2329: 
                   2330: @itemize @bullet
                   2331: @item
                   2332: A data stack (aka parameter stack) -- for characters, cells,
                   2333: addresses, and double cells.
                   2334: 
                   2335: @item
                   2336: A floating point stack -- for floating point numbers.
                   2337: 
                   2338: @item
                   2339: A return stack -- for storing the return addresses of colon
                   2340: definitions and other data.
                   2341: 
                   2342: @item
                   2343: A locals stack for storing local variables.
                   2344: @end itemize
                   2345: 
                   2346: Whilst every sane Forth has a separate floating-point stack, it is not
                   2347: strictly required; an ANS Forth system could theoretically keep
                   2348: floating-point numbers on the data stack. As an additional difficulty,
                   2349: you don't know how many cells a floating-point number takes. It is
                   2350: reportedly possible to write words in a way that they work also for a
                   2351: unified stack model, but we do not recommend trying it. Instead, just
                   2352: say that your program has an environmental dependency on a separate
                   2353: floating-point stack.
                   2354: 
                   2355: doc-floating-stack
1.1       anton    2356: 
                   2357: @cindex return stack and locals
                   2358: @cindex locals and return stack
1.21      crook    2359: A Forth system is allowed to keep local variables on the
1.1       anton    2360: return stack. This is reasonable, as local variables usually eliminate
                   2361: the need to use the return stack explicitly. So, if you want to produce
1.21      crook    2362: a standard compliant program and you are using local variables in a
                   2363: word, forget about return stack manipulations in that word (refer to the
1.1       anton    2364: standard document for the exact rules).
                   2365: 
                   2366: @menu
                   2367: * Data stack::                  
                   2368: * Floating point stack::        
                   2369: * Return stack::                
                   2370: * Locals stack::                
                   2371: * Stack pointer manipulation::  
                   2372: @end menu
                   2373: 
                   2374: @node Data stack, Floating point stack, Stack Manipulation, Stack Manipulation
                   2375: @subsection Data stack
                   2376: @cindex data stack manipulation words
                   2377: @cindex stack manipulations words, data stack
                   2378: 
                   2379: doc-drop
                   2380: doc-nip
                   2381: doc-dup
                   2382: doc-over
                   2383: doc-tuck
                   2384: doc-swap
1.21      crook    2385: doc-pick
1.1       anton    2386: doc-rot
                   2387: doc--rot
                   2388: doc-?dup
                   2389: doc-roll
                   2390: doc-2drop
                   2391: doc-2nip
                   2392: doc-2dup
                   2393: doc-2over
                   2394: doc-2tuck
                   2395: doc-2swap
                   2396: doc-2rot
                   2397: 
                   2398: @node Floating point stack, Return stack, Data stack, Stack Manipulation
                   2399: @subsection Floating point stack
                   2400: @cindex floating-point stack manipulation words
                   2401: @cindex stack manipulation words, floating-point stack
                   2402: 
                   2403: doc-fdrop
                   2404: doc-fnip
                   2405: doc-fdup
                   2406: doc-fover
                   2407: doc-ftuck
                   2408: doc-fswap
1.21      crook    2409: doc-fpick
1.1       anton    2410: doc-frot
                   2411: 
                   2412: @node Return stack, Locals stack, Floating point stack, Stack Manipulation
                   2413: @subsection Return stack
                   2414: @cindex return stack manipulation words
                   2415: @cindex stack manipulation words, return stack
                   2416: 
                   2417: doc->r
                   2418: doc-r>
                   2419: doc-r@
                   2420: doc-rdrop
                   2421: doc-2>r
                   2422: doc-2r>
                   2423: doc-2r@
                   2424: doc-2rdrop
                   2425: 
                   2426: @node Locals stack, Stack pointer manipulation, Return stack, Stack Manipulation
                   2427: @subsection Locals stack
                   2428: 
1.26    ! crook    2429: @comment TODO
1.21      crook    2430: 
1.1       anton    2431: @node Stack pointer manipulation,  , Locals stack, Stack Manipulation
                   2432: @subsection Stack pointer manipulation
                   2433: @cindex stack pointer manipulation words
                   2434: 
1.21      crook    2435: doc-sp0
                   2436: doc-s0
1.1       anton    2437: doc-sp@
                   2438: doc-sp!
1.21      crook    2439: doc-fp0
1.1       anton    2440: doc-fp@
                   2441: doc-fp!
1.21      crook    2442: doc-rp0
                   2443: doc-r0
1.1       anton    2444: doc-rp@
                   2445: doc-rp!
1.21      crook    2446: doc-lp0
                   2447: doc-l0
1.1       anton    2448: doc-lp@
                   2449: doc-lp!
                   2450: 
                   2451: @node Memory, Control Structures, Stack Manipulation, Words
                   2452: @section Memory
1.26    ! crook    2453: @cindex memory words
1.1       anton    2454: 
                   2455: @menu
                   2456: * Memory Access::      
                   2457: * Address arithmetic::          
                   2458: * Memory Blocks::         
                   2459: @end menu
                   2460: 
                   2461: @node Memory Access, Address arithmetic, Memory, Memory
                   2462: @subsection Memory Access
                   2463: @cindex memory access words
                   2464: 
                   2465: doc-@
                   2466: doc-!
                   2467: doc-+!
                   2468: doc-c@
                   2469: doc-c!
                   2470: doc-2@
                   2471: doc-2!
                   2472: doc-f@
                   2473: doc-f!
                   2474: doc-sf@
                   2475: doc-sf!
                   2476: doc-df@
                   2477: doc-df!
                   2478: 
                   2479: @node Address arithmetic, Memory Blocks, Memory Access, Memory
                   2480: @subsection Address arithmetic
                   2481: @cindex address arithmetic words
                   2482: 
                   2483: ANS Forth does not specify the sizes of the data types. Instead, it
                   2484: offers a number of words for computing sizes and doing address
                   2485: arithmetic. Basically, address arithmetic is performed in terms of
                   2486: address units (aus); on most systems the address unit is one byte. Note
                   2487: that a character may have more than one au, so @code{chars} is no noop
                   2488: (on systems where it is a noop, it compiles to nothing).
                   2489: 
                   2490: @cindex alignment of addresses for types
                   2491: ANS Forth also defines words for aligning addresses for specific
                   2492: types. Many computers require that accesses to specific data types
                   2493: must only occur at specific addresses; e.g., that cells may only be
                   2494: accessed at addresses divisible by 4. Even if a machine allows unaligned
                   2495: accesses, it can usually perform aligned accesses faster. 
                   2496: 
                   2497: For the performance-conscious: alignment operations are usually only
                   2498: necessary during the definition of a data structure, not during the
                   2499: (more frequent) accesses to it.
                   2500: 
                   2501: ANS Forth defines no words for character-aligning addresses. This is not
                   2502: an oversight, but reflects the fact that addresses that are not
                   2503: char-aligned have no use in the standard and therefore will not be
                   2504: created.
                   2505: 
                   2506: @cindex @code{CREATE} and alignment
1.26    ! crook    2507: AND Forth guarantees that addresses returned by @code{CREATE}d words
1.1       anton    2508: are cell-aligned; in addition, Gforth guarantees that these addresses
                   2509: are aligned for all purposes.
                   2510: 
1.26    ! crook    2511: Note that the ANS Forth word @code{char} has nothing to do with address
        !          2512: arithmetic.
1.1       anton    2513: 
                   2514: doc-chars
                   2515: doc-char+
                   2516: doc-cells
                   2517: doc-cell+
                   2518: doc-cell
                   2519: doc-align
                   2520: doc-aligned
                   2521: doc-floats
                   2522: doc-float+
                   2523: doc-float
                   2524: doc-falign
                   2525: doc-faligned
                   2526: doc-sfloats
                   2527: doc-sfloat+
                   2528: doc-sfalign
                   2529: doc-sfaligned
                   2530: doc-dfloats
                   2531: doc-dfloat+
                   2532: doc-dfalign
                   2533: doc-dfaligned
                   2534: doc-maxalign
                   2535: doc-maxaligned
                   2536: doc-cfalign
                   2537: doc-cfaligned
                   2538: doc-address-unit-bits
                   2539: 
                   2540: @node Memory Blocks,  , Address arithmetic, Memory
                   2541: @subsection Memory Blocks
                   2542: @cindex memory block words
                   2543: 
1.21      crook    2544: Some of these words work on address units (increments of @code{CELL}),
                   2545: and expect a @code{CELL}-aligned address. Others work on character units
                   2546: (increments of @code{CHAR}), and expect a @code{CHAR}-aligned
                   2547: address. Choose the correct operation depending upon your data type. If
                   2548: you are moving a block of memory (for example, a region reserved by
                   2549: @code{allot}) it is safe to use @code{move}, and it should be faster
                   2550: than using @code{cmove}. If you are moving (for example) a string
                   2551: compiled using @code{S"}, it is not portable to use @code{move}; the
                   2552: alignment of the string in memory could change, and the relationship
                   2553: between @code{CELL} and @code{CHAR} could change.
                   2554: 
                   2555: When copying characters between overlapping memory regions, choose
                   2556: carefully between @code{cmove} and @code{cmove>}.
                   2557: 
                   2558: You can only use any of these words @var{portably} to access data space.
                   2559: 
                   2560: @comment - think the naming of the arguments is wrong for move
1.1       anton    2561: doc-move
                   2562: doc-erase
                   2563: 
1.21      crook    2564: @comment - think the naming of the arguments is wrong for cmove
1.1       anton    2565: doc-cmove
1.21      crook    2566: @comment - think the naming of the arguments is wrong for cmove>
1.1       anton    2567: doc-cmove>
                   2568: doc-fill
1.21      crook    2569: @comment - think the naming of the arguments is wrong for blank
1.1       anton    2570: doc-blank
1.21      crook    2571: doc-compare
                   2572: doc-search
1.1       anton    2573: 
1.26    ! crook    2574: @node Control Structures, Defining Words, Memory, Words
1.1       anton    2575: @section Control Structures
                   2576: @cindex control structures
                   2577: 
                   2578: Control structures in Forth cannot be used in interpret state, only in
                   2579: compile state@footnote{More precisely, they have no interpretation
                   2580: semantics (@pxref{Interpretation and Compilation Semantics})}, i.e., in
                   2581: a colon definition. We do not like this limitation, but have not seen a
                   2582: satisfying way around it yet, although many schemes have been proposed.
                   2583: 
                   2584: @menu
                   2585: * Selection::                   
                   2586: * Simple Loops::                
                   2587: * Counted Loops::               
                   2588: * Arbitrary control structures::  
                   2589: * Calls and returns::           
                   2590: * Exception Handling::          
                   2591: @end menu
                   2592: 
                   2593: @node Selection, Simple Loops, Control Structures, Control Structures
                   2594: @subsection Selection
                   2595: @cindex selection control structures
                   2596: @cindex control structures for selection
                   2597: 
                   2598: @cindex @code{IF} control structure
                   2599: @example
                   2600: @var{flag}
                   2601: IF
                   2602:   @var{code}
                   2603: ENDIF
                   2604: @end example
1.21      crook    2605: @noindent
1.1       anton    2606: or
                   2607: @example
                   2608: @var{flag}
                   2609: IF
                   2610:   @var{code1}
                   2611: ELSE
                   2612:   @var{code2}
                   2613: ENDIF
                   2614: @end example
                   2615: 
                   2616: You can use @code{THEN} instead of @code{ENDIF}. Indeed, @code{THEN} is
                   2617: standard, and @code{ENDIF} is not, although it is quite popular. We
                   2618: recommend using @code{ENDIF}, because it is less confusing for people
                   2619: who also know other languages (and is not prone to reinforcing negative
                   2620: prejudices against Forth in these people). Adding @code{ENDIF} to a
                   2621: system that only supplies @code{THEN} is simple:
                   2622: @example
1.21      crook    2623: : ENDIF   POSTPONE THEN ; immediate
1.1       anton    2624: @end example
                   2625: 
                   2626: [According to @cite{Webster's New Encyclopedic Dictionary}, @dfn{then
                   2627: (adv.)}  has the following meanings:
                   2628: @quotation
                   2629: ... 2b: following next after in order ... 3d: as a necessary consequence
                   2630: (if you were there, then you saw them).
                   2631: @end quotation
                   2632: Forth's @code{THEN} has the meaning 2b, whereas @code{THEN} in Pascal
                   2633: and many other programming languages has the meaning 3d.]
                   2634: 
1.21      crook    2635: Gforth also provides the words @code{?DUP-IF} and @code{?DUP-0=-IF}, so
1.1       anton    2636: you can avoid using @code{?dup}. Using these alternatives is also more
1.26    ! crook    2637: efficient than using @code{?dup}. Definitions in ANS Forth
1.1       anton    2638: for @code{ENDIF}, @code{?DUP-IF} and @code{?DUP-0=-IF} are provided in
                   2639: @file{compat/control.fs}.
                   2640: 
                   2641: @cindex @code{CASE} control structure
                   2642: @example
                   2643: @var{n}
                   2644: CASE
                   2645:   @var{n1} OF @var{code1} ENDOF
                   2646:   @var{n2} OF @var{code2} ENDOF
                   2647:   @dots{}
                   2648: ENDCASE
                   2649: @end example
                   2650: 
                   2651: Executes the first @var{codei}, where the @var{ni} is equal to
                   2652: @var{n}. A default case can be added by simply writing the code after
                   2653: the last @code{ENDOF}. It may use @var{n}, which is on top of the stack,
                   2654: but must not consume it.
                   2655: 
                   2656: @node Simple Loops, Counted Loops, Selection, Control Structures
                   2657: @subsection Simple Loops
                   2658: @cindex simple loops
                   2659: @cindex loops without count 
                   2660: 
                   2661: @cindex @code{WHILE} loop
                   2662: @example
                   2663: BEGIN
                   2664:   @var{code1}
                   2665:   @var{flag}
                   2666: WHILE
                   2667:   @var{code2}
                   2668: REPEAT
                   2669: @end example
                   2670: 
                   2671: @var{code1} is executed and @var{flag} is computed. If it is true,
                   2672: @var{code2} is executed and the loop is restarted; If @var{flag} is
                   2673: false, execution continues after the @code{REPEAT}.
                   2674: 
                   2675: @cindex @code{UNTIL} loop
                   2676: @example
                   2677: BEGIN
                   2678:   @var{code}
                   2679:   @var{flag}
                   2680: UNTIL
                   2681: @end example
                   2682: 
                   2683: @var{code} is executed. The loop is restarted if @code{flag} is false.
                   2684: 
                   2685: @cindex endless loop
                   2686: @cindex loops, endless
                   2687: @example
                   2688: BEGIN
                   2689:   @var{code}
                   2690: AGAIN
                   2691: @end example
                   2692: 
                   2693: This is an endless loop.
                   2694: 
                   2695: @node Counted Loops, Arbitrary control structures, Simple Loops, Control Structures
                   2696: @subsection Counted Loops
                   2697: @cindex counted loops
                   2698: @cindex loops, counted
                   2699: @cindex @code{DO} loops
                   2700: 
                   2701: The basic counted loop is:
                   2702: @example
                   2703: @var{limit} @var{start}
                   2704: ?DO
                   2705:   @var{body}
                   2706: LOOP
                   2707: @end example
                   2708: 
                   2709: This performs one iteration for every integer, starting from @var{start}
1.21      crook    2710: and up to, but excluding @var{limit}. The counter, or @var{index}, can be
                   2711: accessed with @code{i}. For example, the loop:
1.1       anton    2712: @example
                   2713: 10 0 ?DO
                   2714:   i .
                   2715: LOOP
                   2716: @end example
1.21      crook    2717: @noindent
                   2718: prints @code{0 1 2 3 4 5 6 7 8 9}
                   2719: 
1.1       anton    2720: The index of the innermost loop can be accessed with @code{i}, the index
                   2721: of the next loop with @code{j}, and the index of the third loop with
                   2722: @code{k}.
                   2723: 
                   2724: doc-i
                   2725: doc-j
                   2726: doc-k
                   2727: 
                   2728: The loop control data are kept on the return stack, so there are some
1.21      crook    2729: restrictions on mixing return stack accesses and counted loop words. In
                   2730: particuler, if you put values on the return stack outside the loop, you
                   2731: cannot read them inside the loop@footnote{well, not in a way that is
                   2732: portable.}. If you put values on the return stack within a loop, you
                   2733: have to remove them before the end of the loop and before accessing the
                   2734: index of the loop.
1.1       anton    2735: 
                   2736: There are several variations on the counted loop:
                   2737: 
1.21      crook    2738: @itemize @bullet
                   2739: @item
                   2740: @code{LEAVE} leaves the innermost counted loop immediately; execution
                   2741: continues after the associated @code{LOOP} or @code{NEXT}. For example:
                   2742: 
                   2743: @example
                   2744: 10 0 ?DO  i DUP . 3 = IF LEAVE THEN LOOP
                   2745: @end example
                   2746: prints @code{0 1 2 3}
                   2747: 
1.1       anton    2748: 
1.21      crook    2749: @item
                   2750: @code{UNLOOP} prepares for an abnormal loop exit, e.g., via
                   2751: @code{EXIT}. @code{UNLOOP} removes the loop control parameters from the
                   2752: return stack so @code{EXIT} can get to its return address. For example:
                   2753: 
                   2754: @example
                   2755: : demo 10 0 ?DO i DUP . 3 = IF UNLOOP EXIT THEN LOOP ." Done" ;
                   2756: @end example
                   2757: prints @code{0 1 2 3}
                   2758: 
                   2759: 
                   2760: @item
1.1       anton    2761: If @var{start} is greater than @var{limit}, a @code{?DO} loop is entered
                   2762: (and @code{LOOP} iterates until they become equal by wrap-around
                   2763: arithmetic). This behaviour is usually not what you want. Therefore,
                   2764: Gforth offers @code{+DO} and @code{U+DO} (as replacements for
                   2765: @code{?DO}), which do not enter the loop if @var{start} is greater than
                   2766: @var{limit}; @code{+DO} is for signed loop parameters, @code{U+DO} for
                   2767: unsigned loop parameters.
                   2768: 
1.21      crook    2769: @item
                   2770: @code{?DO} can be replaced by @code{DO}. @code{DO} always enters
                   2771: the loop, independent of the loop parameters. Do not use @code{DO}, even
                   2772: if you know that the loop is entered in any case. Such knowledge tends
                   2773: to become invalid during maintenance of a program, and then the
                   2774: @code{DO} will make trouble.
                   2775: 
                   2776: @item
1.1       anton    2777: @code{LOOP} can be replaced with @code{@var{n} +LOOP}; this updates the
                   2778: index by @var{n} instead of by 1. The loop is terminated when the border
                   2779: between @var{limit-1} and @var{limit} is crossed. E.g.:
                   2780: 
1.21      crook    2781: @example
                   2782: 4 0 +DO  i .  2 +LOOP
                   2783: @end example
                   2784: @noindent
                   2785: prints @code{0 2}
                   2786: 
                   2787: @example
                   2788: 4 1 +DO  i .  2 +LOOP
                   2789: @end example
                   2790: @noindent
                   2791: prints @code{1 3}
1.1       anton    2792: 
                   2793: 
                   2794: @cindex negative increment for counted loops
                   2795: @cindex counted loops with negative increment
                   2796: The behaviour of @code{@var{n} +LOOP} is peculiar when @var{n} is negative:
                   2797: 
1.21      crook    2798: @example
                   2799: -1 0 ?DO  i .  -1 +LOOP
                   2800: @end example
                   2801: @noindent
                   2802: prints @code{0 -1}
1.1       anton    2803: 
1.21      crook    2804: @example
                   2805: 0 0 ?DO  i .  -1 +LOOP
                   2806: @end example
                   2807: prints nothing.
1.1       anton    2808: 
                   2809: Therefore we recommend avoiding @code{@var{n} +LOOP} with negative
                   2810: @var{n}. One alternative is @code{@var{u} -LOOP}, which reduces the
                   2811: index by @var{u} each iteration. The loop is terminated when the border
                   2812: between @var{limit+1} and @var{limit} is crossed. Gforth also provides
                   2813: @code{-DO} and @code{U-DO} for down-counting loops. E.g.:
                   2814: 
1.21      crook    2815: @example
                   2816: -2 0 -DO  i .  1 -LOOP
                   2817: @end example
                   2818: @noindent
                   2819: prints @code{0 -1}
1.1       anton    2820: 
1.21      crook    2821: @example
                   2822: -1 0 -DO  i .  1 -LOOP
                   2823: @end example
                   2824: @noindent
                   2825: prints @code{0}
                   2826: 
                   2827: @example
                   2828: 0 0 -DO  i .  1 -LOOP
                   2829: @end example
                   2830: @noindent
                   2831: prints nothing.
1.1       anton    2832: 
1.21      crook    2833: @end itemize
1.1       anton    2834: 
                   2835: Unfortunately, @code{+DO}, @code{U+DO}, @code{-DO}, @code{U-DO} and
1.26    ! crook    2836: @code{-LOOP} are not defined in ANS Forth. However, an implementation
        !          2837: for these words that uses only standard words is provided in
        !          2838: @file{compat/loops.fs}.
1.1       anton    2839: 
                   2840: 
                   2841: @cindex @code{FOR} loops
1.26    ! crook    2842: Another counted loop is:
1.1       anton    2843: @example
                   2844: @var{n}
                   2845: FOR
                   2846:   @var{body}
                   2847: NEXT
                   2848: @end example
                   2849: This is the preferred loop of native code compiler writers who are too
1.26    ! crook    2850: lazy to optimize @code{?DO} loops properly. This loop structure is not
        !          2851: defined in ANS Forth. In Gforth, this loop iterates @var{n+1} times;
        !          2852: @code{i} produces values starting with @var{n} and ending with 0. Other
        !          2853: Forth systems may behave differently, even if they support @code{FOR}
        !          2854: loops. To avoid problems, don't use @code{FOR} loops.
1.1       anton    2855: 
                   2856: @node Arbitrary control structures, Calls and returns, Counted Loops, Control Structures
                   2857: @subsection Arbitrary control structures
                   2858: @cindex control structures, user-defined
                   2859: 
                   2860: @cindex control-flow stack
                   2861: ANS Forth permits and supports using control structures in a non-nested
                   2862: way. Information about incomplete control structures is stored on the
                   2863: control-flow stack. This stack may be implemented on the Forth data
                   2864: stack, and this is what we have done in Gforth.
                   2865: 
                   2866: @cindex @code{orig}, control-flow stack item
                   2867: @cindex @code{dest}, control-flow stack item
                   2868: An @i{orig} entry represents an unresolved forward branch, a @i{dest}
                   2869: entry represents a backward branch target. A few words are the basis for
                   2870: building any control structure possible (except control structures that
                   2871: need storage, like calls, coroutines, and backtracking).
                   2872: 
                   2873: doc-if
                   2874: doc-ahead
                   2875: doc-then
                   2876: doc-begin
                   2877: doc-until
                   2878: doc-again
                   2879: doc-cs-pick
                   2880: doc-cs-roll
                   2881: 
1.21      crook    2882: The Standard words @code{CS-PICK} and @code{CS-ROLL} allow you to
                   2883: manipulate the control-flow stack in a portable way. Without them, you
                   2884: would need to know how many stack items are occupied by a control-flow
                   2885: entry (many systems use one cell. In Gforth they currently take three,
                   2886: but this may change in the future).
                   2887: 
1.1       anton    2888: Some standard control structure words are built from these words:
                   2889: 
                   2890: doc-else
                   2891: doc-while
                   2892: doc-repeat
                   2893: 
                   2894: Gforth adds some more control-structure words:
                   2895: 
                   2896: doc-endif
                   2897: doc-?dup-if
                   2898: doc-?dup-0=-if
                   2899: 
                   2900: Counted loop words constitute a separate group of words:
                   2901: 
                   2902: doc-?do
                   2903: doc-+do
                   2904: doc-u+do
                   2905: doc--do
                   2906: doc-u-do
                   2907: doc-do
                   2908: doc-for
                   2909: doc-loop
                   2910: doc-+loop
                   2911: doc--loop
                   2912: doc-next
                   2913: doc-leave
                   2914: doc-?leave
                   2915: doc-unloop
                   2916: doc-done
                   2917: 
1.21      crook    2918: The standard does not allow using @code{CS-PICK} and @code{CS-ROLL} on
                   2919: @i{do-sys}. Gforth allows it, but it's your job to ensure that for
1.1       anton    2920: every @code{?DO} etc. there is exactly one @code{UNLOOP} on any path
                   2921: through the definition (@code{LOOP} etc. compile an @code{UNLOOP} on the
                   2922: fall-through path). Also, you have to ensure that all @code{LEAVE}s are
                   2923: resolved (by using one of the loop-ending words or @code{DONE}).
                   2924: 
1.26    ! crook    2925: Another group of control structure words are:
1.1       anton    2926: 
                   2927: doc-case
                   2928: doc-endcase
                   2929: doc-of
                   2930: doc-endof
                   2931: 
1.21      crook    2932: @i{case-sys} and @i{of-sys} cannot be processed using @code{CS-PICK} and
                   2933: @code{CS-ROLL}.
1.1       anton    2934: 
                   2935: @subsubsection Programming Style
                   2936: 
                   2937: In order to ensure readability we recommend that you do not create
                   2938: arbitrary control structures directly, but define new control structure
                   2939: words for the control structure you want and use these words in your
1.26    ! crook    2940: program. For example, instead of writing:
1.1       anton    2941: 
                   2942: @example
1.26    ! crook    2943: BEGIN
1.1       anton    2944:   ...
1.26    ! crook    2945: IF [ 1 CS-ROLL ]
1.1       anton    2946:   ...
1.26    ! crook    2947: AGAIN THEN
1.1       anton    2948: @end example
                   2949: 
1.21      crook    2950: @noindent
1.1       anton    2951: we recommend defining control structure words, e.g.,
                   2952: 
                   2953: @example
1.26    ! crook    2954: : WHILE ( DEST -- ORIG DEST )
        !          2955:  POSTPONE IF
        !          2956:  1 CS-ROLL ; immediate
        !          2957: 
        !          2958: : REPEAT ( orig dest -- )
        !          2959:  POSTPONE AGAIN
        !          2960:  POSTPONE THEN ; immediate
1.1       anton    2961: @end example
                   2962: 
1.21      crook    2963: @noindent
1.1       anton    2964: and then using these to create the control structure:
                   2965: 
                   2966: @example
1.26    ! crook    2967: BEGIN
1.1       anton    2968:   ...
1.26    ! crook    2969: WHILE
1.1       anton    2970:   ...
1.26    ! crook    2971: REPEAT
1.1       anton    2972: @end example
                   2973: 
                   2974: That's much easier to read, isn't it? Of course, @code{REPEAT} and
                   2975: @code{WHILE} are predefined, so in this example it would not be
                   2976: necessary to define them.
                   2977: 
                   2978: @node Calls and returns, Exception Handling, Arbitrary control structures, Control Structures
                   2979: @subsection Calls and returns
                   2980: @cindex calling a definition
                   2981: @cindex returning from a definition
                   2982: 
1.3       anton    2983: @cindex recursive definitions
                   2984: A definition can be called simply be writing the name of the definition
1.26    ! crook    2985: to be called. Normally a definition is invisible during its own
1.3       anton    2986: definition. If you want to write a directly recursive definition, you
1.26    ! crook    2987: can use @code{recursive} to make the current definition visible, or
        !          2988: @code{recurse} to call the current definition directly.
1.3       anton    2989: 
                   2990: doc-recursive
                   2991: doc-recurse
                   2992: 
1.21      crook    2993: @comment TODO add example of the two recursion methods
1.12      anton    2994: @quotation
                   2995: @progstyle
                   2996: I prefer using @code{recursive} to @code{recurse}, because calling the
                   2997: definition by name is more descriptive (if the name is well-chosen) than
                   2998: the somewhat cryptic @code{recurse}.  E.g., in a quicksort
                   2999: implementation, it is much better to read (and think) ``now sort the
                   3000: partitions'' than to read ``now do a recursive call''.
                   3001: @end quotation
1.3       anton    3002: 
1.21      crook    3003: @comment TODO maybe move deferred words to Defining Words section and x-ref
                   3004: @comment from here.. that is where these two are glossed.
                   3005: 
1.3       anton    3006: For mutual recursion, use @code{defer}red words, like this:
                   3007: 
                   3008: @example
                   3009: defer foo
                   3010: 
                   3011: : bar ( ... -- ... )
                   3012:  ... foo ... ;
                   3013: 
                   3014: :noname ( ... -- ... )
                   3015:  ... bar ... ;
                   3016: IS foo
                   3017: @end example
                   3018: 
1.26    ! crook    3019: The current definition returns control to the calling definition when
        !          3020: the end of the definition is reached or @code{EXIT} is encountered.
1.1       anton    3021: 
                   3022: doc-exit
                   3023: doc-;s
                   3024: 
                   3025: @node Exception Handling,  , Calls and returns, Control Structures
                   3026: @subsection Exception Handling
1.26    ! crook    3027: @cindex exceptions
1.1       anton    3028: 
1.26    ! crook    3029: If your program detects a fatal error condition, the simplest action
        !          3030: that it can take is to @code{quit}. This resets the return stack and
        !          3031: restarts the text interpreter, but does not print any error message.
1.21      crook    3032: 
1.26    ! crook    3033: The next stage in severity is to execute @code{abort}, which has the
        !          3034: same effect as @code{quit}, with the addition that it resets the data
        !          3035: stack.
1.1       anton    3036: 
1.26    ! crook    3037: A slightly more sophisticated approach is use use @code{abort"}, which
        !          3038: compiles a string to be used as an error message and does a conditional
        !          3039: @code{abort} at run-time. For example:
1.1       anton    3040: 
1.26    ! crook    3041: @example
        !          3042: @kbd{: checker abort" That flag was true" ." A false flag" ;<return>}  ok
        !          3043: @kbd{0 checker<return>} A false flag ok
        !          3044: @kbd{1 checker<return>}
        !          3045: :1: That flag was true
        !          3046: 1 checker
        !          3047:   ^^^^^^^
        !          3048: $400D1648 throw 
        !          3049: $400E4660
        !          3050: @end example
1.1       anton    3051: 
1.26    ! crook    3052: These simple techniques allow a program to react to a fatal error
        !          3053: condition, but they are not exactly user-friendly. The ANS Forth
        !          3054: Exception word set provides the pair of words @code{throw} and
        !          3055: @code{catch}, which can be used to provide sophisticated error-handling.
1.1       anton    3056: 
1.26    ! crook    3057: @code{catch} has a similar behaviour to @code{execute}, in that it takes
        !          3058: an @var{xt} as a parameter and starts execution of the xt. However,
        !          3059: before passing control to the xt, @code{catch} pushes an
        !          3060: @var{exception frame} onto the @var{exception stack}. This exception
        !          3061: frame is used to restore the system to a known state if a detected error
        !          3062: occurs during the execution of the xt. A typical way to use @code{catch}
        !          3063: would be:
1.1       anton    3064: 
1.26    ! crook    3065: @example
        !          3066: ... ['] foo catch IF ...
        !          3067: @end example
1.1       anton    3068: 
1.26    ! crook    3069: Whilst @code{foo} executes, it can call other words to any level of
        !          3070: nesting, as usual.  If @code{foo} (and all the words that it calls)
        !          3071: execute successfully, control will ultimately passes to the word following
        !          3072: the @code{catch}, and there will be a @code{true} flag (0) at
        !          3073: TOS. However, if any word detects an error, it can terminate the
        !          3074: execution of @code{foo} by pushing an error code onto the stack and then
        !          3075: performing a @code{throw}. The execution of @code{throw} will pass 
        !          3076: control to the word following the @code{catch}, but this time the TOS
        !          3077: will hold the error code. Therefore, the @code{IF} in the example
        !          3078: can be used to determine whether @code{foo} executed successfully.
1.1       anton    3079: 
1.26    ! crook    3080: This simple example shows how you can use @code{throw} and @code{catch}
        !          3081: to ``take over'' exception handling from the system:
1.1       anton    3082: @example
1.26    ! crook    3083: : my-div ['] / catch if ." DIVIDE ERROR" else ." OK.. " . then ;
1.1       anton    3084: @end example
                   3085: 
1.26    ! crook    3086: The next example is more sophisticated and shows a multi-level
        !          3087: @code{throw} and @code{catch}. To understand this example, start at the
        !          3088: definition of @code{top-level} and work backwards:
        !          3089: 
1.1       anton    3090: @example
1.26    ! crook    3091: : lowest-level ( -- c )
        !          3092:     key dup 27 = if
        !          3093:        1 throw \ ESCAPE key pressed
        !          3094:     else
        !          3095:        ." lowest-level successfull" CR
        !          3096:     then
        !          3097: ;
        !          3098: 
        !          3099: : lower-level ( -- c )
        !          3100:     lowest-level
        !          3101:     \ at this level consider a CTRL-U to be a fatal error
        !          3102:     dup 21 = if \ CTRL-U
        !          3103:        2 throw
        !          3104:     else
        !          3105:        ." lower-level successfull" CR
        !          3106:     then
        !          3107: ;
        !          3108: 
        !          3109: : low-level ( -- c )
        !          3110:     ['] lower-level catch
        !          3111:     ?dup if
        !          3112:        \ error occurred - do we recognise it?
        !          3113:        dup 1 = if
        !          3114:            \ ESCAPE key pressed.. pretend it was an E
        !          3115:            [char] E
        !          3116:        else throw \ propogate the error upwards
        !          3117:        then
        !          3118:     then
        !          3119:     ." low-level successfull" CR
        !          3120: ;
        !          3121: 
        !          3122: : top-level ( -- )
        !          3123:     CR ['] low-level catch \ CATCH is used like EXECUTE
        !          3124:     ?dup if \ error occurred..
        !          3125:        ." Error " . ." occurred - contact your supplier"
        !          3126:     else
        !          3127:        ." The '" emit ." ' key was pressed" CR
        !          3128:     then
        !          3129: ;
1.1       anton    3130: @end example
                   3131: 
1.26    ! crook    3132: The ANS Forth document assigns @code{throw} codes thus:
1.1       anton    3133: 
1.26    ! crook    3134: @itemize @bullet
        !          3135: @item
        !          3136: codes in the range -1 -- -255 are reserved to be assigned by the
        !          3137: Standard. Assignments for codes in the range -1 -- -58 are currently
        !          3138: documented in the Standard. In particular, @code{-1 throw} is equivalent
        !          3139: to @code{abort} and @code{-2 throw} is equivalent to @code{abort"}.
        !          3140: @item
        !          3141: codes in the range -256 -- -4095 are reserved to be assigned by the system.
        !          3142: @item
        !          3143: all other codes may be assigned by programs.
        !          3144: @end itemize
1.1       anton    3145: 
1.26    ! crook    3146: Gforth provides the word @code{exception} as a mechanism for assigning
        !          3147: system throw codes to applications. This allows multiple applications to
        !          3148: co-exist in memory without any clash of @code{throw} codes. A definition
        !          3149: of @code{exception} in ANS Forth is provided in
        !          3150: @file{compat/exception.fs}.
1.1       anton    3151: 
                   3152: 
1.26    ! crook    3153: doc-quit
        !          3154: doc-abort
        !          3155: doc-abort"
1.1       anton    3156: 
1.26    ! crook    3157: doc-catch
        !          3158: doc-throw
        !          3159: doc---exception-exception
1.1       anton    3160: 
                   3161: 
1.26    ! crook    3162: @c -------------------------------------------------------------
        !          3163: @node Defining Words, The Text Interpreter, Control Structures, Words
        !          3164: @section Defining Words
        !          3165: @cindex defining words
1.1       anton    3166: 
1.26    ! crook    3167: @comment TODO much more intro material here. 3 classes: colon defn, variables/constants
        !          3168: @comment values, user-defined defining words.
1.1       anton    3169: 
                   3170: @menu
1.26    ! crook    3171: * Simple Defining Words::       
        !          3172: * Colon Definitions::           
        !          3173: * User-defined Defining Words::  
        !          3174: * Supplying names::             
        !          3175: * Interpretation and Compilation Semantics::  
1.1       anton    3176: @end menu
                   3177: 
1.26    ! crook    3178: @node Simple Defining Words, Colon Definitions, Defining Words, Defining Words
        !          3179: @subsection Simple Defining Words
        !          3180: @cindex simple defining words
        !          3181: @cindex defining words, simple
        !          3182: 
        !          3183: doc-constant
        !          3184: doc-2constant
        !          3185: doc-fconstant
        !          3186: doc-variable
        !          3187: doc-2variable
        !          3188: doc-fvariable
        !          3189: doc-create
        !          3190: doc-user
        !          3191: doc-value
        !          3192: doc-to
        !          3193: doc-defer
        !          3194: doc-is
        !          3195: 
        !          3196: Definitions in ANS Forth for @code{defer}, @code{<is>} and
        !          3197: @code{[is]} are provided in @file{compat/defer.fs}.
        !          3198: @comment TODO - what do the two "is" words do?
1.1       anton    3199: 
1.26    ! crook    3200: @node Colon Definitions, User-defined Defining Words, Simple Defining Words, Defining Words
        !          3201: @subsection Colon Definitions
        !          3202: @cindex colon definitions
1.1       anton    3203: 
1.26    ! crook    3204: @example
        !          3205: : name ( ... -- ... )
        !          3206:     word1 word2 word3 ;
        !          3207: @end example
1.1       anton    3208: 
1.26    ! crook    3209: creates a word called @code{name}, that, upon execution, executes
        !          3210: @code{word1 word2 word3}. @code{name} is a @dfn{(colon) definition}.
1.1       anton    3211: 
1.26    ! crook    3212: The explanation above is somewhat superficial. @xref{Interpretation and
        !          3213: Compilation Semantics} for an in-depth discussion of some of the issues
        !          3214: involved.
        !          3215: 
        !          3216: doc-:
        !          3217: doc-;
1.1       anton    3218: 
1.26    ! crook    3219: @node User-defined Defining Words, Supplying names, Colon Definitions, Defining Words
        !          3220: @subsection User-defined Defining Words
        !          3221: @cindex user-defined defining words
        !          3222: @cindex defining words, user-defined
1.1       anton    3223: 
1.26    ! crook    3224: You can create new defining words simply by wrapping defining-time code
        !          3225: around existing defining words and putting the sequence in a colon
        !          3226: definition.
1.1       anton    3227: 
1.26    ! crook    3228: @comment TODO example
1.1       anton    3229: 
1.26    ! crook    3230: @cindex @code{CREATE} ... @code{DOES>}
        !          3231: If you want the words defined with your defining words to behave
        !          3232: differently from words defined with standard defining words, you can
        !          3233: write your defining word like this:
1.1       anton    3234: 
                   3235: @example
1.26    ! crook    3236: : def-word ( "name" -- )
        !          3237:     Create @var{code1}
        !          3238: DOES> ( ... -- ... )
        !          3239:     @var{code2} ;
        !          3240: 
        !          3241: def-word name
1.1       anton    3242: @end example
                   3243: 
1.26    ! crook    3244: Technically, this fragment defines a defining word @code{def-word}, and
        !          3245: a word @code{name}; when you execute @code{name}, the address of the
        !          3246: body of @code{name} is put on the data stack and @var{code2} is executed
        !          3247: (the address of the body of @code{name} is the address @code{HERE}
        !          3248: returns immediately after the @code{CREATE}). The word @code{name} is
        !          3249: sometimes called a @var{child} of @code{def-word}.
1.1       anton    3250: 
1.26    ! crook    3251: In other words, if you make the following definitions:
1.1       anton    3252: 
                   3253: @example
1.26    ! crook    3254: : def-word1 ( "name" -- )
        !          3255:     Create @var{code1} ;
        !          3256: 
        !          3257: : action1 ( ... -- ... )
        !          3258:     @var{code2} ;
        !          3259: 
        !          3260: def-word name1
1.1       anton    3261: @end example
                   3262: 
1.26    ! crook    3263: Using @code{name1 action1} is equivalent to using @code{name}.
        !          3264: 
        !          3265: The classic example is that you can define @code{Constant} in this way:
        !          3266: 
1.1       anton    3267: @example
1.26    ! crook    3268: : constant ( w "name" -- )
        !          3269:     create ,
        !          3270: DOES> ( -- w )
        !          3271:     @@ ;
1.1       anton    3272: @end example
                   3273: 
1.26    ! crook    3274: @comment that is the classic example.. maybe it should be earlier. There
        !          3275: @comment is a beautiful description of how this works and what it does in
        !          3276: @comment the Forthwrite 100th edition.
        !          3277: 
        !          3278: When you create a constant with @code{5 constant five}, first a new word
        !          3279: @code{five} is created, then the value 5 is laid down in the body of
        !          3280: @code{five} with @code{,}. When @code{five} is invoked, the address of
        !          3281: the body is put on the stack, and @code{@@} retrieves the value 5.
        !          3282: 
        !          3283: @cindex stack effect of @code{DOES>}-parts
        !          3284: @cindex @code{DOES>}-parts, stack effect
        !          3285: In the example above the stack comment after the @code{DOES>} specifies
        !          3286: the stack effect of the defined words, not the stack effect of the
        !          3287: following code (the following code expects the address of the body on
        !          3288: the top of stack, which is not reflected in the stack comment). This is
        !          3289: the convention that I use and recommend (it clashes a bit with using
        !          3290: locals declarations for stack effect specification, though).
1.1       anton    3291: 
1.26    ! crook    3292: @subsubsection Applications of @code{CREATE..DOES>}
        !          3293: @cindex @code{CREATE} ... @code{DOES>}, applications
1.1       anton    3294: 
1.26    ! crook    3295: You may wonder how to use this feature. Here are some usage patterns:
1.1       anton    3296: 
1.26    ! crook    3297: @cindex factoring similar colon definitions
        !          3298: When you see a sequence of code occurring several times, and you can
        !          3299: identify a meaning, you will factor it out as a colon definition. When
        !          3300: you see similar colon definitions, you can factor them using
        !          3301: @code{CREATE..DOES>}. E.g., an assembler usually defines several words
        !          3302: that look very similar:
1.1       anton    3303: @example
1.26    ! crook    3304: : ori, ( reg-target reg-source n -- )
        !          3305:     0 asm-reg-reg-imm ;
        !          3306: : andi, ( reg-target reg-source n -- )
        !          3307:     1 asm-reg-reg-imm ;
1.1       anton    3308: @end example
                   3309: 
1.26    ! crook    3310: @noindent
        !          3311: This could be factored with:
        !          3312: @example
        !          3313: : reg-reg-imm ( op-code -- )
        !          3314:     CREATE ,
        !          3315: DOES> ( reg-target reg-source n -- )
        !          3316:     @@ asm-reg-reg-imm ;
        !          3317: 
        !          3318: 0 reg-reg-imm ori,
        !          3319: 1 reg-reg-imm andi,
        !          3320: @end example
1.1       anton    3321: 
1.26    ! crook    3322: @cindex currying
        !          3323: Another view of @code{CREATE..DOES>} is to consider it as a crude way to
        !          3324: supply a part of the parameters for a word (known as @dfn{currying} in
        !          3325: the functional language community). E.g., @code{+} needs two
        !          3326: parameters. Creating versions of @code{+} with one parameter fixed can
        !          3327: be done like this:
1.1       anton    3328: @example
1.26    ! crook    3329: : curry+ ( n1 -- )
        !          3330:     CREATE ,
        !          3331: DOES> ( n2 -- n1+n2 )
        !          3332:     @@ + ;
        !          3333: 
        !          3334:  3 curry+ 3+
        !          3335: -2 curry+ 2-
1.1       anton    3336: @end example
                   3337: 
1.26    ! crook    3338: @subsubsection The gory details of @code{CREATE..DOES>}
        !          3339: @cindex @code{CREATE} ... @code{DOES>}, details
1.1       anton    3340: 
1.26    ! crook    3341: doc-does>
1.1       anton    3342: 
1.26    ! crook    3343: @cindex @code{DOES>} in a separate definition
        !          3344: This means that you need not use @code{CREATE} and @code{DOES>} in the
        !          3345: same definition; you can put the @code{DOES>}-part in a separate
        !          3346: definition. This allows us to, e.g., select among different DOES>-parts:
        !          3347: @example
        !          3348: : does1 
        !          3349: DOES> ( ... -- ... )
        !          3350:     ... ;
1.1       anton    3351: 
1.26    ! crook    3352: : does2
        !          3353: DOES> ( ... -- ... )
        !          3354:     ... ;
1.1       anton    3355: 
1.26    ! crook    3356: : def-word ( ... -- ... )
        !          3357:     create ...
        !          3358:     IF
        !          3359:        does1
        !          3360:     ELSE
        !          3361:        does2
        !          3362:     ENDIF ;
        !          3363: @end example
1.1       anton    3364: 
1.26    ! crook    3365: In this example, the selection of whether to use @code{does1} or
        !          3366: @code{does2} is made at compile-time; at the time that the child word is
        !          3367: @code{Create}d.
1.1       anton    3368: 
1.26    ! crook    3369: @cindex @code{DOES>} in interpretation state
        !          3370: In a standard program you can apply a @code{DOES>}-part only if the last
        !          3371: word was defined with @code{CREATE}. In Gforth, the @code{DOES>}-part
        !          3372: will override the behaviour of the last word defined in any case. In a
        !          3373: standard program, you can use @code{DOES>} only in a colon
        !          3374: definition. In Gforth, you can also use it in interpretation state, in a
        !          3375: kind of one-shot mode; for example:
1.1       anton    3376: @example
1.26    ! crook    3377: CREATE name ( ... -- ... )
        !          3378:   @var{initialization}
        !          3379: DOES>
        !          3380:   @var{code} ;
1.1       anton    3381: @end example
                   3382: 
1.26    ! crook    3383: @noindent
        !          3384: is equivalent to the standard:
1.1       anton    3385: @example
1.26    ! crook    3386: :noname
        !          3387: DOES>
        !          3388:     @var{code} ;
        !          3389: CREATE name EXECUTE ( ... -- ... )
        !          3390:     @var{initialization}
1.1       anton    3391: @end example
                   3392: 
1.26    ! crook    3393: You can get the address of the body of a word with:
        !          3394: 
        !          3395: doc->body
1.1       anton    3396: 
1.26    ! crook    3397: @node Supplying names, Interpretation and Compilation Semantics, User-defined Defining Words, Defining Words
        !          3398: @subsection Supplying names for the defined words
        !          3399: @cindex names for defined words
        !          3400: @cindex defining words, name parameter
1.1       anton    3401: 
1.26    ! crook    3402: @cindex defining words, name given in a string
        !          3403: By default, defining words take the names for the defined words from the
        !          3404: input stream. Sometimes you want to supply the name from a string. You
        !          3405: can do this with:
1.1       anton    3406: 
1.26    ! crook    3407: doc-nextname
1.1       anton    3408: 
1.26    ! crook    3409: For example:
1.1       anton    3410: 
1.26    ! crook    3411: @example
        !          3412: s" foo" nextname create
        !          3413: @end example
        !          3414: @noindent
        !          3415: is equivalent to:
        !          3416: @example
        !          3417: create foo
        !          3418: @end example
1.1       anton    3419: 
1.26    ! crook    3420: @cindex defining words without name
        !          3421: Sometimes you want to define an @var{anonymous word}; a word without a
        !          3422: name. You can do this with:
1.1       anton    3423: 
1.26    ! crook    3424: doc-:noname
1.1       anton    3425: 
1.26    ! crook    3426: This leaves the execution token for the word on the stack after the
        !          3427: closing @code{;}. Here's an example in which a deferred word is
        !          3428: initialised with an @code{xt} from an anonymous colon definition:
        !          3429: @example
        !          3430: Defer deferred
        !          3431: :noname ( ... -- ... )
        !          3432:   ... ;
        !          3433: IS deferred
        !          3434: @end example
1.1       anton    3435: 
1.26    ! crook    3436: Gforth provides an alternative way of doing this, using two separate
        !          3437: words:
1.1       anton    3438: 
1.26    ! crook    3439: doc-noname
        !          3440: @cindex execution token of last defined word
        !          3441: doc-lastxt
1.1       anton    3442: 
1.26    ! crook    3443: The previous example can be rewritten using @code{noname} and
        !          3444: @code{lastxt}:
1.1       anton    3445: 
1.26    ! crook    3446: @example
        !          3447: Defer deferred
        !          3448: noname : ( ... -- ... )
        !          3449:   ... ;
        !          3450: lastxt IS deferred
        !          3451: @end example
1.1       anton    3452: 
1.26    ! crook    3453: @code{lastxt} also works when the last word was not defined as
        !          3454: @code{noname}. 
1.1       anton    3455: 
                   3456: 
1.26    ! crook    3457: @node Interpretation and Compilation Semantics,  , Supplying names, Defining Words
        !          3458: @subsection Interpretation and Compilation Semantics
        !          3459: @cindex semantics, interpretation and compilation
1.1       anton    3460: 
1.26    ! crook    3461: @cindex interpretation semantics
        !          3462: The @dfn{interpretation semantics} of a word are what the text
        !          3463: interpreter does when it encounters the word in interpret state. It also
        !          3464: appears in some other contexts, e.g., the execution token returned by
        !          3465: @code{' @var{word}} identifies the interpretation semantics of
        !          3466: @var{word} (in other words, @code{' @var{word} execute} is equivalent to
        !          3467: interpret-state text interpretation of @code{@var{word}}).
1.1       anton    3468: 
1.26    ! crook    3469: @cindex compilation semantics
        !          3470: The @dfn{compilation semantics} of a word are what the text interpreter
        !          3471: does when it encounters the word in compile state. It also appears in
        !          3472: other contexts, e.g, @code{POSTPONE @var{word}} compiles@footnote{In
        !          3473: standard terminology, ``appends to the current definition''.} the
        !          3474: compilation semantics of @var{word}.
1.1       anton    3475: 
1.26    ! crook    3476: @cindex execution semantics
        !          3477: The standard also talks about @dfn{execution semantics}. They are used
        !          3478: only for defining the interpretation and compilation semantics of many
        !          3479: words. By default, the interpretation semantics of a word are to
        !          3480: @code{execute} its execution semantics, and the compilation semantics of
        !          3481: a word are to @code{compile,} its execution semantics.@footnote{In
        !          3482: standard terminology: The default interpretation semantics are its
        !          3483: execution semantics; the default compilation semantics are to append its
        !          3484: execution semantics to the execution semantics of the current
        !          3485: definition.}
        !          3486: 
        !          3487: @comment TODO expand, make it co-operate with new sections on text interpreter.
        !          3488: 
        !          3489: @cindex immediate words
        !          3490: @cindex compile-only words
        !          3491: You can change the semantics of the most-recently defined word:
        !          3492: 
        !          3493: doc-immediate
        !          3494: doc-compile-only
        !          3495: doc-restrict
        !          3496: 
        !          3497: Note that ticking (@code{'}) a compile-only word gives an error
        !          3498: (``Interpreting a compile-only word'').
1.1       anton    3499: 
1.26    ! crook    3500: Gforth also allows you to define words with arbitrary combinations of
        !          3501: interpretation and compilation semantics.
1.1       anton    3502: 
1.26    ! crook    3503: doc-interpret/compile:
1.1       anton    3504: 
1.26    ! crook    3505: This feature was introduced for implementing @code{TO} and @code{S"}. I
        !          3506: recommend that you do not define such words, as cute as they may be:
        !          3507: they make it hard to get at both parts of the word in some contexts.
        !          3508: E.g., assume you want to get an execution token for the compilation
        !          3509: part. Instead, define two words, one that embodies the interpretation
        !          3510: part, and one that embodies the compilation part.  Once you have done
        !          3511: that, you can define a combined word with @code{interpret/compile:} for
        !          3512: the convenience of your users.
1.1       anton    3513: 
1.26    ! crook    3514: You might try to use this feature to provide an optimizing
        !          3515: implementation of the default compilation semantics of a word. For
        !          3516: example, by defining:
1.1       anton    3517: @example
1.26    ! crook    3518: :noname
        !          3519:    foo bar ;
        !          3520: :noname
        !          3521:    POSTPONE foo POSTPONE bar ;
        !          3522: interpret/compile: foobar
1.1       anton    3523: @end example
1.26    ! crook    3524: 
1.23      crook    3525: @noindent
1.26    ! crook    3526: as an optimizing version of:
        !          3527: 
1.1       anton    3528: @example
1.26    ! crook    3529: : foobar
        !          3530:     foo bar ;
1.1       anton    3531: @end example
                   3532: 
1.26    ! crook    3533: Unfortunately, this does not work correctly with @code{[compile]},
        !          3534: because @code{[compile]} assumes that the compilation semantics of all
        !          3535: @code{interpret/compile:} words are non-default. I.e., @code{[compile]
        !          3536: foobar} would compile the compilation semantics for the optimizing
        !          3537: @code{foobar}, whereas it would compile the interpretation semantics for
        !          3538: the non-optimizing @code{foobar}.
1.1       anton    3539: 
1.26    ! crook    3540: @cindex state-smart words (are a bad idea)
        !          3541: Some people try to use @var{state-smart} words to emulate the feature provided
        !          3542: by @code{interpret/compile:} (words are state-smart if they check
        !          3543: @code{STATE} during execution). E.g., they would try to code
        !          3544: @code{foobar} like this:
1.1       anton    3545: 
1.26    ! crook    3546: @example
        !          3547: : foobar
        !          3548:   STATE @@
        !          3549:   IF ( compilation state )
        !          3550:     POSTPONE foo POSTPONE bar
        !          3551:   ELSE
        !          3552:     foo bar
        !          3553:   ENDIF ; immediate
        !          3554: @end example
1.1       anton    3555: 
1.26    ! crook    3556: Although this works if @code{foobar} is only processed by the text
        !          3557: interpreter, it does not work in other contexts (like @code{'} or
        !          3558: @code{POSTPONE}). E.g., @code{' foobar} will produce an execution token
        !          3559: for a state-smart word, not for the interpretation semantics of the
        !          3560: original @code{foobar}; when you execute this execution token (directly
        !          3561: with @code{EXECUTE} or indirectly through @code{COMPILE,}) in compile
        !          3562: state, the result will not be what you expected (i.e., it will not
        !          3563: perform @code{foo bar}). State-smart words are a bad idea. Simply don't
        !          3564: write them@footnote{For a more detailed discussion of this topic, see
        !          3565: @cite{@code{State}-smartness -- Why it is Evil and How to Exorcise it} by Anton
        !          3566: Ertl; presented at EuroForth '98 and available from
        !          3567: @url{http://www.complang.tuwien.ac.at/papers/}}!
1.1       anton    3568: 
1.26    ! crook    3569: @cindex defining words with arbitrary semantics combinations
        !          3570: It is also possible to write defining words that define words with
        !          3571: arbitrary combinations of interpretation and compilation semantics. In
        !          3572: general, they look like this:
1.1       anton    3573: 
1.26    ! crook    3574: @example
        !          3575: : def-word
        !          3576:     create-interpret/compile
        !          3577:     @var{code1}
        !          3578: interpretation>
        !          3579:     @var{code2}
        !          3580: <interpretation
        !          3581: compilation>
        !          3582:     @var{code3}
        !          3583: <compilation ;
        !          3584: @end example
1.1       anton    3585: 
1.26    ! crook    3586: For a @var{word} defined with @code{def-word}, the interpretation
        !          3587: semantics are to push the address of the body of @var{word} and perform
        !          3588: @var{code2}, and the compilation semantics are to push the address of
        !          3589: the body of @var{word} and perform @var{code3}. E.g., @code{constant}
        !          3590: can also be defined like this (except that the defined constants don't
        !          3591: behave correctly when @code{[compile]}d):
1.1       anton    3592: 
1.26    ! crook    3593: @example
        !          3594: : constant ( n "name" -- )
        !          3595:     create-interpret/compile
        !          3596:     ,
        !          3597: interpretation> ( -- n )
        !          3598:     @@
        !          3599: <interpretation
        !          3600: compilation> ( compilation. -- ; run-time. -- n )
        !          3601:     @@ postpone literal
        !          3602: <compilation ;
        !          3603: @end example
1.1       anton    3604: 
1.26    ! crook    3605: doc-create-interpret/compile
        !          3606: doc-interpretation>
        !          3607: doc-<interpretation
        !          3608: doc-compilation>
        !          3609: doc-<compilation
1.1       anton    3610: 
1.26    ! crook    3611: Note that words defined with @code{interpret/compile:} and
        !          3612: @code{create-interpret/compile} have an extended header structure that
        !          3613: differs from other words; however, unless you try to access them with
        !          3614: plain address arithmetic, you should not notice this. Words for
        !          3615: accessing the header structure usually know how to deal with this; e.g.,
        !          3616: @code{' word >body} also gives you the body of a word created with
        !          3617: @code{create-interpret/compile}.
1.1       anton    3618: 
1.26    ! crook    3619: @c ----------------------------------------------------------
        !          3620: @node The Text Interpreter, Tokens for Words, Defining Words, Words
        !          3621: @section  The Text Interpreter
        !          3622: @cindex interpreter - outer
        !          3623: @cindex text interpreter
        !          3624: @cindex outer interpreter
1.1       anton    3625: 
1.26    ! crook    3626: Intro blah.
1.1       anton    3627: 
1.26    ! crook    3628: @comment TODO
1.21      crook    3629: 
1.26    ! crook    3630: doc->in
        !          3631: doc-tib
        !          3632: doc-#tib
        !          3633: doc-span
        !          3634: doc-restore-input
        !          3635: doc-save-input
        !          3636: doc-source
        !          3637: doc-source-id
1.1       anton    3638: 
                   3639: 
1.26    ! crook    3640: @menu
        !          3641: * Number Conversion::
        !          3642: * Interpret/Compile states::
        !          3643: * Literals::
        !          3644: * Interpreter Directives::
        !          3645: @end menu
1.1       anton    3646: 
1.26    ! crook    3647: @comment TODO
1.1       anton    3648: 
1.26    ! crook    3649: The text interpreter works on input one line at a time. Starting at
        !          3650: the beginning of the line, it skips leading spaces (called
        !          3651: @var{delimiters}) then parses a string (a sequence of non-space
        !          3652: characters) until it either reaches a space character or it
        !          3653: reaches the end of the line. Having parsed a string, it then makes two
        !          3654: attempts to do something with it:
1.1       anton    3655: 
1.26    ! crook    3656: * It looks the string up in a dictionary of definitions. If the string
        !          3657:   is found in the dictionary, the string names a @var{definition} (also
        !          3658:   known as a @var{word}) and the dictionary search will return an
        !          3659:   @var{Execution token} (xt) for the definition and some flags that show
        !          3660:   when the definition can be used legally. If the definition can be
        !          3661:   legally executed in @var{Interpret} mode then the text interpreter will
        !          3662:   use the xt to execute it, otherwise it will issue an error
        !          3663:   message. The dictionary is described in more detail in <blah>.
1.1       anton    3664: 
1.26    ! crook    3665: * If the string is not found in the dictionary, the text interpreter
        !          3666:   attempts to treat it as a number in the current radix (base 10 after
        !          3667:   initial startup). If the string represents a legal number in the
        !          3668:   current radix, the number is pushed onto the appropriate parameter
        !          3669:   stack. Stacks are discussed in more detail in <blah>. Number
        !          3670:   conversion is described in more detail in <section about +, -
        !          3671:   numbers and different number formats>.
1.1       anton    3672: 
1.26    ! crook    3673: If both of these attempts fail, the remainer of the input line is
        !          3674: discarded and the text interpreter isses an error message. If one of
        !          3675: these attempts succeeds, the text interpreter repeats the parsing
        !          3676: process until the end of the line has been reached. At this point, 
        !          3677: it prints the status message ``  ok'' and waits for more input.
1.21      crook    3678: 
1.26    ! crook    3679: There are two important things to note about the behaviour of the text
        !          3680: interpreter:
1.1       anton    3681: 
1.26    ! crook    3682: * it processes each input string to completion before parsing
        !          3683:   additional characters from the input line.
1.1       anton    3684: 
1.26    ! crook    3685: * it keeps track of its position in the input line using a variable
        !          3686:   (called >IN, pronounced ``to-in''). The value of >IN can be modified
        !          3687:   by the execution of definitions in the input line. This means that
        !          3688:   definitions can ``trick'' the text interpreter either into skipping
        !          3689:   sections of the input line or into parsing a section of the
        !          3690:   input line more than once.
1.1       anton    3691: 
                   3692: 
1.26    ! crook    3693: @node Number Conversion, Interpret/Compile states, The Text Interpreter, The Text Interpreter
        !          3694: @subsection Number Conversion
        !          3695: @cindex number conversion
        !          3696: @cindex double-cell numbers, input format
        !          3697: @cindex input format for double-cell numbers
        !          3698: @cindex single-cell numbers, input format
        !          3699: @cindex input format for single-cell numbers
        !          3700: @cindex floating-point numbers, input format
        !          3701: @cindex input format for floating-point numbers
1.1       anton    3702: 
1.26    ! crook    3703: If the text interpreter fails to find a particular string in the name
        !          3704: dictionary, it attempts to convert it to a number using a set of rules.
1.1       anton    3705: 
1.26    ! crook    3706: Let <digit> represent any character that is a legal digit in the current
        !          3707: number base (for example, 0-9 when the number base is decimal or 0-9, A-F
        !          3708: when the number base is hexadecimal).
1.1       anton    3709: 
1.26    ! crook    3710: Let <decimal digit> represent any character in the range 0-9.
1.1       anton    3711: 
1.26    ! crook    3712: @comment TODO need to extend the next defn to support fp format
        !          3713: Let @{+ | -@} represent the optional presence of either a @code{+} or
        !          3714: @code{-} character.
1.1       anton    3715: 
1.26    ! crook    3716: Let * represent any number of instances of the previous character
        !          3717: (including none).
1.1       anton    3718: 
1.26    ! crook    3719: Let any other character represent itself.
1.1       anton    3720: 
1.26    ! crook    3721: Now, the conversion rules are:
1.21      crook    3722: 
1.26    ! crook    3723: @itemize @bullet
        !          3724: @item
        !          3725: A string of the form <digit><digit>* is treated as a single-precision
        !          3726: (CELL-sized) positive integer. Examples are 0 123 6784532 32343212343456 42
        !          3727: @item
        !          3728: A string of the form -<digit><digit>* is treated as a single-precision
        !          3729: (CELL-sized) negative integer, and is represented using 2's-complement
        !          3730: arithmetic. Examples are -45 -5681 -0
        !          3731: @item
        !          3732: A string of the form <digit><digit>*.<digit>* is treated as a double-precision
        !          3733: (double-CELL-sized) positive integer. Examples are 3465. 3.465 34.65
        !          3734: (and note that these all represent the same number).
        !          3735: @item
        !          3736: A string of the form -<digit><digit>*.<digit>* is treated as a
        !          3737: double-precision (double-CELL-sized) negative integer, and is
        !          3738: represented using 2's-complement arithmetic. Examples are -3465. -3.465
        !          3739: -34.65 (and note that these all represent the same number).
        !          3740: @item
        !          3741: A string of the form @{+ | -@}<decimal digit>@{.@}<decimal digit>*@{e | E@}@{+
        !          3742: | -@}<decimal digit><decimal digit>* is treated as floating-point
        !          3743: number. Examples are 1e0 1.e 1.e0 +1e+0 (which all represent the same
        !          3744: number) +12.E-4 
        !          3745: @end itemize
1.1       anton    3746: 
1.26    ! crook    3747: By default, the number base used for integer number conversion is given
        !          3748: by the contents of a variable named @code{BASE}. Base 10 (decimal) is
        !          3749: always used for floating-point number conversion.
1.1       anton    3750: 
1.26    ! crook    3751: doc-base
        !          3752: doc-hex
        !          3753: doc-decimal
1.1       anton    3754: 
1.26    ! crook    3755: @cindex '-prefix for character strings
        !          3756: @cindex &-prefix for decimal numbers
        !          3757: @cindex %-prefix for binary numbers
        !          3758: @cindex $-prefix for hexadecimal numbers
        !          3759: Gforth allows you to override the value of @code{BASE} by using a prefix
        !          3760: before the first digit of an (integer) number. Four prefixes are
        !          3761: supported:
1.1       anton    3762: 
1.26    ! crook    3763: @itemize @bullet
        !          3764: @item
        !          3765: @code{&} -- decimal number
        !          3766: @item
        !          3767: @code{%} -- binary number
        !          3768: @item
        !          3769: @code{$} -- hexadecimal number
        !          3770: @item
        !          3771: @code{'} -- base 256 number
        !          3772: @end itemize
1.1       anton    3773: 
1.26    ! crook    3774: Here are some examples, with the equivalent decimal number shown after
        !          3775: in braces:
1.1       anton    3776: 
1.26    ! crook    3777: -$41 (-65), %1001101 (205), %1001.0001 (145 - a double-precision number),
        !          3778: 'AB (16706; ascii A is 65, ascii B is 66, number is 65*256 + 66),
        !          3779: 'ab (24930; ascii a is 97, ascii B is 98, number is 97*256 + 98),
        !          3780: &905 (905), $abc (2478), $ABC (2478).
1.1       anton    3781: 
1.26    ! crook    3782: @cindex number conversion - traps for the unwary
        !          3783: Number conversion has a number of traps for the unwary:
1.1       anton    3784: 
1.26    ! crook    3785: @itemize @bullet
        !          3786: @item
        !          3787: You cannot determine the current number base using the code sequence
        !          3788: @code{BASE @@ .} -- the number base is always 10 in the current number
        !          3789: base. Instead, use something like @code{BASE @@ DECIMAL DUP . BASE !}
        !          3790: @item
        !          3791: If the number base is set to a value greater than 14 (for example,
        !          3792: hexadecimal), the number 123E4 is ambiguous; the conversion rules allow
        !          3793: it to be intepreted as either a single-precision integer or a
        !          3794: floating-point number (Gforth treats it as an integer). The ambiguity
        !          3795: can be resolved by explicitly stating the sign of the mantissa and/or
        !          3796: exponent: 123E+4 or +123E4 -- if the number base is decimal, no
        !          3797: ambiguity arises; either representation will be treated as a
        !          3798: floating-point number.
        !          3799: @item
        !          3800: There is a word @code{bin} but it does @var{not} set the number base!
        !          3801: It is used to specify file types.
        !          3802: @item
        !          3803: ANS Forth requires the @code{.} of a double-precision number to
        !          3804: be the final character in the string. Allowing the @code{.} to be
        !          3805: anywhere after the first digit is a Gforth extension.
        !          3806: @item
        !          3807: The number conversion process does not check for overflow.
        !          3808: @item
        !          3809: In Gforth, number conversion to floating-point numbers always use base
        !          3810: 10, irrespective of the value of @code{BASE}. In ANS Forth,
        !          3811: conversion to floating-point numbers whilst the value of
        !          3812: @code{BASE} is not 10 is an ambiguous condition.
        !          3813: @end itemize
1.1       anton    3814: 
                   3815: 
1.26    ! crook    3816: @node Interpret/Compile states, Literals, Number Conversion, The Text Interpreter
        !          3817: @subsection Interpret/Compile states
        !          3818: @cindex Interpret/Compile states
1.1       anton    3819: 
1.26    ! crook    3820: @comment TODO Intro blah.
1.1       anton    3821: 
1.26    ! crook    3822: doc-state
        !          3823: doc-[
        !          3824: doc-]
1.1       anton    3825: 
                   3826: 
1.26    ! crook    3827: @node Literals, Interpreter Directives, Interpret/Compile states, The Text Interpreter
        !          3828: @subsection Literals
        !          3829: @cindex Literals
1.21      crook    3830: 
1.26    ! crook    3831: @comment TODO Intro blah.
1.23      crook    3832: 
1.26    ! crook    3833: doc-literal
        !          3834: doc-]L
        !          3835: doc-2literal
        !          3836: doc-fliteral
1.1       anton    3837: 
1.26    ! crook    3838: @node Interpreter Directives, ,Literals, The Text Interpreter
        !          3839: @subsection Interpreter Directives
        !          3840: @cindex interpreter directives
1.1       anton    3841: 
1.26    ! crook    3842: These words are usually used outside of definitions; for example, to
        !          3843: control which parts of a source file are processed by the text
        !          3844: interpreter. There are only a few ANS Forth Standard words, but Gforth
        !          3845: supplements these with a rich set of immediate control structure words
        !          3846: to compensate for the fact that the non-immediate versions can only be
        !          3847: used in compile state (@pxref{Control Structures}).
1.1       anton    3848: 
1.26    ! crook    3849: doc-[IF]
        !          3850: doc-[ELSE]
        !          3851: doc-[THEN]
        !          3852: doc-[ENDIF]
1.1       anton    3853: 
1.26    ! crook    3854: doc-[IFDEF]
        !          3855: doc-[IFUNDEF]
1.1       anton    3856: 
1.26    ! crook    3857: doc-[?DO]
        !          3858: doc-[DO]
        !          3859: doc-[FOR]
        !          3860: doc-[LOOP]
        !          3861: doc-[+LOOP]
        !          3862: doc-[NEXT]
1.1       anton    3863: 
1.26    ! crook    3864: doc-[BEGIN]
        !          3865: doc-[UNTIL]
        !          3866: doc-[AGAIN]
        !          3867: doc-[WHILE]
        !          3868: doc-[REPEAT]
1.1       anton    3869: 
1.26    ! crook    3870: @c -------------------------------------------------------------
        !          3871: @node Tokens for Words, Word Lists, The Text Interpreter, Words
        !          3872: @section Tokens for Words
        !          3873: @cindex tokens for words
1.1       anton    3874: 
1.26    ! crook    3875: This chapter describes the creation and use of tokens that represent
        !          3876: words on the stack (and in data space).
1.21      crook    3877: 
1.26    ! crook    3878: Named words have interpretation and compilation semantics. Unnamed words
        !          3879: just have execution semantics.
1.21      crook    3880: 
1.26    ! crook    3881: @comment TODO ?normally interpretation semantics are the execution semantics.
        !          3882: @comment this should all be covered in earlier ss
1.21      crook    3883: 
1.26    ! crook    3884: @cindex execution token
        !          3885: An @dfn{execution token} represents the execution semantics of an
        !          3886: unnamed word. An execution token occupies one cell. As explained in
        !          3887: @ref{Supplying names}, the execution token of the last word
        !          3888: defined can be produced with @code{lastxt}.
1.1       anton    3889: 
1.26    ! crook    3890: doc-execute
        !          3891: doc-compile,
1.1       anton    3892: 
1.26    ! crook    3893: @cindex code field address
        !          3894: @cindex CFA
        !          3895: In Gforth, the abstract data type @emph{execution token} is implemented
        !          3896: as a code field address (CFA).
        !          3897: @comment TODO note that the standard does not say what it represents..
        !          3898: @comment and you cannot necessarily compile it in all Forths (eg native
        !          3899: @comment compilers?).
1.1       anton    3900: 
1.26    ! crook    3901: The interpretation semantics of a named word are also represented by an
        !          3902: execution token. You can get it with:
1.1       anton    3903: 
1.26    ! crook    3904: doc-[']
        !          3905: doc-'
1.1       anton    3906: 
1.26    ! crook    3907: For literals, you use @code{'} in interpreted code and @code{[']} in
        !          3908: compiled code. Gforth's @code{'} and @code{[']} behave somewhat unusually
        !          3909: by complaining about compile-only words. To get an execution token for a
        !          3910: compiling word @var{X}, use @code{COMP' @var{X} drop} or @code{[COMP']
        !          3911: @var{X} drop}.
1.1       anton    3912: 
1.26    ! crook    3913: @cindex compilation token
        !          3914: The compilation semantics are represented by a @dfn{compilation token}
        !          3915: consisting of two cells: @var{w xt}. The top cell @var{xt} is an
        !          3916: execution token. The compilation semantics represented by the
        !          3917: compilation token can be performed with @code{execute}, which consumes
        !          3918: the whole compilation token, with an additional stack effect determined
        !          3919: by the represented compilation semantics.
1.1       anton    3920: 
1.26    ! crook    3921: doc-[comp']
        !          3922: doc-comp'
1.1       anton    3923: 
1.26    ! crook    3924: You can compile the compilation semantics with @code{postpone,}. I.e.,
        !          3925: @code{COMP' @var{word} POSTPONE,} is equivalent to @code{POSTPONE
        !          3926: @var{word}}.
1.1       anton    3927: 
1.26    ! crook    3928: doc-postpone,
1.1       anton    3929: 
1.26    ! crook    3930: At present, the @var{w} part of a compilation token is an execution
        !          3931: token, and the @var{xt} part represents either @code{execute} or
        !          3932: @code{compile,}. However, don't rely on that knowledge, unless necessary;
        !          3933: we may introduce unusual compilation tokens in the future (e.g.,
        !          3934: compilation tokens representing the compilation semantics of literals).
1.21      crook    3935: 
1.26    ! crook    3936: @cindex name token
        !          3937: @cindex name field address
        !          3938: @cindex NFA
        !          3939: Named words are also represented by the @dfn{name token}, (@var{nt}). The abstract
        !          3940: data type @emph{name token} is implemented as a name field address (NFA).
1.1       anton    3941: 
1.26    ! crook    3942: doc-find-name
        !          3943: doc-name>int
        !          3944: doc-name?int
        !          3945: doc-name>comp
        !          3946: doc-name>string
1.1       anton    3947: 
1.26    ! crook    3948: @c -------------------------------------------------------------
        !          3949: @node Word Lists, Environmental Queries, Tokens for Words, Words
        !          3950: @section Word Lists
        !          3951: @cindex word lists
        !          3952: @cindex name dictionary
1.1       anton    3953: 
1.26    ! crook    3954: @cindex wid
        !          3955: All definitions other than those created by @code{:noname} have an entry
        !          3956: in the name dictionary. The name dictionary is fragmented into a number
        !          3957: of parts, called @var{word lists}. A word list is identified by a
        !          3958: cell-sized word list identifier (@var{wid}) in much the same way as a
        !          3959: file is identified by a file handle. The numerical value of the wid has
        !          3960: no (portable) meaning, and might change from session to session.
1.1       anton    3961: 
1.26    ! crook    3962: @cindex compilation word list
        !          3963: At any one time, a single word list is defined as the word list to which
        !          3964: all new definitions will be added -- this is called the @var{compilation
        !          3965: word list}. When Gforth is started, the compilation word list is the
        !          3966: word list called @code{FORTH-WORDLIST}.
1.1       anton    3967: 
1.26    ! crook    3968: @cindex search order stack
        !          3969: Forth maintains a stack of word lists, representing the @var{search
        !          3970: order}.  When the name dictionary is searched (for example, when
        !          3971: attempting to find a word's execution token during compilation), only
        !          3972: those word lists that are currently in the search order are
        !          3973: searched. The most recently-defined word in the word list at the top of
        !          3974: the word list stack is searched first, and the search proceeds until
        !          3975: either the word is located or the oldest definition in the word list at
        !          3976: the bottom of the stack is reached. Definitions of the word may exist in
        !          3977: more than one word lists; the search order determines which version will
        !          3978: be found.
1.1       anton    3979: 
1.26    ! crook    3980: The ANS Forth Standard ``Search order'' word set is intended to provide a
        !          3981: set of low-level tools that allow various different schemes to be
        !          3982: implemented. Gforth provides @code{vocabulary}, a traditional Forth
        !          3983: word.  @file{compat/vocabulary.fs} provides an implementation in ANS
        !          3984: Standard Forth.
1.1       anton    3985: 
1.26    ! crook    3986: TODO: locals section refers to here, saying that every word list (aka
        !          3987: vocabulary) has its own methods for searching etc. Need to document that.
1.1       anton    3988: 
1.26    ! crook    3989: doc-forth-wordlist
        !          3990: doc-definitions
        !          3991: doc-get-current
        !          3992: doc-set-current
1.1       anton    3993: 
1.26    ! crook    3994: @comment TODO when a defn (like set-order) is instanced twice, the second instance gets documented.
        !          3995: @comment In general that might be fine, but in this example (search.fs) the second instance is an
        !          3996: @comment alias, so it would not naturally have documentation
        !          3997: @comment .. the fix to that is to add a specific prefix, like the object-orientation stuff does.
1.1       anton    3998: 
1.26    ! crook    3999: doc-get-order
        !          4000: doc-set-order
        !          4001: doc-wordlist
        !          4002: doc-also
        !          4003: doc-forth
        !          4004: doc-only
        !          4005: doc-order
        !          4006: doc-previous
1.15      anton    4007: 
1.26    ! crook    4008: doc-find
        !          4009: doc-search-wordlist
1.15      anton    4010: 
1.26    ! crook    4011: doc-words
        !          4012: doc-vlist
1.1       anton    4013: 
1.26    ! crook    4014: doc-mappedwordlist
        !          4015: doc-root
        !          4016: doc-vocabulary
        !          4017: doc-seal
        !          4018: doc-vocs
        !          4019: doc-current
        !          4020: doc-context
1.1       anton    4021: 
1.26    ! crook    4022: @menu
        !          4023: * Why use word lists?::
        !          4024: * Word list examples::
        !          4025: @end menu
        !          4026: 
        !          4027: @node Why use word lists?, Word list examples, Word Lists, Word Lists
        !          4028: @subsection Why use word lists?
        !          4029: @cindex word lists - why use them?
        !          4030: 
        !          4031: There are several reasons for using multiple word lists:
        !          4032: 
        !          4033: @itemize @bullet
        !          4034: @item
        !          4035: To improve compilation speed by reducing the number of name dictionary
        !          4036: entries that must be searched. This is achieved by creating a new
        !          4037: word list that contains all of the definitions that are used in the
        !          4038: definition of a Forth system but which would not usually be used by
        !          4039: programs running on that system. That word list would be on the search
        !          4040: list when the Forth system was compiled but would be removed from the
        !          4041: search list for normal operation. This can be a useful technique for
        !          4042: low-performance systems (for example, 8-bit processors in embedded
        !          4043: systems) but is unlikely to be necessary in high-performance desktop
        !          4044: systems.
        !          4045: @item
        !          4046: To prevent a set of words from being used outside the context in which
        !          4047: they are valid. Two classic examples of this are an integrated editor
        !          4048: (all of the edit commands are defined in a separate word list; the
        !          4049: search order is set to the editor word list when the editor is invoked;
        !          4050: the old search order is restored when the editor is terminated) and an
        !          4051: integrated assembler (the op-codes for the machine are defined in a
        !          4052: separate word list which is used when a @code{CODE} word is defined).
        !          4053: @item
        !          4054: To prevent a name-space clash between multiple definitions with the same
        !          4055: name. For example, when building a cross-compiler you might have a word
        !          4056: @code{IF} that generates conditional code for your target system. By
        !          4057: placing this definition in a different word list you can control whether
        !          4058: the host system's @code{IF} or the target system's @code{IF} get used in
        !          4059: any particular context by controlling the order of the word lists on the
        !          4060: search order stack.
        !          4061: @end itemize
1.1       anton    4062: 
1.26    ! crook    4063: @node Word list examples, ,Why use word lists?, Word Lists
        !          4064: @subsection Word list examples
        !          4065: @cindex word lists - examples
1.1       anton    4066: 
1.26    ! crook    4067: Here is an example of creating and using a new wordlist using ANS
        !          4068: Forth Standard words:
1.1       anton    4069: 
                   4070: @example
1.26    ! crook    4071: wordlist constant my-new-words-wordlist
        !          4072: : my-new-words get-order nip my-new-words-wordlist swap set-order ;
1.21      crook    4073: 
1.26    ! crook    4074: \ add it to the search order
        !          4075: also my-new-words
1.21      crook    4076: 
1.26    ! crook    4077: \ alternatively, add it to the search order and make it
        !          4078: \ the compilation word list
        !          4079: also my-new-words definitions
        !          4080: \ type "order" to see the problem
1.21      crook    4081: @end example
                   4082: 
1.26    ! crook    4083: The problem with this example is that @code{order} has no way to
        !          4084: associate the name @code{my-new-words} with the wid of the word list (in
        !          4085: Gforth, @code{order} and @code{vocs} will display @code{???}  for a wid
        !          4086: that has no associated name). There is no Standard way of associating a
        !          4087: name with a wid.
        !          4088: 
        !          4089: In Gforth, this example can be re-coded using @code{vocabulary}, which
        !          4090: associates a name with a wid:
1.21      crook    4091: 
1.26    ! crook    4092: @example
        !          4093: vocabulary my-new-words
1.21      crook    4094: 
1.26    ! crook    4095: \ add it to the search order
        !          4096: my-new-words
1.21      crook    4097: 
1.26    ! crook    4098: \ alternatively, add it to the search order and make it
        !          4099: \ the compilation word list
        !          4100: my-new-words definitions
        !          4101: \ type "order" to see that the problem is solved
        !          4102: @end example
1.23      crook    4103: 
1.26    ! crook    4104: @c -------------------------------------------------------------
        !          4105: @node Environmental Queries, Files, Word Lists, Words
        !          4106: @section Environmental Queries
        !          4107: @cindex environmental queries
        !          4108: @comment TODO more index entries
1.21      crook    4109: 
1.26    ! crook    4110: ANS Forth introduced the idea of ``environmental queries'' as a way
        !          4111: for a program running on a system to determine certain characteristics of the system.
        !          4112: The Standard specifies a number of strings that might be recognised by a system.
1.21      crook    4113: 
1.26    ! crook    4114: The Standard requires that the name space used for environmental queries
        !          4115: be distinct from the name space used for definitions.
1.21      crook    4116: 
1.26    ! crook    4117: Typically, environmental queries are supported by creating a set of
        !          4118: definitions in a word list that is @var{only} used during environmental
        !          4119: queries; that is what Gforth does. There is no Standard way of adding
        !          4120: definitions to the set of recognised environmental queries, but any
        !          4121: implementation that supports the loading of optional word sets must have
        !          4122: some mechanism for doing this (after loading the word set, the
        !          4123: associated environmental query string must return @code{true}). In
        !          4124: Gforth, the word list used to honour environmental queries can be
        !          4125: manipulated just like any other word list.
1.21      crook    4126: 
1.26    ! crook    4127: doc-environment?
        !          4128: doc-environment-wordlist
1.21      crook    4129: 
1.26    ! crook    4130: doc-gforth
        !          4131: doc-os-class
1.21      crook    4132: 
1.26    ! crook    4133: Note that, whilst the documentation for (e.g.) @code{gforth} shows it
        !          4134: returning two items on the stack, querying it using @code{environment?}
        !          4135: will return an additional item; the @code{true} flag that shows that the
        !          4136: string was recognised.
1.21      crook    4137: 
1.26    ! crook    4138: @comment TODO Document the standard strings or note where they are documented herein
1.21      crook    4139: 
1.26    ! crook    4140: Here are some examples of using environmental queries:
1.21      crook    4141: 
1.26    ! crook    4142: @example
        !          4143: s" address-unit-bits" environment? 0=
        !          4144: [IF]
        !          4145:      cr .( environmental attribute address-units-bits unknown... ) cr
        !          4146: [THEN]
1.21      crook    4147: 
1.26    ! crook    4148: s" block" environment? [IF] DROP include block.fs [THEN]
1.21      crook    4149: 
1.26    ! crook    4150: s" gforth" environment? [IF] 2DROP include compat/vocabulary.fs [THEN]
1.21      crook    4151: 
1.26    ! crook    4152: s" gforth" environment? [IF] .( Gforth version ) TYPE
        !          4153:                         [ELSE] .( Not Gforth..) [THEN]
        !          4154: @end example
1.21      crook    4155: 
                   4156: 
1.26    ! crook    4157: Here is an example of adding a definition to the environment word list:
1.21      crook    4158: 
1.26    ! crook    4159: @example
        !          4160: get-current environment-wordlist set-current
        !          4161: true constant block
        !          4162: true constant block-ext
        !          4163: set-current
        !          4164: @end example
1.21      crook    4165: 
1.26    ! crook    4166: You can see what definitions are in the environment word list like this:
1.21      crook    4167: 
1.26    ! crook    4168: @example
        !          4169: get-order 1+ environment-wordlist swap set-order words previous
        !          4170: @end example
1.21      crook    4171: 
                   4172: 
1.26    ! crook    4173: @c -------------------------------------------------------------
        !          4174: @node Files, Blocks, Environmental Queries, Words
        !          4175: @section Files
1.21      crook    4176: 
1.26    ! crook    4177: Gforth provides facilities for accessing files that are stored in the
        !          4178: host operating system's file-system. Files that are processed by Gforth
        !          4179: can be divided into two categories:
1.21      crook    4180: 
1.23      crook    4181: @itemize @bullet
                   4182: @item
1.26    ! crook    4183: Files that are processed by the Text Interpreter (@var{Forth source files}).
1.23      crook    4184: @item
1.26    ! crook    4185: Files that are processed by some other program (@var{general files}).
        !          4186: @end itemize
        !          4187: 
        !          4188: @menu
        !          4189: * Forth source files::
        !          4190: * General files::         
        !          4191: * Search Paths::                 
        !          4192: * Forth Search Paths::    
        !          4193: * General Search Paths::        
        !          4194: @end menu
        !          4195: 
1.21      crook    4196: 
1.26    ! crook    4197: @c -------------------------------------------------------------
        !          4198: @node Forth source files, General files, Files, Files
        !          4199: @subsection Forth source files
        !          4200: @cindex including files
        !          4201: @cindex Forth source files
1.21      crook    4202: 
1.26    ! crook    4203: The simplest way to interpret the contents of a file is to use one of
        !          4204: these two formats:
1.21      crook    4205: 
1.26    ! crook    4206: @example
        !          4207: include mysource.fs
        !          4208: s" mysource.fs" included
        !          4209: @end example
1.21      crook    4210: 
1.26    ! crook    4211: Sometimes you want to include a file only if it is not included already
        !          4212: (by, say, another source file). In that case, you can use one of these
        !          4213: fomats:
1.21      crook    4214: 
1.26    ! crook    4215: @example
        !          4216: require mysource.fs
        !          4217: needs mysource.fs
        !          4218: s" mysource.fs" required
        !          4219: @end example
1.21      crook    4220: 
1.26    ! crook    4221: @cindex stack effect of included files
        !          4222: @cindex including files, stack effect
        !          4223: I recommend that you write your source files such that interpreting them
        !          4224: does not change the stack. This allows using these files with
        !          4225: @code{required} and friends without complications. For example:
1.21      crook    4226: 
1.26    ! crook    4227: @example
        !          4228: 1 require foo.fs drop
        !          4229: @end example
1.21      crook    4230: 
                   4231: 
1.26    ! crook    4232: doc-include-file
        !          4233: doc-included
        !          4234: doc-include
        !          4235: @comment TODO describe what happens on error. Describes how the require
        !          4236: @comment stuff works and describe how to clear/reset the history (eg
        !          4237: @comment for debug). Might want to include that in the MARKER example.
        !          4238: doc-required
        !          4239: doc-require
        !          4240: doc-needs
1.21      crook    4241: 
1.26    ! crook    4242: A definition in ANS Forth for @code{required} is provided in
        !          4243: @file{compat/required.fs}.
1.21      crook    4244: 
1.26    ! crook    4245: @c -------------------------------------------------------------
        !          4246: @node General files, Search Paths, Forth source files, Files
        !          4247: @subsection General files
        !          4248: @cindex general files
        !          4249: @cindex file-handling
1.21      crook    4250: 
1.26    ! crook    4251: Files are opened/created by name and type. The following types are
        !          4252: recognised:
1.1       anton    4253: 
1.26    ! crook    4254: doc-r/o
        !          4255: doc-r/w
        !          4256: doc-w/o
        !          4257: doc-bin
1.1       anton    4258: 
1.26    ! crook    4259: When a file is opened/created, it returns a file identifier,
        !          4260: @var{wfileid} that is used for all other file commands. All file
        !          4261: commands also return a status value, @var{wior}, that is 0 for a
        !          4262: successful operation and an implementation-defined non-zero value in the
        !          4263: case of an error.
1.21      crook    4264: 
1.26    ! crook    4265: doc-open-file
        !          4266: doc-create-file
1.21      crook    4267: 
1.26    ! crook    4268: doc-close-file
        !          4269: doc-delete-file
        !          4270: doc-rename-file
        !          4271: doc-read-file
        !          4272: doc-read-line
        !          4273: doc-write-file
        !          4274: doc-write-line
        !          4275: doc-emit-file
        !          4276: doc-flush-file
1.21      crook    4277: 
1.26    ! crook    4278: doc-file-status
        !          4279: doc-file-position
        !          4280: doc-reposition-file
        !          4281: doc-file-size
        !          4282: doc-resize-file
1.21      crook    4283: 
1.26    ! crook    4284: @c ---------------------------------------------------------
        !          4285: @node Search Paths, Forth Search Paths, General files, Files
        !          4286: @subsection Search Paths
        !          4287: @cindex path for @code{included}
        !          4288: @cindex file search path
        !          4289: @cindex @code{include} search path
        !          4290: @cindex search path for files
1.21      crook    4291: 
1.26    ! crook    4292: @comment what uses these search paths.. just include and friends?
        !          4293: If you specify an absolute filename (i.e., a filename starting with
        !          4294: @file{/} or @file{~}, or with @file{:} in the second position (as in
        !          4295: @samp{C:...})) for @code{included} and friends, that file is included
        !          4296: just as you would expect.
1.21      crook    4297: 
1.26    ! crook    4298: For relative filenames, Gforth uses a search path similar to Forth's
        !          4299: search order (@pxref{Word Lists}). It tries to find the given filename
        !          4300: in the directories present in the path, and includes the first one it
        !          4301: finds. There are separate search paths for Forth source files and
        !          4302: general files.
1.21      crook    4303: 
1.26    ! crook    4304: If the search path contains the directory @file{.} (as it should), this
        !          4305: refers to the directory that the present file was @code{included}
        !          4306: from. This allows files to include other files relative to their own
        !          4307: position (irrespective of the current working directory or the absolute
        !          4308: position).  This feature is essential for libraries consisting of
        !          4309: several files, where a file may include other files from the library.
        !          4310: It corresponds to @code{#include "..."} in C. If the current input
        !          4311: source is not a file, @file{.} refers to the directory of the innermost
        !          4312: file being included, or, if there is no file being included, to the
        !          4313: current working directory.
1.21      crook    4314: 
1.26    ! crook    4315: Use @file{~+} to refer to the current working directory (as in the
        !          4316: @code{bash}).
1.1       anton    4317: 
1.26    ! crook    4318: If the filename starts with @file{./}, the search path is not searched
        !          4319: (just as with absolute filenames), and the @file{.} has the same meaning
        !          4320: as described above.
1.1       anton    4321: 
1.26    ! crook    4322: @c ---------------------------------------------------------
        !          4323: @node Forth Search Paths, General Search Paths, Search Paths, Files
        !          4324: @subsubsection Forth Search Paths
        !          4325: @cindex search path control - forth
1.5       anton    4326: 
1.26    ! crook    4327: The search path is initialized when you start Gforth (@pxref{Invoking
        !          4328: Gforth}). You can display it and change it using these words:
1.5       anton    4329: 
1.26    ! crook    4330: doc-.fpath
        !          4331: doc-fpath+
        !          4332: doc-fpath=
        !          4333: doc-open-fpath-file
1.5       anton    4334: 
1.26    ! crook    4335: Here is an example of using @code{fpath} and @code{require}:
1.5       anton    4336: 
1.26    ! crook    4337: @example
        !          4338: fpath= /usr/lib/forth/|./
        !          4339: require timer.fs
        !          4340: @end example
1.5       anton    4341: 
1.26    ! crook    4342: @c ---------------------------------------------------------
        !          4343: @node General Search Paths,  , Forth Search Paths, Files
        !          4344: @subsubsection General Search Paths
        !          4345: @cindex search path control - for user applications
1.5       anton    4346: 
1.26    ! crook    4347: Your application may need to search files in several directories, like
        !          4348: @code{included} does. To facilitate this, Gforth allows you to define
        !          4349: and use your own search paths, by providing generic equivalents of the
        !          4350: Forth search path words:
1.5       anton    4351: 
1.26    ! crook    4352: doc-.path
        !          4353: doc-path+
        !          4354: doc-path=
        !          4355: doc-open-path-file
1.5       anton    4356: 
1.26    ! crook    4357: Here's an example of creating a search path:
1.5       anton    4358: 
1.26    ! crook    4359: @example
        !          4360: \ Make a buffer for the path:
        !          4361: create mypath   100 chars ,     \ maximum length (is checked)
        !          4362:                 0 ,             \ real len
        !          4363:                 100 chars allot \ space for path
        !          4364: @end example
1.5       anton    4365: 
1.26    ! crook    4366: @c -------------------------------------------------------------
        !          4367: @node Blocks, Other I/O, Files, Words
        !          4368: @section Blocks
        !          4369: 
        !          4370: This chapter describes how to use block files within Gforth.
        !          4371: 
        !          4372: Block files are traditionally means of data and source storage in
        !          4373: Forth. They have been very important in resource-starved computers
        !          4374: without OS in the past. Gforth doesn't encourage to use blocks as
        !          4375: source, and provides blocks only for backward compatibility. The ANS
        !          4376: standard requires blocks to be available when files are.
        !          4377: 
        !          4378: @comment TODO what about errors on open-blocks?
        !          4379: doc-open-blocks
        !          4380: doc-use
        !          4381: doc-scr
        !          4382: doc-blk
        !          4383: doc-get-block-fid
        !          4384: doc-block-position
        !          4385: doc-update
        !          4386: doc-save-buffers
        !          4387: doc-save-buffer
        !          4388: doc-empty-buffers
        !          4389: doc-empty-buffer
        !          4390: doc-flush
        !          4391: doc-get-buffer
        !          4392: doc---block-block
        !          4393: doc-buffer
        !          4394: doc-updated?
        !          4395: doc-list
        !          4396: doc-load
        !          4397: doc-thru
        !          4398: doc-+load
        !          4399: doc-+thru
        !          4400: doc---block--->
        !          4401: doc-block-included
        !          4402: 
        !          4403: @c -------------------------------------------------------------
        !          4404: @node Other I/O, Programming Tools, Blocks, Words
        !          4405: @section Other I/O
        !          4406: @comment TODO more index entries
        !          4407: 
        !          4408: @menu
        !          4409: * Simple numeric output::       Predefined formats
        !          4410: * Formatted numeric output::    Formatted (pictured) output
        !          4411: * String Formats::              How Forth stores strings in memory
        !          4412: * Displaying characters and strings:: Other stuff
        !          4413: * Input::                       Input
        !          4414: @end menu
        !          4415: 
        !          4416: @node Simple numeric output, Formatted numeric output, Other I/O, Other I/O
        !          4417: @subsection Simple numeric output
        !          4418: @cindex simple numeric output
        !          4419: @comment TODO more index entries
1.5       anton    4420: 
1.26    ! crook    4421: The simplest output functions are those that display numbers from the
        !          4422: data or floating-point stacks. Floating-point output is always displayed
        !          4423: using base 10. Numbers displayed from the data stack use the value stored
        !          4424: in @code{base}.
1.5       anton    4425: 
1.26    ! crook    4426: doc-.
        !          4427: doc-dec.
        !          4428: doc-hex.
        !          4429: doc-u.
        !          4430: doc-.r
        !          4431: doc-u.r
        !          4432: doc-d.
        !          4433: doc-ud.
        !          4434: doc-d.r
        !          4435: doc-ud.r
        !          4436: doc-f.
        !          4437: doc-fe.
        !          4438: doc-fs.
1.5       anton    4439: 
1.26    ! crook    4440: Examples of printing the number 1234.5678E23 in the different floating-point output
        !          4441: formats are shown below:
1.5       anton    4442: 
                   4443: @example
1.26    ! crook    4444: f. 123456779999999000000000000.
        !          4445: fe. 123.456779999999E24
        !          4446: fs. 1.23456779999999E26
1.5       anton    4447: @end example
                   4448: 
                   4449: 
1.26    ! crook    4450: @node Formatted numeric output, String Formats, Simple numeric output, Other I/O
        !          4451: @subsection Formatted numeric output
        !          4452: @cindex Formatted numeric output
        !          4453: @cindex pictured numeric output
        !          4454: @comment TODO more index entries
        !          4455: 
        !          4456: Forth traditionally uses a technique called @var{pictured numeric
        !          4457: output} for formatted printing of integers.  In this technique, digits
        !          4458: are extracted from the number (using the current output radix defined by
        !          4459: @code{base}), converted to ASCII codes and appended to a string that is
        !          4460: built in a scratch-pad area of memory (@pxref{core-idef,
        !          4461: Implementation-defined options, Implementation-defined
        !          4462: options}). Arbitrary characters can be appended to the string during the
        !          4463: extraction process. The completed string is specified by an address
        !          4464: and length and can be manipulated (@code{TYPE}ed, copied, modified)
        !          4465: under program control.
1.5       anton    4466: 
1.26    ! crook    4467: All of the words described in the previous section for simple numeric
        !          4468: output are implemented in Gforth using pictured numeric output.
1.5       anton    4469: 
1.26    ! crook    4470: Three important things to remember about Pictured Numeric Output:
1.5       anton    4471: 
1.26    ! crook    4472: @itemize @bullet
        !          4473: @item
        !          4474: It always operates on double-precision numbers; to display a single-precision number,
        !          4475: convert it first (@pxref{Double precision} for ways of doing this).
        !          4476: @item
        !          4477: It always treats the double-precision number as though it were unsigned. Refer to
        !          4478: the examples below for ways of printing signed numbers.
        !          4479: @item
        !          4480: The string is built up from right to left; least significant digit first.
        !          4481: @end itemize
1.5       anton    4482: 
1.26    ! crook    4483: doc-<#
        !          4484: doc-#
        !          4485: doc-#s
        !          4486: doc-hold
        !          4487: doc-sign
        !          4488: doc-#>
1.5       anton    4489: 
1.26    ! crook    4490: doc-represent
1.5       anton    4491: 
1.26    ! crook    4492: Here are some examples of using pictured numeric output:
1.5       anton    4493: 
                   4494: @example
1.26    ! crook    4495: : my-u. ( u -- )
        !          4496:   \ Simplest use of pns.. behaves like Standard u. 
        !          4497:   0              \ convert to unsigned double
        !          4498:   <#             \ start conversion
        !          4499:   #s             \ convert all digits
        !          4500:   #>             \ complete conversion
        !          4501:   TYPE SPACE ;   \ display, with trailing space
1.5       anton    4502: 
1.26    ! crook    4503: : cents-only ( u -- )
        !          4504:   0              \ convert to unsigned double
        !          4505:   <#             \ start conversion
        !          4506:   # #            \ convert two least-significant digits
        !          4507:   #>             \ complete conversion, discard other digits
        !          4508:   TYPE SPACE ;   \ display, with trailing space
1.5       anton    4509: 
1.26    ! crook    4510: : dollars-and-cents ( u -- )
        !          4511:   0              \ convert to unsigned double
        !          4512:   <#             \ start conversion
        !          4513:   # #            \ convert two least-significant digits
        !          4514:   [char] . hold  \ insert decimal point
        !          4515:   #s             \ convert remaining digits
        !          4516:   [char] $ hold  \ append currency symbol
        !          4517:   #>             \ complete conversion
        !          4518:   TYPE SPACE ;   \ display, with trailing space
1.5       anton    4519: 
1.26    ! crook    4520: : my-. ( n -- )
        !          4521:   \ handling negatives.. behaves like Standard .
        !          4522:   s>d            \ convert to signed double
        !          4523:   swap over dabs \ leave sign byte followed by unsigned double
        !          4524:   <#             \ start conversion
        !          4525:   #s             \ convert all digits
        !          4526:   rot sign       \ get at sign byte, append "-" if needed
        !          4527:   #>             \ complete conversion
        !          4528:   TYPE SPACE ;   \ display, with trailing space
1.5       anton    4529: 
1.26    ! crook    4530: : account. ( n -- )
        !          4531:   \ accountants don't like minus signs, they use braces
        !          4532:   \ for negative numbers
        !          4533:   s>d            \ convert to signed double
        !          4534:   swap over dabs \ leave sign byte followed by unsigned double
        !          4535:   <#             \ start conversion
        !          4536:   2 pick         \ get copy of sign byte
        !          4537:   0< IF [char] ) hold THEN \ right-most character of output
        !          4538:   #s             \ convert all digits
        !          4539:   rot            \ get at sign byte
        !          4540:   0< IF [char] ( hold THEN
        !          4541:   #>             \ complete conversion
        !          4542:   TYPE SPACE ;   \ display, with trailing space
1.5       anton    4543: @end example
                   4544: 
1.26    ! crook    4545: Here are some examples of using these words:
1.5       anton    4546: 
                   4547: @example
1.26    ! crook    4548: 1 my-u. 1
        !          4549: hex -1 my-u. decimal FFFFFFFF
        !          4550: 1 cents-only 01
        !          4551: 1234 cents-only 34
        !          4552: 2 dollars-and-cents $0.02
        !          4553: 1234 dollars-and-cents $12.34
        !          4554: 123 my-. 123
        !          4555: -123 my. -123
        !          4556: 123 account. 123
        !          4557: -456 account. (456)
1.5       anton    4558: @end example
                   4559: 
                   4560: 
1.26    ! crook    4561: @node String Formats, Displaying characters and strings, Formatted numeric output, Other I/O
        !          4562: @subsection String Formats
        !          4563: @cindex string formats
        !          4564: 
        !          4565: @comment TODO more index entries
        !          4566: 
        !          4567: Forth commonly uses two different methods for representing a string:
        !          4568: 
        !          4569: @itemize @bullet
        !          4570: @item
        !          4571: @cindex address of counted string
        !          4572: As a @var{counted string}, represented by a @var{c-addr}. The char
        !          4573: addressed by @var{c-addr} contains a character-count, @var{n}, of the
        !          4574: string and the string occupies the subsequent @var{n} char addresses in
        !          4575: memory.
        !          4576: @item
        !          4577: As cell pair on the stack; @var{c-addr u}, where @var{u} is the length
        !          4578: of the string in characters, and @var{c-addr} is the address of the
        !          4579: first byte of the string.
        !          4580: @end itemize
        !          4581: 
        !          4582: ANS Forth encourages the use of the second format when representing
        !          4583: strings on the stack, whilst conceeding that the counted string format
        !          4584: remains useful as a way of storing strings in memory.
        !          4585: 
        !          4586: doc-count
        !          4587: 
        !          4588: @xref{Memory Blocks} for words that move, copy and search
        !          4589: for strings. @xref{Displaying characters and strings,} for words that
        !          4590: display characters and strings.
        !          4591: 
        !          4592: 
        !          4593: @node Displaying characters and strings, Input, String Formats, Other I/O
        !          4594: @subsection Displaying characters and strings
        !          4595: @cindex displaying characters and strings
        !          4596: @cindex compiling characters and strings
        !          4597: @cindex cursor control
        !          4598: 
        !          4599: @comment TODO more index entries
        !          4600: 
        !          4601: This section starts with a glossary of Forth words and ends with a set
        !          4602: of examples.
        !          4603: 
        !          4604: doc-bl
        !          4605: doc-space
        !          4606: doc-spaces
        !          4607: doc-emit
        !          4608: doc-toupper
        !          4609: doc-."
        !          4610: doc-.(
        !          4611: doc-type
        !          4612: doc-cr
        !          4613: doc-at-xy
        !          4614: doc-page
        !          4615: doc-s"
        !          4616: doc-c"
        !          4617: doc-char
        !          4618: doc-[char]
        !          4619: doc-sliteral
        !          4620: 
        !          4621: As an example, consider the following text, stored in a file @file{test.fs}:
1.5       anton    4622: 
                   4623: @example
1.26    ! crook    4624: .( text-1)
        !          4625: : my-word
        !          4626:   ." text-2" cr
        !          4627:   .( text-3)
        !          4628: ;
        !          4629: 
        !          4630: ." text-4"
        !          4631: 
        !          4632: : my-char
        !          4633:   [char] ALPHABET emit
        !          4634:   char emit
        !          4635: ;
1.5       anton    4636: @end example
                   4637: 
1.26    ! crook    4638: When you load this code into Gforth, the following output is generated:
1.5       anton    4639: 
1.26    ! crook    4640: @example
        !          4641: @kbd{include test.fs <return>} text-1text-3text-4 ok
        !          4642: @end example
1.5       anton    4643: 
1.26    ! crook    4644: @itemize @bullet
        !          4645: @item
        !          4646: Messages @code{text-1} and @code{text-3} are displayed because @code{.(} 
        !          4647: is an immediate word; it behaves in the same way whether it is used inside
        !          4648: or outside a colon definition.
        !          4649: @item
        !          4650: Message @code{text-4} is displayed because of Gforth's added interpretation
        !          4651: semantics for @code{."}.
        !          4652: @item
        !          4653: Message @code{text-2} is @var{not} displayed, because the text interpreter
        !          4654: performs the compilation semantics for @code{."} within the definition of
        !          4655: @code{my-word}.
        !          4656: @end itemize
1.5       anton    4657: 
1.26    ! crook    4658: Here are some examples of executing @code{my-word} and @code{my-char}:
1.5       anton    4659: 
1.26    ! crook    4660: @example
        !          4661: @kbd{my-word <return>} text-2
        !          4662:  ok
        !          4663: @kbd{my-char fred <return>} Af ok
        !          4664: @kbd{my-char jim <return>} Aj ok
        !          4665: @end example
1.5       anton    4666: 
                   4667: @itemize @bullet
                   4668: @item
1.26    ! crook    4669: Message @code{text-2} is displayed because of the run-time behaviour of
        !          4670: @code{."}.
        !          4671: @item
        !          4672: @code{[char]} compiles the ``A'' from ``ALPHABET'' and puts its display code
        !          4673: on the stack at run-time. @code{emit} always displays the character
        !          4674: when @code{my-char} is executed.
        !          4675: @item
        !          4676: @code{char} parses a string at run-time and the second @code{emit} displays
        !          4677: the first character of the string.
1.5       anton    4678: @item
1.26    ! crook    4679: If you type @code{see my-char} you can see that @code{[char]} discarded
        !          4680: the text ``LPHABET'' and only compiled the display code for ``A'' into the
        !          4681: definition of @code{my-char}.
1.5       anton    4682: @end itemize
                   4683: 
                   4684: 
                   4685: 
1.26    ! crook    4686: @node Input, , Displaying characters and strings, Other I/O
        !          4687: @subsection Input
        !          4688: @cindex input
        !          4689: @comment TODO more index entries
1.5       anton    4690: 
1.26    ! crook    4691: Blah on traditional and recommended string formats.
1.5       anton    4692: 
1.26    ! crook    4693: doc--trailing
        !          4694: doc-/string
        !          4695: doc-convert
        !          4696: doc->number
        !          4697: doc->float
        !          4698: doc-accept
        !          4699: doc-query
        !          4700: doc-expect
        !          4701: doc-evaluate
        !          4702: doc-key
        !          4703: doc-key?
1.5       anton    4704: 
1.26    ! crook    4705: TODO reference the block move stuff elsewhere
1.5       anton    4706: 
1.26    ! crook    4707: TODO convert and >number might be better in the numeric input section.
1.5       anton    4708: 
1.26    ! crook    4709: TODO maybe some of these shouldn't be here but should be in a ``parsing'' section
1.5       anton    4710: 
                   4711: 
                   4712: @c -------------------------------------------------------------
1.26    ! crook    4713: @node Programming Tools, Assembler and Code Words, Other I/O, Words
        !          4714: @section Programming Tools
        !          4715: @cindex programming tools
1.12      anton    4716: 
                   4717: @menu
1.26    ! crook    4718: * Debugging::                   Simple and quick.
        !          4719: * Assertions::                  Making your programs self-checking.
        !          4720: * Singlestep Debugger::                Executing your program word by word.
1.5       anton    4721: @end menu
                   4722: 
1.26    ! crook    4723: @node Debugging, Assertions, Programming Tools, Programming Tools
        !          4724: @subsection Debugging
        !          4725: @cindex debugging
1.5       anton    4726: 
1.26    ! crook    4727: Languages with a slow edit/compile/link/test development loop tend to
        !          4728: require sophisticated tracing/stepping debuggers to facilate
        !          4729: productive debugging.
1.5       anton    4730: 
1.26    ! crook    4731: A much better (faster) way in fast-compiling languages is to add
        !          4732: printing code at well-selected places, let the program run, look at
        !          4733: the output, see where things went wrong, add more printing code, etc.,
        !          4734: until the bug is found.
1.5       anton    4735: 
1.26    ! crook    4736: The simple debugging aids provided in @file{debugs.fs}
        !          4737: are meant to support this style of debugging. In addition, there are
        !          4738: words for non-destructively inspecting the stack and memory:
1.5       anton    4739: 
1.26    ! crook    4740: doc-.s
        !          4741: doc-f.s
1.5       anton    4742: 
1.26    ! crook    4743: There is a word @code{.r} but it does @var{not} display the return
        !          4744: stack! It is used for formatted numeric output.
1.5       anton    4745: 
1.26    ! crook    4746: doc-depth
        !          4747: doc-fdepth
        !          4748: doc-clearstack
        !          4749: doc-?
        !          4750: doc-dump
1.5       anton    4751: 
1.26    ! crook    4752: The word @code{~~} prints debugging information (by default the source
        !          4753: location and the stack contents). It is easy to insert. If you use Emacs
        !          4754: it is also easy to remove (@kbd{C-x ~} in the Emacs Forth mode to
        !          4755: query-replace them with nothing). The deferred words
        !          4756: @code{printdebugdata} and @code{printdebugline} control the output of
        !          4757: @code{~~}. The default source location output format works well with
        !          4758: Emacs' compilation mode, so you can step through the program at the
        !          4759: source level using @kbd{C-x `} (the advantage over a stepping debugger
        !          4760: is that you can step in any direction and you know where the crash has
        !          4761: happened or where the strange data has occurred).
1.5       anton    4762: 
1.26    ! crook    4763: The default actions of @code{~~} clobber the contents of the pictured
        !          4764: numeric output string, so you should not use @code{~~}, e.g., between
        !          4765: @code{<#} and @code{#>}.
1.5       anton    4766: 
1.26    ! crook    4767: doc-~~
        !          4768: doc-printdebugdata
        !          4769: doc-printdebugline
1.5       anton    4770: 
1.26    ! crook    4771: doc-see
        !          4772: doc-marker
1.5       anton    4773: 
1.26    ! crook    4774: Here's an example of using @code{marker} at the start of a source file
        !          4775: that you are debugging; it ensures that you only ever have one copy of
        !          4776: the file's definitions compiled at any time:
1.5       anton    4777: 
1.26    ! crook    4778: @example
        !          4779: [IFDEF] my-code
        !          4780:     my-code
        !          4781: [ENDIF]
1.5       anton    4782: 
1.26    ! crook    4783: marker my-code
1.5       anton    4784: 
1.26    ! crook    4785: \ .. definitions start here
        !          4786: \ .
        !          4787: \ .
        !          4788: \ end
        !          4789: @end example
1.5       anton    4790: 
                   4791: 
                   4792: 
1.26    ! crook    4793: @node Assertions, Singlestep Debugger, Debugging, Programming Tools
        !          4794: @subsection Assertions
        !          4795: @cindex assertions
1.5       anton    4796: 
1.26    ! crook    4797: It is a good idea to make your programs self-checking, especially if you
        !          4798: make an assumption that may become invalid during maintenance (for
        !          4799: example, that a certain field of a data structure is never zero). Gforth
        !          4800: supports @var{assertions} for this purpose. They are used like this:
1.23      crook    4801: 
1.26    ! crook    4802: @example
        !          4803: assert( @var{flag} )
        !          4804: @end example
1.23      crook    4805: 
1.26    ! crook    4806: The code between @code{assert(} and @code{)} should compute a flag, that
        !          4807: should be true if everything is alright and false otherwise. It should
        !          4808: not change anything else on the stack. The overall stack effect of the
        !          4809: assertion is @code{( -- )}. E.g.
1.23      crook    4810: 
1.26    ! crook    4811: @example
        !          4812: assert( 1 1 + 2 = ) \ what we learn in school
        !          4813: assert( dup 0<> ) \ assert that the top of stack is not zero
        !          4814: assert( false ) \ this code should not be reached
        !          4815: @end example
1.23      crook    4816: 
1.26    ! crook    4817: The need for assertions is different at different times. During
        !          4818: debugging, we want more checking, in production we sometimes care more
        !          4819: for speed. Therefore, assertions can be turned off, i.e., the assertion
        !          4820: becomes a comment. Depending on the importance of an assertion and the
        !          4821: time it takes to check it, you may want to turn off some assertions and
        !          4822: keep others turned on. Gforth provides several levels of assertions for
        !          4823: this purpose:
1.23      crook    4824: 
1.26    ! crook    4825: doc-assert0(
        !          4826: doc-assert1(
        !          4827: doc-assert2(
        !          4828: doc-assert3(
        !          4829: doc-assert(
        !          4830: doc-)
1.23      crook    4831: 
1.26    ! crook    4832: The variable @code{assert-level} specifies the highest assertions that
        !          4833: are turned on. I.e., at the default @code{assert-level} of one,
        !          4834: @code{assert0(} and @code{assert1(} assertions perform checking, while
        !          4835: @code{assert2(} and @code{assert3(} assertions are treated as comments.
        !          4836: 
        !          4837: The value of @code{assert-level} is evaluated at compile-time, not at
        !          4838: run-time. Therefore you cannot turn assertions on or off at run-time;
        !          4839: you have to set the @code{assert-level} appropriately before compiling a
        !          4840: piece of code. You can compile different pieces of code at different
        !          4841: @code{assert-level}s (e.g., a trusted library at level 1 and
        !          4842: newly-written code at level 3).
1.23      crook    4843: 
1.26    ! crook    4844: doc-assert-level
1.23      crook    4845: 
1.26    ! crook    4846: If an assertion fails, a message compatible with Emacs' compilation mode
        !          4847: is produced and the execution is aborted (currently with @code{ABORT"}.
        !          4848: If there is interest, we will introduce a special throw code. But if you
        !          4849: intend to @code{catch} a specific condition, using @code{throw} is
        !          4850: probably more appropriate than an assertion).
1.23      crook    4851: 
1.26    ! crook    4852: Definitions in ANS Forth for these assertion words are provided
        !          4853: in @file{compat/assert.fs}.
1.23      crook    4854: 
                   4855: 
1.26    ! crook    4856: @node Singlestep Debugger, , Assertions, Programming Tools
        !          4857: @subsection Singlestep Debugger
        !          4858: @cindex singlestep Debugger
        !          4859: @cindex debugging Singlestep
        !          4860: @cindex @code{dbg}
        !          4861: @cindex @code{BREAK:}
        !          4862: @cindex @code{BREAK"}
1.23      crook    4863: 
1.26    ! crook    4864: When you create a new word there's often the need to check whether it
        !          4865: behaves correctly or not. You can do this by typing @code{dbg
        !          4866: badword}. A debug session might look like this:
1.23      crook    4867: 
1.26    ! crook    4868: @example
        !          4869: : badword 0 DO i . LOOP ;  ok
        !          4870: 2 dbg badword 
        !          4871: : badword  
        !          4872: Scanning code...
1.23      crook    4873: 
1.26    ! crook    4874: Nesting debugger ready!
1.23      crook    4875: 
1.26    ! crook    4876: 400D4738  8049BC4 0              -> [ 2 ] 00002 00000 
        !          4877: 400D4740  8049F68 DO             -> [ 0 ] 
        !          4878: 400D4744  804A0C8 i              -> [ 1 ] 00000 
        !          4879: 400D4748 400C5E60 .              -> 0 [ 0 ] 
        !          4880: 400D474C  8049D0C LOOP           -> [ 0 ] 
        !          4881: 400D4744  804A0C8 i              -> [ 1 ] 00001 
        !          4882: 400D4748 400C5E60 .              -> 1 [ 0 ] 
        !          4883: 400D474C  8049D0C LOOP           -> [ 0 ] 
        !          4884: 400D4758  804B384 ;              ->  ok
        !          4885: @end example
1.23      crook    4886: 
1.26    ! crook    4887: Each line displayed is one step. You always have to hit return to
        !          4888: execute the next word that is displayed. If you don't want to execute
        !          4889: the next word in a whole, you have to type @kbd{n} for @code{nest}. Here is
        !          4890: an overview what keys are available:
1.23      crook    4891: 
1.26    ! crook    4892: @table @i
1.23      crook    4893: 
1.26    ! crook    4894: @item <return>
        !          4895: Next; Execute the next word.
1.23      crook    4896: 
1.26    ! crook    4897: @item n
        !          4898: Nest; Single step through next word.
1.5       anton    4899: 
1.26    ! crook    4900: @item u
        !          4901: Unnest; Stop debugging and execute rest of word. If we got to this word
        !          4902: with nest, continue debugging with the calling word.
1.5       anton    4903: 
1.26    ! crook    4904: @item d
        !          4905: Done; Stop debugging and execute rest.
1.5       anton    4906: 
1.26    ! crook    4907: @item s
        !          4908: Stop; Abort immediately.
1.5       anton    4909: 
1.26    ! crook    4910: @end table
1.5       anton    4911: 
1.26    ! crook    4912: Debugging large application with this mechanism is very difficult, because
        !          4913: you have to nest very deeply into the program before the interesting part
        !          4914: begins. This takes a lot of time. 
1.5       anton    4915: 
1.26    ! crook    4916: To do it more directly put a @code{BREAK:} command into your source code.
        !          4917: When program execution reaches @code{BREAK:} the single step debugger is
        !          4918: invoked and you have all the features described above.
1.23      crook    4919: 
1.26    ! crook    4920: If you have more than one part to debug it is useful to know where the
        !          4921: program has stopped at the moment. You can do this by the 
        !          4922: @code{BREAK" string"} command. This behaves like @code{BREAK:} except that
        !          4923: string is typed out when the ``breakpoint'' is reached.
        !          4924: 
        !          4925: doc-dbg
        !          4926: doc-BREAK:
        !          4927: doc-BREAK"
        !          4928: 
        !          4929: 
        !          4930: @c -------------------------------------------------------------
        !          4931: @node Assembler and Code Words, Threading Words, Programming Tools, Words
        !          4932: @section Assembler and Code Words
        !          4933: @cindex assembler
        !          4934: @cindex code words
1.5       anton    4935: 
1.26    ! crook    4936: Gforth provides some words for defining primitives (words written in
        !          4937: machine code), and for defining the the machine-code equivalent of
        !          4938: @code{DOES>}-based defining words. However, the machine-independent
        !          4939: nature of Gforth poses a few problems: First of all, Gforth runs on
        !          4940: several architectures, so it can provide no standard assembler. What's
        !          4941: worse is that the register allocation not only depends on the processor,
        !          4942: but also on the @code{gcc} version and options used.
1.5       anton    4943: 
1.26    ! crook    4944: The words that Gforth offers encapsulate some system dependences (e.g., the
        !          4945: header structure), so a system-independent assembler may be used in
        !          4946: Gforth. If you do not have an assembler, you can compile machine code
        !          4947: directly with @code{,} and @code{c,}.
1.5       anton    4948: 
1.26    ! crook    4949: doc-assembler
        !          4950: doc-code
        !          4951: doc-end-code
        !          4952: doc-;code
        !          4953: doc-flush-icache
1.5       anton    4954: 
1.26    ! crook    4955: If @code{flush-icache} does not work correctly, @code{code} words
        !          4956: etc. will not work (reliably), either.
1.5       anton    4957: 
1.26    ! crook    4958: @code{flush-icache} is always present. The other words are rarely used
        !          4959: and reside in @code{code.fs}, which is usually not loaded. You can load
        !          4960: it with @code{require code.fs}.
1.5       anton    4961: 
1.26    ! crook    4962: @cindex registers of the inner interpreter
        !          4963: In the assembly code you will want to refer to the inner interpreter's
        !          4964: registers (e.g., the data stack pointer) and you may want to use other
        !          4965: registers for temporary storage. Unfortunately, the register allocation
        !          4966: is installation-dependent.
1.5       anton    4967: 
1.26    ! crook    4968: The easiest solution is to use explicit register declarations
        !          4969: (@pxref{Explicit Reg Vars, , Variables in Specified Registers, gcc.info,
        !          4970: GNU C Manual}) for all of the inner interpreter's registers: You have to
        !          4971: compile Gforth with @code{-DFORCE_REG} (configure option
        !          4972: @code{--enable-force-reg}) and the appropriate declarations must be
        !          4973: present in the @code{machine.h} file (see @code{mips.h} for an example;
        !          4974: you can find a full list of all declarable register symbols with
        !          4975: @code{grep register engine.c}). If you give explicit registers to all
        !          4976: variables that are declared at the beginning of @code{engine()}, you
        !          4977: should be able to use the other caller-saved registers for temporary
        !          4978: storage. Alternatively, you can use the @code{gcc} option
        !          4979: @code{-ffixed-REG} (@pxref{Code Gen Options, , Options for Code
        !          4980: Generation Conventions, gcc.info, GNU C Manual}) to reserve a register
        !          4981: (however, this restriction on register allocation may slow Gforth
        !          4982: significantly).
1.5       anton    4983: 
1.26    ! crook    4984: If this solution is not viable (e.g., because @code{gcc} does not allow
        !          4985: you to explicitly declare all the registers you need), you have to find
        !          4986: out by looking at the code where the inner interpreter's registers
        !          4987: reside and which registers can be used for temporary storage. You can
        !          4988: get an assembly listing of the engine's code with @code{make engine.s}.
1.5       anton    4989: 
1.26    ! crook    4990: In any case, it is good practice to abstract your assembly code from the
        !          4991: actual register allocation. E.g., if the data stack pointer resides in
        !          4992: register @code{$17}, create an alias for this register called @code{sp},
        !          4993: and use that in your assembly code.
1.5       anton    4994: 
1.26    ! crook    4995: @cindex code words, portable
        !          4996: Another option for implementing normal and defining words efficiently
        !          4997: is to add the desired functionality to the source of Gforth. For normal
        !          4998: words you just have to edit @file{primitives} (@pxref{Automatic
        !          4999: Generation}). Defining words (equivalent to @code{;CODE} words, for fast
        !          5000: defined words) may require changes in @file{engine.c}, @file{kernel.fs},
        !          5001: @file{prims2x.fs}, and possibly @file{cross.fs}.
1.5       anton    5002: 
                   5003: 
1.26    ! crook    5004: @c -------------------------------------------------------------
        !          5005: @node Threading Words, Locals, Assembler and Code Words, Words
        !          5006: @section Threading Words
        !          5007: @cindex threading words
1.5       anton    5008: 
1.26    ! crook    5009: @cindex code address
        !          5010: These words provide access to code addresses and other threading stuff
        !          5011: in Gforth (and, possibly, other interpretive Forths). It more or less
        !          5012: abstracts away the differences between direct and indirect threading
        !          5013: (and, for direct threading, the machine dependences). However, at
        !          5014: present this wordset is still incomplete. It is also pretty low-level;
        !          5015: some day it will hopefully be made unnecessary by an internals wordset
        !          5016: that abstracts implementation details away completely.
1.5       anton    5017: 
1.26    ! crook    5018: doc-threading-method
        !          5019: doc->code-address
        !          5020: doc->does-code
        !          5021: doc-code-address!
        !          5022: doc-does-code!
        !          5023: doc-does-handler!
        !          5024: doc-/does-handler
1.5       anton    5025: 
1.26    ! crook    5026: The code addresses produced by various defining words are produced by
        !          5027: the following words:
1.5       anton    5028: 
1.26    ! crook    5029: doc-docol:
        !          5030: doc-docon:
        !          5031: doc-dovar:
        !          5032: doc-douser:
        !          5033: doc-dodefer:
        !          5034: doc-dofield:
1.5       anton    5035: 
1.26    ! crook    5036: You can recognize words defined by a @code{CREATE}...@code{DOES>} word
        !          5037: with @code{>does-code}. If the word was defined in that way, the value
        !          5038: returned is non-zero and identifies the @code{DOES>} used by the
        !          5039: defining word.
        !          5040: @comment TODO should that be ``identifies the xt of the DOES> ??''
1.5       anton    5041: 
1.26    ! crook    5042: @c -------------------------------------------------------------
        !          5043: @node Locals, Structures, Threading Words, Words
        !          5044: @section Locals
        !          5045: @cindex locals
1.5       anton    5046: 
1.26    ! crook    5047: Local variables can make Forth programming more enjoyable and Forth
        !          5048: programs easier to read. Unfortunately, the locals of ANS Forth are
        !          5049: laden with restrictions. Therefore, we provide not only the ANS Forth
        !          5050: locals wordset, but also our own, more powerful locals wordset (we
        !          5051: implemented the ANS Forth locals wordset through our locals wordset).
1.5       anton    5052: 
1.26    ! crook    5053: The ideas in this section have also been published in the paper
        !          5054: @cite{Automatic Scoping of Local Variables} by M. Anton Ertl, presented
        !          5055: at EuroForth '94; it is available at
        !          5056: @*@url{http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz}.
1.5       anton    5057: 
1.26    ! crook    5058: @menu
        !          5059: * Gforth locals::               
        !          5060: * ANS Forth locals::            
        !          5061: @end menu
1.5       anton    5062: 
1.26    ! crook    5063: @node Gforth locals, ANS Forth locals, Locals, Locals
        !          5064: @subsection Gforth locals
        !          5065: @cindex Gforth locals
        !          5066: @cindex locals, Gforth style
1.5       anton    5067: 
1.26    ! crook    5068: Locals can be defined with
1.5       anton    5069: 
                   5070: @example
1.26    ! crook    5071: @{ local1 local2 ... -- comment @}
        !          5072: @end example
        !          5073: or
        !          5074: @example
        !          5075: @{ local1 local2 ... @}
1.5       anton    5076: @end example
                   5077: 
1.26    ! crook    5078: E.g.,
1.5       anton    5079: @example
1.26    ! crook    5080: : max @{ n1 n2 -- n3 @}
        !          5081:  n1 n2 > if
        !          5082:    n1
        !          5083:  else
        !          5084:    n2
        !          5085:  endif ;
1.5       anton    5086: @end example
                   5087: 
1.26    ! crook    5088: The similarity of locals definitions with stack comments is intended. A
        !          5089: locals definition often replaces the stack comment of a word. The order
        !          5090: of the locals corresponds to the order in a stack comment and everything
        !          5091: after the @code{--} is really a comment.
1.5       anton    5092: 
1.26    ! crook    5093: This similarity has one disadvantage: It is too easy to confuse locals
        !          5094: declarations with stack comments, causing bugs and making them hard to
        !          5095: find. However, this problem can be avoided by appropriate coding
        !          5096: conventions: Do not use both notations in the same program. If you do,
        !          5097: they should be distinguished using additional means, e.g. by position.
        !          5098: 
        !          5099: @cindex types of locals
        !          5100: @cindex locals types
        !          5101: The name of the local may be preceded by a type specifier, e.g.,
        !          5102: @code{F:} for a floating point value:
        !          5103: 
        !          5104: @example
        !          5105: : CX* @{ F: Ar F: Ai F: Br F: Bi -- Cr Ci @}
        !          5106: \ complex multiplication
        !          5107:  Ar Br f* Ai Bi f* f-
        !          5108:  Ar Bi f* Ai Br f* f+ ;
        !          5109: @end example
        !          5110: 
        !          5111: @cindex flavours of locals
        !          5112: @cindex locals flavours
        !          5113: @cindex value-flavoured locals
        !          5114: @cindex variable-flavoured locals
        !          5115: Gforth currently supports cells (@code{W:}, @code{W^}), doubles
        !          5116: (@code{D:}, @code{D^}), floats (@code{F:}, @code{F^}) and characters
        !          5117: (@code{C:}, @code{C^}) in two flavours: a value-flavoured local (defined
        !          5118: with @code{W:}, @code{D:} etc.) produces its value and can be changed
        !          5119: with @code{TO}. A variable-flavoured local (defined with @code{W^} etc.)
        !          5120: produces its address (which becomes invalid when the variable's scope is
        !          5121: left). E.g., the standard word @code{emit} can be defined in terms of
        !          5122: @code{type} like this:
1.5       anton    5123: 
                   5124: @example
1.26    ! crook    5125: : emit @{ C^ char* -- @}
        !          5126:     char* 1 type ;
1.5       anton    5127: @end example
                   5128: 
1.26    ! crook    5129: @cindex default type of locals
        !          5130: @cindex locals, default type
        !          5131: A local without type specifier is a @code{W:} local. Both flavours of
        !          5132: locals are initialized with values from the data or FP stack.
1.5       anton    5133: 
1.26    ! crook    5134: Currently there is no way to define locals with user-defined data
        !          5135: structures, but we are working on it.
1.5       anton    5136: 
1.26    ! crook    5137: Gforth allows defining locals everywhere in a colon definition. This
        !          5138: poses the following questions:
1.5       anton    5139: 
1.26    ! crook    5140: @menu
        !          5141: * Where are locals visible by name?::  
        !          5142: * How long do locals live?::    
        !          5143: * Programming Style::           
        !          5144: * Implementation::              
        !          5145: @end menu
1.5       anton    5146: 
1.26    ! crook    5147: @node Where are locals visible by name?, How long do locals live?, Gforth locals, Gforth locals
        !          5148: @subsubsection Where are locals visible by name?
        !          5149: @cindex locals visibility
        !          5150: @cindex visibility of locals
        !          5151: @cindex scope of locals
1.5       anton    5152: 
1.26    ! crook    5153: Basically, the answer is that locals are visible where you would expect
        !          5154: it in block-structured languages, and sometimes a little longer. If you
        !          5155: want to restrict the scope of a local, enclose its definition in
        !          5156: @code{SCOPE}...@code{ENDSCOPE}.
1.5       anton    5157: 
1.26    ! crook    5158: doc-scope
        !          5159: doc-endscope
1.5       anton    5160: 
1.26    ! crook    5161: These words behave like control structure words, so you can use them
        !          5162: with @code{CS-PICK} and @code{CS-ROLL} to restrict the scope in
        !          5163: arbitrary ways.
1.5       anton    5164: 
1.26    ! crook    5165: If you want a more exact answer to the visibility question, here's the
        !          5166: basic principle: A local is visible in all places that can only be
        !          5167: reached through the definition of the local@footnote{In compiler
        !          5168: construction terminology, all places dominated by the definition of the
        !          5169: local.}. In other words, it is not visible in places that can be reached
        !          5170: without going through the definition of the local. E.g., locals defined
        !          5171: in @code{IF}...@code{ENDIF} are visible until the @code{ENDIF}, locals
        !          5172: defined in @code{BEGIN}...@code{UNTIL} are visible after the
        !          5173: @code{UNTIL} (until, e.g., a subsequent @code{ENDSCOPE}).
1.5       anton    5174: 
1.26    ! crook    5175: The reasoning behind this solution is: We want to have the locals
        !          5176: visible as long as it is meaningful. The user can always make the
        !          5177: visibility shorter by using explicit scoping. In a place that can
        !          5178: only be reached through the definition of a local, the meaning of a
        !          5179: local name is clear. In other places it is not: How is the local
        !          5180: initialized at the control flow path that does not contain the
        !          5181: definition? Which local is meant, if the same name is defined twice in
        !          5182: two independent control flow paths?
1.5       anton    5183: 
1.26    ! crook    5184: This should be enough detail for nearly all users, so you can skip the
        !          5185: rest of this section. If you really must know all the gory details and
        !          5186: options, read on.
1.5       anton    5187: 
1.26    ! crook    5188: In order to implement this rule, the compiler has to know which places
        !          5189: are unreachable. It knows this automatically after @code{AHEAD},
        !          5190: @code{AGAIN}, @code{EXIT} and @code{LEAVE}; in other cases (e.g., after
        !          5191: most @code{THROW}s), you can use the word @code{UNREACHABLE} to tell the
        !          5192: compiler that the control flow never reaches that place. If
        !          5193: @code{UNREACHABLE} is not used where it could, the only consequence is
        !          5194: that the visibility of some locals is more limited than the rule above
        !          5195: says. If @code{UNREACHABLE} is used where it should not (i.e., if you
        !          5196: lie to the compiler), buggy code will be produced.
1.5       anton    5197: 
1.26    ! crook    5198: doc-unreachable
1.5       anton    5199: 
1.26    ! crook    5200: Another problem with this rule is that at @code{BEGIN}, the compiler
        !          5201: does not know which locals will be visible on the incoming
        !          5202: back-edge. All problems discussed in the following are due to this
        !          5203: ignorance of the compiler (we discuss the problems using @code{BEGIN}
        !          5204: loops as examples; the discussion also applies to @code{?DO} and other
        !          5205: loops). Perhaps the most insidious example is:
1.5       anton    5206: @example
1.26    ! crook    5207: AHEAD
        !          5208: BEGIN
        !          5209:   x
        !          5210: [ 1 CS-ROLL ] THEN
        !          5211:   @{ x @}
        !          5212:   ...
        !          5213: UNTIL
        !          5214: @end example
1.5       anton    5215: 
1.26    ! crook    5216: This should be legal according to the visibility rule. The use of
        !          5217: @code{x} can only be reached through the definition; but that appears
        !          5218: textually below the use.
1.5       anton    5219: 
1.26    ! crook    5220: From this example it is clear that the visibility rules cannot be fully
        !          5221: implemented without major headaches. Our implementation treats common
        !          5222: cases as advertised and the exceptions are treated in a safe way: The
        !          5223: compiler makes a reasonable guess about the locals visible after a
        !          5224: @code{BEGIN}; if it is too pessimistic, the
        !          5225: user will get a spurious error about the local not being defined; if the
        !          5226: compiler is too optimistic, it will notice this later and issue a
        !          5227: warning. In the case above the compiler would complain about @code{x}
        !          5228: being undefined at its use. You can see from the obscure examples in
        !          5229: this section that it takes quite unusual control structures to get the
        !          5230: compiler into trouble, and even then it will often do fine.
1.5       anton    5231: 
1.26    ! crook    5232: If the @code{BEGIN} is reachable from above, the most optimistic guess
        !          5233: is that all locals visible before the @code{BEGIN} will also be
        !          5234: visible after the @code{BEGIN}. This guess is valid for all loops that
        !          5235: are entered only through the @code{BEGIN}, in particular, for normal
        !          5236: @code{BEGIN}...@code{WHILE}...@code{REPEAT} and
        !          5237: @code{BEGIN}...@code{UNTIL} loops and it is implemented in our
        !          5238: compiler. When the branch to the @code{BEGIN} is finally generated by
        !          5239: @code{AGAIN} or @code{UNTIL}, the compiler checks the guess and
        !          5240: warns the user if it was too optimistic:
        !          5241: @example
        !          5242: IF
        !          5243:   @{ x @}
        !          5244: BEGIN
        !          5245:   \ x ? 
        !          5246: [ 1 cs-roll ] THEN
        !          5247:   ...
        !          5248: UNTIL
1.5       anton    5249: @end example
                   5250: 
1.26    ! crook    5251: Here, @code{x} lives only until the @code{BEGIN}, but the compiler
        !          5252: optimistically assumes that it lives until the @code{THEN}. It notices
        !          5253: this difference when it compiles the @code{UNTIL} and issues a
        !          5254: warning. The user can avoid the warning, and make sure that @code{x}
        !          5255: is not used in the wrong area by using explicit scoping:
        !          5256: @example
        !          5257: IF
        !          5258:   SCOPE
        !          5259:   @{ x @}
        !          5260:   ENDSCOPE
        !          5261: BEGIN
        !          5262: [ 1 cs-roll ] THEN
        !          5263:   ...
        !          5264: UNTIL
        !          5265: @end example
1.5       anton    5266: 
1.26    ! crook    5267: Since the guess is optimistic, there will be no spurious error messages
        !          5268: about undefined locals.
1.5       anton    5269: 
1.26    ! crook    5270: If the @code{BEGIN} is not reachable from above (e.g., after
        !          5271: @code{AHEAD} or @code{EXIT}), the compiler cannot even make an
        !          5272: optimistic guess, as the locals visible after the @code{BEGIN} may be
        !          5273: defined later. Therefore, the compiler assumes that no locals are
        !          5274: visible after the @code{BEGIN}. However, the user can use
        !          5275: @code{ASSUME-LIVE} to make the compiler assume that the same locals are
        !          5276: visible at the BEGIN as at the point where the top control-flow stack
        !          5277: item was created.
1.5       anton    5278: 
1.26    ! crook    5279: doc-assume-live
1.5       anton    5280: 
1.26    ! crook    5281: E.g.,
1.5       anton    5282: @example
1.26    ! crook    5283: @{ x @}
        !          5284: AHEAD
        !          5285: ASSUME-LIVE
        !          5286: BEGIN
        !          5287:   x
        !          5288: [ 1 CS-ROLL ] THEN
        !          5289:   ...
        !          5290: UNTIL
1.5       anton    5291: @end example
                   5292: 
1.26    ! crook    5293: Other cases where the locals are defined before the @code{BEGIN} can be
        !          5294: handled by inserting an appropriate @code{CS-ROLL} before the
        !          5295: @code{ASSUME-LIVE} (and changing the control-flow stack manipulation
        !          5296: behind the @code{ASSUME-LIVE}).
1.5       anton    5297: 
1.26    ! crook    5298: Cases where locals are defined after the @code{BEGIN} (but should be
        !          5299: visible immediately after the @code{BEGIN}) can only be handled by
        !          5300: rearranging the loop. E.g., the ``most insidious'' example above can be
        !          5301: arranged into:
1.5       anton    5302: @example
1.26    ! crook    5303: BEGIN
        !          5304:   @{ x @}
        !          5305:   ... 0=
        !          5306: WHILE
        !          5307:   x
        !          5308: REPEAT
1.5       anton    5309: @end example
                   5310: 
1.26    ! crook    5311: @node How long do locals live?, Programming Style, Where are locals visible by name?, Gforth locals
        !          5312: @subsubsection How long do locals live?
        !          5313: @cindex locals lifetime
        !          5314: @cindex lifetime of locals
1.5       anton    5315: 
1.26    ! crook    5316: The right answer for the lifetime question would be: A local lives at
        !          5317: least as long as it can be accessed. For a value-flavoured local this
        !          5318: means: until the end of its visibility. However, a variable-flavoured
        !          5319: local could be accessed through its address far beyond its visibility
        !          5320: scope. Ultimately, this would mean that such locals would have to be
        !          5321: garbage collected. Since this entails un-Forth-like implementation
        !          5322: complexities, I adopted the same cowardly solution as some other
        !          5323: languages (e.g., C): The local lives only as long as it is visible;
        !          5324: afterwards its address is invalid (and programs that access it
        !          5325: afterwards are erroneous).
1.5       anton    5326: 
1.26    ! crook    5327: @node Programming Style, Implementation, How long do locals live?, Gforth locals
        !          5328: @subsubsection Programming Style
        !          5329: @cindex locals programming style
        !          5330: @cindex programming style, locals
1.5       anton    5331: 
1.26    ! crook    5332: The freedom to define locals anywhere has the potential to change
        !          5333: programming styles dramatically. In particular, the need to use the
        !          5334: return stack for intermediate storage vanishes. Moreover, all stack
        !          5335: manipulations (except @code{PICK}s and @code{ROLL}s with run-time
        !          5336: determined arguments) can be eliminated: If the stack items are in the
        !          5337: wrong order, just write a locals definition for all of them; then
        !          5338: write the items in the order you want.
1.5       anton    5339: 
1.26    ! crook    5340: This seems a little far-fetched and eliminating stack manipulations is
        !          5341: unlikely to become a conscious programming objective. Still, the number
        !          5342: of stack manipulations will be reduced dramatically if local variables
        !          5343: are used liberally (e.g., compare @code{max} in @ref{Gforth locals} with
        !          5344: a traditional implementation of @code{max}).
1.5       anton    5345: 
1.26    ! crook    5346: This shows one potential benefit of locals: making Forth programs more
        !          5347: readable. Of course, this benefit will only be realized if the
        !          5348: programmers continue to honour the principle of factoring instead of
        !          5349: using the added latitude to make the words longer.
1.5       anton    5350: 
1.26    ! crook    5351: @cindex single-assignment style for locals
        !          5352: Using @code{TO} can and should be avoided.  Without @code{TO},
        !          5353: every value-flavoured local has only a single assignment and many
        !          5354: advantages of functional languages apply to Forth. I.e., programs are
        !          5355: easier to analyse, to optimize and to read: It is clear from the
        !          5356: definition what the local stands for, it does not turn into something
        !          5357: different later.
1.5       anton    5358: 
1.26    ! crook    5359: E.g., a definition using @code{TO} might look like this:
1.5       anton    5360: @example
1.26    ! crook    5361: : strcmp @{ addr1 u1 addr2 u2 -- n @}
        !          5362:  u1 u2 min 0
        !          5363:  ?do
        !          5364:    addr1 c@@ addr2 c@@ -
        !          5365:    ?dup-if
        !          5366:      unloop exit
        !          5367:    then
        !          5368:    addr1 char+ TO addr1
        !          5369:    addr2 char+ TO addr2
        !          5370:  loop
        !          5371:  u1 u2 - ;
1.5       anton    5372: @end example
1.26    ! crook    5373: Here, @code{TO} is used to update @code{addr1} and @code{addr2} at
        !          5374: every loop iteration. @code{strcmp} is a typical example of the
        !          5375: readability problems of using @code{TO}. When you start reading
        !          5376: @code{strcmp}, you think that @code{addr1} refers to the start of the
        !          5377: string. Only near the end of the loop you realize that it is something
        !          5378: else.
1.5       anton    5379: 
1.26    ! crook    5380: This can be avoided by defining two locals at the start of the loop that
        !          5381: are initialized with the right value for the current iteration.
1.5       anton    5382: @example
1.26    ! crook    5383: : strcmp @{ addr1 u1 addr2 u2 -- n @}
        !          5384:  addr1 addr2
        !          5385:  u1 u2 min 0 
        !          5386:  ?do @{ s1 s2 @}
        !          5387:    s1 c@@ s2 c@@ -
        !          5388:    ?dup-if
        !          5389:      unloop exit
        !          5390:    then
        !          5391:    s1 char+ s2 char+
        !          5392:  loop
        !          5393:  2drop
        !          5394:  u1 u2 - ;
1.5       anton    5395: @end example
1.26    ! crook    5396: Here it is clear from the start that @code{s1} has a different value
        !          5397: in every loop iteration.
1.5       anton    5398: 
1.26    ! crook    5399: @node Implementation,  , Programming Style, Gforth locals
        !          5400: @subsubsection Implementation
        !          5401: @cindex locals implementation
        !          5402: @cindex implementation of locals
1.5       anton    5403: 
1.26    ! crook    5404: @cindex locals stack
        !          5405: Gforth uses an extra locals stack. The most compelling reason for
        !          5406: this is that the return stack is not float-aligned; using an extra stack
        !          5407: also eliminates the problems and restrictions of using the return stack
        !          5408: as locals stack. Like the other stacks, the locals stack grows toward
        !          5409: lower addresses. A few primitives allow an efficient implementation:
1.5       anton    5410: 
1.26    ! crook    5411: doc-@local#
        !          5412: doc-f@local#
        !          5413: doc-laddr#
        !          5414: doc-lp+!#
        !          5415: doc-lp!
        !          5416: doc->l
        !          5417: doc-f>l
1.5       anton    5418: 
1.26    ! crook    5419: In addition to these primitives, some specializations of these
        !          5420: primitives for commonly occurring inline arguments are provided for
        !          5421: efficiency reasons, e.g., @code{@@local0} as specialization of
        !          5422: @code{@@local#} for the inline argument 0. The following compiling words
        !          5423: compile the right specialized version, or the general version, as
        !          5424: appropriate:
1.6       pazsan   5425: 
1.26    ! crook    5426: doc-compile-@local
        !          5427: doc-compile-f@local
        !          5428: doc-compile-lp+!
1.12      anton    5429: 
1.26    ! crook    5430: Combinations of conditional branches and @code{lp+!#} like
        !          5431: @code{?branch-lp+!#} (the locals pointer is only changed if the branch
        !          5432: is taken) are provided for efficiency and correctness in loops.
1.6       pazsan   5433: 
1.26    ! crook    5434: A special area in the dictionary space is reserved for keeping the
        !          5435: local variable names. @code{@{} switches the dictionary pointer to this
        !          5436: area and @code{@}} switches it back and generates the locals
        !          5437: initializing code. @code{W:} etc.@ are normal defining words. This
        !          5438: special area is cleared at the start of every colon definition.
1.6       pazsan   5439: 
1.26    ! crook    5440: @cindex word list for defining locals
        !          5441: A special feature of Gforth's dictionary is used to implement the
        !          5442: definition of locals without type specifiers: every word list (aka
        !          5443: vocabulary) has its own methods for searching
        !          5444: etc. (@pxref{Word Lists}). For the present purpose we defined a word list
        !          5445: with a special search method: When it is searched for a word, it
        !          5446: actually creates that word using @code{W:}. @code{@{} changes the search
        !          5447: order to first search the word list containing @code{@}}, @code{W:} etc.,
        !          5448: and then the word list for defining locals without type specifiers.
1.12      anton    5449: 
1.26    ! crook    5450: The lifetime rules support a stack discipline within a colon
        !          5451: definition: The lifetime of a local is either nested with other locals
        !          5452: lifetimes or it does not overlap them.
1.6       pazsan   5453: 
1.26    ! crook    5454: At @code{BEGIN}, @code{IF}, and @code{AHEAD} no code for locals stack
        !          5455: pointer manipulation is generated. Between control structure words
        !          5456: locals definitions can push locals onto the locals stack. @code{AGAIN}
        !          5457: is the simplest of the other three control flow words. It has to
        !          5458: restore the locals stack depth of the corresponding @code{BEGIN}
        !          5459: before branching. The code looks like this:
        !          5460: @format
        !          5461: @code{lp+!#} current-locals-size @minus{} dest-locals-size
        !          5462: @code{branch} <begin>
        !          5463: @end format
1.6       pazsan   5464: 
1.26    ! crook    5465: @code{UNTIL} is a little more complicated: If it branches back, it
        !          5466: must adjust the stack just like @code{AGAIN}. But if it falls through,
        !          5467: the locals stack must not be changed. The compiler generates the
        !          5468: following code:
        !          5469: @format
        !          5470: @code{?branch-lp+!#} <begin> current-locals-size @minus{} dest-locals-size
        !          5471: @end format
        !          5472: The locals stack pointer is only adjusted if the branch is taken.
1.6       pazsan   5473: 
1.26    ! crook    5474: @code{THEN} can produce somewhat inefficient code:
        !          5475: @format
        !          5476: @code{lp+!#} current-locals-size @minus{} orig-locals-size
        !          5477: <orig target>:
        !          5478: @code{lp+!#} orig-locals-size @minus{} new-locals-size
        !          5479: @end format
        !          5480: The second @code{lp+!#} adjusts the locals stack pointer from the
        !          5481: level at the @var{orig} point to the level after the @code{THEN}. The
        !          5482: first @code{lp+!#} adjusts the locals stack pointer from the current
        !          5483: level to the level at the orig point, so the complete effect is an
        !          5484: adjustment from the current level to the right level after the
        !          5485: @code{THEN}.
1.6       pazsan   5486: 
1.26    ! crook    5487: @cindex locals information on the control-flow stack
        !          5488: @cindex control-flow stack items, locals information
        !          5489: In a conventional Forth implementation a dest control-flow stack entry
        !          5490: is just the target address and an orig entry is just the address to be
        !          5491: patched. Our locals implementation adds a word list to every orig or dest
        !          5492: item. It is the list of locals visible (or assumed visible) at the point
        !          5493: described by the entry. Our implementation also adds a tag to identify
        !          5494: the kind of entry, in particular to differentiate between live and dead
        !          5495: (reachable and unreachable) orig entries.
1.6       pazsan   5496: 
1.26    ! crook    5497: A few unusual operations have to be performed on locals word lists:
1.6       pazsan   5498: 
1.26    ! crook    5499: doc-common-list
        !          5500: doc-sub-list?
        !          5501: doc-list-size
1.6       pazsan   5502: 
1.26    ! crook    5503: Several features of our locals word list implementation make these
        !          5504: operations easy to implement: The locals word lists are organised as
        !          5505: linked lists; the tails of these lists are shared, if the lists
        !          5506: contain some of the same locals; and the address of a name is greater
        !          5507: than the address of the names behind it in the list.
1.6       pazsan   5508: 
1.26    ! crook    5509: Another important implementation detail is the variable
        !          5510: @code{dead-code}. It is used by @code{BEGIN} and @code{THEN} to
        !          5511: determine if they can be reached directly or only through the branch
        !          5512: that they resolve. @code{dead-code} is set by @code{UNREACHABLE},
        !          5513: @code{AHEAD}, @code{EXIT} etc., and cleared at the start of a colon
        !          5514: definition, by @code{BEGIN} and usually by @code{THEN}.
1.6       pazsan   5515: 
1.26    ! crook    5516: Counted loops are similar to other loops in most respects, but
        !          5517: @code{LEAVE} requires special attention: It performs basically the same
        !          5518: service as @code{AHEAD}, but it does not create a control-flow stack
        !          5519: entry. Therefore the information has to be stored elsewhere;
        !          5520: traditionally, the information was stored in the target fields of the
        !          5521: branches created by the @code{LEAVE}s, by organizing these fields into a
        !          5522: linked list. Unfortunately, this clever trick does not provide enough
        !          5523: space for storing our extended control flow information. Therefore, we
        !          5524: introduce another stack, the leave stack. It contains the control-flow
        !          5525: stack entries for all unresolved @code{LEAVE}s.
1.6       pazsan   5526: 
1.26    ! crook    5527: Local names are kept until the end of the colon definition, even if
        !          5528: they are no longer visible in any control-flow path. In a few cases
        !          5529: this may lead to increased space needs for the locals name area, but
        !          5530: usually less than reclaiming this space would cost in code size.
1.6       pazsan   5531: 
                   5532: 
1.26    ! crook    5533: @node ANS Forth locals,  , Gforth locals, Locals
        !          5534: @subsection ANS Forth locals
        !          5535: @cindex locals, ANS Forth style
1.6       pazsan   5536: 
1.26    ! crook    5537: The ANS Forth locals wordset does not define a syntax for locals, but
        !          5538: words that make it possible to define various syntaxes. One of the
        !          5539: possible syntaxes is a subset of the syntax we used in the Gforth locals
        !          5540: wordset, i.e.:
1.6       pazsan   5541: 
                   5542: @example
1.26    ! crook    5543: @{ local1 local2 ... -- comment @}
1.6       pazsan   5544: @end example
1.23      crook    5545: @noindent
1.26    ! crook    5546: or
1.6       pazsan   5547: @example
1.26    ! crook    5548: @{ local1 local2 ... @}
1.6       pazsan   5549: @end example
                   5550: 
1.26    ! crook    5551: The order of the locals corresponds to the order in a stack comment. The
        !          5552: restrictions are:
1.6       pazsan   5553: 
                   5554: @itemize @bullet
                   5555: @item
1.26    ! crook    5556: Locals can only be cell-sized values (no type specifiers are allowed).
1.6       pazsan   5557: @item
1.26    ! crook    5558: Locals can be defined only outside control structures.
1.6       pazsan   5559: @item
1.26    ! crook    5560: Locals can interfere with explicit usage of the return stack. For the
        !          5561: exact (and long) rules, see the standard. If you don't use return stack
        !          5562: accessing words in a definition using locals, you will be all right. The
        !          5563: purpose of this rule is to make locals implementation on the return
        !          5564: stack easier.
1.6       pazsan   5565: @item
1.26    ! crook    5566: The whole definition must be in one line.
        !          5567: @end itemize
1.6       pazsan   5568: 
1.26    ! crook    5569: Locals defined in this way behave like @code{VALUE}s (@xref{Simple
        !          5570: Defining Words}). I.e., they are initialized from the stack. Using their
        !          5571: name produces their value. Their value can be changed using @code{TO}.
1.6       pazsan   5572: 
1.26    ! crook    5573: Since this syntax is supported by Gforth directly, you need not do
        !          5574: anything to use it. If you want to port a program using this syntax to
        !          5575: another ANS Forth system, use @file{compat/anslocal.fs} to implement the
        !          5576: syntax on the other system.
1.6       pazsan   5577: 
1.26    ! crook    5578: Note that a syntax shown in the standard, section A.13 looks
        !          5579: similar, but is quite different in having the order of locals
        !          5580: reversed. Beware!
1.6       pazsan   5581: 
1.26    ! crook    5582: The ANS Forth locals wordset itself consists of a word:
1.6       pazsan   5583: 
1.26    ! crook    5584: doc-(local)
1.6       pazsan   5585: 
1.26    ! crook    5586: The ANS Forth locals extension wordset defines a syntax using @code{locals|}, but it is so
        !          5587: awful that we strongly recommend not to use it. We have implemented this
        !          5588: syntax to make porting to Gforth easy, but do not document it here. The
        !          5589: problem with this syntax is that the locals are defined in an order
        !          5590: reversed with respect to the standard stack comment notation, making
        !          5591: programs harder to read, and easier to misread and miswrite. The only
        !          5592: merit of this syntax is that it is easy to implement using the ANS Forth
        !          5593: locals wordset.
1.7       pazsan   5594: 
                   5595: 
1.26    ! crook    5596: @c ----------------------------------------------------------
        !          5597: @node Structures, Object-oriented Forth, Locals, Words
        !          5598: @section  Structures
        !          5599: @cindex structures
        !          5600: @cindex records
1.7       pazsan   5601: 
1.26    ! crook    5602: This section presents the structure package that comes with Gforth. A
        !          5603: version of the package implemented in ANS Forth is available in
        !          5604: @file{compat/struct.fs}. This package was inspired by a posting on
        !          5605: comp.lang.forth in 1989 (unfortunately I don't remember, by whom;
        !          5606: possibly John Hayes). A version of this section has been published in
        !          5607: ???. Marcel Hendrix provided helpful comments.
1.7       pazsan   5608: 
1.26    ! crook    5609: @menu
        !          5610: * Why explicit structure support?::  
        !          5611: * Structure Usage::             
        !          5612: * Structure Naming Convention::  
        !          5613: * Structure Implementation::    
        !          5614: * Structure Glossary::          
        !          5615: @end menu
1.7       pazsan   5616: 
1.26    ! crook    5617: @node Why explicit structure support?, Structure Usage, Structures, Structures
        !          5618: @subsection Why explicit structure support?
1.7       pazsan   5619: 
1.26    ! crook    5620: @cindex address arithmetic for structures
        !          5621: @cindex structures using address arithmetic
        !          5622: If we want to use a structure containing several fields, we could simply
        !          5623: reserve memory for it, and access the fields using address arithmetic
        !          5624: (@pxref{Address arithmetic}). As an example, consider a structure with
        !          5625: the following fields
1.7       pazsan   5626: 
1.26    ! crook    5627: @table @code
        !          5628: @item a
        !          5629: is a float
        !          5630: @item b
        !          5631: is a cell
        !          5632: @item c
        !          5633: is a float
        !          5634: @end table
1.7       pazsan   5635: 
1.26    ! crook    5636: Given the (float-aligned) base address of the structure we get the
        !          5637: address of the field
1.13      pazsan   5638: 
1.26    ! crook    5639: @table @code
        !          5640: @item a
        !          5641: without doing anything further.
        !          5642: @item b
        !          5643: with @code{float+}
        !          5644: @item c
        !          5645: with @code{float+ cell+ faligned}
        !          5646: @end table
1.13      pazsan   5647: 
1.26    ! crook    5648: It is easy to see that this can become quite tiring. 
1.13      pazsan   5649: 
1.26    ! crook    5650: Moreover, it is not very readable, because seeing a
        !          5651: @code{cell+} tells us neither which kind of structure is
        !          5652: accessed nor what field is accessed; we have to somehow infer the kind
        !          5653: of structure, and then look up in the documentation, which field of
        !          5654: that structure corresponds to that offset.
1.13      pazsan   5655: 
1.26    ! crook    5656: Finally, this kind of address arithmetic also causes maintenance
        !          5657: troubles: If you add or delete a field somewhere in the middle of the
        !          5658: structure, you have to find and change all computations for the fields
        !          5659: afterwards.
1.13      pazsan   5660: 
1.26    ! crook    5661: So, instead of using @code{cell+} and friends directly, how
        !          5662: about storing the offsets in constants:
1.13      pazsan   5663: 
                   5664: @example
1.26    ! crook    5665: 0 constant a-offset
        !          5666: 0 float+ constant b-offset
        !          5667: 0 float+ cell+ faligned c-offset
1.13      pazsan   5668: @end example
                   5669: 
1.26    ! crook    5670: Now we can get the address of field @code{x} with @code{x-offset
        !          5671: +}. This is much better in all respects. Of course, you still
        !          5672: have to change all later offset definitions if you add a field. You can
        !          5673: fix this by declaring the offsets in the following way:
1.13      pazsan   5674: 
                   5675: @example
1.26    ! crook    5676: 0 constant a-offset
        !          5677: a-offset float+ constant b-offset
        !          5678: b-offset cell+ faligned constant c-offset
1.13      pazsan   5679: @end example
                   5680: 
1.26    ! crook    5681: Since we always use the offsets with @code{+}, we could use a defining
        !          5682: word @code{cfield} that includes the @code{+} in the action of the
        !          5683: defined word:
1.8       pazsan   5684: 
                   5685: @example
1.26    ! crook    5686: : cfield ( n "name" -- )
        !          5687:     create ,
        !          5688: does> ( name execution: addr1 -- addr2 )
        !          5689:     @@ + ;
1.13      pazsan   5690: 
1.26    ! crook    5691: 0 cfield a
        !          5692: 0 a float+ cfield b
        !          5693: 0 b cell+ faligned cfield c
1.13      pazsan   5694: @end example
                   5695: 
1.26    ! crook    5696: Instead of @code{x-offset +}, we now simply write @code{x}.
        !          5697: 
        !          5698: The structure field words now can be used quite nicely. However,
        !          5699: their definition is still a bit cumbersome: We have to repeat the
        !          5700: name, the information about size and alignment is distributed before
        !          5701: and after the field definitions etc.  The structure package presented
        !          5702: here addresses these problems.
        !          5703: 
        !          5704: @node Structure Usage, Structure Naming Convention, Why explicit structure support?, Structures
        !          5705: @subsection Structure Usage
        !          5706: @cindex structure usage
1.13      pazsan   5707: 
1.26    ! crook    5708: @cindex @code{field} usage
        !          5709: @cindex @code{struct} usage
        !          5710: @cindex @code{end-struct} usage
        !          5711: You can define a structure for a (data-less) linked list with:
1.13      pazsan   5712: @example
1.26    ! crook    5713: struct
        !          5714:     cell% field list-next
        !          5715: end-struct list%
1.13      pazsan   5716: @end example
                   5717: 
1.26    ! crook    5718: With the address of the list node on the stack, you can compute the
        !          5719: address of the field that contains the address of the next node with
        !          5720: @code{list-next}. E.g., you can determine the length of a list
        !          5721: with:
1.13      pazsan   5722: 
                   5723: @example
1.26    ! crook    5724: : list-length ( list -- n )
        !          5725: \ "list" is a pointer to the first element of a linked list
        !          5726: \ "n" is the length of the list
        !          5727:     0 BEGIN ( list1 n1 )
        !          5728:         over
        !          5729:     WHILE ( list1 n1 )
        !          5730:         1+ swap list-next @@ swap
        !          5731:     REPEAT
        !          5732:     nip ;
1.13      pazsan   5733: @end example
                   5734: 
1.26    ! crook    5735: You can reserve memory for a list node in the dictionary with
        !          5736: @code{list% %allot}, which leaves the address of the list node on the
        !          5737: stack. For the equivalent allocation on the heap you can use @code{list%
        !          5738: %alloc} (or, for an @code{allocate}-like stack effect (i.e., with ior),
        !          5739: use @code{list% %allocate}). You can get the the size of a list
        !          5740: node with @code{list% %size} and its alignment with @code{list%
        !          5741: %alignment}.
1.13      pazsan   5742: 
1.26    ! crook    5743: Note that in ANS Forth the body of a @code{create}d word is
        !          5744: @code{aligned} but not necessarily @code{faligned};
        !          5745: therefore, if you do a:
1.13      pazsan   5746: @example
1.26    ! crook    5747: create @emph{name} foo% %allot
1.8       pazsan   5748: @end example
                   5749: 
1.26    ! crook    5750: @noindent
        !          5751: then the memory alloted for @code{foo%} is
        !          5752: guaranteed to start at the body of @code{@emph{name}} only if
        !          5753: @code{foo%} contains only character, cell and double fields.
1.20      pazsan   5754: 
1.26    ! crook    5755: @cindex strcutures containing structures
        !          5756: You can include a structure @code{foo%} as a field of
        !          5757: another structure, like this:
1.20      pazsan   5758: @example
1.26    ! crook    5759: struct
        !          5760: ...
        !          5761:     foo% field ...
        !          5762: ...
        !          5763: end-struct ...
1.20      pazsan   5764: @end example
                   5765: 
1.26    ! crook    5766: @cindex structure extension
        !          5767: @cindex extended records
        !          5768: Instead of starting with an empty structure, you can extend an
        !          5769: existing structure. E.g., a plain linked list without data, as defined
        !          5770: above, is hardly useful; You can extend it to a linked list of integers,
        !          5771: like this:@footnote{This feature is also known as @emph{extended
        !          5772: records}. It is the main innovation in the Oberon language; in other
        !          5773: words, adding this feature to Modula-2 led Wirth to create a new
        !          5774: language, write a new compiler etc.  Adding this feature to Forth just
        !          5775: required a few lines of code.}
1.20      pazsan   5776: 
                   5777: @example
1.26    ! crook    5778: list%
        !          5779:     cell% field intlist-int
        !          5780: end-struct intlist%
1.20      pazsan   5781: @end example
                   5782: 
1.26    ! crook    5783: @code{intlist%} is a structure with two fields:
        !          5784: @code{list-next} and @code{intlist-int}.
1.20      pazsan   5785: 
1.26    ! crook    5786: @cindex structures containing arrays
        !          5787: You can specify an array type containing @emph{n} elements of
        !          5788: type @code{foo%} like this:
1.20      pazsan   5789: 
                   5790: @example
1.26    ! crook    5791: foo% @emph{n} *
1.20      pazsan   5792: @end example
                   5793: 
1.26    ! crook    5794: You can use this array type in any place where you can use a normal
        !          5795: type, e.g., when defining a @code{field}, or with
        !          5796: @code{%allot}.
1.20      pazsan   5797: 
1.26    ! crook    5798: @cindex first field optimization
        !          5799: The first field is at the base address of a structure and the word
        !          5800: for this field (e.g., @code{list-next}) actually does not change
        !          5801: the address on the stack. You may be tempted to leave it away in the
        !          5802: interest of run-time and space efficiency. This is not necessary,
        !          5803: because the structure package optimizes this case and compiling such
        !          5804: words does not generate any code. So, in the interest of readability
        !          5805: and maintainability you should include the word for the field when
        !          5806: accessing the field.
1.20      pazsan   5807: 
1.26    ! crook    5808: @node Structure Naming Convention, Structure Implementation, Structure Usage, Structures
        !          5809: @subsection Structure Naming Convention
        !          5810: @cindex structure naming convention
1.20      pazsan   5811: 
1.26    ! crook    5812: The field names that come to (my) mind are often quite generic, and,
        !          5813: if used, would cause frequent name clashes. E.g., many structures
        !          5814: probably contain a @code{counter} field. The structure names
        !          5815: that come to (my) mind are often also the logical choice for the names
        !          5816: of words that create such a structure.
1.20      pazsan   5817: 
1.26    ! crook    5818: Therefore, I have adopted the following naming conventions: 
1.20      pazsan   5819: 
1.26    ! crook    5820: @itemize @bullet
        !          5821: @cindex field naming convention
        !          5822: @item
        !          5823: The names of fields are of the form
        !          5824: @code{@emph{struct}-@emph{field}}, where
        !          5825: @code{@emph{struct}} is the basic name of the structure, and
        !          5826: @code{@emph{field}} is the basic name of the field. You can
        !          5827: think of field words as converting the (address of the)
        !          5828: structure into the (address of the) field.
1.20      pazsan   5829: 
1.26    ! crook    5830: @cindex structure naming convention
        !          5831: @item
        !          5832: The names of structures are of the form
        !          5833: @code{@emph{struct}%}, where
        !          5834: @code{@emph{struct}} is the basic name of the structure.
        !          5835: @end itemize
1.20      pazsan   5836: 
1.26    ! crook    5837: This naming convention does not work that well for fields of extended
        !          5838: structures; e.g., the integer list structure has a field
        !          5839: @code{intlist-int}, but has @code{list-next}, not
        !          5840: @code{intlist-next}.
1.20      pazsan   5841: 
1.26    ! crook    5842: @node Structure Implementation, Structure Glossary, Structure Naming Convention, Structures
        !          5843: @subsection Structure Implementation
        !          5844: @cindex structure implementation
        !          5845: @cindex implementation of structures
1.20      pazsan   5846: 
1.26    ! crook    5847: The central idea in the implementation is to pass the data about the
        !          5848: structure being built on the stack, not in some global
        !          5849: variable. Everything else falls into place naturally once this design
        !          5850: decision is made.
1.20      pazsan   5851: 
1.26    ! crook    5852: The type description on the stack is of the form @emph{align
        !          5853: size}. Keeping the size on the top-of-stack makes dealing with arrays
        !          5854: very simple.
1.20      pazsan   5855: 
1.26    ! crook    5856: @code{field} is a defining word that uses @code{Create}
        !          5857: and @code{DOES>}. The body of the field contains the offset
        !          5858: of the field, and the normal @code{DOES>} action is simply:
1.20      pazsan   5859: 
                   5860: @example
1.26    ! crook    5861: @ +
1.20      pazsan   5862: @end example
                   5863: 
1.23      crook    5864: @noindent
1.26    ! crook    5865: i.e., add the offset to the address, giving the stack effect
        !          5866: @var{addr1 -- addr2} for a field.
1.20      pazsan   5867: 
1.26    ! crook    5868: @cindex first field optimization, implementation
        !          5869: This simple structure is slightly complicated by the optimization
        !          5870: for fields with offset 0, which requires a different
        !          5871: @code{DOES>}-part (because we cannot rely on there being
        !          5872: something on the stack if such a field is invoked during
        !          5873: compilation). Therefore, we put the different @code{DOES>}-parts
        !          5874: in separate words, and decide which one to invoke based on the
        !          5875: offset. For a zero offset, the field is basically a noop; it is
        !          5876: immediate, and therefore no code is generated when it is compiled.
1.20      pazsan   5877: 
1.26    ! crook    5878: @node Structure Glossary,  , Structure Implementation, Structures
        !          5879: @subsection Structure Glossary
        !          5880: @cindex structure glossary
1.20      pazsan   5881: 
1.26    ! crook    5882: doc-%align
        !          5883: doc-%alignment
        !          5884: doc-%alloc
        !          5885: doc-%allocate
        !          5886: doc-%allot
        !          5887: doc-cell%
        !          5888: doc-char%
        !          5889: doc-dfloat%
        !          5890: doc-double%
        !          5891: doc-end-struct
        !          5892: doc-field
        !          5893: doc-float%
        !          5894: doc-naligned
        !          5895: doc-sfloat%
        !          5896: doc-%size
        !          5897: doc-struct
1.23      crook    5898: 
1.26    ! crook    5899: @c -------------------------------------------------------------
        !          5900: @node Object-oriented Forth, Passing Commands to the OS, Structures, Words
        !          5901: @section Object-oriented Forth
1.20      pazsan   5902: 
1.26    ! crook    5903: Gforth comes with three packages for object-oriented programming:
        !          5904: @file{objects.fs}, @file{oof.fs}, and @file{mini-oof.fs}; none of them
        !          5905: is preloaded, so you have to @code{include} them before use. The most
        !          5906: important differences between these packages (and others) are discussed
        !          5907: in @ref{Comparison with other object models}. All packages are written
        !          5908: in ANS Forth and can be used with any other ANS Forth.
1.20      pazsan   5909: 
1.26    ! crook    5910: @menu
        !          5911: * Why object-oriented programming?::
        !          5912: * Object-Oriented Terminology::
        !          5913: * Objects::
        !          5914: * OOF::
        !          5915: * Mini-OOF::
        !          5916: * Comparison with other object models::  
        !          5917: @end menu
1.20      pazsan   5918: 
1.23      crook    5919: 
1.26    ! crook    5920: @node Why object-oriented programming?, Object-Oriented Terminology, , Object-oriented Forth
        !          5921: @subsubsection Why object-oriented programming?
        !          5922: @cindex object-oriented programming motivation
        !          5923: @cindex motivation for object-oriented programming
1.23      crook    5924: 
1.26    ! crook    5925: Often we have to deal with several data structures (@emph{objects}),
        !          5926: that have to be treated similarly in some respects, but differently in
        !          5927: others. Graphical objects are the textbook example: circles, triangles,
        !          5928: dinosaurs, icons, and others, and we may want to add more during program
        !          5929: development. We want to apply some operations to any graphical object,
        !          5930: e.g., @code{draw} for displaying it on the screen. However, @code{draw}
        !          5931: has to do something different for every kind of object.
        !          5932: @comment TODO add some other operations eg perimeter, area
        !          5933: @comment and tie in to concrete examples later..
1.23      crook    5934: 
1.26    ! crook    5935: We could implement @code{draw} as a big @code{CASE}
        !          5936: control structure that executes the appropriate code depending on the
        !          5937: kind of object to be drawn. This would be not be very elegant, and,
        !          5938: moreover, we would have to change @code{draw} every time we add
        !          5939: a new kind of graphical object (say, a spaceship).
1.23      crook    5940: 
1.26    ! crook    5941: What we would rather do is: When defining spaceships, we would tell
        !          5942: the system: ``Here's how you @code{draw} a spaceship; you figure
        !          5943: out the rest''.
1.23      crook    5944: 
1.26    ! crook    5945: This is the problem that all systems solve that (rightfully) call
        !          5946: themselves object-oriented; the object-oriented packages presented here
        !          5947: solve this problem (and not much else).
        !          5948: @comment TODO ?list properties of oo systems.. oo vs o-based?
1.23      crook    5949: 
1.26    ! crook    5950: @node Object-Oriented Terminology, Objects, Why object-oriented programming?, Object-oriented Forth
        !          5951: @subsubsection Object-Oriented Terminology
        !          5952: @cindex object-oriented terminology
        !          5953: @cindex terminology for object-oriented programming
1.23      crook    5954: 
1.26    ! crook    5955: This section is mainly for reference, so you don't have to understand
        !          5956: all of it right away.  The terminology is mainly Smalltalk-inspired.  In
        !          5957: short:
1.23      crook    5958: 
1.26    ! crook    5959: @table @emph
        !          5960: @cindex class
        !          5961: @item class
        !          5962: a data structure definition with some extras.
1.23      crook    5963: 
1.26    ! crook    5964: @cindex object
        !          5965: @item object
        !          5966: an instance of the data structure described by the class definition.
1.23      crook    5967: 
1.26    ! crook    5968: @cindex instance variables
        !          5969: @item instance variables
        !          5970: fields of the data structure.
1.23      crook    5971: 
1.26    ! crook    5972: @cindex selector
        !          5973: @cindex method selector
        !          5974: @cindex virtual function
        !          5975: @item selector
        !          5976: (or @emph{method selector}) a word (e.g.,
        !          5977: @code{draw}) that performs an operation on a variety of data
        !          5978: structures (classes). A selector describes @emph{what} operation to
        !          5979: perform. In C++ terminology: a (pure) virtual function.
1.23      crook    5980: 
1.26    ! crook    5981: @cindex method
        !          5982: @item method
        !          5983: the concrete definition that performs the operation
        !          5984: described by the selector for a specific class. A method specifies
        !          5985: @emph{how} the operation is performed for a specific class.
1.23      crook    5986: 
1.26    ! crook    5987: @cindex selector invocation
        !          5988: @cindex message send
        !          5989: @cindex invoking a selector
        !          5990: @item selector invocation
        !          5991: a call of a selector. One argument of the call (the TOS (top-of-stack))
        !          5992: is used for determining which method is used. In Smalltalk terminology:
        !          5993: a message (consisting of the selector and the other arguments) is sent
        !          5994: to the object.
1.1       anton    5995: 
1.26    ! crook    5996: @cindex receiving object
        !          5997: @item receiving object
        !          5998: the object used for determining the method executed by a selector
        !          5999: invocation. In the @file{objects.fs} model, it is the object that is on
        !          6000: the TOS when the selector is invoked. (@emph{Receiving} comes from
        !          6001: the Smalltalk @emph{message} terminology.)
1.1       anton    6002: 
1.26    ! crook    6003: @cindex child class
        !          6004: @cindex parent class
        !          6005: @cindex inheritance
        !          6006: @item child class
        !          6007: a class that has (@emph{inherits}) all properties (instance variables,
        !          6008: selectors, methods) from a @emph{parent class}. In Smalltalk
        !          6009: terminology: The subclass inherits from the superclass. In C++
        !          6010: terminology: The derived class inherits from the base class.
1.1       anton    6011: 
1.26    ! crook    6012: @end table
1.21      crook    6013: 
1.26    ! crook    6014: @c If you wonder about the message sending terminology, it comes from
        !          6015: @c a time when each object had it's own task and objects communicated via
        !          6016: @c message passing; eventually the Smalltalk developers realized that
        !          6017: @c they can do most things through simple (indirect) calls. They kept the
        !          6018: @c terminology.
1.1       anton    6019: 
                   6020: 
1.26    ! crook    6021: @node Objects, OOF, Object-Oriented Terminology, Object-oriented Forth
        !          6022: @subsection The @file{objects.fs} model
        !          6023: @cindex objects
        !          6024: @cindex object-oriented programming
1.1       anton    6025: 
1.26    ! crook    6026: @cindex @file{objects.fs}
        !          6027: @cindex @file{oof.fs}
1.1       anton    6028: 
1.26    ! crook    6029: This section describes the @file{objects.fs} package. This material also has been published in @cite{Yet Another Forth Objects Package} by Anton Ertl and appeared in Forth Dimensions 19(2), pages 37--43 (@url{http://www.complang.tuwien.ac.at/forth/objects/objects.html}).
        !          6030: @c McKewan's and Zsoter's packages
1.1       anton    6031: 
1.26    ! crook    6032: This section assumes that you have read @ref{Structures}.
1.1       anton    6033: 
1.26    ! crook    6034: The techniques on which this model is based have been used to implement
        !          6035: the parser generator, Gray, and have also been used in Gforth for
        !          6036: implementing the various flavours of word lists (hashed or not,
        !          6037: case-sensitive or not, special-purpose word lists for locals etc.).
1.1       anton    6038: 
                   6039: 
1.26    ! crook    6040: @menu
        !          6041: * Properties of the Objects model::  
        !          6042: * Basic Objects Usage::         
        !          6043: * The Objects base class::            
        !          6044: * Creating objects::            
        !          6045: * Object-Oriented Programming Style::  
        !          6046: * Class Binding::               
        !          6047: * Method conveniences::         
        !          6048: * Classes and Scoping::         
        !          6049: * Object Interfaces::           
        !          6050: * Objects Implementation::      
        !          6051: * Objects Glossary::            
        !          6052: @end menu
1.1       anton    6053: 
1.26    ! crook    6054: Marcel Hendrix provided helpful comments on this section. Andras Zsoter
        !          6055: and Bernd Paysan helped me with the related works section.
1.1       anton    6056: 
1.26    ! crook    6057: @node Properties of the Objects model, Basic Objects Usage, Objects, Objects
        !          6058: @subsubsection Properties of the @file{objects.fs} model
        !          6059: @cindex @file{objects.fs} properties
1.1       anton    6060: 
1.26    ! crook    6061: @itemize @bullet
        !          6062: @item
        !          6063: It is straightforward to pass objects on the stack. Passing
        !          6064: selectors on the stack is a little less convenient, but possible.
1.1       anton    6065: 
1.26    ! crook    6066: @item
        !          6067: Objects are just data structures in memory, and are referenced by their
        !          6068: address. You can create words for objects with normal defining words
        !          6069: like @code{constant}. Likewise, there is no difference between instance
        !          6070: variables that contain objects and those that contain other data.
1.1       anton    6071: 
1.26    ! crook    6072: @item
        !          6073: Late binding is efficient and easy to use.
1.21      crook    6074: 
1.26    ! crook    6075: @item
        !          6076: It avoids parsing, and thus avoids problems with state-smartness
        !          6077: and reduced extensibility; for convenience there are a few parsing
        !          6078: words, but they have non-parsing counterparts. There are also a few
        !          6079: defining words that parse. This is hard to avoid, because all standard
        !          6080: defining words parse (except @code{:noname}); however, such
        !          6081: words are not as bad as many other parsing words, because they are not
        !          6082: state-smart.
1.21      crook    6083: 
1.26    ! crook    6084: @item
        !          6085: It does not try to incorporate everything. It does a few things and does
        !          6086: them well (IMO). In particular, this model was not designed to support
        !          6087: information hiding (although it has features that may help); you can use
        !          6088: a separate package for achieving this.
1.21      crook    6089: 
1.26    ! crook    6090: @item
        !          6091: It is layered; you don't have to learn and use all features to use this
        !          6092: model. Only a few features are necessary (@xref{Basic Objects Usage},
        !          6093: @xref{The Objects base class}, @xref{Creating objects}.), the others
        !          6094: are optional and independent of each other.
1.21      crook    6095: 
1.26    ! crook    6096: @item
        !          6097: An implementation in ANS Forth is available.
1.21      crook    6098: 
1.26    ! crook    6099: @end itemize
1.21      crook    6100: 
                   6101: 
1.26    ! crook    6102: @node Basic Objects Usage, The Objects base class, Properties of the Objects model, Objects
        !          6103: @subsubsection Basic @file{objects.fs} Usage
        !          6104: @cindex basic objects usage
        !          6105: @cindex objects, basic usage
1.21      crook    6106: 
1.26    ! crook    6107: You can define a class for graphical objects like this:
1.21      crook    6108: 
1.26    ! crook    6109: @cindex @code{class} usage
        !          6110: @cindex @code{end-class} usage
        !          6111: @cindex @code{selector} usage
        !          6112: @example
        !          6113: object class \ "object" is the parent class
        !          6114:   selector draw ( x y graphical -- )
        !          6115: end-class graphical
        !          6116: @end example
1.21      crook    6117: 
1.26    ! crook    6118: This code defines a class @code{graphical} with an
        !          6119: operation @code{draw}.  We can perform the operation
        !          6120: @code{draw} on any @code{graphical} object, e.g.:
1.21      crook    6121: 
1.26    ! crook    6122: @example
        !          6123: 100 100 t-rex draw
        !          6124: @end example
1.21      crook    6125: 
1.26    ! crook    6126: @noindent
        !          6127: where @code{t-rex} is a word (say, a constant) that produces a
        !          6128: graphical object.
1.21      crook    6129: 
1.26    ! crook    6130: @comment nac TODO add a 2nd operation eg perimeter.. and use for
        !          6131: @comment a concrete example
1.21      crook    6132: 
1.26    ! crook    6133: @cindex abstract class
        !          6134: How do we create a graphical object? With the present definitions,
        !          6135: we cannot create a useful graphical object. The class
        !          6136: @code{graphical} describes graphical objects in general, but not
        !          6137: any concrete graphical object type (C++ users would call it an
        !          6138: @emph{abstract class}); e.g., there is no method for the selector
        !          6139: @code{draw} in the class @code{graphical}.
1.21      crook    6140: 
1.26    ! crook    6141: For concrete graphical objects, we define child classes of the
        !          6142: class @code{graphical}, e.g.:
1.21      crook    6143: 
1.26    ! crook    6144: @cindex @code{overrides} usage
        !          6145: @cindex @code{field} usage in class definition
        !          6146: @example
        !          6147: graphical class \ "graphical" is the parent class
        !          6148:   cell% field circle-radius
1.21      crook    6149: 
1.26    ! crook    6150: :noname ( x y circle -- )
        !          6151:   circle-radius @@ draw-circle ;
        !          6152: overrides draw
1.21      crook    6153: 
1.26    ! crook    6154: :noname ( n-radius circle -- )
        !          6155:   circle-radius ! ;
        !          6156: overrides construct
1.21      crook    6157: 
1.26    ! crook    6158: end-class circle
1.21      crook    6159: @end example
                   6160: 
1.26    ! crook    6161: Here we define a class @code{circle} as a child of @code{graphical},
        !          6162: with field @code{circle-radius} (which behaves just like a field
        !          6163: (@pxref{Structures}); it defines (using @code{overrides}) new methods
        !          6164: for the selectors @code{draw} and @code{construct} (@code{construct} is
        !          6165: defined in @code{object}, the parent class of @code{graphical}).
1.21      crook    6166: 
1.26    ! crook    6167: Now we can create a circle on the heap (i.e.,
        !          6168: @code{allocate}d memory) with:
1.21      crook    6169: 
1.26    ! crook    6170: @cindex @code{heap-new} usage
1.21      crook    6171: @example
1.26    ! crook    6172: 50 circle heap-new constant my-circle
        !          6173: @end example
1.21      crook    6174: 
1.26    ! crook    6175: @noindent
        !          6176: @code{heap-new} invokes @code{construct}, thus
        !          6177: initializing the field @code{circle-radius} with 50. We can draw
        !          6178: this new circle at (100,100) with:
1.21      crook    6179: 
1.26    ! crook    6180: @example
        !          6181: 100 100 my-circle draw
1.21      crook    6182: @end example
                   6183: 
1.26    ! crook    6184: @cindex selector invocation, restrictions
        !          6185: @cindex class definition, restrictions
        !          6186: Note: You can only invoke a selector if the object on the TOS
        !          6187: (the receiving object) belongs to the class where the selector was
        !          6188: defined or one of its descendents; e.g., you can invoke
        !          6189: @code{draw} only for objects belonging to @code{graphical}
        !          6190: or its descendents (e.g., @code{circle}).  Immediately before
        !          6191: @code{end-class}, the search order has to be the same as
        !          6192: immediately after @code{class}.
1.21      crook    6193: 
1.26    ! crook    6194: @node The Objects base class, Creating objects, Basic Objects Usage, Objects
        !          6195: @subsubsection The @file{object.fs} base class
        !          6196: @cindex @code{object} class
1.21      crook    6197: 
1.26    ! crook    6198: When you define a class, you have to specify a parent class.  So how do
        !          6199: you start defining classes? There is one class available from the start:
        !          6200: @code{object}. It is ancestor for all classes and so is the
        !          6201: only class that has no parent. It has two selectors: @code{construct}
        !          6202: and @code{print}.
1.21      crook    6203: 
1.26    ! crook    6204: @node Creating objects, Object-Oriented Programming Style, The Objects base class, Objects
        !          6205: @subsubsection Creating objects
        !          6206: @cindex creating objects
        !          6207: @cindex object creation
        !          6208: @cindex object allocation options
1.21      crook    6209: 
1.26    ! crook    6210: @cindex @code{heap-new} discussion
        !          6211: @cindex @code{dict-new} discussion
        !          6212: @cindex @code{construct} discussion
        !          6213: You can create and initialize an object of a class on the heap with
        !          6214: @code{heap-new} ( ... class -- object ) and in the dictionary
        !          6215: (allocation with @code{allot}) with @code{dict-new} (
        !          6216: ... class -- object ). Both words invoke @code{construct}, which
        !          6217: consumes the stack items indicated by "..." above.
1.21      crook    6218: 
1.26    ! crook    6219: @cindex @code{init-object} discussion
        !          6220: @cindex @code{class-inst-size} discussion
        !          6221: If you want to allocate memory for an object yourself, you can get its
        !          6222: alignment and size with @code{class-inst-size 2@@} ( class --
        !          6223: align size ). Once you have memory for an object, you can initialize
        !          6224: it with @code{init-object} ( ... class object -- );
        !          6225: @code{construct} does only a part of the necessary work.
1.21      crook    6226: 
1.26    ! crook    6227: @node Object-Oriented Programming Style, Class Binding, Creating objects, Objects
        !          6228: @subsubsection Object-Oriented Programming Style
        !          6229: @cindex object-oriented programming style
1.21      crook    6230: 
1.26    ! crook    6231: This section is not exhaustive.
1.1       anton    6232: 
1.26    ! crook    6233: @cindex stack effects of selectors
        !          6234: @cindex selectors and stack effects
        !          6235: In general, it is a good idea to ensure that all methods for the
        !          6236: same selector have the same stack effect: when you invoke a selector,
        !          6237: you often have no idea which method will be invoked, so, unless all
        !          6238: methods have the same stack effect, you will not know the stack effect
        !          6239: of the selector invocation.
1.21      crook    6240: 
1.26    ! crook    6241: One exception to this rule is methods for the selector
        !          6242: @code{construct}. We know which method is invoked, because we
        !          6243: specify the class to be constructed at the same place. Actually, I
        !          6244: defined @code{construct} as a selector only to give the users a
        !          6245: convenient way to specify initialization. The way it is used, a
        !          6246: mechanism different from selector invocation would be more natural
        !          6247: (but probably would take more code and more space to explain).
1.21      crook    6248: 
1.26    ! crook    6249: @node Class Binding, Method conveniences, Object-Oriented Programming Style, Objects
        !          6250: @subsubsection Class Binding
        !          6251: @cindex class binding
        !          6252: @cindex early binding
1.21      crook    6253: 
1.26    ! crook    6254: @cindex late binding
        !          6255: Normal selector invocations determine the method at run-time depending
        !          6256: on the class of the receiving object. This run-time selection is called
        !          6257: @var{late binding}.
1.21      crook    6258: 
1.26    ! crook    6259: Sometimes it's preferable to invoke a different method. For example,
        !          6260: you might want to use the simple method for @code{print}ing
        !          6261: @code{object}s instead of the possibly long-winded @code{print} method
        !          6262: of the receiver class. You can achieve this by replacing the invocation
        !          6263: of @code{print} with:
1.21      crook    6264: 
1.26    ! crook    6265: @cindex @code{[bind]} usage
        !          6266: @example
        !          6267: [bind] object print
1.21      crook    6268: @end example
                   6269: 
1.26    ! crook    6270: @noindent
        !          6271: in compiled code or:
1.21      crook    6272: 
1.26    ! crook    6273: @cindex @code{bind} usage
1.21      crook    6274: @example
1.26    ! crook    6275: bind object print
1.21      crook    6276: @end example
                   6277: 
1.26    ! crook    6278: @cindex class binding, alternative to
        !          6279: @noindent
        !          6280: in interpreted code. Alternatively, you can define the method with a
        !          6281: name (e.g., @code{print-object}), and then invoke it through the
        !          6282: name. Class binding is just a (often more convenient) way to achieve
        !          6283: the same effect; it avoids name clutter and allows you to invoke
        !          6284: methods directly without naming them first.
        !          6285: 
        !          6286: @cindex superclass binding
        !          6287: @cindex parent class binding
        !          6288: A frequent use of class binding is this: When we define a method
        !          6289: for a selector, we often want the method to do what the selector does
        !          6290: in the parent class, and a little more. There is a special word for
        !          6291: this purpose: @code{[parent]}; @code{[parent]
        !          6292: @emph{selector}} is equivalent to @code{[bind] @emph{parent
        !          6293: selector}}, where @code{@emph{parent}} is the parent
        !          6294: class of the current class. E.g., a method definition might look like:
1.21      crook    6295: 
1.26    ! crook    6296: @cindex @code{[parent]} usage
1.21      crook    6297: @example
1.26    ! crook    6298: :noname
        !          6299:   dup [parent] foo \ do parent's foo on the receiving object
        !          6300:   ... \ do some more
        !          6301: ; overrides foo
1.21      crook    6302: @end example
                   6303: 
1.26    ! crook    6304: @cindex class binding as optimization
        !          6305: In @cite{Object-oriented programming in ANS Forth} (Forth Dimensions,
        !          6306: March 1997), Andrew McKewan presents class binding as an optimization
        !          6307: technique. I recommend not using it for this purpose unless you are in
        !          6308: an emergency. Late binding is pretty fast with this model anyway, so the
        !          6309: benefit of using class binding is small; the cost of using class binding
        !          6310: where it is not appropriate is reduced maintainability.
1.21      crook    6311: 
1.26    ! crook    6312: While we are at programming style questions: You should bind
        !          6313: selectors only to ancestor classes of the receiving object. E.g., say,
        !          6314: you know that the receiving object is of class @code{foo} or its
        !          6315: descendents; then you should bind only to @code{foo} and its
        !          6316: ancestors.
1.21      crook    6317: 
1.26    ! crook    6318: @node Method conveniences, Classes and Scoping, Class Binding, Objects
        !          6319: @subsubsection Method conveniences
        !          6320: @cindex method conveniences
1.1       anton    6321: 
1.26    ! crook    6322: In a method you usually access the receiving object pretty often.  If
        !          6323: you define the method as a plain colon definition (e.g., with
        !          6324: @code{:noname}), you may have to do a lot of stack
        !          6325: gymnastics. To avoid this, you can define the method with @code{m:
        !          6326: ... ;m}. E.g., you could define the method for
        !          6327: @code{draw}ing a @code{circle} with
1.20      pazsan   6328: 
1.26    ! crook    6329: @cindex @code{this} usage
        !          6330: @cindex @code{m:} usage
        !          6331: @cindex @code{;m} usage
        !          6332: @example
        !          6333: m: ( x y circle -- )
        !          6334:   ( x y ) this circle-radius @@ draw-circle ;m
        !          6335: @end example
1.20      pazsan   6336: 
1.26    ! crook    6337: @cindex @code{exit} in @code{m: ... ;m}
        !          6338: @cindex @code{exitm} discussion
        !          6339: @cindex @code{catch} in @code{m: ... ;m}
        !          6340: When this method is executed, the receiver object is removed from the
        !          6341: stack; you can access it with @code{this} (admittedly, in this
        !          6342: example the use of @code{m: ... ;m} offers no advantage). Note
        !          6343: that I specify the stack effect for the whole method (i.e. including
        !          6344: the receiver object), not just for the code between @code{m:}
        !          6345: and @code{;m}. You cannot use @code{exit} in
        !          6346: @code{m:...;m}; instead, use
        !          6347: @code{exitm}.@footnote{Moreover, for any word that calls
        !          6348: @code{catch} and was defined before loading
        !          6349: @code{objects.fs}, you have to redefine it like I redefined
        !          6350: @code{catch}: @code{: catch this >r catch r> to-this ;}}
1.20      pazsan   6351: 
1.26    ! crook    6352: @cindex @code{inst-var} usage
        !          6353: You will frequently use sequences of the form @code{this
        !          6354: @emph{field}} (in the example above: @code{this
        !          6355: circle-radius}). If you use the field only in this way, you can
        !          6356: define it with @code{inst-var} and eliminate the
        !          6357: @code{this} before the field name. E.g., the @code{circle}
        !          6358: class above could also be defined with:
1.20      pazsan   6359: 
1.26    ! crook    6360: @example
        !          6361: graphical class
        !          6362:   cell% inst-var radius
1.20      pazsan   6363: 
1.26    ! crook    6364: m: ( x y circle -- )
        !          6365:   radius @@ draw-circle ;m
        !          6366: overrides draw
1.20      pazsan   6367: 
1.26    ! crook    6368: m: ( n-radius circle -- )
        !          6369:   radius ! ;m
        !          6370: overrides construct
1.12      anton    6371: 
1.26    ! crook    6372: end-class circle
        !          6373: @end example
1.12      anton    6374: 
1.26    ! crook    6375: @code{radius} can only be used in @code{circle} and its
        !          6376: descendent classes and inside @code{m:...;m}.
1.12      anton    6377: 
1.26    ! crook    6378: @cindex @code{inst-value} usage
        !          6379: You can also define fields with @code{inst-value}, which is
        !          6380: to @code{inst-var} what @code{value} is to
        !          6381: @code{variable}.  You can change the value of such a field with
        !          6382: @code{[to-inst]}.  E.g., we could also define the class
        !          6383: @code{circle} like this:
1.12      anton    6384: 
1.26    ! crook    6385: @example
        !          6386: graphical class
        !          6387:   inst-value radius
1.12      anton    6388: 
1.26    ! crook    6389: m: ( x y circle -- )
        !          6390:   radius draw-circle ;m
        !          6391: overrides draw
1.12      anton    6392: 
1.26    ! crook    6393: m: ( n-radius circle -- )
        !          6394:   [to-inst] radius ;m
        !          6395: overrides construct
1.21      crook    6396: 
1.26    ! crook    6397: end-class circle
1.12      anton    6398: @end example
                   6399: 
                   6400: 
1.26    ! crook    6401: @node Classes and Scoping, Object Interfaces, Method conveniences, Objects
        !          6402: @subsubsection Classes and Scoping
        !          6403: @cindex classes and scoping
        !          6404: @cindex scoping and classes
1.12      anton    6405: 
1.26    ! crook    6406: Inheritance is frequent, unlike structure extension. This exacerbates
        !          6407: the problem with the field name convention (@pxref{Structure Naming
        !          6408: Convention}): One always has to remember in which class the field was
        !          6409: originally defined; changing a part of the class structure would require
        !          6410: changes for renaming in otherwise unaffected code.
1.12      anton    6411: 
1.26    ! crook    6412: @cindex @code{inst-var} visibility
        !          6413: @cindex @code{inst-value} visibility
        !          6414: To solve this problem, I added a scoping mechanism (which was not in my
        !          6415: original charter): A field defined with @code{inst-var} (or
        !          6416: @code{inst-value}) is visible only in the class where it is defined and in
        !          6417: the descendent classes of this class.  Using such fields only makes
        !          6418: sense in @code{m:}-defined methods in these classes anyway.
1.12      anton    6419: 
1.26    ! crook    6420: This scoping mechanism allows us to use the unadorned field name,
        !          6421: because name clashes with unrelated words become much less likely.
1.12      anton    6422: 
1.26    ! crook    6423: @cindex @code{protected} discussion
        !          6424: @cindex @code{private} discussion
        !          6425: Once we have this mechanism, we can also use it for controlling the
        !          6426: visibility of other words: All words defined after
        !          6427: @code{protected} are visible only in the current class and its
        !          6428: descendents. @code{public} restores the compilation
        !          6429: (i.e. @code{current}) word list that was in effect before. If you
        !          6430: have several @code{protected}s without an intervening
        !          6431: @code{public} or @code{set-current}, @code{public}
        !          6432: will restore the compilation word list in effect before the first of
        !          6433: these @code{protected}s.
1.12      anton    6434: 
1.26    ! crook    6435: @node Object Interfaces, Objects Implementation, Classes and Scoping, Objects
        !          6436: @subsubsection Object Interfaces
        !          6437: @cindex object interfaces
        !          6438: @cindex interfaces for objects
1.12      anton    6439: 
1.26    ! crook    6440: In this model you can only call selectors defined in the class of the
        !          6441: receiving objects or in one of its ancestors. If you call a selector
        !          6442: with a receiving object that is not in one of these classes, the
        !          6443: result is undefined; if you are lucky, the program crashes
        !          6444: immediately.
1.12      anton    6445: 
1.26    ! crook    6446: @cindex selectors common to hardly-related classes
        !          6447: Now consider the case when you want to have a selector (or several)
        !          6448: available in two classes: You would have to add the selector to a
        !          6449: common ancestor class, in the worst case to @code{object}. You
        !          6450: may not want to do this, e.g., because someone else is responsible for
        !          6451: this ancestor class.
1.12      anton    6452: 
1.26    ! crook    6453: The solution for this problem is interfaces. An interface is a
        !          6454: collection of selectors. If a class implements an interface, the
        !          6455: selectors become available to the class and its descendents. A class
        !          6456: can implement an unlimited number of interfaces. For the problem
        !          6457: discussed above, we would define an interface for the selector(s), and
        !          6458: both classes would implement the interface.
1.12      anton    6459: 
1.26    ! crook    6460: As an example, consider an interface @code{storage} for
        !          6461: writing objects to disk and getting them back, and a class
        !          6462: @code{foo} that implements it. The code would look like this:
1.12      anton    6463: 
1.26    ! crook    6464: @cindex @code{interface} usage
        !          6465: @cindex @code{end-interface} usage
        !          6466: @cindex @code{implementation} usage
        !          6467: @example
        !          6468: interface
        !          6469:   selector write ( file object -- )
        !          6470:   selector read1 ( file object -- )
        !          6471: end-interface storage
1.12      anton    6472: 
1.26    ! crook    6473: bar class
        !          6474:   storage implementation
1.12      anton    6475: 
1.26    ! crook    6476: ... overrides write
        !          6477: ... overrides read
        !          6478: ...
        !          6479: end-class foo
1.12      anton    6480: @end example
                   6481: 
1.26    ! crook    6482: @noindent
        !          6483: (I would add a word @code{read} @var{( file -- object )} that uses
        !          6484: @code{read1} internally, but that's beyond the point illustrated
        !          6485: here.)
1.12      anton    6486: 
1.26    ! crook    6487: Note that you cannot use @code{protected} in an interface; and
        !          6488: of course you cannot define fields.
1.12      anton    6489: 
1.26    ! crook    6490: In the Neon model, all selectors are available for all classes;
        !          6491: therefore it does not need interfaces. The price you pay in this model
        !          6492: is slower late binding, and therefore, added complexity to avoid late
        !          6493: binding.
1.12      anton    6494: 
1.26    ! crook    6495: @node Objects Implementation, Objects Glossary, Object Interfaces, Objects
        !          6496: @subsubsection @file{objects.fs} Implementation
        !          6497: @cindex @file{objects.fs} implementation
1.12      anton    6498: 
1.26    ! crook    6499: @cindex @code{object-map} discussion
        !          6500: An object is a piece of memory, like one of the data structures
        !          6501: described with @code{struct...end-struct}. It has a field
        !          6502: @code{object-map} that points to the method map for the object's
        !          6503: class.
1.12      anton    6504: 
1.26    ! crook    6505: @cindex method map
        !          6506: @cindex virtual function table
        !          6507: The @emph{method map}@footnote{This is Self terminology; in C++
        !          6508: terminology: virtual function table.} is an array that contains the
        !          6509: execution tokens (@var{xt}s) of the methods for the object's class. Each
        !          6510: selector contains an offset into a method map.
1.12      anton    6511: 
1.26    ! crook    6512: @cindex @code{selector} implementation, class
        !          6513: @code{selector} is a defining word that uses
        !          6514: @code{CREATE} and @code{DOES>}. The body of the
        !          6515: selector contains the offset; the @code{does>} action for a
        !          6516: class selector is, basically:
1.21      crook    6517: 
1.26    ! crook    6518: @example
        !          6519: ( object addr ) @@ over object-map @@ + @@ execute
        !          6520: @end example
1.12      anton    6521: 
1.26    ! crook    6522: Since @code{object-map} is the first field of the object, it
        !          6523: does not generate any code. As you can see, calling a selector has a
        !          6524: small, constant cost.
1.12      anton    6525: 
1.26    ! crook    6526: @cindex @code{current-interface} discussion
        !          6527: @cindex class implementation and representation
        !          6528: A class is basically a @code{struct} combined with a method
        !          6529: map. During the class definition the alignment and size of the class
        !          6530: are passed on the stack, just as with @code{struct}s, so
        !          6531: @code{field} can also be used for defining class
        !          6532: fields. However, passing more items on the stack would be
        !          6533: inconvenient, so @code{class} builds a data structure in memory,
        !          6534: which is accessed through the variable
        !          6535: @code{current-interface}. After its definition is complete, the
        !          6536: class is represented on the stack by a pointer (e.g., as parameter for
        !          6537: a child class definition).
1.1       anton    6538: 
1.26    ! crook    6539: A new class starts off with the alignment and size of its parent,
        !          6540: and a copy of the parent's method map. Defining new fields extends the
        !          6541: size and alignment; likewise, defining new selectors extends the
        !          6542: method map. @code{overrides} just stores a new @var{xt} in the method
        !          6543: map at the offset given by the selector.
1.20      pazsan   6544: 
1.26    ! crook    6545: @cindex class binding, implementation
        !          6546: Class binding just gets the @var{xt} at the offset given by the selector
        !          6547: from the class's method map and @code{compile,}s (in the case of
        !          6548: @code{[bind]}) it.
1.21      crook    6549: 
1.26    ! crook    6550: @cindex @code{this} implementation
        !          6551: @cindex @code{catch} and @code{this}
        !          6552: @cindex @code{this} and @code{catch}
        !          6553: I implemented @code{this} as a @code{value}. At the
        !          6554: start of an @code{m:...;m} method the old @code{this} is
        !          6555: stored to the return stack and restored at the end; and the object on
        !          6556: the TOS is stored @code{TO this}. This technique has one
        !          6557: disadvantage: If the user does not leave the method via
        !          6558: @code{;m}, but via @code{throw} or @code{exit},
        !          6559: @code{this} is not restored (and @code{exit} may
        !          6560: crash). To deal with the @code{throw} problem, I have redefined
        !          6561: @code{catch} to save and restore @code{this}; the same
        !          6562: should be done with any word that can catch an exception. As for
        !          6563: @code{exit}, I simply forbid it (as a replacement, there is
        !          6564: @code{exitm}).
1.21      crook    6565: 
1.26    ! crook    6566: @cindex @code{inst-var} implementation
        !          6567: @code{inst-var} is just the same as @code{field}, with
        !          6568: a different @code{DOES>} action:
        !          6569: @example
        !          6570: @@ this +
        !          6571: @end example
        !          6572: Similar for @code{inst-value}.
1.21      crook    6573: 
1.26    ! crook    6574: @cindex class scoping implementation
        !          6575: Each class also has a word list that contains the words defined with
        !          6576: @code{inst-var} and @code{inst-value}, and its protected
        !          6577: words. It also has a pointer to its parent. @code{class} pushes
        !          6578: the word lists of the class and all its ancestors onto the search order stack,
        !          6579: and @code{end-class} drops them.
1.21      crook    6580: 
1.26    ! crook    6581: @cindex interface implementation
        !          6582: An interface is like a class without fields, parent and protected
        !          6583: words; i.e., it just has a method map. If a class implements an
        !          6584: interface, its method map contains a pointer to the method map of the
        !          6585: interface. The positive offsets in the map are reserved for class
        !          6586: methods, therefore interface map pointers have negative
        !          6587: offsets. Interfaces have offsets that are unique throughout the
        !          6588: system, unlike class selectors, whose offsets are only unique for the
        !          6589: classes where the selector is available (invokable).
1.21      crook    6590: 
1.26    ! crook    6591: This structure means that interface selectors have to perform one
        !          6592: indirection more than class selectors to find their method. Their body
        !          6593: contains the interface map pointer offset in the class method map, and
        !          6594: the method offset in the interface method map. The
        !          6595: @code{does>} action for an interface selector is, basically:
1.21      crook    6596: 
                   6597: @example
1.26    ! crook    6598: ( object selector-body )
        !          6599: 2dup selector-interface @@ ( object selector-body object interface-offset )
        !          6600: swap object-map @@ + @@ ( object selector-body map )
        !          6601: swap selector-offset @@ + @@ execute
1.21      crook    6602: @end example
                   6603: 
1.26    ! crook    6604: where @code{object-map} and @code{selector-offset} are
        !          6605: first fields and generate no code.
        !          6606: 
        !          6607: As a concrete example, consider the following code:
1.21      crook    6608: 
1.26    ! crook    6609: @example
        !          6610: interface
        !          6611:   selector if1sel1
        !          6612:   selector if1sel2
        !          6613: end-interface if1
1.21      crook    6614: 
1.26    ! crook    6615: object class
        !          6616:   if1 implementation
        !          6617:   selector cl1sel1
        !          6618:   cell% inst-var cl1iv1
1.21      crook    6619: 
1.26    ! crook    6620: ' m1 overrides construct
        !          6621: ' m2 overrides if1sel1
        !          6622: ' m3 overrides if1sel2
        !          6623: ' m4 overrides cl1sel2
        !          6624: end-class cl1
1.21      crook    6625: 
1.26    ! crook    6626: create obj1 object dict-new drop
        !          6627: create obj2 cl1    dict-new drop
        !          6628: @end example
1.21      crook    6629: 
1.26    ! crook    6630: The data structure created by this code (including the data structure
        !          6631: for @code{object}) is shown in the <a
        !          6632: href="objects-implementation.eps">figure</a>, assuming a cell size of 4.
        !          6633: @comment nac TODO add this diagram..
1.21      crook    6634: 
1.26    ! crook    6635: @node Objects Glossary,  , Objects Implementation, Objects
        !          6636: @subsubsection @file{objects.fs} Glossary
        !          6637: @cindex @file{objects.fs} Glossary
1.21      crook    6638: 
1.26    ! crook    6639: doc---objects-bind
        !          6640: doc---objects-<bind>
        !          6641: doc---objects-bind'
        !          6642: doc---objects-[bind]
        !          6643: doc---objects-class
        !          6644: doc---objects-class->map
        !          6645: doc---objects-class-inst-size
        !          6646: doc---objects-class-override!
        !          6647: doc---objects-construct
        !          6648: doc---objects-current'
        !          6649: doc---objects-[current]
        !          6650: doc---objects-current-interface
        !          6651: doc---objects-dict-new
        !          6652: doc---objects-drop-order
        !          6653: doc---objects-end-class
        !          6654: doc---objects-end-class-noname
        !          6655: doc---objects-end-interface
        !          6656: doc---objects-end-interface-noname
        !          6657: doc---objects-exitm
        !          6658: doc---objects-heap-new
        !          6659: doc---objects-implementation
        !          6660: doc---objects-init-object
        !          6661: doc---objects-inst-value
        !          6662: doc---objects-inst-var
        !          6663: doc---objects-interface
        !          6664: doc---objects-;m
        !          6665: doc---objects-m:
        !          6666: doc---objects-method
        !          6667: doc---objects-object
        !          6668: doc---objects-overrides
        !          6669: doc---objects-[parent]
        !          6670: doc---objects-print
        !          6671: doc---objects-protected
        !          6672: doc---objects-public
        !          6673: doc---objects-push-order
        !          6674: doc---objects-selector
        !          6675: doc---objects-this
        !          6676: doc---objects-<to-inst>
        !          6677: doc---objects-[to-inst]
        !          6678: doc---objects-to-this
        !          6679: doc---objects-xt-new
1.21      crook    6680: 
1.26    ! crook    6681: @c -------------------------------------------------------------
        !          6682: @node OOF, Mini-OOF, Objects, Object-oriented Forth
        !          6683: @subsection The @file{oof.fs} model
        !          6684: @cindex oof
        !          6685: @cindex object-oriented programming
1.21      crook    6686: 
1.26    ! crook    6687: @cindex @file{objects.fs}
        !          6688: @cindex @file{oof.fs}
1.21      crook    6689: 
1.26    ! crook    6690: This section describes the @file{oof.fs} package.
1.21      crook    6691: 
1.26    ! crook    6692: The package described in this section has been used in bigFORTH since 1991, and
        !          6693: used for two large applications: a chromatographic system used to
        !          6694: create new medicaments, and a graphic user interface library (MINOS).
1.21      crook    6695: 
1.26    ! crook    6696: You can find a description (in German) of @file{oof.fs} in @cite{Object
        !          6697: oriented bigFORTH} by Bernd Paysan, published in @cite{Vierte Dimension}
        !          6698: 10(2), 1994.
1.21      crook    6699: 
1.26    ! crook    6700: @menu
        !          6701: * Properties of the OOF model::
        !          6702: * Basic OOF Usage::
        !          6703: * The OOF base class::
        !          6704: * Class Declaration::
        !          6705: * Class Implementation::
        !          6706: @end menu
1.21      crook    6707: 
1.26    ! crook    6708: @node Properties of the OOF model, Basic OOF Usage, OOF, OOF
        !          6709: @subsubsection Properties of the @file{oof.fs} model
        !          6710: @cindex @file{oof.fs} properties
1.21      crook    6711: 
1.26    ! crook    6712: @itemize @bullet
        !          6713: @item
        !          6714: This model combines object oriented programming with information
        !          6715: hiding. It helps you writing large application, where scoping is
        !          6716: necessary, because it provides class-oriented scoping.
1.21      crook    6717: 
1.26    ! crook    6718: @item
        !          6719: Named objects, object pointers, and object arrays can be created,
        !          6720: selector invocation uses the ``object selector'' syntax. Selector invocation
        !          6721: to objects and/or selectors on the stack is a bit less convenient, but
        !          6722: possible.
1.21      crook    6723: 
1.26    ! crook    6724: @item
        !          6725: Selector invocation and instance variable usage of the active object is
        !          6726: straightforward, since both make use of the active object.
1.21      crook    6727: 
1.26    ! crook    6728: @item
        !          6729: Late binding is efficient and easy to use.
1.21      crook    6730: 
1.26    ! crook    6731: @item
        !          6732: State-smart objects parse selectors. However, extensibility is provided
        !          6733: using a (parsing) selector @code{postpone} and a selector @code{'}.
1.21      crook    6734: 
                   6735: @item
1.26    ! crook    6736: An implementation in ANS Forth is available.
        !          6737: 
1.21      crook    6738: @end itemize
                   6739: 
                   6740: 
1.26    ! crook    6741: @node Basic OOF Usage, The OOF base class, Properties of the OOF model, OOF
        !          6742: @subsubsection Basic @file{oof.fs} Usage
        !          6743: @cindex @file{oof.fs} usage
        !          6744: 
        !          6745: This section uses the same example as for @code{objects} (@pxref{Basic Objects Usage}).
1.21      crook    6746: 
1.26    ! crook    6747: You can define a class for graphical objects like this:
1.21      crook    6748: 
1.26    ! crook    6749: @cindex @code{class} usage
        !          6750: @cindex @code{class;} usage
        !          6751: @cindex @code{method} usage
        !          6752: @example
        !          6753: object class graphical \ "object" is the parent class
        !          6754:   method draw ( x y graphical -- )
        !          6755: class;
        !          6756: @end example
1.21      crook    6757: 
1.26    ! crook    6758: This code defines a class @code{graphical} with an
        !          6759: operation @code{draw}.  We can perform the operation
        !          6760: @code{draw} on any @code{graphical} object, e.g.:
1.21      crook    6761: 
1.26    ! crook    6762: @example
        !          6763: 100 100 t-rex draw
        !          6764: @end example
1.21      crook    6765: 
1.26    ! crook    6766: @noindent
        !          6767: where @code{t-rex} is an object or object pointer, created with e.g.
        !          6768: @code{graphical : t-rex}.
1.21      crook    6769: 
1.26    ! crook    6770: @cindex abstract class
        !          6771: How do we create a graphical object? With the present definitions,
        !          6772: we cannot create a useful graphical object. The class
        !          6773: @code{graphical} describes graphical objects in general, but not
        !          6774: any concrete graphical object type (C++ users would call it an
        !          6775: @emph{abstract class}); e.g., there is no method for the selector
        !          6776: @code{draw} in the class @code{graphical}.
1.21      crook    6777: 
1.26    ! crook    6778: For concrete graphical objects, we define child classes of the
        !          6779: class @code{graphical}, e.g.:
1.21      crook    6780: 
                   6781: @example
1.26    ! crook    6782: graphical class circle \ "graphical" is the parent class
        !          6783:   cell var circle-radius
        !          6784: how:
        !          6785:   : draw ( x y -- )
        !          6786:     circle-radius @@ draw-circle ;
        !          6787: 
        !          6788:   : init ( n-radius -- (
        !          6789:     circle-radius ! ;
        !          6790: class;
        !          6791: @end example
        !          6792: 
        !          6793: Here we define a class @code{circle} as a child of @code{graphical},
        !          6794: with a field @code{circle-radius}; it defines new methods for the
        !          6795: selectors @code{draw} and @code{init} (@code{init} is defined in
        !          6796: @code{object}, the parent class of @code{graphical}).
1.21      crook    6797: 
1.26    ! crook    6798: Now we can create a circle in the dictionary with:
1.21      crook    6799: 
1.26    ! crook    6800: @example
        !          6801: 50 circle : my-circle
1.21      crook    6802: @end example
                   6803: 
1.26    ! crook    6804: @noindent
        !          6805: @code{:} invokes @code{init}, thus initializing the field
        !          6806: @code{circle-radius} with 50. We can draw this new circle at (100,100)
        !          6807: with:
1.21      crook    6808: 
                   6809: @example
1.26    ! crook    6810: 100 100 my-circle draw
1.21      crook    6811: @end example
                   6812: 
1.26    ! crook    6813: @cindex selector invocation, restrictions
        !          6814: @cindex class definition, restrictions
        !          6815: Note: You can only invoke a selector if the receiving object belongs to
        !          6816: the class where the selector was defined or one of its descendents;
        !          6817: e.g., you can invoke @code{draw} only for objects belonging to
        !          6818: @code{graphical} or its descendents (e.g., @code{circle}). The scoping
        !          6819: mechanism will check if you try to invoke a selector that is not
        !          6820: defined in this class hierarchy, so you'll get an error at compilation
        !          6821: time.
        !          6822: 
        !          6823: 
        !          6824: @node The OOF base class, Class Declaration, Basic OOF Usage, OOF
        !          6825: @subsubsection The @file{oof.fs} base class
        !          6826: @cindex @file{oof.fs} base class
        !          6827: 
        !          6828: When you define a class, you have to specify a parent class.  So how do
        !          6829: you start defining classes? There is one class available from the start:
        !          6830: @code{object}. You have to use it as ancestor for all classes. It is the
        !          6831: only class that has no parent. Classes are also objects, except that
        !          6832: they don't have instance variables; class manipulation such as
        !          6833: inheritance or changing definitions of a class is handled through
        !          6834: selectors of the class @code{object}.
        !          6835: 
        !          6836: @code{object} provides a number of selectors:
        !          6837: 
1.21      crook    6838: @itemize @bullet
                   6839: @item
1.26    ! crook    6840: @code{class} for subclassing, @code{definitions} to add definitions
        !          6841: later on, and @code{class?} to get type informations (is the class a
        !          6842: subclass of the class passed on the stack?).
        !          6843: doc---object-class
        !          6844: doc---object-definitions
        !          6845: doc---object-class?
        !          6846: 
1.21      crook    6847: @item
1.26    ! crook    6848: @code{init} and @code{dispose} as constructor and destructor of the
        !          6849: object. @code{init} is invocated after the object's memory is allocated,
        !          6850: while @code{dispose} also handles deallocation. Thus if you redefine
        !          6851: @code{dispose}, you have to call the parent's dispose with @code{super
        !          6852: dispose}, too.
        !          6853: doc---object-init
        !          6854: doc---object-dispose
        !          6855: 
1.21      crook    6856: @item
1.26    ! crook    6857: @code{new}, @code{new[]}, @code{:}, @code{ptr}, @code{asptr}, and
        !          6858: @code{[]} to create named and unnamed objects and object arrays or
        !          6859: object pointers.
        !          6860: doc---object-new
        !          6861: doc---object-new[]
        !          6862: doc---object-:
        !          6863: doc---object-ptr
        !          6864: doc---object-asptr
        !          6865: doc---object-[]
1.21      crook    6866: 
1.26    ! crook    6867: @item
        !          6868: @code{::} and @code{super} for explicit scoping. You should use explicit
        !          6869: scoping only for super classes or classes with the same set of instance
        !          6870: variables. Explicitly-scoped selectors use early binding.
        !          6871: doc---object-::
        !          6872: doc---object-super
1.21      crook    6873: 
1.26    ! crook    6874: @item
        !          6875: @code{self} to get the address of the object
        !          6876: doc---object-self
1.21      crook    6877: 
                   6878: @item
1.26    ! crook    6879: @code{bind}, @code{bound}, @code{link}, and @code{is} to assign object
        !          6880: pointers and instance defers.
        !          6881: doc---object-bind
        !          6882: doc---object-bound
        !          6883: doc---object-link
        !          6884: doc---object-is
        !          6885: 
1.21      crook    6886: @item
1.26    ! crook    6887: @code{'} to obtain selector tokens, @code{send} to invocate selectors
        !          6888: form the stack, and @code{postpone} to generate selector invocation code.
        !          6889: doc---object-'
        !          6890: doc---object-postpone
        !          6891: 
1.21      crook    6892: @item
1.26    ! crook    6893: @code{with} and @code{endwith} to select the active object from the
        !          6894: stack, and enable its scope. Using @code{with} and @code{endwith}
        !          6895: also allows you to create code using selector @code{postpone} without being
        !          6896: trapped by the state-smart objects.
        !          6897: doc---object-with
        !          6898: doc---object-endwith
        !          6899: 
1.21      crook    6900: @end itemize
                   6901: 
1.26    ! crook    6902: @node Class Declaration, Class Implementation, The OOF base class, OOF
        !          6903: @subsubsection Class Declaration
        !          6904: @cindex class declaration
        !          6905: 
        !          6906: @itemize @bullet
        !          6907: @item
        !          6908: Instance variables
        !          6909: doc---oof-var
1.21      crook    6910: 
1.26    ! crook    6911: @item
        !          6912: Object pointers
        !          6913: doc---oof-ptr
        !          6914: doc---oof-asptr
1.21      crook    6915: 
1.26    ! crook    6916: @item
        !          6917: Instance defers
        !          6918: doc---oof-defer
1.21      crook    6919: 
1.26    ! crook    6920: @item
        !          6921: Method selectors
        !          6922: doc---oof-early
        !          6923: doc---oof-method
1.21      crook    6924: 
1.26    ! crook    6925: @item
        !          6926: Class-wide variables
        !          6927: doc---oof-static
1.21      crook    6928: 
1.26    ! crook    6929: @item
        !          6930: End declaration
        !          6931: doc---oof-how:
        !          6932: doc---oof-class;
1.21      crook    6933: 
1.26    ! crook    6934: @end itemize
1.21      crook    6935: 
1.26    ! crook    6936: @c -------------------------------------------------------------
        !          6937: @node Class Implementation,  , Class Declaration, OOF
        !          6938: @subsubsection Class Implementation
        !          6939: @cindex class implementation
1.21      crook    6940: 
1.26    ! crook    6941: @c -------------------------------------------------------------
        !          6942: @node Mini-OOF, Comparison with other object models, OOF, Object-oriented Forth
        !          6943: @subsection The @file{mini-oof.fs} model
        !          6944: @cindex mini-oof
1.1       anton    6945: 
1.26    ! crook    6946: Gforth's third object oriented Forth package is a 12-liner. It uses a
        !          6947: mixture of the @file{object.fs} and the @file{oof.fs} syntax,
        !          6948: and reduces to the bare minimum of features. This is based on a posting
        !          6949: of Bernd Paysan in comp.arch.
1.1       anton    6950: 
                   6951: @menu
1.26    ! crook    6952: * Basic Mini-OOF Usage::
        !          6953: * Mini-OOF Example::
        !          6954: * Mini-OOF Implementation::
1.1       anton    6955: @end menu
                   6956: 
1.26    ! crook    6957: @c -------------------------------------------------------------
        !          6958: @node Basic Mini-OOF Usage, Mini-OOF Example, , Mini-OOF
        !          6959: @subsubsection Basic @file{mini-oof.fs} Usage
        !          6960: @cindex mini-oof usage
1.1       anton    6961: 
1.26    ! crook    6962: There is a base class (@code{class}, which allocates one cell
        !          6963: for the object pointer) plus seven other words: to define a method, a
        !          6964: variable, a class; to end a class, to resolve binding, to allocate an
        !          6965: object and to compile a class method.
        !          6966: @comment TODO better description of the last one
1.1       anton    6967: 
1.26    ! crook    6968: doc-object
        !          6969: doc-method
        !          6970: doc-var
        !          6971: doc-class
        !          6972: doc-end-class
        !          6973: doc-defines
        !          6974: doc-new
        !          6975: doc-::
1.1       anton    6976: 
1.21      crook    6977: 
1.26    ! crook    6978: @c -------------------------------------------------------------
        !          6979: @node Mini-OOF Example, Mini-OOF Implementation, Basic Mini-OOF Usage, Mini-OOF
        !          6980: @subsubsection Mini-OOF Example
        !          6981: @cindex mini-oof example
1.21      crook    6982: 
1.26    ! crook    6983: A short example shows how to use this package. This example, in slightly
        !          6984: extended form, is supplied as @file{moof-exm.fs}
        !          6985: @comment nac TODO could flesh this out with some comments from the Forthwrite article
1.21      crook    6986: 
1.26    ! crook    6987: @example
        !          6988: object class
        !          6989:   method init
        !          6990:   method draw
        !          6991: end-class graphical
        !          6992: @end example
1.21      crook    6993: 
1.26    ! crook    6994: This code defines a class @code{graphical} with an
        !          6995: operation @code{draw}.  We can perform the operation
        !          6996: @code{draw} on any @code{graphical} object, e.g.:
1.1       anton    6997: 
1.26    ! crook    6998: @example
        !          6999: 100 100 t-rex draw
        !          7000: @end example
1.1       anton    7001: 
1.26    ! crook    7002: where @code{t-rex} is an object or object pointer, created with e.g.
        !          7003: @code{graphical new Constant t-rex}.
1.1       anton    7004: 
1.26    ! crook    7005: For concrete graphical objects, we define child classes of the
        !          7006: class @code{graphical}, e.g.:
1.21      crook    7007: 
                   7008: @example
1.26    ! crook    7009: graphical class
        !          7010:   cell var circle-radius
        !          7011: end-class circle \ "graphical" is the parent class
1.21      crook    7012: 
1.26    ! crook    7013: :noname ( x y -- )
        !          7014:   circle-radius @@ draw-circle ; circle defines draw
        !          7015: :noname ( r -- )
        !          7016:   circle-radius ! ; circle defines init
1.21      crook    7017: @end example
                   7018: 
1.26    ! crook    7019: There is no implicit init method, so we have to define one. The creation
        !          7020: code of the object now has to call init explicitely.
1.21      crook    7021: 
1.26    ! crook    7022: @example
        !          7023: circle new Constant my-circle
        !          7024: 50 my-circle init
        !          7025: @end example
1.21      crook    7026: 
1.26    ! crook    7027: It is also possible to add a function to create named objects with
        !          7028: automatic call of @code{init}, given that all objects have @code{init}
        !          7029: on the same place:
1.1       anton    7030: 
                   7031: @example
1.26    ! crook    7032: : new: ( .. o "name" -- )
        !          7033:     new dup Constant init ;
        !          7034: 80 circle new: large-circle
1.1       anton    7035: @end example
                   7036: 
1.26    ! crook    7037: We can draw this new circle at (100,100) with:
1.1       anton    7038: 
                   7039: @example
1.26    ! crook    7040: 100 100 my-circle draw
1.1       anton    7041: @end example
                   7042: 
1.26    ! crook    7043: @node Mini-OOF Implementation, , Mini-OOF Example, Mini-OOF
        !          7044: @subsubsection @file{mini-oof.fs} Implementation
1.1       anton    7045: 
1.26    ! crook    7046: Object-oriented systems with late binding typically use a
        !          7047: ``vtable''-approach: the first variable in each object is a pointer to a
        !          7048: table, which contains the methods as function pointers. The vtable
        !          7049: may also contain other information.
1.1       anton    7050: 
1.26    ! crook    7051: So first, let's declare methods:
1.1       anton    7052: 
1.26    ! crook    7053: @example
        !          7054: : method ( m v -- m' v ) Create  over , swap cell+ swap
        !          7055:   DOES> ( ... o -- ... ) @ over @ + @ execute ;
        !          7056: @end example
1.1       anton    7057: 
1.26    ! crook    7058: During method declaration, the number of methods and instance
        !          7059: variables is on the stack (in address units). @code{method} creates
        !          7060: one method and increments the method number. To execute a method, it
        !          7061: takes the object, fetches the vtable pointer, adds the offset, and
        !          7062: executes the @var{xt} stored there. Each method takes the object it is
        !          7063: invoked from as top of stack parameter. The method itself should
        !          7064: consume that object.
1.1       anton    7065: 
1.26    ! crook    7066: Now, we also have to declare instance variables
1.21      crook    7067: 
1.26    ! crook    7068: @example
        !          7069: : var ( m v size -- m v' ) Create  over , +
        !          7070:   DOES> ( o -- addr ) @ + ;
        !          7071: @end example
1.21      crook    7072: 
1.26    ! crook    7073: As before, a word is created with the current offset. Instance
        !          7074: variables can have different sizes (cells, floats, doubles, chars), so
        !          7075: all we do is take the size and add it to the offset. If your machine
        !          7076: has alignment restrictions, put the proper @code{aligned} or
        !          7077: @code{faligned} before the variable, to adjust the variable
        !          7078: offset. That's why it is on the top of stack.
1.2       jwilke   7079: 
1.26    ! crook    7080: We need a starting point (the base object) and some syntactic sugar:
1.21      crook    7081: 
1.26    ! crook    7082: @example
        !          7083: Create object  1 cells , 2 cells ,
        !          7084: : class ( class -- class methods vars ) dup 2@ ;
        !          7085: @end example
1.21      crook    7086: 
1.26    ! crook    7087: For inheritance, the vtable of the parent object has to be
        !          7088: copied when a new, derived class is declared. This gives all the
        !          7089: methods of the parent class, which can be overridden, though.
1.21      crook    7090: 
1.2       jwilke   7091: @example
1.26    ! crook    7092: : end-class  ( class methods vars -- )
        !          7093:   Create  here >r , dup , 2 cells ?DO ['] noop , 1 cells +LOOP
        !          7094:   cell+ dup cell+ r> rot @ 2 cells /string move ;
        !          7095: @end example
        !          7096: 
        !          7097: The first line creates the vtable, initialized with
        !          7098: @code{noop}s. The second line is the inheritance mechanism, it
        !          7099: copies the xts from the parent vtable.
1.2       jwilke   7100: 
1.26    ! crook    7101: We still have no way to define new methods, let's do that now:
1.2       jwilke   7102: 
1.26    ! crook    7103: @example
        !          7104: : defines ( xt class -- ) ' >body @ + ! ;
1.2       jwilke   7105: @end example
                   7106: 
1.26    ! crook    7107: To allocate a new object, we need a word, too:
1.2       jwilke   7108: 
1.26    ! crook    7109: @example
        !          7110: : new ( class -- o )  here over @ allot swap over ! ;
        !          7111: @end example
1.2       jwilke   7112: 
1.26    ! crook    7113: Sometimes derived classes want to access the method of the
        !          7114: parent object. There are two ways to achieve this with Mini-OOF:
        !          7115: first, you could use named words, and second, you could look up the
        !          7116: vtable of the parent object.
1.2       jwilke   7117: 
1.26    ! crook    7118: @example
        !          7119: : :: ( class "name" -- ) ' >body @ + @ compile, ;
        !          7120: @end example
1.2       jwilke   7121: 
                   7122: 
1.26    ! crook    7123: Nothing can be more confusing than a good example, so here is
        !          7124: one. First let's declare a text object (called
        !          7125: @code{button}), that stores text and position:
1.2       jwilke   7126: 
1.26    ! crook    7127: @example
        !          7128: object class
        !          7129:   cell var text
        !          7130:   cell var len
        !          7131:   cell var x
        !          7132:   cell var y
        !          7133:   method init
        !          7134:   method draw
        !          7135: end-class button
        !          7136: @end example
1.2       jwilke   7137: 
1.26    ! crook    7138: @noindent
        !          7139: Now, implement the two methods, @code{draw} and @code{init}:
1.2       jwilke   7140: 
1.26    ! crook    7141: @example
        !          7142: :noname ( o -- )
        !          7143:  >r r@ x @ r@ y @ at-xy  r@ text @ r> len @ type ;
        !          7144:  button defines draw
        !          7145: :noname ( addr u o -- )
        !          7146:  >r 0 r@ x ! 0 r@ y ! r@ len ! r> text ! ;
        !          7147:  button defines init
        !          7148: @end example
1.2       jwilke   7149: 
1.26    ! crook    7150: @noindent
        !          7151: To demonstrate inheritance, we define a class @code{bold-button}, with no
        !          7152: new data and no new methods:
1.2       jwilke   7153: 
1.26    ! crook    7154: @example
        !          7155: button class
        !          7156: end-class bold-button
1.1       anton    7157: 
1.26    ! crook    7158: : bold   27 emit ." [1m" ;
        !          7159: : normal 27 emit ." [0m" ;
        !          7160: @end example
1.1       anton    7161: 
1.26    ! crook    7162: @noindent
        !          7163: The class @code{bold-button} has a different draw method to
        !          7164: @code{button}, but the new method is defined in terms of the draw method
        !          7165: for @code{button}:
1.1       anton    7166: 
1.26    ! crook    7167: @example
        !          7168: :noname bold [ button :: draw ] normal ; bold-button defines draw
        !          7169: @end example
1.1       anton    7170: 
1.26    ! crook    7171: @noindent
        !          7172: Finally, create two objects and apply methods:
1.1       anton    7173: 
1.26    ! crook    7174: @example
        !          7175: button new Constant foo
        !          7176: s" thin foo" foo init
        !          7177: page
        !          7178: foo draw
        !          7179: bold-button new Constant bar
        !          7180: s" fat bar" bar init
        !          7181: 1 bar y !
        !          7182: bar draw
        !          7183: @end example
1.1       anton    7184: 
                   7185: 
1.26    ! crook    7186: @node Comparison with other object models, , Mini-OOF, Object-oriented Forth
        !          7187: @subsubsection Comparison with other object models
        !          7188: @cindex comparison of object models
        !          7189: @cindex object models, comparison
1.1       anton    7190: 
1.26    ! crook    7191: Many object-oriented Forth extensions have been proposed (@cite{A survey
        !          7192: of object-oriented Forths} (SIGPLAN Notices, April 1996) by Bradford
        !          7193: J. Rodriguez and W. F. S. Poehlman lists 17). This section discusses the
        !          7194: relation of the object models described here to two well-known and two
        !          7195: closely-related (by the use of method maps) models.
1.1       anton    7196: 
1.26    ! crook    7197: @cindex Neon model
        !          7198: The most popular model currently seems to be the Neon model (see
        !          7199: @cite{Object-oriented programming in ANS Forth} (Forth Dimensions, March
        !          7200: 1997) by Andrew McKewan) but this model has a number of limitations
        !          7201: @footnote{A longer version of this critique can be
        !          7202: found in @cite{On Standardizing Object-Oriented Forth Extensions} (Forth
        !          7203: Dimensions, May 1997) by Anton Ertl.}:
1.1       anton    7204: 
1.26    ! crook    7205: @itemize @bullet
        !          7206: @item
        !          7207: It uses a @code{@emph{selector
        !          7208: object}} syntax, which makes it unnatural to pass objects on the
        !          7209: stack.
1.1       anton    7210: 
1.26    ! crook    7211: @item
        !          7212: It requires that the selector parses the input stream (at
        !          7213: compile time); this leads to reduced extensibility and to bugs that are+
        !          7214: hard to find.
1.1       anton    7215: 
1.26    ! crook    7216: @item
        !          7217: It allows using every selector to every object;
        !          7218: this eliminates the need for classes, but makes it harder to create
        !          7219: efficient implementations. 
        !          7220: @end itemize
1.1       anton    7221: 
1.26    ! crook    7222: @cindex Pountain's object-oriented model
        !          7223: Another well-known publication is @cite{Object-Oriented Forth} (Academic
        !          7224: Press, London, 1987) by Dick Pountain. However, it is not really about
        !          7225: object-oriented programming, because it hardly deals with late
        !          7226: binding. Instead, it focuses on features like information hiding and
        !          7227: overloading that are characteristic of modular languages like Ada (83).
1.1       anton    7228: 
1.26    ! crook    7229: @cindex Zsoter's object-oriented model
        !          7230: In @cite{Does late binding have to be slow?} (Forth Dimensions 18(1) 1996, pages 31-35)
        !          7231: Andras Zsoter describes a model that makes heavy use of an active object
        !          7232: (like @code{this} in @file{objects.fs}): The active object is not only
        !          7233: used for accessing all fields, but also specifies the receiving object
        !          7234: of every selector invocation; you have to change the active object
        !          7235: explicitly with @code{@{ ... @}}, whereas in @file{objects.fs} it
        !          7236: changes more or less implicitly at @code{m: ... ;m}. Such a change at
        !          7237: the method entry point is unnecessary with the Zsoter's model, because
        !          7238: the receiving object is the active object already. On the other hand, the explicit
        !          7239: change is absolutely necessary in that model, because otherwise no one
        !          7240: could ever change the active object. An ANS Forth implementation of this
        !          7241: model is available at @url{http://www.forth.org/fig/oopf.html}.
1.1       anton    7242: 
1.26    ! crook    7243: @cindex @file{oof.fs}, differences to other models
        !          7244: The @file{oof.fs} model combines information hiding and overloading
        !          7245: resolution (by keeping names in various word lists) with object-oriented
        !          7246: programming. It sets the active object implicitly on method entry, but
        !          7247: also allows explicit changing (with @code{>o...o>} or with
        !          7248: @code{with...endwith}). It uses parsing and state-smart objects and
        !          7249: classes for resolving overloading and for early binding: the object or
        !          7250: class parses the selector and determines the method from this. If the
        !          7251: selector is not parsed by an object or class, it performs a call to the
        !          7252: selector for the active object (late binding), like Zsoter's model.
        !          7253: Fields are always accessed through the active object. The big
        !          7254: disadvantage of this model is the parsing and the state-smartness, which
        !          7255: reduces extensibility and increases the opportunities for subtle bugs;
        !          7256: essentially, you are only safe if you never tick or @code{postpone} an
        !          7257: object or class (Bernd disagrees, but I (Anton) am not convinced).
1.1       anton    7258: 
1.26    ! crook    7259: @cindex @file{mini-oof.fs}, differences to other models
        !          7260: The @file{mini-oof.fs} model is quite similar to a very stripped-down version of
        !          7261: the @file{objects.fs} model, but syntactically it is a mixture of the @file{objects.fs} and
        !          7262: @file{oof.fs} models.
1.1       anton    7263: 
1.26    ! crook    7264: @c -------------------------------------------------------------
        !          7265: @node Passing Commands to the OS, Miscellaneous Words, Object-oriented Forth, Words
1.21      crook    7266: @section Passing Commands to the Operating System
                   7267: @cindex operating system - passing commands
                   7268: @cindex shell commands
                   7269: 
                   7270: Gforth allows you to pass an arbitrary string to the host operating
                   7271: system shell (if such a thing exists) for execution.
                   7272: 
                   7273: doc-sh
                   7274: doc-system
                   7275: doc-$?
1.23      crook    7276: doc-getenv
1.21      crook    7277: 
1.26    ! crook    7278: @c -------------------------------------------------------------
1.21      crook    7279: @node Miscellaneous Words,  , Passing Commands to the OS, Words
                   7280: @section Miscellaneous Words
                   7281: @cindex miscellaneous words
                   7282: 
1.26    ! crook    7283: These section lists the ANS Forth words that are not documented
1.21      crook    7284: elsewhere in this manual. Ultimately, they all need proper homes.
                   7285: 
                   7286: doc-,
                   7287: doc-allocate
                   7288: doc-allot
                   7289: doc-c,
                   7290: doc-here
                   7291: doc-ms
                   7292: doc-pad
                   7293: doc-parse
                   7294: doc-postpone
                   7295: doc-resize
                   7296: doc-time&date
                   7297: doc-unused
                   7298: doc-word
                   7299: doc-[compile]
1.23      crook    7300: doc-refill
1.21      crook    7301: 
1.26    ! crook    7302: These ANS Forth words are not currently implemented in Gforth
1.21      crook    7303: (see TODO section on dependencies)
                   7304: 
1.26    ! crook    7305: The following ANS Forth words are not currently supported by Gforth 
1.21      crook    7306: (@pxref{ANS conformance})
                   7307: 
                   7308: @code{EDITOR} 
                   7309: @code{EKEY} 
                   7310: @code{EKEY>CHAR} 
                   7311: @code{EKEY?} 
                   7312: @code{EMIT?} 
                   7313: @code{FORGET} 
                   7314: 
1.24      anton    7315: @c ******************************************************************
                   7316: @node Error messages, Tools, Words, Top
                   7317: @chapter Error messages
                   7318: @cindex error messages
                   7319: @cindex backtrace
                   7320: 
                   7321: A typical Gforth error message looks like this:
                   7322: 
                   7323: @example
                   7324: in file included from :-1
                   7325: in file included from ./yyy.fs:1
                   7326: ./xxx.fs:4: Invalid memory address
                   7327: bar
                   7328: ^^^
1.25      anton    7329: $400E664C @@
                   7330: $400E6664 foo
1.24      anton    7331: @end example
                   7332: 
                   7333: The message identifying the error is @code{Invalid memory address}.  The
                   7334: error happened when text-interpreting line 4 of the file
                   7335: @file{./xxx.fs}. This line is given (it contains @code{bar}), and the
                   7336: word on the line where the error happened, is pointed out (with
                   7337: @code{^^^}).
                   7338: 
                   7339: The file containing the error was included in line 1 of @file{./yyy.fs},
                   7340: and @file{yyy.fs} was included from a non-file (in this case, by giving
                   7341: @file{yyy.fs} as command-line parameter to Gforth).
                   7342: 
                   7343: At the end of the error message you find a return stack dump that can be
                   7344: interpreted as a backtrace (possibly empty). On top you find the top of
                   7345: the return stack when the @code{throw} happened, and at the bottom you
                   7346: find the return stack entry just above the return stack of the topmost
                   7347: text interpreter.
                   7348: 
                   7349: To the right of most return stack entries you see a guess for the word
                   7350: that pushed that return stack entry as its return address. This gives a
                   7351: backtrace. In our case we see that @code{bar} called @code{foo}, and
                   7352: @code{foo} called @code{@@} (and @code{@@} had an @emph{Invalid memory
                   7353: address} exception).
                   7354: 
                   7355: Note that the backtrace is not perfect: We don't know which return stack
                   7356: entries are return addresses (so we may get false positives); and in
                   7357: some cases (e.g., for @code{abort"}) we cannot determine from the return
                   7358: address the word that pushed the return address, so for some return
                   7359: addresses you see no names in the return stack dump.
1.25      anton    7360: 
                   7361: @cindex @code{catch} and backtraces
                   7362: The return stack dump represents the return stack at the time when a
                   7363: specific @code{throw} was executed.  In programs that make use of
                   7364: @code{catch}, it is not necessarily clear which @code{throw} should be
                   7365: used for the return stack dump (e.g., consider one @code{throw} that
                   7366: indicates an error, which is caught, and during recovery another error
                   7367: happens; which @code{throw} should be used for the stack dump).  Gforth
                   7368: presents the return stack dump for the first @code{throw} after the last
                   7369: executed (not returned-to) @code{catch}; this works well in the usual
                   7370: case.
                   7371: 
                   7372: @cindex @code{gforth-fast} and backtraces
                   7373: @cindex @code{gforth-fast}, difference from @code{gforth}
                   7374: @cindex backtraces with @code{gforth-fast}
                   7375: @cindex return stack dump with @code{gforth-fast}
                   7376: @code{gforth} is able to do a return stack dump for throws generated
                   7377: from primitives (e.g., invalid memory address, stack empty etc.);
                   7378: @code{gforth-fast} is only able to do a return stack dump from a
                   7379: directly called @code{throw} (including @code{abort} etc.).  This is the
                   7380: only difference (apart from a speed difference of about 30%) between
                   7381: @code{gforth} and @code{gforth-fast}.  Given an exception caused by a
                   7382: primitive in @code{gforth-fast}, you will typically see no return stack
                   7383: dump at all; however, if the exception is caught by @code{catch} (e.g.,
                   7384: for restoring some state), and then @code{throw}n again, the return
                   7385: stack dump will be for the first such @code{throw}.
1.2       jwilke   7386: 
1.5       anton    7387: @c ******************************************************************
1.24      anton    7388: @node Tools, ANS conformance, Error messages, Top
1.1       anton    7389: @chapter Tools
                   7390: 
                   7391: @menu
                   7392: * ANS Report::                  Report the words used, sorted by wordset.
                   7393: @end menu
                   7394: 
                   7395: See also @ref{Emacs and Gforth}.
                   7396: 
                   7397: @node ANS Report,  , Tools, Tools
                   7398: @section @file{ans-report.fs}: Report the words used, sorted by wordset
                   7399: @cindex @file{ans-report.fs}
                   7400: @cindex report the words used in your program
                   7401: @cindex words used in your program
                   7402: 
                   7403: If you want to label a Forth program as ANS Forth Program, you must
                   7404: document which wordsets the program uses; for extension wordsets, it is
                   7405: helpful to list the words the program requires from these wordsets
                   7406: (because Forth systems are allowed to provide only some words of them).
                   7407: 
                   7408: The @file{ans-report.fs} tool makes it easy for you to determine which
                   7409: words from which wordset and which non-ANS words your application
                   7410: uses. You simply have to include @file{ans-report.fs} before loading the
                   7411: program you want to check. After loading your program, you can get the
                   7412: report with @code{print-ans-report}. A typical use is to run this as
                   7413: batch job like this:
                   7414: @example
                   7415: gforth ans-report.fs myprog.fs -e "print-ans-report bye"
                   7416: @end example
                   7417: 
                   7418: The output looks like this (for @file{compat/control.fs}):
                   7419: @example
                   7420: The program uses the following words
                   7421: from CORE :
                   7422: : POSTPONE THEN ; immediate ?dup IF 0= 
                   7423: from BLOCK-EXT :
                   7424: \ 
                   7425: from FILE :
                   7426: ( 
                   7427: @end example
                   7428: 
                   7429: @subsection Caveats
                   7430: 
                   7431: Note that @file{ans-report.fs} just checks which words are used, not whether
                   7432: they are used in an ANS Forth conforming way!
                   7433: 
                   7434: Some words are defined in several wordsets in the
                   7435: standard. @file{ans-report.fs} reports them for only one of the
                   7436: wordsets, and not necessarily the one you expect. It depends on usage
                   7437: which wordset is the right one to specify. E.g., if you only use the
                   7438: compilation semantics of @code{S"}, it is a Core word; if you also use
                   7439: its interpretation semantics, it is a File word.
                   7440: 
                   7441: @c ******************************************************************
                   7442: @node ANS conformance, Model, Tools, Top
                   7443: @chapter ANS conformance
                   7444: @cindex ANS conformance of Gforth
                   7445: 
                   7446: To the best of our knowledge, Gforth is an
                   7447: 
                   7448: ANS Forth System
                   7449: @itemize @bullet
                   7450: @item providing the Core Extensions word set
                   7451: @item providing the Block word set
                   7452: @item providing the Block Extensions word set
                   7453: @item providing the Double-Number word set
                   7454: @item providing the Double-Number Extensions word set
                   7455: @item providing the Exception word set
                   7456: @item providing the Exception Extensions word set
                   7457: @item providing the Facility word set
                   7458: @item providing @code{MS} and @code{TIME&DATE} from the Facility Extensions word set
                   7459: @item providing the File Access word set
                   7460: @item providing the File Access Extensions word set
                   7461: @item providing the Floating-Point word set
                   7462: @item providing the Floating-Point Extensions word set
                   7463: @item providing the Locals word set
                   7464: @item providing the Locals Extensions word set
                   7465: @item providing the Memory-Allocation word set
                   7466: @item providing the Memory-Allocation Extensions word set (that one's easy)
                   7467: @item providing the Programming-Tools word set
                   7468: @item providing @code{;CODE}, @code{AHEAD}, @code{ASSEMBLER}, @code{BYE}, @code{CODE}, @code{CS-PICK}, @code{CS-ROLL}, @code{STATE}, @code{[ELSE]}, @code{[IF]}, @code{[THEN]} from the Programming-Tools Extensions word set
                   7469: @item providing the Search-Order word set
                   7470: @item providing the Search-Order Extensions word set
                   7471: @item providing the String word set
                   7472: @item providing the String Extensions word set (another easy one)
                   7473: @end itemize
                   7474: 
                   7475: @cindex system documentation
                   7476: In addition, ANS Forth systems are required to document certain
                   7477: implementation choices. This chapter tries to meet these
                   7478: requirements. In many cases it gives a way to ask the system for the
                   7479: information instead of providing the information directly, in
                   7480: particular, if the information depends on the processor, the operating
                   7481: system or the installation options chosen, or if they are likely to
                   7482: change during the maintenance of Gforth.
                   7483: 
                   7484: @comment The framework for the rest has been taken from pfe.
                   7485: 
                   7486: @menu
                   7487: * The Core Words::              
                   7488: * The optional Block word set::  
                   7489: * The optional Double Number word set::  
                   7490: * The optional Exception word set::  
                   7491: * The optional Facility word set::  
                   7492: * The optional File-Access word set::  
                   7493: * The optional Floating-Point word set::  
                   7494: * The optional Locals word set::  
                   7495: * The optional Memory-Allocation word set::  
                   7496: * The optional Programming-Tools word set::  
                   7497: * The optional Search-Order word set::  
                   7498: @end menu
                   7499: 
                   7500: 
                   7501: @c =====================================================================
                   7502: @node The Core Words, The optional Block word set, ANS conformance, ANS conformance
                   7503: @comment  node-name,  next,  previous,  up
                   7504: @section The Core Words
                   7505: @c =====================================================================
                   7506: @cindex core words, system documentation
                   7507: @cindex system documentation, core words
                   7508: 
                   7509: @menu
                   7510: * core-idef::                   Implementation Defined Options                   
                   7511: * core-ambcond::                Ambiguous Conditions                
                   7512: * core-other::                  Other System Documentation                  
                   7513: @end menu
                   7514: 
                   7515: @c ---------------------------------------------------------------------
                   7516: @node core-idef, core-ambcond, The Core Words, The Core Words
                   7517: @subsection Implementation Defined Options
                   7518: @c ---------------------------------------------------------------------
                   7519: @cindex core words, implementation-defined options
                   7520: @cindex implementation-defined options, core words
                   7521: 
                   7522: 
                   7523: @table @i
                   7524: @item (Cell) aligned addresses:
                   7525: @cindex cell-aligned addresses
                   7526: @cindex aligned addresses
                   7527: processor-dependent. Gforth's alignment words perform natural alignment
                   7528: (e.g., an address aligned for a datum of size 8 is divisible by
                   7529: 8). Unaligned accesses usually result in a @code{-23 THROW}.
                   7530: 
                   7531: @item @code{EMIT} and non-graphic characters:
                   7532: @cindex @code{EMIT} and non-graphic characters
                   7533: @cindex non-graphic characters and @code{EMIT}
                   7534: The character is output using the C library function (actually, macro)
                   7535: @code{putc}.
                   7536: 
                   7537: @item character editing of @code{ACCEPT} and @code{EXPECT}:
                   7538: @cindex character editing of @code{ACCEPT} and @code{EXPECT}
                   7539: @cindex editing in @code{ACCEPT} and @code{EXPECT}
                   7540: @cindex @code{ACCEPT}, editing
                   7541: @cindex @code{EXPECT}, editing
                   7542: This is modeled on the GNU readline library (@pxref{Readline
                   7543: Interaction, , Command Line Editing, readline, The GNU Readline
                   7544: Library}) with Emacs-like key bindings. @kbd{Tab} deviates a little by
                   7545: producing a full word completion every time you type it (instead of
                   7546: producing the common prefix of all completions).
                   7547: 
                   7548: @item character set:
                   7549: @cindex character set
                   7550: The character set of your computer and display device. Gforth is
                   7551: 8-bit-clean (but some other component in your system may make trouble).
                   7552: 
                   7553: @item Character-aligned address requirements:
                   7554: @cindex character-aligned address requirements
                   7555: installation-dependent. Currently a character is represented by a C
                   7556: @code{unsigned char}; in the future we might switch to @code{wchar_t}
                   7557: (Comments on that requested).
                   7558: 
                   7559: @item character-set extensions and matching of names:
                   7560: @cindex character-set extensions and matching of names
1.26    ! crook    7561: @cindex case-sensitivity for name lookup
        !          7562: @cindex name lookup, case-sensitivity
        !          7563: @cindex locale and case-sensitivity
1.21      crook    7564: Any character except the ASCII NUL character can be used in a
1.1       anton    7565: name. Matching is case-insensitive (except in @code{TABLE}s). The
                   7566: matching is performed using the C function @code{strncasecmp}, whose
                   7567: function is probably influenced by the locale. E.g., the @code{C} locale
                   7568: does not know about accents and umlauts, so they are matched
                   7569: case-sensitively in that locale. For portability reasons it is best to
                   7570: write programs such that they work in the @code{C} locale. Then one can
                   7571: use libraries written by a Polish programmer (who might use words
                   7572: containing ISO Latin-2 encoded characters) and by a French programmer
                   7573: (ISO Latin-1) in the same program (of course, @code{WORDS} will produce
                   7574: funny results for some of the words (which ones, depends on the font you
                   7575: are using)). Also, the locale you prefer may not be available in other
                   7576: operating systems. Hopefully, Unicode will solve these problems one day.
                   7577: 
                   7578: @item conditions under which control characters match a space delimiter:
                   7579: @cindex space delimiters
                   7580: @cindex control characters as delimiters
                   7581: If @code{WORD} is called with the space character as a delimiter, all
                   7582: white-space characters (as identified by the C macro @code{isspace()})
                   7583: are delimiters. @code{PARSE}, on the other hand, treats space like other
                   7584: delimiters. @code{PARSE-WORD} treats space like @code{WORD}, but behaves
                   7585: like @code{PARSE} otherwise. @code{(NAME)}, which is used by the outer
                   7586: interpreter (aka text interpreter) by default, treats all white-space
                   7587: characters as delimiters.
                   7588: 
1.26    ! crook    7589: @item format of the control-flow stack:
        !          7590: @cindex control-flow stack, format
        !          7591: The data stack is used as control-flow stack. The size of a control-flow
1.1       anton    7592: stack item in cells is given by the constant @code{cs-item-size}. At the
                   7593: time of this writing, an item consists of a (pointer to a) locals list
                   7594: (third), an address in the code (second), and a tag for identifying the
                   7595: item (TOS). The following tags are used: @code{defstart},
                   7596: @code{live-orig}, @code{dead-orig}, @code{dest}, @code{do-dest},
                   7597: @code{scopestart}.
                   7598: 
                   7599: @item conversion of digits > 35
                   7600: @cindex digits > 35
                   7601: The characters @code{[\]^_'} are the digits with the decimal value
                   7602: 36@minus{}41. There is no way to input many of the larger digits.
                   7603: 
                   7604: @item display after input terminates in @code{ACCEPT} and @code{EXPECT}:
                   7605: @cindex @code{EXPECT}, display after end of input
                   7606: @cindex @code{ACCEPT}, display after end of input
                   7607: The cursor is moved to the end of the entered string. If the input is
                   7608: terminated using the @kbd{Return} key, a space is typed.
                   7609: 
                   7610: @item exception abort sequence of @code{ABORT"}:
                   7611: @cindex exception abort sequence of @code{ABORT"}
                   7612: @cindex @code{ABORT"}, exception abort sequence
                   7613: The error string is stored into the variable @code{"error} and a
                   7614: @code{-2 throw} is performed.
                   7615: 
                   7616: @item input line terminator:
                   7617: @cindex input line terminator
                   7618: @cindex line terminator on input
1.26    ! crook    7619: @cindex newline character on input
1.1       anton    7620: For interactive input, @kbd{C-m} (CR) and @kbd{C-j} (LF) terminate
                   7621: lines. One of these characters is typically produced when you type the
                   7622: @kbd{Enter} or @kbd{Return} key.
                   7623: 
                   7624: @item maximum size of a counted string:
                   7625: @cindex maximum size of a counted string
                   7626: @cindex counted string, maximum size
                   7627: @code{s" /counted-string" environment? drop .}. Currently 255 characters
                   7628: on all ports, but this may change.
                   7629: 
                   7630: @item maximum size of a parsed string:
                   7631: @cindex maximum size of a parsed string
                   7632: @cindex parsed string, maximum size
                   7633: Given by the constant @code{/line}. Currently 255 characters.
                   7634: 
                   7635: @item maximum size of a definition name, in characters:
                   7636: @cindex maximum size of a definition name, in characters
                   7637: @cindex name, maximum length
                   7638: 31
                   7639: 
                   7640: @item maximum string length for @code{ENVIRONMENT?}, in characters:
                   7641: @cindex maximum string length for @code{ENVIRONMENT?}, in characters
                   7642: @cindex @code{ENVIRONMENT?} string length, maximum
                   7643: 31
                   7644: 
                   7645: @item method of selecting the user input device:
                   7646: @cindex user input device, method of selecting
                   7647: The user input device is the standard input. There is currently no way to
                   7648: change it from within Gforth. However, the input can typically be
                   7649: redirected in the command line that starts Gforth.
                   7650: 
                   7651: @item method of selecting the user output device:
                   7652: @cindex user output device, method of selecting
                   7653: @code{EMIT} and @code{TYPE} output to the file-id stored in the value
1.10      anton    7654: @code{outfile-id} (@code{stdout} by default). Gforth uses unbuffered
                   7655: output when the user output device is a terminal, otherwise the output
                   7656: is buffered.
1.1       anton    7657: 
                   7658: @item methods of dictionary compilation:
                   7659: What are we expected to document here?
                   7660: 
                   7661: @item number of bits in one address unit:
                   7662: @cindex number of bits in one address unit
                   7663: @cindex address unit, size in bits
                   7664: @code{s" address-units-bits" environment? drop .}. 8 in all current
                   7665: ports.
                   7666: 
                   7667: @item number representation and arithmetic:
                   7668: @cindex number representation and arithmetic
                   7669: Processor-dependent. Binary two's complement on all current ports.
                   7670: 
                   7671: @item ranges for integer types:
                   7672: @cindex ranges for integer types
                   7673: @cindex integer types, ranges
                   7674: Installation-dependent. Make environmental queries for @code{MAX-N},
                   7675: @code{MAX-U}, @code{MAX-D} and @code{MAX-UD}. The lower bounds for
                   7676: unsigned (and positive) types is 0. The lower bound for signed types on
                   7677: two's complement and one's complement machines machines can be computed
                   7678: by adding 1 to the upper bound.
                   7679: 
                   7680: @item read-only data space regions:
                   7681: @cindex read-only data space regions
                   7682: @cindex data-space, read-only regions
                   7683: The whole Forth data space is writable.
                   7684: 
                   7685: @item size of buffer at @code{WORD}:
                   7686: @cindex size of buffer at @code{WORD}
                   7687: @cindex @code{WORD} buffer size
                   7688: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   7689: shared with the pictured numeric output string. If overwriting
                   7690: @code{PAD} is acceptable, it is as large as the remaining dictionary
                   7691: space, although only as much can be sensibly used as fits in a counted
                   7692: string.
                   7693: 
                   7694: @item size of one cell in address units:
                   7695: @cindex cell size
                   7696: @code{1 cells .}.
                   7697: 
                   7698: @item size of one character in address units:
                   7699: @cindex char size
                   7700: @code{1 chars .}. 1 on all current ports.
                   7701: 
                   7702: @item size of the keyboard terminal buffer:
                   7703: @cindex size of the keyboard terminal buffer
                   7704: @cindex terminal buffer, size
                   7705: Varies. You can determine the size at a specific time using @code{lp@@
                   7706: tib - .}. It is shared with the locals stack and TIBs of files that
                   7707: include the current file. You can change the amount of space for TIBs
                   7708: and locals stack at Gforth startup with the command line option
                   7709: @code{-l}.
                   7710: 
                   7711: @item size of the pictured numeric output buffer:
                   7712: @cindex size of the pictured numeric output buffer
                   7713: @cindex pictured numeric output buffer, size
                   7714: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   7715: shared with @code{WORD}.
                   7716: 
                   7717: @item size of the scratch area returned by @code{PAD}:
                   7718: @cindex size of the scratch area returned by @code{PAD}
                   7719: @cindex @code{PAD} size
                   7720: The remainder of dictionary space. @code{unused pad here - - .}.
                   7721: 
                   7722: @item system case-sensitivity characteristics:
                   7723: @cindex case-sensitivity characteristics
1.26    ! crook    7724: Dictionary searches are case-insensitive (except in
1.1       anton    7725: @code{TABLE}s). However, as explained above under @i{character-set
                   7726: extensions}, the matching for non-ASCII characters is determined by the
                   7727: locale you are using. In the default @code{C} locale all non-ASCII
                   7728: characters are matched case-sensitively.
                   7729: 
                   7730: @item system prompt:
                   7731: @cindex system prompt
                   7732: @cindex prompt
                   7733: @code{ ok} in interpret state, @code{ compiled} in compile state.
                   7734: 
                   7735: @item division rounding:
                   7736: @cindex division rounding
                   7737: installation dependent. @code{s" floored" environment? drop .}. We leave
                   7738: the choice to @code{gcc} (what to use for @code{/}) and to you (whether
                   7739: to use @code{fm/mod}, @code{sm/rem} or simply @code{/}).
                   7740: 
                   7741: @item values of @code{STATE} when true:
                   7742: @cindex @code{STATE} values
                   7743: -1.
                   7744: 
                   7745: @item values returned after arithmetic overflow:
                   7746: On two's complement machines, arithmetic is performed modulo
                   7747: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   7748: arithmetic (with appropriate mapping for signed types). Division by zero
                   7749: typically results in a @code{-55 throw} (Floating-point unidentified
                   7750: fault), although a @code{-10 throw} (divide by zero) would be more
                   7751: appropriate.
                   7752: 
                   7753: @item whether the current definition can be found after @t{DOES>}:
                   7754: @cindex @t{DOES>}, visibility of current definition
                   7755: No.
                   7756: 
                   7757: @end table
                   7758: 
                   7759: @c ---------------------------------------------------------------------
                   7760: @node core-ambcond, core-other, core-idef, The Core Words
                   7761: @subsection Ambiguous conditions
                   7762: @c ---------------------------------------------------------------------
                   7763: @cindex core words, ambiguous conditions
                   7764: @cindex ambiguous conditions, core words
                   7765: 
                   7766: @table @i
                   7767: 
                   7768: @item a name is neither a word nor a number:
                   7769: @cindex name not found
1.26    ! crook    7770: @cindex undefined word
1.1       anton    7771: @code{-13 throw} (Undefined word). Actually, @code{-13 bounce}, which
                   7772: preserves the data and FP stack, so you don't lose more work than
                   7773: necessary.
                   7774: 
                   7775: @item a definition name exceeds the maximum length allowed:
1.26    ! crook    7776: @cindex word name too long
1.1       anton    7777: @code{-19 throw} (Word name too long)
                   7778: 
                   7779: @item addressing a region not inside the various data spaces of the forth system:
                   7780: @cindex Invalid memory address
                   7781: The stacks, code space and name space are accessible. Machine code space is
                   7782: typically readable. Accessing other addresses gives results dependent on
                   7783: the operating system. On decent systems: @code{-9 throw} (Invalid memory
                   7784: address).
                   7785: 
                   7786: @item argument type incompatible with parameter:
1.26    ! crook    7787: @cindex argument type mismatch
1.1       anton    7788: This is usually not caught. Some words perform checks, e.g., the control
                   7789: flow words, and issue a @code{ABORT"} or @code{-12 THROW} (Argument type
                   7790: mismatch).
                   7791: 
                   7792: @item attempting to obtain the execution token of a word with undefined execution semantics:
                   7793: @cindex Interpreting a compile-only word, for @code{'} etc.
                   7794: @cindex execution token of words with undefined execution semantics
                   7795: @code{-14 throw} (Interpreting a compile-only word). In some cases, you
                   7796: get an execution token for @code{compile-only-error} (which performs a
                   7797: @code{-14 throw} when executed).
                   7798: 
                   7799: @item dividing by zero:
                   7800: @cindex dividing by zero
                   7801: @cindex floating point unidentified fault, integer division
1.24      anton    7802: On better platforms, this produces a @code{-10 throw} (Division by
                   7803: zero); on other systems, this typically results in a @code{-55 throw}
                   7804: (Floating-point unidentified fault).
1.1       anton    7805: 
                   7806: @item insufficient data stack or return stack space:
                   7807: @cindex insufficient data stack or return stack space
                   7808: @cindex stack overflow
1.26    ! crook    7809: @cindex address alignment exception, stack overflow
1.1       anton    7810: @cindex Invalid memory address, stack overflow
                   7811: Depending on the operating system, the installation, and the invocation
                   7812: of Gforth, this is either checked by the memory management hardware, or
1.24      anton    7813: it is not checked. If it is checked, you typically get a @code{-3 throw}
                   7814: (Stack overflow), @code{-5 throw} (Return stack overflow), or @code{-9
                   7815: throw} (Invalid memory address) (depending on the platform and how you
                   7816: achieved the overflow) as soon as the overflow happens. If it is not
                   7817: checked, overflows typically result in mysterious illegal memory
                   7818: accesses, producing @code{-9 throw} (Invalid memory address) or
                   7819: @code{-23 throw} (Address alignment exception); they might also destroy
                   7820: the internal data structure of @code{ALLOCATE} and friends, resulting in
                   7821: various errors in these words.
1.1       anton    7822: 
                   7823: @item insufficient space for loop control parameters:
                   7824: @cindex insufficient space for loop control parameters
                   7825: like other return stack overflows.
                   7826: 
                   7827: @item insufficient space in the dictionary:
                   7828: @cindex insufficient space in the dictionary
                   7829: @cindex dictionary overflow
1.12      anton    7830: If you try to allot (either directly with @code{allot}, or indirectly
                   7831: with @code{,}, @code{create} etc.) more memory than available in the
                   7832: dictionary, you get a @code{-8 throw} (Dictionary overflow). If you try
                   7833: to access memory beyond the end of the dictionary, the results are
                   7834: similar to stack overflows.
1.1       anton    7835: 
                   7836: @item interpreting a word with undefined interpretation semantics:
                   7837: @cindex interpreting a word with undefined interpretation semantics
                   7838: @cindex Interpreting a compile-only word
                   7839: For some words, we have defined interpretation semantics. For the
                   7840: others: @code{-14 throw} (Interpreting a compile-only word).
                   7841: 
                   7842: @item modifying the contents of the input buffer or a string literal:
                   7843: @cindex modifying the contents of the input buffer or a string literal
                   7844: These are located in writable memory and can be modified.
                   7845: 
                   7846: @item overflow of the pictured numeric output string:
                   7847: @cindex overflow of the pictured numeric output string
                   7848: @cindex pictured numeric output string, overflow
1.24      anton    7849: @code{-17 throw} (Pictured numeric ouput string overflow).
1.1       anton    7850: 
                   7851: @item parsed string overflow:
                   7852: @cindex parsed string overflow
                   7853: @code{PARSE} cannot overflow. @code{WORD} does not check for overflow.
                   7854: 
                   7855: @item producing a result out of range:
                   7856: @cindex result out of range
                   7857: On two's complement machines, arithmetic is performed modulo
                   7858: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   7859: arithmetic (with appropriate mapping for signed types). Division by zero
1.24      anton    7860: typically results in a @code{-10 throw} (divide by zero) or @code{-55
                   7861: throw} (floating point unidentified fault). @code{convert} and
                   7862: @code{>number} currently overflow silently.
1.1       anton    7863: 
                   7864: @item reading from an empty data or return stack:
                   7865: @cindex stack empty
                   7866: @cindex stack underflow
1.24      anton    7867: @cindex return stack underflow
1.1       anton    7868: The data stack is checked by the outer (aka text) interpreter after
                   7869: every word executed. If it has underflowed, a @code{-4 throw} (Stack
                   7870: underflow) is performed. Apart from that, stacks may be checked or not,
1.24      anton    7871: depending on operating system, installation, and invocation. If they are
                   7872: caught by a check, they typically result in @code{-4 throw} (Stack
                   7873: underflow), @code{-6 throw} (Return stack underflow) or @code{-9 throw}
                   7874: (Invalid memory address), depending on the platform and which stack
                   7875: underflows and by how much. Note that even if the system uses checking
                   7876: (through the MMU), your program may have to underflow by a significant
                   7877: number of stack items to trigger the reaction (the reason for this is
                   7878: that the MMU, and therefore the checking, works with a page-size
                   7879: granularity).  If there is no checking, the symptoms resulting from an
                   7880: underflow are similar to those from an overflow.  Unbalanced return
                   7881: stack errors result in a variaty of symptoms, including @code{-9 throw}
                   7882: (Invalid memory address) and Illegal Instruction (typically @code{-260
                   7883: throw}).
1.1       anton    7884: 
                   7885: @item unexpected end of the input buffer, resulting in an attempt to use a zero-length string as a name:
                   7886: @cindex unexpected end of the input buffer
                   7887: @cindex zero-length string as a name
                   7888: @cindex Attempt to use zero-length string as a name
                   7889: @code{Create} and its descendants perform a @code{-16 throw} (Attempt to
                   7890: use zero-length string as a name). Words like @code{'} probably will not
                   7891: find what they search. Note that it is possible to create zero-length
                   7892: names with @code{nextname} (should it not?).
                   7893: 
                   7894: @item @code{>IN} greater than input buffer:
                   7895: @cindex @code{>IN} greater than input buffer
                   7896: The next invocation of a parsing word returns a string with length 0.
                   7897: 
                   7898: @item @code{RECURSE} appears after @code{DOES>}:
                   7899: @cindex @code{RECURSE} appears after @code{DOES>}
                   7900: Compiles a recursive call to the defining word, not to the defined word.
                   7901: 
                   7902: @item argument input source different than current input source for @code{RESTORE-INPUT}:
                   7903: @cindex argument input source different than current input source for @code{RESTORE-INPUT}
1.26    ! crook    7904: @cindex argument type mismatch, @code{RESTORE-INPUT}
1.1       anton    7905: @cindex @code{RESTORE-INPUT}, Argument type mismatch
                   7906: @code{-12 THROW}. Note that, once an input file is closed (e.g., because
                   7907: the end of the file was reached), its source-id may be
                   7908: reused. Therefore, restoring an input source specification referencing a
                   7909: closed file may lead to unpredictable results instead of a @code{-12
                   7910: THROW}.
                   7911: 
                   7912: In the future, Gforth may be able to restore input source specifications
                   7913: from other than the current input source.
                   7914: 
                   7915: @item data space containing definitions gets de-allocated:
                   7916: @cindex data space containing definitions gets de-allocated
                   7917: Deallocation with @code{allot} is not checked. This typically results in
                   7918: memory access faults or execution of illegal instructions.
                   7919: 
                   7920: @item data space read/write with incorrect alignment:
                   7921: @cindex data space read/write with incorrect alignment
                   7922: @cindex alignment faults
1.26    ! crook    7923: @cindex address alignment exception
1.1       anton    7924: Processor-dependent. Typically results in a @code{-23 throw} (Address
1.12      anton    7925: alignment exception). Under Linux-Intel on a 486 or later processor with
1.1       anton    7926: alignment turned on, incorrect alignment results in a @code{-9 throw}
                   7927: (Invalid memory address). There are reportedly some processors with
1.12      anton    7928: alignment restrictions that do not report violations.
1.1       anton    7929: 
                   7930: @item data space pointer not properly aligned, @code{,}, @code{C,}:
                   7931: @cindex data space pointer not properly aligned, @code{,}, @code{C,}
                   7932: Like other alignment errors.
                   7933: 
                   7934: @item less than u+2 stack items (@code{PICK} and @code{ROLL}):
                   7935: Like other stack underflows.
                   7936: 
                   7937: @item loop control parameters not available:
                   7938: @cindex loop control parameters not available
                   7939: Not checked. The counted loop words simply assume that the top of return
                   7940: stack items are loop control parameters and behave accordingly.
                   7941: 
                   7942: @item most recent definition does not have a name (@code{IMMEDIATE}):
                   7943: @cindex most recent definition does not have a name (@code{IMMEDIATE})
                   7944: @cindex last word was headerless
                   7945: @code{abort" last word was headerless"}.
                   7946: 
                   7947: @item name not defined by @code{VALUE} used by @code{TO}:
                   7948: @cindex name not defined by @code{VALUE} used by @code{TO}
                   7949: @cindex @code{TO} on non-@code{VALUE}s
                   7950: @cindex Invalid name argument, @code{TO}
                   7951: @code{-32 throw} (Invalid name argument) (unless name is a local or was
                   7952: defined by @code{CONSTANT}; in the latter case it just changes the constant).
                   7953: 
                   7954: @item name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}):
                   7955: @cindex name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]})
1.26    ! crook    7956: @cindex undefined word, @code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}
1.1       anton    7957: @code{-13 throw} (Undefined word)
                   7958: 
                   7959: @item parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN}):
                   7960: @cindex parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN})
                   7961: Gforth behaves as if they were of the same type. I.e., you can predict
                   7962: the behaviour by interpreting all parameters as, e.g., signed.
                   7963: 
                   7964: @item @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}:
                   7965: @cindex @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}
                   7966: Assume @code{: X POSTPONE TO ; IMMEDIATE}. @code{X} performs the
                   7967: compilation semantics of @code{TO}.
                   7968: 
                   7969: @item String longer than a counted string returned by @code{WORD}:
1.26    ! crook    7970: @cindex string longer than a counted string returned by @code{WORD}
1.1       anton    7971: @cindex @code{WORD}, string overflow
                   7972: Not checked. The string will be ok, but the count will, of course,
                   7973: contain only the least significant bits of the length.
                   7974: 
                   7975: @item u greater than or equal to the number of bits in a cell (@code{LSHIFT}, @code{RSHIFT}):
                   7976: @cindex @code{LSHIFT}, large shift counts
                   7977: @cindex @code{RSHIFT}, large shift counts
                   7978: Processor-dependent. Typical behaviours are returning 0 and using only
                   7979: the low bits of the shift count.
                   7980: 
                   7981: @item word not defined via @code{CREATE}:
                   7982: @cindex @code{>BODY} of non-@code{CREATE}d words
                   7983: @code{>BODY} produces the PFA of the word no matter how it was defined.
                   7984: 
                   7985: @cindex @code{DOES>} of non-@code{CREATE}d words
                   7986: @code{DOES>} changes the execution semantics of the last defined word no
                   7987: matter how it was defined. E.g., @code{CONSTANT DOES>} is equivalent to
                   7988: @code{CREATE , DOES>}.
                   7989: 
                   7990: @item words improperly used outside @code{<#} and @code{#>}:
                   7991: Not checked. As usual, you can expect memory faults.
                   7992: 
                   7993: @end table
                   7994: 
                   7995: 
                   7996: @c ---------------------------------------------------------------------
                   7997: @node core-other,  , core-ambcond, The Core Words
                   7998: @subsection Other system documentation
                   7999: @c ---------------------------------------------------------------------
                   8000: @cindex other system documentation, core words
                   8001: @cindex core words, other system documentation
                   8002: 
                   8003: @table @i
                   8004: @item nonstandard words using @code{PAD}:
                   8005: @cindex @code{PAD} use by nonstandard words
                   8006: None.
                   8007: 
                   8008: @item operator's terminal facilities available:
                   8009: @cindex operator's terminal facilities available
                   8010: After processing the command line, Gforth goes into interactive mode,
                   8011: and you can give commands to Gforth interactively. The actual facilities
                   8012: available depend on how you invoke Gforth.
                   8013: 
                   8014: @item program data space available:
                   8015: @cindex program data space available
                   8016: @cindex data space available
                   8017: @code{UNUSED .} gives the remaining dictionary space. The total
                   8018: dictionary space can be specified with the @code{-m} switch
                   8019: (@pxref{Invoking Gforth}) when Gforth starts up.
                   8020: 
                   8021: @item return stack space available:
                   8022: @cindex return stack space available
                   8023: You can compute the total return stack space in cells with
                   8024: @code{s" RETURN-STACK-CELLS" environment? drop .}. You can specify it at
                   8025: startup time with the @code{-r} switch (@pxref{Invoking Gforth}).
                   8026: 
                   8027: @item stack space available:
                   8028: @cindex stack space available
                   8029: You can compute the total data stack space in cells with
                   8030: @code{s" STACK-CELLS" environment? drop .}. You can specify it at
                   8031: startup time with the @code{-d} switch (@pxref{Invoking Gforth}).
                   8032: 
                   8033: @item system dictionary space required, in address units:
                   8034: @cindex system dictionary space required, in address units
                   8035: Type @code{here forthstart - .} after startup. At the time of this
                   8036: writing, this gives 80080 (bytes) on a 32-bit system.
                   8037: @end table
                   8038: 
                   8039: 
                   8040: @c =====================================================================
                   8041: @node The optional Block word set, The optional Double Number word set, The Core Words, ANS conformance
                   8042: @section The optional Block word set
                   8043: @c =====================================================================
                   8044: @cindex system documentation, block words
                   8045: @cindex block words, system documentation
                   8046: 
                   8047: @menu
                   8048: * block-idef::                  Implementation Defined Options
                   8049: * block-ambcond::               Ambiguous Conditions               
                   8050: * block-other::                 Other System Documentation                 
                   8051: @end menu
                   8052: 
                   8053: 
                   8054: @c ---------------------------------------------------------------------
                   8055: @node block-idef, block-ambcond, The optional Block word set, The optional Block word set
                   8056: @subsection Implementation Defined Options
                   8057: @c ---------------------------------------------------------------------
                   8058: @cindex implementation-defined options, block words
                   8059: @cindex block words, implementation-defined options
                   8060: 
                   8061: @table @i
                   8062: @item the format for display by @code{LIST}:
                   8063: @cindex @code{LIST} display format
                   8064: First the screen number is displayed, then 16 lines of 64 characters,
                   8065: each line preceded by the line number.
                   8066: 
                   8067: @item the length of a line affected by @code{\}:
                   8068: @cindex length of a line affected by @code{\}
                   8069: @cindex @code{\}, line length in blocks
                   8070: 64 characters.
                   8071: @end table
                   8072: 
                   8073: 
                   8074: @c ---------------------------------------------------------------------
                   8075: @node block-ambcond, block-other, block-idef, The optional Block word set
                   8076: @subsection Ambiguous conditions
                   8077: @c ---------------------------------------------------------------------
                   8078: @cindex block words, ambiguous conditions
                   8079: @cindex ambiguous conditions, block words
                   8080: 
                   8081: @table @i
                   8082: @item correct block read was not possible:
                   8083: @cindex block read not possible
                   8084: Typically results in a @code{throw} of some OS-derived value (between
                   8085: -512 and -2048). If the blocks file was just not long enough, blanks are
                   8086: supplied for the missing portion.
                   8087: 
                   8088: @item I/O exception in block transfer:
                   8089: @cindex I/O exception in block transfer
                   8090: @cindex block transfer, I/O exception
                   8091: Typically results in a @code{throw} of some OS-derived value (between
                   8092: -512 and -2048).
                   8093: 
                   8094: @item invalid block number:
                   8095: @cindex invalid block number
                   8096: @cindex block number invalid
                   8097: @code{-35 throw} (Invalid block number)
                   8098: 
                   8099: @item a program directly alters the contents of @code{BLK}:
                   8100: @cindex @code{BLK}, altering @code{BLK}
                   8101: The input stream is switched to that other block, at the same
                   8102: position. If the storing to @code{BLK} happens when interpreting
                   8103: non-block input, the system will get quite confused when the block ends.
                   8104: 
                   8105: @item no current block buffer for @code{UPDATE}:
                   8106: @cindex @code{UPDATE}, no current block buffer
                   8107: @code{UPDATE} has no effect.
                   8108: 
                   8109: @end table
                   8110: 
                   8111: @c ---------------------------------------------------------------------
                   8112: @node block-other,  , block-ambcond, The optional Block word set
                   8113: @subsection Other system documentation
                   8114: @c ---------------------------------------------------------------------
                   8115: @cindex other system documentation, block words
                   8116: @cindex block words, other system documentation
                   8117: 
                   8118: @table @i
                   8119: @item any restrictions a multiprogramming system places on the use of buffer addresses:
                   8120: No restrictions (yet).
                   8121: 
                   8122: @item the number of blocks available for source and data:
                   8123: depends on your disk space.
                   8124: 
                   8125: @end table
                   8126: 
                   8127: 
                   8128: @c =====================================================================
                   8129: @node The optional Double Number word set, The optional Exception word set, The optional Block word set, ANS conformance
                   8130: @section The optional Double Number word set
                   8131: @c =====================================================================
                   8132: @cindex system documentation, double words
                   8133: @cindex double words, system documentation
                   8134: 
                   8135: @menu
                   8136: * double-ambcond::              Ambiguous Conditions              
                   8137: @end menu
                   8138: 
                   8139: 
                   8140: @c ---------------------------------------------------------------------
                   8141: @node double-ambcond,  , The optional Double Number word set, The optional Double Number word set
                   8142: @subsection Ambiguous conditions
                   8143: @c ---------------------------------------------------------------------
                   8144: @cindex double words, ambiguous conditions
                   8145: @cindex ambiguous conditions, double words
                   8146: 
                   8147: @table @i
                   8148: @item @var{d} outside of range of @var{n} in @code{D>S}:
                   8149: @cindex @code{D>S}, @var{d} out of range of @var{n} 
                   8150: The least significant cell of @var{d} is produced.
                   8151: 
                   8152: @end table
                   8153: 
                   8154: 
                   8155: @c =====================================================================
                   8156: @node The optional Exception word set, The optional Facility word set, The optional Double Number word set, ANS conformance
                   8157: @section The optional Exception word set
                   8158: @c =====================================================================
                   8159: @cindex system documentation, exception words
                   8160: @cindex exception words, system documentation
                   8161: 
                   8162: @menu
                   8163: * exception-idef::              Implementation Defined Options              
                   8164: @end menu
                   8165: 
                   8166: 
                   8167: @c ---------------------------------------------------------------------
                   8168: @node exception-idef,  , The optional Exception word set, The optional Exception word set
                   8169: @subsection Implementation Defined Options
                   8170: @c ---------------------------------------------------------------------
                   8171: @cindex implementation-defined options, exception words
                   8172: @cindex exception words, implementation-defined options
                   8173: 
                   8174: @table @i
                   8175: @item @code{THROW}-codes used in the system:
                   8176: @cindex @code{THROW}-codes used in the system
                   8177: The codes -256@minus{}-511 are used for reporting signals. The mapping
                   8178: from OS signal numbers to throw codes is -256@minus{}@var{signal}. The
                   8179: codes -512@minus{}-2047 are used for OS errors (for file and memory
                   8180: allocation operations). The mapping from OS error numbers to throw codes
                   8181: is -512@minus{}@code{errno}. One side effect of this mapping is that
                   8182: undefined OS errors produce a message with a strange number; e.g.,
                   8183: @code{-1000 THROW} results in @code{Unknown error 488} on my system.
                   8184: @end table
                   8185: 
                   8186: @c =====================================================================
                   8187: @node The optional Facility word set, The optional File-Access word set, The optional Exception word set, ANS conformance
                   8188: @section The optional Facility word set
                   8189: @c =====================================================================
                   8190: @cindex system documentation, facility words
                   8191: @cindex facility words, system documentation
                   8192: 
                   8193: @menu
                   8194: * facility-idef::               Implementation Defined Options               
                   8195: * facility-ambcond::            Ambiguous Conditions            
                   8196: @end menu
                   8197: 
                   8198: 
                   8199: @c ---------------------------------------------------------------------
                   8200: @node facility-idef, facility-ambcond, The optional Facility word set, The optional Facility word set
                   8201: @subsection Implementation Defined Options
                   8202: @c ---------------------------------------------------------------------
                   8203: @cindex implementation-defined options, facility words
                   8204: @cindex facility words, implementation-defined options
                   8205: 
                   8206: @table @i
                   8207: @item encoding of keyboard events (@code{EKEY}):
                   8208: @cindex keyboard events, encoding in @code{EKEY}
                   8209: @cindex @code{EKEY}, encoding of keyboard events
                   8210: Not yet implemented.
                   8211: 
                   8212: @item duration of a system clock tick:
                   8213: @cindex duration of a system clock tick
                   8214: @cindex clock tick duration
                   8215: System dependent. With respect to @code{MS}, the time is specified in
                   8216: microseconds. How well the OS and the hardware implement this, is
                   8217: another question.
                   8218: 
                   8219: @item repeatability to be expected from the execution of @code{MS}:
                   8220: @cindex repeatability to be expected from the execution of @code{MS}
                   8221: @cindex @code{MS}, repeatability to be expected
                   8222: System dependent. On Unix, a lot depends on load. If the system is
                   8223: lightly loaded, and the delay is short enough that Gforth does not get
                   8224: swapped out, the performance should be acceptable. Under MS-DOS and
                   8225: other single-tasking systems, it should be good.
                   8226: 
                   8227: @end table
                   8228: 
                   8229: 
                   8230: @c ---------------------------------------------------------------------
                   8231: @node facility-ambcond,  , facility-idef, The optional Facility word set
                   8232: @subsection Ambiguous conditions
                   8233: @c ---------------------------------------------------------------------
                   8234: @cindex facility words, ambiguous conditions
                   8235: @cindex ambiguous conditions, facility words
                   8236: 
                   8237: @table @i
                   8238: @item @code{AT-XY} can't be performed on user output device:
                   8239: @cindex @code{AT-XY} can't be performed on user output device
                   8240: Largely terminal dependent. No range checks are done on the arguments.
                   8241: No errors are reported. You may see some garbage appearing, you may see
                   8242: simply nothing happen.
                   8243: 
                   8244: @end table
                   8245: 
                   8246: 
                   8247: @c =====================================================================
                   8248: @node The optional File-Access word set, The optional Floating-Point word set, The optional Facility word set, ANS conformance
                   8249: @section The optional File-Access word set
                   8250: @c =====================================================================
                   8251: @cindex system documentation, file words
                   8252: @cindex file words, system documentation
                   8253: 
                   8254: @menu
                   8255: * file-idef::                   Implementation Defined Options
                   8256: * file-ambcond::                Ambiguous Conditions                
                   8257: @end menu
                   8258: 
                   8259: @c ---------------------------------------------------------------------
                   8260: @node file-idef, file-ambcond, The optional File-Access word set, The optional File-Access word set
                   8261: @subsection Implementation Defined Options
                   8262: @c ---------------------------------------------------------------------
                   8263: @cindex implementation-defined options, file words
                   8264: @cindex file words, implementation-defined options
                   8265: 
                   8266: @table @i
                   8267: @item file access methods used:
                   8268: @cindex file access methods used
                   8269: @code{R/O}, @code{R/W} and @code{BIN} work as you would
                   8270: expect. @code{W/O} translates into the C file opening mode @code{w} (or
                   8271: @code{wb}): The file is cleared, if it exists, and created, if it does
                   8272: not (with both @code{open-file} and @code{create-file}).  Under Unix
                   8273: @code{create-file} creates a file with 666 permissions modified by your
                   8274: umask.
                   8275: 
                   8276: @item file exceptions:
                   8277: @cindex file exceptions
                   8278: The file words do not raise exceptions (except, perhaps, memory access
                   8279: faults when you pass illegal addresses or file-ids).
                   8280: 
                   8281: @item file line terminator:
                   8282: @cindex file line terminator
                   8283: System-dependent. Gforth uses C's newline character as line
                   8284: terminator. What the actual character code(s) of this are is
                   8285: system-dependent.
                   8286: 
                   8287: @item file name format:
                   8288: @cindex file name format
                   8289: System dependent. Gforth just uses the file name format of your OS.
                   8290: 
                   8291: @item information returned by @code{FILE-STATUS}:
                   8292: @cindex @code{FILE-STATUS}, returned information
                   8293: @code{FILE-STATUS} returns the most powerful file access mode allowed
                   8294: for the file: Either @code{R/O}, @code{W/O} or @code{R/W}. If the file
                   8295: cannot be accessed, @code{R/O BIN} is returned. @code{BIN} is applicable
                   8296: along with the returned mode.
                   8297: 
                   8298: @item input file state after an exception when including source:
                   8299: @cindex exception when including source
                   8300: All files that are left via the exception are closed.
                   8301: 
                   8302: @item @var{ior} values and meaning:
                   8303: @cindex @var{ior} values and meaning
                   8304: The @var{ior}s returned by the file and memory allocation words are
                   8305: intended as throw codes. They typically are in the range
                   8306: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
                   8307: @var{ior}s is -512@minus{}@var{errno}.
                   8308: 
                   8309: @item maximum depth of file input nesting:
                   8310: @cindex maximum depth of file input nesting
                   8311: @cindex file input nesting, maximum depth
                   8312: limited by the amount of return stack, locals/TIB stack, and the number
                   8313: of open files available. This should not give you troubles.
                   8314: 
                   8315: @item maximum size of input line:
                   8316: @cindex maximum size of input line
                   8317: @cindex input line size, maximum
                   8318: @code{/line}. Currently 255.
                   8319: 
                   8320: @item methods of mapping block ranges to files:
                   8321: @cindex mapping block ranges to files
                   8322: @cindex files containing blocks
                   8323: @cindex blocks in files
                   8324: By default, blocks are accessed in the file @file{blocks.fb} in the
                   8325: current working directory. The file can be switched with @code{USE}.
                   8326: 
                   8327: @item number of string buffers provided by @code{S"}:
                   8328: @cindex @code{S"}, number of string buffers
                   8329: 1
                   8330: 
                   8331: @item size of string buffer used by @code{S"}:
                   8332: @cindex @code{S"}, size of string buffer
                   8333: @code{/line}. currently 255.
                   8334: 
                   8335: @end table
                   8336: 
                   8337: @c ---------------------------------------------------------------------
                   8338: @node file-ambcond,  , file-idef, The optional File-Access word set
                   8339: @subsection Ambiguous conditions
                   8340: @c ---------------------------------------------------------------------
                   8341: @cindex file words, ambiguous conditions
                   8342: @cindex ambiguous conditions, file words
                   8343: 
                   8344: @table @i
                   8345: @item attempting to position a file outside its boundaries:
                   8346: @cindex @code{REPOSITION-FILE}, outside the file's boundaries
                   8347: @code{REPOSITION-FILE} is performed as usual: Afterwards,
                   8348: @code{FILE-POSITION} returns the value given to @code{REPOSITION-FILE}.
                   8349: 
                   8350: @item attempting to read from file positions not yet written:
                   8351: @cindex reading from file positions not yet written
                   8352: End-of-file, i.e., zero characters are read and no error is reported.
                   8353: 
                   8354: @item @var{file-id} is invalid (@code{INCLUDE-FILE}):
                   8355: @cindex @code{INCLUDE-FILE}, @var{file-id} is invalid 
                   8356: An appropriate exception may be thrown, but a memory fault or other
                   8357: problem is more probable.
                   8358: 
                   8359: @item I/O exception reading or closing @var{file-id} (@code{INCLUDE-FILE}, @code{INCLUDED}):
                   8360: @cindex @code{INCLUDE-FILE}, I/O exception reading or closing @var{file-id}
                   8361: @cindex @code{INCLUDED}, I/O exception reading or closing @var{file-id}
                   8362: The @var{ior} produced by the operation, that discovered the problem, is
                   8363: thrown.
                   8364: 
                   8365: @item named file cannot be opened (@code{INCLUDED}):
                   8366: @cindex @code{INCLUDED}, named file cannot be opened
                   8367: The @var{ior} produced by @code{open-file} is thrown.
                   8368: 
                   8369: @item requesting an unmapped block number:
                   8370: @cindex unmapped block numbers
                   8371: There are no unmapped legal block numbers. On some operating systems,
                   8372: writing a block with a large number may overflow the file system and
                   8373: have an error message as consequence.
                   8374: 
                   8375: @item using @code{source-id} when @code{blk} is non-zero:
                   8376: @cindex @code{SOURCE-ID}, behaviour when @code{BLK} is non-zero
                   8377: @code{source-id} performs its function. Typically it will give the id of
                   8378: the source which loaded the block. (Better ideas?)
                   8379: 
                   8380: @end table
                   8381: 
                   8382: 
                   8383: @c =====================================================================
                   8384: @node  The optional Floating-Point word set, The optional Locals word set, The optional File-Access word set, ANS conformance
                   8385: @section The optional Floating-Point word set
                   8386: @c =====================================================================
                   8387: @cindex system documentation, floating-point words
                   8388: @cindex floating-point words, system documentation
                   8389: 
                   8390: @menu
                   8391: * floating-idef::               Implementation Defined Options
                   8392: * floating-ambcond::            Ambiguous Conditions            
                   8393: @end menu
                   8394: 
                   8395: 
                   8396: @c ---------------------------------------------------------------------
                   8397: @node floating-idef, floating-ambcond, The optional Floating-Point word set, The optional Floating-Point word set
                   8398: @subsection Implementation Defined Options
                   8399: @c ---------------------------------------------------------------------
                   8400: @cindex implementation-defined options, floating-point words
                   8401: @cindex floating-point words, implementation-defined options
                   8402: 
                   8403: @table @i
                   8404: @item format and range of floating point numbers:
                   8405: @cindex format and range of floating point numbers
                   8406: @cindex floating point numbers, format and range
                   8407: System-dependent; the @code{double} type of C.
                   8408: 
                   8409: @item results of @code{REPRESENT} when @var{float} is out of range:
                   8410: @cindex  @code{REPRESENT}, results when @var{float} is out of range
                   8411: System dependent; @code{REPRESENT} is implemented using the C library
                   8412: function @code{ecvt()} and inherits its behaviour in this respect.
                   8413: 
                   8414: @item rounding or truncation of floating-point numbers:
                   8415: @cindex rounding of floating-point numbers
                   8416: @cindex truncation of floating-point numbers
                   8417: @cindex floating-point numbers, rounding or truncation
                   8418: System dependent; the rounding behaviour is inherited from the hosting C
                   8419: compiler. IEEE-FP-based (i.e., most) systems by default round to
                   8420: nearest, and break ties by rounding to even (i.e., such that the last
                   8421: bit of the mantissa is 0).
                   8422: 
                   8423: @item size of floating-point stack:
                   8424: @cindex floating-point stack size
                   8425: @code{s" FLOATING-STACK" environment? drop .} gives the total size of
                   8426: the floating-point stack (in floats). You can specify this on startup
                   8427: with the command-line option @code{-f} (@pxref{Invoking Gforth}).
                   8428: 
                   8429: @item width of floating-point stack:
                   8430: @cindex floating-point stack width 
                   8431: @code{1 floats}.
                   8432: 
                   8433: @end table
                   8434: 
                   8435: 
                   8436: @c ---------------------------------------------------------------------
                   8437: @node floating-ambcond,  , floating-idef, The optional Floating-Point word set
                   8438: @subsection Ambiguous conditions
                   8439: @c ---------------------------------------------------------------------
                   8440: @cindex floating-point words, ambiguous conditions
                   8441: @cindex ambiguous conditions, floating-point words
                   8442: 
                   8443: @table @i
                   8444: @item @code{df@@} or @code{df!} used with an address that is not double-float  aligned:
                   8445: @cindex @code{df@@} or @code{df!} used with an address that is not double-float  aligned
                   8446: System-dependent. Typically results in a @code{-23 THROW} like other
                   8447: alignment violations.
                   8448: 
                   8449: @item @code{f@@} or @code{f!} used with an address that is not float  aligned:
                   8450: @cindex @code{f@@} used with an address that is not float aligned
                   8451: @cindex @code{f!} used with an address that is not float aligned
                   8452: System-dependent. Typically results in a @code{-23 THROW} like other
                   8453: alignment violations.
                   8454: 
                   8455: @item floating-point result out of range:
                   8456: @cindex floating-point result out of range
                   8457: System-dependent. Can result in a @code{-55 THROW} (Floating-point
                   8458: unidentified fault), or can produce a special value representing, e.g.,
                   8459: Infinity.
                   8460: 
                   8461: @item @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned:
                   8462: @cindex @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned
                   8463: System-dependent. Typically results in an alignment fault like other
                   8464: alignment violations.
                   8465: 
                   8466: @item @code{BASE} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.}):
                   8467: @cindex @code{BASE} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.})
                   8468: The floating-point number is converted into decimal nonetheless.
                   8469: 
                   8470: @item Both arguments are equal to zero (@code{FATAN2}):
                   8471: @cindex @code{FATAN2}, both arguments are equal to zero
                   8472: System-dependent. @code{FATAN2} is implemented using the C library
                   8473: function @code{atan2()}.
                   8474: 
                   8475: @item Using @code{FTAN} on an argument @var{r1} where cos(@var{r1}) is zero:
                   8476: @cindex @code{FTAN} on an argument @var{r1} where cos(@var{r1}) is zero
                   8477: System-dependent. Anyway, typically the cos of @var{r1} will not be zero
                   8478: because of small errors and the tan will be a very large (or very small)
                   8479: but finite number.
                   8480: 
                   8481: @item @var{d} cannot be presented precisely as a float in @code{D>F}:
                   8482: @cindex @code{D>F}, @var{d} cannot be presented precisely as a float
                   8483: The result is rounded to the nearest float.
                   8484: 
                   8485: @item dividing by zero:
                   8486: @cindex dividing by zero, floating-point
                   8487: @cindex floating-point dividing by zero
                   8488: @cindex floating-point unidentified fault, FP divide-by-zero
                   8489: @code{-55 throw} (Floating-point unidentified fault)
                   8490: 
                   8491: @item exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@}):
                   8492: @cindex exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@})
                   8493: System dependent. On IEEE-FP based systems the number is converted into
                   8494: an infinity.
                   8495: 
                   8496: @item @var{float}<1 (@code{FACOSH}):
                   8497: @cindex @code{FACOSH}, @var{float}<1
                   8498: @cindex floating-point unidentified fault, @code{FACOSH}
                   8499: @code{-55 throw} (Floating-point unidentified fault)
                   8500: 
                   8501: @item @var{float}=<-1 (@code{FLNP1}):
                   8502: @cindex @code{FLNP1}, @var{float}=<-1
                   8503: @cindex floating-point unidentified fault, @code{FLNP1}
                   8504: @code{-55 throw} (Floating-point unidentified fault). On IEEE-FP systems
                   8505: negative infinity is typically produced for @var{float}=-1.
                   8506: 
                   8507: @item @var{float}=<0 (@code{FLN}, @code{FLOG}):
                   8508: @cindex @code{FLN}, @var{float}=<0
                   8509: @cindex @code{FLOG}, @var{float}=<0
                   8510: @cindex floating-point unidentified fault, @code{FLN} or @code{FLOG}
                   8511: @code{-55 throw} (Floating-point unidentified fault). On IEEE-FP systems
                   8512: negative infinity is typically produced for @var{float}=0.
                   8513: 
                   8514: @item @var{float}<0 (@code{FASINH}, @code{FSQRT}):
                   8515: @cindex @code{FASINH}, @var{float}<0
                   8516: @cindex @code{FSQRT}, @var{float}<0
                   8517: @cindex floating-point unidentified fault, @code{FASINH} or @code{FSQRT}
                   8518: @code{-55 throw} (Floating-point unidentified fault). @code{fasinh}
                   8519: produces values for these inputs on my Linux box (Bug in the C library?)
                   8520: 
                   8521: @item |@var{float}|>1 (@code{FACOS}, @code{FASIN}, @code{FATANH}):
                   8522: @cindex @code{FACOS}, |@var{float}|>1
                   8523: @cindex @code{FASIN}, |@var{float}|>1
                   8524: @cindex @code{FATANH}, |@var{float}|>1
                   8525: @cindex floating-point unidentified fault, @code{FACOS}, @code{FASIN} or @code{FATANH}
                   8526: @code{-55 throw} (Floating-point unidentified fault).
                   8527: 
                   8528: @item integer part of float cannot be represented by @var{d} in @code{F>D}:
                   8529: @cindex @code{F>D}, integer part of float cannot be represented by @var{d}
                   8530: @cindex floating-point unidentified fault, @code{F>D}
                   8531: @code{-55 throw} (Floating-point unidentified fault).
                   8532: 
                   8533: @item string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.}):
                   8534: @cindex string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.})
                   8535: This does not happen.
                   8536: @end table
                   8537: 
                   8538: @c =====================================================================
                   8539: @node  The optional Locals word set, The optional Memory-Allocation word set, The optional Floating-Point word set, ANS conformance
                   8540: @section The optional Locals word set
                   8541: @c =====================================================================
                   8542: @cindex system documentation, locals words
                   8543: @cindex locals words, system documentation
                   8544: 
                   8545: @menu
                   8546: * locals-idef::                 Implementation Defined Options                 
                   8547: * locals-ambcond::              Ambiguous Conditions              
                   8548: @end menu
                   8549: 
                   8550: 
                   8551: @c ---------------------------------------------------------------------
                   8552: @node locals-idef, locals-ambcond, The optional Locals word set, The optional Locals word set
                   8553: @subsection Implementation Defined Options
                   8554: @c ---------------------------------------------------------------------
                   8555: @cindex implementation-defined options, locals words
                   8556: @cindex locals words, implementation-defined options
                   8557: 
                   8558: @table @i
                   8559: @item maximum number of locals in a definition:
                   8560: @cindex maximum number of locals in a definition
                   8561: @cindex locals, maximum number in a definition
                   8562: @code{s" #locals" environment? drop .}. Currently 15. This is a lower
                   8563: bound, e.g., on a 32-bit machine there can be 41 locals of up to 8
                   8564: characters. The number of locals in a definition is bounded by the size
                   8565: of locals-buffer, which contains the names of the locals.
                   8566: 
                   8567: @end table
                   8568: 
                   8569: 
                   8570: @c ---------------------------------------------------------------------
                   8571: @node locals-ambcond,  , locals-idef, The optional Locals word set
                   8572: @subsection Ambiguous conditions
                   8573: @c ---------------------------------------------------------------------
                   8574: @cindex locals words, ambiguous conditions
                   8575: @cindex ambiguous conditions, locals words
                   8576: 
                   8577: @table @i
                   8578: @item executing a named local in interpretation state:
                   8579: @cindex local in interpretation state
                   8580: @cindex Interpreting a compile-only word, for a local
                   8581: Locals have no interpretation semantics. If you try to perform the
                   8582: interpretation semantics, you will get a @code{-14 throw} somewhere
                   8583: (Interpreting a compile-only word). If you perform the compilation
                   8584: semantics, the locals access will be compiled (irrespective of state).
                   8585: 
                   8586: @item @var{name} not defined by @code{VALUE} or @code{(LOCAL)} (@code{TO}):
                   8587: @cindex name not defined by @code{VALUE} or @code{(LOCAL)} used by @code{TO}
                   8588: @cindex @code{TO} on non-@code{VALUE}s and non-locals
                   8589: @cindex Invalid name argument, @code{TO}
                   8590: @code{-32 throw} (Invalid name argument)
                   8591: 
                   8592: @end table
                   8593: 
                   8594: 
                   8595: @c =====================================================================
                   8596: @node  The optional Memory-Allocation word set, The optional Programming-Tools word set, The optional Locals word set, ANS conformance
                   8597: @section The optional Memory-Allocation word set
                   8598: @c =====================================================================
                   8599: @cindex system documentation, memory-allocation words
                   8600: @cindex memory-allocation words, system documentation
                   8601: 
                   8602: @menu
                   8603: * memory-idef::                 Implementation Defined Options                 
                   8604: @end menu
                   8605: 
                   8606: 
                   8607: @c ---------------------------------------------------------------------
                   8608: @node memory-idef,  , The optional Memory-Allocation word set, The optional Memory-Allocation word set
                   8609: @subsection Implementation Defined Options
                   8610: @c ---------------------------------------------------------------------
                   8611: @cindex implementation-defined options, memory-allocation words
                   8612: @cindex memory-allocation words, implementation-defined options
                   8613: 
                   8614: @table @i
                   8615: @item values and meaning of @var{ior}:
                   8616: @cindex  @var{ior} values and meaning
                   8617: The @var{ior}s returned by the file and memory allocation words are
                   8618: intended as throw codes. They typically are in the range
                   8619: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
                   8620: @var{ior}s is -512@minus{}@var{errno}.
                   8621: 
                   8622: @end table
                   8623: 
                   8624: @c =====================================================================
                   8625: @node  The optional Programming-Tools word set, The optional Search-Order word set, The optional Memory-Allocation word set, ANS conformance
                   8626: @section The optional Programming-Tools word set
                   8627: @c =====================================================================
                   8628: @cindex system documentation, programming-tools words
                   8629: @cindex programming-tools words, system documentation
                   8630: 
                   8631: @menu
                   8632: * programming-idef::            Implementation Defined Options            
                   8633: * programming-ambcond::         Ambiguous Conditions         
                   8634: @end menu
                   8635: 
                   8636: 
                   8637: @c ---------------------------------------------------------------------
                   8638: @node programming-idef, programming-ambcond, The optional Programming-Tools word set, The optional Programming-Tools word set
                   8639: @subsection Implementation Defined Options
                   8640: @c ---------------------------------------------------------------------
                   8641: @cindex implementation-defined options, programming-tools words
                   8642: @cindex programming-tools words, implementation-defined options
                   8643: 
                   8644: @table @i
                   8645: @item ending sequence for input following @code{;CODE} and @code{CODE}:
                   8646: @cindex @code{;CODE} ending sequence
                   8647: @cindex @code{CODE} ending sequence
                   8648: @code{END-CODE}
                   8649: 
                   8650: @item manner of processing input following @code{;CODE} and @code{CODE}:
                   8651: @cindex @code{;CODE}, processing input
                   8652: @cindex @code{CODE}, processing input
                   8653: The @code{ASSEMBLER} vocabulary is pushed on the search order stack, and
                   8654: the input is processed by the text interpreter, (starting) in interpret
                   8655: state.
                   8656: 
                   8657: @item search order capability for @code{EDITOR} and @code{ASSEMBLER}:
                   8658: @cindex @code{ASSEMBLER}, search order capability
                   8659: The ANS Forth search order word set.
                   8660: 
                   8661: @item source and format of display by @code{SEE}:
                   8662: @cindex @code{SEE}, source and format of output
                   8663: The source for @code{see} is the intermediate code used by the inner
                   8664: interpreter.  The current @code{see} tries to output Forth source code
                   8665: as well as possible.
                   8666: 
                   8667: @end table
                   8668: 
                   8669: @c ---------------------------------------------------------------------
                   8670: @node programming-ambcond,  , programming-idef, The optional Programming-Tools word set
                   8671: @subsection Ambiguous conditions
                   8672: @c ---------------------------------------------------------------------
                   8673: @cindex programming-tools words, ambiguous conditions
                   8674: @cindex ambiguous conditions, programming-tools words
                   8675: 
                   8676: @table @i
                   8677: 
1.21      crook    8678: @item deleting the compilation word list (@code{FORGET}):
                   8679: @cindex @code{FORGET}, deleting the compilation word list
1.1       anton    8680: Not implemented (yet).
                   8681: 
1.26    ! crook    8682: @item fewer than @var{u}+1 items on the control-flow stack (@code{CS-PICK}, @code{CS-ROLL}):
        !          8683: @cindex @code{CS-PICK}, fewer than @var{u}+1 items on the control flow-stack
        !          8684: @cindex @code{CS-ROLL}, fewer than @var{u}+1 items on the control flow-stack
1.1       anton    8685: @cindex control-flow stack underflow
                   8686: This typically results in an @code{abort"} with a descriptive error
                   8687: message (may change into a @code{-22 throw} (Control structure mismatch)
                   8688: in the future). You may also get a memory access error. If you are
                   8689: unlucky, this ambiguous condition is not caught.
                   8690: 
                   8691: @item @var{name} can't be found (@code{FORGET}):
                   8692: @cindex @code{FORGET}, @var{name} can't be found
                   8693: Not implemented (yet).
                   8694: 
                   8695: @item @var{name} not defined via @code{CREATE}:
                   8696: @cindex @code{;CODE}, @var{name} not defined via @code{CREATE}
                   8697: @code{;CODE} behaves like @code{DOES>} in this respect, i.e., it changes
                   8698: the execution semantics of the last defined word no matter how it was
                   8699: defined.
                   8700: 
                   8701: @item @code{POSTPONE} applied to @code{[IF]}:
                   8702: @cindex @code{POSTPONE} applied to @code{[IF]}
                   8703: @cindex @code{[IF]} and @code{POSTPONE}
                   8704: After defining @code{: X POSTPONE [IF] ; IMMEDIATE}. @code{X} is
                   8705: equivalent to @code{[IF]}.
                   8706: 
                   8707: @item reaching the end of the input source before matching @code{[ELSE]} or @code{[THEN]}:
                   8708: @cindex @code{[IF]}, end of the input source before matching @code{[ELSE]} or @code{[THEN]}
                   8709: Continue in the same state of conditional compilation in the next outer
                   8710: input source. Currently there is no warning to the user about this.
                   8711: 
                   8712: @item removing a needed definition (@code{FORGET}):
                   8713: @cindex @code{FORGET}, removing a needed definition
                   8714: Not implemented (yet).
                   8715: 
                   8716: @end table
                   8717: 
                   8718: 
                   8719: @c =====================================================================
                   8720: @node  The optional Search-Order word set,  , The optional Programming-Tools word set, ANS conformance
                   8721: @section The optional Search-Order word set
                   8722: @c =====================================================================
                   8723: @cindex system documentation, search-order words
                   8724: @cindex search-order words, system documentation
                   8725: 
                   8726: @menu
                   8727: * search-idef::                 Implementation Defined Options                 
                   8728: * search-ambcond::              Ambiguous Conditions              
                   8729: @end menu
                   8730: 
                   8731: 
                   8732: @c ---------------------------------------------------------------------
                   8733: @node search-idef, search-ambcond, The optional Search-Order word set, The optional Search-Order word set
                   8734: @subsection Implementation Defined Options
                   8735: @c ---------------------------------------------------------------------
                   8736: @cindex implementation-defined options, search-order words
                   8737: @cindex search-order words, implementation-defined options
                   8738: 
                   8739: @table @i
                   8740: @item maximum number of word lists in search order:
                   8741: @cindex maximum number of word lists in search order
                   8742: @cindex search order, maximum depth
                   8743: @code{s" wordlists" environment? drop .}. Currently 16.
                   8744: 
                   8745: @item minimum search order:
                   8746: @cindex minimum search order
                   8747: @cindex search order, minimum
                   8748: @code{root root}.
                   8749: 
                   8750: @end table
                   8751: 
                   8752: @c ---------------------------------------------------------------------
                   8753: @node search-ambcond,  , search-idef, The optional Search-Order word set
                   8754: @subsection Ambiguous conditions
                   8755: @c ---------------------------------------------------------------------
                   8756: @cindex search-order words, ambiguous conditions
                   8757: @cindex ambiguous conditions, search-order words
                   8758: 
                   8759: @table @i
1.21      crook    8760: @item changing the compilation word list (during compilation):
                   8761: @cindex changing the compilation word list (during compilation)
                   8762: @cindex compilation word list, change before definition ends
                   8763: The word is entered into the word list that was the compilation word list
1.1       anton    8764: at the start of the definition. Any changes to the name field (e.g.,
                   8765: @code{immediate}) or the code field (e.g., when executing @code{DOES>})
                   8766: are applied to the latest defined word (as reported by @code{last} or
1.21      crook    8767: @code{lastxt}), if possible, irrespective of the compilation word list.
1.1       anton    8768: 
                   8769: @item search order empty (@code{previous}):
                   8770: @cindex @code{previous}, search order empty
1.26    ! crook    8771: @cindex vocstack empty, @code{previous}
1.1       anton    8772: @code{abort" Vocstack empty"}.
                   8773: 
                   8774: @item too many word lists in search order (@code{also}):
                   8775: @cindex @code{also}, too many word lists in search order
1.26    ! crook    8776: @cindex vocstack full, @code{also}
1.1       anton    8777: @code{abort" Vocstack full"}.
                   8778: 
                   8779: @end table
                   8780: 
                   8781: @c ***************************************************************
                   8782: @node Model, Integrating Gforth, ANS conformance, Top
                   8783: @chapter Model
                   8784: 
                   8785: This chapter has yet to be written. It will contain information, on
                   8786: which internal structures you can rely.
                   8787: 
                   8788: @c ***************************************************************
                   8789: @node Integrating Gforth, Emacs and Gforth, Model, Top
                   8790: @chapter Integrating Gforth into C programs
                   8791: 
                   8792: This is not yet implemented.
                   8793: 
                   8794: Several people like to use Forth as scripting language for applications
                   8795: that are otherwise written in C, C++, or some other language.
                   8796: 
                   8797: The Forth system ATLAST provides facilities for embedding it into
                   8798: applications; unfortunately it has several disadvantages: most
                   8799: importantly, it is not based on ANS Forth, and it is apparently dead
                   8800: (i.e., not developed further and not supported). The facilities
1.21      crook    8801: provided by Gforth in this area are inspired by ATLAST's facilities, so
1.1       anton    8802: making the switch should not be hard.
                   8803: 
                   8804: We also tried to design the interface such that it can easily be
                   8805: implemented by other Forth systems, so that we may one day arrive at a
                   8806: standardized interface. Such a standard interface would allow you to
                   8807: replace the Forth system without having to rewrite C code.
                   8808: 
                   8809: You embed the Gforth interpreter by linking with the library
                   8810: @code{libgforth.a} (give the compiler the option @code{-lgforth}).  All
                   8811: global symbols in this library that belong to the interface, have the
                   8812: prefix @code{forth_}. (Global symbols that are used internally have the
                   8813: prefix @code{gforth_}).
                   8814: 
                   8815: You can include the declarations of Forth types and the functions and
                   8816: variables of the interface with @code{#include <forth.h>}.
                   8817: 
                   8818: Types.
                   8819: 
                   8820: Variables.
                   8821: 
                   8822: Data and FP Stack pointer. Area sizes.
                   8823: 
                   8824: functions.
                   8825: 
                   8826: forth_init(imagefile)
                   8827: forth_evaluate(string) exceptions?
                   8828: forth_goto(address) (or forth_execute(xt)?)
                   8829: forth_continue() (a corountining mechanism)
                   8830: 
                   8831: Adding primitives.
                   8832: 
                   8833: No checking.
                   8834: 
                   8835: Signals?
                   8836: 
                   8837: Accessing the Stacks
                   8838: 
1.26    ! crook    8839: @c ******************************************************************
1.1       anton    8840: @node Emacs and Gforth, Image Files, Integrating Gforth, Top
                   8841: @chapter Emacs and Gforth
                   8842: @cindex Emacs and Gforth
                   8843: 
                   8844: @cindex @file{gforth.el}
                   8845: @cindex @file{forth.el}
                   8846: @cindex Rydqvist, Goran
                   8847: @cindex comment editing commands
                   8848: @cindex @code{\}, editing with Emacs
                   8849: @cindex debug tracer editing commands
                   8850: @cindex @code{~~}, removal with Emacs
                   8851: @cindex Forth mode in Emacs
                   8852: Gforth comes with @file{gforth.el}, an improved version of
                   8853: @file{forth.el} by Goran Rydqvist (included in the TILE package). The
1.26    ! crook    8854: improvements are:
        !          8855: 
        !          8856: @itemize @bullet
        !          8857: @item
        !          8858: A better (but still not perfect) handling of indentation.
        !          8859: @item
        !          8860: Comment paragraph filling (@kbd{M-q})
        !          8861: @item
        !          8862: Commenting (@kbd{C-x \}) and uncommenting (@kbd{C-u C-x \}) of regions
        !          8863: @item
        !          8864: Removal of debugging tracers (@kbd{C-x ~}, @pxref{Debugging}).
        !          8865: @end itemize
        !          8866: 
        !          8867: I left the stuff I do not use alone, even though some of it only makes
        !          8868: sense for TILE. To get a description of these features, enter Forth mode
        !          8869: and type @kbd{C-h m}.
1.1       anton    8870: 
                   8871: @cindex source location of error or debugging output in Emacs
                   8872: @cindex error output, finding the source location in Emacs
                   8873: @cindex debugging output, finding the source location in Emacs
                   8874: In addition, Gforth supports Emacs quite well: The source code locations
                   8875: given in error messages, debugging output (from @code{~~}) and failed
                   8876: assertion messages are in the right format for Emacs' compilation mode
                   8877: (@pxref{Compilation, , Running Compilations under Emacs, emacs, Emacs
                   8878: Manual}) so the source location corresponding to an error or other
                   8879: message is only a few keystrokes away (@kbd{C-x `} for the next error,
                   8880: @kbd{C-c C-c} for the error under the cursor).
                   8881: 
                   8882: @cindex @file{TAGS} file
                   8883: @cindex @file{etags.fs}
                   8884: @cindex viewing the source of a word in Emacs
1.26    ! crook    8885: Also, if you @code{include} @file{etags.fs}, a new @file{TAGS} file will
        !          8886: be produced (@pxref{Tags, , Tags Tables, emacs, Emacs Manual}) that
1.1       anton    8887: contains the definitions of all words defined afterwards. You can then
                   8888: find the source for a word using @kbd{M-.}. Note that emacs can use
                   8889: several tags files at the same time (e.g., one for the Gforth sources
                   8890: and one for your program, @pxref{Select Tags Table,,Selecting a Tags
                   8891: Table,emacs, Emacs Manual}). The TAGS file for the preloaded words is
                   8892: @file{$(datadir)/gforth/$(VERSION)/TAGS} (e.g.,
                   8893: @file{/usr/local/share/gforth/0.2.0/TAGS}).
                   8894: 
                   8895: @cindex @file{.emacs}
                   8896: To get all these benefits, add the following lines to your @file{.emacs}
                   8897: file:
                   8898: 
                   8899: @example
                   8900: (autoload 'forth-mode "gforth.el")
                   8901: (setq auto-mode-alist (cons '("\\.fs\\'" . forth-mode) auto-mode-alist))
                   8902: @end example
                   8903: 
1.26    ! crook    8904: @c ******************************************************************
1.1       anton    8905: @node Image Files, Engine, Emacs and Gforth, Top
                   8906: @chapter Image Files
1.26    ! crook    8907: @cindex image file
        !          8908: @cindex @file{.fi} files
1.1       anton    8909: @cindex precompiled Forth code
                   8910: @cindex dictionary in persistent form
                   8911: @cindex persistent form of dictionary
                   8912: 
                   8913: An image file is a file containing an image of the Forth dictionary,
                   8914: i.e., compiled Forth code and data residing in the dictionary.  By
                   8915: convention, we use the extension @code{.fi} for image files.
                   8916: 
                   8917: @menu
1.18      anton    8918: * Image Licensing Issues::      Distribution terms for images.
                   8919: * Image File Background::       Why have image files?
                   8920: * Non-Relocatable Image Files::  don't always work.
                   8921: * Data-Relocatable Image Files::  are better.
1.1       anton    8922: * Fully Relocatable Image Files::  better yet.
1.18      anton    8923: * Stack and Dictionary Sizes::  Setting the default sizes for an image.
                   8924: * Running Image Files::         @code{gforth -i @var{file}} or @var{file}.
                   8925: * Modifying the Startup Sequence::  and turnkey applications.
1.1       anton    8926: @end menu
                   8927: 
1.18      anton    8928: @node Image Licensing Issues, Image File Background, Image Files, Image Files
                   8929: @section Image Licensing Issues
                   8930: @cindex license for images
                   8931: @cindex image license
                   8932: 
                   8933: An image created with @code{gforthmi} (@pxref{gforthmi}) or
                   8934: @code{savesystem} (@pxref{Non-Relocatable Image Files}) includes the
                   8935: original image; i.e., according to copyright law it is a derived work of
                   8936: the original image.
                   8937: 
                   8938: Since Gforth is distributed under the GNU GPL, the newly created image
                   8939: falls under the GNU GPL, too. In particular, this means that if you
                   8940: distribute the image, you have to make all of the sources for the image
                   8941: available, including those you wrote.  For details see @ref{License, ,
                   8942: GNU General Public License (Section 3)}.
                   8943: 
                   8944: If you create an image with @code{cross} (@pxref{cross.fs}), the image
                   8945: contains only code compiled from the sources you gave it; if none of
                   8946: these sources is under the GPL, the terms discussed above do not apply
                   8947: to the image. However, if your image needs an engine (a gforth binary)
                   8948: that is under the GPL, you should make sure that you distribute both in
                   8949: a way that is at most a @emph{mere aggregation}, if you don't want the
                   8950: terms of the GPL to apply to the image.
                   8951: 
                   8952: @node Image File Background, Non-Relocatable Image Files, Image Licensing Issues, Image Files
1.1       anton    8953: @section Image File Background
                   8954: @cindex image file background
                   8955: 
                   8956: Our Forth system consists not only of primitives, but also of
                   8957: definitions written in Forth. Since the Forth compiler itself belongs to
                   8958: those definitions, it is not possible to start the system with the
                   8959: primitives and the Forth source alone. Therefore we provide the Forth
1.26    ! crook    8960: code as an image file in nearly executable form. When Gforth starts up,
        !          8961: a C routine loads the image file into memory, optionally relocates the
        !          8962: addresses, then sets up the memory (stacks etc.) according to
        !          8963: information in the image file, and (finally) starts executing Forth
        !          8964: code.
1.1       anton    8965: 
                   8966: The image file variants represent different compromises between the
                   8967: goals of making it easy to generate image files and making them
                   8968: portable.
                   8969: 
                   8970: @cindex relocation at run-time
1.26    ! crook    8971: Win32Forth 3.4 and Mitch Bradley's @code{cforth} use relocation at
1.1       anton    8972: run-time. This avoids many of the complications discussed below (image
                   8973: files are data relocatable without further ado), but costs performance
                   8974: (one addition per memory access).
                   8975: 
                   8976: @cindex relocation at load-time
1.26    ! crook    8977: By contrast, the Gforth loader performs relocation at image load time. The
        !          8978: loader also has to replace tokens that represent primitive calls with the
1.1       anton    8979: appropriate code-field addresses (or code addresses in the case of
                   8980: direct threading).
                   8981: 
                   8982: There are three kinds of image files, with different degrees of
                   8983: relocatability: non-relocatable, data-relocatable, and fully relocatable
                   8984: image files.
                   8985: 
                   8986: @cindex image file loader
                   8987: @cindex relocating loader
                   8988: @cindex loader for image files
                   8989: These image file variants have several restrictions in common; they are
                   8990: caused by the design of the image file loader:
                   8991: 
                   8992: @itemize @bullet
                   8993: @item
                   8994: There is only one segment; in particular, this means, that an image file
                   8995: cannot represent @code{ALLOCATE}d memory chunks (and pointers to
1.26    ! crook    8996: them). The contents of the stacks are not represented, either.
1.1       anton    8997: 
                   8998: @item
                   8999: The only kinds of relocation supported are: adding the same offset to
                   9000: all cells that represent data addresses; and replacing special tokens
                   9001: with code addresses or with pieces of machine code.
                   9002: 
                   9003: If any complex computations involving addresses are performed, the
                   9004: results cannot be represented in the image file. Several applications that
                   9005: use such computations come to mind:
                   9006: @itemize @minus
                   9007: @item
                   9008: Hashing addresses (or data structures which contain addresses) for table
                   9009: lookup. If you use Gforth's @code{table}s or @code{wordlist}s for this
                   9010: purpose, you will have no problem, because the hash tables are
                   9011: recomputed automatically when the system is started. If you use your own
                   9012: hash tables, you will have to do something similar.
                   9013: 
                   9014: @item
                   9015: There's a cute implementation of doubly-linked lists that uses
                   9016: @code{XOR}ed addresses. You could represent such lists as singly-linked
                   9017: in the image file, and restore the doubly-linked representation on
                   9018: startup.@footnote{In my opinion, though, you should think thrice before
                   9019: using a doubly-linked list (whatever implementation).}
                   9020: 
                   9021: @item
                   9022: The code addresses of run-time routines like @code{docol:} cannot be
                   9023: represented in the image file (because their tokens would be replaced by
                   9024: machine code in direct threaded implementations). As a workaround,
                   9025: compute these addresses at run-time with @code{>code-address} from the
                   9026: executions tokens of appropriate words (see the definitions of
                   9027: @code{docol:} and friends in @file{kernel.fs}).
                   9028: 
                   9029: @item
                   9030: On many architectures addresses are represented in machine code in some
                   9031: shifted or mangled form. You cannot put @code{CODE} words that contain
                   9032: absolute addresses in this form in a relocatable image file. Workarounds
                   9033: are representing the address in some relative form (e.g., relative to
                   9034: the CFA, which is present in some register), or loading the address from
                   9035: a place where it is stored in a non-mangled form.
                   9036: @end itemize
                   9037: @end itemize
                   9038: 
                   9039: @node  Non-Relocatable Image Files, Data-Relocatable Image Files, Image File Background, Image Files
                   9040: @section Non-Relocatable Image Files
                   9041: @cindex non-relocatable image files
1.26    ! crook    9042: @cindex image file, non-relocatable
1.1       anton    9043: 
                   9044: These files are simple memory dumps of the dictionary. They are specific
                   9045: to the executable (i.e., @file{gforth} file) they were created
                   9046: with. What's worse, they are specific to the place on which the
                   9047: dictionary resided when the image was created. Now, there is no
                   9048: guarantee that the dictionary will reside at the same place the next
                   9049: time you start Gforth, so there's no guarantee that a non-relocatable
                   9050: image will work the next time (Gforth will complain instead of crashing,
                   9051: though).
                   9052: 
                   9053: You can create a non-relocatable image file with
                   9054: 
                   9055: doc-savesystem
                   9056: 
                   9057: @node Data-Relocatable Image Files, Fully Relocatable Image Files, Non-Relocatable Image Files, Image Files
                   9058: @section Data-Relocatable Image Files
                   9059: @cindex data-relocatable image files
1.26    ! crook    9060: @cindex image file, data-relocatable
1.1       anton    9061: 
                   9062: These files contain relocatable data addresses, but fixed code addresses
                   9063: (instead of tokens). They are specific to the executable (i.e.,
                   9064: @file{gforth} file) they were created with. For direct threading on some
                   9065: architectures (e.g., the i386), data-relocatable images do not work. You
                   9066: get a data-relocatable image, if you use @file{gforthmi} with a
                   9067: Gforth binary that is not doubly indirect threaded (@pxref{Fully
                   9068: Relocatable Image Files}).
                   9069: 
                   9070: @node Fully Relocatable Image Files, Stack and Dictionary Sizes, Data-Relocatable Image Files, Image Files
                   9071: @section Fully Relocatable Image Files
                   9072: @cindex fully relocatable image files
1.26    ! crook    9073: @cindex image file, fully relocatable
1.1       anton    9074: 
                   9075: @cindex @file{kern*.fi}, relocatability
                   9076: @cindex @file{gforth.fi}, relocatability
                   9077: These image files have relocatable data addresses, and tokens for code
                   9078: addresses. They can be used with different binaries (e.g., with and
                   9079: without debugging) on the same machine, and even across machines with
                   9080: the same data formats (byte order, cell size, floating point
                   9081: format). However, they are usually specific to the version of Gforth
                   9082: they were created with. The files @file{gforth.fi} and @file{kernl*.fi}
                   9083: are fully relocatable.
                   9084: 
                   9085: There are two ways to create a fully relocatable image file:
                   9086: 
                   9087: @menu
                   9088: * gforthmi::            The normal way
                   9089: * cross.fs::                    The hard way
                   9090: @end menu
                   9091: 
                   9092: @node gforthmi, cross.fs, Fully Relocatable Image Files, Fully Relocatable Image Files
                   9093: @subsection @file{gforthmi}
                   9094: @cindex @file{comp-i.fs}
                   9095: @cindex @file{gforthmi}
                   9096: 
                   9097: You will usually use @file{gforthmi}. If you want to create an
                   9098: image @var{file} that contains everything you would load by invoking
                   9099: Gforth with @code{gforth @var{options}}, you simply say
                   9100: @example
                   9101: gforthmi @var{file} @var{options}
                   9102: @end example
                   9103: 
                   9104: E.g., if you want to create an image @file{asm.fi} that has the file
                   9105: @file{asm.fs} loaded in addition to the usual stuff, you could do it
                   9106: like this:
                   9107: 
                   9108: @example
                   9109: gforthmi asm.fi asm.fs
                   9110: @end example
                   9111: 
                   9112: @file{gforthmi} works like this: It produces two non-relocatable
                   9113: images for different addresses and then compares them. Its output
                   9114: reflects this: first you see the output (if any) of the two Gforth
                   9115: invocations that produce the nonrelocatable image files, then you see
                   9116: the output of the comparing program: It displays the offset used for
                   9117: data addresses and the offset used for code addresses;
                   9118: moreover, for each cell that cannot be represented correctly in the
                   9119: image files, it displays a line like the following one:
                   9120: 
                   9121: @example
                   9122:      78DC         BFFFFA50         BFFFFA40
                   9123: @end example
                   9124: 
                   9125: This means that at offset $78dc from @code{forthstart}, one input image
                   9126: contains $bffffa50, and the other contains $bffffa40. Since these cells
                   9127: cannot be represented correctly in the output image, you should examine
                   9128: these places in the dictionary and verify that these cells are dead
                   9129: (i.e., not read before they are written).
                   9130: 
                   9131: @cindex @code{savesystem} during @file{gforthmi}
                   9132: @cindex @code{bye} during @file{gforthmi}
                   9133: @cindex doubly indirect threaded code
                   9134: @cindex environment variable @code{GFORTHD}
                   9135: @cindex @code{GFORTHD} environment variable
                   9136: @cindex @code{gforth-ditc}
                   9137: There are a few wrinkles: After processing the passed @var{options}, the
                   9138: words @code{savesystem} and @code{bye} must be visible. A special doubly
                   9139: indirect threaded version of the @file{gforth} executable is used for
                   9140: creating the nonrelocatable images; you can pass the exact filename of
                   9141: this executable through the environment variable @code{GFORTHD}
                   9142: (default: @file{gforth-ditc}); if you pass a version that is not doubly
                   9143: indirect threaded, you will not get a fully relocatable image, but a
                   9144: data-relocatable image (because there is no code address offset).
                   9145: 
                   9146: @node cross.fs,  , gforthmi, Fully Relocatable Image Files
                   9147: @subsection @file{cross.fs}
                   9148: @cindex @file{cross.fs}
                   9149: @cindex cross-compiler
                   9150: @cindex metacompiler
                   9151: 
                   9152: You can also use @code{cross}, a batch compiler that accepts a Forth-like
                   9153: programming language. This @code{cross} language has to be documented
                   9154: yet.
                   9155: 
                   9156: @cindex target compiler
                   9157: @code{cross} also allows you to create image files for machines with
                   9158: different data sizes and data formats than the one used for generating
                   9159: the image file. You can also use it to create an application image that
                   9160: does not contain a Forth compiler. These features are bought with
                   9161: restrictions and inconveniences in programming. E.g., addresses have to
                   9162: be stored in memory with special words (@code{A!}, @code{A,}, etc.) in
                   9163: order to make the code relocatable.
                   9164: 
                   9165: 
                   9166: @node Stack and Dictionary Sizes, Running Image Files, Fully Relocatable Image Files, Image Files
                   9167: @section Stack and Dictionary Sizes
                   9168: @cindex image file, stack and dictionary sizes
                   9169: @cindex dictionary size default
                   9170: @cindex stack size default
                   9171: 
                   9172: If you invoke Gforth with a command line flag for the size
                   9173: (@pxref{Invoking Gforth}), the size you specify is stored in the
                   9174: dictionary. If you save the dictionary with @code{savesystem} or create
                   9175: an image with @file{gforthmi}, this size will become the default
                   9176: for the resulting image file. E.g., the following will create a
1.21      crook    9177: fully relocatable version of @file{gforth.fi} with a 1MB dictionary:
1.1       anton    9178: 
                   9179: @example
                   9180: gforthmi gforth.fi -m 1M
                   9181: @end example
                   9182: 
                   9183: In other words, if you want to set the default size for the dictionary
                   9184: and the stacks of an image, just invoke @file{gforthmi} with the
                   9185: appropriate options when creating the image.
                   9186: 
                   9187: @cindex stack size, cache-friendly
                   9188: Note: For cache-friendly behaviour (i.e., good performance), you should
                   9189: make the sizes of the stacks modulo, say, 2K, somewhat different. E.g.,
                   9190: the default stack sizes are: data: 16k (mod 2k=0); fp: 15.5k (mod
                   9191: 2k=1.5k); return: 15k(mod 2k=1k); locals: 14.5k (mod 2k=0.5k).
                   9192: 
                   9193: @node Running Image Files, Modifying the Startup Sequence, Stack and Dictionary Sizes, Image Files
                   9194: @section Running Image Files
                   9195: @cindex running image files
                   9196: @cindex invoking image files
                   9197: @cindex image file invocation
                   9198: 
                   9199: @cindex -i, invoke image file
                   9200: @cindex --image file, invoke image file
                   9201: You can invoke Gforth with an image file @var{image} instead of the
                   9202: default @file{gforth.fi} with the @code{-i} flag (@pxref{Invoking Gforth}):
                   9203: @example
                   9204: gforth -i @var{image}
                   9205: @end example
                   9206: 
                   9207: @cindex executable image file
1.26    ! crook    9208: @cindex image file, executable
1.1       anton    9209: If your operating system supports starting scripts with a line of the
                   9210: form @code{#! ...}, you just have to type the image file name to start
                   9211: Gforth with this image file (note that the file extension @code{.fi} is
                   9212: just a convention). I.e., to run Gforth with the image file @var{image},
                   9213: you can just type @var{image} instead of @code{gforth -i @var{image}}.
                   9214: 
1.26    ! crook    9215: For example, if you place this text in a file:
        !          9216: 
        !          9217: @example
        !          9218: #! /usr/local/bin/gforth
        !          9219: 
        !          9220: ." Hello, world" CR
        !          9221: bye
        !          9222: 
        !          9223: @end example
        !          9224: 
        !          9225: @noindent
        !          9226: And then make the file executable (chmod +x in Unix), you can run it
        !          9227: directly from the command line. The sequence @code{#!} is used in two
        !          9228: ways; firstly, it is recognised as a ``magic sequence'' by the operating
        !          9229: system, secondly it is treated as a comment character by Gforth. Because
        !          9230: of the second usage, a space is required between @code{#!} and the path
        !          9231: to the executable.
        !          9232: @comment TODO describe the #! magic with reference to the Power Tools book.
        !          9233: 
1.1       anton    9234: doc-#!
                   9235: 
                   9236: @node Modifying the Startup Sequence,  , Running Image Files, Image Files
                   9237: @section Modifying the Startup Sequence
                   9238: @cindex startup sequence for image file
                   9239: @cindex image file initialization sequence
                   9240: @cindex initialization sequence of image file
                   9241: 
                   9242: You can add your own initialization to the startup sequence through the
1.26    ! crook    9243: deferred word @code{'cold}. @code{'cold} is invoked just before the
        !          9244: image-specific command line processing (by default, loading files and
        !          9245: evaluating (@code{-e}) strings) starts.
1.1       anton    9246: 
                   9247: A sequence for adding your initialization usually looks like this:
                   9248: 
                   9249: @example
                   9250: :noname
                   9251:     Defers 'cold \ do other initialization stuff (e.g., rehashing wordlists)
                   9252:     ... \ your stuff
                   9253: ; IS 'cold
                   9254: @end example
                   9255: 
                   9256: @cindex turnkey image files
1.26    ! crook    9257: @cindex image file, turnkey applications
1.1       anton    9258: You can make a turnkey image by letting @code{'cold} execute a word
                   9259: (your turnkey application) that never returns; instead, it exits Gforth
                   9260: via @code{bye} or @code{throw}.
                   9261: 
                   9262: @cindex command-line arguments, access
                   9263: @cindex arguments on the command line, access
                   9264: You can access the (image-specific) command-line arguments through the
1.26    ! crook    9265: variables @code{argc} and @code{argv}. @code{arg} provides convenient
1.1       anton    9266: access to @code{argv}.
                   9267: 
1.26    ! crook    9268: If @code{'cold} exits normally, Gforth processes the command-line
        !          9269: arguments as files to be loaded and strings to be evaluated.  Therefore,
        !          9270: @code{'cold} should remove the arguments it has used in this case.
        !          9271: 
        !          9272: doc-'cold
1.1       anton    9273: doc-argc
                   9274: doc-argv
                   9275: doc-arg
                   9276: 
                   9277: 
                   9278: @c ******************************************************************
1.13      pazsan   9279: @node Engine, Binding to System Library, Image Files, Top
1.1       anton    9280: @chapter Engine
                   9281: @cindex engine
                   9282: @cindex virtual machine
                   9283: 
1.26    ! crook    9284: Reading this chapter is not necessary for programming with Gforth. It
1.1       anton    9285: may be helpful for finding your way in the Gforth sources.
                   9286: 
                   9287: The ideas in this section have also been published in the papers
                   9288: @cite{ANS fig/GNU/??? Forth} (in German) by Bernd Paysan, presented at
                   9289: the Forth-Tagung '93 and @cite{A Portable Forth Engine} by M. Anton
                   9290: Ertl, presented at EuroForth '93; the latter is available at
                   9291: @*@url{http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z}.
                   9292: 
                   9293: @menu
                   9294: * Portability::                 
                   9295: * Threading::                   
                   9296: * Primitives::                  
                   9297: * Performance::                 
                   9298: @end menu
                   9299: 
                   9300: @node Portability, Threading, Engine, Engine
                   9301: @section Portability
                   9302: @cindex engine portability
                   9303: 
1.26    ! crook    9304: An important goal of the Gforth Project is availability across a wide
        !          9305: range of personal machines. fig-Forth, and, to a lesser extent, F83,
        !          9306: achieved this goal by manually coding the engine in assembly language
        !          9307: for several then-popular processors. This approach is very
        !          9308: labor-intensive and the results are short-lived due to progress in
        !          9309: computer architecture.
1.1       anton    9310: 
                   9311: @cindex C, using C for the engine
                   9312: Others have avoided this problem by coding in C, e.g., Mitch Bradley
                   9313: (cforth), Mikael Patel (TILE) and Dirk Zoller (pfe). This approach is
                   9314: particularly popular for UNIX-based Forths due to the large variety of
                   9315: architectures of UNIX machines. Unfortunately an implementation in C
                   9316: does not mix well with the goals of efficiency and with using
                   9317: traditional techniques: Indirect or direct threading cannot be expressed
                   9318: in C, and switch threading, the fastest technique available in C, is
                   9319: significantly slower. Another problem with C is that it is very
                   9320: cumbersome to express double integer arithmetic.
                   9321: 
                   9322: @cindex GNU C for the engine
                   9323: @cindex long long
                   9324: Fortunately, there is a portable language that does not have these
                   9325: limitations: GNU C, the version of C processed by the GNU C compiler
                   9326: (@pxref{C Extensions, , Extensions to the C Language Family, gcc.info,
                   9327: GNU C Manual}). Its labels as values feature (@pxref{Labels as Values, ,
                   9328: Labels as Values, gcc.info, GNU C Manual}) makes direct and indirect
                   9329: threading possible, its @code{long long} type (@pxref{Long Long, ,
                   9330: Double-Word Integers, gcc.info, GNU C Manual}) corresponds to Forth's
                   9331: double numbers@footnote{Unfortunately, long longs are not implemented
                   9332: properly on all machines (e.g., on alpha-osf1, long longs are only 64
                   9333: bits, the same size as longs (and pointers), but they should be twice as
1.4       anton    9334: long according to @pxref{Long Long, , Double-Word Integers, gcc.info, GNU
1.1       anton    9335: C Manual}). So, we had to implement doubles in C after all. Still, on
                   9336: most machines we can use long longs and achieve better performance than
                   9337: with the emulation package.}. GNU C is available for free on all
                   9338: important (and many unimportant) UNIX machines, VMS, 80386s running
                   9339: MS-DOS, the Amiga, and the Atari ST, so a Forth written in GNU C can run
                   9340: on all these machines.
                   9341: 
                   9342: Writing in a portable language has the reputation of producing code that
                   9343: is slower than assembly. For our Forth engine we repeatedly looked at
                   9344: the code produced by the compiler and eliminated most compiler-induced
                   9345: inefficiencies by appropriate changes in the source code.
                   9346: 
                   9347: @cindex explicit register declarations
                   9348: @cindex --enable-force-reg, configuration flag
                   9349: @cindex -DFORCE_REG
                   9350: However, register allocation cannot be portably influenced by the
                   9351: programmer, leading to some inefficiencies on register-starved
                   9352: machines. We use explicit register declarations (@pxref{Explicit Reg
                   9353: Vars, , Variables in Specified Registers, gcc.info, GNU C Manual}) to
                   9354: improve the speed on some machines. They are turned on by using the
                   9355: configuration flag @code{--enable-force-reg} (@code{gcc} switch
                   9356: @code{-DFORCE_REG}). Unfortunately, this feature not only depends on the
                   9357: machine, but also on the compiler version: On some machines some
                   9358: compiler versions produce incorrect code when certain explicit register
                   9359: declarations are used. So by default @code{-DFORCE_REG} is not used.
                   9360: 
                   9361: @node Threading, Primitives, Portability, Engine
                   9362: @section Threading
                   9363: @cindex inner interpreter implementation
                   9364: @cindex threaded code implementation
                   9365: 
                   9366: @cindex labels as values
                   9367: GNU C's labels as values extension (available since @code{gcc-2.0},
                   9368: @pxref{Labels as Values, , Labels as Values, gcc.info, GNU C Manual})
                   9369: makes it possible to take the address of @var{label} by writing
                   9370: @code{&&@var{label}}.  This address can then be used in a statement like
                   9371: @code{goto *@var{address}}. I.e., @code{goto *&&x} is the same as
                   9372: @code{goto x}.
                   9373: 
1.26    ! crook    9374: @cindex @code{NEXT}, indirect threaded
1.1       anton    9375: @cindex indirect threaded inner interpreter
                   9376: @cindex inner interpreter, indirect threaded
1.26    ! crook    9377: With this feature an indirect threaded @code{NEXT} looks like:
1.1       anton    9378: @example
                   9379: cfa = *ip++;
                   9380: ca = *cfa;
                   9381: goto *ca;
                   9382: @end example
                   9383: @cindex instruction pointer
                   9384: For those unfamiliar with the names: @code{ip} is the Forth instruction
                   9385: pointer; the @code{cfa} (code-field address) corresponds to ANS Forths
                   9386: execution token and points to the code field of the next word to be
                   9387: executed; The @code{ca} (code address) fetched from there points to some
                   9388: executable code, e.g., a primitive or the colon definition handler
                   9389: @code{docol}.
                   9390: 
1.26    ! crook    9391: @cindex @code{NEXT}, direct threaded
1.1       anton    9392: @cindex direct threaded inner interpreter
                   9393: @cindex inner interpreter, direct threaded
                   9394: Direct threading is even simpler:
                   9395: @example
                   9396: ca = *ip++;
                   9397: goto *ca;
                   9398: @end example
                   9399: 
                   9400: Of course we have packaged the whole thing neatly in macros called
1.26    ! crook    9401: @code{NEXT} and @code{NEXT1} (the part of @code{NEXT} after fetching the cfa).
1.1       anton    9402: 
                   9403: @menu
                   9404: * Scheduling::                  
                   9405: * Direct or Indirect Threaded?::  
                   9406: * DOES>::                       
                   9407: @end menu
                   9408: 
                   9409: @node Scheduling, Direct or Indirect Threaded?, Threading, Threading
                   9410: @subsection Scheduling
                   9411: @cindex inner interpreter optimization
                   9412: 
                   9413: There is a little complication: Pipelined and superscalar processors,
                   9414: i.e., RISC and some modern CISC machines can process independent
                   9415: instructions while waiting for the results of an instruction. The
                   9416: compiler usually reorders (schedules) the instructions in a way that
                   9417: achieves good usage of these delay slots. However, on our first tries
                   9418: the compiler did not do well on scheduling primitives. E.g., for
                   9419: @code{+} implemented as
                   9420: @example
                   9421: n=sp[0]+sp[1];
                   9422: sp++;
                   9423: sp[0]=n;
                   9424: NEXT;
                   9425: @end example
1.26    ! crook    9426: the @code{NEXT} comes strictly after the other code, i.e., there is nearly no
1.1       anton    9427: scheduling. After a little thought the problem becomes clear: The
1.21      crook    9428: compiler cannot know that @code{sp} and @code{ip} point to different
                   9429: addresses (and the version of @code{gcc} we used would not know it even
                   9430: if it was possible), so it could not move the load of the cfa above the
                   9431: store to the TOS. Indeed the pointers could be the same, if code on or
                   9432: very near the top of stack were executed. In the interest of speed we
                   9433: chose to forbid this probably unused ``feature'' and helped the compiler
1.26    ! crook    9434: in scheduling: @code{NEXT} is divided into the loading part (@code{NEXT_P1})
1.21      crook    9435: and the goto part (@code{NEXT_P2}). @code{+} now looks like:
1.1       anton    9436: @example
                   9437: n=sp[0]+sp[1];
                   9438: sp++;
                   9439: NEXT_P1;
                   9440: sp[0]=n;
                   9441: NEXT_P2;
                   9442: @end example
                   9443: This can be scheduled optimally by the compiler.
                   9444: 
                   9445: This division can be turned off with the switch @code{-DCISC_NEXT}. This
                   9446: switch is on by default on machines that do not profit from scheduling
                   9447: (e.g., the 80386), in order to preserve registers.
                   9448: 
                   9449: @node Direct or Indirect Threaded?, DOES>, Scheduling, Threading
                   9450: @subsection Direct or Indirect Threaded?
                   9451: @cindex threading, direct or indirect?
                   9452: 
                   9453: @cindex -DDIRECT_THREADED
                   9454: Both! After packaging the nasty details in macro definitions we
                   9455: realized that we could switch between direct and indirect threading by
                   9456: simply setting a compilation flag (@code{-DDIRECT_THREADED}) and
                   9457: defining a few machine-specific macros for the direct-threading case.
                   9458: On the Forth level we also offer access words that hide the
                   9459: differences between the threading methods (@pxref{Threading Words}).
                   9460: 
                   9461: Indirect threading is implemented completely machine-independently.
                   9462: Direct threading needs routines for creating jumps to the executable
1.21      crook    9463: code (e.g. to @code{docol} or @code{dodoes}). These routines are inherently
                   9464: machine-dependent, but they do not amount to many source lines. Therefore,
                   9465: even porting direct threading to a new machine requires little effort.
1.1       anton    9466: 
                   9467: @cindex --enable-indirect-threaded, configuration flag
                   9468: @cindex --enable-direct-threaded, configuration flag
                   9469: The default threading method is machine-dependent. You can enforce a
                   9470: specific threading method when building Gforth with the configuration
                   9471: flag @code{--enable-direct-threaded} or
                   9472: @code{--enable-indirect-threaded}. Note that direct threading is not
                   9473: supported on all machines.
                   9474: 
                   9475: @node DOES>,  , Direct or Indirect Threaded?, Threading
                   9476: @subsection DOES>
                   9477: @cindex @code{DOES>} implementation
                   9478: 
1.26    ! crook    9479: @cindex @code{dodoes} routine
        !          9480: @cindex @code{DOES>}-code
1.1       anton    9481: One of the most complex parts of a Forth engine is @code{dodoes}, i.e.,
                   9482: the chunk of code executed by every word defined by a
                   9483: @code{CREATE}...@code{DOES>} pair. The main problem here is: How to find
                   9484: the Forth code to be executed, i.e. the code after the
1.26    ! crook    9485: @code{DOES>} (the @code{DOES>}-code)? There are two solutions:
1.1       anton    9486: 
1.21      crook    9487: In fig-Forth the code field points directly to the @code{dodoes} and the
1.26    ! crook    9488: @code{DOES>}code address is stored in the cell after the code address (i.e. at
        !          9489: @code{@var{CFA} cell+}). It may seem that this solution is illegal in
1.1       anton    9490: the Forth-79 and all later standards, because in fig-Forth this address
                   9491: lies in the body (which is illegal in these standards). However, by
                   9492: making the code field larger for all words this solution becomes legal
                   9493: again. We use this approach for the indirect threaded version and for
                   9494: direct threading on some machines. Leaving a cell unused in most words
                   9495: is a bit wasteful, but on the machines we are targeting this is hardly a
                   9496: problem. The other reason for having a code field size of two cells is
                   9497: to avoid having different image files for direct and indirect threaded
                   9498: systems (direct threaded systems require two-cell code fields on many
                   9499: machines).
                   9500: 
1.26    ! crook    9501: @cindex @code{DOES>}-handler
1.1       anton    9502: The other approach is that the code field points or jumps to the cell
1.26    ! crook    9503: after @code{DOES>}. In this variant there is a jump to @code{dodoes} at
        !          9504: this address (the @code{DOES>}-handler). @code{dodoes} can then get the
        !          9505: @code{DOES>}-code address by computing the code address, i.e., the address of
1.1       anton    9506: the jump to dodoes, and add the length of that jump field. A variant of
                   9507: this is to have a call to @code{dodoes} after the @code{DOES>}; then the
                   9508: return address (which can be found in the return register on RISCs) is
1.26    ! crook    9509: the @code{DOES>}-code address. Since the two cells available in the code field
1.1       anton    9510: are used up by the jump to the code address in direct threading on many
                   9511: architectures, we use this approach for direct threading on these
                   9512: architectures. We did not want to add another cell to the code field.
                   9513: 
                   9514: @node Primitives, Performance, Threading, Engine
                   9515: @section Primitives
                   9516: @cindex primitives, implementation
                   9517: @cindex virtual machine instructions, implementation
                   9518: 
                   9519: @menu
                   9520: * Automatic Generation::        
                   9521: * TOS Optimization::            
                   9522: * Produced code::               
                   9523: @end menu
                   9524: 
                   9525: @node Automatic Generation, TOS Optimization, Primitives, Primitives
                   9526: @subsection Automatic Generation
                   9527: @cindex primitives, automatic generation
                   9528: 
                   9529: @cindex @file{prims2x.fs}
                   9530: Since the primitives are implemented in a portable language, there is no
                   9531: longer any need to minimize the number of primitives. On the contrary,
                   9532: having many primitives has an advantage: speed. In order to reduce the
                   9533: number of errors in primitives and to make programming them easier, we
                   9534: provide a tool, the primitive generator (@file{prims2x.fs}), that
                   9535: automatically generates most (and sometimes all) of the C code for a
                   9536: primitive from the stack effect notation.  The source for a primitive
                   9537: has the following form:
                   9538: 
                   9539: @cindex primitive source format
                   9540: @format
                   9541: @var{Forth-name}       @var{stack-effect}      @var{category}  [@var{pronounc.}]
                   9542: [@code{""}@var{glossary entry}@code{""}]
                   9543: @var{C code}
                   9544: [@code{:}
                   9545: @var{Forth code}]
                   9546: @end format
                   9547: 
                   9548: The items in brackets are optional. The category and glossary fields
                   9549: are there for generating the documentation, the Forth code is there
                   9550: for manual implementations on machines without GNU C. E.g., the source
                   9551: for the primitive @code{+} is:
                   9552: @example
                   9553: +    n1 n2 -- n    core    plus
                   9554: n = n1+n2;
                   9555: @end example
                   9556: 
                   9557: This looks like a specification, but in fact @code{n = n1+n2} is C
                   9558: code. Our primitive generation tool extracts a lot of information from
                   9559: the stack effect notations@footnote{We use a one-stack notation, even
                   9560: though we have separate data and floating-point stacks; The separate
                   9561: notation can be generated easily from the unified notation.}: The number
                   9562: of items popped from and pushed on the stack, their type, and by what
                   9563: name they are referred to in the C code. It then generates a C code
                   9564: prelude and postlude for each primitive. The final C code for @code{+}
                   9565: looks like this:
                   9566: 
                   9567: @example
                   9568: I_plus:        /* + ( n1 n2 -- n ) */  /* label, stack effect */
                   9569: /*  */                          /* documentation */
                   9570: @{
                   9571: DEF_CA                          /* definition of variable ca (indirect threading) */
                   9572: Cell n1;                        /* definitions of variables */
                   9573: Cell n2;
                   9574: Cell n;
                   9575: n1 = (Cell) sp[1];              /* input */
                   9576: n2 = (Cell) TOS;
                   9577: sp += 1;                        /* stack adjustment */
                   9578: NAME("+")                       /* debugging output (with -DDEBUG) */
                   9579: @{
                   9580: n = n1+n2;                      /* C code taken from the source */
                   9581: @}
                   9582: NEXT_P1;                        /* NEXT part 1 */
                   9583: TOS = (Cell)n;                  /* output */
                   9584: NEXT_P2;                        /* NEXT part 2 */
                   9585: @}
                   9586: @end example
                   9587: 
                   9588: This looks long and inefficient, but the GNU C compiler optimizes quite
                   9589: well and produces optimal code for @code{+} on, e.g., the R3000 and the
                   9590: HP RISC machines: Defining the @code{n}s does not produce any code, and
                   9591: using them as intermediate storage also adds no cost.
                   9592: 
1.26    ! crook    9593: There are also other optimizations that are not illustrated by this
        !          9594: example: assignments between simple variables are usually for free (copy
1.1       anton    9595: propagation). If one of the stack items is not used by the primitive
                   9596: (e.g.  in @code{drop}), the compiler eliminates the load from the stack
                   9597: (dead code elimination). On the other hand, there are some things that
                   9598: the compiler does not do, therefore they are performed by
                   9599: @file{prims2x.fs}: The compiler does not optimize code away that stores
                   9600: a stack item to the place where it just came from (e.g., @code{over}).
                   9601: 
                   9602: While programming a primitive is usually easy, there are a few cases
                   9603: where the programmer has to take the actions of the generator into
                   9604: account, most notably @code{?dup}, but also words that do not (always)
1.26    ! crook    9605: fall through to @code{NEXT}.
1.1       anton    9606: 
                   9607: @node TOS Optimization, Produced code, Automatic Generation, Primitives
                   9608: @subsection TOS Optimization
                   9609: @cindex TOS optimization for primitives
                   9610: @cindex primitives, keeping the TOS in a register
                   9611: 
                   9612: An important optimization for stack machine emulators, e.g., Forth
                   9613: engines, is keeping  one or more of the top stack items in
                   9614: registers.  If a word has the stack effect @var{in1}...@var{inx} @code{--}
                   9615: @var{out1}...@var{outy}, keeping the top @var{n} items in registers
                   9616: @itemize @bullet
                   9617: @item
                   9618: is better than keeping @var{n-1} items, if @var{x>=n} and @var{y>=n},
                   9619: due to fewer loads from and stores to the stack.
                   9620: @item is slower than keeping @var{n-1} items, if @var{x<>y} and @var{x<n} and
                   9621: @var{y<n}, due to additional moves between registers.
                   9622: @end itemize
                   9623: 
                   9624: @cindex -DUSE_TOS
                   9625: @cindex -DUSE_NO_TOS
                   9626: In particular, keeping one item in a register is never a disadvantage,
                   9627: if there are enough registers. Keeping two items in registers is a
                   9628: disadvantage for frequent words like @code{?branch}, constants,
                   9629: variables, literals and @code{i}. Therefore our generator only produces
                   9630: code that keeps zero or one items in registers. The generated C code
                   9631: covers both cases; the selection between these alternatives is made at
                   9632: C-compile time using the switch @code{-DUSE_TOS}. @code{TOS} in the C
                   9633: code for @code{+} is just a simple variable name in the one-item case,
                   9634: otherwise it is a macro that expands into @code{sp[0]}. Note that the
                   9635: GNU C compiler tries to keep simple variables like @code{TOS} in
                   9636: registers, and it usually succeeds, if there are enough registers.
                   9637: 
                   9638: @cindex -DUSE_FTOS
                   9639: @cindex -DUSE_NO_FTOS
                   9640: The primitive generator performs the TOS optimization for the
                   9641: floating-point stack, too (@code{-DUSE_FTOS}). For floating-point
                   9642: operations the benefit of this optimization is even larger:
                   9643: floating-point operations take quite long on most processors, but can be
                   9644: performed in parallel with other operations as long as their results are
                   9645: not used. If the FP-TOS is kept in a register, this works. If
                   9646: it is kept on the stack, i.e., in memory, the store into memory has to
                   9647: wait for the result of the floating-point operation, lengthening the
                   9648: execution time of the primitive considerably.
                   9649: 
                   9650: The TOS optimization makes the automatic generation of primitives a
                   9651: bit more complicated. Just replacing all occurrences of @code{sp[0]} by
                   9652: @code{TOS} is not sufficient. There are some special cases to
                   9653: consider:
                   9654: @itemize @bullet
                   9655: @item In the case of @code{dup ( w -- w w )} the generator must not
                   9656: eliminate the store to the original location of the item on the stack,
                   9657: if the TOS optimization is turned on.
                   9658: @item Primitives with stack effects of the form @code{--}
                   9659: @var{out1}...@var{outy} must store the TOS to the stack at the start.
                   9660: Likewise, primitives with the stack effect @var{in1}...@var{inx} @code{--}
                   9661: must load the TOS from the stack at the end. But for the null stack
                   9662: effect @code{--} no stores or loads should be generated.
                   9663: @end itemize
                   9664: 
                   9665: @node Produced code,  , TOS Optimization, Primitives
                   9666: @subsection Produced code
                   9667: @cindex primitives, assembly code listing
                   9668: 
                   9669: @cindex @file{engine.s}
                   9670: To see what assembly code is produced for the primitives on your machine
                   9671: with your compiler and your flag settings, type @code{make engine.s} and
                   9672: look at the resulting file @file{engine.s}.
                   9673: 
                   9674: @node  Performance,  , Primitives, Engine
                   9675: @section Performance
                   9676: @cindex performance of some Forth interpreters
                   9677: @cindex engine performance
                   9678: @cindex benchmarking Forth systems
                   9679: @cindex Gforth performance
                   9680: 
                   9681: On RISCs the Gforth engine is very close to optimal; i.e., it is usually
                   9682: impossible to write a significantly faster engine.
                   9683: 
                   9684: On register-starved machines like the 386 architecture processors
                   9685: improvements are possible, because @code{gcc} does not utilize the
                   9686: registers as well as a human, even with explicit register declarations;
                   9687: e.g., Bernd Beuster wrote a Forth system fragment in assembly language
                   9688: and hand-tuned it for the 486; this system is 1.19 times faster on the
                   9689: Sieve benchmark on a 486DX2/66 than Gforth compiled with
                   9690: @code{gcc-2.6.3} with @code{-DFORCE_REG}.
                   9691: 
                   9692: @cindex Win32Forth performance
                   9693: @cindex NT Forth performance
                   9694: @cindex eforth performance
                   9695: @cindex ThisForth performance
                   9696: @cindex PFE performance
                   9697: @cindex TILE performance
                   9698: However, this potential advantage of assembly language implementations
                   9699: is not necessarily realized in complete Forth systems: We compared
                   9700: Gforth (direct threaded, compiled with @code{gcc-2.6.3} and
                   9701: @code{-DFORCE_REG}) with Win32Forth 1.2093, LMI's NT Forth (Beta, May
                   9702: 1994) and Eforth (with and without peephole (aka pinhole) optimization
                   9703: of the threaded code); all these systems were written in assembly
                   9704: language. We also compared Gforth with three systems written in C:
                   9705: PFE-0.9.14 (compiled with @code{gcc-2.6.3} with the default
                   9706: configuration for Linux: @code{-O2 -fomit-frame-pointer -DUSE_REGS
1.21      crook    9707: -DUNROLL_NEXT}), ThisForth Beta (compiled with @code{gcc-2.6.3 -O3
                   9708: -fomit-frame-pointer}; ThisForth employs peephole optimization of the
1.1       anton    9709: threaded code) and TILE (compiled with @code{make opt}). We benchmarked
                   9710: Gforth, PFE, ThisForth and TILE on a 486DX2/66 under Linux. Kenneth
                   9711: O'Heskin kindly provided the results for Win32Forth and NT Forth on a
                   9712: 486DX2/66 with similar memory performance under Windows NT. Marcel
                   9713: Hendrix ported Eforth to Linux, then extended it to run the benchmarks,
                   9714: added the peephole optimizer, ran the benchmarks and reported the
                   9715: results.
                   9716:  
                   9717: We used four small benchmarks: the ubiquitous Sieve; bubble-sorting and
                   9718: matrix multiplication come from the Stanford integer benchmarks and have
                   9719: been translated into Forth by Martin Fraeman; we used the versions
                   9720: included in the TILE Forth package, but with bigger data set sizes; and
                   9721: a recursive Fibonacci number computation for benchmarking calling
                   9722: performance. The following table shows the time taken for the benchmarks
                   9723: scaled by the time taken by Gforth (in other words, it shows the speedup
                   9724: factor that Gforth achieved over the other systems).
                   9725: 
                   9726: @example
                   9727: relative      Win32-    NT       eforth       This-
                   9728:   time  Gforth Forth Forth eforth  +opt   PFE Forth  TILE
                   9729: sieve     1.00  1.39  1.14   1.39  0.85  1.58  3.18  8.58
                   9730: bubble    1.00  1.31  1.41   1.48  0.88  1.50        3.88
                   9731: matmul    1.00  1.47  1.35   1.46  0.74  1.58        4.09
                   9732: fib       1.00  1.52  1.34   1.22  0.86  1.74  2.99  4.30
                   9733: @end example
                   9734: 
1.26    ! crook    9735: You may be quite surprised by the good performance of Gforth when
        !          9736: compared with systems written in assembly language. One important reason
        !          9737: for the disappointing performance of these other systems is probably
        !          9738: that they are not written optimally for the 486 (e.g., they use the
        !          9739: @code{lods} instruction). In addition, Win32Forth uses a comfortable,
        !          9740: but costly method for relocating the Forth image: like @code{cforth}, it
        !          9741: computes the actual addresses at run time, resulting in two address
        !          9742: computations per @code{NEXT} (@pxref{Image File Background}).
        !          9743: 
        !          9744: Only Eforth with the peephole optimizer has a performance that is
        !          9745: comparable to Gforth. The speedups achieved with peephole optimization
        !          9746: of threaded code are quite remarkable. Adding a peephole optimizer to
        !          9747: Gforth should cause similar speedups.
1.1       anton    9748: 
                   9749: The speedup of Gforth over PFE, ThisForth and TILE can be easily
                   9750: explained with the self-imposed restriction of the latter systems to
                   9751: standard C, which makes efficient threading impossible (however, the
1.4       anton    9752: measured implementation of PFE uses a GNU C extension: @pxref{Global Reg
1.1       anton    9753: Vars, , Defining Global Register Variables, gcc.info, GNU C Manual}).
                   9754: Moreover, current C compilers have a hard time optimizing other aspects
                   9755: of the ThisForth and the TILE source.
                   9756: 
1.26    ! crook    9757: The performance of Gforth on 386 architecture processors varies widely
        !          9758: with the version of @code{gcc} used. E.g., @code{gcc-2.5.8} failed to
        !          9759: allocate any of the virtual machine registers into real machine
        !          9760: registers by itself and would not work correctly with explicit register
        !          9761: declarations, giving a 1.3 times slower engine (on a 486DX2/66 running
        !          9762: the Sieve) than the one measured above.
1.1       anton    9763: 
1.26    ! crook    9764: Note that there have been several releases of Win32Forth since the
        !          9765: release presented here, so the results presented above may have little
1.1       anton    9766: predictive value for the performance of Win32Forth today.
                   9767: 
                   9768: @cindex @file{Benchres}
                   9769: In @cite{Translating Forth to Efficient C} by M. Anton Ertl and Martin
                   9770: Maierhofer (presented at EuroForth '95), an indirect threaded version of
                   9771: Gforth is compared with Win32Forth, NT Forth, PFE, and ThisForth; that
                   9772: version of Gforth is 2%@minus{}8% slower on a 486 than the direct
                   9773: threaded version used here. The paper available at
                   9774: @*@url{http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz};
                   9775: it also contains numbers for some native code systems. You can find a
                   9776: newer version of these measurements at
                   9777: @url{http://www.complang.tuwien.ac.at/forth/performance.html}. You can
                   9778: find numbers for Gforth on various machines in @file{Benchres}.
                   9779: 
1.26    ! crook    9780: @c ******************************************************************
1.13      pazsan   9781: @node Binding to System Library, Cross Compiler, Engine, Top
1.14      pazsan   9782: @chapter Binding to System Library
1.13      pazsan   9783: 
                   9784: @node Cross Compiler, Bugs, Binding to System Library, Top
1.14      pazsan   9785: @chapter Cross Compiler
1.13      pazsan   9786: 
                   9787: Cross Compiler
                   9788: 
                   9789: @menu
                   9790: * Using the Cross Compiler::
                   9791: * How the Cross Compiler Works::
                   9792: @end menu
                   9793: 
1.21      crook    9794: @node Using the Cross Compiler, How the Cross Compiler Works, Cross Compiler, Cross Compiler
1.14      pazsan   9795: @section Using the Cross Compiler
1.13      pazsan   9796: 
1.21      crook    9797: @node How the Cross Compiler Works, , Using the Cross Compiler, Cross Compiler
1.14      pazsan   9798: @section How the Cross Compiler Works
1.13      pazsan   9799: 
                   9800: @node Bugs, Origin, Cross Compiler, Top
1.21      crook    9801: @appendix Bugs
1.1       anton    9802: @cindex bug reporting
                   9803: 
1.21      crook    9804: Known bugs are described in the file @file{BUGS} in the Gforth distribution.
1.1       anton    9805: 
                   9806: If you find a bug, please send a bug report to
1.21      crook    9807: @email{bug-gforth@@gnu.ai.mit.edu}. A bug report should include this
                   9808: information:
                   9809: 
                   9810: @itemize @bullet
                   9811: @item
                   9812: The Gforth version used (it is announced at the start of an
                   9813: interactive Gforth session).
                   9814: @item
                   9815: The machine and operating system (on Unix
                   9816: systems @code{uname -a} will report this information).
                   9817: @item
                   9818: The installation options (send the file @file{config.status}).
                   9819: @item
                   9820: A complete list of changes (if any) you (or your installer) have made to the
                   9821: Gforth sources.
                   9822: @item
                   9823: A program (or a sequence of keyboard commands) that reproduces the bug.
                   9824: @item
                   9825: A description of what you think constitutes the buggy behaviour.
                   9826: @end itemize
1.1       anton    9827: 
                   9828: For a thorough guide on reporting bugs read @ref{Bug Reporting, , How
                   9829: to Report Bugs, gcc.info, GNU C Manual}.
                   9830: 
                   9831: 
1.21      crook    9832: @node Origin, Forth-related information, Bugs, Top
                   9833: @appendix Authors and Ancestors of Gforth
1.1       anton    9834: 
                   9835: @section Authors and Contributors
                   9836: @cindex authors of Gforth
                   9837: @cindex contributors to Gforth
                   9838: 
                   9839: The Gforth project was started in mid-1992 by Bernd Paysan and Anton
                   9840: Ertl. The third major author was Jens Wilke.  Lennart Benschop (who was
                   9841: one of Gforth's first users, in mid-1993) and Stuart Ramsden inspired us
                   9842: with their continuous feedback. Lennart Benshop contributed
                   9843: @file{glosgen.fs}, while Stuart Ramsden has been working on automatic
                   9844: support for calling C libraries. Helpful comments also came from Paul
                   9845: Kleinrubatscher, Christian Pirker, Dirk Zoller, Marcel Hendrix, John
1.12      anton    9846: Wavrik, Barrie Stott, Marc de Groot, and Jorge Acerada. Since the
                   9847: release of Gforth-0.2.1 there were also helpful comments from many
                   9848: others; thank you all, sorry for not listing you here (but digging
1.23      crook    9849: through my mailbox to extract your names is on my to-do list). Since the
                   9850: release of Gforth-0.4.0 Neal Crook worked on the manual.
1.1       anton    9851: 
                   9852: Gforth also owes a lot to the authors of the tools we used (GCC, CVS,
                   9853: and autoconf, among others), and to the creators of the Internet: Gforth
1.21      crook    9854: was developed across the Internet, and its authors did not meet
1.20      pazsan   9855: physically for the first 4 years of development.
1.1       anton    9856: 
                   9857: @section Pedigree
1.26    ! crook    9858: @cindex pedigree of Gforth
1.1       anton    9859: 
1.20      pazsan   9860: Gforth descends from bigFORTH (1993) and fig-Forth. Gforth and PFE (by
1.1       anton    9861: Dirk Zoller) will cross-fertilize each other. Of course, a significant
                   9862: part of the design of Gforth was prescribed by ANS Forth.
                   9863: 
1.20      pazsan   9864: Bernd Paysan wrote bigFORTH, a descendent from TurboForth, an unreleased
1.1       anton    9865: 32 bit native code version of VolksForth for the Atari ST, written
                   9866: mostly by Dietrich Weineck.
                   9867: 
                   9868: VolksForth descends from F83. It was written by Klaus Schleisiek, Bernd
                   9869: Pennemann, Georg Rehfeld and Dietrich Weineck for the C64 (called
                   9870: UltraForth there) in the mid-80s and ported to the Atari ST in 1986.
                   9871: 
                   9872: Henry Laxen and Mike Perry wrote F83 as a model implementation of the
                   9873: Forth-83 standard. !! Pedigree? When?
                   9874: 
                   9875: A team led by Bill Ragsdale implemented fig-Forth on many processors in
                   9876: 1979. Robert Selzer and Bill Ragsdale developed the original
                   9877: implementation of fig-Forth for the 6502 based on microForth.
                   9878: 
                   9879: The principal architect of microForth was Dean Sanderson. microForth was
                   9880: FORTH, Inc.'s first off-the-shelf product. It was developed in 1976 for
                   9881: the 1802, and subsequently implemented on the 8080, the 6800 and the
                   9882: Z80.
                   9883: 
                   9884: All earlier Forth systems were custom-made, usually by Charles Moore,
                   9885: who discovered (as he puts it) Forth during the late 60s. The first full
                   9886: Forth existed in 1971.
                   9887: 
                   9888: A part of the information in this section comes from @cite{The Evolution
                   9889: of Forth} by Elizabeth D. Rather, Donald R. Colburn and Charles
                   9890: H. Moore, presented at the HOPL-II conference and preprinted in SIGPLAN
                   9891: Notices 28(3), 1993.  You can find more historical and genealogical
                   9892: information about Forth there.
                   9893: 
1.21      crook    9894: @node Forth-related information, Word Index, Origin, Top
                   9895: @appendix Other Forth-related information
                   9896: @cindex Forth-related information
                   9897: 
                   9898: @menu
                   9899: * Internet resources::
                   9900: * Books::
                   9901: * The Forth Interest Group::
                   9902: * Conferences::
                   9903: @end menu
                   9904: 
                   9905: 
                   9906: @node Internet resources, Books, Forth-related information, Forth-related information
                   9907: @section Internet resources
1.26    ! crook    9908: @cindex internet resources
1.21      crook    9909: 
                   9910: @cindex comp.lang.forth
                   9911: @cindex frequently asked questions
                   9912: There is an active newsgroup (comp.lang.forth) discussing Forth and
                   9913: Forth-related issues. A frequently-asked-questions (FAQ) list
                   9914: is posted to the newsgroup regulary, and archived at these sites:
                   9915: 
                   9916: @itemize @bullet
                   9917: @item
                   9918: @url{ftp://rtfm.mit.edu/pub/usenet-by-group/comp.lang.forth/}
                   9919: @item
                   9920: @url{ftp://ftp.forth.org/pub/Forth/FAQ/}
                   9921: @end itemize
                   9922: 
                   9923: The FAQ list should be considered mandatory reading before posting to
                   9924: the newsgroup.
                   9925: 
                   9926: Here are some other web sites holding Forth-related material:
                   9927: 
                   9928: @itemize @bullet
                   9929: @item
                   9930: @url{http://www.taygeta.com/forth.html} -- Skip Carter's Forth pages.
                   9931: @item
                   9932: @url{http://www.jwdt.com/~paysan/gforth.html} -- the Gforth home page.
                   9933: @item
                   9934: @url{http://www.minerva.com/uathena.htm} -- home of ANS Forth Standard.
                   9935: @item
                   9936: @url{http://dec.bournemouth.ac.uk/forth/index.html} -- the Forth
                   9937: Research page, including links to the Journal of Forth Application and
                   9938: Research (JFAR) and a searchable Forth bibliography.
                   9939: @end itemize
                   9940: 
                   9941: 
                   9942: @node Books, The Forth Interest Group, Internet resources, Forth-related information
                   9943: @section Books
1.26    ! crook    9944: @cindex books on Forth
1.21      crook    9945: 
                   9946: As the Standard is relatively new, there are not many books out yet. It
                   9947: is not recommended to learn Forth by using Gforth and a book that is not
                   9948: written for ANS Forth, as you will not know your mistakes from the
                   9949: deviations of the book. However, books based on the Forth-83 standard
                   9950: should be ok, because ANS Forth is primarily an extension of Forth-83.
                   9951: 
                   9952: @cindex standard document for ANS Forth
                   9953: @cindex ANS Forth document
                   9954: The definite reference if you want to write ANS Forth programs is, of
1.26    ! crook    9955: course, the ANS Forth document. It is available in printed form from the
1.21      crook    9956: National Standards Institute Sales Department (Tel.: USA (212) 642-4900;
                   9957: Fax.: USA (212) 302-1286) as document @cite{X3.215-1994} for about
                   9958: $200. You can also get it from Global Engineering Documents (Tel.: USA
                   9959: (800) 854-7179; Fax.: (303) 843-9880) for about $300.
                   9960: 
                   9961: @cite{dpANS6}, the last draft of the standard, which was then submitted
                   9962: to ANSI for publication is available electronically and for free in some
                   9963: MS Word format, and it has been converted to HTML
                   9964: (@url{http://www.taygeta.com/forth/dpans.html}; this is my favourite
                   9965: format); this HTML version also includes the answers to Requests for
                   9966: Interpretation (RFIs). Some pointers to these versions can be found
                   9967: through @*@url{http://www.complang.tuwien.ac.at/projects/forth.html}.
                   9968: 
1.26    ! crook    9969: @cindex introductory book on Forth
        !          9970: @cindex book on Forth, introductory
1.21      crook    9971: @cindex Woehr, Jack: @cite{Forth: The New Model}
                   9972: @cindex @cite{Forth: The new model} (book)
                   9973: @cite{Forth: The New Model} by Jack Woehr (Prentice-Hall, 1993) is an
                   9974: introductory book based on a draft version of the standard. It does not
                   9975: cover the whole standard. It also contains interesting background
                   9976: information (Jack Woehr was in the ANS Forth Technical Committee). It is
                   9977: not appropriate for complete newbies, but programmers experienced in
                   9978: other languages should find it ok.
                   9979: 
                   9980: @cindex Conklin, Edward K., and Elizabeth Rather: @cite{Forth Programmer's Handbook}
                   9981: @cindex Rather, Elizabeth and Edward K. Conklin: @cite{Forth Programmer's Handbook}
                   9982: @cindex @cite{Forth Programmer's Handbook} (book)
                   9983: @cite{Forth Programmer's Handbook} by Edward K. Conklin, Elizabeth
                   9984: D. Rather and the technical staff of Forth, Inc. (Forth, Inc., 1997;
                   9985: ISBN 0-9662156-0-5) contains little introductory material. The majority
                   9986: of the book is similar to @ref{Words}, but the book covers most of the
                   9987: standard words and some non-standard words (whereas this manual is
                   9988: quite incomplete). In addition, the book contains a chapter on
                   9989: programming style. The major drawback of this book is that it usually
                   9990: does not identify what is standard and what is specific to the Forth
                   9991: system described in the book (probably one of Forth, Inc.'s systems).
                   9992: Fortunately, many of the non-standard programming practices described in
                   9993: the book work in Gforth, too.  Still, this drawback makes the book
                   9994: hardly more useful than a pre-ANS book.
                   9995: 
                   9996: @node The Forth Interest Group, Conferences, Books, Forth-related information
                   9997: @section The Forth Interest Group
                   9998: @cindex Forth interest group (FIG)
                   9999: 
                   10000: The Forth Interest Group (FIG) is a world-wide, non-profit,
1.26    ! crook    10001: member-supported organisation. It publishes a regular magazine,
        !          10002: @var{FORTH Dimensions}, and offers other benefits of membership. You can
        !          10003: contact the FIG through their office email address:
        !          10004: @email{office@@forth.org} or by visiting their web site at
        !          10005: @url{http://www.forth.org/}. This web site also includes links to FIG
        !          10006: chapters in other countries and American cities
1.21      crook    10007: (@url{http://www.forth.org/chapters.html}).
                   10008: 
                   10009: @node Conferences, , The Forth Interest Group, Forth-related information
                   10010: @section Conferences
                   10011: @cindex Conferences
                   10012: 
                   10013: There are several regular conferences related to Forth. They are all
1.26    ! crook    10014: well-publicised in @var{FORTH Dimensions} and on the comp.lang.forth
        !          10015: news group:
1.21      crook    10016: 
                   10017: @itemize @bullet
                   10018: @item
                   10019: FORML -- the Forth modification laboratory convenes every year near
                   10020: Monterey, California.
                   10021: @item
                   10022: The Rochester Forth Conference -- an annual conference traditionally
                   10023: held in Rochester, New York.
                   10024: @item
                   10025: EuroForth -- this European conference takes place annually.
                   10026: @end itemize
                   10027: 
                   10028: 
                   10029: @node Word Index, Concept Index, Forth-related information, Top
1.1       anton    10030: @unnumbered Word Index
                   10031: 
1.26    ! crook    10032: This index is a list of Forth words that have ``glossary'' entries
        !          10033: within this manual. Each word is listed with its stack effect and
        !          10034: wordset.
1.1       anton    10035: 
                   10036: @printindex fn
                   10037: 
                   10038: @node Concept Index,  , Word Index, Top
                   10039: @unnumbered Concept and Word Index
                   10040: 
1.26    ! crook    10041: Not all entries listed in this index are present verbatim in the
        !          10042: text. This index also duplicates, in abbreviated form, all of the words
        !          10043: listed in the Word Index (only the names are listed for the words here).
1.1       anton    10044: 
                   10045: @printindex cp
                   10046: 
                   10047: @contents
                   10048: @bye
                   10049: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>