Annotation of gforth/doc/gforth.ds, revision 1.109

1.1       anton       1: \input texinfo   @c -*-texinfo-*-
                      2: @comment The source is gforth.ds, from which gforth.texi is generated
1.28      crook       3: 
1.21      crook       4: @comment TODO: nac29jan99 - a list of things to add in the next edit:
1.28      crook       5: @comment 1. x-ref all ambiguous or implementation-defined features?
                      6: @comment 2. Describe the use of Auser Avariable AConstant A, etc.
                      7: @comment 3. words in miscellaneous section need a home.
                      8: @comment 4. search for TODO for other minor and major works required.
                      9: @comment 5. [rats] change all @var to @i in Forth source so that info
                     10: @comment    file looks decent.
1.36      anton      11: @c          Not an improvement IMO - anton
                     12: @c          and anyway, this should be taken up
                     13: @c          with Karl Berry (the texinfo guy) - anton
1.29      crook      14: @comment .. would be useful to have a word that identified all deferred words
                     15: @comment should semantics stuff in intro be moved to another section
                     16: 
1.66      anton      17: @c POSTPONE, COMPILE, [COMPILE], LITERAL should have their own section
1.28      crook      18: 
1.1       anton      19: @comment %**start of header (This is for running Texinfo on a region.)
                     20: @setfilename gforth.info
                     21: @settitle Gforth Manual
1.108     anton      22: @dircategory Software development
1.1       anton      23: @direntry
                     24: * Gforth: (gforth).             A fast interpreter for the Forth language.
                     25: @end direntry
1.49      anton      26: @c The Texinfo manual also recommends doing this, but for Gforth it may
                     27: @c  not make much sense
                     28: @c @dircategory Individual utilities
                     29: @c @direntry
                     30: @c * Gforth: (gforth)Invoking Gforth.      gforth, gforth-fast, gforthmi
                     31: @c @end direntry
                     32: 
1.1       anton      33: @comment @setchapternewpage odd
1.29      crook      34: @comment TODO this gets left in by HTML converter
1.12      anton      35: @macro progstyle {}
                     36: Programming style note:
1.3       anton      37: @end macro
1.48      anton      38: 
                     39: @macro assignment {}
                     40: @table @i
                     41: @item Assignment:
                     42: @end macro
                     43: @macro endassignment {}
                     44: @end table
                     45: @end macro
                     46: 
1.1       anton      47: @comment %**end of header (This is for running Texinfo on a region.)
                     48: 
1.29      crook      49: 
                     50: @comment ----------------------------------------------------------
                     51: @comment macros for beautifying glossary entries
                     52: @comment if these are used, need to strip them out for HTML converter
                     53: @comment else they get repeated verbatim in HTML output.
                     54: @comment .. not working yet.
                     55: 
                     56: @macro GLOSS-START {}
                     57: @iftex
                     58: @ninerm
                     59: @end iftex
                     60: @end macro
                     61: 
                     62: @macro GLOSS-END {}
                     63: @iftex
                     64: @rm
                     65: @end iftex
                     66: @end macro
                     67: 
                     68: @comment ----------------------------------------------------------
                     69: 
                     70: 
1.10      anton      71: @include version.texi
                     72: 
1.49      anton      73: @ifnottex
1.11      anton      74: This file documents Gforth @value{VERSION}
1.1       anton      75: 
1.108     anton      76: Copyright @copyright{} 1995, 1996, 1997, 1998, 2000, 2003 Free Software Foundation, Inc.
1.1       anton      77: 
                     78:      Permission is granted to make and distribute verbatim copies of
                     79:      this manual provided the copyright notice and this permission notice
                     80:      are preserved on all copies.
                     81:      
                     82: @ignore
                     83:      Permission is granted to process this file through TeX and print the
                     84:      results, provided the printed document carries a copying permission
                     85:      notice identical to this one except for the removal of this paragraph
                     86:      (this paragraph not being relevant to the printed manual).
                     87:      
                     88: @end ignore
                     89:      Permission is granted to copy and distribute modified versions of this
                     90:      manual under the conditions for verbatim copying, provided also that the
                     91:      sections entitled "Distribution" and "General Public License" are
                     92:      included exactly as in the original, and provided that the entire
                     93:      resulting derived work is distributed under the terms of a permission
                     94:      notice identical to this one.
                     95:      
                     96:      Permission is granted to copy and distribute translations of this manual
                     97:      into another language, under the above conditions for modified versions,
                     98:      except that the sections entitled "Distribution" and "General Public
                     99:      License" may be included in a translation approved by the author instead
                    100:      of in the original English.
1.49      anton     101: @end ifnottex
1.1       anton     102: 
                    103: @finalout
                    104: @titlepage
                    105: @sp 10
                    106: @center @titlefont{Gforth Manual}
                    107: @sp 2
1.11      anton     108: @center for version @value{VERSION}
1.1       anton     109: @sp 2
1.34      anton     110: @center Neal Crook
1.1       anton     111: @center Anton Ertl
1.6       pazsan    112: @center Bernd Paysan
1.5       anton     113: @center Jens Wilke
1.1       anton     114: @sp 3
1.47      crook     115: @center This manual is permanently under construction and was last updated on 15-Mar-2000
1.1       anton     116: 
                    117: @comment  The following two commands start the copyright page.
                    118: @page
                    119: @vskip 0pt plus 1filll
1.108     anton     120: Copyright @copyright{} 1995, 1996, 1997, 1998, 2000, 2003 Free Software Foundation, Inc.
1.1       anton     121: 
                    122: @comment !! Published by ... or You can get a copy of this manual ...
                    123: 
                    124:      Permission is granted to make and distribute verbatim copies of
                    125:      this manual provided the copyright notice and this permission notice
                    126:      are preserved on all copies.
                    127:      
                    128:      Permission is granted to copy and distribute modified versions of this
                    129:      manual under the conditions for verbatim copying, provided also that the
                    130:      sections entitled "Distribution" and "General Public License" are
                    131:      included exactly as in the original, and provided that the entire
                    132:      resulting derived work is distributed under the terms of a permission
                    133:      notice identical to this one.
                    134:      
                    135:      Permission is granted to copy and distribute translations of this manual
                    136:      into another language, under the above conditions for modified versions,
                    137:      except that the sections entitled "Distribution" and "General Public
                    138:      License" may be included in a translation approved by the author instead
                    139:      of in the original English.
                    140: @end titlepage
                    141: 
                    142: @node Top, License, (dir), (dir)
1.49      anton     143: @ifnottex
1.1       anton     144: Gforth is a free implementation of ANS Forth available on many
1.11      anton     145: personal machines. This manual corresponds to version @value{VERSION}.
1.49      anton     146: @end ifnottex
1.1       anton     147: 
                    148: @menu
1.21      crook     149: * License::                     The GPL
1.26      crook     150: * Goals::                       About the Gforth Project
1.29      crook     151: * Gforth Environment::          Starting (and exiting) Gforth
1.48      anton     152: * Tutorial::                    Hands-on Forth Tutorial
1.21      crook     153: * Introduction::                An introduction to ANS Forth
1.1       anton     154: * Words::                       Forth words available in Gforth
1.24      anton     155: * Error messages::              How to interpret them
1.1       anton     156: * Tools::                       Programming tools
                    157: * ANS conformance::             Implementation-defined options etc.
1.65      anton     158: * Standard vs Extensions::      Should I use extensions?
1.1       anton     159: * Model::                       The abstract machine of Gforth
                    160: * Integrating Gforth::          Forth as scripting language for applications
                    161: * Emacs and Gforth::            The Gforth Mode
                    162: * Image Files::                 @code{.fi} files contain compiled code
                    163: * Engine::                      The inner interpreter and the primitives
1.24      anton     164: * Binding to System Library::   
1.13      pazsan    165: * Cross Compiler::              The Cross Compiler
1.1       anton     166: * Bugs::                        How to report them
                    167: * Origin::                      Authors and ancestors of Gforth
1.21      crook     168: * Forth-related information::   Books and places to look on the WWW
1.1       anton     169: * Word Index::                  An item for each Forth word
                    170: * Concept Index::               A menu covering many topics
1.12      anton     171: 
1.91      anton     172: @detailmenu
                    173:  --- The Detailed Node Listing ---
1.12      anton     174: 
1.29      crook     175: Gforth Environment
                    176: 
1.32      anton     177: * Invoking Gforth::             Getting in
                    178: * Leaving Gforth::              Getting out
                    179: * Command-line editing::        
1.48      anton     180: * Environment variables::       that affect how Gforth starts up
1.32      anton     181: * Gforth Files::                What gets installed and where
1.48      anton     182: * Startup speed::               When 35ms is not fast enough ...
                    183: 
                    184: Forth Tutorial
                    185: 
                    186: * Starting Gforth Tutorial::    
                    187: * Syntax Tutorial::             
                    188: * Crash Course Tutorial::       
                    189: * Stack Tutorial::              
                    190: * Arithmetics Tutorial::        
                    191: * Stack Manipulation Tutorial::  
                    192: * Using files for Forth code Tutorial::  
                    193: * Comments Tutorial::           
                    194: * Colon Definitions Tutorial::  
                    195: * Decompilation Tutorial::      
                    196: * Stack-Effect Comments Tutorial::  
                    197: * Types Tutorial::              
                    198: * Factoring Tutorial::          
                    199: * Designing the stack effect Tutorial::  
                    200: * Local Variables Tutorial::    
                    201: * Conditional execution Tutorial::  
                    202: * Flags and Comparisons Tutorial::  
                    203: * General Loops Tutorial::      
                    204: * Counted loops Tutorial::      
                    205: * Recursion Tutorial::          
                    206: * Leaving definitions or loops Tutorial::  
                    207: * Return Stack Tutorial::       
                    208: * Memory Tutorial::             
                    209: * Characters and Strings Tutorial::  
                    210: * Alignment Tutorial::          
1.87      anton     211: * Files Tutorial::              
1.48      anton     212: * Interpretation and Compilation Semantics and Immediacy Tutorial::  
                    213: * Execution Tokens Tutorial::   
                    214: * Exceptions Tutorial::         
                    215: * Defining Words Tutorial::     
                    216: * Arrays and Records Tutorial::  
                    217: * POSTPONE Tutorial::           
                    218: * Literal Tutorial::            
                    219: * Advanced macros Tutorial::    
                    220: * Compilation Tokens Tutorial::  
                    221: * Wordlists and Search Order Tutorial::  
1.29      crook     222: 
1.24      anton     223: An Introduction to ANS Forth
                    224: 
1.67      anton     225: * Introducing the Text Interpreter::  
                    226: * Stacks and Postfix notation::  
                    227: * Your first definition::       
                    228: * How does that work?::         
                    229: * Forth is written in Forth::   
                    230: * Review - elements of a Forth system::  
                    231: * Where to go next::            
                    232: * Exercises::                   
1.24      anton     233: 
1.12      anton     234: Forth Words
                    235: 
                    236: * Notation::                    
1.65      anton     237: * Case insensitivity::          
                    238: * Comments::                    
                    239: * Boolean Flags::               
1.12      anton     240: * Arithmetic::                  
                    241: * Stack Manipulation::          
                    242: * Memory::                      
                    243: * Control Structures::          
                    244: * Defining Words::              
1.65      anton     245: * Interpretation and Compilation Semantics::  
1.47      crook     246: * Tokens for Words::            
1.81      anton     247: * Compiling words::             
1.65      anton     248: * The Text Interpreter::        
                    249: * Word Lists::                  
                    250: * Environmental Queries::       
1.12      anton     251: * Files::                       
                    252: * Blocks::                      
                    253: * Other I/O::                   
1.78      anton     254: * Locals::                      
                    255: * Structures::                  
                    256: * Object-oriented Forth::       
1.12      anton     257: * Programming Tools::           
                    258: * Assembler and Code Words::    
                    259: * Threading Words::             
1.65      anton     260: * Passing Commands to the OS::  
                    261: * Keeping track of Time::       
                    262: * Miscellaneous Words::         
1.12      anton     263: 
                    264: Arithmetic
                    265: 
                    266: * Single precision::            
1.67      anton     267: * Double precision::            Double-cell integer arithmetic
1.12      anton     268: * Bitwise operations::          
1.67      anton     269: * Numeric comparison::          
1.32      anton     270: * Mixed precision::             Operations with single and double-cell integers
1.12      anton     271: * Floating Point::              
                    272: 
                    273: Stack Manipulation
                    274: 
                    275: * Data stack::                  
                    276: * Floating point stack::        
                    277: * Return stack::                
                    278: * Locals stack::                
                    279: * Stack pointer manipulation::  
                    280: 
                    281: Memory
                    282: 
1.32      anton     283: * Memory model::                
                    284: * Dictionary allocation::       
                    285: * Heap Allocation::             
                    286: * Memory Access::               
                    287: * Address arithmetic::          
                    288: * Memory Blocks::               
1.12      anton     289: 
                    290: Control Structures
                    291: 
1.41      anton     292: * Selection::                   IF ... ELSE ... ENDIF
                    293: * Simple Loops::                BEGIN ...
1.32      anton     294: * Counted Loops::               DO
1.67      anton     295: * Arbitrary control structures::  
                    296: * Calls and returns::           
1.12      anton     297: * Exception Handling::          
                    298: 
                    299: Defining Words
                    300: 
1.67      anton     301: * CREATE::                      
1.44      crook     302: * Variables::                   Variables and user variables
1.67      anton     303: * Constants::                   
1.44      crook     304: * Values::                      Initialised variables
1.67      anton     305: * Colon Definitions::           
1.44      crook     306: * Anonymous Definitions::       Definitions without names
1.71      anton     307: * Supplying names::             Passing definition names as strings
1.67      anton     308: * User-defined Defining Words::  
1.44      crook     309: * Deferred words::              Allow forward references
1.67      anton     310: * Aliases::                     
1.47      crook     311: 
1.63      anton     312: User-defined Defining Words
                    313: 
                    314: * CREATE..DOES> applications::  
                    315: * CREATE..DOES> details::       
                    316: * Advanced does> usage example::  
1.91      anton     317: * @code{Const-does>}::          
1.63      anton     318: 
1.47      crook     319: Interpretation and Compilation Semantics
                    320: 
1.67      anton     321: * Combined words::              
1.12      anton     322: 
1.71      anton     323: Tokens for Words
                    324: 
                    325: * Execution token::             represents execution/interpretation semantics
                    326: * Compilation token::           represents compilation semantics
                    327: * Name token::                  represents named words
                    328: 
1.82      anton     329: Compiling words
                    330: 
                    331: * Literals::                    Compiling data values
                    332: * Macros::                      Compiling words
                    333: 
1.21      crook     334: The Text Interpreter
                    335: 
1.67      anton     336: * Input Sources::               
                    337: * Number Conversion::           
                    338: * Interpret/Compile states::    
                    339: * Interpreter Directives::      
1.21      crook     340: 
1.26      crook     341: Word Lists
                    342: 
1.75      anton     343: * Vocabularies::                
1.67      anton     344: * Why use word lists?::         
1.75      anton     345: * Word list example::           
1.26      crook     346: 
                    347: Files
                    348: 
1.48      anton     349: * Forth source files::          
                    350: * General files::               
                    351: * Search Paths::                
                    352: 
                    353: Search Paths
                    354: 
1.75      anton     355: * Source Search Paths::         
1.26      crook     356: * General Search Paths::        
                    357: 
                    358: Other I/O
                    359: 
1.32      anton     360: * Simple numeric output::       Predefined formats
                    361: * Formatted numeric output::    Formatted (pictured) output
                    362: * String Formats::              How Forth stores strings in memory
1.67      anton     363: * Displaying characters and strings::  Other stuff
1.32      anton     364: * Input::                       Input
1.26      crook     365: 
                    366: Locals
                    367: 
                    368: * Gforth locals::               
                    369: * ANS Forth locals::            
                    370: 
                    371: Gforth locals
                    372: 
                    373: * Where are locals visible by name?::  
                    374: * How long do locals live?::    
1.78      anton     375: * Locals programming style::    
                    376: * Locals implementation::       
1.26      crook     377: 
1.12      anton     378: Structures
                    379: 
                    380: * Why explicit structure support?::  
                    381: * Structure Usage::             
                    382: * Structure Naming Convention::  
                    383: * Structure Implementation::    
                    384: * Structure Glossary::          
                    385: 
                    386: Object-oriented Forth
                    387: 
1.48      anton     388: * Why object-oriented programming?::  
                    389: * Object-Oriented Terminology::  
                    390: * Objects::                     
                    391: * OOF::                         
                    392: * Mini-OOF::                    
1.23      crook     393: * Comparison with other object models::  
1.12      anton     394: 
1.24      anton     395: The @file{objects.fs} model
1.12      anton     396: 
                    397: * Properties of the Objects model::  
                    398: * Basic Objects Usage::         
1.41      anton     399: * The Objects base class::      
1.12      anton     400: * Creating objects::            
                    401: * Object-Oriented Programming Style::  
                    402: * Class Binding::               
                    403: * Method conveniences::         
                    404: * Classes and Scoping::         
1.41      anton     405: * Dividing classes::            
1.12      anton     406: * Object Interfaces::           
                    407: * Objects Implementation::      
                    408: * Objects Glossary::            
                    409: 
1.24      anton     410: The @file{oof.fs} model
1.12      anton     411: 
1.67      anton     412: * Properties of the OOF model::  
                    413: * Basic OOF Usage::             
                    414: * The OOF base class::          
                    415: * Class Declaration::           
                    416: * Class Implementation::        
1.12      anton     417: 
1.24      anton     418: The @file{mini-oof.fs} model
1.23      crook     419: 
1.48      anton     420: * Basic Mini-OOF Usage::        
                    421: * Mini-OOF Example::            
                    422: * Mini-OOF Implementation::     
1.23      crook     423: 
1.78      anton     424: Programming Tools
                    425: 
                    426: * Examining::                   
                    427: * Forgetting words::            
                    428: * Debugging::                   Simple and quick.
                    429: * Assertions::                  Making your programs self-checking.
                    430: * Singlestep Debugger::         Executing your program word by word.
                    431: 
                    432: Assembler and Code Words
                    433: 
                    434: * Code and ;code::              
                    435: * Common Assembler::            Assembler Syntax
                    436: * Common Disassembler::         
                    437: * 386 Assembler::               Deviations and special cases
                    438: * Alpha Assembler::             Deviations and special cases
                    439: * MIPS assembler::              Deviations and special cases
                    440: * Other assemblers::            How to write them
                    441: 
1.12      anton     442: Tools
                    443: 
                    444: * ANS Report::                  Report the words used, sorted by wordset.
                    445: 
                    446: ANS conformance
                    447: 
                    448: * The Core Words::              
                    449: * The optional Block word set::  
                    450: * The optional Double Number word set::  
                    451: * The optional Exception word set::  
                    452: * The optional Facility word set::  
                    453: * The optional File-Access word set::  
                    454: * The optional Floating-Point word set::  
                    455: * The optional Locals word set::  
                    456: * The optional Memory-Allocation word set::  
                    457: * The optional Programming-Tools word set::  
                    458: * The optional Search-Order word set::  
                    459: 
                    460: The Core Words
                    461: 
                    462: * core-idef::                   Implementation Defined Options                   
                    463: * core-ambcond::                Ambiguous Conditions                
                    464: * core-other::                  Other System Documentation                  
                    465: 
                    466: The optional Block word set
                    467: 
                    468: * block-idef::                  Implementation Defined Options
                    469: * block-ambcond::               Ambiguous Conditions               
                    470: * block-other::                 Other System Documentation                 
                    471: 
                    472: The optional Double Number word set
                    473: 
                    474: * double-ambcond::              Ambiguous Conditions              
                    475: 
                    476: The optional Exception word set
                    477: 
                    478: * exception-idef::              Implementation Defined Options              
                    479: 
                    480: The optional Facility word set
                    481: 
                    482: * facility-idef::               Implementation Defined Options               
                    483: * facility-ambcond::            Ambiguous Conditions            
                    484: 
                    485: The optional File-Access word set
                    486: 
                    487: * file-idef::                   Implementation Defined Options
                    488: * file-ambcond::                Ambiguous Conditions                
                    489: 
                    490: The optional Floating-Point word set
                    491: 
                    492: * floating-idef::               Implementation Defined Options
                    493: * floating-ambcond::            Ambiguous Conditions            
                    494: 
                    495: The optional Locals word set
                    496: 
                    497: * locals-idef::                 Implementation Defined Options                 
                    498: * locals-ambcond::              Ambiguous Conditions              
                    499: 
                    500: The optional Memory-Allocation word set
                    501: 
                    502: * memory-idef::                 Implementation Defined Options                 
                    503: 
                    504: The optional Programming-Tools word set
                    505: 
                    506: * programming-idef::            Implementation Defined Options            
                    507: * programming-ambcond::         Ambiguous Conditions         
                    508: 
                    509: The optional Search-Order word set
                    510: 
                    511: * search-idef::                 Implementation Defined Options                 
                    512: * search-ambcond::              Ambiguous Conditions              
                    513: 
1.109   ! anton     514: Emacs and Gforth
        !           515: 
        !           516: * Installing gforth.el::        Making Emacs aware of Forth.
        !           517: * Emacs Tags::                  Viewing the source of a word in Emacs.
        !           518: * Hilighting::                  Making Forth code look prettier.
        !           519: * Auto-Indentation::            Customizing auto-indentation.
        !           520: * Blocks Files::                Reading and writing blocks files.
        !           521: 
1.12      anton     522: Image Files
                    523: 
1.24      anton     524: * Image Licensing Issues::      Distribution terms for images.
                    525: * Image File Background::       Why have image files?
1.67      anton     526: * Non-Relocatable Image Files::  don't always work.
1.24      anton     527: * Data-Relocatable Image Files::  are better.
1.67      anton     528: * Fully Relocatable Image Files::  better yet.
1.24      anton     529: * Stack and Dictionary Sizes::  Setting the default sizes for an image.
1.32      anton     530: * Running Image Files::         @code{gforth -i @i{file}} or @i{file}.
1.24      anton     531: * Modifying the Startup Sequence::  and turnkey applications.
1.12      anton     532: 
                    533: Fully Relocatable Image Files
                    534: 
1.27      crook     535: * gforthmi::                    The normal way
1.12      anton     536: * cross.fs::                    The hard way
                    537: 
                    538: Engine
                    539: 
                    540: * Portability::                 
                    541: * Threading::                   
                    542: * Primitives::                  
                    543: * Performance::                 
                    544: 
                    545: Threading
                    546: 
                    547: * Scheduling::                  
                    548: * Direct or Indirect Threaded?::  
1.109   ! anton     549: * Dynamic Superinstructions::   
1.12      anton     550: * DOES>::                       
                    551: 
                    552: Primitives
                    553: 
                    554: * Automatic Generation::        
                    555: * TOS Optimization::            
                    556: * Produced code::               
1.13      pazsan    557: 
                    558: Cross Compiler
                    559: 
1.67      anton     560: * Using the Cross Compiler::    
                    561: * How the Cross Compiler Works::  
1.13      pazsan    562: 
1.24      anton     563: @end detailmenu
1.1       anton     564: @end menu
                    565: 
1.26      crook     566: @node License, Goals, Top, Top
1.1       anton     567: @unnumbered GNU GENERAL PUBLIC LICENSE
                    568: @center Version 2, June 1991
                    569: 
                    570: @display
                    571: Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
1.88      anton     572: 59 Temple Place, Suite 330, Boston, MA 02111, USA
1.1       anton     573: 
                    574: Everyone is permitted to copy and distribute verbatim copies
                    575: of this license document, but changing it is not allowed.
                    576: @end display
                    577: 
                    578: @unnumberedsec Preamble
                    579: 
                    580:   The licenses for most software are designed to take away your
                    581: freedom to share and change it.  By contrast, the GNU General Public
                    582: License is intended to guarantee your freedom to share and change free
                    583: software---to make sure the software is free for all its users.  This
                    584: General Public License applies to most of the Free Software
                    585: Foundation's software and to any other program whose authors commit to
                    586: using it.  (Some other Free Software Foundation software is covered by
                    587: the GNU Library General Public License instead.)  You can apply it to
                    588: your programs, too.
                    589: 
                    590:   When we speak of free software, we are referring to freedom, not
                    591: price.  Our General Public Licenses are designed to make sure that you
                    592: have the freedom to distribute copies of free software (and charge for
                    593: this service if you wish), that you receive source code or can get it
                    594: if you want it, that you can change the software or use pieces of it
                    595: in new free programs; and that you know you can do these things.
                    596: 
                    597:   To protect your rights, we need to make restrictions that forbid
                    598: anyone to deny you these rights or to ask you to surrender the rights.
                    599: These restrictions translate to certain responsibilities for you if you
                    600: distribute copies of the software, or if you modify it.
                    601: 
                    602:   For example, if you distribute copies of such a program, whether
                    603: gratis or for a fee, you must give the recipients all the rights that
                    604: you have.  You must make sure that they, too, receive or can get the
                    605: source code.  And you must show them these terms so they know their
                    606: rights.
                    607: 
                    608:   We protect your rights with two steps: (1) copyright the software, and
                    609: (2) offer you this license which gives you legal permission to copy,
                    610: distribute and/or modify the software.
                    611: 
                    612:   Also, for each author's protection and ours, we want to make certain
                    613: that everyone understands that there is no warranty for this free
                    614: software.  If the software is modified by someone else and passed on, we
                    615: want its recipients to know that what they have is not the original, so
                    616: that any problems introduced by others will not reflect on the original
                    617: authors' reputations.
                    618: 
                    619:   Finally, any free program is threatened constantly by software
                    620: patents.  We wish to avoid the danger that redistributors of a free
                    621: program will individually obtain patent licenses, in effect making the
                    622: program proprietary.  To prevent this, we have made it clear that any
                    623: patent must be licensed for everyone's free use or not licensed at all.
                    624: 
                    625:   The precise terms and conditions for copying, distribution and
                    626: modification follow.
                    627: 
                    628: @iftex
                    629: @unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
                    630: @end iftex
1.49      anton     631: @ifnottex
1.1       anton     632: @center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
1.49      anton     633: @end ifnottex
1.1       anton     634: 
                    635: @enumerate 0
                    636: @item
                    637: This License applies to any program or other work which contains
                    638: a notice placed by the copyright holder saying it may be distributed
                    639: under the terms of this General Public License.  The ``Program'', below,
                    640: refers to any such program or work, and a ``work based on the Program''
                    641: means either the Program or any derivative work under copyright law:
                    642: that is to say, a work containing the Program or a portion of it,
                    643: either verbatim or with modifications and/or translated into another
                    644: language.  (Hereinafter, translation is included without limitation in
                    645: the term ``modification''.)  Each licensee is addressed as ``you''.
                    646: 
                    647: Activities other than copying, distribution and modification are not
                    648: covered by this License; they are outside its scope.  The act of
                    649: running the Program is not restricted, and the output from the Program
                    650: is covered only if its contents constitute a work based on the
                    651: Program (independent of having been made by running the Program).
                    652: Whether that is true depends on what the Program does.
                    653: 
                    654: @item
                    655: You may copy and distribute verbatim copies of the Program's
                    656: source code as you receive it, in any medium, provided that you
                    657: conspicuously and appropriately publish on each copy an appropriate
                    658: copyright notice and disclaimer of warranty; keep intact all the
                    659: notices that refer to this License and to the absence of any warranty;
                    660: and give any other recipients of the Program a copy of this License
                    661: along with the Program.
                    662: 
                    663: You may charge a fee for the physical act of transferring a copy, and
                    664: you may at your option offer warranty protection in exchange for a fee.
                    665: 
                    666: @item
                    667: You may modify your copy or copies of the Program or any portion
                    668: of it, thus forming a work based on the Program, and copy and
                    669: distribute such modifications or work under the terms of Section 1
                    670: above, provided that you also meet all of these conditions:
                    671: 
                    672: @enumerate a
                    673: @item
                    674: You must cause the modified files to carry prominent notices
                    675: stating that you changed the files and the date of any change.
                    676: 
                    677: @item
                    678: You must cause any work that you distribute or publish, that in
                    679: whole or in part contains or is derived from the Program or any
                    680: part thereof, to be licensed as a whole at no charge to all third
                    681: parties under the terms of this License.
                    682: 
                    683: @item
                    684: If the modified program normally reads commands interactively
                    685: when run, you must cause it, when started running for such
                    686: interactive use in the most ordinary way, to print or display an
                    687: announcement including an appropriate copyright notice and a
                    688: notice that there is no warranty (or else, saying that you provide
                    689: a warranty) and that users may redistribute the program under
                    690: these conditions, and telling the user how to view a copy of this
                    691: License.  (Exception: if the Program itself is interactive but
                    692: does not normally print such an announcement, your work based on
                    693: the Program is not required to print an announcement.)
                    694: @end enumerate
                    695: 
                    696: These requirements apply to the modified work as a whole.  If
                    697: identifiable sections of that work are not derived from the Program,
                    698: and can be reasonably considered independent and separate works in
                    699: themselves, then this License, and its terms, do not apply to those
                    700: sections when you distribute them as separate works.  But when you
                    701: distribute the same sections as part of a whole which is a work based
                    702: on the Program, the distribution of the whole must be on the terms of
                    703: this License, whose permissions for other licensees extend to the
                    704: entire whole, and thus to each and every part regardless of who wrote it.
                    705: 
                    706: Thus, it is not the intent of this section to claim rights or contest
                    707: your rights to work written entirely by you; rather, the intent is to
                    708: exercise the right to control the distribution of derivative or
                    709: collective works based on the Program.
                    710: 
                    711: In addition, mere aggregation of another work not based on the Program
                    712: with the Program (or with a work based on the Program) on a volume of
                    713: a storage or distribution medium does not bring the other work under
                    714: the scope of this License.
                    715: 
                    716: @item
                    717: You may copy and distribute the Program (or a work based on it,
                    718: under Section 2) in object code or executable form under the terms of
                    719: Sections 1 and 2 above provided that you also do one of the following:
                    720: 
                    721: @enumerate a
                    722: @item
                    723: Accompany it with the complete corresponding machine-readable
                    724: source code, which must be distributed under the terms of Sections
                    725: 1 and 2 above on a medium customarily used for software interchange; or,
                    726: 
                    727: @item
                    728: Accompany it with a written offer, valid for at least three
                    729: years, to give any third party, for a charge no more than your
                    730: cost of physically performing source distribution, a complete
                    731: machine-readable copy of the corresponding source code, to be
                    732: distributed under the terms of Sections 1 and 2 above on a medium
                    733: customarily used for software interchange; or,
                    734: 
                    735: @item
                    736: Accompany it with the information you received as to the offer
                    737: to distribute corresponding source code.  (This alternative is
                    738: allowed only for noncommercial distribution and only if you
                    739: received the program in object code or executable form with such
                    740: an offer, in accord with Subsection b above.)
                    741: @end enumerate
                    742: 
                    743: The source code for a work means the preferred form of the work for
                    744: making modifications to it.  For an executable work, complete source
                    745: code means all the source code for all modules it contains, plus any
                    746: associated interface definition files, plus the scripts used to
                    747: control compilation and installation of the executable.  However, as a
                    748: special exception, the source code distributed need not include
                    749: anything that is normally distributed (in either source or binary
                    750: form) with the major components (compiler, kernel, and so on) of the
                    751: operating system on which the executable runs, unless that component
                    752: itself accompanies the executable.
                    753: 
                    754: If distribution of executable or object code is made by offering
                    755: access to copy from a designated place, then offering equivalent
                    756: access to copy the source code from the same place counts as
                    757: distribution of the source code, even though third parties are not
                    758: compelled to copy the source along with the object code.
                    759: 
                    760: @item
                    761: You may not copy, modify, sublicense, or distribute the Program
                    762: except as expressly provided under this License.  Any attempt
                    763: otherwise to copy, modify, sublicense or distribute the Program is
                    764: void, and will automatically terminate your rights under this License.
                    765: However, parties who have received copies, or rights, from you under
                    766: this License will not have their licenses terminated so long as such
                    767: parties remain in full compliance.
                    768: 
                    769: @item
                    770: You are not required to accept this License, since you have not
                    771: signed it.  However, nothing else grants you permission to modify or
                    772: distribute the Program or its derivative works.  These actions are
                    773: prohibited by law if you do not accept this License.  Therefore, by
                    774: modifying or distributing the Program (or any work based on the
                    775: Program), you indicate your acceptance of this License to do so, and
                    776: all its terms and conditions for copying, distributing or modifying
                    777: the Program or works based on it.
                    778: 
                    779: @item
                    780: Each time you redistribute the Program (or any work based on the
                    781: Program), the recipient automatically receives a license from the
                    782: original licensor to copy, distribute or modify the Program subject to
                    783: these terms and conditions.  You may not impose any further
                    784: restrictions on the recipients' exercise of the rights granted herein.
                    785: You are not responsible for enforcing compliance by third parties to
                    786: this License.
                    787: 
                    788: @item
                    789: If, as a consequence of a court judgment or allegation of patent
                    790: infringement or for any other reason (not limited to patent issues),
                    791: conditions are imposed on you (whether by court order, agreement or
                    792: otherwise) that contradict the conditions of this License, they do not
                    793: excuse you from the conditions of this License.  If you cannot
                    794: distribute so as to satisfy simultaneously your obligations under this
                    795: License and any other pertinent obligations, then as a consequence you
                    796: may not distribute the Program at all.  For example, if a patent
                    797: license would not permit royalty-free redistribution of the Program by
                    798: all those who receive copies directly or indirectly through you, then
                    799: the only way you could satisfy both it and this License would be to
                    800: refrain entirely from distribution of the Program.
                    801: 
                    802: If any portion of this section is held invalid or unenforceable under
                    803: any particular circumstance, the balance of the section is intended to
                    804: apply and the section as a whole is intended to apply in other
                    805: circumstances.
                    806: 
                    807: It is not the purpose of this section to induce you to infringe any
                    808: patents or other property right claims or to contest validity of any
                    809: such claims; this section has the sole purpose of protecting the
                    810: integrity of the free software distribution system, which is
                    811: implemented by public license practices.  Many people have made
                    812: generous contributions to the wide range of software distributed
                    813: through that system in reliance on consistent application of that
                    814: system; it is up to the author/donor to decide if he or she is willing
                    815: to distribute software through any other system and a licensee cannot
                    816: impose that choice.
                    817: 
                    818: This section is intended to make thoroughly clear what is believed to
                    819: be a consequence of the rest of this License.
                    820: 
                    821: @item
                    822: If the distribution and/or use of the Program is restricted in
                    823: certain countries either by patents or by copyrighted interfaces, the
                    824: original copyright holder who places the Program under this License
                    825: may add an explicit geographical distribution limitation excluding
                    826: those countries, so that distribution is permitted only in or among
                    827: countries not thus excluded.  In such case, this License incorporates
                    828: the limitation as if written in the body of this License.
                    829: 
                    830: @item
                    831: The Free Software Foundation may publish revised and/or new versions
                    832: of the General Public License from time to time.  Such new versions will
                    833: be similar in spirit to the present version, but may differ in detail to
                    834: address new problems or concerns.
                    835: 
                    836: Each version is given a distinguishing version number.  If the Program
                    837: specifies a version number of this License which applies to it and ``any
                    838: later version'', you have the option of following the terms and conditions
                    839: either of that version or of any later version published by the Free
                    840: Software Foundation.  If the Program does not specify a version number of
                    841: this License, you may choose any version ever published by the Free Software
                    842: Foundation.
                    843: 
                    844: @item
                    845: If you wish to incorporate parts of the Program into other free
                    846: programs whose distribution conditions are different, write to the author
                    847: to ask for permission.  For software which is copyrighted by the Free
                    848: Software Foundation, write to the Free Software Foundation; we sometimes
                    849: make exceptions for this.  Our decision will be guided by the two goals
                    850: of preserving the free status of all derivatives of our free software and
                    851: of promoting the sharing and reuse of software generally.
                    852: 
                    853: @iftex
                    854: @heading NO WARRANTY
                    855: @end iftex
1.49      anton     856: @ifnottex
1.1       anton     857: @center NO WARRANTY
1.49      anton     858: @end ifnottex
1.1       anton     859: 
                    860: @item
                    861: BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
                    862: FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
                    863: OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
                    864: PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
                    865: OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
                    866: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
                    867: TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
                    868: PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
                    869: REPAIR OR CORRECTION.
                    870: 
                    871: @item
                    872: IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
                    873: WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
                    874: REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
                    875: INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
                    876: OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
                    877: TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
                    878: YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
                    879: PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
                    880: POSSIBILITY OF SUCH DAMAGES.
                    881: @end enumerate
                    882: 
                    883: @iftex
                    884: @heading END OF TERMS AND CONDITIONS
                    885: @end iftex
1.49      anton     886: @ifnottex
1.1       anton     887: @center END OF TERMS AND CONDITIONS
1.49      anton     888: @end ifnottex
1.1       anton     889: 
                    890: @page
                    891: @unnumberedsec How to Apply These Terms to Your New Programs
                    892: 
                    893:   If you develop a new program, and you want it to be of the greatest
                    894: possible use to the public, the best way to achieve this is to make it
                    895: free software which everyone can redistribute and change under these terms.
                    896: 
                    897:   To do so, attach the following notices to the program.  It is safest
                    898: to attach them to the start of each source file to most effectively
                    899: convey the exclusion of warranty; and each file should have at least
                    900: the ``copyright'' line and a pointer to where the full notice is found.
                    901: 
                    902: @smallexample
                    903: @var{one line to give the program's name and a brief idea of what it does.}
                    904: Copyright (C) 19@var{yy}  @var{name of author}
                    905: 
                    906: This program is free software; you can redistribute it and/or modify 
                    907: it under the terms of the GNU General Public License as published by 
                    908: the Free Software Foundation; either version 2 of the License, or 
                    909: (at your option) any later version.
                    910: 
                    911: This program is distributed in the hope that it will be useful,
                    912: but WITHOUT ANY WARRANTY; without even the implied warranty of
                    913: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
                    914: GNU General Public License for more details.
                    915: 
                    916: You should have received a copy of the GNU General Public License
                    917: along with this program; if not, write to the Free Software
1.88      anton     918: Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.
1.1       anton     919: @end smallexample
                    920: 
                    921: Also add information on how to contact you by electronic and paper mail.
                    922: 
                    923: If the program is interactive, make it output a short notice like this
                    924: when it starts in an interactive mode:
                    925: 
                    926: @smallexample
                    927: Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
                    928: Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
                    929: type `show w'.  
                    930: This is free software, and you are welcome to redistribute it 
                    931: under certain conditions; type `show c' for details.
                    932: @end smallexample
                    933: 
                    934: The hypothetical commands @samp{show w} and @samp{show c} should show
                    935: the appropriate parts of the General Public License.  Of course, the
                    936: commands you use may be called something other than @samp{show w} and
                    937: @samp{show c}; they could even be mouse-clicks or menu items---whatever
                    938: suits your program.
                    939: 
                    940: You should also get your employer (if you work as a programmer) or your
                    941: school, if any, to sign a ``copyright disclaimer'' for the program, if
                    942: necessary.  Here is a sample; alter the names:
                    943: 
                    944: @smallexample
                    945: Yoyodyne, Inc., hereby disclaims all copyright interest in the program
                    946: `Gnomovision' (which makes passes at compilers) written by James Hacker.
                    947: 
                    948: @var{signature of Ty Coon}, 1 April 1989
                    949: Ty Coon, President of Vice
                    950: @end smallexample
                    951: 
                    952: This General Public License does not permit incorporating your program into
                    953: proprietary programs.  If your program is a subroutine library, you may
                    954: consider it more useful to permit linking proprietary applications with the
                    955: library.  If this is what you want to do, use the GNU Library General
                    956: Public License instead of this License.
                    957: 
                    958: @iftex
                    959: @unnumbered Preface
                    960: @cindex Preface
1.21      crook     961: This manual documents Gforth. Some introductory material is provided for
                    962: readers who are unfamiliar with Forth or who are migrating to Gforth
                    963: from other Forth compilers. However, this manual is primarily a
                    964: reference manual.
1.1       anton     965: @end iftex
                    966: 
1.28      crook     967: @comment TODO much more blurb here.
1.26      crook     968: 
                    969: @c ******************************************************************
1.29      crook     970: @node Goals, Gforth Environment, License, Top
1.26      crook     971: @comment node-name,     next,           previous, up
                    972: @chapter Goals of Gforth
                    973: @cindex goals of the Gforth project
                    974: The goal of the Gforth Project is to develop a standard model for
                    975: ANS Forth. This can be split into several subgoals:
                    976: 
                    977: @itemize @bullet
                    978: @item
                    979: Gforth should conform to the ANS Forth Standard.
                    980: @item
                    981: It should be a model, i.e. it should define all the
                    982: implementation-dependent things.
                    983: @item
                    984: It should become standard, i.e. widely accepted and used. This goal
                    985: is the most difficult one.
                    986: @end itemize
                    987: 
                    988: To achieve these goals Gforth should be
                    989: @itemize @bullet
                    990: @item
                    991: Similar to previous models (fig-Forth, F83)
                    992: @item
                    993: Powerful. It should provide for all the things that are considered
                    994: necessary today and even some that are not yet considered necessary.
                    995: @item
                    996: Efficient. It should not get the reputation of being exceptionally
                    997: slow.
                    998: @item
                    999: Free.
                   1000: @item
                   1001: Available on many machines/easy to port.
                   1002: @end itemize
                   1003: 
                   1004: Have we achieved these goals? Gforth conforms to the ANS Forth
                   1005: standard. It may be considered a model, but we have not yet documented
                   1006: which parts of the model are stable and which parts we are likely to
                   1007: change. It certainly has not yet become a de facto standard, but it
                   1008: appears to be quite popular. It has some similarities to and some
                   1009: differences from previous models. It has some powerful features, but not
                   1010: yet everything that we envisioned. We certainly have achieved our
1.65      anton    1011: execution speed goals (@pxref{Performance})@footnote{However, in 1998
                   1012: the bar was raised when the major commercial Forth vendors switched to
                   1013: native code compilers.}.  It is free and available on many machines.
1.29      crook    1014: 
1.26      crook    1015: @c ******************************************************************
1.48      anton    1016: @node Gforth Environment, Tutorial, Goals, Top
1.29      crook    1017: @chapter Gforth Environment
                   1018: @cindex Gforth environment
1.21      crook    1019: 
1.45      crook    1020: Note: ultimately, the Gforth man page will be auto-generated from the
1.29      crook    1021: material in this chapter.
1.21      crook    1022: 
                   1023: @menu
1.29      crook    1024: * Invoking Gforth::             Getting in
                   1025: * Leaving Gforth::              Getting out
                   1026: * Command-line editing::        
1.48      anton    1027: * Environment variables::       that affect how Gforth starts up
1.29      crook    1028: * Gforth Files::                What gets installed and where
1.48      anton    1029: * Startup speed::               When 35ms is not fast enough ...
1.21      crook    1030: @end menu
                   1031: 
1.49      anton    1032: For related information about the creation of images see @ref{Image Files}.
1.29      crook    1033: 
1.21      crook    1034: @comment ----------------------------------------------
1.48      anton    1035: @node Invoking Gforth, Leaving Gforth, Gforth Environment, Gforth Environment
1.29      crook    1036: @section Invoking Gforth
                   1037: @cindex invoking Gforth
                   1038: @cindex running Gforth
                   1039: @cindex command-line options
                   1040: @cindex options on the command line
                   1041: @cindex flags on the command line
1.21      crook    1042: 
1.30      anton    1043: Gforth is made up of two parts; an executable ``engine'' (named
1.109   ! anton    1044: @command{gforth} or @command{gforth-fast}) and an image file. To start it, you
1.30      anton    1045: will usually just say @code{gforth} -- this automatically loads the
                   1046: default image file @file{gforth.fi}. In many other cases the default
                   1047: Gforth image will be invoked like this:
1.21      crook    1048: @example
1.30      anton    1049: gforth [file | -e forth-code] ...
1.21      crook    1050: @end example
1.29      crook    1051: @noindent
                   1052: This interprets the contents of the files and the Forth code in the order they
                   1053: are given.
1.21      crook    1054: 
1.109   ! anton    1055: In addition to the @command{gforth} engine, there is also an engine
        !          1056: called @command{gforth-fast}, which is faster, but gives less
        !          1057: informative error messages (@pxref{Error messages}) and may catch some
        !          1058: stack underflows later or not at all.  You should use it for debugged,
        !          1059: performance-critical programs.
        !          1060: 
        !          1061: Moreover, there is an engine called @command{gforth-itc}, which is
        !          1062: useful in some backwards-compatibility situations (@pxref{Direct or
        !          1063: Indirect Threaded?}).
1.30      anton    1064: 
1.29      crook    1065: In general, the command line looks like this:
1.21      crook    1066: 
                   1067: @example
1.30      anton    1068: gforth[-fast] [engine options] [image options]
1.21      crook    1069: @end example
                   1070: 
1.30      anton    1071: The engine options must come before the rest of the command
1.29      crook    1072: line. They are:
1.26      crook    1073: 
1.29      crook    1074: @table @code
                   1075: @cindex -i, command-line option
                   1076: @cindex --image-file, command-line option
                   1077: @item --image-file @i{file}
                   1078: @itemx -i @i{file}
                   1079: Loads the Forth image @i{file} instead of the default
                   1080: @file{gforth.fi} (@pxref{Image Files}).
1.21      crook    1081: 
1.39      anton    1082: @cindex --appl-image, command-line option
                   1083: @item --appl-image @i{file}
                   1084: Loads the image @i{file} and leaves all further command-line arguments
1.65      anton    1085: to the image (instead of processing them as engine options).  This is
                   1086: useful for building executable application images on Unix, built with
1.39      anton    1087: @code{gforthmi --application ...}.
                   1088: 
1.29      crook    1089: @cindex --path, command-line option
                   1090: @cindex -p, command-line option
                   1091: @item --path @i{path}
                   1092: @itemx -p @i{path}
                   1093: Uses @i{path} for searching the image file and Forth source code files
                   1094: instead of the default in the environment variable @code{GFORTHPATH} or
                   1095: the path specified at installation time (e.g.,
                   1096: @file{/usr/local/share/gforth/0.2.0:.}). A path is given as a list of
                   1097: directories, separated by @samp{:} (on Unix) or @samp{;} (on other OSs).
1.21      crook    1098: 
1.29      crook    1099: @cindex --dictionary-size, command-line option
                   1100: @cindex -m, command-line option
                   1101: @cindex @i{size} parameters for command-line options
                   1102: @cindex size of the dictionary and the stacks
                   1103: @item --dictionary-size @i{size}
                   1104: @itemx -m @i{size}
                   1105: Allocate @i{size} space for the Forth dictionary space instead of
                   1106: using the default specified in the image (typically 256K). The
                   1107: @i{size} specification for this and subsequent options consists of
                   1108: an integer and a unit (e.g.,
                   1109: @code{4M}). The unit can be one of @code{b} (bytes), @code{e} (element
                   1110: size, in this case Cells), @code{k} (kilobytes), @code{M} (Megabytes),
                   1111: @code{G} (Gigabytes), and @code{T} (Terabytes). If no unit is specified,
                   1112: @code{e} is used.
1.21      crook    1113: 
1.29      crook    1114: @cindex --data-stack-size, command-line option
                   1115: @cindex -d, command-line option
                   1116: @item --data-stack-size @i{size}
                   1117: @itemx -d @i{size}
                   1118: Allocate @i{size} space for the data stack instead of using the
                   1119: default specified in the image (typically 16K).
1.21      crook    1120: 
1.29      crook    1121: @cindex --return-stack-size, command-line option
                   1122: @cindex -r, command-line option
                   1123: @item --return-stack-size @i{size}
                   1124: @itemx -r @i{size}
                   1125: Allocate @i{size} space for the return stack instead of using the
                   1126: default specified in the image (typically 15K).
1.21      crook    1127: 
1.29      crook    1128: @cindex --fp-stack-size, command-line option
                   1129: @cindex -f, command-line option
                   1130: @item --fp-stack-size @i{size}
                   1131: @itemx -f @i{size}
                   1132: Allocate @i{size} space for the floating point stack instead of
                   1133: using the default specified in the image (typically 15.5K). In this case
                   1134: the unit specifier @code{e} refers to floating point numbers.
1.21      crook    1135: 
1.48      anton    1136: @cindex --locals-stack-size, command-line option
                   1137: @cindex -l, command-line option
                   1138: @item --locals-stack-size @i{size}
                   1139: @itemx -l @i{size}
                   1140: Allocate @i{size} space for the locals stack instead of using the
                   1141: default specified in the image (typically 14.5K).
                   1142: 
                   1143: @cindex -h, command-line option
                   1144: @cindex --help, command-line option
                   1145: @item --help
                   1146: @itemx -h
                   1147: Print a message about the command-line options
                   1148: 
                   1149: @cindex -v, command-line option
                   1150: @cindex --version, command-line option
                   1151: @item --version
                   1152: @itemx -v
                   1153: Print version and exit
                   1154: 
                   1155: @cindex --debug, command-line option
                   1156: @item --debug
                   1157: Print some information useful for debugging on startup.
                   1158: 
                   1159: @cindex --offset-image, command-line option
                   1160: @item --offset-image
                   1161: Start the dictionary at a slightly different position than would be used
                   1162: otherwise (useful for creating data-relocatable images,
                   1163: @pxref{Data-Relocatable Image Files}).
                   1164: 
                   1165: @cindex --no-offset-im, command-line option
                   1166: @item --no-offset-im
                   1167: Start the dictionary at the normal position.
                   1168: 
                   1169: @cindex --clear-dictionary, command-line option
                   1170: @item --clear-dictionary
                   1171: Initialize all bytes in the dictionary to 0 before loading the image
                   1172: (@pxref{Data-Relocatable Image Files}).
                   1173: 
                   1174: @cindex --die-on-signal, command-line-option
                   1175: @item --die-on-signal
                   1176: Normally Gforth handles most signals (e.g., the user interrupt SIGINT,
                   1177: or the segmentation violation SIGSEGV) by translating it into a Forth
                   1178: @code{THROW}. With this option, Gforth exits if it receives such a
                   1179: signal. This option is useful when the engine and/or the image might be
                   1180: severely broken (such that it causes another signal before recovering
                   1181: from the first); this option avoids endless loops in such cases.
1.109   ! anton    1182: 
        !          1183: @item --no-dynamic
        !          1184: @item --dynamic
        !          1185: Disable or enable dynamic superinstructions with replication
        !          1186: (@pxref{Dynamic Superinstructions}).
        !          1187: 
        !          1188: @item --no-super
        !          1189: Disable dynamic superinstructions, use just dynamic replication
        !          1190: (@pxref{Dynamic Superinstructions}).
        !          1191: 
1.48      anton    1192: @end table
                   1193: 
                   1194: @cindex loading files at startup
                   1195: @cindex executing code on startup
                   1196: @cindex batch processing with Gforth
                   1197: As explained above, the image-specific command-line arguments for the
                   1198: default image @file{gforth.fi} consist of a sequence of filenames and
                   1199: @code{-e @var{forth-code}} options that are interpreted in the sequence
                   1200: in which they are given. The @code{-e @var{forth-code}} or
                   1201: @code{--evaluate @var{forth-code}} option evaluates the Forth
                   1202: code. This option takes only one argument; if you want to evaluate more
                   1203: Forth words, you have to quote them or use @code{-e} several times. To exit
                   1204: after processing the command line (instead of entering interactive mode)
                   1205: append @code{-e bye} to the command line.
                   1206: 
                   1207: @cindex versions, invoking other versions of Gforth
                   1208: If you have several versions of Gforth installed, @code{gforth} will
                   1209: invoke the version that was installed last. @code{gforth-@i{version}}
                   1210: invokes a specific version. If your environment contains the variable
                   1211: @code{GFORTHPATH}, you may want to override it by using the
                   1212: @code{--path} option.
                   1213: 
                   1214: Not yet implemented:
                   1215: On startup the system first executes the system initialization file
                   1216: (unless the option @code{--no-init-file} is given; note that the system
                   1217: resulting from using this option may not be ANS Forth conformant). Then
                   1218: the user initialization file @file{.gforth.fs} is executed, unless the
1.62      crook    1219: option @code{--no-rc} is given; this file is searched for in @file{.},
1.48      anton    1220: then in @file{~}, then in the normal path (see above).
                   1221: 
                   1222: 
                   1223: 
                   1224: @comment ----------------------------------------------
                   1225: @node Leaving Gforth, Command-line editing, Invoking Gforth, Gforth Environment
                   1226: @section Leaving Gforth
                   1227: @cindex Gforth - leaving
                   1228: @cindex leaving Gforth
                   1229: 
                   1230: You can leave Gforth by typing @code{bye} or @kbd{Ctrl-d} (at the start
                   1231: of a line) or (if you invoked Gforth with the @code{--die-on-signal}
                   1232: option) @kbd{Ctrl-c}. When you leave Gforth, all of your definitions and
1.49      anton    1233: data are discarded.  For ways of saving the state of the system before
                   1234: leaving Gforth see @ref{Image Files}.
1.48      anton    1235: 
                   1236: doc-bye
                   1237: 
                   1238: 
                   1239: @comment ----------------------------------------------
1.65      anton    1240: @node Command-line editing, Environment variables, Leaving Gforth, Gforth Environment
1.48      anton    1241: @section Command-line editing
                   1242: @cindex command-line editing
                   1243: 
                   1244: Gforth maintains a history file that records every line that you type to
                   1245: the text interpreter. This file is preserved between sessions, and is
                   1246: used to provide a command-line recall facility; if you type @kbd{Ctrl-P}
                   1247: repeatedly you can recall successively older commands from this (or
                   1248: previous) session(s). The full list of command-line editing facilities is:
                   1249: 
                   1250: @itemize @bullet
                   1251: @item
                   1252: @kbd{Ctrl-p} (``previous'') (or up-arrow) to recall successively older
                   1253: commands from the history buffer.
                   1254: @item
                   1255: @kbd{Ctrl-n} (``next'') (or down-arrow) to recall successively newer commands
                   1256: from the history buffer.
                   1257: @item
                   1258: @kbd{Ctrl-f} (or right-arrow) to move the cursor right, non-destructively.
                   1259: @item
                   1260: @kbd{Ctrl-b} (or left-arrow) to move the cursor left, non-destructively.
                   1261: @item
                   1262: @kbd{Ctrl-h} (backspace) to delete the character to the left of the cursor,
                   1263: closing up the line.
                   1264: @item
                   1265: @kbd{Ctrl-k} to delete (``kill'') from the cursor to the end of the line.
                   1266: @item
                   1267: @kbd{Ctrl-a} to move the cursor to the start of the line.
                   1268: @item
                   1269: @kbd{Ctrl-e} to move the cursor to the end of the line.
                   1270: @item
                   1271: @key{RET} (@kbd{Ctrl-m}) or @key{LFD} (@kbd{Ctrl-j}) to submit the current
                   1272: line.
                   1273: @item
                   1274: @key{TAB} to step through all possible full-word completions of the word
                   1275: currently being typed.
                   1276: @item
1.65      anton    1277: @kbd{Ctrl-d} on an empty line line to terminate Gforth (gracefully,
                   1278: using @code{bye}). 
                   1279: @item
                   1280: @kbd{Ctrl-x} (or @code{Ctrl-d} on a non-empty line) to delete the
                   1281: character under the cursor.
1.48      anton    1282: @end itemize
                   1283: 
                   1284: When editing, displayable characters are inserted to the left of the
                   1285: cursor position; the line is always in ``insert'' (as opposed to
                   1286: ``overstrike'') mode.
                   1287: 
                   1288: @cindex history file
                   1289: @cindex @file{.gforth-history}
                   1290: On Unix systems, the history file is @file{~/.gforth-history} by
                   1291: default@footnote{i.e. it is stored in the user's home directory.}. You
                   1292: can find out the name and location of your history file using:
                   1293: 
                   1294: @example 
                   1295: history-file type \ Unix-class systems
                   1296: 
                   1297: history-file type \ Other systems
                   1298: history-dir  type
                   1299: @end example
                   1300: 
                   1301: If you enter long definitions by hand, you can use a text editor to
                   1302: paste them out of the history file into a Forth source file for reuse at
                   1303: a later time.
                   1304: 
                   1305: Gforth never trims the size of the history file, so you should do this
                   1306: periodically, if necessary.
                   1307: 
                   1308: @comment this is all defined in history.fs
                   1309: @comment NAC TODO the ctrl-D behaviour can either do a bye or a beep.. how is that option
                   1310: @comment chosen?
                   1311: 
                   1312: 
                   1313: @comment ----------------------------------------------
1.65      anton    1314: @node Environment variables, Gforth Files, Command-line editing, Gforth Environment
1.48      anton    1315: @section Environment variables
                   1316: @cindex environment variables
                   1317: 
                   1318: Gforth uses these environment variables:
                   1319: 
                   1320: @itemize @bullet
                   1321: @item
                   1322: @cindex @code{GFORTHHIST} -- environment variable
                   1323: @code{GFORTHHIST} -- (Unix systems only) specifies the directory in which to
                   1324: open/create the history file, @file{.gforth-history}. Default:
                   1325: @code{$HOME}.
                   1326: 
                   1327: @item
                   1328: @cindex @code{GFORTHPATH} -- environment variable
                   1329: @code{GFORTHPATH} -- specifies the path used when searching for the gforth image file and
                   1330: for Forth source-code files.
                   1331: 
                   1332: @item
                   1333: @cindex @code{GFORTH} -- environment variable
1.49      anton    1334: @code{GFORTH} -- used by @file{gforthmi}, @xref{gforthmi}.
1.48      anton    1335: 
                   1336: @item
                   1337: @cindex @code{GFORTHD} -- environment variable
1.62      crook    1338: @code{GFORTHD} -- used by @file{gforthmi}, @xref{gforthmi}.
1.48      anton    1339: 
                   1340: @item
                   1341: @cindex @code{TMP}, @code{TEMP} - environment variable
                   1342: @code{TMP}, @code{TEMP} - (non-Unix systems only) used as a potential
                   1343: location for the history file.
                   1344: @end itemize
                   1345: 
                   1346: @comment also POSIXELY_CORRECT LINES COLUMNS HOME but no interest in
                   1347: @comment mentioning these.
                   1348: 
                   1349: All the Gforth environment variables default to sensible values if they
                   1350: are not set.
                   1351: 
                   1352: 
                   1353: @comment ----------------------------------------------
                   1354: @node Gforth Files, Startup speed, Environment variables, Gforth Environment
                   1355: @section Gforth files
                   1356: @cindex Gforth files
                   1357: 
                   1358: When you install Gforth on a Unix system, it installs files in these
                   1359: locations by default:
                   1360: 
                   1361: @itemize @bullet
                   1362: @item
                   1363: @file{/usr/local/bin/gforth}
                   1364: @item
                   1365: @file{/usr/local/bin/gforthmi}
                   1366: @item
                   1367: @file{/usr/local/man/man1/gforth.1} - man page.
                   1368: @item
                   1369: @file{/usr/local/info} - the Info version of this manual.
                   1370: @item
                   1371: @file{/usr/local/lib/gforth/<version>/...} - Gforth @file{.fi} files.
                   1372: @item
                   1373: @file{/usr/local/share/gforth/<version>/TAGS} - Emacs TAGS file.
                   1374: @item
                   1375: @file{/usr/local/share/gforth/<version>/...} - Gforth source files.
                   1376: @item
                   1377: @file{.../emacs/site-lisp/gforth.el} - Emacs gforth mode.
                   1378: @end itemize
                   1379: 
                   1380: You can select different places for installation by using
                   1381: @code{configure} options (listed with @code{configure --help}).
                   1382: 
                   1383: @comment ----------------------------------------------
                   1384: @node Startup speed,  , Gforth Files, Gforth Environment
                   1385: @section Startup speed
                   1386: @cindex Startup speed
                   1387: @cindex speed, startup
                   1388: 
                   1389: If Gforth is used for CGI scripts or in shell scripts, its startup
                   1390: speed may become a problem.  On a 300MHz 21064a under Linux-2.2.13 with
                   1391: glibc-2.0.7, @code{gforth -e bye} takes about 24.6ms user and 11.3ms
                   1392: system time.
                   1393: 
                   1394: If startup speed is a problem, you may consider the following ways to
                   1395: improve it; or you may consider ways to reduce the number of startups
1.62      crook    1396: (for example, by using Fast-CGI).
1.48      anton    1397: 
                   1398: The first step to improve startup speed is to statically link Gforth, by
                   1399: building it with @code{XLDFLAGS=-static}.  This requires more memory for
                   1400: the code and will therefore slow down the first invocation, but
                   1401: subsequent invocations avoid the dynamic linking overhead.  Another
                   1402: disadvantage is that Gforth won't profit from library upgrades.  As a
                   1403: result, @code{gforth-static -e bye} takes about 17.1ms user and
                   1404: 8.2ms system time.
                   1405: 
                   1406: The next step to improve startup speed is to use a non-relocatable image
1.65      anton    1407: (@pxref{Non-Relocatable Image Files}).  You can create this image with
1.48      anton    1408: @code{gforth -e "savesystem gforthnr.fi bye"} and later use it with
                   1409: @code{gforth -i gforthnr.fi ...}.  This avoids the relocation overhead
                   1410: and a part of the copy-on-write overhead.  The disadvantage is that the
1.62      crook    1411: non-relocatable image does not work if the OS gives Gforth a different
1.48      anton    1412: address for the dictionary, for whatever reason; so you better provide a
                   1413: fallback on a relocatable image.  @code{gforth-static -i gforthnr.fi -e
                   1414: bye} takes about 15.3ms user and 7.5ms system time.
                   1415: 
                   1416: The final step is to disable dictionary hashing in Gforth.  Gforth
                   1417: builds the hash table on startup, which takes much of the startup
                   1418: overhead. You can do this by commenting out the @code{include hash.fs}
                   1419: in @file{startup.fs} and everything that requires @file{hash.fs} (at the
                   1420: moment @file{table.fs} and @file{ekey.fs}) and then doing @code{make}.
                   1421: The disadvantages are that functionality like @code{table} and
                   1422: @code{ekey} is missing and that text interpretation (e.g., compiling)
                   1423: now takes much longer. So, you should only use this method if there is
                   1424: no significant text interpretation to perform (the script should be
1.62      crook    1425: compiled into the image, amongst other things).  @code{gforth-static -i
1.48      anton    1426: gforthnrnh.fi -e bye} takes about 2.1ms user and 6.1ms system time.
                   1427: 
                   1428: @c ******************************************************************
                   1429: @node Tutorial, Introduction, Gforth Environment, Top
                   1430: @chapter Forth Tutorial
                   1431: @cindex Tutorial
                   1432: @cindex Forth Tutorial
                   1433: 
1.67      anton    1434: @c Topics from nac's Introduction that could be mentioned:
                   1435: @c press <ret> after each line
                   1436: @c Prompt
                   1437: @c numbers vs. words in dictionary on text interpretation
                   1438: @c what happens on redefinition
                   1439: @c parsing words (in particular, defining words)
                   1440: 
1.83      anton    1441: The difference of this chapter from the Introduction
                   1442: (@pxref{Introduction}) is that this tutorial is more fast-paced, should
                   1443: be used while sitting in front of a computer, and covers much more
                   1444: material, but does not explain how the Forth system works.
                   1445: 
1.62      crook    1446: This tutorial can be used with any ANS-compliant Forth; any
                   1447: Gforth-specific features are marked as such and you can skip them if you
                   1448: work with another Forth.  This tutorial does not explain all features of
                   1449: Forth, just enough to get you started and give you some ideas about the
                   1450: facilities available in Forth.  Read the rest of the manual and the
                   1451: standard when you are through this.
1.48      anton    1452: 
                   1453: The intended way to use this tutorial is that you work through it while
                   1454: sitting in front of the console, take a look at the examples and predict
                   1455: what they will do, then try them out; if the outcome is not as expected,
                   1456: find out why (e.g., by trying out variations of the example), so you
                   1457: understand what's going on.  There are also some assignments that you
                   1458: should solve.
                   1459: 
                   1460: This tutorial assumes that you have programmed before and know what,
                   1461: e.g., a loop is.
                   1462: 
                   1463: @c !! explain compat library
                   1464: 
                   1465: @menu
                   1466: * Starting Gforth Tutorial::    
                   1467: * Syntax Tutorial::             
                   1468: * Crash Course Tutorial::       
                   1469: * Stack Tutorial::              
                   1470: * Arithmetics Tutorial::        
                   1471: * Stack Manipulation Tutorial::  
                   1472: * Using files for Forth code Tutorial::  
                   1473: * Comments Tutorial::           
                   1474: * Colon Definitions Tutorial::  
                   1475: * Decompilation Tutorial::      
                   1476: * Stack-Effect Comments Tutorial::  
                   1477: * Types Tutorial::              
                   1478: * Factoring Tutorial::          
                   1479: * Designing the stack effect Tutorial::  
                   1480: * Local Variables Tutorial::    
                   1481: * Conditional execution Tutorial::  
                   1482: * Flags and Comparisons Tutorial::  
                   1483: * General Loops Tutorial::      
                   1484: * Counted loops Tutorial::      
                   1485: * Recursion Tutorial::          
                   1486: * Leaving definitions or loops Tutorial::  
                   1487: * Return Stack Tutorial::       
                   1488: * Memory Tutorial::             
                   1489: * Characters and Strings Tutorial::  
                   1490: * Alignment Tutorial::          
1.87      anton    1491: * Files Tutorial::              
1.48      anton    1492: * Interpretation and Compilation Semantics and Immediacy Tutorial::  
                   1493: * Execution Tokens Tutorial::   
                   1494: * Exceptions Tutorial::         
                   1495: * Defining Words Tutorial::     
                   1496: * Arrays and Records Tutorial::  
                   1497: * POSTPONE Tutorial::           
                   1498: * Literal Tutorial::            
                   1499: * Advanced macros Tutorial::    
                   1500: * Compilation Tokens Tutorial::  
                   1501: * Wordlists and Search Order Tutorial::  
                   1502: @end menu
                   1503: 
                   1504: @node Starting Gforth Tutorial, Syntax Tutorial, Tutorial, Tutorial
                   1505: @section Starting Gforth
1.66      anton    1506: @cindex starting Gforth tutorial
1.48      anton    1507: You can start Gforth by typing its name:
                   1508: 
                   1509: @example
                   1510: gforth
                   1511: @end example
                   1512: 
                   1513: That puts you into interactive mode; you can leave Gforth by typing
                   1514: @code{bye}.  While in Gforth, you can edit the command line and access
                   1515: the command line history with cursor keys, similar to bash.
                   1516: 
                   1517: 
                   1518: @node Syntax Tutorial, Crash Course Tutorial, Starting Gforth Tutorial, Tutorial
                   1519: @section Syntax
1.66      anton    1520: @cindex syntax tutorial
1.48      anton    1521: 
                   1522: A @dfn{word} is a sequence of arbitrary characters (expcept white
                   1523: space).  Words are separated by white space.  E.g., each of the
                   1524: following lines contains exactly one word:
                   1525: 
                   1526: @example
                   1527: word
                   1528: !@@#$%^&*()
                   1529: 1234567890
                   1530: 5!a
                   1531: @end example
                   1532: 
                   1533: A frequent beginner's error is to leave away necessary white space,
                   1534: resulting in an error like @samp{Undefined word}; so if you see such an
                   1535: error, check if you have put spaces wherever necessary.
                   1536: 
                   1537: @example
                   1538: ." hello, world" \ correct
                   1539: ."hello, world"  \ gives an "Undefined word" error
                   1540: @end example
                   1541: 
1.65      anton    1542: Gforth and most other Forth systems ignore differences in case (they are
1.48      anton    1543: case-insensitive), i.e., @samp{word} is the same as @samp{Word}.  If
                   1544: your system is case-sensitive, you may have to type all the examples
                   1545: given here in upper case.
                   1546: 
                   1547: 
                   1548: @node Crash Course Tutorial, Stack Tutorial, Syntax Tutorial, Tutorial
                   1549: @section Crash Course
                   1550: 
                   1551: Type
                   1552: 
                   1553: @example
                   1554: 0 0 !
                   1555: here execute
                   1556: ' catch >body 20 erase abort
                   1557: ' (quit) >body 20 erase
                   1558: @end example
                   1559: 
                   1560: The last two examples are guaranteed to destroy parts of Gforth (and
                   1561: most other systems), so you better leave Gforth afterwards (if it has
                   1562: not finished by itself).  On some systems you may have to kill gforth
                   1563: from outside (e.g., in Unix with @code{kill}).
                   1564: 
                   1565: Now that you know how to produce crashes (and that there's not much to
                   1566: them), let's learn how to produce meaningful programs.
                   1567: 
                   1568: 
                   1569: @node Stack Tutorial, Arithmetics Tutorial, Crash Course Tutorial, Tutorial
                   1570: @section Stack
1.66      anton    1571: @cindex stack tutorial
1.48      anton    1572: 
                   1573: The most obvious feature of Forth is the stack.  When you type in a
                   1574: number, it is pushed on the stack.  You can display the content of the
                   1575: stack with @code{.s}.
                   1576: 
                   1577: @example
                   1578: 1 2 .s
                   1579: 3 .s
                   1580: @end example
                   1581: 
                   1582: @code{.s} displays the top-of-stack to the right, i.e., the numbers
                   1583: appear in @code{.s} output as they appeared in the input.
                   1584: 
                   1585: You can print the top of stack element with @code{.}.
                   1586: 
                   1587: @example
                   1588: 1 2 3 . . .
                   1589: @end example
                   1590: 
                   1591: In general, words consume their stack arguments (@code{.s} is an
                   1592: exception).
                   1593: 
                   1594: @assignment
                   1595: What does the stack contain after @code{5 6 7 .}?
                   1596: @endassignment
                   1597: 
                   1598: 
                   1599: @node Arithmetics Tutorial, Stack Manipulation Tutorial, Stack Tutorial, Tutorial
                   1600: @section Arithmetics
1.66      anton    1601: @cindex arithmetics tutorial
1.48      anton    1602: 
                   1603: The words @code{+}, @code{-}, @code{*}, @code{/}, and @code{mod} always
                   1604: operate on the top two stack items:
                   1605: 
                   1606: @example
1.67      anton    1607: 2 2 .s
                   1608: + .s
                   1609: .
1.48      anton    1610: 2 1 - .
                   1611: 7 3 mod .
                   1612: @end example
                   1613: 
                   1614: The operands of @code{-}, @code{/}, and @code{mod} are in the same order
                   1615: as in the corresponding infix expression (this is generally the case in
                   1616: Forth).
                   1617: 
                   1618: Parentheses are superfluous (and not available), because the order of
                   1619: the words unambiguously determines the order of evaluation and the
                   1620: operands:
                   1621: 
                   1622: @example
                   1623: 3 4 + 5 * .
                   1624: 3 4 5 * + .
                   1625: @end example
                   1626: 
                   1627: @assignment
                   1628: What are the infix expressions corresponding to the Forth code above?
                   1629: Write @code{6-7*8+9} in Forth notation@footnote{This notation is also
                   1630: known as Postfix or RPN (Reverse Polish Notation).}.
                   1631: @endassignment
                   1632: 
                   1633: To change the sign, use @code{negate}:
                   1634: 
                   1635: @example
                   1636: 2 negate .
                   1637: @end example
                   1638: 
                   1639: @assignment
                   1640: Convert -(-3)*4-5 to Forth.
                   1641: @endassignment
                   1642: 
                   1643: @code{/mod} performs both @code{/} and @code{mod}.
                   1644: 
                   1645: @example
                   1646: 7 3 /mod . .
                   1647: @end example
                   1648: 
1.66      anton    1649: Reference: @ref{Arithmetic}.
                   1650: 
                   1651: 
1.48      anton    1652: @node Stack Manipulation Tutorial, Using files for Forth code Tutorial, Arithmetics Tutorial, Tutorial
                   1653: @section Stack Manipulation
1.66      anton    1654: @cindex stack manipulation tutorial
1.48      anton    1655: 
                   1656: Stack manipulation words rearrange the data on the stack.
                   1657: 
                   1658: @example
                   1659: 1 .s drop .s
                   1660: 1 .s dup .s drop drop .s
                   1661: 1 2 .s over .s drop drop drop
                   1662: 1 2 .s swap .s drop drop
                   1663: 1 2 3 .s rot .s drop drop drop
                   1664: @end example
                   1665: 
                   1666: These are the most important stack manipulation words.  There are also
                   1667: variants that manipulate twice as many stack items:
                   1668: 
                   1669: @example
                   1670: 1 2 3 4 .s 2swap .s 2drop 2drop
                   1671: @end example
                   1672: 
                   1673: Two more stack manipulation words are:
                   1674: 
                   1675: @example
                   1676: 1 2 .s nip .s drop
                   1677: 1 2 .s tuck .s 2drop drop
                   1678: @end example
                   1679: 
                   1680: @assignment
                   1681: Replace @code{nip} and @code{tuck} with combinations of other stack
                   1682: manipulation words.
                   1683: 
                   1684: @example
                   1685: Given:          How do you get:
                   1686: 1 2 3           3 2 1           
                   1687: 1 2 3           1 2 3 2                 
                   1688: 1 2 3           1 2 3 3                 
                   1689: 1 2 3           1 3 3           
                   1690: 1 2 3           2 1 3           
                   1691: 1 2 3 4         4 3 2 1         
                   1692: 1 2 3           1 2 3 1 2 3             
                   1693: 1 2 3 4         1 2 3 4 1 2             
                   1694: 1 2 3
                   1695: 1 2 3           1 2 3 4                 
                   1696: 1 2 3           1 3             
                   1697: @end example
                   1698: @endassignment
                   1699: 
                   1700: @example
                   1701: 5 dup * .
                   1702: @end example
                   1703: 
                   1704: @assignment
                   1705: Write 17^3 and 17^4 in Forth, without writing @code{17} more than once.
                   1706: Write a piece of Forth code that expects two numbers on the stack
                   1707: (@var{a} and @var{b}, with @var{b} on top) and computes
                   1708: @code{(a-b)(a+1)}.
                   1709: @endassignment
                   1710: 
1.66      anton    1711: Reference: @ref{Stack Manipulation}.
                   1712: 
                   1713: 
1.48      anton    1714: @node Using files for Forth code Tutorial, Comments Tutorial, Stack Manipulation Tutorial, Tutorial
                   1715: @section Using files for Forth code
1.66      anton    1716: @cindex loading Forth code, tutorial
                   1717: @cindex files containing Forth code, tutorial
1.48      anton    1718: 
                   1719: While working at the Forth command line is convenient for one-line
                   1720: examples and short one-off code, you probably want to store your source
                   1721: code in files for convenient editing and persistence.  You can use your
                   1722: favourite editor (Gforth includes Emacs support, @pxref{Emacs and
1.102     anton    1723: Gforth}) to create @var{file.fs} and use
1.48      anton    1724: 
                   1725: @example
1.102     anton    1726: s" @var{file.fs}" included
1.48      anton    1727: @end example
                   1728: 
                   1729: to load it into your Forth system.  The file name extension I use for
                   1730: Forth files is @samp{.fs}.
                   1731: 
                   1732: You can easily start Gforth with some files loaded like this:
                   1733: 
                   1734: @example
1.102     anton    1735: gforth @var{file1.fs} @var{file2.fs}
1.48      anton    1736: @end example
                   1737: 
                   1738: If an error occurs during loading these files, Gforth terminates,
                   1739: whereas an error during @code{INCLUDED} within Gforth usually gives you
                   1740: a Gforth command line.  Starting the Forth system every time gives you a
                   1741: clean start every time, without interference from the results of earlier
                   1742: tries.
                   1743: 
                   1744: I often put all the tests in a file, then load the code and run the
                   1745: tests with
                   1746: 
                   1747: @example
1.102     anton    1748: gforth @var{code.fs} @var{tests.fs} -e bye
1.48      anton    1749: @end example
                   1750: 
                   1751: (often by performing this command with @kbd{C-x C-e} in Emacs).  The
                   1752: @code{-e bye} ensures that Gforth terminates afterwards so that I can
                   1753: restart this command without ado.
                   1754: 
                   1755: The advantage of this approach is that the tests can be repeated easily
                   1756: every time the program ist changed, making it easy to catch bugs
                   1757: introduced by the change.
                   1758: 
1.66      anton    1759: Reference: @ref{Forth source files}.
                   1760: 
1.48      anton    1761: 
                   1762: @node Comments Tutorial, Colon Definitions Tutorial, Using files for Forth code Tutorial, Tutorial
                   1763: @section Comments
1.66      anton    1764: @cindex comments tutorial
1.48      anton    1765: 
                   1766: @example
                   1767: \ That's a comment; it ends at the end of the line
                   1768: ( Another comment; it ends here: )  .s
                   1769: @end example
                   1770: 
                   1771: @code{\} and @code{(} are ordinary Forth words and therefore have to be
                   1772: separated with white space from the following text.
                   1773: 
                   1774: @example
                   1775: \This gives an "Undefined word" error
                   1776: @end example
                   1777: 
                   1778: The first @code{)} ends a comment started with @code{(}, so you cannot
                   1779: nest @code{(}-comments; and you cannot comment out text containing a
                   1780: @code{)} with @code{( ... )}@footnote{therefore it's a good idea to
                   1781: avoid @code{)} in word names.}.
                   1782: 
                   1783: I use @code{\}-comments for descriptive text and for commenting out code
                   1784: of one or more line; I use @code{(}-comments for describing the stack
                   1785: effect, the stack contents, or for commenting out sub-line pieces of
                   1786: code.
                   1787: 
                   1788: The Emacs mode @file{gforth.el} (@pxref{Emacs and Gforth}) supports
                   1789: these uses by commenting out a region with @kbd{C-x \}, uncommenting a
                   1790: region with @kbd{C-u C-x \}, and filling a @code{\}-commented region
                   1791: with @kbd{M-q}.
                   1792: 
1.66      anton    1793: Reference: @ref{Comments}.
                   1794: 
1.48      anton    1795: 
                   1796: @node Colon Definitions Tutorial, Decompilation Tutorial, Comments Tutorial, Tutorial
                   1797: @section Colon Definitions
1.66      anton    1798: @cindex colon definitions, tutorial
                   1799: @cindex definitions, tutorial
                   1800: @cindex procedures, tutorial
                   1801: @cindex functions, tutorial
1.48      anton    1802: 
                   1803: are similar to procedures and functions in other programming languages.
                   1804: 
                   1805: @example
                   1806: : squared ( n -- n^2 )
                   1807:    dup * ;
                   1808: 5 squared .
                   1809: 7 squared .
                   1810: @end example
                   1811: 
                   1812: @code{:} starts the colon definition; its name is @code{squared}.  The
                   1813: following comment describes its stack effect.  The words @code{dup *}
                   1814: are not executed, but compiled into the definition.  @code{;} ends the
                   1815: colon definition.
                   1816: 
                   1817: The newly-defined word can be used like any other word, including using
                   1818: it in other definitions:
                   1819: 
                   1820: @example
                   1821: : cubed ( n -- n^3 )
                   1822:    dup squared * ;
                   1823: -5 cubed .
                   1824: : fourth-power ( n -- n^4 )
                   1825:    squared squared ;
                   1826: 3 fourth-power .
                   1827: @end example
                   1828: 
                   1829: @assignment
                   1830: Write colon definitions for @code{nip}, @code{tuck}, @code{negate}, and
                   1831: @code{/mod} in terms of other Forth words, and check if they work (hint:
                   1832: test your tests on the originals first).  Don't let the
                   1833: @samp{redefined}-Messages spook you, they are just warnings.
                   1834: @endassignment
                   1835: 
1.66      anton    1836: Reference: @ref{Colon Definitions}.
                   1837: 
1.48      anton    1838: 
                   1839: @node Decompilation Tutorial, Stack-Effect Comments Tutorial, Colon Definitions Tutorial, Tutorial
                   1840: @section Decompilation
1.66      anton    1841: @cindex decompilation tutorial
                   1842: @cindex see tutorial
1.48      anton    1843: 
                   1844: You can decompile colon definitions with @code{see}:
                   1845: 
                   1846: @example
                   1847: see squared
                   1848: see cubed
                   1849: @end example
                   1850: 
                   1851: In Gforth @code{see} shows you a reconstruction of the source code from
                   1852: the executable code.  Informations that were present in the source, but
                   1853: not in the executable code, are lost (e.g., comments).
                   1854: 
1.65      anton    1855: You can also decompile the predefined words:
                   1856: 
                   1857: @example
                   1858: see .
                   1859: see +
                   1860: @end example
                   1861: 
                   1862: 
1.48      anton    1863: @node Stack-Effect Comments Tutorial, Types Tutorial, Decompilation Tutorial, Tutorial
                   1864: @section Stack-Effect Comments
1.66      anton    1865: @cindex stack-effect comments, tutorial
                   1866: @cindex --, tutorial
1.48      anton    1867: By convention the comment after the name of a definition describes the
                   1868: stack effect: The part in from of the @samp{--} describes the state of
                   1869: the stack before the execution of the definition, i.e., the parameters
                   1870: that are passed into the colon definition; the part behind the @samp{--}
                   1871: is the state of the stack after the execution of the definition, i.e.,
                   1872: the results of the definition.  The stack comment only shows the top
                   1873: stack items that the definition accesses and/or changes.
                   1874: 
                   1875: You should put a correct stack effect on every definition, even if it is
                   1876: just @code{( -- )}.  You should also add some descriptive comment to
                   1877: more complicated words (I usually do this in the lines following
                   1878: @code{:}).  If you don't do this, your code becomes unreadable (because
                   1879: you have to work through every definition before you can undertsand
                   1880: any).
                   1881: 
                   1882: @assignment
                   1883: The stack effect of @code{swap} can be written like this: @code{x1 x2 --
                   1884: x2 x1}.  Describe the stack effect of @code{-}, @code{drop}, @code{dup},
                   1885: @code{over}, @code{rot}, @code{nip}, and @code{tuck}.  Hint: When you
1.65      anton    1886: are done, you can compare your stack effects to those in this manual
1.48      anton    1887: (@pxref{Word Index}).
                   1888: @endassignment
                   1889: 
                   1890: Sometimes programmers put comments at various places in colon
                   1891: definitions that describe the contents of the stack at that place (stack
                   1892: comments); i.e., they are like the first part of a stack-effect
                   1893: comment. E.g.,
                   1894: 
                   1895: @example
                   1896: : cubed ( n -- n^3 )
                   1897:    dup squared  ( n n^2 ) * ;
                   1898: @end example
                   1899: 
                   1900: In this case the stack comment is pretty superfluous, because the word
                   1901: is simple enough.  If you think it would be a good idea to add such a
                   1902: comment to increase readability, you should also consider factoring the
                   1903: word into several simpler words (@pxref{Factoring Tutorial,,
1.60      anton    1904: Factoring}), which typically eliminates the need for the stack comment;
1.48      anton    1905: however, if you decide not to refactor it, then having such a comment is
                   1906: better than not having it.
                   1907: 
                   1908: The names of the stack items in stack-effect and stack comments in the
                   1909: standard, in this manual, and in many programs specify the type through
                   1910: a type prefix, similar to Fortran and Hungarian notation.  The most
                   1911: frequent prefixes are:
                   1912: 
                   1913: @table @code
                   1914: @item n
                   1915: signed integer
                   1916: @item u
                   1917: unsigned integer
                   1918: @item c
                   1919: character
                   1920: @item f
                   1921: Boolean flags, i.e. @code{false} or @code{true}.
                   1922: @item a-addr,a-
                   1923: Cell-aligned address
                   1924: @item c-addr,c-
                   1925: Char-aligned address (note that a Char may have two bytes in Windows NT)
                   1926: @item xt
                   1927: Execution token, same size as Cell
                   1928: @item w,x
                   1929: Cell, can contain an integer or an address.  It usually takes 32, 64 or
                   1930: 16 bits (depending on your platform and Forth system). A cell is more
                   1931: commonly known as machine word, but the term @emph{word} already means
                   1932: something different in Forth.
                   1933: @item d
                   1934: signed double-cell integer
                   1935: @item ud
                   1936: unsigned double-cell integer
                   1937: @item r
                   1938: Float (on the FP stack)
                   1939: @end table
                   1940: 
                   1941: You can find a more complete list in @ref{Notation}.
                   1942: 
                   1943: @assignment
                   1944: Write stack-effect comments for all definitions you have written up to
                   1945: now.
                   1946: @endassignment
                   1947: 
                   1948: 
                   1949: @node Types Tutorial, Factoring Tutorial, Stack-Effect Comments Tutorial, Tutorial
                   1950: @section Types
1.66      anton    1951: @cindex types tutorial
1.48      anton    1952: 
                   1953: In Forth the names of the operations are not overloaded; so similar
                   1954: operations on different types need different names; e.g., @code{+} adds
                   1955: integers, and you have to use @code{f+} to add floating-point numbers.
                   1956: The following prefixes are often used for related operations on
                   1957: different types:
                   1958: 
                   1959: @table @code
                   1960: @item (none)
                   1961: signed integer
                   1962: @item u
                   1963: unsigned integer
                   1964: @item c
                   1965: character
                   1966: @item d
                   1967: signed double-cell integer
                   1968: @item ud, du
                   1969: unsigned double-cell integer
                   1970: @item 2
                   1971: two cells (not-necessarily double-cell numbers)
                   1972: @item m, um
                   1973: mixed single-cell and double-cell operations
                   1974: @item f
                   1975: floating-point (note that in stack comments @samp{f} represents flags,
1.66      anton    1976: and @samp{r} represents FP numbers).
1.48      anton    1977: @end table
                   1978: 
                   1979: If there are no differences between the signed and the unsigned variant
                   1980: (e.g., for @code{+}), there is only the prefix-less variant.
                   1981: 
                   1982: Forth does not perform type checking, neither at compile time, nor at
                   1983: run time.  If you use the wrong oeration, the data are interpreted
                   1984: incorrectly:
                   1985: 
                   1986: @example
                   1987: -1 u.
                   1988: @end example
                   1989: 
                   1990: If you have only experience with type-checked languages until now, and
                   1991: have heard how important type-checking is, don't panic!  In my
                   1992: experience (and that of other Forthers), type errors in Forth code are
                   1993: usually easy to find (once you get used to it), the increased vigilance
                   1994: of the programmer tends to catch some harder errors in addition to most
                   1995: type errors, and you never have to work around the type system, so in
                   1996: most situations the lack of type-checking seems to be a win (projects to
                   1997: add type checking to Forth have not caught on).
                   1998: 
                   1999: 
                   2000: @node Factoring Tutorial, Designing the stack effect Tutorial, Types Tutorial, Tutorial
                   2001: @section Factoring
1.66      anton    2002: @cindex factoring tutorial
1.48      anton    2003: 
                   2004: If you try to write longer definitions, you will soon find it hard to
                   2005: keep track of the stack contents.  Therefore, good Forth programmers
                   2006: tend to write only short definitions (e.g., three lines).  The art of
                   2007: finding meaningful short definitions is known as factoring (as in
                   2008: factoring polynomials).
                   2009: 
                   2010: Well-factored programs offer additional advantages: smaller, more
                   2011: general words, are easier to test and debug and can be reused more and
                   2012: better than larger, specialized words.
                   2013: 
                   2014: So, if you run into difficulties with stack management, when writing
                   2015: code, try to define meaningful factors for the word, and define the word
                   2016: in terms of those.  Even if a factor contains only two words, it is
                   2017: often helpful.
                   2018: 
1.65      anton    2019: Good factoring is not easy, and it takes some practice to get the knack
                   2020: for it; but even experienced Forth programmers often don't find the
                   2021: right solution right away, but only when rewriting the program.  So, if
                   2022: you don't come up with a good solution immediately, keep trying, don't
                   2023: despair.
1.48      anton    2024: 
                   2025: @c example !!
                   2026: 
                   2027: 
                   2028: @node Designing the stack effect Tutorial, Local Variables Tutorial, Factoring Tutorial, Tutorial
                   2029: @section Designing the stack effect
1.66      anton    2030: @cindex Stack effect design, tutorial
                   2031: @cindex design of stack effects, tutorial
1.48      anton    2032: 
                   2033: In other languages you can use an arbitrary order of parameters for a
1.65      anton    2034: function; and since there is only one result, you don't have to deal with
1.48      anton    2035: the order of results, either.
                   2036: 
                   2037: In Forth (and other stack-based languages, e.g., Postscript) the
                   2038: parameter and result order of a definition is important and should be
                   2039: designed well.  The general guideline is to design the stack effect such
                   2040: that the word is simple to use in most cases, even if that complicates
                   2041: the implementation of the word.  Some concrete rules are:
                   2042: 
                   2043: @itemize @bullet
                   2044: 
                   2045: @item
                   2046: Words consume all of their parameters (e.g., @code{.}).
                   2047: 
                   2048: @item
                   2049: If there is a convention on the order of parameters (e.g., from
                   2050: mathematics or another programming language), stick with it (e.g.,
                   2051: @code{-}).
                   2052: 
                   2053: @item
                   2054: If one parameter usually requires only a short computation (e.g., it is
                   2055: a constant), pass it on the top of the stack.  Conversely, parameters
                   2056: that usually require a long sequence of code to compute should be passed
                   2057: as the bottom (i.e., first) parameter.  This makes the code easier to
                   2058: read, because reader does not need to keep track of the bottom item
                   2059: through a long sequence of code (or, alternatively, through stack
1.49      anton    2060: manipulations). E.g., @code{!} (store, @pxref{Memory}) expects the
1.48      anton    2061: address on top of the stack because it is usually simpler to compute
                   2062: than the stored value (often the address is just a variable).
                   2063: 
                   2064: @item
                   2065: Similarly, results that are usually consumed quickly should be returned
                   2066: on the top of stack, whereas a result that is often used in long
                   2067: computations should be passed as bottom result.  E.g., the file words
                   2068: like @code{open-file} return the error code on the top of stack, because
                   2069: it is usually consumed quickly by @code{throw}; moreover, the error code
                   2070: has to be checked before doing anything with the other results.
                   2071: 
                   2072: @end itemize
                   2073: 
                   2074: These rules are just general guidelines, don't lose sight of the overall
                   2075: goal to make the words easy to use.  E.g., if the convention rule
                   2076: conflicts with the computation-length rule, you might decide in favour
                   2077: of the convention if the word will be used rarely, and in favour of the
                   2078: computation-length rule if the word will be used frequently (because
                   2079: with frequent use the cost of breaking the computation-length rule would
                   2080: be quite high, and frequent use makes it easier to remember an
                   2081: unconventional order).
                   2082: 
                   2083: @c example !! structure package
                   2084: 
1.65      anton    2085: 
1.48      anton    2086: @node Local Variables Tutorial, Conditional execution Tutorial, Designing the stack effect Tutorial, Tutorial
                   2087: @section Local Variables
1.66      anton    2088: @cindex local variables, tutorial
1.48      anton    2089: 
                   2090: You can define local variables (@emph{locals}) in a colon definition:
                   2091: 
                   2092: @example
                   2093: : swap @{ a b -- b a @}
                   2094:   b a ;
                   2095: 1 2 swap .s 2drop
                   2096: @end example
                   2097: 
                   2098: (If your Forth system does not support this syntax, include
                   2099: @file{compat/anslocals.fs} first).
                   2100: 
                   2101: In this example @code{@{ a b -- b a @}} is the locals definition; it
                   2102: takes two cells from the stack, puts the top of stack in @code{b} and
                   2103: the next stack element in @code{a}.  @code{--} starts a comment ending
                   2104: with @code{@}}.  After the locals definition, using the name of the
                   2105: local will push its value on the stack.  You can leave the comment
                   2106: part (@code{-- b a}) away:
                   2107: 
                   2108: @example
                   2109: : swap ( x1 x2 -- x2 x1 )
                   2110:   @{ a b @} b a ;
                   2111: @end example
                   2112: 
                   2113: In Gforth you can have several locals definitions, anywhere in a colon
                   2114: definition; in contrast, in a standard program you can have only one
                   2115: locals definition per colon definition, and that locals definition must
                   2116: be outside any controll structure.
                   2117: 
                   2118: With locals you can write slightly longer definitions without running
                   2119: into stack trouble.  However, I recommend trying to write colon
                   2120: definitions without locals for exercise purposes to help you gain the
                   2121: essential factoring skills.
                   2122: 
                   2123: @assignment
                   2124: Rewrite your definitions until now with locals
                   2125: @endassignment
                   2126: 
1.66      anton    2127: Reference: @ref{Locals}.
                   2128: 
1.48      anton    2129: 
                   2130: @node Conditional execution Tutorial, Flags and Comparisons Tutorial, Local Variables Tutorial, Tutorial
                   2131: @section Conditional execution
1.66      anton    2132: @cindex conditionals, tutorial
                   2133: @cindex if, tutorial
1.48      anton    2134: 
                   2135: In Forth you can use control structures only inside colon definitions.
                   2136: An @code{if}-structure looks like this:
                   2137: 
                   2138: @example
                   2139: : abs ( n1 -- +n2 )
                   2140:     dup 0 < if
                   2141:         negate
                   2142:     endif ;
                   2143: 5 abs .
                   2144: -5 abs .
                   2145: @end example
                   2146: 
                   2147: @code{if} takes a flag from the stack.  If the flag is non-zero (true),
                   2148: the following code is performed, otherwise execution continues after the
1.51      pazsan   2149: @code{endif} (or @code{else}).  @code{<} compares the top two stack
1.48      anton    2150: elements and prioduces a flag:
                   2151: 
                   2152: @example
                   2153: 1 2 < .
                   2154: 2 1 < .
                   2155: 1 1 < .
                   2156: @end example
                   2157: 
                   2158: Actually the standard name for @code{endif} is @code{then}.  This
                   2159: tutorial presents the examples using @code{endif}, because this is often
                   2160: less confusing for people familiar with other programming languages
                   2161: where @code{then} has a different meaning.  If your system does not have
                   2162: @code{endif}, define it with
                   2163: 
                   2164: @example
                   2165: : endif postpone then ; immediate
                   2166: @end example
                   2167: 
                   2168: You can optionally use an @code{else}-part:
                   2169: 
                   2170: @example
                   2171: : min ( n1 n2 -- n )
                   2172:   2dup < if
                   2173:     drop
                   2174:   else
                   2175:     nip
                   2176:   endif ;
                   2177: 2 3 min .
                   2178: 3 2 min .
                   2179: @end example
                   2180: 
                   2181: @assignment
                   2182: Write @code{min} without @code{else}-part (hint: what's the definition
                   2183: of @code{nip}?).
                   2184: @endassignment
                   2185: 
1.66      anton    2186: Reference: @ref{Selection}.
                   2187: 
1.48      anton    2188: 
                   2189: @node Flags and Comparisons Tutorial, General Loops Tutorial, Conditional execution Tutorial, Tutorial
                   2190: @section Flags and Comparisons
1.66      anton    2191: @cindex flags tutorial
                   2192: @cindex comparison tutorial
1.48      anton    2193: 
                   2194: In a false-flag all bits are clear (0 when interpreted as integer).  In
                   2195: a canonical true-flag all bits are set (-1 as a twos-complement signed
                   2196: integer); in many contexts (e.g., @code{if}) any non-zero value is
                   2197: treated as true flag.
                   2198: 
                   2199: @example
                   2200: false .
                   2201: true .
                   2202: true hex u. decimal
                   2203: @end example
                   2204: 
                   2205: Comparison words produce canonical flags:
                   2206: 
                   2207: @example
                   2208: 1 1 = .
                   2209: 1 0= .
                   2210: 0 1 < .
                   2211: 0 0 < .
                   2212: -1 1 u< . \ type error, u< interprets -1 as large unsigned number
                   2213: -1 1 < .
                   2214: @end example
                   2215: 
1.66      anton    2216: Gforth supports all combinations of the prefixes @code{0 u d d0 du f f0}
                   2217: (or none) and the comparisons @code{= <> < > <= >=}.  Only a part of
                   2218: these combinations are standard (for details see the standard,
                   2219: @ref{Numeric comparison}, @ref{Floating Point} or @ref{Word Index}).
1.48      anton    2220: 
                   2221: You can use @code{and or xor invert} can be used as operations on
                   2222: canonical flags.  Actually they are bitwise operations:
                   2223: 
                   2224: @example
                   2225: 1 2 and .
                   2226: 1 2 or .
                   2227: 1 3 xor .
                   2228: 1 invert .
                   2229: @end example
                   2230: 
                   2231: You can convert a zero/non-zero flag into a canonical flag with
                   2232: @code{0<>} (and complement it on the way with @code{0=}).
                   2233: 
                   2234: @example
                   2235: 1 0= .
                   2236: 1 0<> .
                   2237: @end example
                   2238: 
1.65      anton    2239: You can use the all-bits-set feature of canonical flags and the bitwise
1.48      anton    2240: operation of the Boolean operations to avoid @code{if}s:
                   2241: 
                   2242: @example
                   2243: : foo ( n1 -- n2 )
                   2244:   0= if
                   2245:     14
                   2246:   else
                   2247:     0
                   2248:   endif ;
                   2249: 0 foo .
                   2250: 1 foo .
                   2251: 
                   2252: : foo ( n1 -- n2 )
                   2253:   0= 14 and ;
                   2254: 0 foo .
                   2255: 1 foo .
                   2256: @end example
                   2257: 
                   2258: @assignment
                   2259: Write @code{min} without @code{if}.
                   2260: @endassignment
                   2261: 
1.66      anton    2262: For reference, see @ref{Boolean Flags}, @ref{Numeric comparison}, and
                   2263: @ref{Bitwise operations}.
                   2264: 
1.48      anton    2265: 
                   2266: @node General Loops Tutorial, Counted loops Tutorial, Flags and Comparisons Tutorial, Tutorial
                   2267: @section General Loops
1.66      anton    2268: @cindex loops, indefinite, tutorial
1.48      anton    2269: 
                   2270: The endless loop is the most simple one:
                   2271: 
                   2272: @example
                   2273: : endless ( -- )
                   2274:   0 begin
                   2275:     dup . 1+
                   2276:   again ;
                   2277: endless
                   2278: @end example
                   2279: 
                   2280: Terminate this loop by pressing @kbd{Ctrl-C} (in Gforth).  @code{begin}
                   2281: does nothing at run-time, @code{again} jumps back to @code{begin}.
                   2282: 
                   2283: A loop with one exit at any place looks like this:
                   2284: 
                   2285: @example
                   2286: : log2 ( +n1 -- n2 )
                   2287: \ logarithmus dualis of n1>0, rounded down to the next integer
                   2288:   assert( dup 0> )
                   2289:   2/ 0 begin
                   2290:     over 0> while
                   2291:       1+ swap 2/ swap
                   2292:   repeat
                   2293:   nip ;
                   2294: 7 log2 .
                   2295: 8 log2 .
                   2296: @end example
                   2297: 
                   2298: At run-time @code{while} consumes a flag; if it is 0, execution
1.51      pazsan   2299: continues behind the @code{repeat}; if the flag is non-zero, execution
1.48      anton    2300: continues behind the @code{while}.  @code{Repeat} jumps back to
                   2301: @code{begin}, just like @code{again}.
                   2302: 
                   2303: In Forth there are many combinations/abbreviations, like @code{1+}.
1.90      anton    2304: However, @code{2/} is not one of them; it shifts its argument right by
1.48      anton    2305: one bit (arithmetic shift right):
                   2306: 
                   2307: @example
                   2308: -5 2 / .
                   2309: -5 2/ .
                   2310: @end example
                   2311: 
                   2312: @code{assert(} is no standard word, but you can get it on systems other
                   2313: then Gforth by including @file{compat/assert.fs}.  You can see what it
                   2314: does by trying
                   2315: 
                   2316: @example
                   2317: 0 log2 .
                   2318: @end example
                   2319: 
                   2320: Here's a loop with an exit at the end:
                   2321: 
                   2322: @example
                   2323: : log2 ( +n1 -- n2 )
                   2324: \ logarithmus dualis of n1>0, rounded down to the next integer
                   2325:   assert( dup 0 > )
                   2326:   -1 begin
                   2327:     1+ swap 2/ swap
                   2328:     over 0 <=
                   2329:   until
                   2330:   nip ;
                   2331: @end example
                   2332: 
                   2333: @code{Until} consumes a flag; if it is non-zero, execution continues at
                   2334: the @code{begin}, otherwise after the @code{until}.
                   2335: 
                   2336: @assignment
                   2337: Write a definition for computing the greatest common divisor.
                   2338: @endassignment
                   2339: 
1.66      anton    2340: Reference: @ref{Simple Loops}.
                   2341: 
1.48      anton    2342: 
                   2343: @node Counted loops Tutorial, Recursion Tutorial, General Loops Tutorial, Tutorial
                   2344: @section Counted loops
1.66      anton    2345: @cindex loops, counted, tutorial
1.48      anton    2346: 
                   2347: @example
                   2348: : ^ ( n1 u -- n )
                   2349: \ n = the uth power of u1
                   2350:   1 swap 0 u+do
                   2351:     over *
                   2352:   loop
                   2353:   nip ;
                   2354: 3 2 ^ .
                   2355: 4 3 ^ .
                   2356: @end example
                   2357: 
                   2358: @code{U+do} (from @file{compat/loops.fs}, if your Forth system doesn't
                   2359: have it) takes two numbers of the stack @code{( u3 u4 -- )}, and then
                   2360: performs the code between @code{u+do} and @code{loop} for @code{u3-u4}
                   2361: times (or not at all, if @code{u3-u4<0}).
                   2362: 
                   2363: You can see the stack effect design rules at work in the stack effect of
                   2364: the loop start words: Since the start value of the loop is more
                   2365: frequently constant than the end value, the start value is passed on
                   2366: the top-of-stack.
                   2367: 
                   2368: You can access the counter of a counted loop with @code{i}:
                   2369: 
                   2370: @example
                   2371: : fac ( u -- u! )
                   2372:   1 swap 1+ 1 u+do
                   2373:     i *
                   2374:   loop ;
                   2375: 5 fac .
                   2376: 7 fac .
                   2377: @end example
                   2378: 
                   2379: There is also @code{+do}, which expects signed numbers (important for
                   2380: deciding whether to enter the loop).
                   2381: 
                   2382: @assignment
                   2383: Write a definition for computing the nth Fibonacci number.
                   2384: @endassignment
                   2385: 
1.65      anton    2386: You can also use increments other than 1:
                   2387: 
                   2388: @example
                   2389: : up2 ( n1 n2 -- )
                   2390:   +do
                   2391:     i .
                   2392:   2 +loop ;
                   2393: 10 0 up2
                   2394: 
                   2395: : down2 ( n1 n2 -- )
                   2396:   -do
                   2397:     i .
                   2398:   2 -loop ;
                   2399: 0 10 down2
                   2400: @end example
1.48      anton    2401: 
1.66      anton    2402: Reference: @ref{Counted Loops}.
                   2403: 
1.48      anton    2404: 
                   2405: @node Recursion Tutorial, Leaving definitions or loops Tutorial, Counted loops Tutorial, Tutorial
                   2406: @section Recursion
1.66      anton    2407: @cindex recursion tutorial
1.48      anton    2408: 
                   2409: Usually the name of a definition is not visible in the definition; but
                   2410: earlier definitions are usually visible:
                   2411: 
                   2412: @example
                   2413: 1 0 / . \ "Floating-point unidentified fault" in Gforth on most platforms
                   2414: : / ( n1 n2 -- n )
                   2415:   dup 0= if
                   2416:     -10 throw \ report division by zero
                   2417:   endif
                   2418:   /           \ old version
                   2419: ;
                   2420: 1 0 /
                   2421: @end example
                   2422: 
                   2423: For recursive definitions you can use @code{recursive} (non-standard) or
                   2424: @code{recurse}:
                   2425: 
                   2426: @example
                   2427: : fac1 ( n -- n! ) recursive
                   2428:  dup 0> if
                   2429:    dup 1- fac1 *
                   2430:  else
                   2431:    drop 1
                   2432:  endif ;
                   2433: 7 fac1 .
                   2434: 
                   2435: : fac2 ( n -- n! )
                   2436:  dup 0> if
                   2437:    dup 1- recurse *
                   2438:  else
                   2439:    drop 1
                   2440:  endif ;
                   2441: 8 fac2 .
                   2442: @end example
                   2443: 
                   2444: @assignment
                   2445: Write a recursive definition for computing the nth Fibonacci number.
                   2446: @endassignment
                   2447: 
1.66      anton    2448: Reference (including indirect recursion): @xref{Calls and returns}.
                   2449: 
1.48      anton    2450: 
                   2451: @node Leaving definitions or loops Tutorial, Return Stack Tutorial, Recursion Tutorial, Tutorial
                   2452: @section Leaving definitions or loops
1.66      anton    2453: @cindex leaving definitions, tutorial
                   2454: @cindex leaving loops, tutorial
1.48      anton    2455: 
                   2456: @code{EXIT} exits the current definition right away.  For every counted
                   2457: loop that is left in this way, an @code{UNLOOP} has to be performed
                   2458: before the @code{EXIT}:
                   2459: 
                   2460: @c !! real examples
                   2461: @example
                   2462: : ...
                   2463:  ... u+do
                   2464:    ... if
                   2465:      ... unloop exit
                   2466:    endif
                   2467:    ...
                   2468:  loop
                   2469:  ... ;
                   2470: @end example
                   2471: 
                   2472: @code{LEAVE} leaves the innermost counted loop right away:
                   2473: 
                   2474: @example
                   2475: : ...
                   2476:  ... u+do
                   2477:    ... if
                   2478:      ... leave
                   2479:    endif
                   2480:    ...
                   2481:  loop
                   2482:  ... ;
                   2483: @end example
                   2484: 
1.65      anton    2485: @c !! example
1.48      anton    2486: 
1.66      anton    2487: Reference: @ref{Calls and returns}, @ref{Counted Loops}.
                   2488: 
                   2489: 
1.48      anton    2490: @node Return Stack Tutorial, Memory Tutorial, Leaving definitions or loops Tutorial, Tutorial
                   2491: @section Return Stack
1.66      anton    2492: @cindex return stack tutorial
1.48      anton    2493: 
                   2494: In addition to the data stack Forth also has a second stack, the return
                   2495: stack; most Forth systems store the return addresses of procedure calls
                   2496: there (thus its name).  Programmers can also use this stack:
                   2497: 
                   2498: @example
                   2499: : foo ( n1 n2 -- )
                   2500:  .s
                   2501:  >r .s
1.50      anton    2502:  r@@ .
1.48      anton    2503:  >r .s
1.50      anton    2504:  r@@ .
1.48      anton    2505:  r> .
1.50      anton    2506:  r@@ .
1.48      anton    2507:  r> . ;
                   2508: 1 2 foo
                   2509: @end example
                   2510: 
                   2511: @code{>r} takes an element from the data stack and pushes it onto the
                   2512: return stack; conversely, @code{r>} moves an elementm from the return to
                   2513: the data stack; @code{r@@} pushes a copy of the top of the return stack
                   2514: on the return stack.
                   2515: 
                   2516: Forth programmers usually use the return stack for storing data
                   2517: temporarily, if using the data stack alone would be too complex, and
                   2518: factoring and locals are not an option:
                   2519: 
                   2520: @example
                   2521: : 2swap ( x1 x2 x3 x4 -- x3 x4 x1 x2 )
                   2522:  rot >r rot r> ;
                   2523: @end example
                   2524: 
                   2525: The return address of the definition and the loop control parameters of
                   2526: counted loops usually reside on the return stack, so you have to take
                   2527: all items, that you have pushed on the return stack in a colon
                   2528: definition or counted loop, from the return stack before the definition
                   2529: or loop ends.  You cannot access items that you pushed on the return
                   2530: stack outside some definition or loop within the definition of loop.
                   2531: 
                   2532: If you miscount the return stack items, this usually ends in a crash:
                   2533: 
                   2534: @example
                   2535: : crash ( n -- )
                   2536:   >r ;
                   2537: 5 crash
                   2538: @end example
                   2539: 
                   2540: You cannot mix using locals and using the return stack (according to the
                   2541: standard; Gforth has no problem).  However, they solve the same
                   2542: problems, so this shouldn't be an issue.
                   2543: 
                   2544: @assignment
                   2545: Can you rewrite any of the definitions you wrote until now in a better
                   2546: way using the return stack?
                   2547: @endassignment
                   2548: 
1.66      anton    2549: Reference: @ref{Return stack}.
                   2550: 
1.48      anton    2551: 
                   2552: @node Memory Tutorial, Characters and Strings Tutorial, Return Stack Tutorial, Tutorial
                   2553: @section Memory
1.66      anton    2554: @cindex memory access/allocation tutorial
1.48      anton    2555: 
                   2556: You can create a global variable @code{v} with
                   2557: 
                   2558: @example
                   2559: variable v ( -- addr )
                   2560: @end example
                   2561: 
                   2562: @code{v} pushes the address of a cell in memory on the stack.  This cell
                   2563: was reserved by @code{variable}.  You can use @code{!} (store) to store
                   2564: values into this cell and @code{@@} (fetch) to load the value from the
                   2565: stack into memory:
                   2566: 
                   2567: @example
                   2568: v .
                   2569: 5 v ! .s
1.50      anton    2570: v @@ .
1.48      anton    2571: @end example
                   2572: 
1.65      anton    2573: You can see a raw dump of memory with @code{dump}:
                   2574: 
                   2575: @example
                   2576: v 1 cells .s dump
                   2577: @end example
                   2578: 
                   2579: @code{Cells ( n1 -- n2 )} gives you the number of bytes (or, more
                   2580: generally, address units (aus)) that @code{n1 cells} occupy.  You can
                   2581: also reserve more memory:
1.48      anton    2582: 
                   2583: @example
                   2584: create v2 20 cells allot
1.65      anton    2585: v2 20 cells dump
1.48      anton    2586: @end example
                   2587: 
1.65      anton    2588: creates a word @code{v2} and reserves 20 uninitialized cells; the
                   2589: address pushed by @code{v2} points to the start of these 20 cells.  You
                   2590: can use address arithmetic to access these cells:
1.48      anton    2591: 
                   2592: @example
                   2593: 3 v2 5 cells + !
1.65      anton    2594: v2 20 cells dump
1.48      anton    2595: @end example
                   2596: 
                   2597: You can reserve and initialize memory with @code{,}:
                   2598: 
                   2599: @example
                   2600: create v3
                   2601:   5 , 4 , 3 , 2 , 1 ,
1.50      anton    2602: v3 @@ .
                   2603: v3 cell+ @@ .
                   2604: v3 2 cells + @@ .
1.65      anton    2605: v3 5 cells dump
1.48      anton    2606: @end example
                   2607: 
                   2608: @assignment
                   2609: Write a definition @code{vsum ( addr u -- n )} that computes the sum of
                   2610: @code{u} cells, with the first of these cells at @code{addr}, the next
                   2611: one at @code{addr cell+} etc.
                   2612: @endassignment
                   2613: 
                   2614: You can also reserve memory without creating a new word:
                   2615: 
                   2616: @example
1.60      anton    2617: here 10 cells allot .
                   2618: here .
1.48      anton    2619: @end example
                   2620: 
                   2621: @code{Here} pushes the start address of the memory area.  You should
                   2622: store it somewhere, or you will have a hard time finding the memory area
                   2623: again.
                   2624: 
                   2625: @code{Allot} manages dictionary memory.  The dictionary memory contains
                   2626: the system's data structures for words etc. on Gforth and most other
                   2627: Forth systems.  It is managed like a stack: You can free the memory that
                   2628: you have just @code{allot}ed with
                   2629: 
                   2630: @example
                   2631: -10 cells allot
1.60      anton    2632: here .
1.48      anton    2633: @end example
                   2634: 
                   2635: Note that you cannot do this if you have created a new word in the
                   2636: meantime (because then your @code{allot}ed memory is no longer on the
                   2637: top of the dictionary ``stack'').
                   2638: 
                   2639: Alternatively, you can use @code{allocate} and @code{free} which allow
                   2640: freeing memory in any order:
                   2641: 
                   2642: @example
                   2643: 10 cells allocate throw .s
                   2644: 20 cells allocate throw .s
                   2645: swap
                   2646: free throw
                   2647: free throw
                   2648: @end example
                   2649: 
                   2650: The @code{throw}s deal with errors (e.g., out of memory).
                   2651: 
1.65      anton    2652: And there is also a
                   2653: @uref{http://www.complang.tuwien.ac.at/forth/garbage-collection.zip,
                   2654: garbage collector}, which eliminates the need to @code{free} memory
                   2655: explicitly.
1.48      anton    2656: 
1.66      anton    2657: Reference: @ref{Memory}.
                   2658: 
1.48      anton    2659: 
                   2660: @node Characters and Strings Tutorial, Alignment Tutorial, Memory Tutorial, Tutorial
                   2661: @section Characters and Strings
1.66      anton    2662: @cindex strings tutorial
                   2663: @cindex characters tutorial
1.48      anton    2664: 
                   2665: On the stack characters take up a cell, like numbers.  In memory they
                   2666: have their own size (one 8-bit byte on most systems), and therefore
                   2667: require their own words for memory access:
                   2668: 
                   2669: @example
                   2670: create v4 
                   2671:   104 c, 97 c, 108 c, 108 c, 111 c,
1.50      anton    2672: v4 4 chars + c@@ .
1.65      anton    2673: v4 5 chars dump
1.48      anton    2674: @end example
                   2675: 
                   2676: The preferred representation of strings on the stack is @code{addr
                   2677: u-count}, where @code{addr} is the address of the first character and
                   2678: @code{u-count} is the number of characters in the string.
                   2679: 
                   2680: @example
                   2681: v4 5 type
                   2682: @end example
                   2683: 
                   2684: You get a string constant with
                   2685: 
                   2686: @example
                   2687: s" hello, world" .s
                   2688: type
                   2689: @end example
                   2690: 
                   2691: Make sure you have a space between @code{s"} and the string; @code{s"}
                   2692: is a normal Forth word and must be delimited with white space (try what
                   2693: happens when you remove the space).
                   2694: 
                   2695: However, this interpretive use of @code{s"} is quite restricted: the
                   2696: string exists only until the next call of @code{s"} (some Forth systems
                   2697: keep more than one of these strings, but usually they still have a
1.62      crook    2698: limited lifetime).
1.48      anton    2699: 
                   2700: @example
                   2701: s" hello," s" world" .s
                   2702: type
                   2703: type
                   2704: @end example
                   2705: 
1.62      crook    2706: You can also use @code{s"} in a definition, and the resulting
                   2707: strings then live forever (well, for as long as the definition):
1.48      anton    2708: 
                   2709: @example
                   2710: : foo s" hello," s" world" ;
                   2711: foo .s
                   2712: type
                   2713: type
                   2714: @end example
                   2715: 
                   2716: @assignment
                   2717: @code{Emit ( c -- )} types @code{c} as character (not a number).
                   2718: Implement @code{type ( addr u -- )}.
                   2719: @endassignment
                   2720: 
1.66      anton    2721: Reference: @ref{Memory Blocks}.
                   2722: 
                   2723: 
1.84      pazsan   2724: @node Alignment Tutorial, Files Tutorial, Characters and Strings Tutorial, Tutorial
1.48      anton    2725: @section Alignment
1.66      anton    2726: @cindex alignment tutorial
                   2727: @cindex memory alignment tutorial
1.48      anton    2728: 
                   2729: On many processors cells have to be aligned in memory, if you want to
                   2730: access them with @code{@@} and @code{!} (and even if the processor does
1.62      crook    2731: not require alignment, access to aligned cells is faster).
1.48      anton    2732: 
                   2733: @code{Create} aligns @code{here} (i.e., the place where the next
                   2734: allocation will occur, and that the @code{create}d word points to).
                   2735: Likewise, the memory produced by @code{allocate} starts at an aligned
                   2736: address.  Adding a number of @code{cells} to an aligned address produces
                   2737: another aligned address.
                   2738: 
                   2739: However, address arithmetic involving @code{char+} and @code{chars} can
                   2740: create an address that is not cell-aligned.  @code{Aligned ( addr --
                   2741: a-addr )} produces the next aligned address:
                   2742: 
                   2743: @example
1.50      anton    2744: v3 char+ aligned .s @@ .
                   2745: v3 char+ .s @@ .
1.48      anton    2746: @end example
                   2747: 
                   2748: Similarly, @code{align} advances @code{here} to the next aligned
                   2749: address:
                   2750: 
                   2751: @example
                   2752: create v5 97 c,
                   2753: here .
                   2754: align here .
                   2755: 1000 ,
                   2756: @end example
                   2757: 
                   2758: Note that you should use aligned addresses even if your processor does
                   2759: not require them, if you want your program to be portable.
                   2760: 
1.66      anton    2761: Reference: @ref{Address arithmetic}.
                   2762: 
1.48      anton    2763: 
1.84      pazsan   2764: @node Files Tutorial, Interpretation and Compilation Semantics and Immediacy Tutorial, Alignment Tutorial, Tutorial
                   2765: @section Files
                   2766: @cindex files tutorial
                   2767: 
                   2768: This section gives a short introduction into how to use files inside
                   2769: Forth. It's broken up into five easy steps:
                   2770: 
                   2771: @enumerate 1
                   2772: @item Opened an ASCII text file for input
                   2773: @item Opened a file for output
                   2774: @item Read input file until string matched (or some other condition matched)
                   2775: @item Wrote some lines from input ( modified or not) to output
                   2776: @item Closed the files.
                   2777: @end enumerate
                   2778: 
                   2779: @subsection Open file for input
                   2780: 
                   2781: @example
                   2782: s" foo.in"  r/o open-file throw Value fd-in
                   2783: @end example
                   2784: 
                   2785: @subsection Create file for output
                   2786: 
                   2787: @example
                   2788: s" foo.out" w/o create-file throw Value fd-out
                   2789: @end example
                   2790: 
                   2791: The available file modes are r/o for read-only access, r/w for
                   2792: read-write access, and w/o for write-only access. You could open both
                   2793: files with r/w, too, if you like. All file words return error codes; for
                   2794: most applications, it's best to pass there error codes with @code{throw}
                   2795: to the outer error handler.
                   2796: 
                   2797: If you want words for opening and assigning, define them as follows:
                   2798: 
                   2799: @example
                   2800: 0 Value fd-in
                   2801: 0 Value fd-out
                   2802: : open-input ( addr u -- )  r/o open-file throw to fd-in ;
                   2803: : open-output ( addr u -- )  w/o create-file throw to fd-out ;
                   2804: @end example
                   2805: 
                   2806: Usage example:
                   2807: 
                   2808: @example
                   2809: s" foo.in" open-input
                   2810: s" foo.out" open-output
                   2811: @end example
                   2812: 
                   2813: @subsection Scan file for a particular line
                   2814: 
                   2815: @example
                   2816: 256 Constant max-line
                   2817: Create line-buffer  max-line 2 + allot
                   2818: 
                   2819: : scan-file ( addr u -- )
                   2820:   begin
                   2821:       line-buffer max-line fd-in read-line throw
                   2822:   while
                   2823:          >r 2dup line-buffer r> compare 0=
                   2824:      until
                   2825:   else
                   2826:      drop
                   2827:   then
                   2828:   2drop ;
                   2829: @end example
                   2830: 
                   2831: @code{read-line ( addr u1 fd -- u2 flag ior )} reads up to u1 bytes into
1.94      anton    2832: the buffer at addr, and returns the number of bytes read, a flag that is
                   2833: false when the end of file is reached, and an error code.
1.84      pazsan   2834: 
                   2835: @code{compare ( addr1 u1 addr2 u2 -- n )} compares two strings and
                   2836: returns zero if both strings are equal. It returns a positive number if
                   2837: the first string is lexically greater, a negative if the second string
                   2838: is lexically greater.
                   2839: 
                   2840: We haven't seen this loop here; it has two exits. Since the @code{while}
                   2841: exits with the number of bytes read on the stack, we have to clean up
                   2842: that separately; that's after the @code{else}.
                   2843: 
                   2844: Usage example:
                   2845: 
                   2846: @example
                   2847: s" The text I search is here" scan-file
                   2848: @end example
                   2849: 
                   2850: @subsection Copy input to output
                   2851: 
                   2852: @example
                   2853: : copy-file ( -- )
                   2854:   begin
                   2855:       line-buffer max-line fd-in read-line throw
                   2856:   while
                   2857:       line-buffer swap fd-out write-file throw
                   2858:   repeat ;
                   2859: @end example
                   2860: 
                   2861: @subsection Close files
                   2862: 
                   2863: @example
                   2864: fd-in close-file throw
                   2865: fd-out close-file throw
                   2866: @end example
                   2867: 
                   2868: Likewise, you can put that into definitions, too:
                   2869: 
                   2870: @example
                   2871: : close-input ( -- )  fd-in close-file throw ;
                   2872: : close-output ( -- )  fd-out close-file throw ;
                   2873: @end example
                   2874: 
                   2875: @assignment
                   2876: How could you modify @code{copy-file} so that it copies until a second line is
                   2877: matched? Can you write a program that extracts a section of a text file,
                   2878: given the line that starts and the line that terminates that section?
                   2879: @endassignment
                   2880: 
                   2881: @node Interpretation and Compilation Semantics and Immediacy Tutorial, Execution Tokens Tutorial, Files Tutorial, Tutorial
1.48      anton    2882: @section Interpretation and Compilation Semantics and Immediacy
1.66      anton    2883: @cindex semantics tutorial
                   2884: @cindex interpretation semantics tutorial
                   2885: @cindex compilation semantics tutorial
                   2886: @cindex immediate, tutorial
1.48      anton    2887: 
                   2888: When a word is compiled, it behaves differently from being interpreted.
                   2889: E.g., consider @code{+}:
                   2890: 
                   2891: @example
                   2892: 1 2 + .
                   2893: : foo + ;
                   2894: @end example
                   2895: 
                   2896: These two behaviours are known as compilation and interpretation
                   2897: semantics.  For normal words (e.g., @code{+}), the compilation semantics
                   2898: is to append the interpretation semantics to the currently defined word
                   2899: (@code{foo} in the example above).  I.e., when @code{foo} is executed
                   2900: later, the interpretation semantics of @code{+} (i.e., adding two
                   2901: numbers) will be performed.
                   2902: 
                   2903: However, there are words with non-default compilation semantics, e.g.,
                   2904: the control-flow words like @code{if}.  You can use @code{immediate} to
                   2905: change the compilation semantics of the last defined word to be equal to
                   2906: the interpretation semantics:
                   2907: 
                   2908: @example
                   2909: : [FOO] ( -- )
                   2910:  5 . ; immediate
                   2911: 
                   2912: [FOO]
                   2913: : bar ( -- )
                   2914:   [FOO] ;
                   2915: bar
                   2916: see bar
                   2917: @end example
                   2918: 
                   2919: Two conventions to mark words with non-default compilation semnatics are
                   2920: names with brackets (more frequently used) and to write them all in
                   2921: upper case (less frequently used).
                   2922: 
                   2923: In Gforth (and many other systems) you can also remove the
                   2924: interpretation semantics with @code{compile-only} (the compilation
                   2925: semantics is derived from the original interpretation semantics):
                   2926: 
                   2927: @example
                   2928: : flip ( -- )
                   2929:  6 . ; compile-only \ but not immediate
                   2930: flip
                   2931: 
                   2932: : flop ( -- )
                   2933:  flip ;
                   2934: flop
                   2935: @end example
                   2936: 
                   2937: In this example the interpretation semantics of @code{flop} is equal to
                   2938: the original interpretation semantics of @code{flip}.
                   2939: 
                   2940: The text interpreter has two states: in interpret state, it performs the
                   2941: interpretation semantics of words it encounters; in compile state, it
                   2942: performs the compilation semantics of these words.
                   2943: 
                   2944: Among other things, @code{:} switches into compile state, and @code{;}
                   2945: switches back to interpret state.  They contain the factors @code{]}
                   2946: (switch to compile state) and @code{[} (switch to interpret state), that
                   2947: do nothing but switch the state.
                   2948: 
                   2949: @example
                   2950: : xxx ( -- )
                   2951:   [ 5 . ]
                   2952: ;
                   2953: 
                   2954: xxx
                   2955: see xxx
                   2956: @end example
                   2957: 
                   2958: These brackets are also the source of the naming convention mentioned
                   2959: above.
                   2960: 
1.66      anton    2961: Reference: @ref{Interpretation and Compilation Semantics}.
                   2962: 
1.48      anton    2963: 
                   2964: @node Execution Tokens Tutorial, Exceptions Tutorial, Interpretation and Compilation Semantics and Immediacy Tutorial, Tutorial
                   2965: @section Execution Tokens
1.66      anton    2966: @cindex execution tokens tutorial
                   2967: @cindex XT tutorial
1.48      anton    2968: 
                   2969: @code{' word} gives you the execution token (XT) of a word.  The XT is a
                   2970: cell representing the interpretation semantics of a word.  You can
                   2971: execute this semantics with @code{execute}:
                   2972: 
                   2973: @example
                   2974: ' + .s
                   2975: 1 2 rot execute .
                   2976: @end example
                   2977: 
                   2978: The XT is similar to a function pointer in C.  However, parameter
                   2979: passing through the stack makes it a little more flexible:
                   2980: 
                   2981: @example
                   2982: : map-array ( ... addr u xt -- ... )
1.50      anton    2983: \ executes xt ( ... x -- ... ) for every element of the array starting
                   2984: \ at addr and containing u elements
1.48      anton    2985:   @{ xt @}
                   2986:   cells over + swap ?do
1.50      anton    2987:     i @@ xt execute
1.48      anton    2988:   1 cells +loop ;
                   2989: 
                   2990: create a 3 , 4 , 2 , -1 , 4 ,
                   2991: a 5 ' . map-array .s
                   2992: 0 a 5 ' + map-array .
                   2993: s" max-n" environment? drop .s
                   2994: a 5 ' min map-array .
                   2995: @end example
                   2996: 
                   2997: You can use map-array with the XTs of words that consume one element
                   2998: more than they produce.  In theory you can also use it with other XTs,
                   2999: but the stack effect then depends on the size of the array, which is
                   3000: hard to understand.
                   3001: 
1.51      pazsan   3002: Since XTs are cell-sized, you can store them in memory and manipulate
                   3003: them on the stack like other cells.  You can also compile the XT into a
1.48      anton    3004: word with @code{compile,}:
                   3005: 
                   3006: @example
                   3007: : foo1 ( n1 n2 -- n )
                   3008:    [ ' + compile, ] ;
                   3009: see foo
                   3010: @end example
                   3011: 
                   3012: This is non-standard, because @code{compile,} has no compilation
                   3013: semantics in the standard, but it works in good Forth systems.  For the
                   3014: broken ones, use
                   3015: 
                   3016: @example
                   3017: : [compile,] compile, ; immediate
                   3018: 
                   3019: : foo1 ( n1 n2 -- n )
                   3020:    [ ' + ] [compile,] ;
                   3021: see foo
                   3022: @end example
                   3023: 
                   3024: @code{'} is a word with default compilation semantics; it parses the
                   3025: next word when its interpretation semantics are executed, not during
                   3026: compilation:
                   3027: 
                   3028: @example
                   3029: : foo ( -- xt )
                   3030:   ' ;
                   3031: see foo
                   3032: : bar ( ... "word" -- ... )
                   3033:   ' execute ;
                   3034: see bar
1.60      anton    3035: 1 2 bar + .
1.48      anton    3036: @end example
                   3037: 
                   3038: You often want to parse a word during compilation and compile its XT so
                   3039: it will be pushed on the stack at run-time.  @code{[']} does this:
                   3040: 
                   3041: @example
                   3042: : xt-+ ( -- xt )
                   3043:   ['] + ;
                   3044: see xt-+
                   3045: 1 2 xt-+ execute .
                   3046: @end example
                   3047: 
                   3048: Many programmers tend to see @code{'} and the word it parses as one
                   3049: unit, and expect it to behave like @code{[']} when compiled, and are
                   3050: confused by the actual behaviour.  If you are, just remember that the
                   3051: Forth system just takes @code{'} as one unit and has no idea that it is
                   3052: a parsing word (attempts to convenience programmers in this issue have
                   3053: usually resulted in even worse pitfalls, see
1.66      anton    3054: @uref{http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz,
                   3055: @code{State}-smartness---Why it is evil and How to Exorcise it}).
1.48      anton    3056: 
                   3057: Note that the state of the interpreter does not come into play when
1.51      pazsan   3058: creating and executing XTs.  I.e., even when you execute @code{'} in
1.48      anton    3059: compile state, it still gives you the interpretation semantics.  And
                   3060: whatever that state is, @code{execute} performs the semantics
1.66      anton    3061: represented by the XT (i.e., for XTs produced with @code{'} the
                   3062: interpretation semantics).
                   3063: 
                   3064: Reference: @ref{Tokens for Words}.
1.48      anton    3065: 
                   3066: 
                   3067: @node Exceptions Tutorial, Defining Words Tutorial, Execution Tokens Tutorial, Tutorial
                   3068: @section Exceptions
1.66      anton    3069: @cindex exceptions tutorial
1.48      anton    3070: 
                   3071: @code{throw ( n -- )} causes an exception unless n is zero.
                   3072: 
                   3073: @example
                   3074: 100 throw .s
                   3075: 0 throw .s
                   3076: @end example
                   3077: 
                   3078: @code{catch ( ... xt -- ... n )} behaves similar to @code{execute}, but
                   3079: it catches exceptions and pushes the number of the exception on the
                   3080: stack (or 0, if the xt executed without exception).  If there was an
                   3081: exception, the stacks have the same depth as when entering @code{catch}:
                   3082: 
                   3083: @example
                   3084: .s
                   3085: 3 0 ' / catch .s
                   3086: 3 2 ' / catch .s
                   3087: @end example
                   3088: 
                   3089: @assignment
                   3090: Try the same with @code{execute} instead of @code{catch}.
                   3091: @endassignment
                   3092: 
                   3093: @code{Throw} always jumps to the dynamically next enclosing
                   3094: @code{catch}, even if it has to leave several call levels to achieve
                   3095: this:
                   3096: 
                   3097: @example
                   3098: : foo 100 throw ;
                   3099: : foo1 foo ." after foo" ;
1.51      pazsan   3100: : bar ['] foo1 catch ;
1.60      anton    3101: bar .
1.48      anton    3102: @end example
                   3103: 
                   3104: It is often important to restore a value upon leaving a definition, even
                   3105: if the definition is left through an exception.  You can ensure this
                   3106: like this:
                   3107: 
                   3108: @example
                   3109: : ...
                   3110:    save-x
1.51      pazsan   3111:    ['] word-changing-x catch ( ... n )
1.48      anton    3112:    restore-x
                   3113:    ( ... n ) throw ;
                   3114: @end example
                   3115: 
1.55      anton    3116: Gforth provides an alternative syntax in addition to @code{catch}:
1.48      anton    3117: @code{try ... recover ... endtry}.  If the code between @code{try} and
                   3118: @code{recover} has an exception, the stack depths are restored, the
                   3119: exception number is pushed on the stack, and the code between
                   3120: @code{recover} and @code{endtry} is performed.  E.g., the definition for
                   3121: @code{catch} is
                   3122: 
                   3123: @example
                   3124: : catch ( x1 .. xn xt -- y1 .. ym 0 / z1 .. zn error ) \ exception
                   3125:   try
                   3126:     execute 0
                   3127:   recover
                   3128:     nip
                   3129:   endtry ;
                   3130: @end example
                   3131: 
                   3132: The equivalent to the restoration code above is
                   3133: 
                   3134: @example
                   3135: : ...
                   3136:   save-x
                   3137:   try
1.92      anton    3138:     word-changing-x 0
                   3139:   recover endtry
1.48      anton    3140:   restore-x
                   3141:   throw ;
                   3142: @end example
                   3143: 
1.92      anton    3144: This works if @code{word-changing-x} does not change the stack depth,
                   3145: otherwise you should add some code between @code{recover} and
                   3146: @code{endtry} to balance the stack.
1.48      anton    3147: 
1.66      anton    3148: Reference: @ref{Exception Handling}.
                   3149: 
1.48      anton    3150: 
                   3151: @node Defining Words Tutorial, Arrays and Records Tutorial, Exceptions Tutorial, Tutorial
                   3152: @section Defining Words
1.66      anton    3153: @cindex defining words tutorial
                   3154: @cindex does> tutorial
                   3155: @cindex create...does> tutorial
                   3156: 
                   3157: @c before semantics?
1.48      anton    3158: 
                   3159: @code{:}, @code{create}, and @code{variable} are definition words: They
                   3160: define other words.  @code{Constant} is another definition word:
                   3161: 
                   3162: @example
                   3163: 5 constant foo
                   3164: foo .
                   3165: @end example
                   3166: 
                   3167: You can also use the prefixes @code{2} (double-cell) and @code{f}
                   3168: (floating point) with @code{variable} and @code{constant}.
                   3169: 
                   3170: You can also define your own defining words.  E.g.:
                   3171: 
                   3172: @example
                   3173: : variable ( "name" -- )
                   3174:   create 0 , ;
                   3175: @end example
                   3176: 
                   3177: You can also define defining words that create words that do something
                   3178: other than just producing their address:
                   3179: 
                   3180: @example
                   3181: : constant ( n "name" -- )
                   3182:   create ,
                   3183: does> ( -- n )
1.50      anton    3184:   ( addr ) @@ ;
1.48      anton    3185: 
                   3186: 5 constant foo
                   3187: foo .
                   3188: @end example
                   3189: 
                   3190: The definition of @code{constant} above ends at the @code{does>}; i.e.,
                   3191: @code{does>} replaces @code{;}, but it also does something else: It
                   3192: changes the last defined word such that it pushes the address of the
                   3193: body of the word and then performs the code after the @code{does>}
                   3194: whenever it is called.
                   3195: 
                   3196: In the example above, @code{constant} uses @code{,} to store 5 into the
                   3197: body of @code{foo}.  When @code{foo} executes, it pushes the address of
                   3198: the body onto the stack, then (in the code after the @code{does>})
                   3199: fetches the 5 from there.
                   3200: 
                   3201: The stack comment near the @code{does>} reflects the stack effect of the
                   3202: defined word, not the stack effect of the code after the @code{does>}
                   3203: (the difference is that the code expects the address of the body that
                   3204: the stack comment does not show).
                   3205: 
                   3206: You can use these definition words to do factoring in cases that involve
                   3207: (other) definition words.  E.g., a field offset is always added to an
                   3208: address.  Instead of defining
                   3209: 
                   3210: @example
                   3211: 2 cells constant offset-field1
                   3212: @end example
                   3213: 
                   3214: and using this like
                   3215: 
                   3216: @example
                   3217: ( addr ) offset-field1 +
                   3218: @end example
                   3219: 
                   3220: you can define a definition word
                   3221: 
                   3222: @example
                   3223: : simple-field ( n "name" -- )
                   3224:   create ,
                   3225: does> ( n1 -- n1+n )
1.50      anton    3226:   ( addr ) @@ + ;
1.48      anton    3227: @end example
1.21      crook    3228: 
1.48      anton    3229: Definition and use of field offsets now look like this:
1.21      crook    3230: 
1.48      anton    3231: @example
                   3232: 2 cells simple-field field1
1.60      anton    3233: create mystruct 4 cells allot
                   3234: mystruct .s field1 .s drop
1.48      anton    3235: @end example
1.21      crook    3236: 
1.48      anton    3237: If you want to do something with the word without performing the code
                   3238: after the @code{does>}, you can access the body of a @code{create}d word
                   3239: with @code{>body ( xt -- addr )}:
1.21      crook    3240: 
1.48      anton    3241: @example
                   3242: : value ( n "name" -- )
                   3243:   create ,
                   3244: does> ( -- n1 )
1.50      anton    3245:   @@ ;
1.48      anton    3246: : to ( n "name" -- )
                   3247:   ' >body ! ;
1.21      crook    3248: 
1.48      anton    3249: 5 value foo
                   3250: foo .
                   3251: 7 to foo
                   3252: foo .
                   3253: @end example
1.21      crook    3254: 
1.48      anton    3255: @assignment
                   3256: Define @code{defer ( "name" -- )}, which creates a word that stores an
                   3257: XT (at the start the XT of @code{abort}), and upon execution
                   3258: @code{execute}s the XT.  Define @code{is ( xt "name" -- )} that stores
                   3259: @code{xt} into @code{name}, a word defined with @code{defer}.  Indirect
                   3260: recursion is one application of @code{defer}.
                   3261: @endassignment
1.29      crook    3262: 
1.66      anton    3263: Reference: @ref{User-defined Defining Words}.
                   3264: 
                   3265: 
1.48      anton    3266: @node Arrays and Records Tutorial, POSTPONE Tutorial, Defining Words Tutorial, Tutorial
                   3267: @section Arrays and Records
1.66      anton    3268: @cindex arrays tutorial
                   3269: @cindex records tutorial
                   3270: @cindex structs tutorial
1.29      crook    3271: 
1.48      anton    3272: Forth has no standard words for defining data structures such as arrays
                   3273: and records (structs in C terminology), but you can build them yourself
                   3274: based on address arithmetic.  You can also define words for defining
                   3275: arrays and records (@pxref{Defining Words Tutorial,, Defining Words}).
1.29      crook    3276: 
1.48      anton    3277: One of the first projects a Forth newcomer sets out upon when learning
                   3278: about defining words is an array defining word (possibly for
                   3279: n-dimensional arrays).  Go ahead and do it, I did it, too; you will
                   3280: learn something from it.  However, don't be disappointed when you later
                   3281: learn that you have little use for these words (inappropriate use would
                   3282: be even worse).  I have not yet found a set of useful array words yet;
                   3283: the needs are just too diverse, and named, global arrays (the result of
                   3284: naive use of defining words) are often not flexible enough (e.g.,
1.66      anton    3285: consider how to pass them as parameters).  Another such project is a set
                   3286: of words to help dealing with strings.
1.29      crook    3287: 
1.48      anton    3288: On the other hand, there is a useful set of record words, and it has
                   3289: been defined in @file{compat/struct.fs}; these words are predefined in
                   3290: Gforth.  They are explained in depth elsewhere in this manual (see
                   3291: @pxref{Structures}).  The @code{simple-field} example above is
                   3292: simplified variant of fields in this package.
1.21      crook    3293: 
                   3294: 
1.48      anton    3295: @node POSTPONE Tutorial, Literal Tutorial, Arrays and Records Tutorial, Tutorial
                   3296: @section @code{POSTPONE}
1.66      anton    3297: @cindex postpone tutorial
1.21      crook    3298: 
1.48      anton    3299: You can compile the compilation semantics (instead of compiling the
                   3300: interpretation semantics) of a word with @code{POSTPONE}:
1.21      crook    3301: 
1.48      anton    3302: @example
                   3303: : MY-+ ( Compilation: -- ; Run-time of compiled code: n1 n2 -- n )
1.51      pazsan   3304:  POSTPONE + ; immediate
1.48      anton    3305: : foo ( n1 n2 -- n )
                   3306:  MY-+ ;
                   3307: 1 2 foo .
                   3308: see foo
                   3309: @end example
1.21      crook    3310: 
1.48      anton    3311: During the definition of @code{foo} the text interpreter performs the
                   3312: compilation semantics of @code{MY-+}, which performs the compilation
                   3313: semantics of @code{+}, i.e., it compiles @code{+} into @code{foo}.
                   3314: 
                   3315: This example also displays separate stack comments for the compilation
                   3316: semantics and for the stack effect of the compiled code.  For words with
                   3317: default compilation semantics these stack effects are usually not
                   3318: displayed; the stack effect of the compilation semantics is always
                   3319: @code{( -- )} for these words, the stack effect for the compiled code is
                   3320: the stack effect of the interpretation semantics.
                   3321: 
                   3322: Note that the state of the interpreter does not come into play when
                   3323: performing the compilation semantics in this way.  You can also perform
                   3324: it interpretively, e.g.:
                   3325: 
                   3326: @example
                   3327: : foo2 ( n1 n2 -- n )
                   3328:  [ MY-+ ] ;
                   3329: 1 2 foo .
                   3330: see foo
                   3331: @end example
1.21      crook    3332: 
1.48      anton    3333: However, there are some broken Forth systems where this does not always
1.62      crook    3334: work, and therefore this practice was been declared non-standard in
1.48      anton    3335: 1999.
                   3336: @c !! repair.fs
                   3337: 
                   3338: Here is another example for using @code{POSTPONE}:
1.44      crook    3339: 
1.48      anton    3340: @example
                   3341: : MY-- ( Compilation: -- ; Run-time of compiled code: n1 n2 -- n )
                   3342:  POSTPONE negate POSTPONE + ; immediate compile-only
                   3343: : bar ( n1 n2 -- n )
                   3344:   MY-- ;
                   3345: 2 1 bar .
                   3346: see bar
                   3347: @end example
1.21      crook    3348: 
1.48      anton    3349: You can define @code{ENDIF} in this way:
1.21      crook    3350: 
1.48      anton    3351: @example
                   3352: : ENDIF ( Compilation: orig -- )
                   3353:   POSTPONE then ; immediate
                   3354: @end example
1.21      crook    3355: 
1.48      anton    3356: @assignment
                   3357: Write @code{MY-2DUP} that has compilation semantics equivalent to
                   3358: @code{2dup}, but compiles @code{over over}.
                   3359: @endassignment
1.29      crook    3360: 
1.66      anton    3361: @c !! @xref{Macros} for reference
                   3362: 
                   3363: 
1.48      anton    3364: @node Literal Tutorial, Advanced macros Tutorial, POSTPONE Tutorial, Tutorial
                   3365: @section @code{Literal}
1.66      anton    3366: @cindex literal tutorial
1.29      crook    3367: 
1.48      anton    3368: You cannot @code{POSTPONE} numbers:
1.21      crook    3369: 
1.48      anton    3370: @example
                   3371: : [FOO] POSTPONE 500 ; immediate
1.21      crook    3372: @end example
                   3373: 
1.48      anton    3374: Instead, you can use @code{LITERAL (compilation: n --; run-time: -- n )}:
1.29      crook    3375: 
1.48      anton    3376: @example
                   3377: : [FOO] ( compilation: --; run-time: -- n )
                   3378:   500 POSTPONE literal ; immediate
1.29      crook    3379: 
1.60      anton    3380: : flip [FOO] ;
1.48      anton    3381: flip .
                   3382: see flip
                   3383: @end example
1.29      crook    3384: 
1.48      anton    3385: @code{LITERAL} consumes a number at compile-time (when it's compilation
                   3386: semantics are executed) and pushes it at run-time (when the code it
                   3387: compiled is executed).  A frequent use of @code{LITERAL} is to compile a
                   3388: number computed at compile time into the current word:
1.29      crook    3389: 
1.48      anton    3390: @example
                   3391: : bar ( -- n )
                   3392:   [ 2 2 + ] literal ;
                   3393: see bar
                   3394: @end example
1.29      crook    3395: 
1.48      anton    3396: @assignment
                   3397: Write @code{]L} which allows writing the example above as @code{: bar (
                   3398: -- n ) [ 2 2 + ]L ;}
                   3399: @endassignment
                   3400: 
1.66      anton    3401: @c !! @xref{Macros} for reference
                   3402: 
1.48      anton    3403: 
                   3404: @node Advanced macros Tutorial, Compilation Tokens Tutorial, Literal Tutorial, Tutorial
                   3405: @section Advanced macros
1.66      anton    3406: @cindex macros, advanced tutorial
                   3407: @cindex run-time code generation, tutorial
1.48      anton    3408: 
1.66      anton    3409: Reconsider @code{map-array} from @ref{Execution Tokens Tutorial,,
                   3410: Execution Tokens}.  It frequently performs @code{execute}, a relatively
                   3411: expensive operation in some Forth implementations.  You can use
1.48      anton    3412: @code{compile,} and @code{POSTPONE} to eliminate these @code{execute}s
                   3413: and produce a word that contains the word to be performed directly:
                   3414: 
                   3415: @c use ]] ... [[
                   3416: @example
                   3417: : compile-map-array ( compilation: xt -- ; run-time: ... addr u -- ... )
                   3418: \ at run-time, execute xt ( ... x -- ... ) for each element of the
                   3419: \ array beginning at addr and containing u elements
                   3420:   @{ xt @}
                   3421:   POSTPONE cells POSTPONE over POSTPONE + POSTPONE swap POSTPONE ?do
1.50      anton    3422:     POSTPONE i POSTPONE @@ xt compile,
1.48      anton    3423:   1 cells POSTPONE literal POSTPONE +loop ;
                   3424: 
                   3425: : sum-array ( addr u -- n )
                   3426:  0 rot rot [ ' + compile-map-array ] ;
                   3427: see sum-array
                   3428: a 5 sum-array .
                   3429: @end example
                   3430: 
                   3431: You can use the full power of Forth for generating the code; here's an
                   3432: example where the code is generated in a loop:
                   3433: 
                   3434: @example
                   3435: : compile-vmul-step ( compilation: n --; run-time: n1 addr1 -- n2 addr2 )
                   3436: \ n2=n1+(addr1)*n, addr2=addr1+cell
1.50      anton    3437:   POSTPONE tuck POSTPONE @@
1.48      anton    3438:   POSTPONE literal POSTPONE * POSTPONE +
                   3439:   POSTPONE swap POSTPONE cell+ ;
                   3440: 
                   3441: : compile-vmul ( compilation: addr1 u -- ; run-time: addr2 -- n )
1.51      pazsan   3442: \ n=v1*v2 (inner product), where the v_i are represented as addr_i u
1.48      anton    3443:   0 postpone literal postpone swap
                   3444:   [ ' compile-vmul-step compile-map-array ]
                   3445:   postpone drop ;
                   3446: see compile-vmul
                   3447: 
                   3448: : a-vmul ( addr -- n )
1.51      pazsan   3449: \ n=a*v, where v is a vector that's as long as a and starts at addr
1.48      anton    3450:  [ a 5 compile-vmul ] ;
                   3451: see a-vmul
                   3452: a a-vmul .
                   3453: @end example
                   3454: 
                   3455: This example uses @code{compile-map-array} to show off, but you could
1.66      anton    3456: also use @code{map-array} instead (try it now!).
1.48      anton    3457: 
                   3458: You can use this technique for efficient multiplication of large
                   3459: matrices.  In matrix multiplication, you multiply every line of one
                   3460: matrix with every column of the other matrix.  You can generate the code
                   3461: for one line once, and use it for every column.  The only downside of
                   3462: this technique is that it is cumbersome to recover the memory consumed
                   3463: by the generated code when you are done (and in more complicated cases
                   3464: it is not possible portably).
                   3465: 
1.66      anton    3466: @c !! @xref{Macros} for reference
                   3467: 
                   3468: 
1.48      anton    3469: @node Compilation Tokens Tutorial, Wordlists and Search Order Tutorial, Advanced macros Tutorial, Tutorial
                   3470: @section Compilation Tokens
1.66      anton    3471: @cindex compilation tokens, tutorial
                   3472: @cindex CT, tutorial
1.48      anton    3473: 
                   3474: This section is Gforth-specific.  You can skip it.
                   3475: 
                   3476: @code{' word compile,} compiles the interpretation semantics.  For words
                   3477: with default compilation semantics this is the same as performing the
                   3478: compilation semantics.  To represent the compilation semantics of other
                   3479: words (e.g., words like @code{if} that have no interpretation
                   3480: semantics), Gforth has the concept of a compilation token (CT,
                   3481: consisting of two cells), and words @code{comp'} and @code{[comp']}.
                   3482: You can perform the compilation semantics represented by a CT with
                   3483: @code{execute}:
1.29      crook    3484: 
1.48      anton    3485: @example
                   3486: : foo2 ( n1 n2 -- n )
                   3487:    [ comp' + execute ] ;
                   3488: see foo
                   3489: @end example
1.29      crook    3490: 
1.48      anton    3491: You can compile the compilation semantics represented by a CT with
                   3492: @code{postpone,}:
1.30      anton    3493: 
1.48      anton    3494: @example
                   3495: : foo3 ( -- )
                   3496:   [ comp' + postpone, ] ;
                   3497: see foo3
                   3498: @end example
1.30      anton    3499: 
1.51      pazsan   3500: @code{[ comp' word postpone, ]} is equivalent to @code{POSTPONE word}.
1.48      anton    3501: @code{comp'} is particularly useful for words that have no
                   3502: interpretation semantics:
1.29      crook    3503: 
1.30      anton    3504: @example
1.48      anton    3505: ' if
1.60      anton    3506: comp' if .s 2drop
1.30      anton    3507: @end example
                   3508: 
1.66      anton    3509: Reference: @ref{Tokens for Words}.
                   3510: 
1.29      crook    3511: 
1.48      anton    3512: @node Wordlists and Search Order Tutorial,  , Compilation Tokens Tutorial, Tutorial
                   3513: @section Wordlists and Search Order
1.66      anton    3514: @cindex wordlists tutorial
                   3515: @cindex search order, tutorial
1.48      anton    3516: 
                   3517: The dictionary is not just a memory area that allows you to allocate
                   3518: memory with @code{allot}, it also contains the Forth words, arranged in
                   3519: several wordlists.  When searching for a word in a wordlist,
                   3520: conceptually you start searching at the youngest and proceed towards
                   3521: older words (in reality most systems nowadays use hash-tables); i.e., if
                   3522: you define a word with the same name as an older word, the new word
                   3523: shadows the older word.
                   3524: 
                   3525: Which wordlists are searched in which order is determined by the search
                   3526: order.  You can display the search order with @code{order}.  It displays
                   3527: first the search order, starting with the wordlist searched first, then
                   3528: it displays the wordlist that will contain newly defined words.
1.21      crook    3529: 
1.48      anton    3530: You can create a new, empty wordlist with @code{wordlist ( -- wid )}:
1.21      crook    3531: 
1.48      anton    3532: @example
                   3533: wordlist constant mywords
                   3534: @end example
1.21      crook    3535: 
1.48      anton    3536: @code{Set-current ( wid -- )} sets the wordlist that will contain newly
                   3537: defined words (the @emph{current} wordlist):
1.21      crook    3538: 
1.48      anton    3539: @example
                   3540: mywords set-current
                   3541: order
                   3542: @end example
1.26      crook    3543: 
1.48      anton    3544: Gforth does not display a name for the wordlist in @code{mywords}
                   3545: because this wordlist was created anonymously with @code{wordlist}.
1.21      crook    3546: 
1.48      anton    3547: You can get the current wordlist with @code{get-current ( -- wid)}.  If
                   3548: you want to put something into a specific wordlist without overall
                   3549: effect on the current wordlist, this typically looks like this:
1.21      crook    3550: 
1.48      anton    3551: @example
                   3552: get-current mywords set-current ( wid )
                   3553: create someword
                   3554: ( wid ) set-current
                   3555: @end example
1.21      crook    3556: 
1.48      anton    3557: You can write the search order with @code{set-order ( wid1 .. widn n --
                   3558: )} and read it with @code{get-order ( -- wid1 .. widn n )}.  The first
                   3559: searched wordlist is topmost.
1.21      crook    3560: 
1.48      anton    3561: @example
                   3562: get-order mywords swap 1+ set-order
                   3563: order
                   3564: @end example
1.21      crook    3565: 
1.48      anton    3566: Yes, the order of wordlists in the output of @code{order} is reversed
                   3567: from stack comments and the output of @code{.s} and thus unintuitive.
1.21      crook    3568: 
1.48      anton    3569: @assignment
                   3570: Define @code{>order ( wid -- )} with adds @code{wid} as first searched
                   3571: wordlist to the search order.  Define @code{previous ( -- )}, which
                   3572: removes the first searched wordlist from the search order.  Experiment
                   3573: with boundary conditions (you will see some crashes or situations that
                   3574: are hard or impossible to leave).
                   3575: @endassignment
1.21      crook    3576: 
1.48      anton    3577: The search order is a powerful foundation for providing features similar
                   3578: to Modula-2 modules and C++ namespaces.  However, trying to modularize
                   3579: programs in this way has disadvantages for debugging and reuse/factoring
                   3580: that overcome the advantages in my experience (I don't do huge projects,
1.55      anton    3581: though).  These disadvantages are not so clear in other
1.82      anton    3582: languages/programming environments, because these languages are not so
1.48      anton    3583: strong in debugging and reuse.
1.21      crook    3584: 
1.66      anton    3585: @c !! example
                   3586: 
                   3587: Reference: @ref{Word Lists}.
1.21      crook    3588: 
1.29      crook    3589: @c ******************************************************************
1.48      anton    3590: @node Introduction, Words, Tutorial, Top
1.29      crook    3591: @comment node-name,     next,           previous, up
                   3592: @chapter An Introduction to ANS Forth
                   3593: @cindex Forth - an introduction
1.21      crook    3594: 
1.83      anton    3595: The difference of this chapter from the Tutorial (@pxref{Tutorial}) is
                   3596: that it is slower-paced in its examples, but uses them to dive deep into
                   3597: explaining Forth internals (not covered by the Tutorial).  Apart from
                   3598: that, this chapter covers far less material.  It is suitable for reading
                   3599: without using a computer.
                   3600: 
1.29      crook    3601: The primary purpose of this manual is to document Gforth. However, since
                   3602: Forth is not a widely-known language and there is a lack of up-to-date
                   3603: teaching material, it seems worthwhile to provide some introductory
1.49      anton    3604: material.  For other sources of Forth-related
                   3605: information, see @ref{Forth-related information}.
1.21      crook    3606: 
1.29      crook    3607: The examples in this section should work on any ANS Forth; the
                   3608: output shown was produced using Gforth. Each example attempts to
                   3609: reproduce the exact output that Gforth produces. If you try out the
                   3610: examples (and you should), what you should type is shown @kbd{like this}
                   3611: and Gforth's response is shown @code{like this}. The single exception is
1.30      anton    3612: that, where the example shows @key{RET} it means that you should
1.29      crook    3613: press the ``carriage return'' key. Unfortunately, some output formats for
                   3614: this manual cannot show the difference between @kbd{this} and
                   3615: @code{this} which will make trying out the examples harder (but not
                   3616: impossible).
1.21      crook    3617: 
1.29      crook    3618: Forth is an unusual language. It provides an interactive development
                   3619: environment which includes both an interpreter and compiler. Forth
                   3620: programming style encourages you to break a problem down into many
                   3621: @cindex factoring
                   3622: small fragments (@dfn{factoring}), and then to develop and test each
                   3623: fragment interactively. Forth advocates assert that breaking the
                   3624: edit-compile-test cycle used by conventional programming languages can
                   3625: lead to great productivity improvements.
1.21      crook    3626: 
1.29      crook    3627: @menu
1.67      anton    3628: * Introducing the Text Interpreter::  
                   3629: * Stacks and Postfix notation::  
                   3630: * Your first definition::       
                   3631: * How does that work?::         
                   3632: * Forth is written in Forth::   
                   3633: * Review - elements of a Forth system::  
                   3634: * Where to go next::            
                   3635: * Exercises::                   
1.29      crook    3636: @end menu
1.21      crook    3637: 
1.29      crook    3638: @comment ----------------------------------------------
                   3639: @node Introducing the Text Interpreter, Stacks and Postfix notation, Introduction, Introduction
                   3640: @section Introducing the Text Interpreter
                   3641: @cindex text interpreter
                   3642: @cindex outer interpreter
1.21      crook    3643: 
1.30      anton    3644: @c IMO this is too detailed and the pace is too slow for
                   3645: @c an introduction.  If you know German, take a look at
                   3646: @c http://www.complang.tuwien.ac.at/anton/lvas/skriptum-stack.html 
                   3647: @c to see how I do it - anton 
                   3648: 
1.44      crook    3649: @c nac-> Where I have accepted your comments 100% and modified the text
                   3650: @c accordingly, I have deleted your comments. Elsewhere I have added a
                   3651: @c response like this to attempt to rationalise what I have done. Of
                   3652: @c course, this is a very clumsy mechanism for something that would be
                   3653: @c done far more efficiently over a beer. Please delete any dialogue
                   3654: @c you consider closed.
                   3655: 
1.29      crook    3656: When you invoke the Forth image, you will see a startup banner printed
                   3657: and nothing else (if you have Gforth installed on your system, try
1.30      anton    3658: invoking it now, by typing @kbd{gforth@key{RET}}). Forth is now running
1.29      crook    3659: its command line interpreter, which is called the @dfn{Text Interpreter}
                   3660: (also known as the @dfn{Outer Interpreter}).  (You will learn a lot
1.49      anton    3661: about the text interpreter as you read through this chapter, for more
                   3662: detail @pxref{The Text Interpreter}).
1.21      crook    3663: 
1.29      crook    3664: Although it's not obvious, Forth is actually waiting for your
1.30      anton    3665: input. Type a number and press the @key{RET} key:
1.21      crook    3666: 
1.26      crook    3667: @example
1.30      anton    3668: @kbd{45@key{RET}}  ok
1.26      crook    3669: @end example
1.21      crook    3670: 
1.29      crook    3671: Rather than give you a prompt to invite you to input something, the text
                   3672: interpreter prints a status message @i{after} it has processed a line
                   3673: of input. The status message in this case (``@code{ ok}'' followed by
                   3674: carriage-return) indicates that the text interpreter was able to process
                   3675: all of your input successfully. Now type something illegal:
                   3676: 
                   3677: @example
1.30      anton    3678: @kbd{qwer341@key{RET}}
1.29      crook    3679: :1: Undefined word
                   3680: qwer341
                   3681: ^^^^^^^
                   3682: $400D2BA8 Bounce
                   3683: $400DBDA8 no.extensions
                   3684: @end example
1.23      crook    3685: 
1.29      crook    3686: The exact text, other than the ``Undefined word'' may differ slightly on
                   3687: your system, but the effect is the same; when the text interpreter
                   3688: detects an error, it discards any remaining text on a line, resets
1.49      anton    3689: certain internal state and prints an error message. For a detailed description of error messages see @ref{Error
                   3690: messages}.
1.23      crook    3691: 
1.29      crook    3692: The text interpreter waits for you to press carriage-return, and then
                   3693: processes your input line. Starting at the beginning of the line, it
                   3694: breaks the line into groups of characters separated by spaces. For each
                   3695: group of characters in turn, it makes two attempts to do something:
1.23      crook    3696: 
1.29      crook    3697: @itemize @bullet
                   3698: @item
1.44      crook    3699: @cindex name dictionary
1.29      crook    3700: It tries to treat it as a command. It does this by searching a @dfn{name
                   3701: dictionary}. If the group of characters matches an entry in the name
                   3702: dictionary, the name dictionary provides the text interpreter with
                   3703: information that allows the text interpreter perform some actions. In
                   3704: Forth jargon, we say that the group
                   3705: @cindex word
                   3706: @cindex definition
                   3707: @cindex execution token
                   3708: @cindex xt
                   3709: of characters names a @dfn{word}, that the dictionary search returns an
                   3710: @dfn{execution token (xt)} corresponding to the @dfn{definition} of the
                   3711: word, and that the text interpreter executes the xt. Often, the terms
                   3712: @dfn{word} and @dfn{definition} are used interchangeably.
                   3713: @item
                   3714: If the text interpreter fails to find a match in the name dictionary, it
                   3715: tries to treat the group of characters as a number in the current number
                   3716: base (when you start up Forth, the current number base is base 10). If
                   3717: the group of characters legitimately represents a number, the text
                   3718: interpreter pushes the number onto a stack (we'll learn more about that
                   3719: in the next section).
                   3720: @end itemize
1.23      crook    3721: 
1.29      crook    3722: If the text interpreter is unable to do either of these things with any
                   3723: group of characters, it discards the group of characters and the rest of
                   3724: the line, then prints an error message. If the text interpreter reaches
                   3725: the end of the line without error, it prints the status message ``@code{ ok}''
                   3726: followed by carriage-return.
1.21      crook    3727: 
1.29      crook    3728: This is the simplest command we can give to the text interpreter:
1.23      crook    3729: 
                   3730: @example
1.30      anton    3731: @key{RET}  ok
1.23      crook    3732: @end example
1.21      crook    3733: 
1.29      crook    3734: The text interpreter did everything we asked it to do (nothing) without
                   3735: an error, so it said that everything is ``@code{ ok}''. Try a slightly longer
                   3736: command:
1.21      crook    3737: 
1.23      crook    3738: @example
1.30      anton    3739: @kbd{12 dup fred dup@key{RET}}
1.29      crook    3740: :1: Undefined word
                   3741: 12 dup fred dup
                   3742:        ^^^^
                   3743: $400D2BA8 Bounce
                   3744: $400DBDA8 no.extensions
1.23      crook    3745: @end example
1.21      crook    3746: 
1.29      crook    3747: When you press the carriage-return key, the text interpreter starts to
                   3748: work its way along the line:
1.21      crook    3749: 
1.29      crook    3750: @itemize @bullet
                   3751: @item
                   3752: When it gets to the space after the @code{2}, it takes the group of
                   3753: characters @code{12} and looks them up in the name
                   3754: dictionary@footnote{We can't tell if it found them or not, but assume
                   3755: for now that it did not}. There is no match for this group of characters
                   3756: in the name dictionary, so it tries to treat them as a number. It is
                   3757: able to do this successfully, so it puts the number, 12, ``on the stack''
                   3758: (whatever that means).
                   3759: @item
                   3760: The text interpreter resumes scanning the line and gets the next group
                   3761: of characters, @code{dup}. It looks it up in the name dictionary and
                   3762: (you'll have to take my word for this) finds it, and executes the word
                   3763: @code{dup} (whatever that means).
                   3764: @item
                   3765: Once again, the text interpreter resumes scanning the line and gets the
                   3766: group of characters @code{fred}. It looks them up in the name
                   3767: dictionary, but can't find them. It tries to treat them as a number, but
                   3768: they don't represent any legal number.
                   3769: @end itemize
1.21      crook    3770: 
1.29      crook    3771: At this point, the text interpreter gives up and prints an error
                   3772: message. The error message shows exactly how far the text interpreter
                   3773: got in processing the line. In particular, it shows that the text
                   3774: interpreter made no attempt to do anything with the final character
                   3775: group, @code{dup}, even though we have good reason to believe that the
                   3776: text interpreter would have no problem looking that word up and
                   3777: executing it a second time.
1.21      crook    3778: 
                   3779: 
1.29      crook    3780: @comment ----------------------------------------------
                   3781: @node Stacks and Postfix notation, Your first definition, Introducing the Text Interpreter, Introduction
                   3782: @section Stacks, postfix notation and parameter passing
                   3783: @cindex text interpreter
                   3784: @cindex outer interpreter
1.21      crook    3785: 
1.29      crook    3786: In procedural programming languages (like C and Pascal), the
                   3787: building-block of programs is the @dfn{function} or @dfn{procedure}. These
                   3788: functions or procedures are called with @dfn{explicit parameters}. For
                   3789: example, in C we might write:
1.21      crook    3790: 
1.23      crook    3791: @example
1.29      crook    3792: total = total + new_volume(length,height,depth);
1.23      crook    3793: @end example
1.21      crook    3794: 
1.23      crook    3795: @noindent
1.29      crook    3796: where new_volume is a function-call to another piece of code, and total,
                   3797: length, height and depth are all variables. length, height and depth are
                   3798: parameters to the function-call.
1.21      crook    3799: 
1.29      crook    3800: In Forth, the equivalent of the function or procedure is the
                   3801: @dfn{definition} and parameters are implicitly passed between
                   3802: definitions using a shared stack that is visible to the
                   3803: programmer. Although Forth does support variables, the existence of the
                   3804: stack means that they are used far less often than in most other
                   3805: programming languages. When the text interpreter encounters a number, it
                   3806: will place (@dfn{push}) it on the stack. There are several stacks (the
1.30      anton    3807: actual number is implementation-dependent ...) and the particular stack
1.29      crook    3808: used for any operation is implied unambiguously by the operation being
                   3809: performed. The stack used for all integer operations is called the @dfn{data
                   3810: stack} and, since this is the stack used most commonly, references to
                   3811: ``the data stack'' are often abbreviated to ``the stack''.
1.21      crook    3812: 
1.29      crook    3813: The stacks have a last-in, first-out (LIFO) organisation. If you type:
1.21      crook    3814: 
1.23      crook    3815: @example
1.30      anton    3816: @kbd{1 2 3@key{RET}}  ok
1.23      crook    3817: @end example
1.21      crook    3818: 
1.29      crook    3819: Then this instructs the text interpreter to placed three numbers on the
                   3820: (data) stack. An analogy for the behaviour of the stack is to take a
                   3821: pack of playing cards and deal out the ace (1), 2 and 3 into a pile on
                   3822: the table. The 3 was the last card onto the pile (``last-in'') and if
                   3823: you take a card off the pile then, unless you're prepared to fiddle a
                   3824: bit, the card that you take off will be the 3 (``first-out''). The
                   3825: number that will be first-out of the stack is called the @dfn{top of
                   3826: stack}, which
                   3827: @cindex TOS definition
                   3828: is often abbreviated to @dfn{TOS}.
1.21      crook    3829: 
1.29      crook    3830: To understand how parameters are passed in Forth, consider the
                   3831: behaviour of the definition @code{+} (pronounced ``plus''). You will not
                   3832: be surprised to learn that this definition performs addition. More
                   3833: precisely, it adds two number together and produces a result. Where does
                   3834: it get the two numbers from? It takes the top two numbers off the
                   3835: stack. Where does it place the result? On the stack. You can act-out the
                   3836: behaviour of @code{+} with your playing cards like this:
1.21      crook    3837: 
                   3838: @itemize @bullet
                   3839: @item
1.29      crook    3840: Pick up two cards from the stack on the table
1.21      crook    3841: @item
1.29      crook    3842: Stare at them intently and ask yourself ``what @i{is} the sum of these two
                   3843: numbers''
1.21      crook    3844: @item
1.29      crook    3845: Decide that the answer is 5
1.21      crook    3846: @item
1.29      crook    3847: Shuffle the two cards back into the pack and find a 5
1.21      crook    3848: @item
1.29      crook    3849: Put a 5 on the remaining ace that's on the table.
1.21      crook    3850: @end itemize
                   3851: 
1.29      crook    3852: If you don't have a pack of cards handy but you do have Forth running,
                   3853: you can use the definition @code{.s} to show the current state of the stack,
                   3854: without affecting the stack. Type:
1.21      crook    3855: 
                   3856: @example
1.30      anton    3857: @kbd{clearstack 1 2 3@key{RET}} ok
                   3858: @kbd{.s@key{RET}} <3> 1 2 3  ok
1.23      crook    3859: @end example
                   3860: 
1.29      crook    3861: The text interpreter looks up the word @code{clearstack} and executes
                   3862: it; it tidies up the stack and removes any entries that may have been
                   3863: left on it by earlier examples. The text interpreter pushes each of the
                   3864: three numbers in turn onto the stack. Finally, the text interpreter
                   3865: looks up the word @code{.s} and executes it. The effect of executing
                   3866: @code{.s} is to print the ``<3>'' (the total number of items on the stack)
                   3867: followed by a list of all the items on the stack; the item on the far
                   3868: right-hand side is the TOS.
1.21      crook    3869: 
1.29      crook    3870: You can now type:
1.21      crook    3871: 
1.29      crook    3872: @example
1.30      anton    3873: @kbd{+ .s@key{RET}} <2> 1 5  ok
1.29      crook    3874: @end example
1.21      crook    3875: 
1.29      crook    3876: @noindent
                   3877: which is correct; there are now 2 items on the stack and the result of
                   3878: the addition is 5.
1.23      crook    3879: 
1.29      crook    3880: If you're playing with cards, try doing a second addition: pick up the
                   3881: two cards, work out that their sum is 6, shuffle them into the pack,
                   3882: look for a 6 and place that on the table. You now have just one item on
                   3883: the stack. What happens if you try to do a third addition? Pick up the
                   3884: first card, pick up the second card -- ah! There is no second card. This
                   3885: is called a @dfn{stack underflow} and consitutes an error. If you try to
1.95      anton    3886: do the same thing with Forth it often reports an error (probably a Stack
1.29      crook    3887: Underflow or an Invalid Memory Address error).
1.23      crook    3888: 
1.29      crook    3889: The opposite situation to a stack underflow is a @dfn{stack overflow},
                   3890: which simply accepts that there is a finite amount of storage space
                   3891: reserved for the stack. To stretch the playing card analogy, if you had
                   3892: enough packs of cards and you piled the cards up on the table, you would
                   3893: eventually be unable to add another card; you'd hit the ceiling. Gforth
                   3894: allows you to set the maximum size of the stacks. In general, the only
                   3895: time that you will get a stack overflow is because a definition has a
                   3896: bug in it and is generating data on the stack uncontrollably.
1.23      crook    3897: 
1.29      crook    3898: There's one final use for the playing card analogy. If you model your
                   3899: stack using a pack of playing cards, the maximum number of items on
                   3900: your stack will be 52 (I assume you didn't use the Joker). The maximum
                   3901: @i{value} of any item on the stack is 13 (the King). In fact, the only
                   3902: possible numbers are positive integer numbers 1 through 13; you can't
                   3903: have (for example) 0 or 27 or 3.52 or -2. If you change the way you
                   3904: think about some of the cards, you can accommodate different
                   3905: numbers. For example, you could think of the Jack as representing 0,
                   3906: the Queen as representing -1 and the King as representing -2. Your
1.45      crook    3907: @i{range} remains unchanged (you can still only represent a total of 13
1.29      crook    3908: numbers) but the numbers that you can represent are -2 through 10.
1.28      crook    3909: 
1.29      crook    3910: In that analogy, the limit was the amount of information that a single
                   3911: stack entry could hold, and Forth has a similar limit. In Forth, the
                   3912: size of a stack entry is called a @dfn{cell}. The actual size of a cell is
                   3913: implementation dependent and affects the maximum value that a stack
                   3914: entry can hold. A Standard Forth provides a cell size of at least
                   3915: 16-bits, and most desktop systems use a cell size of 32-bits.
1.21      crook    3916: 
1.29      crook    3917: Forth does not do any type checking for you, so you are free to
                   3918: manipulate and combine stack items in any way you wish. A convenient way
                   3919: of treating stack items is as 2's complement signed integers, and that
                   3920: is what Standard words like @code{+} do. Therefore you can type:
1.21      crook    3921: 
1.29      crook    3922: @example
1.30      anton    3923: @kbd{-5 12 + .s@key{RET}} <1> 7  ok
1.29      crook    3924: @end example
1.21      crook    3925: 
1.29      crook    3926: If you use numbers and definitions like @code{+} in order to turn Forth
                   3927: into a great big pocket calculator, you will realise that it's rather
                   3928: different from a normal calculator. Rather than typing 2 + 3 = you had
                   3929: to type 2 3 + (ignore the fact that you had to use @code{.s} to see the
                   3930: result). The terminology used to describe this difference is to say that
                   3931: your calculator uses @dfn{Infix Notation} (parameters and operators are
                   3932: mixed) whilst Forth uses @dfn{Postfix Notation} (parameters and
                   3933: operators are separate), also called @dfn{Reverse Polish Notation}.
1.21      crook    3934: 
1.29      crook    3935: Whilst postfix notation might look confusing to begin with, it has
                   3936: several important advantages:
1.21      crook    3937: 
1.23      crook    3938: @itemize @bullet
                   3939: @item
1.29      crook    3940: it is unambiguous
1.23      crook    3941: @item
1.29      crook    3942: it is more concise
1.23      crook    3943: @item
1.29      crook    3944: it fits naturally with a stack-based system
1.23      crook    3945: @end itemize
1.21      crook    3946: 
1.29      crook    3947: To examine these claims in more detail, consider these sums:
1.21      crook    3948: 
1.29      crook    3949: @example
                   3950: 6 + 5 * 4 =
                   3951: 4 * 5 + 6 =
                   3952: @end example
1.21      crook    3953: 
1.29      crook    3954: If you're just learning maths or your maths is very rusty, you will
                   3955: probably come up with the answer 44 for the first and 26 for the
                   3956: second. If you are a bit of a whizz at maths you will remember the
                   3957: @i{convention} that multiplication takes precendence over addition, and
                   3958: you'd come up with the answer 26 both times. To explain the answer 26
                   3959: to someone who got the answer 44, you'd probably rewrite the first sum
                   3960: like this:
1.21      crook    3961: 
1.29      crook    3962: @example
                   3963: 6 + (5 * 4) =
                   3964: @end example
1.21      crook    3965: 
1.29      crook    3966: If what you really wanted was to perform the addition before the
                   3967: multiplication, you would have to use parentheses to force it.
1.21      crook    3968: 
1.29      crook    3969: If you did the first two sums on a pocket calculator you would probably
                   3970: get the right answers, unless you were very cautious and entered them using
                   3971: these keystroke sequences:
1.21      crook    3972: 
1.29      crook    3973: 6 + 5 = * 4 =
                   3974: 4 * 5 = + 6 =
1.21      crook    3975: 
1.29      crook    3976: Postfix notation is unambiguous because the order that the operators
                   3977: are applied is always explicit; that also means that parentheses are
                   3978: never required. The operators are @i{active} (the act of quoting the
                   3979: operator makes the operation occur) which removes the need for ``=''.
1.28      crook    3980: 
1.29      crook    3981: The sum 6 + 5 * 4 can be written (in postfix notation) in two
                   3982: equivalent ways:
1.26      crook    3983: 
                   3984: @example
1.29      crook    3985: 6 5 4 * +      or:
                   3986: 5 4 * 6 +
1.26      crook    3987: @end example
1.23      crook    3988: 
1.29      crook    3989: An important thing that you should notice about this notation is that
                   3990: the @i{order} of the numbers does not change; if you want to subtract
                   3991: 2 from 10 you type @code{10 2 -}.
1.1       anton    3992: 
1.29      crook    3993: The reason that Forth uses postfix notation is very simple to explain: it
                   3994: makes the implementation extremely simple, and it follows naturally from
                   3995: using the stack as a mechanism for passing parameters. Another way of
                   3996: thinking about this is to realise that all Forth definitions are
                   3997: @i{active}; they execute as they are encountered by the text
                   3998: interpreter. The result of this is that the syntax of Forth is trivially
                   3999: simple.
1.1       anton    4000: 
                   4001: 
                   4002: 
1.29      crook    4003: @comment ----------------------------------------------
                   4004: @node Your first definition, How does that work?, Stacks and Postfix notation, Introduction
                   4005: @section Your first Forth definition
                   4006: @cindex first definition
1.1       anton    4007: 
1.29      crook    4008: Until now, the examples we've seen have been trivial; we've just been
                   4009: using Forth as a bigger-than-pocket calculator. Also, each calculation
                   4010: we've shown has been a ``one-off'' -- to repeat it we'd need to type it in
                   4011: again@footnote{That's not quite true. If you press the up-arrow key on
                   4012: your keyboard you should be able to scroll back to any earlier command,
                   4013: edit it and re-enter it.} In this section we'll see how to add new
                   4014: words to Forth's vocabulary.
1.1       anton    4015: 
1.29      crook    4016: The easiest way to create a new word is to use a @dfn{colon
                   4017: definition}. We'll define a few and try them out before worrying too
                   4018: much about how they work. Try typing in these examples; be careful to
                   4019: copy the spaces accurately:
1.1       anton    4020: 
1.29      crook    4021: @example
                   4022: : add-two 2 + . ;
                   4023: : greet ." Hello and welcome" ;
                   4024: : demo 5 add-two ;
                   4025: @end example
1.1       anton    4026: 
1.29      crook    4027: @noindent
                   4028: Now try them out:
1.1       anton    4029: 
1.29      crook    4030: @example
1.30      anton    4031: @kbd{greet@key{RET}} Hello and welcome  ok
                   4032: @kbd{greet greet@key{RET}} Hello and welcomeHello and welcome  ok
                   4033: @kbd{4 add-two@key{RET}} 6  ok
                   4034: @kbd{demo@key{RET}} 7  ok
                   4035: @kbd{9 greet demo add-two@key{RET}} Hello and welcome7 11  ok
1.29      crook    4036: @end example
1.1       anton    4037: 
1.29      crook    4038: The first new thing that we've introduced here is the pair of words
                   4039: @code{:} and @code{;}. These are used to start and terminate a new
                   4040: definition, respectively. The first word after the @code{:} is the name
                   4041: for the new definition.
1.1       anton    4042: 
1.29      crook    4043: As you can see from the examples, a definition is built up of words that
                   4044: have already been defined; Forth makes no distinction between
                   4045: definitions that existed when you started the system up, and those that
                   4046: you define yourself.
1.1       anton    4047: 
1.29      crook    4048: The examples also introduce the words @code{.} (dot), @code{."}
                   4049: (dot-quote) and @code{dup} (dewp). Dot takes the value from the top of
                   4050: the stack and displays it. It's like @code{.s} except that it only
                   4051: displays the top item of the stack and it is destructive; after it has
                   4052: executed, the number is no longer on the stack. There is always one
                   4053: space printed after the number, and no spaces before it. Dot-quote
                   4054: defines a string (a sequence of characters) that will be printed when
                   4055: the word is executed. The string can contain any printable characters
                   4056: except @code{"}. A @code{"} has a special function; it is not a Forth
                   4057: word but it acts as a delimiter (the way that delimiters work is
                   4058: described in the next section). Finally, @code{dup} duplicates the value
                   4059: at the top of the stack. Try typing @code{5 dup .s} to see what it does.
1.1       anton    4060: 
1.29      crook    4061: We already know that the text interpreter searches through the
                   4062: dictionary to locate names. If you've followed the examples earlier, you
                   4063: will already have a definition called @code{add-two}. Lets try modifying
                   4064: it by typing in a new definition:
1.1       anton    4065: 
1.29      crook    4066: @example
1.30      anton    4067: @kbd{: add-two dup . ." + 2 =" 2 + . ;@key{RET}} redefined add-two  ok
1.29      crook    4068: @end example
1.5       anton    4069: 
1.29      crook    4070: Forth recognised that we were defining a word that already exists, and
                   4071: printed a message to warn us of that fact. Let's try out the new
                   4072: definition:
1.5       anton    4073: 
1.29      crook    4074: @example
1.30      anton    4075: @kbd{9 add-two@key{RET}} 9 + 2 =11  ok
1.29      crook    4076: @end example
1.1       anton    4077: 
1.29      crook    4078: @noindent
                   4079: All that we've actually done here, though, is to create a new
                   4080: definition, with a particular name. The fact that there was already a
                   4081: definition with the same name did not make any difference to the way
                   4082: that the new definition was created (except that Forth printed a warning
                   4083: message). The old definition of add-two still exists (try @code{demo}
                   4084: again to see that this is true). Any new definition will use the new
                   4085: definition of @code{add-two}, but old definitions continue to use the
                   4086: version that already existed at the time that they were @code{compiled}.
1.1       anton    4087: 
1.29      crook    4088: Before you go on to the next section, try defining and redefining some
                   4089: words of your own.
1.1       anton    4090: 
1.29      crook    4091: @comment ----------------------------------------------
                   4092: @node How does that work?, Forth is written in Forth, Your first definition, Introduction
                   4093: @section How does that work?
                   4094: @cindex parsing words
1.1       anton    4095: 
1.30      anton    4096: @c That's pretty deep (IMO way too deep) for an introduction. - anton
                   4097: 
                   4098: @c Is it a good idea to talk about the interpretation semantics of a
                   4099: @c number? We don't have an xt to go along with it. - anton
                   4100: 
                   4101: @c Now that I have eliminated execution semantics, I wonder if it would not
                   4102: @c be better to keep them (or add run-time semantics), to make it easier to
                   4103: @c explain what compilation semantics usually does. - anton
                   4104: 
1.44      crook    4105: @c nac-> I removed the term ``default compilation sematics'' from the
                   4106: @c introductory chapter. Removing ``execution semantics'' was making
                   4107: @c everything simpler to explain, then I think the use of this term made
                   4108: @c everything more complex again. I replaced it with ``default
                   4109: @c semantics'' (which is used elsewhere in the manual) by which I mean
                   4110: @c ``a definition that has neither the immediate nor the compile-only
1.83      anton    4111: @c flag set''.
                   4112: 
                   4113: @c anton: I have eliminated default semantics (except in one place where it
                   4114: @c means "default interpretation and compilation semantics"), because it
                   4115: @c makes no sense in the presence of combined words.  I reverted to
                   4116: @c "execution semantics" where necessary.
                   4117: 
                   4118: @c nac-> I reworded big chunks of the ``how does that work''
1.44      crook    4119: @c section (and, unusually for me, I think I even made it shorter!).  See
                   4120: @c what you think -- I know I have not addressed your primary concern
                   4121: @c that it is too heavy-going for an introduction. From what I understood
                   4122: @c of your course notes it looks as though they might be a good framework. 
                   4123: @c Things that I've tried to capture here are some things that came as a
                   4124: @c great revelation here when I first understood them. Also, I like the
                   4125: @c fact that a very simple code example shows up almost all of the issues
                   4126: @c that you need to understand to see how Forth works. That's unique and
                   4127: @c worthwhile to emphasise.
                   4128: 
1.83      anton    4129: @c anton: I think it's a good idea to present the details, especially those
                   4130: @c that you found to be a revelation, and probably the tutorial tries to be
                   4131: @c too superficial and does not get some of the things across that make
                   4132: @c Forth special.  I do believe that most of the time these things should
                   4133: @c be discussed at the end of a section or in separate sections instead of
                   4134: @c in the middle of a section (e.g., the stuff you added in "User-defined
                   4135: @c defining words" leads in a completely different direction from the rest
                   4136: @c of the section).
                   4137: 
1.29      crook    4138: Now we're going to take another look at the definition of @code{add-two}
                   4139: from the previous section. From our knowledge of the way that the text
                   4140: interpreter works, we would have expected this result when we tried to
                   4141: define @code{add-two}:
1.21      crook    4142: 
1.29      crook    4143: @example
1.44      crook    4144: @kbd{: add-two 2 + . ;@key{RET}}
1.29      crook    4145:   ^^^^^^^
                   4146: Error: Undefined word
                   4147: @end example
1.28      crook    4148: 
1.29      crook    4149: The reason that this didn't happen is bound up in the way that @code{:}
                   4150: works. The word @code{:} does two special things. The first special
                   4151: thing that it does prevents the text interpreter from ever seeing the
                   4152: characters @code{add-two}. The text interpreter uses a variable called
                   4153: @cindex modifying >IN
1.44      crook    4154: @code{>IN} (pronounced ``to-in'') to keep track of where it is in the
1.29      crook    4155: input line. When it encounters the word @code{:} it behaves in exactly
                   4156: the same way as it does for any other word; it looks it up in the name
                   4157: dictionary, finds its xt and executes it. When @code{:} executes, it
                   4158: looks at the input buffer, finds the word @code{add-two} and advances the
                   4159: value of @code{>IN} to point past it. It then does some other stuff
                   4160: associated with creating the new definition (including creating an entry
                   4161: for @code{add-two} in the name dictionary). When the execution of @code{:}
                   4162: completes, control returns to the text interpreter, which is oblivious
                   4163: to the fact that it has been tricked into ignoring part of the input
                   4164: line.
1.21      crook    4165: 
1.29      crook    4166: @cindex parsing words
                   4167: Words like @code{:} -- words that advance the value of @code{>IN} and so
                   4168: prevent the text interpreter from acting on the whole of the input line
                   4169: -- are called @dfn{parsing words}.
1.21      crook    4170: 
1.29      crook    4171: @cindex @code{state} - effect on the text interpreter
                   4172: @cindex text interpreter - effect of state
                   4173: The second special thing that @code{:} does is change the value of a
                   4174: variable called @code{state}, which affects the way that the text
                   4175: interpreter behaves. When Gforth starts up, @code{state} has the value
                   4176: 0, and the text interpreter is said to be @dfn{interpreting}. During a
                   4177: colon definition (started with @code{:}), @code{state} is set to -1 and
1.44      crook    4178: the text interpreter is said to be @dfn{compiling}.
                   4179: 
                   4180: In this example, the text interpreter is compiling when it processes the
                   4181: string ``@code{2 + . ;}''. It still breaks the string down into
                   4182: character sequences in the same way. However, instead of pushing the
                   4183: number @code{2} onto the stack, it lays down (@dfn{compiles}) some magic
                   4184: into the definition of @code{add-two} that will make the number @code{2} get
                   4185: pushed onto the stack when @code{add-two} is @dfn{executed}. Similarly,
                   4186: the behaviours of @code{+} and @code{.} are also compiled into the
                   4187: definition.
                   4188: 
                   4189: One category of words don't get compiled. These so-called @dfn{immediate
                   4190: words} get executed (performed @i{now}) regardless of whether the text
                   4191: interpreter is interpreting or compiling. The word @code{;} is an
                   4192: immediate word. Rather than being compiled into the definition, it
                   4193: executes. Its effect is to terminate the current definition, which
                   4194: includes changing the value of @code{state} back to 0.
                   4195: 
                   4196: When you execute @code{add-two}, it has a @dfn{run-time effect} that is
                   4197: exactly the same as if you had typed @code{2 + . @key{RET}} outside of a
                   4198: definition.
1.28      crook    4199: 
1.30      anton    4200: In Forth, every word or number can be described in terms of two
1.29      crook    4201: properties:
1.28      crook    4202: 
                   4203: @itemize @bullet
                   4204: @item
1.29      crook    4205: @cindex interpretation semantics
1.44      crook    4206: Its @dfn{interpretation semantics} describe how it will behave when the
                   4207: text interpreter encounters it in @dfn{interpret} state. The
                   4208: interpretation semantics of a word are represented by an @dfn{execution
                   4209: token}.
1.28      crook    4210: @item
1.29      crook    4211: @cindex compilation semantics
1.44      crook    4212: Its @dfn{compilation semantics} describe how it will behave when the
                   4213: text interpreter encounters it in @dfn{compile} state. The compilation
                   4214: semantics of a word are represented in an implementation-dependent way;
                   4215: Gforth uses a @dfn{compilation token}.
1.29      crook    4216: @end itemize
                   4217: 
                   4218: @noindent
                   4219: Numbers are always treated in a fixed way:
                   4220: 
                   4221: @itemize @bullet
1.28      crook    4222: @item
1.44      crook    4223: When the number is @dfn{interpreted}, its behaviour is to push the
                   4224: number onto the stack.
1.28      crook    4225: @item
1.30      anton    4226: When the number is @dfn{compiled}, a piece of code is appended to the
                   4227: current definition that pushes the number when it runs. (In other words,
                   4228: the compilation semantics of a number are to postpone its interpretation
                   4229: semantics until the run-time of the definition that it is being compiled
                   4230: into.)
1.29      crook    4231: @end itemize
                   4232: 
1.44      crook    4233: Words don't behave in such a regular way, but most have @i{default
                   4234: semantics} which means that they behave like this:
1.29      crook    4235: 
                   4236: @itemize @bullet
1.28      crook    4237: @item
1.30      anton    4238: The @dfn{interpretation semantics} of the word are to do something useful.
                   4239: @item
1.29      crook    4240: The @dfn{compilation semantics} of the word are to append its
1.30      anton    4241: @dfn{interpretation semantics} to the current definition (so that its
                   4242: run-time behaviour is to do something useful).
1.28      crook    4243: @end itemize
                   4244: 
1.30      anton    4245: @cindex immediate words
1.44      crook    4246: The actual behaviour of any particular word can be controlled by using
                   4247: the words @code{immediate} and @code{compile-only} when the word is
                   4248: defined. These words set flags in the name dictionary entry of the most
                   4249: recently defined word, and these flags are retrieved by the text
                   4250: interpreter when it finds the word in the name dictionary.
                   4251: 
                   4252: A word that is marked as @dfn{immediate} has compilation semantics that
                   4253: are identical to its interpretation semantics. In other words, it
                   4254: behaves like this:
1.29      crook    4255: 
                   4256: @itemize @bullet
                   4257: @item
1.30      anton    4258: The @dfn{interpretation semantics} of the word are to do something useful.
1.29      crook    4259: @item
1.30      anton    4260: The @dfn{compilation semantics} of the word are to do something useful
                   4261: (and actually the same thing); i.e., it is executed during compilation.
1.29      crook    4262: @end itemize
1.28      crook    4263: 
1.44      crook    4264: Marking a word as @dfn{compile-only} prohibits the text interpreter from
                   4265: performing the interpretation semantics of the word directly; an attempt
                   4266: to do so will generate an error. It is never necessary to use
                   4267: @code{compile-only} (and it is not even part of ANS Forth, though it is
                   4268: provided by many implementations) but it is good etiquette to apply it
                   4269: to a word that will not behave correctly (and might have unexpected
                   4270: side-effects) in interpret state. For example, it is only legal to use
                   4271: the conditional word @code{IF} within a definition. If you forget this
                   4272: and try to use it elsewhere, the fact that (in Gforth) it is marked as
                   4273: @code{compile-only} allows the text interpreter to generate a helpful
                   4274: error message rather than subjecting you to the consequences of your
                   4275: folly.
                   4276: 
1.29      crook    4277: This example shows the difference between an immediate and a
                   4278: non-immediate word:
1.28      crook    4279: 
1.29      crook    4280: @example
                   4281: : show-state state @@ . ;
                   4282: : show-state-now show-state ; immediate
                   4283: : word1 show-state ;
                   4284: : word2 show-state-now ;
1.28      crook    4285: @end example
1.23      crook    4286: 
1.29      crook    4287: The word @code{immediate} after the definition of @code{show-state-now}
                   4288: makes that word an immediate word. These definitions introduce a new
                   4289: word: @code{@@} (pronounced ``fetch''). This word fetches the value of a
                   4290: variable, and leaves it on the stack. Therefore, the behaviour of
                   4291: @code{show-state} is to print a number that represents the current value
                   4292: of @code{state}.
1.28      crook    4293: 
1.29      crook    4294: When you execute @code{word1}, it prints the number 0, indicating that
                   4295: the system is interpreting. When the text interpreter compiled the
                   4296: definition of @code{word1}, it encountered @code{show-state} whose
1.30      anton    4297: compilation semantics are to append its interpretation semantics to the
1.29      crook    4298: current definition. When you execute @code{word1}, it performs the
1.30      anton    4299: interpretation semantics of @code{show-state}.  At the time that @code{word1}
1.29      crook    4300: (and therefore @code{show-state}) are executed, the system is
                   4301: interpreting.
1.28      crook    4302: 
1.30      anton    4303: When you pressed @key{RET} after entering the definition of @code{word2},
1.29      crook    4304: you should have seen the number -1 printed, followed by ``@code{
                   4305: ok}''. When the text interpreter compiled the definition of
                   4306: @code{word2}, it encountered @code{show-state-now}, an immediate word,
1.30      anton    4307: whose compilation semantics are therefore to perform its interpretation
1.29      crook    4308: semantics. It is executed straight away (even before the text
                   4309: interpreter has moved on to process another group of characters; the
                   4310: @code{;} in this example). The effect of executing it are to display the
                   4311: value of @code{state} @i{at the time that the definition of}
                   4312: @code{word2} @i{is being defined}. Printing -1 demonstrates that the
                   4313: system is compiling at this time. If you execute @code{word2} it does
                   4314: nothing at all.
1.28      crook    4315: 
1.29      crook    4316: @cindex @code{."}, how it works
                   4317: Before leaving the subject of immediate words, consider the behaviour of
                   4318: @code{."} in the definition of @code{greet}, in the previous
                   4319: section. This word is both a parsing word and an immediate word. Notice
                   4320: that there is a space between @code{."} and the start of the text
                   4321: @code{Hello and welcome}, but that there is no space between the last
                   4322: letter of @code{welcome} and the @code{"} character. The reason for this
                   4323: is that @code{."} is a Forth word; it must have a space after it so that
                   4324: the text interpreter can identify it. The @code{"} is not a Forth word;
                   4325: it is a @dfn{delimiter}. The examples earlier show that, when the string
                   4326: is displayed, there is neither a space before the @code{H} nor after the
                   4327: @code{e}. Since @code{."} is an immediate word, it executes at the time
                   4328: that @code{greet} is defined. When it executes, its behaviour is to
                   4329: search forward in the input line looking for the delimiter. When it
                   4330: finds the delimiter, it updates @code{>IN} to point past the
                   4331: delimiter. It also compiles some magic code into the definition of
                   4332: @code{greet}; the xt of a run-time routine that prints a text string. It
                   4333: compiles the string @code{Hello and welcome} into memory so that it is
                   4334: available to be printed later. When the text interpreter gains control,
                   4335: the next word it finds in the input stream is @code{;} and so it
                   4336: terminates the definition of @code{greet}.
1.28      crook    4337: 
                   4338: 
                   4339: @comment ----------------------------------------------
1.29      crook    4340: @node Forth is written in Forth, Review - elements of a Forth system, How does that work?, Introduction
                   4341: @section Forth is written in Forth
                   4342: @cindex structure of Forth programs
                   4343: 
                   4344: When you start up a Forth compiler, a large number of definitions
                   4345: already exist. In Forth, you develop a new application using bottom-up
                   4346: programming techniques to create new definitions that are defined in
                   4347: terms of existing definitions. As you create each definition you can
                   4348: test and debug it interactively.
                   4349: 
                   4350: If you have tried out the examples in this section, you will probably
                   4351: have typed them in by hand; when you leave Gforth, your definitions will
                   4352: be lost. You can avoid this by using a text editor to enter Forth source
                   4353: code into a file, and then loading code from the file using
1.49      anton    4354: @code{include} (@pxref{Forth source files}). A Forth source file is
1.29      crook    4355: processed by the text interpreter, just as though you had typed it in by
                   4356: hand@footnote{Actually, there are some subtle differences -- see
                   4357: @ref{The Text Interpreter}.}.
                   4358: 
                   4359: Gforth also supports the traditional Forth alternative to using text
1.49      anton    4360: files for program entry (@pxref{Blocks}).
1.28      crook    4361: 
1.29      crook    4362: In common with many, if not most, Forth compilers, most of Gforth is
                   4363: actually written in Forth. All of the @file{.fs} files in the
                   4364: installation directory@footnote{For example,
1.30      anton    4365: @file{/usr/local/share/gforth...}} are Forth source files, which you can
1.29      crook    4366: study to see examples of Forth programming.
1.28      crook    4367: 
1.29      crook    4368: Gforth maintains a history file that records every line that you type to
                   4369: the text interpreter. This file is preserved between sessions, and is
                   4370: used to provide a command-line recall facility. If you enter long
                   4371: definitions by hand, you can use a text editor to paste them out of the
                   4372: history file into a Forth source file for reuse at a later time
1.49      anton    4373: (for more information @pxref{Command-line editing}).
1.28      crook    4374: 
                   4375: 
                   4376: @comment ----------------------------------------------
1.29      crook    4377: @node Review - elements of a Forth system, Where to go next, Forth is written in Forth, Introduction
                   4378: @section Review - elements of a Forth system
                   4379: @cindex elements of a Forth system
1.28      crook    4380: 
1.29      crook    4381: To summarise this chapter:
1.28      crook    4382: 
                   4383: @itemize @bullet
                   4384: @item
1.29      crook    4385: Forth programs use @dfn{factoring} to break a problem down into small
                   4386: fragments called @dfn{words} or @dfn{definitions}.
                   4387: @item
                   4388: Forth program development is an interactive process.
                   4389: @item
                   4390: The main command loop that accepts input, and controls both
                   4391: interpretation and compilation, is called the @dfn{text interpreter}
                   4392: (also known as the @dfn{outer interpreter}).
                   4393: @item
                   4394: Forth has a very simple syntax, consisting of words and numbers
                   4395: separated by spaces or carriage-return characters. Any additional syntax
                   4396: is imposed by @dfn{parsing words}.
                   4397: @item
                   4398: Forth uses a stack to pass parameters between words. As a result, it
                   4399: uses postfix notation.
                   4400: @item
                   4401: To use a word that has previously been defined, the text interpreter
                   4402: searches for the word in the @dfn{name dictionary}.
                   4403: @item
1.30      anton    4404: Words have @dfn{interpretation semantics} and @dfn{compilation semantics}.
1.28      crook    4405: @item
1.29      crook    4406: The text interpreter uses the value of @code{state} to select between
                   4407: the use of the @dfn{interpretation semantics} and the  @dfn{compilation
                   4408: semantics} of a word that it encounters.
1.28      crook    4409: @item
1.30      anton    4410: The relationship between the @dfn{interpretation semantics} and
                   4411: @dfn{compilation semantics} for a word
1.29      crook    4412: depend upon the way in which the word was defined (for example, whether
                   4413: it is an @dfn{immediate} word).
1.28      crook    4414: @item
1.29      crook    4415: Forth definitions can be implemented in Forth (called @dfn{high-level
                   4416: definitions}) or in some other way (usually a lower-level language and
                   4417: as a result often called @dfn{low-level definitions}, @dfn{code
                   4418: definitions} or @dfn{primitives}).
1.28      crook    4419: @item
1.29      crook    4420: Many Forth systems are implemented mainly in Forth.
1.28      crook    4421: @end itemize
                   4422: 
                   4423: 
1.29      crook    4424: @comment ----------------------------------------------
1.48      anton    4425: @node Where to go next, Exercises, Review - elements of a Forth system, Introduction
1.29      crook    4426: @section Where To Go Next
                   4427: @cindex where to go next
1.28      crook    4428: 
1.29      crook    4429: Amazing as it may seem, if you have read (and understood) this far, you
                   4430: know almost all the fundamentals about the inner workings of a Forth
                   4431: system. You certainly know enough to be able to read and understand the
                   4432: rest of this manual and the ANS Forth document, to learn more about the
                   4433: facilities that Forth in general and Gforth in particular provide. Even
                   4434: scarier, you know almost enough to implement your own Forth system.
1.30      anton    4435: However, that's not a good idea just yet... better to try writing some
1.29      crook    4436: programs in Gforth.
1.28      crook    4437: 
1.29      crook    4438: Forth has such a rich vocabulary that it can be hard to know where to
                   4439: start in learning it. This section suggests a few sets of words that are
                   4440: enough to write small but useful programs. Use the word index in this
                   4441: document to learn more about each word, then try it out and try to write
                   4442: small definitions using it. Start by experimenting with these words:
1.28      crook    4443: 
                   4444: @itemize @bullet
                   4445: @item
1.29      crook    4446: Arithmetic: @code{+ - * / /MOD */ ABS INVERT}
                   4447: @item
                   4448: Comparison: @code{MIN MAX =}
                   4449: @item
                   4450: Logic: @code{AND OR XOR NOT}
                   4451: @item
                   4452: Stack manipulation: @code{DUP DROP SWAP OVER}
1.28      crook    4453: @item
1.29      crook    4454: Loops and decisions: @code{IF ELSE ENDIF ?DO I LOOP}
1.28      crook    4455: @item
1.29      crook    4456: Input/Output: @code{. ." EMIT CR KEY}
1.28      crook    4457: @item
1.29      crook    4458: Defining words: @code{: ; CREATE}
1.28      crook    4459: @item
1.29      crook    4460: Memory allocation words: @code{ALLOT ,}
1.28      crook    4461: @item
1.29      crook    4462: Tools: @code{SEE WORDS .S MARKER}
                   4463: @end itemize
                   4464: 
                   4465: When you have mastered those, go on to:
                   4466: 
                   4467: @itemize @bullet
1.28      crook    4468: @item
1.29      crook    4469: More defining words: @code{VARIABLE CONSTANT VALUE TO CREATE DOES>}
1.28      crook    4470: @item
1.29      crook    4471: Memory access: @code{@@ !}
1.28      crook    4472: @end itemize
1.23      crook    4473: 
1.29      crook    4474: When you have mastered these, there's nothing for it but to read through
                   4475: the whole of this manual and find out what you've missed.
                   4476: 
                   4477: @comment ----------------------------------------------
1.48      anton    4478: @node Exercises,  , Where to go next, Introduction
1.29      crook    4479: @section Exercises
                   4480: @cindex exercises
                   4481: 
                   4482: TODO: provide a set of programming excercises linked into the stuff done
                   4483: already and into other sections of the manual. Provide solutions to all
                   4484: the exercises in a .fs file in the distribution.
                   4485: 
                   4486: @c Get some inspiration from Starting Forth and Kelly&Spies.
                   4487: 
                   4488: @c excercises:
                   4489: @c 1. take inches and convert to feet and inches.
                   4490: @c 2. take temperature and convert from fahrenheight to celcius;
                   4491: @c    may need to care about symmetric vs floored??
                   4492: @c 3. take input line and do character substitution
                   4493: @c    to encipher or decipher
                   4494: @c 4. as above but work on a file for in and out
                   4495: @c 5. take input line and convert to pig-latin 
                   4496: @c
                   4497: @c thing of sets of things to exercise then come up with
                   4498: @c problems that need those things.
                   4499: 
                   4500: 
1.26      crook    4501: @c ******************************************************************
1.29      crook    4502: @node Words, Error messages, Introduction, Top
1.1       anton    4503: @chapter Forth Words
1.26      crook    4504: @cindex words
1.1       anton    4505: 
                   4506: @menu
                   4507: * Notation::                    
1.65      anton    4508: * Case insensitivity::          
                   4509: * Comments::                    
                   4510: * Boolean Flags::               
1.1       anton    4511: * Arithmetic::                  
                   4512: * Stack Manipulation::          
1.5       anton    4513: * Memory::                      
1.1       anton    4514: * Control Structures::          
                   4515: * Defining Words::              
1.65      anton    4516: * Interpretation and Compilation Semantics::  
1.47      crook    4517: * Tokens for Words::            
1.81      anton    4518: * Compiling words::             
1.65      anton    4519: * The Text Interpreter::        
                   4520: * Word Lists::                  
                   4521: * Environmental Queries::       
1.12      anton    4522: * Files::                       
                   4523: * Blocks::                      
                   4524: * Other I/O::                   
1.78      anton    4525: * Locals::                      
                   4526: * Structures::                  
                   4527: * Object-oriented Forth::       
1.12      anton    4528: * Programming Tools::           
                   4529: * Assembler and Code Words::    
                   4530: * Threading Words::             
1.65      anton    4531: * Passing Commands to the OS::  
                   4532: * Keeping track of Time::       
                   4533: * Miscellaneous Words::         
1.1       anton    4534: @end menu
                   4535: 
1.65      anton    4536: @node Notation, Case insensitivity, Words, Words
1.1       anton    4537: @section Notation
                   4538: @cindex notation of glossary entries
                   4539: @cindex format of glossary entries
                   4540: @cindex glossary notation format
                   4541: @cindex word glossary entry format
                   4542: 
                   4543: The Forth words are described in this section in the glossary notation
1.67      anton    4544: that has become a de-facto standard for Forth texts:
1.1       anton    4545: 
                   4546: @format
1.29      crook    4547: @i{word}     @i{Stack effect}   @i{wordset}   @i{pronunciation}
1.1       anton    4548: @end format
1.29      crook    4549: @i{Description}
1.1       anton    4550: 
                   4551: @table @var
                   4552: @item word
1.28      crook    4553: The name of the word.
1.1       anton    4554: 
                   4555: @item Stack effect
                   4556: @cindex stack effect
1.29      crook    4557: The stack effect is written in the notation @code{@i{before} --
                   4558: @i{after}}, where @i{before} and @i{after} describe the top of
1.1       anton    4559: stack entries before and after the execution of the word. The rest of
                   4560: the stack is not touched by the word. The top of stack is rightmost,
                   4561: i.e., a stack sequence is written as it is typed in. Note that Gforth
                   4562: uses a separate floating point stack, but a unified stack
1.29      crook    4563: notation. Also, return stack effects are not shown in @i{stack
                   4564: effect}, but in @i{Description}. The name of a stack item describes
1.1       anton    4565: the type and/or the function of the item. See below for a discussion of
                   4566: the types.
                   4567: 
                   4568: All words have two stack effects: A compile-time stack effect and a
                   4569: run-time stack effect. The compile-time stack-effect of most words is
1.29      crook    4570: @i{ -- }. If the compile-time stack-effect of a word deviates from
1.1       anton    4571: this standard behaviour, or the word does other unusual things at
                   4572: compile time, both stack effects are shown; otherwise only the run-time
                   4573: stack effect is shown.
                   4574: 
                   4575: @cindex pronounciation of words
                   4576: @item pronunciation
                   4577: How the word is pronounced.
                   4578: 
                   4579: @cindex wordset
1.67      anton    4580: @cindex environment wordset
1.1       anton    4581: @item wordset
1.21      crook    4582: The ANS Forth standard is divided into several word sets. A standard
                   4583: system need not support all of them. Therefore, in theory, the fewer
                   4584: word sets your program uses the more portable it will be. However, we
                   4585: suspect that most ANS Forth systems on personal machines will feature
1.26      crook    4586: all word sets. Words that are not defined in ANS Forth have
1.21      crook    4587: @code{gforth} or @code{gforth-internal} as word set. @code{gforth}
1.1       anton    4588: describes words that will work in future releases of Gforth;
                   4589: @code{gforth-internal} words are more volatile. Environmental query
                   4590: strings are also displayed like words; you can recognize them by the
1.21      crook    4591: @code{environment} in the word set field.
1.1       anton    4592: 
                   4593: @item Description
                   4594: A description of the behaviour of the word.
                   4595: @end table
                   4596: 
                   4597: @cindex types of stack items
                   4598: @cindex stack item types
                   4599: The type of a stack item is specified by the character(s) the name
                   4600: starts with:
                   4601: 
                   4602: @table @code
                   4603: @item f
                   4604: @cindex @code{f}, stack item type
                   4605: Boolean flags, i.e. @code{false} or @code{true}.
                   4606: @item c
                   4607: @cindex @code{c}, stack item type
                   4608: Char
                   4609: @item w
                   4610: @cindex @code{w}, stack item type
                   4611: Cell, can contain an integer or an address
                   4612: @item n
                   4613: @cindex @code{n}, stack item type
                   4614: signed integer
                   4615: @item u
                   4616: @cindex @code{u}, stack item type
                   4617: unsigned integer
                   4618: @item d
                   4619: @cindex @code{d}, stack item type
                   4620: double sized signed integer
                   4621: @item ud
                   4622: @cindex @code{ud}, stack item type
                   4623: double sized unsigned integer
                   4624: @item r
                   4625: @cindex @code{r}, stack item type
                   4626: Float (on the FP stack)
1.21      crook    4627: @item a-
1.1       anton    4628: @cindex @code{a_}, stack item type
                   4629: Cell-aligned address
1.21      crook    4630: @item c-
1.1       anton    4631: @cindex @code{c_}, stack item type
                   4632: Char-aligned address (note that a Char may have two bytes in Windows NT)
1.21      crook    4633: @item f-
1.1       anton    4634: @cindex @code{f_}, stack item type
                   4635: Float-aligned address
1.21      crook    4636: @item df-
1.1       anton    4637: @cindex @code{df_}, stack item type
                   4638: Address aligned for IEEE double precision float
1.21      crook    4639: @item sf-
1.1       anton    4640: @cindex @code{sf_}, stack item type
                   4641: Address aligned for IEEE single precision float
                   4642: @item xt
                   4643: @cindex @code{xt}, stack item type
                   4644: Execution token, same size as Cell
                   4645: @item wid
                   4646: @cindex @code{wid}, stack item type
1.21      crook    4647: Word list ID, same size as Cell
1.68      anton    4648: @item ior, wior
                   4649: @cindex ior type description
                   4650: @cindex wior type description
                   4651: I/O result code, cell-sized.  In Gforth, you can @code{throw} iors.
1.1       anton    4652: @item f83name
                   4653: @cindex @code{f83name}, stack item type
                   4654: Pointer to a name structure
                   4655: @item "
                   4656: @cindex @code{"}, stack item type
1.12      anton    4657: string in the input stream (not on the stack). The terminating character
                   4658: is a blank by default. If it is not a blank, it is shown in @code{<>}
1.1       anton    4659: quotes.
                   4660: @end table
                   4661: 
1.65      anton    4662: @comment ----------------------------------------------
                   4663: @node Case insensitivity, Comments, Notation, Words
                   4664: @section Case insensitivity
                   4665: @cindex case sensitivity
                   4666: @cindex upper and lower case
                   4667: 
                   4668: Gforth is case-insensitive; you can enter definitions and invoke
                   4669: Standard words using upper, lower or mixed case (however,
                   4670: @pxref{core-idef, Implementation-defined options, Implementation-defined
                   4671: options}).
                   4672: 
                   4673: ANS Forth only @i{requires} implementations to recognise Standard words
                   4674: when they are typed entirely in upper case. Therefore, a Standard
                   4675: program must use upper case for all Standard words. You can use whatever
                   4676: case you like for words that you define, but in a Standard program you
                   4677: have to use the words in the same case that you defined them.
                   4678: 
                   4679: Gforth supports case sensitivity through @code{table}s (case-sensitive
                   4680: wordlists, @pxref{Word Lists}).
                   4681: 
                   4682: Two people have asked how to convert Gforth to be case-sensitive; while
                   4683: we think this is a bad idea, you can change all wordlists into tables
                   4684: like this:
                   4685: 
                   4686: @example
                   4687: ' table-find forth-wordlist wordlist-map @ !
                   4688: @end example
                   4689: 
                   4690: Note that you now have to type the predefined words in the same case
                   4691: that we defined them, which are varying.  You may want to convert them
                   4692: to your favourite case before doing this operation (I won't explain how,
                   4693: because if you are even contemplating doing this, you'd better have
                   4694: enough knowledge of Forth systems to know this already).
                   4695: 
                   4696: @node Comments, Boolean Flags, Case insensitivity, Words
1.21      crook    4697: @section Comments
1.26      crook    4698: @cindex comments
1.21      crook    4699: 
1.29      crook    4700: Forth supports two styles of comment; the traditional @i{in-line} comment,
                   4701: @code{(} and its modern cousin, the @i{comment to end of line}; @code{\}.
1.21      crook    4702: 
1.44      crook    4703: 
1.23      crook    4704: doc-(
1.21      crook    4705: doc-\
1.23      crook    4706: doc-\G
1.21      crook    4707: 
1.44      crook    4708: 
1.21      crook    4709: @node Boolean Flags, Arithmetic, Comments, Words
                   4710: @section Boolean Flags
1.26      crook    4711: @cindex Boolean flags
1.21      crook    4712: 
                   4713: A Boolean flag is cell-sized. A cell with all bits clear represents the
                   4714: flag @code{false} and a flag with all bits set represents the flag
1.26      crook    4715: @code{true}. Words that check a flag (for example, @code{IF}) will treat
1.29      crook    4716: a cell that has @i{any} bit set as @code{true}.
1.67      anton    4717: @c on and off to Memory? 
                   4718: @c true and false to "Bitwise operations" or "Numeric comparison"?
1.44      crook    4719: 
1.21      crook    4720: doc-true
                   4721: doc-false
1.29      crook    4722: doc-on
                   4723: doc-off
1.21      crook    4724: 
1.44      crook    4725: 
1.21      crook    4726: @node Arithmetic, Stack Manipulation, Boolean Flags, Words
1.1       anton    4727: @section Arithmetic
                   4728: @cindex arithmetic words
                   4729: 
                   4730: @cindex division with potentially negative operands
                   4731: Forth arithmetic is not checked, i.e., you will not hear about integer
                   4732: overflow on addition or multiplication, you may hear about division by
                   4733: zero if you are lucky. The operator is written after the operands, but
                   4734: the operands are still in the original order. I.e., the infix @code{2-1}
                   4735: corresponds to @code{2 1 -}. Forth offers a variety of division
                   4736: operators. If you perform division with potentially negative operands,
                   4737: you do not want to use @code{/} or @code{/mod} with its undefined
                   4738: behaviour, but rather @code{fm/mod} or @code{sm/mod} (probably the
                   4739: former, @pxref{Mixed precision}).
1.26      crook    4740: @comment TODO discuss the different division forms and the std approach
1.1       anton    4741: 
                   4742: @menu
                   4743: * Single precision::            
1.67      anton    4744: * Double precision::            Double-cell integer arithmetic
1.1       anton    4745: * Bitwise operations::          
1.67      anton    4746: * Numeric comparison::          
1.29      crook    4747: * Mixed precision::             Operations with single and double-cell integers
1.1       anton    4748: * Floating Point::              
                   4749: @end menu
                   4750: 
1.67      anton    4751: @node Single precision, Double precision, Arithmetic, Arithmetic
1.1       anton    4752: @subsection Single precision
                   4753: @cindex single precision arithmetic words
                   4754: 
1.67      anton    4755: @c !! cell undefined
                   4756: 
                   4757: By default, numbers in Forth are single-precision integers that are one
1.26      crook    4758: cell in size. They can be signed or unsigned, depending upon how you
1.49      anton    4759: treat them. For the rules used by the text interpreter for recognising
                   4760: single-precision integers see @ref{Number Conversion}.
1.21      crook    4761: 
1.67      anton    4762: These words are all defined for signed operands, but some of them also
                   4763: work for unsigned numbers: @code{+}, @code{1+}, @code{-}, @code{1-},
                   4764: @code{*}.
1.44      crook    4765: 
1.1       anton    4766: doc-+
1.21      crook    4767: doc-1+
1.1       anton    4768: doc--
1.21      crook    4769: doc-1-
1.1       anton    4770: doc-*
                   4771: doc-/
                   4772: doc-mod
                   4773: doc-/mod
                   4774: doc-negate
                   4775: doc-abs
                   4776: doc-min
                   4777: doc-max
1.27      crook    4778: doc-floored
1.1       anton    4779: 
1.44      crook    4780: 
1.67      anton    4781: @node Double precision, Bitwise operations, Single precision, Arithmetic
1.21      crook    4782: @subsection Double precision
                   4783: @cindex double precision arithmetic words
                   4784: 
1.49      anton    4785: For the rules used by the text interpreter for
                   4786: recognising double-precision integers, see @ref{Number Conversion}.
1.21      crook    4787: 
                   4788: A double precision number is represented by a cell pair, with the most
1.67      anton    4789: significant cell at the TOS. It is trivial to convert an unsigned single
                   4790: to a double: simply push a @code{0} onto the TOS. Since numbers are
                   4791: represented by Gforth using 2's complement arithmetic, converting a
                   4792: signed single to a (signed) double requires sign-extension across the
                   4793: most significant cell. This can be achieved using @code{s>d}. The moral
                   4794: of the story is that you cannot convert a number without knowing whether
                   4795: it represents an unsigned or a signed number.
1.21      crook    4796: 
1.67      anton    4797: These words are all defined for signed operands, but some of them also
                   4798: work for unsigned numbers: @code{d+}, @code{d-}.
1.44      crook    4799: 
1.21      crook    4800: doc-s>d
1.67      anton    4801: doc-d>s
1.21      crook    4802: doc-d+
                   4803: doc-d-
                   4804: doc-dnegate
                   4805: doc-dabs
                   4806: doc-dmin
                   4807: doc-dmax
                   4808: 
1.44      crook    4809: 
1.67      anton    4810: @node Bitwise operations, Numeric comparison, Double precision, Arithmetic
                   4811: @subsection Bitwise operations
                   4812: @cindex bitwise operation words
                   4813: 
                   4814: 
                   4815: doc-and
                   4816: doc-or
                   4817: doc-xor
                   4818: doc-invert
                   4819: doc-lshift
                   4820: doc-rshift
                   4821: doc-2*
                   4822: doc-d2*
                   4823: doc-2/
                   4824: doc-d2/
                   4825: 
                   4826: 
                   4827: @node Numeric comparison, Mixed precision, Bitwise operations, Arithmetic
1.21      crook    4828: @subsection Numeric comparison
                   4829: @cindex numeric comparison words
                   4830: 
1.67      anton    4831: Note that the words that compare for equality (@code{= <> 0= 0<> d= d<>
                   4832: d0= d0<>}) work for for both signed and unsigned numbers.
1.44      crook    4833: 
1.28      crook    4834: doc-<
                   4835: doc-<=
                   4836: doc-<>
                   4837: doc-=
                   4838: doc->
                   4839: doc->=
                   4840: 
1.21      crook    4841: doc-0<
1.23      crook    4842: doc-0<=
1.21      crook    4843: doc-0<>
                   4844: doc-0=
1.23      crook    4845: doc-0>
                   4846: doc-0>=
1.28      crook    4847: 
                   4848: doc-u<
                   4849: doc-u<=
1.44      crook    4850: @c u<> and u= exist but are the same as <> and =
1.31      anton    4851: @c doc-u<>
                   4852: @c doc-u=
1.28      crook    4853: doc-u>
                   4854: doc-u>=
                   4855: 
                   4856: doc-within
                   4857: 
                   4858: doc-d<
                   4859: doc-d<=
                   4860: doc-d<>
                   4861: doc-d=
                   4862: doc-d>
                   4863: doc-d>=
1.23      crook    4864: 
1.21      crook    4865: doc-d0<
1.23      crook    4866: doc-d0<=
                   4867: doc-d0<>
1.21      crook    4868: doc-d0=
1.23      crook    4869: doc-d0>
                   4870: doc-d0>=
                   4871: 
1.21      crook    4872: doc-du<
1.28      crook    4873: doc-du<=
1.44      crook    4874: @c du<> and du= exist but are the same as d<> and d=
1.31      anton    4875: @c doc-du<>
                   4876: @c doc-du=
1.28      crook    4877: doc-du>
                   4878: doc-du>=
1.1       anton    4879: 
1.44      crook    4880: 
1.21      crook    4881: @node Mixed precision, Floating Point, Numeric comparison, Arithmetic
1.1       anton    4882: @subsection Mixed precision
                   4883: @cindex mixed precision arithmetic words
                   4884: 
1.44      crook    4885: 
1.1       anton    4886: doc-m+
                   4887: doc-*/
                   4888: doc-*/mod
                   4889: doc-m*
                   4890: doc-um*
                   4891: doc-m*/
                   4892: doc-um/mod
                   4893: doc-fm/mod
                   4894: doc-sm/rem
                   4895: 
1.44      crook    4896: 
1.21      crook    4897: @node Floating Point,  , Mixed precision, Arithmetic
1.1       anton    4898: @subsection Floating Point
                   4899: @cindex floating point arithmetic words
                   4900: 
1.49      anton    4901: For the rules used by the text interpreter for
                   4902: recognising floating-point numbers see @ref{Number Conversion}.
1.1       anton    4903: 
1.67      anton    4904: Gforth has a separate floating point stack, but the documentation uses
                   4905: the unified notation.@footnote{It's easy to generate the separate
                   4906: notation from that by just separating the floating-point numbers out:
                   4907: e.g. @code{( n r1 u r2 -- r3 )} becomes @code{( n u -- ) ( F: r1 r2 --
                   4908: r3 )}.}
1.1       anton    4909: 
                   4910: @cindex floating-point arithmetic, pitfalls
                   4911: Floating point numbers have a number of unpleasant surprises for the
                   4912: unwary (e.g., floating point addition is not associative) and even a few
                   4913: for the wary. You should not use them unless you know what you are doing
                   4914: or you don't care that the results you get are totally bogus. If you
                   4915: want to learn about the problems of floating point numbers (and how to
1.66      anton    4916: avoid them), you might start with @cite{David Goldberg,
                   4917: @uref{http://www.validgh.com/goldberg/paper.ps,What Every Computer
                   4918: Scientist Should Know About Floating-Point Arithmetic}, ACM Computing
                   4919: Surveys 23(1):5@minus{}48, March 1991}.
1.1       anton    4920: 
1.44      crook    4921: 
1.21      crook    4922: doc-d>f
                   4923: doc-f>d
1.1       anton    4924: doc-f+
                   4925: doc-f-
                   4926: doc-f*
                   4927: doc-f/
                   4928: doc-fnegate
                   4929: doc-fabs
                   4930: doc-fmax
                   4931: doc-fmin
                   4932: doc-floor
                   4933: doc-fround
                   4934: doc-f**
                   4935: doc-fsqrt
                   4936: doc-fexp
                   4937: doc-fexpm1
                   4938: doc-fln
                   4939: doc-flnp1
                   4940: doc-flog
                   4941: doc-falog
1.32      anton    4942: doc-f2*
                   4943: doc-f2/
                   4944: doc-1/f
                   4945: doc-precision
                   4946: doc-set-precision
                   4947: 
                   4948: @cindex angles in trigonometric operations
                   4949: @cindex trigonometric operations
                   4950: Angles in floating point operations are given in radians (a full circle
                   4951: has 2 pi radians).
                   4952: 
1.1       anton    4953: doc-fsin
                   4954: doc-fcos
                   4955: doc-fsincos
                   4956: doc-ftan
                   4957: doc-fasin
                   4958: doc-facos
                   4959: doc-fatan
                   4960: doc-fatan2
                   4961: doc-fsinh
                   4962: doc-fcosh
                   4963: doc-ftanh
                   4964: doc-fasinh
                   4965: doc-facosh
                   4966: doc-fatanh
1.21      crook    4967: doc-pi
1.28      crook    4968: 
1.32      anton    4969: @cindex equality of floats
                   4970: @cindex floating-point comparisons
1.31      anton    4971: One particular problem with floating-point arithmetic is that comparison
                   4972: for equality often fails when you would expect it to succeed.  For this
                   4973: reason approximate equality is often preferred (but you still have to
1.67      anton    4974: know what you are doing).  Also note that IEEE NaNs may compare
1.68      anton    4975: differently from what you might expect.  The comparison words are:
1.31      anton    4976: 
                   4977: doc-f~rel
                   4978: doc-f~abs
1.68      anton    4979: doc-f~
1.31      anton    4980: doc-f=
                   4981: doc-f<>
                   4982: 
                   4983: doc-f<
                   4984: doc-f<=
                   4985: doc-f>
                   4986: doc-f>=
                   4987: 
1.21      crook    4988: doc-f0<
1.28      crook    4989: doc-f0<=
                   4990: doc-f0<>
1.21      crook    4991: doc-f0=
1.28      crook    4992: doc-f0>
                   4993: doc-f0>=
                   4994: 
1.1       anton    4995: 
                   4996: @node Stack Manipulation, Memory, Arithmetic, Words
                   4997: @section Stack Manipulation
                   4998: @cindex stack manipulation words
                   4999: 
                   5000: @cindex floating-point stack in the standard
1.21      crook    5001: Gforth maintains a number of separate stacks:
                   5002: 
1.29      crook    5003: @cindex data stack
                   5004: @cindex parameter stack
1.21      crook    5005: @itemize @bullet
                   5006: @item
1.29      crook    5007: A data stack (also known as the @dfn{parameter stack}) -- for
                   5008: characters, cells, addresses, and double cells.
1.21      crook    5009: 
1.29      crook    5010: @cindex floating-point stack
1.21      crook    5011: @item
1.44      crook    5012: A floating point stack -- for holding floating point (FP) numbers.
1.21      crook    5013: 
1.29      crook    5014: @cindex return stack
1.21      crook    5015: @item
1.44      crook    5016: A return stack -- for holding the return addresses of colon
1.32      anton    5017: definitions and other (non-FP) data.
1.21      crook    5018: 
1.29      crook    5019: @cindex locals stack
1.21      crook    5020: @item
1.44      crook    5021: A locals stack -- for holding local variables.
1.21      crook    5022: @end itemize
                   5023: 
1.1       anton    5024: @menu
                   5025: * Data stack::                  
                   5026: * Floating point stack::        
                   5027: * Return stack::                
                   5028: * Locals stack::                
                   5029: * Stack pointer manipulation::  
                   5030: @end menu
                   5031: 
                   5032: @node Data stack, Floating point stack, Stack Manipulation, Stack Manipulation
                   5033: @subsection Data stack
                   5034: @cindex data stack manipulation words
                   5035: @cindex stack manipulations words, data stack
                   5036: 
1.44      crook    5037: 
1.1       anton    5038: doc-drop
                   5039: doc-nip
                   5040: doc-dup
                   5041: doc-over
                   5042: doc-tuck
                   5043: doc-swap
1.21      crook    5044: doc-pick
1.1       anton    5045: doc-rot
                   5046: doc--rot
                   5047: doc-?dup
                   5048: doc-roll
                   5049: doc-2drop
                   5050: doc-2nip
                   5051: doc-2dup
                   5052: doc-2over
                   5053: doc-2tuck
                   5054: doc-2swap
                   5055: doc-2rot
                   5056: 
1.44      crook    5057: 
1.1       anton    5058: @node Floating point stack, Return stack, Data stack, Stack Manipulation
                   5059: @subsection Floating point stack
                   5060: @cindex floating-point stack manipulation words
                   5061: @cindex stack manipulation words, floating-point stack
                   5062: 
1.32      anton    5063: Whilst every sane Forth has a separate floating-point stack, it is not
                   5064: strictly required; an ANS Forth system could theoretically keep
                   5065: floating-point numbers on the data stack. As an additional difficulty,
                   5066: you don't know how many cells a floating-point number takes. It is
                   5067: reportedly possible to write words in a way that they work also for a
                   5068: unified stack model, but we do not recommend trying it. Instead, just
                   5069: say that your program has an environmental dependency on a separate
                   5070: floating-point stack.
                   5071: 
                   5072: doc-floating-stack
                   5073: 
1.1       anton    5074: doc-fdrop
                   5075: doc-fnip
                   5076: doc-fdup
                   5077: doc-fover
                   5078: doc-ftuck
                   5079: doc-fswap
1.21      crook    5080: doc-fpick
1.1       anton    5081: doc-frot
                   5082: 
1.44      crook    5083: 
1.1       anton    5084: @node Return stack, Locals stack, Floating point stack, Stack Manipulation
                   5085: @subsection Return stack
                   5086: @cindex return stack manipulation words
                   5087: @cindex stack manipulation words, return stack
                   5088: 
1.32      anton    5089: @cindex return stack and locals
                   5090: @cindex locals and return stack
                   5091: A Forth system is allowed to keep local variables on the
                   5092: return stack. This is reasonable, as local variables usually eliminate
                   5093: the need to use the return stack explicitly. So, if you want to produce
                   5094: a standard compliant program and you are using local variables in a
                   5095: word, forget about return stack manipulations in that word (refer to the
                   5096: standard document for the exact rules).
                   5097: 
1.1       anton    5098: doc->r
                   5099: doc-r>
                   5100: doc-r@
                   5101: doc-rdrop
                   5102: doc-2>r
                   5103: doc-2r>
                   5104: doc-2r@
                   5105: doc-2rdrop
                   5106: 
1.44      crook    5107: 
1.1       anton    5108: @node Locals stack, Stack pointer manipulation, Return stack, Stack Manipulation
                   5109: @subsection Locals stack
                   5110: 
1.78      anton    5111: Gforth uses an extra locals stack.  It is described, along with the
                   5112: reasons for its existence, in @ref{Locals implementation}.
1.21      crook    5113: 
1.1       anton    5114: @node Stack pointer manipulation,  , Locals stack, Stack Manipulation
                   5115: @subsection Stack pointer manipulation
                   5116: @cindex stack pointer manipulation words
                   5117: 
1.44      crook    5118: @c removed s0 r0 l0 -- they are obsolete aliases for sp0 rp0 lp0
1.21      crook    5119: doc-sp0
1.1       anton    5120: doc-sp@
                   5121: doc-sp!
1.21      crook    5122: doc-fp0
1.1       anton    5123: doc-fp@
                   5124: doc-fp!
1.21      crook    5125: doc-rp0
1.1       anton    5126: doc-rp@
                   5127: doc-rp!
1.21      crook    5128: doc-lp0
1.1       anton    5129: doc-lp@
                   5130: doc-lp!
                   5131: 
1.44      crook    5132: 
1.1       anton    5133: @node Memory, Control Structures, Stack Manipulation, Words
                   5134: @section Memory
1.26      crook    5135: @cindex memory words
1.1       anton    5136: 
1.32      anton    5137: @menu
                   5138: * Memory model::                
                   5139: * Dictionary allocation::       
                   5140: * Heap Allocation::             
                   5141: * Memory Access::               
                   5142: * Address arithmetic::          
                   5143: * Memory Blocks::               
                   5144: @end menu
                   5145: 
1.67      anton    5146: In addition to the standard Forth memory allocation words, there is also
                   5147: a @uref{http://www.complang.tuwien.ac.at/forth/garbage-collection.zip,
                   5148: garbage collector}.
                   5149: 
1.32      anton    5150: @node Memory model, Dictionary allocation, Memory, Memory
                   5151: @subsection ANS Forth and Gforth memory models
                   5152: 
                   5153: @c The ANS Forth description is a mess (e.g., is the heap part of
                   5154: @c the dictionary?), so let's not stick to closely with it.
                   5155: 
1.67      anton    5156: ANS Forth considers a Forth system as consisting of several address
                   5157: spaces, of which only @dfn{data space} is managed and accessible with
                   5158: the memory words.  Memory not necessarily in data space includes the
                   5159: stacks, the code (called code space) and the headers (called name
                   5160: space). In Gforth everything is in data space, but the code for the
                   5161: primitives is usually read-only.
1.32      anton    5162: 
                   5163: Data space is divided into a number of areas: The (data space portion of
                   5164: the) dictionary@footnote{Sometimes, the term @dfn{dictionary} is used to
                   5165: refer to the search data structure embodied in word lists and headers,
                   5166: because it is used for looking up names, just as you would in a
                   5167: conventional dictionary.}, the heap, and a number of system-allocated
                   5168: buffers.
                   5169: 
1.68      anton    5170: @cindex address arithmetic restrictions, ANS vs. Gforth
                   5171: @cindex contiguous regions, ANS vs. Gforth
1.32      anton    5172: In ANS Forth data space is also divided into contiguous regions.  You
                   5173: can only use address arithmetic within a contiguous region, not between
                   5174: them.  Usually each allocation gives you one contiguous region, but the
1.33      anton    5175: dictionary allocation words have additional rules (@pxref{Dictionary
1.32      anton    5176: allocation}).
                   5177: 
                   5178: Gforth provides one big address space, and address arithmetic can be
                   5179: performed between any addresses. However, in the dictionary headers or
                   5180: code are interleaved with data, so almost the only contiguous data space
                   5181: regions there are those described by ANS Forth as contiguous; but you
                   5182: can be sure that the dictionary is allocated towards increasing
                   5183: addresses even between contiguous regions.  The memory order of
                   5184: allocations in the heap is platform-dependent (and possibly different
                   5185: from one run to the next).
                   5186: 
1.27      crook    5187: 
1.32      anton    5188: @node Dictionary allocation, Heap Allocation, Memory model, Memory
                   5189: @subsection Dictionary allocation
1.27      crook    5190: @cindex reserving data space
                   5191: @cindex data space - reserving some
                   5192: 
1.32      anton    5193: Dictionary allocation is a stack-oriented allocation scheme, i.e., if
                   5194: you want to deallocate X, you also deallocate everything
                   5195: allocated after X.
                   5196: 
1.68      anton    5197: @cindex contiguous regions in dictionary allocation
1.32      anton    5198: The allocations using the words below are contiguous and grow the region
                   5199: towards increasing addresses.  Other words that allocate dictionary
                   5200: memory of any kind (i.e., defining words including @code{:noname}) end
                   5201: the contiguous region and start a new one.
                   5202: 
                   5203: In ANS Forth only @code{create}d words are guaranteed to produce an
                   5204: address that is the start of the following contiguous region.  In
                   5205: particular, the cell allocated by @code{variable} is not guaranteed to
                   5206: be contiguous with following @code{allot}ed memory.
                   5207: 
                   5208: You can deallocate memory by using @code{allot} with a negative argument
                   5209: (with some restrictions, see @code{allot}). For larger deallocations use
                   5210: @code{marker}.
1.27      crook    5211: 
1.29      crook    5212: 
1.27      crook    5213: doc-here
                   5214: doc-unused
                   5215: doc-allot
                   5216: doc-c,
1.29      crook    5217: doc-f,
1.27      crook    5218: doc-,
                   5219: doc-2,
                   5220: 
1.32      anton    5221: Memory accesses have to be aligned (@pxref{Address arithmetic}). So of
                   5222: course you should allocate memory in an aligned way, too. I.e., before
                   5223: allocating allocating a cell, @code{here} must be cell-aligned, etc.
                   5224: The words below align @code{here} if it is not already.  Basically it is
                   5225: only already aligned for a type, if the last allocation was a multiple
                   5226: of the size of this type and if @code{here} was aligned for this type
                   5227: before.
                   5228: 
                   5229: After freshly @code{create}ing a word, @code{here} is @code{align}ed in
                   5230: ANS Forth (@code{maxalign}ed in Gforth).
                   5231: 
                   5232: doc-align
                   5233: doc-falign
                   5234: doc-sfalign
                   5235: doc-dfalign
                   5236: doc-maxalign
                   5237: doc-cfalign
                   5238: 
                   5239: 
                   5240: @node Heap Allocation, Memory Access, Dictionary allocation, Memory
                   5241: @subsection Heap allocation
                   5242: @cindex heap allocation
                   5243: @cindex dynamic allocation of memory
                   5244: @cindex memory-allocation word set
                   5245: 
1.68      anton    5246: @cindex contiguous regions and heap allocation
1.32      anton    5247: Heap allocation supports deallocation of allocated memory in any
                   5248: order. Dictionary allocation is not affected by it (i.e., it does not
                   5249: end a contiguous region). In Gforth, these words are implemented using
                   5250: the standard C library calls malloc(), free() and resize().
                   5251: 
1.68      anton    5252: The memory region produced by one invocation of @code{allocate} or
                   5253: @code{resize} is internally contiguous.  There is no contiguity between
                   5254: such a region and any other region (including others allocated from the
                   5255: heap).
                   5256: 
1.32      anton    5257: doc-allocate
                   5258: doc-free
                   5259: doc-resize
                   5260: 
1.27      crook    5261: 
1.32      anton    5262: @node Memory Access, Address arithmetic, Heap Allocation, Memory
1.1       anton    5263: @subsection Memory Access
                   5264: @cindex memory access words
                   5265: 
                   5266: doc-@
                   5267: doc-!
                   5268: doc-+!
                   5269: doc-c@
                   5270: doc-c!
                   5271: doc-2@
                   5272: doc-2!
                   5273: doc-f@
                   5274: doc-f!
                   5275: doc-sf@
                   5276: doc-sf!
                   5277: doc-df@
                   5278: doc-df!
                   5279: 
1.68      anton    5280: 
1.32      anton    5281: @node Address arithmetic, Memory Blocks, Memory Access, Memory
                   5282: @subsection Address arithmetic
1.1       anton    5283: @cindex address arithmetic words
                   5284: 
1.67      anton    5285: Address arithmetic is the foundation on which you can build data
                   5286: structures like arrays, records (@pxref{Structures}) and objects
                   5287: (@pxref{Object-oriented Forth}).
1.32      anton    5288: 
1.68      anton    5289: @cindex address unit
                   5290: @cindex au (address unit)
1.1       anton    5291: ANS Forth does not specify the sizes of the data types. Instead, it
                   5292: offers a number of words for computing sizes and doing address
1.29      crook    5293: arithmetic. Address arithmetic is performed in terms of address units
                   5294: (aus); on most systems the address unit is one byte. Note that a
                   5295: character may have more than one au, so @code{chars} is no noop (on
1.68      anton    5296: platforms where it is a noop, it compiles to nothing).
1.1       anton    5297: 
1.67      anton    5298: The basic address arithmetic words are @code{+} and @code{-}.  E.g., if
                   5299: you have the address of a cell, perform @code{1 cells +}, and you will
                   5300: have the address of the next cell.
                   5301: 
1.68      anton    5302: @cindex contiguous regions and address arithmetic
1.67      anton    5303: In ANS Forth you can perform address arithmetic only within a contiguous
                   5304: region, i.e., if you have an address into one region, you can only add
                   5305: and subtract such that the result is still within the region; you can
                   5306: only subtract or compare addresses from within the same contiguous
                   5307: region.  Reasons: several contiguous regions can be arranged in memory
                   5308: in any way; on segmented systems addresses may have unusual
                   5309: representations, such that address arithmetic only works within a
                   5310: region.  Gforth provides a few more guarantees (linear address space,
                   5311: dictionary grows upwards), but in general I have found it easy to stay
                   5312: within contiguous regions (exception: computing and comparing to the
                   5313: address just beyond the end of an array).
                   5314: 
1.1       anton    5315: @cindex alignment of addresses for types
                   5316: ANS Forth also defines words for aligning addresses for specific
                   5317: types. Many computers require that accesses to specific data types
                   5318: must only occur at specific addresses; e.g., that cells may only be
                   5319: accessed at addresses divisible by 4. Even if a machine allows unaligned
                   5320: accesses, it can usually perform aligned accesses faster. 
                   5321: 
                   5322: For the performance-conscious: alignment operations are usually only
                   5323: necessary during the definition of a data structure, not during the
                   5324: (more frequent) accesses to it.
                   5325: 
                   5326: ANS Forth defines no words for character-aligning addresses. This is not
                   5327: an oversight, but reflects the fact that addresses that are not
                   5328: char-aligned have no use in the standard and therefore will not be
                   5329: created.
                   5330: 
                   5331: @cindex @code{CREATE} and alignment
1.29      crook    5332: ANS Forth guarantees that addresses returned by @code{CREATE}d words
1.1       anton    5333: are cell-aligned; in addition, Gforth guarantees that these addresses
                   5334: are aligned for all purposes.
                   5335: 
1.26      crook    5336: Note that the ANS Forth word @code{char} has nothing to do with address
                   5337: arithmetic.
1.1       anton    5338: 
1.44      crook    5339: 
1.1       anton    5340: doc-chars
                   5341: doc-char+
                   5342: doc-cells
                   5343: doc-cell+
                   5344: doc-cell
                   5345: doc-aligned
                   5346: doc-floats
                   5347: doc-float+
                   5348: doc-float
                   5349: doc-faligned
                   5350: doc-sfloats
                   5351: doc-sfloat+
                   5352: doc-sfaligned
                   5353: doc-dfloats
                   5354: doc-dfloat+
                   5355: doc-dfaligned
                   5356: doc-maxaligned
                   5357: doc-cfaligned
                   5358: doc-address-unit-bits
                   5359: 
1.44      crook    5360: 
1.32      anton    5361: @node Memory Blocks,  , Address arithmetic, Memory
1.1       anton    5362: @subsection Memory Blocks
                   5363: @cindex memory block words
1.27      crook    5364: @cindex character strings - moving and copying
                   5365: 
1.49      anton    5366: Memory blocks often represent character strings; For ways of storing
                   5367: character strings in memory see @ref{String Formats}.  For other
                   5368: string-processing words see @ref{Displaying characters and strings}.
1.1       anton    5369: 
1.67      anton    5370: A few of these words work on address unit blocks.  In that case, you
                   5371: usually have to insert @code{CHARS} before the word when working on
                   5372: character strings.  Most words work on character blocks, and expect a
                   5373: char-aligned address.
                   5374: 
                   5375: When copying characters between overlapping memory regions, use
                   5376: @code{chars move} or choose carefully between @code{cmove} and
                   5377: @code{cmove>}.
1.44      crook    5378: 
1.1       anton    5379: doc-move
                   5380: doc-erase
                   5381: doc-cmove
                   5382: doc-cmove>
                   5383: doc-fill
                   5384: doc-blank
1.21      crook    5385: doc-compare
                   5386: doc-search
1.27      crook    5387: doc--trailing
                   5388: doc-/string
1.82      anton    5389: doc-bounds
1.44      crook    5390: 
1.27      crook    5391: @comment TODO examples
                   5392: 
1.1       anton    5393: 
1.26      crook    5394: @node Control Structures, Defining Words, Memory, Words
1.1       anton    5395: @section Control Structures
                   5396: @cindex control structures
                   5397: 
1.33      anton    5398: Control structures in Forth cannot be used interpretively, only in a
                   5399: colon definition@footnote{To be precise, they have no interpretation
                   5400: semantics (@pxref{Interpretation and Compilation Semantics}).}. We do
                   5401: not like this limitation, but have not seen a satisfying way around it
                   5402: yet, although many schemes have been proposed.
1.1       anton    5403: 
                   5404: @menu
1.33      anton    5405: * Selection::                   IF ... ELSE ... ENDIF
                   5406: * Simple Loops::                BEGIN ...
1.29      crook    5407: * Counted Loops::               DO
1.67      anton    5408: * Arbitrary control structures::  
                   5409: * Calls and returns::           
1.1       anton    5410: * Exception Handling::          
                   5411: @end menu
                   5412: 
                   5413: @node Selection, Simple Loops, Control Structures, Control Structures
                   5414: @subsection Selection
                   5415: @cindex selection control structures
                   5416: @cindex control structures for selection
                   5417: 
                   5418: @cindex @code{IF} control structure
                   5419: @example
1.29      crook    5420: @i{flag}
1.1       anton    5421: IF
1.29      crook    5422:   @i{code}
1.1       anton    5423: ENDIF
                   5424: @end example
1.21      crook    5425: @noindent
1.33      anton    5426: 
1.44      crook    5427: If @i{flag} is non-zero (as far as @code{IF} etc. are concerned, a cell
                   5428: with any bit set represents truth) @i{code} is executed.
1.33      anton    5429: 
1.1       anton    5430: @example
1.29      crook    5431: @i{flag}
1.1       anton    5432: IF
1.29      crook    5433:   @i{code1}
1.1       anton    5434: ELSE
1.29      crook    5435:   @i{code2}
1.1       anton    5436: ENDIF
                   5437: @end example
                   5438: 
1.44      crook    5439: If @var{flag} is true, @i{code1} is executed, otherwise @i{code2} is
                   5440: executed.
1.33      anton    5441: 
1.1       anton    5442: You can use @code{THEN} instead of @code{ENDIF}. Indeed, @code{THEN} is
                   5443: standard, and @code{ENDIF} is not, although it is quite popular. We
                   5444: recommend using @code{ENDIF}, because it is less confusing for people
                   5445: who also know other languages (and is not prone to reinforcing negative
                   5446: prejudices against Forth in these people). Adding @code{ENDIF} to a
                   5447: system that only supplies @code{THEN} is simple:
                   5448: @example
1.82      anton    5449: : ENDIF   POSTPONE then ; immediate
1.1       anton    5450: @end example
                   5451: 
                   5452: [According to @cite{Webster's New Encyclopedic Dictionary}, @dfn{then
                   5453: (adv.)}  has the following meanings:
                   5454: @quotation
                   5455: ... 2b: following next after in order ... 3d: as a necessary consequence
                   5456: (if you were there, then you saw them).
                   5457: @end quotation
                   5458: Forth's @code{THEN} has the meaning 2b, whereas @code{THEN} in Pascal
                   5459: and many other programming languages has the meaning 3d.]
                   5460: 
1.21      crook    5461: Gforth also provides the words @code{?DUP-IF} and @code{?DUP-0=-IF}, so
1.1       anton    5462: you can avoid using @code{?dup}. Using these alternatives is also more
1.26      crook    5463: efficient than using @code{?dup}. Definitions in ANS Forth
1.1       anton    5464: for @code{ENDIF}, @code{?DUP-IF} and @code{?DUP-0=-IF} are provided in
                   5465: @file{compat/control.fs}.
                   5466: 
                   5467: @cindex @code{CASE} control structure
                   5468: @example
1.29      crook    5469: @i{n}
1.1       anton    5470: CASE
1.29      crook    5471:   @i{n1} OF @i{code1} ENDOF
                   5472:   @i{n2} OF @i{code2} ENDOF
1.1       anton    5473:   @dots{}
1.68      anton    5474:   ( n ) @i{default-code} ( n )
1.1       anton    5475: ENDCASE
                   5476: @end example
                   5477: 
1.68      anton    5478: Executes the first @i{codei}, where the @i{ni} is equal to @i{n}.  If no
                   5479: @i{ni} matches, the optional @i{default-code} is executed. The optional
                   5480: default case can be added by simply writing the code after the last
                   5481: @code{ENDOF}. It may use @i{n}, which is on top of the stack, but must
                   5482: not consume it.
1.1       anton    5483: 
1.69      anton    5484: @progstyle
                   5485: To keep the code understandable, you should ensure that on all paths
                   5486: through a selection construct the stack is changed in the same way
                   5487: (wrt. number and types of stack items consumed and pushed).
                   5488: 
1.1       anton    5489: @node Simple Loops, Counted Loops, Selection, Control Structures
                   5490: @subsection Simple Loops
                   5491: @cindex simple loops
                   5492: @cindex loops without count 
                   5493: 
                   5494: @cindex @code{WHILE} loop
                   5495: @example
                   5496: BEGIN
1.29      crook    5497:   @i{code1}
                   5498:   @i{flag}
1.1       anton    5499: WHILE
1.29      crook    5500:   @i{code2}
1.1       anton    5501: REPEAT
                   5502: @end example
                   5503: 
1.29      crook    5504: @i{code1} is executed and @i{flag} is computed. If it is true,
                   5505: @i{code2} is executed and the loop is restarted; If @i{flag} is
1.1       anton    5506: false, execution continues after the @code{REPEAT}.
                   5507: 
                   5508: @cindex @code{UNTIL} loop
                   5509: @example
                   5510: BEGIN
1.29      crook    5511:   @i{code}
                   5512:   @i{flag}
1.1       anton    5513: UNTIL
                   5514: @end example
                   5515: 
1.29      crook    5516: @i{code} is executed. The loop is restarted if @code{flag} is false.
1.1       anton    5517: 
1.69      anton    5518: @progstyle
                   5519: To keep the code understandable, a complete iteration of the loop should
                   5520: not change the number and types of the items on the stacks.
                   5521: 
1.1       anton    5522: @cindex endless loop
                   5523: @cindex loops, endless
                   5524: @example
                   5525: BEGIN
1.29      crook    5526:   @i{code}
1.1       anton    5527: AGAIN
                   5528: @end example
                   5529: 
                   5530: This is an endless loop.
                   5531: 
                   5532: @node Counted Loops, Arbitrary control structures, Simple Loops, Control Structures
                   5533: @subsection Counted Loops
                   5534: @cindex counted loops
                   5535: @cindex loops, counted
                   5536: @cindex @code{DO} loops
                   5537: 
                   5538: The basic counted loop is:
                   5539: @example
1.29      crook    5540: @i{limit} @i{start}
1.1       anton    5541: ?DO
1.29      crook    5542:   @i{body}
1.1       anton    5543: LOOP
                   5544: @end example
                   5545: 
1.29      crook    5546: This performs one iteration for every integer, starting from @i{start}
                   5547: and up to, but excluding @i{limit}. The counter, or @i{index}, can be
1.21      crook    5548: accessed with @code{i}. For example, the loop:
1.1       anton    5549: @example
                   5550: 10 0 ?DO
                   5551:   i .
                   5552: LOOP
                   5553: @end example
1.21      crook    5554: @noindent
                   5555: prints @code{0 1 2 3 4 5 6 7 8 9}
                   5556: 
1.1       anton    5557: The index of the innermost loop can be accessed with @code{i}, the index
                   5558: of the next loop with @code{j}, and the index of the third loop with
                   5559: @code{k}.
                   5560: 
1.44      crook    5561: 
1.1       anton    5562: doc-i
                   5563: doc-j
                   5564: doc-k
                   5565: 
1.44      crook    5566: 
1.1       anton    5567: The loop control data are kept on the return stack, so there are some
1.21      crook    5568: restrictions on mixing return stack accesses and counted loop words. In
                   5569: particuler, if you put values on the return stack outside the loop, you
                   5570: cannot read them inside the loop@footnote{well, not in a way that is
                   5571: portable.}. If you put values on the return stack within a loop, you
                   5572: have to remove them before the end of the loop and before accessing the
                   5573: index of the loop.
1.1       anton    5574: 
                   5575: There are several variations on the counted loop:
                   5576: 
1.21      crook    5577: @itemize @bullet
                   5578: @item
                   5579: @code{LEAVE} leaves the innermost counted loop immediately; execution
                   5580: continues after the associated @code{LOOP} or @code{NEXT}. For example:
                   5581: 
                   5582: @example
                   5583: 10 0 ?DO  i DUP . 3 = IF LEAVE THEN LOOP
                   5584: @end example
                   5585: prints @code{0 1 2 3}
                   5586: 
1.1       anton    5587: 
1.21      crook    5588: @item
                   5589: @code{UNLOOP} prepares for an abnormal loop exit, e.g., via
                   5590: @code{EXIT}. @code{UNLOOP} removes the loop control parameters from the
                   5591: return stack so @code{EXIT} can get to its return address. For example:
                   5592: 
                   5593: @example
                   5594: : demo 10 0 ?DO i DUP . 3 = IF UNLOOP EXIT THEN LOOP ." Done" ;
                   5595: @end example
                   5596: prints @code{0 1 2 3}
                   5597: 
                   5598: 
                   5599: @item
1.29      crook    5600: If @i{start} is greater than @i{limit}, a @code{?DO} loop is entered
1.1       anton    5601: (and @code{LOOP} iterates until they become equal by wrap-around
                   5602: arithmetic). This behaviour is usually not what you want. Therefore,
                   5603: Gforth offers @code{+DO} and @code{U+DO} (as replacements for
1.29      crook    5604: @code{?DO}), which do not enter the loop if @i{start} is greater than
                   5605: @i{limit}; @code{+DO} is for signed loop parameters, @code{U+DO} for
1.1       anton    5606: unsigned loop parameters.
                   5607: 
1.21      crook    5608: @item
                   5609: @code{?DO} can be replaced by @code{DO}. @code{DO} always enters
                   5610: the loop, independent of the loop parameters. Do not use @code{DO}, even
                   5611: if you know that the loop is entered in any case. Such knowledge tends
                   5612: to become invalid during maintenance of a program, and then the
                   5613: @code{DO} will make trouble.
                   5614: 
                   5615: @item
1.29      crook    5616: @code{LOOP} can be replaced with @code{@i{n} +LOOP}; this updates the
                   5617: index by @i{n} instead of by 1. The loop is terminated when the border
                   5618: between @i{limit-1} and @i{limit} is crossed. E.g.:
1.1       anton    5619: 
1.21      crook    5620: @example
                   5621: 4 0 +DO  i .  2 +LOOP
                   5622: @end example
                   5623: @noindent
                   5624: prints @code{0 2}
                   5625: 
                   5626: @example
                   5627: 4 1 +DO  i .  2 +LOOP
                   5628: @end example
                   5629: @noindent
                   5630: prints @code{1 3}
1.1       anton    5631: 
1.68      anton    5632: @item
1.1       anton    5633: @cindex negative increment for counted loops
                   5634: @cindex counted loops with negative increment
1.29      crook    5635: The behaviour of @code{@i{n} +LOOP} is peculiar when @i{n} is negative:
1.1       anton    5636: 
1.21      crook    5637: @example
                   5638: -1 0 ?DO  i .  -1 +LOOP
                   5639: @end example
                   5640: @noindent
                   5641: prints @code{0 -1}
1.1       anton    5642: 
1.21      crook    5643: @example
                   5644: 0 0 ?DO  i .  -1 +LOOP
                   5645: @end example
                   5646: prints nothing.
1.1       anton    5647: 
1.29      crook    5648: Therefore we recommend avoiding @code{@i{n} +LOOP} with negative
                   5649: @i{n}. One alternative is @code{@i{u} -LOOP}, which reduces the
                   5650: index by @i{u} each iteration. The loop is terminated when the border
                   5651: between @i{limit+1} and @i{limit} is crossed. Gforth also provides
1.1       anton    5652: @code{-DO} and @code{U-DO} for down-counting loops. E.g.:
                   5653: 
1.21      crook    5654: @example
                   5655: -2 0 -DO  i .  1 -LOOP
                   5656: @end example
                   5657: @noindent
                   5658: prints @code{0 -1}
1.1       anton    5659: 
1.21      crook    5660: @example
                   5661: -1 0 -DO  i .  1 -LOOP
                   5662: @end example
                   5663: @noindent
                   5664: prints @code{0}
                   5665: 
                   5666: @example
                   5667: 0 0 -DO  i .  1 -LOOP
                   5668: @end example
                   5669: @noindent
                   5670: prints nothing.
1.1       anton    5671: 
1.21      crook    5672: @end itemize
1.1       anton    5673: 
                   5674: Unfortunately, @code{+DO}, @code{U+DO}, @code{-DO}, @code{U-DO} and
1.26      crook    5675: @code{-LOOP} are not defined in ANS Forth. However, an implementation
                   5676: for these words that uses only standard words is provided in
                   5677: @file{compat/loops.fs}.
1.1       anton    5678: 
                   5679: 
                   5680: @cindex @code{FOR} loops
1.26      crook    5681: Another counted loop is:
1.1       anton    5682: @example
1.29      crook    5683: @i{n}
1.1       anton    5684: FOR
1.29      crook    5685:   @i{body}
1.1       anton    5686: NEXT
                   5687: @end example
                   5688: This is the preferred loop of native code compiler writers who are too
1.26      crook    5689: lazy to optimize @code{?DO} loops properly. This loop structure is not
1.29      crook    5690: defined in ANS Forth. In Gforth, this loop iterates @i{n+1} times;
                   5691: @code{i} produces values starting with @i{n} and ending with 0. Other
1.26      crook    5692: Forth systems may behave differently, even if they support @code{FOR}
                   5693: loops. To avoid problems, don't use @code{FOR} loops.
1.1       anton    5694: 
                   5695: @node Arbitrary control structures, Calls and returns, Counted Loops, Control Structures
                   5696: @subsection Arbitrary control structures
                   5697: @cindex control structures, user-defined
                   5698: 
                   5699: @cindex control-flow stack
                   5700: ANS Forth permits and supports using control structures in a non-nested
                   5701: way. Information about incomplete control structures is stored on the
                   5702: control-flow stack. This stack may be implemented on the Forth data
                   5703: stack, and this is what we have done in Gforth.
                   5704: 
                   5705: @cindex @code{orig}, control-flow stack item
                   5706: @cindex @code{dest}, control-flow stack item
                   5707: An @i{orig} entry represents an unresolved forward branch, a @i{dest}
                   5708: entry represents a backward branch target. A few words are the basis for
                   5709: building any control structure possible (except control structures that
                   5710: need storage, like calls, coroutines, and backtracking).
                   5711: 
1.44      crook    5712: 
1.1       anton    5713: doc-if
                   5714: doc-ahead
                   5715: doc-then
                   5716: doc-begin
                   5717: doc-until
                   5718: doc-again
                   5719: doc-cs-pick
                   5720: doc-cs-roll
                   5721: 
1.44      crook    5722: 
1.21      crook    5723: The Standard words @code{CS-PICK} and @code{CS-ROLL} allow you to
                   5724: manipulate the control-flow stack in a portable way. Without them, you
                   5725: would need to know how many stack items are occupied by a control-flow
                   5726: entry (many systems use one cell. In Gforth they currently take three,
                   5727: but this may change in the future).
                   5728: 
1.1       anton    5729: Some standard control structure words are built from these words:
                   5730: 
1.44      crook    5731: 
1.1       anton    5732: doc-else
                   5733: doc-while
                   5734: doc-repeat
                   5735: 
1.44      crook    5736: 
                   5737: @noindent
1.1       anton    5738: Gforth adds some more control-structure words:
                   5739: 
1.44      crook    5740: 
1.1       anton    5741: doc-endif
                   5742: doc-?dup-if
                   5743: doc-?dup-0=-if
                   5744: 
1.44      crook    5745: 
                   5746: @noindent
1.1       anton    5747: Counted loop words constitute a separate group of words:
                   5748: 
1.44      crook    5749: 
1.1       anton    5750: doc-?do
                   5751: doc-+do
                   5752: doc-u+do
                   5753: doc--do
                   5754: doc-u-do
                   5755: doc-do
                   5756: doc-for
                   5757: doc-loop
                   5758: doc-+loop
                   5759: doc--loop
                   5760: doc-next
                   5761: doc-leave
                   5762: doc-?leave
                   5763: doc-unloop
                   5764: doc-done
                   5765: 
1.44      crook    5766: 
1.21      crook    5767: The standard does not allow using @code{CS-PICK} and @code{CS-ROLL} on
                   5768: @i{do-sys}. Gforth allows it, but it's your job to ensure that for
1.1       anton    5769: every @code{?DO} etc. there is exactly one @code{UNLOOP} on any path
                   5770: through the definition (@code{LOOP} etc. compile an @code{UNLOOP} on the
                   5771: fall-through path). Also, you have to ensure that all @code{LEAVE}s are
                   5772: resolved (by using one of the loop-ending words or @code{DONE}).
                   5773: 
1.44      crook    5774: @noindent
1.26      crook    5775: Another group of control structure words are:
1.1       anton    5776: 
1.44      crook    5777: 
1.1       anton    5778: doc-case
                   5779: doc-endcase
                   5780: doc-of
                   5781: doc-endof
                   5782: 
1.44      crook    5783: 
1.21      crook    5784: @i{case-sys} and @i{of-sys} cannot be processed using @code{CS-PICK} and
                   5785: @code{CS-ROLL}.
1.1       anton    5786: 
                   5787: @subsubsection Programming Style
1.47      crook    5788: @cindex control structures programming style
                   5789: @cindex programming style, arbitrary control structures
1.1       anton    5790: 
                   5791: In order to ensure readability we recommend that you do not create
                   5792: arbitrary control structures directly, but define new control structure
                   5793: words for the control structure you want and use these words in your
1.26      crook    5794: program. For example, instead of writing:
1.1       anton    5795: 
                   5796: @example
1.26      crook    5797: BEGIN
1.1       anton    5798:   ...
1.26      crook    5799: IF [ 1 CS-ROLL ]
1.1       anton    5800:   ...
1.26      crook    5801: AGAIN THEN
1.1       anton    5802: @end example
                   5803: 
1.21      crook    5804: @noindent
1.1       anton    5805: we recommend defining control structure words, e.g.,
                   5806: 
                   5807: @example
1.26      crook    5808: : WHILE ( DEST -- ORIG DEST )
                   5809:  POSTPONE IF
                   5810:  1 CS-ROLL ; immediate
                   5811: 
                   5812: : REPEAT ( orig dest -- )
                   5813:  POSTPONE AGAIN
                   5814:  POSTPONE THEN ; immediate
1.1       anton    5815: @end example
                   5816: 
1.21      crook    5817: @noindent
1.1       anton    5818: and then using these to create the control structure:
                   5819: 
                   5820: @example
1.26      crook    5821: BEGIN
1.1       anton    5822:   ...
1.26      crook    5823: WHILE
1.1       anton    5824:   ...
1.26      crook    5825: REPEAT
1.1       anton    5826: @end example
                   5827: 
                   5828: That's much easier to read, isn't it? Of course, @code{REPEAT} and
                   5829: @code{WHILE} are predefined, so in this example it would not be
                   5830: necessary to define them.
                   5831: 
                   5832: @node Calls and returns, Exception Handling, Arbitrary control structures, Control Structures
                   5833: @subsection Calls and returns
                   5834: @cindex calling a definition
                   5835: @cindex returning from a definition
                   5836: 
1.3       anton    5837: @cindex recursive definitions
                   5838: A definition can be called simply be writing the name of the definition
1.26      crook    5839: to be called. Normally a definition is invisible during its own
1.3       anton    5840: definition. If you want to write a directly recursive definition, you
1.26      crook    5841: can use @code{recursive} to make the current definition visible, or
                   5842: @code{recurse} to call the current definition directly.
1.3       anton    5843: 
1.44      crook    5844: 
1.3       anton    5845: doc-recursive
                   5846: doc-recurse
                   5847: 
1.44      crook    5848: 
1.21      crook    5849: @comment TODO add example of the two recursion methods
1.12      anton    5850: @quotation
                   5851: @progstyle
                   5852: I prefer using @code{recursive} to @code{recurse}, because calling the
                   5853: definition by name is more descriptive (if the name is well-chosen) than
                   5854: the somewhat cryptic @code{recurse}.  E.g., in a quicksort
                   5855: implementation, it is much better to read (and think) ``now sort the
                   5856: partitions'' than to read ``now do a recursive call''.
                   5857: @end quotation
1.3       anton    5858: 
1.29      crook    5859: For mutual recursion, use @code{Defer}red words, like this:
1.3       anton    5860: 
                   5861: @example
1.28      crook    5862: Defer foo
1.3       anton    5863: 
                   5864: : bar ( ... -- ... )
                   5865:  ... foo ... ;
                   5866: 
                   5867: :noname ( ... -- ... )
                   5868:  ... bar ... ;
                   5869: IS foo
                   5870: @end example
                   5871: 
1.44      crook    5872: Deferred words are discussed in more detail in @ref{Deferred words}.
1.33      anton    5873: 
1.26      crook    5874: The current definition returns control to the calling definition when
1.33      anton    5875: the end of the definition is reached or @code{EXIT} is encountered.
1.1       anton    5876: 
                   5877: doc-exit
                   5878: doc-;s
                   5879: 
1.44      crook    5880: 
1.1       anton    5881: @node Exception Handling,  , Calls and returns, Control Structures
                   5882: @subsection Exception Handling
1.26      crook    5883: @cindex exceptions
1.1       anton    5884: 
1.68      anton    5885: @c quit is a very bad idea for error handling, 
                   5886: @c because it does not translate into a THROW
                   5887: @c it also does not belong into this chapter
                   5888: 
                   5889: If a word detects an error condition that it cannot handle, it can
                   5890: @code{throw} an exception.  In the simplest case, this will terminate
                   5891: your program, and report an appropriate error.
1.21      crook    5892: 
1.68      anton    5893: doc-throw
1.1       anton    5894: 
1.69      anton    5895: @code{Throw} consumes a cell-sized error number on the stack. There are
                   5896: some predefined error numbers in ANS Forth (see @file{errors.fs}).  In
                   5897: Gforth (and most other systems) you can use the iors produced by various
                   5898: words as error numbers (e.g., a typical use of @code{allocate} is
                   5899: @code{allocate throw}).  Gforth also provides the word @code{exception}
                   5900: to define your own error numbers (with decent error reporting); an ANS
                   5901: Forth version of this word (but without the error messages) is available
                   5902: in @code{compat/except.fs}.  And finally, you can use your own error
1.68      anton    5903: numbers (anything outside the range -4095..0), but won't get nice error
                   5904: messages, only numbers.  For example, try:
                   5905: 
                   5906: @example
1.69      anton    5907: -10 throw                    \ ANS defined
                   5908: -267 throw                   \ system defined
                   5909: s" my error" exception throw \ user defined
                   5910: 7 throw                      \ arbitrary number
1.68      anton    5911: @end example
                   5912: 
                   5913: doc---exception-exception
1.1       anton    5914: 
1.69      anton    5915: A common idiom to @code{THROW} a specific error if a flag is true is
                   5916: this:
                   5917: 
                   5918: @example
                   5919: @code{( flag ) 0<> @i{errno} and throw}
                   5920: @end example
                   5921: 
                   5922: Your program can provide exception handlers to catch exceptions.  An
                   5923: exception handler can be used to correct the problem, or to clean up
                   5924: some data structures and just throw the exception to the next exception
                   5925: handler.  Note that @code{throw} jumps to the dynamically innermost
                   5926: exception handler.  The system's exception handler is outermost, and just
                   5927: prints an error and restarts command-line interpretation (or, in batch
                   5928: mode (i.e., while processing the shell command line), leaves Gforth).
1.1       anton    5929: 
1.68      anton    5930: The ANS Forth way to catch exceptions is @code{catch}:
1.1       anton    5931: 
1.68      anton    5932: doc-catch
                   5933: 
                   5934: The most common use of exception handlers is to clean up the state when
                   5935: an error happens.  E.g.,
1.1       anton    5936: 
1.26      crook    5937: @example
1.68      anton    5938: base @ >r hex \ actually the hex should be inside foo, or we h
                   5939: ['] foo catch ( nerror|0 )
                   5940: r> base !
1.69      anton    5941: ( nerror|0 ) throw \ pass it on
1.26      crook    5942: @end example
1.1       anton    5943: 
1.69      anton    5944: A use of @code{catch} for handling the error @code{myerror} might look
                   5945: like this:
1.44      crook    5946: 
1.68      anton    5947: @example
1.69      anton    5948: ['] foo catch
                   5949: CASE
                   5950:   myerror OF ... ( do something about it ) ENDOF
                   5951:   dup throw \ default: pass other errors on, do nothing on non-errors
                   5952: ENDCASE
1.68      anton    5953: @end example
1.44      crook    5954: 
1.68      anton    5955: Having to wrap the code into a separate word is often cumbersome,
                   5956: therefore Gforth provides an alternative syntax:
1.1       anton    5957: 
                   5958: @example
1.69      anton    5959: TRY
1.68      anton    5960:   @i{code1}
1.69      anton    5961: RECOVER     \ optional
1.68      anton    5962:   @i{code2} \ optional
1.69      anton    5963: ENDTRY
1.1       anton    5964: @end example
                   5965: 
1.68      anton    5966: This performs @i{Code1}.  If @i{code1} completes normally, execution
                   5967: continues after the @code{endtry}.  If @i{Code1} throws, the stacks are
                   5968: reset to the state during @code{try}, the throw value is pushed on the
                   5969: data stack, and execution constinues at @i{code2}, and finally falls
1.92      anton    5970: through the @code{endtry} into the following code.
1.26      crook    5971: 
1.68      anton    5972: doc-try
                   5973: doc-recover
                   5974: doc-endtry
1.26      crook    5975: 
1.69      anton    5976: The cleanup example from above in this syntax:
1.26      crook    5977: 
1.68      anton    5978: @example
1.69      anton    5979: base @ >r TRY
1.68      anton    5980:   hex foo \ now the hex is placed correctly
1.69      anton    5981:   0       \ value for throw
1.92      anton    5982: RECOVER ENDTRY
1.68      anton    5983: r> base ! throw
1.1       anton    5984: @end example
                   5985: 
1.69      anton    5986: And here's the error handling example:
1.1       anton    5987: 
1.68      anton    5988: @example
1.69      anton    5989: TRY
1.68      anton    5990:   foo
1.69      anton    5991: RECOVER
                   5992:   CASE
                   5993:     myerror OF ... ( do something about it ) ENDOF
                   5994:     throw \ pass other errors on
                   5995:   ENDCASE
                   5996: ENDTRY
1.68      anton    5997: @end example
1.1       anton    5998: 
1.69      anton    5999: @progstyle
                   6000: As usual, you should ensure that the stack depth is statically known at
                   6001: the end: either after the @code{throw} for passing on errors, or after
                   6002: the @code{ENDTRY} (or, if you use @code{catch}, after the end of the
                   6003: selection construct for handling the error).
                   6004: 
1.68      anton    6005: There are two alternatives to @code{throw}: @code{Abort"} is conditional
                   6006: and you can provide an error message.  @code{Abort} just produces an
                   6007: ``Aborted'' error.
1.1       anton    6008: 
1.68      anton    6009: The problem with these words is that exception handlers cannot
                   6010: differentiate between different @code{abort"}s; they just look like
                   6011: @code{-2 throw} to them (the error message cannot be accessed by
                   6012: standard programs).  Similar @code{abort} looks like @code{-1 throw} to
                   6013: exception handlers.
1.44      crook    6014: 
1.68      anton    6015: doc-abort"
1.26      crook    6016: doc-abort
1.29      crook    6017: 
                   6018: 
1.44      crook    6019: 
1.29      crook    6020: @c -------------------------------------------------------------
1.47      crook    6021: @node Defining Words, Interpretation and Compilation Semantics, Control Structures, Words
1.29      crook    6022: @section Defining Words
                   6023: @cindex defining words
                   6024: 
1.47      crook    6025: Defining words are used to extend Forth by creating new entries in the dictionary.
                   6026: 
1.29      crook    6027: @menu
1.67      anton    6028: * CREATE::                      
1.44      crook    6029: * Variables::                   Variables and user variables
1.67      anton    6030: * Constants::                   
1.44      crook    6031: * Values::                      Initialised variables
1.67      anton    6032: * Colon Definitions::           
1.44      crook    6033: * Anonymous Definitions::       Definitions without names
1.69      anton    6034: * Supplying names::             Passing definition names as strings
1.67      anton    6035: * User-defined Defining Words::  
1.44      crook    6036: * Deferred words::              Allow forward references
1.67      anton    6037: * Aliases::                     
1.29      crook    6038: @end menu
                   6039: 
1.44      crook    6040: @node CREATE, Variables, Defining Words, Defining Words
                   6041: @subsection @code{CREATE}
1.29      crook    6042: @cindex simple defining words
                   6043: @cindex defining words, simple
                   6044: 
                   6045: Defining words are used to create new entries in the dictionary. The
                   6046: simplest defining word is @code{CREATE}. @code{CREATE} is used like
                   6047: this:
                   6048: 
                   6049: @example
                   6050: CREATE new-word1
                   6051: @end example
                   6052: 
1.69      anton    6053: @code{CREATE} is a parsing word, i.e., it takes an argument from the
                   6054: input stream (@code{new-word1} in our example).  It generates a
                   6055: dictionary entry for @code{new-word1}. When @code{new-word1} is
                   6056: executed, all that it does is leave an address on the stack. The address
                   6057: represents the value of the data space pointer (@code{HERE}) at the time
                   6058: that @code{new-word1} was defined. Therefore, @code{CREATE} is a way of
                   6059: associating a name with the address of a region of memory.
1.29      crook    6060: 
1.34      anton    6061: doc-create
                   6062: 
1.69      anton    6063: Note that in ANS Forth guarantees only for @code{create} that its body
                   6064: is in dictionary data space (i.e., where @code{here}, @code{allot}
                   6065: etc. work, @pxref{Dictionary allocation}).  Also, in ANS Forth only
                   6066: @code{create}d words can be modified with @code{does>}
                   6067: (@pxref{User-defined Defining Words}).  And in ANS Forth @code{>body}
                   6068: can only be applied to @code{create}d words.
                   6069: 
1.29      crook    6070: By extending this example to reserve some memory in data space, we end
1.69      anton    6071: up with something like a @i{variable}. Here are two different ways to do
                   6072: it:
1.29      crook    6073: 
                   6074: @example
                   6075: CREATE new-word2 1 cells allot  \ reserve 1 cell - initial value undefined
                   6076: CREATE new-word3 4 ,            \ reserve 1 cell and initialise it (to 4)
                   6077: @end example
                   6078: 
                   6079: The variable can be examined and modified using @code{@@} (``fetch'') and
                   6080: @code{!} (``store'') like this:
                   6081: 
                   6082: @example
                   6083: new-word2 @@ .      \ get address, fetch from it and display
                   6084: 1234 new-word2 !   \ new value, get address, store to it
                   6085: @end example
                   6086: 
1.44      crook    6087: @cindex arrays
                   6088: A similar mechanism can be used to create arrays. For example, an
                   6089: 80-character text input buffer:
1.29      crook    6090: 
                   6091: @example
1.44      crook    6092: CREATE text-buf 80 chars allot
                   6093: 
                   6094: text-buf 0 chars c@@ \ the 1st character (offset 0)
                   6095: text-buf 3 chars c@@ \ the 4th character (offset 3)
                   6096: @end example
1.29      crook    6097: 
1.44      crook    6098: You can build arbitrarily complex data structures by allocating
1.49      anton    6099: appropriate areas of memory. For further discussions of this, and to
1.66      anton    6100: learn about some Gforth tools that make it easier,
1.49      anton    6101: @xref{Structures}.
1.44      crook    6102: 
                   6103: 
                   6104: @node Variables, Constants, CREATE, Defining Words
                   6105: @subsection Variables
                   6106: @cindex variables
                   6107: 
                   6108: The previous section showed how a sequence of commands could be used to
                   6109: generate a variable.  As a final refinement, the whole code sequence can
                   6110: be wrapped up in a defining word (pre-empting the subject of the next
                   6111: section), making it easier to create new variables:
                   6112: 
                   6113: @example
                   6114: : myvariableX ( "name" -- a-addr ) CREATE 1 cells allot ;
                   6115: : myvariable0 ( "name" -- a-addr ) CREATE 0 , ;
                   6116: 
                   6117: myvariableX foo \ variable foo starts off with an unknown value
                   6118: myvariable0 joe \ whilst joe is initialised to 0
1.29      crook    6119: 
                   6120: 45 3 * foo !   \ set foo to 135
                   6121: 1234 joe !     \ set joe to 1234
                   6122: 3 joe +!       \ increment joe by 3.. to 1237
                   6123: @end example
                   6124: 
                   6125: Not surprisingly, there is no need to define @code{myvariable}, since
1.44      crook    6126: Forth already has a definition @code{Variable}. ANS Forth does not
1.69      anton    6127: guarantee that a @code{Variable} is initialised when it is created
                   6128: (i.e., it may behave like @code{myvariableX}). In contrast, Gforth's
                   6129: @code{Variable} initialises the variable to 0 (i.e., it behaves exactly
                   6130: like @code{myvariable0}). Forth also provides @code{2Variable} and
1.47      crook    6131: @code{fvariable} for double and floating-point variables, respectively
1.69      anton    6132: -- they are initialised to 0. and 0e in Gforth. If you use a @code{Variable} to
1.47      crook    6133: store a boolean, you can use @code{on} and @code{off} to toggle its
                   6134: state.
1.29      crook    6135: 
1.34      anton    6136: doc-variable
                   6137: doc-2variable
                   6138: doc-fvariable
                   6139: 
1.29      crook    6140: @cindex user variables
                   6141: @cindex user space
                   6142: The defining word @code{User} behaves in the same way as @code{Variable}.
                   6143: The difference is that it reserves space in @i{user (data) space} rather
                   6144: than normal data space. In a Forth system that has a multi-tasker, each
                   6145: task has its own set of user variables.
                   6146: 
1.34      anton    6147: doc-user
1.67      anton    6148: @c doc-udp
                   6149: @c doc-uallot
1.34      anton    6150: 
1.29      crook    6151: @comment TODO is that stuff about user variables strictly correct? Is it
                   6152: @comment just terminal tasks that have user variables?
                   6153: @comment should document tasker.fs (with some examples) elsewhere
                   6154: @comment in this manual, then expand on user space and user variables.
                   6155: 
1.44      crook    6156: @node Constants, Values, Variables, Defining Words
                   6157: @subsection Constants
                   6158: @cindex constants
                   6159: 
                   6160: @code{Constant} allows you to declare a fixed value and refer to it by
                   6161: name. For example:
1.29      crook    6162: 
                   6163: @example
                   6164: 12 Constant INCHES-PER-FOOT
                   6165: 3E+08 fconstant SPEED-O-LIGHT
                   6166: @end example
                   6167: 
                   6168: A @code{Variable} can be both read and written, so its run-time
                   6169: behaviour is to supply an address through which its current value can be
                   6170: manipulated. In contrast, the value of a @code{Constant} cannot be
                   6171: changed once it has been declared@footnote{Well, often it can be -- but
                   6172: not in a Standard, portable way. It's safer to use a @code{Value} (read
                   6173: on).} so it's not necessary to supply the address -- it is more
                   6174: efficient to return the value of the constant directly. That's exactly
                   6175: what happens; the run-time effect of a constant is to put its value on
1.49      anton    6176: the top of the stack (You can find one
                   6177: way of implementing @code{Constant} in @ref{User-defined Defining Words}).
1.29      crook    6178: 
1.69      anton    6179: Forth also provides @code{2Constant} and @code{fconstant} for defining
1.29      crook    6180: double and floating-point constants, respectively.
                   6181: 
1.34      anton    6182: doc-constant
                   6183: doc-2constant
                   6184: doc-fconstant
                   6185: 
                   6186: @c that's too deep, and it's not necessarily true for all ANS Forths. - anton
1.44      crook    6187: @c nac-> How could that not be true in an ANS Forth? You can't define a
                   6188: @c constant, use it and then delete the definition of the constant..
1.69      anton    6189: 
                   6190: @c anton->An ANS Forth system can compile a constant to a literal; On
                   6191: @c decompilation you would see only the number, just as if it had been used
                   6192: @c in the first place.  The word will stay, of course, but it will only be
                   6193: @c used by the text interpreter (no run-time duties, except when it is 
                   6194: @c POSTPONEd or somesuch).
                   6195: 
                   6196: @c nac:
1.44      crook    6197: @c I agree that it's rather deep, but IMO it is an important difference
                   6198: @c relative to other programming languages.. often it's annoying: it
                   6199: @c certainly changes my programming style relative to C.
                   6200: 
1.69      anton    6201: @c anton: In what way?
                   6202: 
1.29      crook    6203: Constants in Forth behave differently from their equivalents in other
                   6204: programming languages. In other languages, a constant (such as an EQU in
                   6205: assembler or a #define in C) only exists at compile-time; in the
                   6206: executable program the constant has been translated into an absolute
                   6207: number and, unless you are using a symbolic debugger, it's impossible to
                   6208: know what abstract thing that number represents. In Forth a constant has
1.44      crook    6209: an entry in the header space and remains there after the code that uses
                   6210: it has been defined. In fact, it must remain in the dictionary since it
                   6211: has run-time duties to perform. For example:
1.29      crook    6212: 
                   6213: @example
                   6214: 12 Constant INCHES-PER-FOOT
                   6215: : FEET-TO-INCHES ( n1 -- n2 ) INCHES-PER-FOOT * ;
                   6216: @end example
                   6217: 
                   6218: @cindex in-lining of constants
                   6219: When @code{FEET-TO-INCHES} is executed, it will in turn execute the xt
                   6220: associated with the constant @code{INCHES-PER-FOOT}. If you use
                   6221: @code{see} to decompile the definition of @code{FEET-TO-INCHES}, you can
                   6222: see that it makes a call to @code{INCHES-PER-FOOT}. Some Forth compilers
                   6223: attempt to optimise constants by in-lining them where they are used. You
                   6224: can force Gforth to in-line a constant like this:
                   6225: 
                   6226: @example
                   6227: : FEET-TO-INCHES ( n1 -- n2 ) [ INCHES-PER-FOOT ] LITERAL * ;
                   6228: @end example
                   6229: 
                   6230: If you use @code{see} to decompile @i{this} version of
                   6231: @code{FEET-TO-INCHES}, you can see that @code{INCHES-PER-FOOT} is no
1.49      anton    6232: longer present. To understand how this works, read
                   6233: @ref{Interpret/Compile states}, and @ref{Literals}.
1.29      crook    6234: 
                   6235: In-lining constants in this way might improve execution time
                   6236: fractionally, and can ensure that a constant is now only referenced at
                   6237: compile-time. However, the definition of the constant still remains in
                   6238: the dictionary. Some Forth compilers provide a mechanism for controlling
                   6239: a second dictionary for holding transient words such that this second
                   6240: dictionary can be deleted later in order to recover memory
                   6241: space. However, there is no standard way of doing this.
                   6242: 
                   6243: 
1.44      crook    6244: @node Values, Colon Definitions, Constants, Defining Words
                   6245: @subsection Values
                   6246: @cindex values
1.34      anton    6247: 
1.69      anton    6248: A @code{Value} behaves like a @code{Constant}, but it can be changed.
                   6249: @code{TO} is a parsing word that changes a @code{Values}.  In Gforth
                   6250: (not in ANS Forth) you can access (and change) a @code{value} also with
                   6251: @code{>body}.
                   6252: 
                   6253: Here are some
                   6254: examples:
1.29      crook    6255: 
                   6256: @example
1.69      anton    6257: 12 Value APPLES     \ Define APPLES with an initial value of 12
                   6258: 34 TO APPLES        \ Change the value of APPLES. TO is a parsing word
                   6259: 1 ' APPLES >body +! \ Increment APPLES.  Non-standard usage.
                   6260: APPLES              \ puts 35 on the top of the stack.
1.29      crook    6261: @end example
                   6262: 
1.44      crook    6263: doc-value
                   6264: doc-to
1.29      crook    6265: 
1.35      anton    6266: 
1.69      anton    6267: 
1.44      crook    6268: @node Colon Definitions, Anonymous Definitions, Values, Defining Words
                   6269: @subsection Colon Definitions
                   6270: @cindex colon definitions
1.35      anton    6271: 
                   6272: @example
1.44      crook    6273: : name ( ... -- ... )
                   6274:     word1 word2 word3 ;
1.29      crook    6275: @end example
                   6276: 
1.44      crook    6277: @noindent
                   6278: Creates a word called @code{name} that, upon execution, executes
                   6279: @code{word1 word2 word3}. @code{name} is a @dfn{(colon) definition}.
1.29      crook    6280: 
1.49      anton    6281: The explanation above is somewhat superficial. For simple examples of
                   6282: colon definitions see @ref{Your first definition}.  For an in-depth
1.66      anton    6283: discussion of some of the issues involved, @xref{Interpretation and
1.49      anton    6284: Compilation Semantics}.
1.29      crook    6285: 
1.44      crook    6286: doc-:
                   6287: doc-;
1.1       anton    6288: 
1.34      anton    6289: 
1.69      anton    6290: @node Anonymous Definitions, Supplying names, Colon Definitions, Defining Words
1.44      crook    6291: @subsection Anonymous Definitions
                   6292: @cindex colon definitions
                   6293: @cindex defining words without name
1.34      anton    6294: 
1.44      crook    6295: Sometimes you want to define an @dfn{anonymous word}; a word without a
                   6296: name. You can do this with:
1.1       anton    6297: 
1.44      crook    6298: doc-:noname
1.1       anton    6299: 
1.44      crook    6300: This leaves the execution token for the word on the stack after the
                   6301: closing @code{;}. Here's an example in which a deferred word is
                   6302: initialised with an @code{xt} from an anonymous colon definition:
1.1       anton    6303: 
1.29      crook    6304: @example
1.44      crook    6305: Defer deferred
                   6306: :noname ( ... -- ... )
                   6307:   ... ;
                   6308: IS deferred
1.29      crook    6309: @end example
1.26      crook    6310: 
1.44      crook    6311: @noindent
                   6312: Gforth provides an alternative way of doing this, using two separate
                   6313: words:
1.27      crook    6314: 
1.44      crook    6315: doc-noname
                   6316: @cindex execution token of last defined word
                   6317: doc-lastxt
1.1       anton    6318: 
1.44      crook    6319: @noindent
                   6320: The previous example can be rewritten using @code{noname} and
                   6321: @code{lastxt}:
1.1       anton    6322: 
1.26      crook    6323: @example
1.44      crook    6324: Defer deferred
                   6325: noname : ( ... -- ... )
                   6326:   ... ;
                   6327: lastxt IS deferred
1.26      crook    6328: @end example
1.1       anton    6329: 
1.29      crook    6330: @noindent
1.44      crook    6331: @code{noname} works with any defining word, not just @code{:}.
                   6332: 
                   6333: @code{lastxt} also works when the last word was not defined as
1.71      anton    6334: @code{noname}.  It does not work for combined words, though.  It also has
                   6335: the useful property that is is valid as soon as the header for a
                   6336: definition has been built. Thus:
1.44      crook    6337: 
                   6338: @example
                   6339: lastxt . : foo [ lastxt . ] ; ' foo .
                   6340: @end example
1.1       anton    6341: 
1.44      crook    6342: @noindent
                   6343: prints 3 numbers; the last two are the same.
1.26      crook    6344: 
1.69      anton    6345: @node Supplying names, User-defined Defining Words, Anonymous Definitions, Defining Words
                   6346: @subsection Supplying the name of a defined word
                   6347: @cindex names for defined words
                   6348: @cindex defining words, name given in a string
                   6349: 
                   6350: By default, a defining word takes the name for the defined word from the
                   6351: input stream. Sometimes you want to supply the name from a string. You
                   6352: can do this with:
                   6353: 
                   6354: doc-nextname
                   6355: 
                   6356: For example:
                   6357: 
                   6358: @example
                   6359: s" foo" nextname create
                   6360: @end example
                   6361: 
                   6362: @noindent
                   6363: is equivalent to:
                   6364: 
                   6365: @example
                   6366: create foo
                   6367: @end example
                   6368: 
                   6369: @noindent
                   6370: @code{nextname} works with any defining word.
                   6371: 
1.1       anton    6372: 
1.69      anton    6373: @node User-defined Defining Words, Deferred words, Supplying names, Defining Words
1.26      crook    6374: @subsection User-defined Defining Words
                   6375: @cindex user-defined defining words
                   6376: @cindex defining words, user-defined
1.1       anton    6377: 
1.29      crook    6378: You can create a new defining word by wrapping defining-time code around
                   6379: an existing defining word and putting the sequence in a colon
1.69      anton    6380: definition. 
                   6381: 
                   6382: @c anton: This example is very complex and leads in a quite different
                   6383: @c direction from the CREATE-DOES> stuff that follows.  It should probably
                   6384: @c be done elsewhere, or as a subsubsection of this subsection (or as a
                   6385: @c subsection of Defining Words)
                   6386: 
                   6387: For example, suppose that you have a word @code{stats} that
1.29      crook    6388: gathers statistics about colon definitions given the @i{xt} of the
                   6389: definition, and you want every colon definition in your application to
                   6390: make a call to @code{stats}. You can define and use a new version of
                   6391: @code{:} like this:
                   6392: 
                   6393: @example
                   6394: : stats ( xt -- ) DUP ." (Gathering statistics for " . ." )"
                   6395:   ... ;  \ other code
                   6396: 
                   6397: : my: : lastxt postpone literal ['] stats compile, ;
                   6398: 
                   6399: my: foo + - ;
                   6400: @end example
                   6401: 
                   6402: When @code{foo} is defined using @code{my:} these steps occur:
                   6403: 
                   6404: @itemize @bullet
                   6405: @item
                   6406: @code{my:} is executed.
                   6407: @item
                   6408: The @code{:} within the definition (the one between @code{my:} and
                   6409: @code{lastxt}) is executed, and does just what it always does; it parses
                   6410: the input stream for a name, builds a dictionary header for the name
                   6411: @code{foo} and switches @code{state} from interpret to compile.
                   6412: @item
                   6413: The word @code{lastxt} is executed. It puts the @i{xt} for the word that is
                   6414: being defined -- @code{foo} -- onto the stack.
                   6415: @item
                   6416: The code that was produced by @code{postpone literal} is executed; this
                   6417: causes the value on the stack to be compiled as a literal in the code
                   6418: area of @code{foo}.
                   6419: @item
                   6420: The code @code{['] stats} compiles a literal into the definition of
                   6421: @code{my:}. When @code{compile,} is executed, that literal -- the
                   6422: execution token for @code{stats} -- is layed down in the code area of
                   6423: @code{foo} , following the literal@footnote{Strictly speaking, the
                   6424: mechanism that @code{compile,} uses to convert an @i{xt} into something
                   6425: in the code area is implementation-dependent. A threaded implementation
                   6426: might spit out the execution token directly whilst another
                   6427: implementation might spit out a native code sequence.}.
                   6428: @item
                   6429: At this point, the execution of @code{my:} is complete, and control
                   6430: returns to the text interpreter. The text interpreter is in compile
                   6431: state, so subsequent text @code{+ -} is compiled into the definition of
                   6432: @code{foo} and the @code{;} terminates the definition as always.
                   6433: @end itemize
                   6434: 
                   6435: You can use @code{see} to decompile a word that was defined using
                   6436: @code{my:} and see how it is different from a normal @code{:}
                   6437: definition. For example:
                   6438: 
                   6439: @example
                   6440: : bar + - ;  \ like foo but using : rather than my:
                   6441: see bar
                   6442: : bar
                   6443:   + - ;
                   6444: see foo
                   6445: : foo
                   6446:   107645672 stats + - ;
                   6447: 
                   6448: \ use ' stats . to show that 107645672 is the xt for stats
                   6449: @end example
                   6450: 
                   6451: You can use techniques like this to make new defining words in terms of
                   6452: @i{any} existing defining word.
1.1       anton    6453: 
                   6454: 
1.29      crook    6455: @cindex defining defining words
1.26      crook    6456: @cindex @code{CREATE} ... @code{DOES>}
                   6457: If you want the words defined with your defining words to behave
                   6458: differently from words defined with standard defining words, you can
                   6459: write your defining word like this:
1.1       anton    6460: 
                   6461: @example
1.26      crook    6462: : def-word ( "name" -- )
1.29      crook    6463:     CREATE @i{code1}
1.26      crook    6464: DOES> ( ... -- ... )
1.29      crook    6465:     @i{code2} ;
1.26      crook    6466: 
                   6467: def-word name
1.1       anton    6468: @end example
                   6469: 
1.29      crook    6470: @cindex child words
                   6471: This fragment defines a @dfn{defining word} @code{def-word} and then
                   6472: executes it.  When @code{def-word} executes, it @code{CREATE}s a new
                   6473: word, @code{name}, and executes the code @i{code1}. The code @i{code2}
                   6474: is not executed at this time. The word @code{name} is sometimes called a
                   6475: @dfn{child} of @code{def-word}.
                   6476: 
                   6477: When you execute @code{name}, the address of the body of @code{name} is
                   6478: put on the data stack and @i{code2} is executed (the address of the body
                   6479: of @code{name} is the address @code{HERE} returns immediately after the
1.69      anton    6480: @code{CREATE}, i.e., the address a @code{create}d word returns by
                   6481: default).
                   6482: 
                   6483: @c anton:
                   6484: @c www.dictionary.com says:
                   6485: @c at·a·vism: 1.The reappearance of a characteristic in an organism after
                   6486: @c several generations of absence, usually caused by the chance
                   6487: @c recombination of genes.  2.An individual or a part that exhibits
                   6488: @c atavism. Also called throwback.  3.The return of a trait or recurrence
                   6489: @c of previous behavior after a period of absence.
                   6490: @c
                   6491: @c Doesn't seem to fit.
1.29      crook    6492: 
1.69      anton    6493: @c @cindex atavism in child words
1.33      anton    6494: You can use @code{def-word} to define a set of child words that behave
1.69      anton    6495: similarly; they all have a common run-time behaviour determined by
                   6496: @i{code2}. Typically, the @i{code1} sequence builds a data area in the
                   6497: body of the child word. The structure of the data is common to all
                   6498: children of @code{def-word}, but the data values are specific -- and
                   6499: private -- to each child word. When a child word is executed, the
                   6500: address of its private data area is passed as a parameter on TOS to be
                   6501: used and manipulated@footnote{It is legitimate both to read and write to
                   6502: this data area.} by @i{code2}.
1.29      crook    6503: 
                   6504: The two fragments of code that make up the defining words act (are
                   6505: executed) at two completely separate times:
1.1       anton    6506: 
1.29      crook    6507: @itemize @bullet
                   6508: @item
                   6509: At @i{define time}, the defining word executes @i{code1} to generate a
                   6510: child word
                   6511: @item
                   6512: At @i{child execution time}, when a child word is invoked, @i{code2}
                   6513: is executed, using parameters (data) that are private and specific to
                   6514: the child word.
                   6515: @end itemize
                   6516: 
1.44      crook    6517: Another way of understanding the behaviour of @code{def-word} and
                   6518: @code{name} is to say that, if you make the following definitions:
1.33      anton    6519: @example
                   6520: : def-word1 ( "name" -- )
                   6521:     CREATE @i{code1} ;
                   6522: 
                   6523: : action1 ( ... -- ... )
                   6524:     @i{code2} ;
                   6525: 
                   6526: def-word1 name1
                   6527: @end example
                   6528: 
1.44      crook    6529: @noindent
                   6530: Then using @code{name1 action1} is equivalent to using @code{name}.
1.1       anton    6531: 
1.29      crook    6532: The classic example is that you can define @code{CONSTANT} in this way:
1.26      crook    6533: 
1.1       anton    6534: @example
1.29      crook    6535: : CONSTANT ( w "name" -- )
                   6536:     CREATE ,
1.26      crook    6537: DOES> ( -- w )
                   6538:     @@ ;
1.1       anton    6539: @end example
                   6540: 
1.29      crook    6541: @comment There is a beautiful description of how this works and what
                   6542: @comment it does in the Forthwrite 100th edition.. as well as an elegant
                   6543: @comment commentary on the Counting Fruits problem.
                   6544: 
                   6545: When you create a constant with @code{5 CONSTANT five}, a set of
                   6546: define-time actions take place; first a new word @code{five} is created,
                   6547: then the value 5 is laid down in the body of @code{five} with
1.44      crook    6548: @code{,}. When @code{five} is executed, the address of the body is put on
1.29      crook    6549: the stack, and @code{@@} retrieves the value 5. The word @code{five} has
                   6550: no code of its own; it simply contains a data field and a pointer to the
                   6551: code that follows @code{DOES>} in its defining word. That makes words
                   6552: created in this way very compact.
                   6553: 
                   6554: The final example in this section is intended to remind you that space
                   6555: reserved in @code{CREATE}d words is @i{data} space and therefore can be
                   6556: both read and written by a Standard program@footnote{Exercise: use this
                   6557: example as a starting point for your own implementation of @code{Value}
                   6558: and @code{TO} -- if you get stuck, investigate the behaviour of @code{'} and
                   6559: @code{[']}.}:
                   6560: 
                   6561: @example
                   6562: : foo ( "name" -- )
                   6563:     CREATE -1 ,
                   6564: DOES> ( -- )
1.33      anton    6565:     @@ . ;
1.29      crook    6566: 
                   6567: foo first-word
                   6568: foo second-word
                   6569: 
                   6570: 123 ' first-word >BODY !
                   6571: @end example
                   6572: 
                   6573: If @code{first-word} had been a @code{CREATE}d word, we could simply
                   6574: have executed it to get the address of its data field. However, since it
                   6575: was defined to have @code{DOES>} actions, its execution semantics are to
                   6576: perform those @code{DOES>} actions. To get the address of its data field
                   6577: it's necessary to use @code{'} to get its xt, then @code{>BODY} to
                   6578: translate the xt into the address of the data field.  When you execute
                   6579: @code{first-word}, it will display @code{123}. When you execute
                   6580: @code{second-word} it will display @code{-1}.
1.26      crook    6581: 
                   6582: @cindex stack effect of @code{DOES>}-parts
                   6583: @cindex @code{DOES>}-parts, stack effect
1.29      crook    6584: In the examples above the stack comment after the @code{DOES>} specifies
1.26      crook    6585: the stack effect of the defined words, not the stack effect of the
                   6586: following code (the following code expects the address of the body on
                   6587: the top of stack, which is not reflected in the stack comment). This is
                   6588: the convention that I use and recommend (it clashes a bit with using
                   6589: locals declarations for stack effect specification, though).
1.1       anton    6590: 
1.53      anton    6591: @menu
                   6592: * CREATE..DOES> applications::  
                   6593: * CREATE..DOES> details::       
1.63      anton    6594: * Advanced does> usage example::  
1.91      anton    6595: * @code{Const-does>}::          
1.53      anton    6596: @end menu
                   6597: 
                   6598: @node CREATE..DOES> applications, CREATE..DOES> details, User-defined Defining Words, User-defined Defining Words
1.26      crook    6599: @subsubsection Applications of @code{CREATE..DOES>}
                   6600: @cindex @code{CREATE} ... @code{DOES>}, applications
1.1       anton    6601: 
1.26      crook    6602: You may wonder how to use this feature. Here are some usage patterns:
1.1       anton    6603: 
1.26      crook    6604: @cindex factoring similar colon definitions
                   6605: When you see a sequence of code occurring several times, and you can
                   6606: identify a meaning, you will factor it out as a colon definition. When
                   6607: you see similar colon definitions, you can factor them using
                   6608: @code{CREATE..DOES>}. E.g., an assembler usually defines several words
                   6609: that look very similar:
1.1       anton    6610: @example
1.26      crook    6611: : ori, ( reg-target reg-source n -- )
                   6612:     0 asm-reg-reg-imm ;
                   6613: : andi, ( reg-target reg-source n -- )
                   6614:     1 asm-reg-reg-imm ;
1.1       anton    6615: @end example
                   6616: 
1.26      crook    6617: @noindent
                   6618: This could be factored with:
                   6619: @example
                   6620: : reg-reg-imm ( op-code -- )
                   6621:     CREATE ,
                   6622: DOES> ( reg-target reg-source n -- )
                   6623:     @@ asm-reg-reg-imm ;
                   6624: 
                   6625: 0 reg-reg-imm ori,
                   6626: 1 reg-reg-imm andi,
                   6627: @end example
1.1       anton    6628: 
1.26      crook    6629: @cindex currying
                   6630: Another view of @code{CREATE..DOES>} is to consider it as a crude way to
                   6631: supply a part of the parameters for a word (known as @dfn{currying} in
                   6632: the functional language community). E.g., @code{+} needs two
                   6633: parameters. Creating versions of @code{+} with one parameter fixed can
                   6634: be done like this:
1.82      anton    6635: 
1.1       anton    6636: @example
1.82      anton    6637: : curry+ ( n1 "name" -- )
1.26      crook    6638:     CREATE ,
                   6639: DOES> ( n2 -- n1+n2 )
                   6640:     @@ + ;
                   6641: 
                   6642:  3 curry+ 3+
                   6643: -2 curry+ 2-
1.1       anton    6644: @end example
                   6645: 
1.91      anton    6646: 
1.63      anton    6647: @node CREATE..DOES> details, Advanced does> usage example, CREATE..DOES> applications, User-defined Defining Words
1.26      crook    6648: @subsubsection The gory details of @code{CREATE..DOES>}
                   6649: @cindex @code{CREATE} ... @code{DOES>}, details
1.1       anton    6650: 
1.26      crook    6651: doc-does>
1.1       anton    6652: 
1.26      crook    6653: @cindex @code{DOES>} in a separate definition
                   6654: This means that you need not use @code{CREATE} and @code{DOES>} in the
                   6655: same definition; you can put the @code{DOES>}-part in a separate
1.29      crook    6656: definition. This allows us to, e.g., select among different @code{DOES>}-parts:
1.26      crook    6657: @example
                   6658: : does1 
                   6659: DOES> ( ... -- ... )
1.44      crook    6660:     ... ;
                   6661: 
                   6662: : does2
                   6663: DOES> ( ... -- ... )
                   6664:     ... ;
                   6665: 
                   6666: : def-word ( ... -- ... )
                   6667:     create ...
                   6668:     IF
                   6669:        does1
                   6670:     ELSE
                   6671:        does2
                   6672:     ENDIF ;
                   6673: @end example
                   6674: 
                   6675: In this example, the selection of whether to use @code{does1} or
1.69      anton    6676: @code{does2} is made at definition-time; at the time that the child word is
1.44      crook    6677: @code{CREATE}d.
                   6678: 
                   6679: @cindex @code{DOES>} in interpretation state
                   6680: In a standard program you can apply a @code{DOES>}-part only if the last
                   6681: word was defined with @code{CREATE}. In Gforth, the @code{DOES>}-part
                   6682: will override the behaviour of the last word defined in any case. In a
                   6683: standard program, you can use @code{DOES>} only in a colon
                   6684: definition. In Gforth, you can also use it in interpretation state, in a
                   6685: kind of one-shot mode; for example:
                   6686: @example
                   6687: CREATE name ( ... -- ... )
                   6688:   @i{initialization}
                   6689: DOES>
                   6690:   @i{code} ;
                   6691: @end example
                   6692: 
                   6693: @noindent
                   6694: is equivalent to the standard:
                   6695: @example
                   6696: :noname
                   6697: DOES>
                   6698:     @i{code} ;
                   6699: CREATE name EXECUTE ( ... -- ... )
                   6700:     @i{initialization}
                   6701: @end example
                   6702: 
1.53      anton    6703: doc->body
                   6704: 
1.91      anton    6705: @node Advanced does> usage example, @code{Const-does>}, CREATE..DOES> details, User-defined Defining Words
1.63      anton    6706: @subsubsection Advanced does> usage example
                   6707: 
                   6708: The MIPS disassembler (@file{arch/mips/disasm.fs}) contains many words
                   6709: for disassembling instructions, that follow a very repetetive scheme:
                   6710: 
                   6711: @example
                   6712: :noname @var{disasm-operands} s" @var{inst-name}" type ;
                   6713: @var{entry-num} cells @var{table} + !
                   6714: @end example
                   6715: 
                   6716: Of course, this inspires the idea to factor out the commonalities to
                   6717: allow a definition like
                   6718: 
                   6719: @example
                   6720: @var{disasm-operands} @var{entry-num} @var{table} define-inst @var{inst-name}
                   6721: @end example
                   6722: 
                   6723: The parameters @var{disasm-operands} and @var{table} are usually
1.69      anton    6724: correlated.  Moreover, before I wrote the disassembler, there already
                   6725: existed code that defines instructions like this:
1.63      anton    6726: 
                   6727: @example
                   6728: @var{entry-num} @var{inst-format} @var{inst-name}
                   6729: @end example
                   6730: 
                   6731: This code comes from the assembler and resides in
                   6732: @file{arch/mips/insts.fs}.
                   6733: 
                   6734: So I had to define the @var{inst-format} words that performed the scheme
                   6735: above when executed.  At first I chose to use run-time code-generation:
                   6736: 
                   6737: @example
                   6738: : @var{inst-format} ( entry-num "name" -- ; compiled code: addr w -- )
                   6739:   :noname Postpone @var{disasm-operands}
                   6740:   name Postpone sliteral Postpone type Postpone ;
                   6741:   swap cells @var{table} + ! ;
                   6742: @end example
                   6743: 
                   6744: Note that this supplies the other two parameters of the scheme above.
1.44      crook    6745: 
1.63      anton    6746: An alternative would have been to write this using
                   6747: @code{create}/@code{does>}:
                   6748: 
                   6749: @example
                   6750: : @var{inst-format} ( entry-num "name" -- )
                   6751:   here name string, ( entry-num c-addr ) \ parse and save "name"
                   6752:   noname create , ( entry-num )
                   6753:   lastxt swap cells @var{table} + !
                   6754: does> ( addr w -- )
                   6755:   \ disassemble instruction w at addr
                   6756:   @@ >r 
                   6757:   @var{disasm-operands}
                   6758:   r> count type ;
                   6759: @end example
                   6760: 
                   6761: Somehow the first solution is simpler, mainly because it's simpler to
                   6762: shift a string from definition-time to use-time with @code{sliteral}
                   6763: than with @code{string,} and friends.
                   6764: 
                   6765: I wrote a lot of words following this scheme and soon thought about
                   6766: factoring out the commonalities among them.  Note that this uses a
                   6767: two-level defining word, i.e., a word that defines ordinary defining
                   6768: words.
                   6769: 
                   6770: This time a solution involving @code{postpone} and friends seemed more
                   6771: difficult (try it as an exercise), so I decided to use a
                   6772: @code{create}/@code{does>} word; since I was already at it, I also used
                   6773: @code{create}/@code{does>} for the lower level (try using
                   6774: @code{postpone} etc. as an exercise), resulting in the following
                   6775: definition:
                   6776: 
                   6777: @example
                   6778: : define-format ( disasm-xt table-xt -- )
                   6779:     \ define an instruction format that uses disasm-xt for
                   6780:     \ disassembling and enters the defined instructions into table
                   6781:     \ table-xt
                   6782:     create 2,
                   6783: does> ( u "inst" -- )
                   6784:     \ defines an anonymous word for disassembling instruction inst,
                   6785:     \ and enters it as u-th entry into table-xt
                   6786:     2@@ swap here name string, ( u table-xt disasm-xt c-addr ) \ remember string
                   6787:     noname create 2,      \ define anonymous word
                   6788:     execute lastxt swap ! \ enter xt of defined word into table-xt
                   6789: does> ( addr w -- )
                   6790:     \ disassemble instruction w at addr
                   6791:     2@@ >r ( addr w disasm-xt R: c-addr )
                   6792:     execute ( R: c-addr ) \ disassemble operands
                   6793:     r> count type ; \ print name 
                   6794: @end example
                   6795: 
                   6796: Note that the tables here (in contrast to above) do the @code{cells +}
                   6797: by themselves (that's why you have to pass an xt).  This word is used in
                   6798: the following way:
                   6799: 
                   6800: @example
                   6801: ' @var{disasm-operands} ' @var{table} define-format @var{inst-format}
                   6802: @end example
                   6803: 
1.71      anton    6804: As shown above, the defined instruction format is then used like this:
                   6805: 
                   6806: @example
                   6807: @var{entry-num} @var{inst-format} @var{inst-name}
                   6808: @end example
                   6809: 
1.63      anton    6810: In terms of currying, this kind of two-level defining word provides the
                   6811: parameters in three stages: first @var{disasm-operands} and @var{table},
                   6812: then @var{entry-num} and @var{inst-name}, finally @code{addr w}, i.e.,
                   6813: the instruction to be disassembled.  
                   6814: 
                   6815: Of course this did not quite fit all the instruction format names used
                   6816: in @file{insts.fs}, so I had to define a few wrappers that conditioned
                   6817: the parameters into the right form.
                   6818: 
                   6819: If you have trouble following this section, don't worry.  First, this is
                   6820: involved and takes time (and probably some playing around) to
                   6821: understand; second, this is the first two-level
                   6822: @code{create}/@code{does>} word I have written in seventeen years of
                   6823: Forth; and if I did not have @file{insts.fs} to start with, I may well
                   6824: have elected to use just a one-level defining word (with some repeating
                   6825: of parameters when using the defining word). So it is not necessary to
                   6826: understand this, but it may improve your understanding of Forth.
1.44      crook    6827: 
                   6828: 
1.91      anton    6829: @node @code{Const-does>},  , Advanced does> usage example, User-defined Defining Words
                   6830: @subsubsection @code{Const-does>}
                   6831: 
                   6832: A frequent use of @code{create}...@code{does>} is for transferring some
                   6833: values from definition-time to run-time.  Gforth supports this use with
                   6834: 
                   6835: doc-const-does>
                   6836: 
                   6837: A typical use of this word is:
                   6838: 
                   6839: @example
                   6840: : curry+ ( n1 "name" -- )
                   6841: 1 0 CONST-DOES> ( n2 -- n1+n2 )
                   6842:     + ;
                   6843: 
                   6844: 3 curry+ 3+
                   6845: @end example
                   6846: 
                   6847: Here the @code{1 0} means that 1 cell and 0 floats are transferred from
                   6848: definition to run-time.
                   6849: 
                   6850: The advantages of using @code{const-does>} are:
                   6851: 
                   6852: @itemize
                   6853: 
                   6854: @item
                   6855: You don't have to deal with storing and retrieving the values, i.e.,
                   6856: your program becomes more writable and readable.
                   6857: 
                   6858: @item
                   6859: When using @code{does>}, you have to introduce a @code{@@} that cannot
                   6860: be optimized away (because you could change the data using
                   6861: @code{>body}...@code{!}); @code{const-does>} avoids this problem.
                   6862: 
                   6863: @end itemize
                   6864: 
                   6865: An ANS Forth implementation of @code{const-does>} is available in
                   6866: @file{compat/const-does.fs}.
                   6867: 
                   6868: 
1.44      crook    6869: @node Deferred words, Aliases, User-defined Defining Words, Defining Words
                   6870: @subsection Deferred words
                   6871: @cindex deferred words
                   6872: 
                   6873: The defining word @code{Defer} allows you to define a word by name
                   6874: without defining its behaviour; the definition of its behaviour is
                   6875: deferred. Here are two situation where this can be useful:
                   6876: 
                   6877: @itemize @bullet
                   6878: @item
                   6879: Where you want to allow the behaviour of a word to be altered later, and
                   6880: for all precompiled references to the word to change when its behaviour
                   6881: is changed.
                   6882: @item
                   6883: For mutual recursion; @xref{Calls and returns}.
                   6884: @end itemize
                   6885: 
                   6886: In the following example, @code{foo} always invokes the version of
                   6887: @code{greet} that prints ``@code{Good morning}'' whilst @code{bar}
                   6888: always invokes the version that prints ``@code{Hello}''. There is no way
                   6889: of getting @code{foo} to use the later version without re-ordering the
                   6890: source code and recompiling it.
                   6891: 
                   6892: @example
                   6893: : greet ." Good morning" ;
                   6894: : foo ... greet ... ;
                   6895: : greet ." Hello" ;
                   6896: : bar ... greet ... ;
                   6897: @end example
                   6898: 
                   6899: This problem can be solved by defining @code{greet} as a @code{Defer}red
                   6900: word. The behaviour of a @code{Defer}red word can be defined and
                   6901: redefined at any time by using @code{IS} to associate the xt of a
                   6902: previously-defined word with it. The previous example becomes:
                   6903: 
                   6904: @example
1.69      anton    6905: Defer greet ( -- )
1.44      crook    6906: : foo ... greet ... ;
                   6907: : bar ... greet ... ;
1.69      anton    6908: : greet1 ( -- ) ." Good morning" ;
                   6909: : greet2 ( -- ) ." Hello" ;
1.44      crook    6910: ' greet2 <IS> greet  \ make greet behave like greet2
                   6911: @end example
                   6912: 
1.69      anton    6913: @progstyle
                   6914: You should write a stack comment for every deferred word, and put only
                   6915: XTs into deferred words that conform to this stack effect.  Otherwise
                   6916: it's too difficult to use the deferred word.
                   6917: 
1.44      crook    6918: A deferred word can be used to improve the statistics-gathering example
                   6919: from @ref{User-defined Defining Words}; rather than edit the
                   6920: application's source code to change every @code{:} to a @code{my:}, do
                   6921: this:
                   6922: 
                   6923: @example
                   6924: : real: : ;     \ retain access to the original
                   6925: defer :         \ redefine as a deferred word
1.69      anton    6926: ' my: <IS> :      \ use special version of :
1.44      crook    6927: \
                   6928: \ load application here
                   6929: \
1.69      anton    6930: ' real: <IS> :    \ go back to the original
1.44      crook    6931: @end example
                   6932: 
                   6933: 
                   6934: One thing to note is that @code{<IS>} consumes its name when it is
                   6935: executed.  If you want to specify the name at compile time, use
                   6936: @code{[IS]}:
                   6937: 
                   6938: @example
                   6939: : set-greet ( xt -- )
                   6940:   [IS] greet ;
                   6941: 
                   6942: ' greet1 set-greet
                   6943: @end example
                   6944: 
1.69      anton    6945: A deferred word can only inherit execution semantics from the xt
                   6946: (because that is all that an xt can represent -- for more discussion of
                   6947: this @pxref{Tokens for Words}); by default it will have default
                   6948: interpretation and compilation semantics deriving from this execution
                   6949: semantics.  However, you can change the interpretation and compilation
                   6950: semantics of the deferred word in the usual ways:
1.44      crook    6951: 
                   6952: @example
                   6953: : bar .... ; compile-only
                   6954: Defer fred immediate
                   6955: Defer jim
                   6956: 
                   6957: ' bar <IS> jim  \ jim has default semantics
                   6958: ' bar <IS> fred \ fred is immediate
                   6959: @end example
                   6960: 
                   6961: doc-defer
                   6962: doc-<is>
                   6963: doc-[is]
                   6964: doc-is
                   6965: @comment TODO document these: what's defers [is]
                   6966: doc-what's
                   6967: doc-defers
                   6968: 
                   6969: @c Use @code{words-deferred} to see a list of deferred words.
                   6970: 
                   6971: Definitions in ANS Forth for @code{defer}, @code{<is>} and @code{[is]}
                   6972: are provided in @file{compat/defer.fs}.
                   6973: 
                   6974: 
1.69      anton    6975: @node Aliases,  , Deferred words, Defining Words
1.44      crook    6976: @subsection Aliases
                   6977: @cindex aliases
1.1       anton    6978: 
1.44      crook    6979: The defining word @code{Alias} allows you to define a word by name that
                   6980: has the same behaviour as some other word. Here are two situation where
                   6981: this can be useful:
1.1       anton    6982: 
1.44      crook    6983: @itemize @bullet
                   6984: @item
                   6985: When you want access to a word's definition from a different word list
                   6986: (for an example of this, see the definition of the @code{Root} word list
                   6987: in the Gforth source).
                   6988: @item
                   6989: When you want to create a synonym; a definition that can be known by
                   6990: either of two names (for example, @code{THEN} and @code{ENDIF} are
                   6991: aliases).
                   6992: @end itemize
1.1       anton    6993: 
1.69      anton    6994: Like deferred words, an alias has default compilation and interpretation
                   6995: semantics at the beginning (not the modifications of the other word),
                   6996: but you can change them in the usual ways (@code{immediate},
                   6997: @code{compile-only}). For example:
1.1       anton    6998: 
                   6999: @example
1.44      crook    7000: : foo ... ; immediate
                   7001: 
                   7002: ' foo Alias bar \ bar is not an immediate word
                   7003: ' foo Alias fooby immediate \ fooby is an immediate word
1.1       anton    7004: @end example
                   7005: 
1.44      crook    7006: Words that are aliases have the same xt, different headers in the
                   7007: dictionary, and consequently different name tokens (@pxref{Tokens for
                   7008: Words}) and possibly different immediate flags.  An alias can only have
                   7009: default or immediate compilation semantics; you can define aliases for
                   7010: combined words with @code{interpret/compile:} -- see @ref{Combined words}.
1.1       anton    7011: 
1.44      crook    7012: doc-alias
1.1       anton    7013: 
                   7014: 
1.47      crook    7015: @node Interpretation and Compilation Semantics, Tokens for Words, Defining Words, Words
                   7016: @section Interpretation and Compilation Semantics
1.26      crook    7017: @cindex semantics, interpretation and compilation
1.1       anton    7018: 
1.71      anton    7019: @c !! state and ' are used without explanation
                   7020: @c example for immediate/compile-only? or is the tutorial enough
                   7021: 
1.26      crook    7022: @cindex interpretation semantics
1.71      anton    7023: The @dfn{interpretation semantics} of a (named) word are what the text
1.26      crook    7024: interpreter does when it encounters the word in interpret state. It also
                   7025: appears in some other contexts, e.g., the execution token returned by
1.71      anton    7026: @code{' @i{word}} identifies the interpretation semantics of @i{word}
                   7027: (in other words, @code{' @i{word} execute} is equivalent to
1.29      crook    7028: interpret-state text interpretation of @code{@i{word}}).
1.1       anton    7029: 
1.26      crook    7030: @cindex compilation semantics
1.71      anton    7031: The @dfn{compilation semantics} of a (named) word are what the text
                   7032: interpreter does when it encounters the word in compile state. It also
                   7033: appears in other contexts, e.g, @code{POSTPONE @i{word}}
                   7034: compiles@footnote{In standard terminology, ``appends to the current
                   7035: definition''.} the compilation semantics of @i{word}.
1.1       anton    7036: 
1.26      crook    7037: @cindex execution semantics
                   7038: The standard also talks about @dfn{execution semantics}. They are used
                   7039: only for defining the interpretation and compilation semantics of many
                   7040: words. By default, the interpretation semantics of a word are to
                   7041: @code{execute} its execution semantics, and the compilation semantics of
                   7042: a word are to @code{compile,} its execution semantics.@footnote{In
                   7043: standard terminology: The default interpretation semantics are its
                   7044: execution semantics; the default compilation semantics are to append its
                   7045: execution semantics to the execution semantics of the current
                   7046: definition.}
                   7047: 
1.71      anton    7048: Unnamed words (@pxref{Anonymous Definitions}) cannot be encountered by
                   7049: the text interpreter, ticked, or @code{postpone}d, so they have no
                   7050: interpretation or compilation semantics.  Their behaviour is represented
                   7051: by their XT (@pxref{Tokens for Words}), and we call it execution
                   7052: semantics, too.
                   7053: 
1.26      crook    7054: @comment TODO expand, make it co-operate with new sections on text interpreter.
                   7055: 
                   7056: @cindex immediate words
                   7057: @cindex compile-only words
                   7058: You can change the semantics of the most-recently defined word:
                   7059: 
1.44      crook    7060: 
1.26      crook    7061: doc-immediate
                   7062: doc-compile-only
                   7063: doc-restrict
                   7064: 
1.82      anton    7065: By convention, words with non-default compilation semantics (e.g.,
                   7066: immediate words) often have names surrounded with brackets (e.g.,
                   7067: @code{[']}, @pxref{Execution token}).
1.44      crook    7068: 
1.26      crook    7069: Note that ticking (@code{'}) a compile-only word gives an error
                   7070: (``Interpreting a compile-only word'').
1.1       anton    7071: 
1.47      crook    7072: @menu
1.67      anton    7073: * Combined words::              
1.47      crook    7074: @end menu
1.44      crook    7075: 
1.71      anton    7076: 
1.48      anton    7077: @node Combined words,  , Interpretation and Compilation Semantics, Interpretation and Compilation Semantics
1.44      crook    7078: @subsection Combined Words
                   7079: @cindex combined words
                   7080: 
                   7081: Gforth allows you to define @dfn{combined words} -- words that have an
                   7082: arbitrary combination of interpretation and compilation semantics.
                   7083: 
1.26      crook    7084: doc-interpret/compile:
1.1       anton    7085: 
1.26      crook    7086: This feature was introduced for implementing @code{TO} and @code{S"}. I
                   7087: recommend that you do not define such words, as cute as they may be:
                   7088: they make it hard to get at both parts of the word in some contexts.
                   7089: E.g., assume you want to get an execution token for the compilation
                   7090: part. Instead, define two words, one that embodies the interpretation
                   7091: part, and one that embodies the compilation part.  Once you have done
                   7092: that, you can define a combined word with @code{interpret/compile:} for
                   7093: the convenience of your users.
1.1       anton    7094: 
1.26      crook    7095: You might try to use this feature to provide an optimizing
                   7096: implementation of the default compilation semantics of a word. For
                   7097: example, by defining:
1.1       anton    7098: @example
1.26      crook    7099: :noname
                   7100:    foo bar ;
                   7101: :noname
                   7102:    POSTPONE foo POSTPONE bar ;
1.29      crook    7103: interpret/compile: opti-foobar
1.1       anton    7104: @end example
1.26      crook    7105: 
1.23      crook    7106: @noindent
1.26      crook    7107: as an optimizing version of:
                   7108: 
1.1       anton    7109: @example
1.26      crook    7110: : foobar
                   7111:     foo bar ;
1.1       anton    7112: @end example
                   7113: 
1.26      crook    7114: Unfortunately, this does not work correctly with @code{[compile]},
                   7115: because @code{[compile]} assumes that the compilation semantics of all
                   7116: @code{interpret/compile:} words are non-default. I.e., @code{[compile]
1.29      crook    7117: opti-foobar} would compile compilation semantics, whereas
                   7118: @code{[compile] foobar} would compile interpretation semantics.
1.1       anton    7119: 
1.26      crook    7120: @cindex state-smart words (are a bad idea)
1.82      anton    7121: @anchor{state-smartness}
1.29      crook    7122: Some people try to use @dfn{state-smart} words to emulate the feature provided
1.26      crook    7123: by @code{interpret/compile:} (words are state-smart if they check
                   7124: @code{STATE} during execution). E.g., they would try to code
                   7125: @code{foobar} like this:
1.1       anton    7126: 
1.26      crook    7127: @example
                   7128: : foobar
                   7129:   STATE @@
                   7130:   IF ( compilation state )
                   7131:     POSTPONE foo POSTPONE bar
                   7132:   ELSE
                   7133:     foo bar
                   7134:   ENDIF ; immediate
                   7135: @end example
1.1       anton    7136: 
1.26      crook    7137: Although this works if @code{foobar} is only processed by the text
                   7138: interpreter, it does not work in other contexts (like @code{'} or
                   7139: @code{POSTPONE}). E.g., @code{' foobar} will produce an execution token
                   7140: for a state-smart word, not for the interpretation semantics of the
                   7141: original @code{foobar}; when you execute this execution token (directly
                   7142: with @code{EXECUTE} or indirectly through @code{COMPILE,}) in compile
                   7143: state, the result will not be what you expected (i.e., it will not
                   7144: perform @code{foo bar}). State-smart words are a bad idea. Simply don't
                   7145: write them@footnote{For a more detailed discussion of this topic, see
1.66      anton    7146: M. Anton Ertl,
                   7147: @cite{@uref{http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz,@code{State}-smartness---Why
                   7148: it is Evil and How to Exorcise it}}, EuroForth '98.}!
1.1       anton    7149: 
1.26      crook    7150: @cindex defining words with arbitrary semantics combinations
                   7151: It is also possible to write defining words that define words with
                   7152: arbitrary combinations of interpretation and compilation semantics. In
                   7153: general, they look like this:
1.1       anton    7154: 
1.26      crook    7155: @example
                   7156: : def-word
                   7157:     create-interpret/compile
1.29      crook    7158:     @i{code1}
1.26      crook    7159: interpretation>
1.29      crook    7160:     @i{code2}
1.26      crook    7161: <interpretation
                   7162: compilation>
1.29      crook    7163:     @i{code3}
1.26      crook    7164: <compilation ;
                   7165: @end example
1.1       anton    7166: 
1.29      crook    7167: For a @i{word} defined with @code{def-word}, the interpretation
                   7168: semantics are to push the address of the body of @i{word} and perform
                   7169: @i{code2}, and the compilation semantics are to push the address of
                   7170: the body of @i{word} and perform @i{code3}. E.g., @code{constant}
1.26      crook    7171: can also be defined like this (except that the defined constants don't
                   7172: behave correctly when @code{[compile]}d):
1.1       anton    7173: 
1.26      crook    7174: @example
                   7175: : constant ( n "name" -- )
                   7176:     create-interpret/compile
                   7177:     ,
                   7178: interpretation> ( -- n )
                   7179:     @@
                   7180: <interpretation
                   7181: compilation> ( compilation. -- ; run-time. -- n )
                   7182:     @@ postpone literal
                   7183: <compilation ;
                   7184: @end example
1.1       anton    7185: 
1.44      crook    7186: 
1.26      crook    7187: doc-create-interpret/compile
                   7188: doc-interpretation>
                   7189: doc-<interpretation
                   7190: doc-compilation>
                   7191: doc-<compilation
1.1       anton    7192: 
1.44      crook    7193: 
1.29      crook    7194: Words defined with @code{interpret/compile:} and
1.26      crook    7195: @code{create-interpret/compile} have an extended header structure that
                   7196: differs from other words; however, unless you try to access them with
                   7197: plain address arithmetic, you should not notice this. Words for
                   7198: accessing the header structure usually know how to deal with this; e.g.,
1.29      crook    7199: @code{'} @i{word} @code{>body} also gives you the body of a word created
                   7200: with @code{create-interpret/compile}.
1.1       anton    7201: 
1.44      crook    7202: 
1.47      crook    7203: @c -------------------------------------------------------------
1.81      anton    7204: @node Tokens for Words, Compiling words, Interpretation and Compilation Semantics, Words
1.47      crook    7205: @section Tokens for Words
                   7206: @cindex tokens for words
                   7207: 
                   7208: This section describes the creation and use of tokens that represent
                   7209: words.
                   7210: 
1.71      anton    7211: @menu
                   7212: * Execution token::             represents execution/interpretation semantics
                   7213: * Compilation token::           represents compilation semantics
                   7214: * Name token::                  represents named words
                   7215: @end menu
1.47      crook    7216: 
1.71      anton    7217: @node Execution token, Compilation token, Tokens for Words, Tokens for Words
                   7218: @subsection Execution token
1.47      crook    7219: 
                   7220: @cindex xt
                   7221: @cindex execution token
1.71      anton    7222: An @dfn{execution token} (@i{XT}) represents some behaviour of a word.
                   7223: You can use @code{execute} to invoke this behaviour.
1.47      crook    7224: 
1.71      anton    7225: @cindex tick (')
                   7226: You can use @code{'} to get an execution token that represents the
                   7227: interpretation semantics of a named word:
1.47      crook    7228: 
                   7229: @example
1.97      anton    7230: 5 ' .   ( n xt ) 
                   7231: execute ( )      \ execute the xt (i.e., ".")
1.71      anton    7232: @end example
1.47      crook    7233: 
1.71      anton    7234: doc-'
                   7235: 
                   7236: @code{'} parses at run-time; there is also a word @code{[']} that parses
                   7237: when it is compiled, and compiles the resulting XT:
                   7238: 
                   7239: @example
                   7240: : foo ['] . execute ;
                   7241: 5 foo
                   7242: : bar ' execute ; \ by contrast,
                   7243: 5 bar .           \ ' parses "." when bar executes
                   7244: @end example
                   7245: 
                   7246: doc-[']
                   7247: 
                   7248: If you want the execution token of @i{word}, write @code{['] @i{word}}
                   7249: in compiled code and @code{' @i{word}} in interpreted code.  Gforth's
                   7250: @code{'} and @code{[']} behave somewhat unusually by complaining about
                   7251: compile-only words (because these words have no interpretation
                   7252: semantics).  You might get what you want by using @code{COMP' @i{word}
                   7253: DROP} or @code{[COMP'] @i{word} DROP} (for details @pxref{Compilation
                   7254: token}).
                   7255: 
                   7256: Another way to get an XT is @code{:noname} or @code{lastxt}
                   7257: (@pxref{Anonymous Definitions}).  For anonymous words this gives an xt
                   7258: for the only behaviour the word has (the execution semantics).  For
                   7259: named words, @code{lastxt} produces an XT for the same behaviour it
                   7260: would produce if the word was defined anonymously.
                   7261: 
                   7262: @example
                   7263: :noname ." hello" ;
                   7264: execute
1.47      crook    7265: @end example
                   7266: 
1.71      anton    7267: An XT occupies one cell and can be manipulated like any other cell.
                   7268: 
1.47      crook    7269: @cindex code field address
                   7270: @cindex CFA
1.71      anton    7271: In ANS Forth the XT is just an abstract data type (i.e., defined by the
                   7272: operations that produce or consume it).  For old hands: In Gforth, the
                   7273: XT is implemented as a code field address (CFA).
                   7274: 
                   7275: doc-execute
                   7276: doc-perform
                   7277: 
                   7278: @node Compilation token, Name token, Execution token, Tokens for Words
                   7279: @subsection Compilation token
1.47      crook    7280: 
                   7281: @cindex compilation token
1.71      anton    7282: @cindex CT (compilation token)
                   7283: Gforth represents the compilation semantics of a named word by a
1.47      crook    7284: @dfn{compilation token} consisting of two cells: @i{w xt}. The top cell
                   7285: @i{xt} is an execution token. The compilation semantics represented by
                   7286: the compilation token can be performed with @code{execute}, which
                   7287: consumes the whole compilation token, with an additional stack effect
                   7288: determined by the represented compilation semantics.
                   7289: 
                   7290: At present, the @i{w} part of a compilation token is an execution token,
                   7291: and the @i{xt} part represents either @code{execute} or
                   7292: @code{compile,}@footnote{Depending upon the compilation semantics of the
                   7293: word. If the word has default compilation semantics, the @i{xt} will
                   7294: represent @code{compile,}. Otherwise (e.g., for immediate words), the
                   7295: @i{xt} will represent @code{execute}.}. However, don't rely on that
                   7296: knowledge, unless necessary; future versions of Gforth may introduce
                   7297: unusual compilation tokens (e.g., a compilation token that represents
                   7298: the compilation semantics of a literal).
                   7299: 
1.71      anton    7300: You can perform the compilation semantics represented by the compilation
                   7301: token with @code{execute}.  You can compile the compilation semantics
                   7302: with @code{postpone,}. I.e., @code{COMP' @i{word} postpone,} is
                   7303: equivalent to @code{postpone @i{word}}.
                   7304: 
                   7305: doc-[comp']
                   7306: doc-comp'
                   7307: doc-postpone,
                   7308: 
                   7309: @node Name token,  , Compilation token, Tokens for Words
                   7310: @subsection Name token
1.47      crook    7311: 
                   7312: @cindex name token
                   7313: @cindex name field address
                   7314: @cindex NFA
1.71      anton    7315: Gforth represents named words by the @dfn{name token}, (@i{nt}). In
1.47      crook    7316: Gforth, the abstract data type @emph{name token} is implemented as a
                   7317: name field address (NFA).
                   7318: 
                   7319: doc-find-name
                   7320: doc-name>int
                   7321: doc-name?int
                   7322: doc-name>comp
                   7323: doc-name>string
1.109   ! anton    7324: doc-id.
        !          7325: doc-.name
        !          7326: doc-.id
1.47      crook    7327: 
1.81      anton    7328: @c ----------------------------------------------------------
                   7329: @node Compiling words, The Text Interpreter, Tokens for Words, Words
                   7330: @section Compiling words
                   7331: @cindex compiling words
                   7332: @cindex macros
                   7333: 
                   7334: In contrast to most other languages, Forth has no strict boundary
1.82      anton    7335: between compilation and run-time.  E.g., you can run arbitrary code
                   7336: between defining words (or for computing data used by defining words
                   7337: like @code{constant}). Moreover, @code{Immediate} (@pxref{Interpretation
                   7338: and Compilation Semantics} and @code{[}...@code{]} (see below) allow
                   7339: running arbitrary code while compiling a colon definition (exception:
                   7340: you must not allot dictionary space).
                   7341: 
                   7342: @menu
                   7343: * Literals::                    Compiling data values
                   7344: * Macros::                      Compiling words
                   7345: @end menu
                   7346: 
                   7347: @node Literals, Macros, Compiling words, Compiling words
                   7348: @subsection Literals
                   7349: @cindex Literals
                   7350: 
                   7351: The simplest and most frequent example is to compute a literal during
                   7352: compilation.  E.g., the following definition prints an array of strings,
                   7353: one string per line:
                   7354: 
                   7355: @example
                   7356: : .strings ( addr u -- ) \ gforth
                   7357:     2* cells bounds U+DO
                   7358:        cr i 2@@ type
                   7359:     2 cells +LOOP ;  
                   7360: @end example
1.81      anton    7361: 
1.82      anton    7362: With a simple-minded compiler like Gforth's, this computes @code{2
                   7363: cells} on every loop iteration.  You can compute this value once and for
                   7364: all at compile time and compile it into the definition like this:
                   7365: 
                   7366: @example
                   7367: : .strings ( addr u -- ) \ gforth
                   7368:     2* cells bounds U+DO
                   7369:        cr i 2@@ type
                   7370:     [ 2 cells ] literal +LOOP ;  
                   7371: @end example
                   7372: 
                   7373: @code{[} switches the text interpreter to interpret state (you will get
                   7374: an @code{ok} prompt if you type this example interactively and insert a
                   7375: newline between @code{[} and @code{]}), so it performs the
                   7376: interpretation semantics of @code{2 cells}; this computes a number.
                   7377: @code{]} switches the text interpreter back into compile state.  It then
                   7378: performs @code{Literal}'s compilation semantics, which are to compile
                   7379: this number into the current word.  You can decompile the word with
                   7380: @code{see .strings} to see the effect on the compiled code.
1.81      anton    7381: 
1.82      anton    7382: You can also optimize the @code{2* cells} into @code{[ 2 cells ] literal
                   7383: *} in this way.
1.81      anton    7384: 
1.82      anton    7385: doc-[
                   7386: doc-]
1.81      anton    7387: doc-literal
                   7388: doc-]L
1.82      anton    7389: 
                   7390: There are also words for compiling other data types than single cells as
                   7391: literals:
                   7392: 
1.81      anton    7393: doc-2literal
                   7394: doc-fliteral
1.82      anton    7395: doc-sliteral
                   7396: 
                   7397: @cindex colon-sys, passing data across @code{:}
                   7398: @cindex @code{:}, passing data across
                   7399: You might be tempted to pass data from outside a colon definition to the
                   7400: inside on the data stack.  This does not work, because @code{:} puhes a
                   7401: colon-sys, making stuff below unaccessible.  E.g., this does not work:
                   7402: 
                   7403: @example
                   7404: 5 : foo literal ; \ error: "unstructured"
                   7405: @end example
                   7406: 
                   7407: Instead, you have to pass the value in some other way, e.g., through a
                   7408: variable:
                   7409: 
                   7410: @example
                   7411: variable temp
                   7412: 5 temp !
                   7413: : foo [ temp @@ ] literal ;
                   7414: @end example
                   7415: 
                   7416: 
                   7417: @node Macros,  , Literals, Compiling words
                   7418: @subsection Macros
                   7419: @cindex Macros
                   7420: @cindex compiling compilation semantics
                   7421: 
                   7422: @code{Literal} and friends compile data values into the current
                   7423: definition.  You can also write words that compile other words into the
                   7424: current definition.  E.g.,
                   7425: 
                   7426: @example
                   7427: : compile-+ ( -- ) \ compiled code: ( n1 n2 -- n )
                   7428:   POSTPONE + ;
                   7429: 
                   7430: : foo ( n1 n2 -- n )
                   7431:   [ compile-+ ] ;
                   7432: 1 2 foo .
                   7433: @end example
                   7434: 
                   7435: This is equivalent to @code{: foo + ;} (@code{see foo} to check this).
                   7436: What happens in this example?  @code{Postpone} compiles the compilation
                   7437: semantics of @code{+} into @code{compile-+}; later the text interpreter
                   7438: executes @code{compile-+} and thus the compilation semantics of +, which
                   7439: compile (the execution semantics of) @code{+} into
                   7440: @code{foo}.@footnote{A recent RFI answer requires that compiling words
                   7441: should only be executed in compile state, so this example is not
                   7442: guaranteed to work on all standard systems, but on any decent system it
                   7443: will work.}
                   7444: 
                   7445: doc-postpone
                   7446: doc-[compile]
                   7447: 
                   7448: Compiling words like @code{compile-+} are usually immediate (or similar)
                   7449: so you do not have to switch to interpret state to execute them;
                   7450: mopifying the last example accordingly produces:
                   7451: 
                   7452: @example
                   7453: : [compile-+] ( compilation: --; interpretation: -- )
                   7454:   \ compiled code: ( n1 n2 -- n )
                   7455:   POSTPONE + ; immediate
                   7456: 
                   7457: : foo ( n1 n2 -- n )
                   7458:   [compile-+] ;
                   7459: 1 2 foo .
                   7460: @end example
                   7461: 
                   7462: Immediate compiling words are similar to macros in other languages (in
                   7463: particular, Lisp).  The important differences to macros in, e.g., C are:
                   7464: 
                   7465: @itemize @bullet
                   7466: 
                   7467: @item
                   7468: You use the same language for defining and processing macros, not a
                   7469: separate preprocessing language and processor.
                   7470: 
                   7471: @item
                   7472: Consequently, the full power of Forth is available in macro definitions.
                   7473: E.g., you can perform arbitrarily complex computations, or generate
                   7474: different code conditionally or in a loop (e.g., @pxref{Advanced macros
                   7475: Tutorial}).  This power is very useful when writing a parser generators
                   7476: or other code-generating software.
                   7477: 
                   7478: @item
                   7479: Macros defined using @code{postpone} etc. deal with the language at a
                   7480: higher level than strings; name binding happens at macro definition
                   7481: time, so you can avoid the pitfalls of name collisions that can happen
                   7482: in C macros.  Of course, Forth is a liberal language and also allows to
                   7483: shoot yourself in the foot with text-interpreted macros like
                   7484: 
                   7485: @example
                   7486: : [compile-+] s" +" evaluate ; immediate
                   7487: @end example
                   7488: 
                   7489: Apart from binding the name at macro use time, using @code{evaluate}
                   7490: also makes your definition @code{state}-smart (@pxref{state-smartness}).
                   7491: @end itemize
                   7492: 
                   7493: You may want the macro to compile a number into a word.  The word to do
                   7494: it is @code{literal}, but you have to @code{postpone} it, so its
                   7495: compilation semantics take effect when the macro is executed, not when
                   7496: it is compiled:
                   7497: 
                   7498: @example
                   7499: : [compile-5] ( -- ) \ compiled code: ( -- n )
                   7500:   5 POSTPONE literal ; immediate
                   7501: 
                   7502: : foo [compile-5] ;
                   7503: foo .
                   7504: @end example
                   7505: 
                   7506: You may want to pass parameters to a macro, that the macro should
                   7507: compile into the current definition.  If the parameter is a number, then
                   7508: you can use @code{postpone literal} (similar for other values).
                   7509: 
                   7510: If you want to pass a word that is to be compiled, the usual way is to
                   7511: pass an execution token and @code{compile,} it:
                   7512: 
                   7513: @example
                   7514: : twice1 ( xt -- ) \ compiled code: ... -- ...
                   7515:   dup compile, compile, ;
                   7516: 
                   7517: : 2+ ( n1 -- n2 )
                   7518:   [ ' 1+ twice1 ] ;
                   7519: @end example
                   7520: 
                   7521: doc-compile,
                   7522: 
                   7523: An alternative available in Gforth, that allows you to pass compile-only
                   7524: words as parameters is to use the compilation token (@pxref{Compilation
                   7525: token}).  The same example in this technique:
                   7526: 
                   7527: @example
                   7528: : twice ( ... ct -- ... ) \ compiled code: ... -- ...
                   7529:   2dup 2>r execute 2r> execute ;
                   7530: 
                   7531: : 2+ ( n1 -- n2 )
                   7532:   [ comp' 1+ twice ] ;
                   7533: @end example
                   7534: 
                   7535: In the example above @code{2>r} and @code{2r>} ensure that @code{twice}
                   7536: works even if the executed compilation semantics has an effect on the
                   7537: data stack.
                   7538: 
                   7539: You can also define complete definitions with these words; this provides
                   7540: an alternative to using @code{does>} (@pxref{User-defined Defining
                   7541: Words}).  E.g., instead of
                   7542: 
                   7543: @example
                   7544: : curry+ ( n1 "name" -- )
                   7545:     CREATE ,
                   7546: DOES> ( n2 -- n1+n2 )
                   7547:     @@ + ;
                   7548: @end example
                   7549: 
                   7550: you could define
                   7551: 
                   7552: @example
                   7553: : curry+ ( n1 "name" -- )
                   7554:   \ name execution: ( n2 -- n1+n2 )
                   7555:   >r : r> POSTPONE literal POSTPONE + POSTPONE ; ;
1.81      anton    7556: 
1.82      anton    7557: -3 curry+ 3-
                   7558: see 3-
                   7559: @end example
1.81      anton    7560: 
1.82      anton    7561: The sequence @code{>r : r>} is necessary, because @code{:} puts a
                   7562: colon-sys on the data stack that makes everything below it unaccessible.
1.81      anton    7563: 
1.82      anton    7564: This way of writing defining words is sometimes more, sometimes less
                   7565: convenient than using @code{does>} (@pxref{Advanced does> usage
                   7566: example}).  One advantage of this method is that it can be optimized
                   7567: better, because the compiler knows that the value compiled with
                   7568: @code{literal} is fixed, whereas the data associated with a
                   7569: @code{create}d word can be changed.
1.47      crook    7570: 
1.26      crook    7571: @c ----------------------------------------------------------
1.81      anton    7572: @node The Text Interpreter, Word Lists, Compiling words, Words
1.26      crook    7573: @section  The Text Interpreter
                   7574: @cindex interpreter - outer
                   7575: @cindex text interpreter
                   7576: @cindex outer interpreter
1.1       anton    7577: 
1.34      anton    7578: @c Should we really describe all these ugly details?  IMO the text
                   7579: @c interpreter should be much cleaner, but that may not be possible within
                   7580: @c ANS Forth. - anton
1.44      crook    7581: @c nac-> I wanted to explain how it works to show how you can exploit
                   7582: @c it in your own programs. When I was writing a cross-compiler, figuring out
                   7583: @c some of these gory details was very helpful to me. None of the textbooks
                   7584: @c I've seen cover it, and the most modern Forth textbook -- Forth Inc's,
                   7585: @c seems to positively avoid going into too much detail for some of
                   7586: @c the internals.
1.34      anton    7587: 
1.71      anton    7588: @c anton: ok.  I wonder, though, if this is the right place; for some stuff
                   7589: @c it is; for the ugly details, I would prefer another place.  I wonder
                   7590: @c whether we should have a chapter before "Words" that describes some
                   7591: @c basic concepts referred to in words, and a chapter after "Words" that
                   7592: @c describes implementation details.
                   7593: 
1.29      crook    7594: The text interpreter@footnote{This is an expanded version of the
                   7595: material in @ref{Introducing the Text Interpreter}.} is an endless loop
1.34      anton    7596: that processes input from the current input device. It is also called
                   7597: the outer interpreter, in contrast to the inner interpreter
                   7598: (@pxref{Engine}) which executes the compiled Forth code on interpretive
                   7599: implementations.
1.27      crook    7600: 
1.29      crook    7601: @cindex interpret state
                   7602: @cindex compile state
                   7603: The text interpreter operates in one of two states: @dfn{interpret
                   7604: state} and @dfn{compile state}. The current state is defined by the
1.71      anton    7605: aptly-named variable @code{state}.
1.29      crook    7606: 
                   7607: This section starts by describing how the text interpreter behaves when
                   7608: it is in interpret state, processing input from the user input device --
                   7609: the keyboard. This is the mode that a Forth system is in after it starts
                   7610: up.
                   7611: 
                   7612: @cindex input buffer
                   7613: @cindex terminal input buffer
                   7614: The text interpreter works from an area of memory called the @dfn{input
                   7615: buffer}@footnote{When the text interpreter is processing input from the
                   7616: keyboard, this area of memory is called the @dfn{terminal input buffer}
                   7617: (TIB) and is addressed by the (obsolescent) words @code{TIB} and
                   7618: @code{#TIB}.}, which stores your keyboard input when you press the
1.30      anton    7619: @key{RET} key. Starting at the beginning of the input buffer, it skips
1.29      crook    7620: leading spaces (called @dfn{delimiters}) then parses a string (a
                   7621: sequence of non-space characters) until it reaches either a space
                   7622: character or the end of the buffer. Having parsed a string, it makes two
                   7623: attempts to process it:
1.27      crook    7624: 
1.29      crook    7625: @cindex dictionary
1.27      crook    7626: @itemize @bullet
                   7627: @item
1.29      crook    7628: It looks for the string in a @dfn{dictionary} of definitions. If the
                   7629: string is found, the string names a @dfn{definition} (also known as a
                   7630: @dfn{word}) and the dictionary search returns information that allows
                   7631: the text interpreter to perform the word's @dfn{interpretation
                   7632: semantics}. In most cases, this simply means that the word will be
                   7633: executed.
1.27      crook    7634: @item
                   7635: If the string is not found in the dictionary, the text interpreter
1.29      crook    7636: attempts to treat it as a number, using the rules described in
                   7637: @ref{Number Conversion}. If the string represents a legal number in the
                   7638: current radix, the number is pushed onto a parameter stack (the data
                   7639: stack for integers, the floating-point stack for floating-point
                   7640: numbers).
                   7641: @end itemize
                   7642: 
                   7643: If both attempts fail, or if the word is found in the dictionary but has
                   7644: no interpretation semantics@footnote{This happens if the word was
                   7645: defined as @code{COMPILE-ONLY}.} the text interpreter discards the
                   7646: remainder of the input buffer, issues an error message and waits for
                   7647: more input. If one of the attempts succeeds, the text interpreter
                   7648: repeats the parsing process until the whole of the input buffer has been
                   7649: processed, at which point it prints the status message ``@code{ ok}''
                   7650: and waits for more input.
                   7651: 
1.71      anton    7652: @c anton: this should be in the input stream subsection (or below it)
                   7653: 
1.29      crook    7654: @cindex parse area
                   7655: The text interpreter keeps track of its position in the input buffer by
                   7656: updating a variable called @code{>IN} (pronounced ``to-in''). The value
                   7657: of @code{>IN} starts out as 0, indicating an offset of 0 from the start
                   7658: of the input buffer. The region from offset @code{>IN @@} to the end of
                   7659: the input buffer is called the @dfn{parse area}@footnote{In other words,
                   7660: the text interpreter processes the contents of the input buffer by
                   7661: parsing strings from the parse area until the parse area is empty.}.
                   7662: This example shows how @code{>IN} changes as the text interpreter parses
                   7663: the input buffer:
                   7664: 
                   7665: @example
                   7666: : remaining >IN @@ SOURCE 2 PICK - -ROT + SWAP
                   7667:   CR ." ->" TYPE ." <-" ; IMMEDIATE 
                   7668: 
                   7669: 1 2 3 remaining + remaining . 
                   7670: 
                   7671: : foo 1 2 3 remaining SWAP remaining ;
                   7672: @end example
                   7673: 
                   7674: @noindent
                   7675: The result is:
                   7676: 
                   7677: @example
                   7678: ->+ remaining .<-
                   7679: ->.<-5  ok
                   7680: 
                   7681: ->SWAP remaining ;-<
                   7682: ->;<-  ok
                   7683: @end example
                   7684: 
                   7685: @cindex parsing words
                   7686: The value of @code{>IN} can also be modified by a word in the input
                   7687: buffer that is executed by the text interpreter.  This means that a word
                   7688: can ``trick'' the text interpreter into either skipping a section of the
                   7689: input buffer@footnote{This is how parsing words work.} or into parsing a
                   7690: section twice. For example:
1.27      crook    7691: 
1.29      crook    7692: @example
1.71      anton    7693: : lat ." <<foo>>" ;
                   7694: : flat ." <<bar>>" >IN DUP @@ 3 - SWAP ! ;
1.29      crook    7695: @end example
                   7696: 
                   7697: @noindent
                   7698: When @code{flat} is executed, this output is produced@footnote{Exercise
                   7699: for the reader: what would happen if the @code{3} were replaced with
                   7700: @code{4}?}:
                   7701: 
                   7702: @example
1.71      anton    7703: <<bar>><<foo>>
1.29      crook    7704: @end example
                   7705: 
1.71      anton    7706: This technique can be used to work around some of the interoperability
                   7707: problems of parsing words.  Of course, it's better to avoid parsing
                   7708: words where possible.
                   7709: 
1.29      crook    7710: @noindent
                   7711: Two important notes about the behaviour of the text interpreter:
1.27      crook    7712: 
                   7713: @itemize @bullet
                   7714: @item
                   7715: It processes each input string to completion before parsing additional
1.29      crook    7716: characters from the input buffer.
                   7717: @item
                   7718: It treats the input buffer as a read-only region (and so must your code).
                   7719: @end itemize
                   7720: 
                   7721: @noindent
                   7722: When the text interpreter is in compile state, its behaviour changes in
                   7723: these ways:
                   7724: 
                   7725: @itemize @bullet
                   7726: @item
                   7727: If a parsed string is found in the dictionary, the text interpreter will
                   7728: perform the word's @dfn{compilation semantics}. In most cases, this
                   7729: simply means that the execution semantics of the word will be appended
                   7730: to the current definition.
1.27      crook    7731: @item
1.29      crook    7732: When a number is encountered, it is compiled into the current definition
                   7733: (as a literal) rather than being pushed onto a parameter stack.
                   7734: @item
                   7735: If an error occurs, @code{state} is modified to put the text interpreter
                   7736: back into interpret state.
                   7737: @item
                   7738: Each time a line is entered from the keyboard, Gforth prints
                   7739: ``@code{ compiled}'' rather than `` @code{ok}''.
                   7740: @end itemize
                   7741: 
                   7742: @cindex text interpreter - input sources
                   7743: When the text interpreter is using an input device other than the
                   7744: keyboard, its behaviour changes in these ways:
                   7745: 
                   7746: @itemize @bullet
                   7747: @item
                   7748: When the parse area is empty, the text interpreter attempts to refill
                   7749: the input buffer from the input source. When the input source is
1.71      anton    7750: exhausted, the input source is set back to the previous input source.
1.29      crook    7751: @item
                   7752: It doesn't print out ``@code{ ok}'' or ``@code{ compiled}'' messages each
                   7753: time the parse area is emptied.
                   7754: @item
                   7755: If an error occurs, the input source is set back to the user input
                   7756: device.
1.27      crook    7757: @end itemize
1.21      crook    7758: 
1.49      anton    7759: You can read about this in more detail in @ref{Input Sources}.
1.44      crook    7760: 
1.26      crook    7761: doc->in
1.27      crook    7762: doc-source
                   7763: 
1.26      crook    7764: doc-tib
                   7765: doc-#tib
1.1       anton    7766: 
1.44      crook    7767: 
1.26      crook    7768: @menu
1.67      anton    7769: * Input Sources::               
                   7770: * Number Conversion::           
                   7771: * Interpret/Compile states::    
                   7772: * Interpreter Directives::      
1.26      crook    7773: @end menu
1.1       anton    7774: 
1.29      crook    7775: @node Input Sources, Number Conversion, The Text Interpreter, The Text Interpreter
                   7776: @subsection Input Sources
                   7777: @cindex input sources
                   7778: @cindex text interpreter - input sources
                   7779: 
1.44      crook    7780: By default, the text interpreter processes input from the user input
1.29      crook    7781: device (the keyboard) when Forth starts up. The text interpreter can
                   7782: process input from any of these sources:
                   7783: 
                   7784: @itemize @bullet
                   7785: @item
                   7786: The user input device -- the keyboard.
                   7787: @item
                   7788: A file, using the words described in @ref{Forth source files}.
                   7789: @item
                   7790: A block, using the words described in @ref{Blocks}.
                   7791: @item
                   7792: A text string, using @code{evaluate}.
                   7793: @end itemize
                   7794: 
                   7795: A program can identify the current input device from the values of
                   7796: @code{source-id} and @code{blk}.
                   7797: 
1.44      crook    7798: 
1.29      crook    7799: doc-source-id
                   7800: doc-blk
                   7801: 
                   7802: doc-save-input
                   7803: doc-restore-input
                   7804: 
                   7805: doc-evaluate
1.1       anton    7806: 
1.29      crook    7807: 
1.44      crook    7808: 
1.29      crook    7809: @node Number Conversion, Interpret/Compile states, Input Sources, The Text Interpreter
1.26      crook    7810: @subsection Number Conversion
                   7811: @cindex number conversion
                   7812: @cindex double-cell numbers, input format
                   7813: @cindex input format for double-cell numbers
                   7814: @cindex single-cell numbers, input format
                   7815: @cindex input format for single-cell numbers
                   7816: @cindex floating-point numbers, input format
                   7817: @cindex input format for floating-point numbers
1.1       anton    7818: 
1.29      crook    7819: This section describes the rules that the text interpreter uses when it
                   7820: tries to convert a string into a number.
1.1       anton    7821: 
1.26      crook    7822: Let <digit> represent any character that is a legal digit in the current
1.29      crook    7823: number base@footnote{For example, 0-9 when the number base is decimal or
                   7824: 0-9, A-F when the number base is hexadecimal.}.
1.1       anton    7825: 
1.26      crook    7826: Let <decimal digit> represent any character in the range 0-9.
1.1       anton    7827: 
1.29      crook    7828: Let @{@i{a b}@} represent the @i{optional} presence of any of the characters
                   7829: in the braces (@i{a} or @i{b} or neither).
1.1       anton    7830: 
1.26      crook    7831: Let * represent any number of instances of the previous character
                   7832: (including none).
1.1       anton    7833: 
1.26      crook    7834: Let any other character represent itself.
1.1       anton    7835: 
1.29      crook    7836: @noindent
1.26      crook    7837: Now, the conversion rules are:
1.21      crook    7838: 
1.26      crook    7839: @itemize @bullet
                   7840: @item
                   7841: A string of the form <digit><digit>* is treated as a single-precision
1.29      crook    7842: (cell-sized) positive integer. Examples are 0 123 6784532 32343212343456 42
1.26      crook    7843: @item
                   7844: A string of the form -<digit><digit>* is treated as a single-precision
1.29      crook    7845: (cell-sized) negative integer, and is represented using 2's-complement
1.26      crook    7846: arithmetic. Examples are -45 -5681 -0
                   7847: @item
                   7848: A string of the form <digit><digit>*.<digit>* is treated as a double-precision
1.29      crook    7849: (double-cell-sized) positive integer. Examples are 3465. 3.465 34.65
                   7850: (all three of these represent the same number).
1.26      crook    7851: @item
                   7852: A string of the form -<digit><digit>*.<digit>* is treated as a
1.29      crook    7853: double-precision (double-cell-sized) negative integer, and is
1.26      crook    7854: represented using 2's-complement arithmetic. Examples are -3465. -3.465
1.29      crook    7855: -34.65 (all three of these represent the same number).
1.26      crook    7856: @item
1.29      crook    7857: A string of the form @{+ -@}<decimal digit>@{.@}<decimal digit>*@{e
                   7858: E@}@{+ -@}<decimal digit><decimal digit>* is treated as a floating-point
1.35      anton    7859: number. Examples are 1e 1e0 1.e 1.e0 +1e+0 (which all represent the same
1.29      crook    7860: number) +12.E-4
1.26      crook    7861: @end itemize
1.1       anton    7862: 
1.26      crook    7863: By default, the number base used for integer number conversion is given
1.35      anton    7864: by the contents of the variable @code{base}.  Note that a lot of
                   7865: confusion can result from unexpected values of @code{base}.  If you
                   7866: change @code{base} anywhere, make sure to save the old value and restore
                   7867: it afterwards.  In general I recommend keeping @code{base} decimal, and
                   7868: using the prefixes described below for the popular non-decimal bases.
1.1       anton    7869: 
1.29      crook    7870: doc-dpl
1.26      crook    7871: doc-base
                   7872: doc-hex
                   7873: doc-decimal
1.1       anton    7874: 
1.44      crook    7875: 
1.26      crook    7876: @cindex '-prefix for character strings
                   7877: @cindex &-prefix for decimal numbers
                   7878: @cindex %-prefix for binary numbers
                   7879: @cindex $-prefix for hexadecimal numbers
1.35      anton    7880: Gforth allows you to override the value of @code{base} by using a
1.29      crook    7881: prefix@footnote{Some Forth implementations provide a similar scheme by
                   7882: implementing @code{$} etc. as parsing words that process the subsequent
                   7883: number in the input stream and push it onto the stack. For example, see
                   7884: @cite{Number Conversion and Literals}, by Wil Baden; Forth Dimensions
                   7885: 20(3) pages 26--27. In such implementations, unlike in Gforth, a space
                   7886: is required between the prefix and the number.} before the first digit
                   7887: of an (integer) number. Four prefixes are supported:
1.1       anton    7888: 
1.26      crook    7889: @itemize @bullet
                   7890: @item
1.35      anton    7891: @code{&} -- decimal
1.26      crook    7892: @item
1.35      anton    7893: @code{%} -- binary
1.26      crook    7894: @item
1.35      anton    7895: @code{$} -- hexadecimal
1.26      crook    7896: @item
1.35      anton    7897: @code{'} -- base @code{max-char+1}
1.26      crook    7898: @end itemize
1.1       anton    7899: 
1.26      crook    7900: Here are some examples, with the equivalent decimal number shown after
                   7901: in braces:
1.1       anton    7902: 
1.26      crook    7903: -$41 (-65), %1001101 (205), %1001.0001 (145 - a double-precision number),
                   7904: 'AB (16706; ascii A is 65, ascii B is 66, number is 65*256 + 66),
                   7905: 'ab (24930; ascii a is 97, ascii B is 98, number is 97*256 + 98),
                   7906: &905 (905), $abc (2478), $ABC (2478).
1.1       anton    7907: 
1.26      crook    7908: @cindex number conversion - traps for the unwary
1.29      crook    7909: @noindent
1.26      crook    7910: Number conversion has a number of traps for the unwary:
1.1       anton    7911: 
1.26      crook    7912: @itemize @bullet
                   7913: @item
                   7914: You cannot determine the current number base using the code sequence
1.35      anton    7915: @code{base @@ .} -- the number base is always 10 in the current number
                   7916: base. Instead, use something like @code{base @@ dec.}
1.26      crook    7917: @item
                   7918: If the number base is set to a value greater than 14 (for example,
                   7919: hexadecimal), the number 123E4 is ambiguous; the conversion rules allow
                   7920: it to be intepreted as either a single-precision integer or a
                   7921: floating-point number (Gforth treats it as an integer). The ambiguity
                   7922: can be resolved by explicitly stating the sign of the mantissa and/or
                   7923: exponent: 123E+4 or +123E4 -- if the number base is decimal, no
                   7924: ambiguity arises; either representation will be treated as a
                   7925: floating-point number.
                   7926: @item
1.29      crook    7927: There is a word @code{bin} but it does @i{not} set the number base!
1.26      crook    7928: It is used to specify file types.
                   7929: @item
1.72      anton    7930: ANS Forth requires the @code{.} of a double-precision number to be the
                   7931: final character in the string.  Gforth allows the @code{.} to be
                   7932: anywhere after the first digit.
1.26      crook    7933: @item
                   7934: The number conversion process does not check for overflow.
                   7935: @item
1.72      anton    7936: In an ANS Forth program @code{base} is required to be decimal when
                   7937: converting floating-point numbers.  In Gforth, number conversion to
                   7938: floating-point numbers always uses base &10, irrespective of the value
                   7939: of @code{base}.
1.26      crook    7940: @end itemize
1.1       anton    7941: 
1.49      anton    7942: You can read numbers into your programs with the words described in
                   7943: @ref{Input}.
1.1       anton    7944: 
1.82      anton    7945: @node Interpret/Compile states, Interpreter Directives, Number Conversion, The Text Interpreter
1.26      crook    7946: @subsection Interpret/Compile states
                   7947: @cindex Interpret/Compile states
1.1       anton    7948: 
1.29      crook    7949: A standard program is not permitted to change @code{state}
                   7950: explicitly. However, it can change @code{state} implicitly, using the
                   7951: words @code{[} and @code{]}. When @code{[} is executed it switches
                   7952: @code{state} to interpret state, and therefore the text interpreter
                   7953: starts interpreting. When @code{]} is executed it switches @code{state}
                   7954: to compile state and therefore the text interpreter starts
1.44      crook    7955: compiling. The most common usage for these words is for switching into
                   7956: interpret state and back from within a colon definition; this technique
1.49      anton    7957: can be used to compile a literal (for an example, @pxref{Literals}) or
                   7958: for conditional compilation (for an example, @pxref{Interpreter
                   7959: Directives}).
1.44      crook    7960: 
1.35      anton    7961: 
                   7962: @c This is a bad example: It's non-standard, and it's not necessary.
                   7963: @c However, I can't think of a good example for switching into compile
                   7964: @c state when there is no current word (@code{state}-smart words are not a
                   7965: @c good reason).  So maybe we should use an example for switching into
                   7966: @c interpret @code{state} in a colon def. - anton
1.44      crook    7967: @c nac-> I agree. I started out by putting in the example, then realised
                   7968: @c that it was non-ANS, so wrote more words around it. I hope this
                   7969: @c re-written version is acceptable to you. I do want to keep the example
                   7970: @c as it is helpful for showing what is and what is not portable, particularly
                   7971: @c where it outlaws a style in common use.
                   7972: 
1.72      anton    7973: @c anton: it's more important to show what's portable.  After we have done
1.83      anton    7974: @c that, we can also show what's not.  In any case, I have written a
                   7975: @c section Compiling Words which also deals with [ ].
1.35      anton    7976: 
1.95      anton    7977: @c  !! The following example does not work in Gforth 0.5.9 or later.
1.29      crook    7978: 
1.95      anton    7979: @c  @code{[} and @code{]} also give you the ability to switch into compile
                   7980: @c  state and back, but we cannot think of any useful Standard application
                   7981: @c  for this ability. Pre-ANS Forth textbooks have examples like this:
                   7982: 
                   7983: @c  @example
                   7984: @c  : AA ." this is A" ;
                   7985: @c  : BB ." this is B" ;
                   7986: @c  : CC ." this is C" ;
                   7987: 
                   7988: @c  create table ] aa bb cc [
                   7989: 
                   7990: @c  : go ( n -- ) \ n is offset into table.. 0 for 1st entry
                   7991: @c    cells table + @@ execute ;
                   7992: @c  @end example
                   7993: 
                   7994: @c  This example builds a jump table; @code{0 go} will display ``@code{this
                   7995: @c  is A}''. Using @code{[} and @code{]} in this example is equivalent to
                   7996: @c  defining @code{table} like this:
                   7997: 
                   7998: @c  @example
                   7999: @c  create table ' aa COMPILE, ' bb COMPILE, ' cc COMPILE,
                   8000: @c  @end example
                   8001: 
                   8002: @c  The problem with this code is that the definition of @code{table} is not
                   8003: @c  portable -- it @i{compile}s execution tokens into code space. Whilst it
                   8004: @c  @i{may} work on systems where code space and data space co-incide, the
                   8005: @c  Standard only allows data space to be assigned for a @code{CREATE}d
                   8006: @c  word. In addition, the Standard only allows @code{@@} to access data
                   8007: @c  space, whilst this example is using it to access code space. The only
                   8008: @c  portable, Standard way to build this table is to build it in data space,
                   8009: @c  like this:
                   8010: 
                   8011: @c  @example
                   8012: @c  create table ' aa , ' bb , ' cc ,
                   8013: @c  @end example
1.29      crook    8014: 
1.95      anton    8015: @c  doc-state
1.44      crook    8016: 
1.29      crook    8017: 
1.82      anton    8018: @node Interpreter Directives,  , Interpret/Compile states, The Text Interpreter
1.26      crook    8019: @subsection Interpreter Directives
                   8020: @cindex interpreter directives
1.72      anton    8021: @cindex conditional compilation
1.1       anton    8022: 
1.29      crook    8023: These words are usually used in interpret state; typically to control
                   8024: which parts of a source file are processed by the text
1.26      crook    8025: interpreter. There are only a few ANS Forth Standard words, but Gforth
                   8026: supplements these with a rich set of immediate control structure words
                   8027: to compensate for the fact that the non-immediate versions can only be
1.29      crook    8028: used in compile state (@pxref{Control Structures}). Typical usages:
                   8029: 
                   8030: @example
1.72      anton    8031: FALSE Constant HAVE-ASSEMBLER
1.29      crook    8032: .
                   8033: .
1.72      anton    8034: HAVE-ASSEMBLER [IF]
1.29      crook    8035: : ASSEMBLER-FEATURE
                   8036:   ...
                   8037: ;
                   8038: [ENDIF]
                   8039: .
                   8040: .
                   8041: : SEE
                   8042:   ... \ general-purpose SEE code
1.72      anton    8043:   [ HAVE-ASSEMBLER [IF] ]
1.29      crook    8044:   ... \ assembler-specific SEE code
                   8045:   [ [ENDIF] ]
                   8046: ;
                   8047: @end example
1.1       anton    8048: 
1.44      crook    8049: 
1.26      crook    8050: doc-[IF]
                   8051: doc-[ELSE]
                   8052: doc-[THEN]
                   8053: doc-[ENDIF]
1.1       anton    8054: 
1.26      crook    8055: doc-[IFDEF]
                   8056: doc-[IFUNDEF]
1.1       anton    8057: 
1.26      crook    8058: doc-[?DO]
                   8059: doc-[DO]
                   8060: doc-[FOR]
                   8061: doc-[LOOP]
                   8062: doc-[+LOOP]
                   8063: doc-[NEXT]
1.1       anton    8064: 
1.26      crook    8065: doc-[BEGIN]
                   8066: doc-[UNTIL]
                   8067: doc-[AGAIN]
                   8068: doc-[WHILE]
                   8069: doc-[REPEAT]
1.1       anton    8070: 
1.27      crook    8071: 
1.26      crook    8072: @c -------------------------------------------------------------
1.47      crook    8073: @node Word Lists, Environmental Queries, The Text Interpreter, Words
1.26      crook    8074: @section Word Lists
                   8075: @cindex word lists
1.32      anton    8076: @cindex header space
1.1       anton    8077: 
1.36      anton    8078: A wordlist is a list of named words; you can add new words and look up
                   8079: words by name (and you can remove words in a restricted way with
                   8080: markers).  Every named (and @code{reveal}ed) word is in one wordlist.
                   8081: 
                   8082: @cindex search order stack
                   8083: The text interpreter searches the wordlists present in the search order
                   8084: (a stack of wordlists), from the top to the bottom.  Within each
                   8085: wordlist, the search starts conceptually at the newest word; i.e., if
                   8086: two words in a wordlist have the same name, the newer word is found.
1.1       anton    8087: 
1.26      crook    8088: @cindex compilation word list
1.36      anton    8089: New words are added to the @dfn{compilation wordlist} (aka current
                   8090: wordlist).
1.1       anton    8091: 
1.36      anton    8092: @cindex wid
                   8093: A word list is identified by a cell-sized word list identifier (@i{wid})
                   8094: in much the same way as a file is identified by a file handle. The
                   8095: numerical value of the wid has no (portable) meaning, and might change
                   8096: from session to session.
1.1       anton    8097: 
1.29      crook    8098: The ANS Forth ``Search order'' word set is intended to provide a set of
                   8099: low-level tools that allow various different schemes to be
1.74      anton    8100: implemented. Gforth also provides @code{vocabulary}, a traditional Forth
1.26      crook    8101: word.  @file{compat/vocabulary.fs} provides an implementation in ANS
1.45      crook    8102: Forth.
1.1       anton    8103: 
1.27      crook    8104: @comment TODO: locals section refers to here, saying that every word list (aka
                   8105: @comment vocabulary) has its own methods for searching etc. Need to document that.
1.78      anton    8106: @c anton: but better in a separate subsection on wordlist internals
1.1       anton    8107: 
1.45      crook    8108: @comment TODO: document markers, reveal, tables, mappedwordlist
                   8109: 
                   8110: @comment the gforthman- prefix is used to pick out the true definition of a
1.27      crook    8111: @comment word from the source files, rather than some alias.
1.44      crook    8112: 
1.26      crook    8113: doc-forth-wordlist
                   8114: doc-definitions
                   8115: doc-get-current
                   8116: doc-set-current
                   8117: doc-get-order
1.45      crook    8118: doc---gforthman-set-order
1.26      crook    8119: doc-wordlist
1.30      anton    8120: doc-table
1.79      anton    8121: doc->order
1.36      anton    8122: doc-previous
1.26      crook    8123: doc-also
1.45      crook    8124: doc---gforthman-forth
1.26      crook    8125: doc-only
1.45      crook    8126: doc---gforthman-order
1.15      anton    8127: 
1.26      crook    8128: doc-find
                   8129: doc-search-wordlist
1.15      anton    8130: 
1.26      crook    8131: doc-words
                   8132: doc-vlist
1.44      crook    8133: @c doc-words-deferred
1.1       anton    8134: 
1.74      anton    8135: @c doc-mappedwordlist @c map-structure undefined, implemantation-specific
1.26      crook    8136: doc-root
                   8137: doc-vocabulary
                   8138: doc-seal
                   8139: doc-vocs
                   8140: doc-current
                   8141: doc-context
1.1       anton    8142: 
1.44      crook    8143: 
1.26      crook    8144: @menu
1.75      anton    8145: * Vocabularies::                
1.67      anton    8146: * Why use word lists?::         
1.75      anton    8147: * Word list example::           
1.26      crook    8148: @end menu
                   8149: 
1.75      anton    8150: @node Vocabularies, Why use word lists?, Word Lists, Word Lists
                   8151: @subsection Vocabularies
                   8152: @cindex Vocabularies, detailed explanation
                   8153: 
                   8154: Here is an example of creating and using a new wordlist using ANS
                   8155: Forth words:
                   8156: 
                   8157: @example
                   8158: wordlist constant my-new-words-wordlist
                   8159: : my-new-words get-order nip my-new-words-wordlist swap set-order ;
                   8160: 
                   8161: \ add it to the search order
                   8162: also my-new-words
                   8163: 
                   8164: \ alternatively, add it to the search order and make it
                   8165: \ the compilation word list
                   8166: also my-new-words definitions
                   8167: \ type "order" to see the problem
                   8168: @end example
                   8169: 
                   8170: The problem with this example is that @code{order} has no way to
                   8171: associate the name @code{my-new-words} with the wid of the word list (in
                   8172: Gforth, @code{order} and @code{vocs} will display @code{???}  for a wid
                   8173: that has no associated name). There is no Standard way of associating a
                   8174: name with a wid.
                   8175: 
                   8176: In Gforth, this example can be re-coded using @code{vocabulary}, which
                   8177: associates a name with a wid:
                   8178: 
                   8179: @example
                   8180: vocabulary my-new-words
                   8181: 
                   8182: \ add it to the search order
                   8183: also my-new-words
                   8184: 
                   8185: \ alternatively, add it to the search order and make it
                   8186: \ the compilation word list
                   8187: my-new-words definitions
                   8188: \ type "order" to see that the problem is solved
                   8189: @end example
                   8190: 
                   8191: 
                   8192: @node Why use word lists?, Word list example, Vocabularies, Word Lists
1.26      crook    8193: @subsection Why use word lists?
                   8194: @cindex word lists - why use them?
                   8195: 
1.74      anton    8196: Here are some reasons why people use wordlists:
1.26      crook    8197: 
                   8198: @itemize @bullet
1.74      anton    8199: 
                   8200: @c anton: Gforth's hashing implementation makes the search speed
                   8201: @c independent from the number of words.  But it is linear with the number
                   8202: @c of wordlists that have to be searched, so in effect using more wordlists
                   8203: @c actually slows down compilation.
                   8204: 
                   8205: @c @item
                   8206: @c To improve compilation speed by reducing the number of header space
                   8207: @c entries that must be searched. This is achieved by creating a new
                   8208: @c word list that contains all of the definitions that are used in the
                   8209: @c definition of a Forth system but which would not usually be used by
                   8210: @c programs running on that system. That word list would be on the search
                   8211: @c list when the Forth system was compiled but would be removed from the
                   8212: @c search list for normal operation. This can be a useful technique for
                   8213: @c low-performance systems (for example, 8-bit processors in embedded
                   8214: @c systems) but is unlikely to be necessary in high-performance desktop
                   8215: @c systems.
                   8216: 
1.26      crook    8217: @item
                   8218: To prevent a set of words from being used outside the context in which
                   8219: they are valid. Two classic examples of this are an integrated editor
                   8220: (all of the edit commands are defined in a separate word list; the
                   8221: search order is set to the editor word list when the editor is invoked;
                   8222: the old search order is restored when the editor is terminated) and an
                   8223: integrated assembler (the op-codes for the machine are defined in a
                   8224: separate word list which is used when a @code{CODE} word is defined).
1.74      anton    8225: 
                   8226: @item
                   8227: To organize the words of an application or library into a user-visible
                   8228: set (in @code{forth-wordlist} or some other common wordlist) and a set
                   8229: of helper words used just for the implementation (hidden in a separate
1.75      anton    8230: wordlist).  This keeps @code{words}' output smaller, separates
                   8231: implementation and interface, and reduces the chance of name conflicts
                   8232: within the common wordlist.
1.74      anton    8233: 
1.26      crook    8234: @item
                   8235: To prevent a name-space clash between multiple definitions with the same
                   8236: name. For example, when building a cross-compiler you might have a word
                   8237: @code{IF} that generates conditional code for your target system. By
                   8238: placing this definition in a different word list you can control whether
                   8239: the host system's @code{IF} or the target system's @code{IF} get used in
                   8240: any particular context by controlling the order of the word lists on the
                   8241: search order stack.
1.74      anton    8242: 
1.26      crook    8243: @end itemize
1.1       anton    8244: 
1.74      anton    8245: The downsides of using wordlists are:
                   8246: 
                   8247: @itemize
                   8248: 
                   8249: @item
                   8250: Debugging becomes more cumbersome.
                   8251: 
                   8252: @item
                   8253: Name conflicts worked around with wordlists are still there, and you
                   8254: have to arrange the search order carefully to get the desired results;
                   8255: if you forget to do that, you get hard-to-find errors (as in any case
                   8256: where you read the code differently from the compiler; @code{see} can
1.75      anton    8257: help seeing which of several possible words the name resolves to in such
                   8258: cases).  @code{See} displays just the name of the words, not what
                   8259: wordlist they belong to, so it might be misleading.  Using unique names
                   8260: is a better approach to avoid name conflicts.
1.74      anton    8261: 
                   8262: @item
                   8263: You have to explicitly undo any changes to the search order.  In many
                   8264: cases it would be more convenient if this happened implicitly.  Gforth
                   8265: currently does not provide such a feature, but it may do so in the
                   8266: future.
                   8267: @end itemize
                   8268: 
                   8269: 
1.75      anton    8270: @node Word list example,  , Why use word lists?, Word Lists
                   8271: @subsection Word list example
                   8272: @cindex word lists - example
1.1       anton    8273: 
1.74      anton    8274: The following example is from the
                   8275: @uref{http://www.complang.tuwien.ac.at/forth/garbage-collection.zip,
                   8276: garbage collector} and uses wordlists to separate public words from
                   8277: helper words:
                   8278: 
                   8279: @example
                   8280: get-current ( wid )
                   8281: vocabulary garbage-collector also garbage-collector definitions
                   8282: ... \ define helper words
                   8283: ( wid ) set-current \ restore original (i.e., public) compilation wordlist
                   8284: ... \ define the public (i.e., API) words
                   8285:     \ they can refer to the helper words
                   8286: previous \ restore original search order (helper words become invisible)
                   8287: @end example
                   8288: 
1.26      crook    8289: @c -------------------------------------------------------------
                   8290: @node Environmental Queries, Files, Word Lists, Words
                   8291: @section Environmental Queries
                   8292: @cindex environmental queries
1.21      crook    8293: 
1.26      crook    8294: ANS Forth introduced the idea of ``environmental queries'' as a way
                   8295: for a program running on a system to determine certain characteristics of the system.
                   8296: The Standard specifies a number of strings that might be recognised by a system.
1.21      crook    8297: 
1.32      anton    8298: The Standard requires that the header space used for environmental queries
                   8299: be distinct from the header space used for definitions.
1.21      crook    8300: 
1.26      crook    8301: Typically, environmental queries are supported by creating a set of
1.29      crook    8302: definitions in a word list that is @i{only} used during environmental
1.26      crook    8303: queries; that is what Gforth does. There is no Standard way of adding
                   8304: definitions to the set of recognised environmental queries, but any
                   8305: implementation that supports the loading of optional word sets must have
                   8306: some mechanism for doing this (after loading the word set, the
                   8307: associated environmental query string must return @code{true}). In
                   8308: Gforth, the word list used to honour environmental queries can be
                   8309: manipulated just like any other word list.
1.21      crook    8310: 
1.44      crook    8311: 
1.26      crook    8312: doc-environment?
                   8313: doc-environment-wordlist
1.21      crook    8314: 
1.26      crook    8315: doc-gforth
                   8316: doc-os-class
1.21      crook    8317: 
1.44      crook    8318: 
1.26      crook    8319: Note that, whilst the documentation for (e.g.) @code{gforth} shows it
                   8320: returning two items on the stack, querying it using @code{environment?}
                   8321: will return an additional item; the @code{true} flag that shows that the
                   8322: string was recognised.
1.21      crook    8323: 
1.26      crook    8324: @comment TODO Document the standard strings or note where they are documented herein
1.21      crook    8325: 
1.26      crook    8326: Here are some examples of using environmental queries:
1.21      crook    8327: 
1.26      crook    8328: @example
                   8329: s" address-unit-bits" environment? 0=
                   8330: [IF]
                   8331:      cr .( environmental attribute address-units-bits unknown... ) cr
1.75      anton    8332: [ELSE]
                   8333:      drop \ ensure balanced stack effect
1.26      crook    8334: [THEN]
1.21      crook    8335: 
1.75      anton    8336: \ this might occur in the prelude of a standard program that uses THROW
                   8337: s" exception" environment? [IF]
                   8338:    0= [IF]
                   8339:       : throw abort" exception thrown" ;
                   8340:    [THEN]
                   8341: [ELSE] \ we don't know, so make sure
                   8342:    : throw abort" exception thrown" ;
                   8343: [THEN]
1.21      crook    8344: 
1.26      crook    8345: s" gforth" environment? [IF] .( Gforth version ) TYPE
                   8346:                         [ELSE] .( Not Gforth..) [THEN]
1.75      anton    8347: 
                   8348: \ a program using v*
                   8349: s" gforth" environment? [IF]
                   8350:   s" 0.5.0" compare 0< [IF] \ v* is a primitive since 0.5.0
                   8351:    : v* ( f_addr1 nstride1 f_addr2 nstride2 ucount -- r )
                   8352:      >r swap 2swap swap 0e r> 0 ?DO
                   8353:        dup f@ over + 2swap dup f@ f* f+ over + 2swap
                   8354:      LOOP
                   8355:      2drop 2drop ; 
                   8356:   [THEN]
                   8357: [ELSE] \ 
                   8358:   : v* ( f_addr1 nstride1 f_addr2 nstride2 ucount -- r )
                   8359:   ...
                   8360: [THEN]
1.26      crook    8361: @end example
1.21      crook    8362: 
1.26      crook    8363: Here is an example of adding a definition to the environment word list:
1.21      crook    8364: 
1.26      crook    8365: @example
                   8366: get-current environment-wordlist set-current
                   8367: true constant block
                   8368: true constant block-ext
                   8369: set-current
                   8370: @end example
1.21      crook    8371: 
1.26      crook    8372: You can see what definitions are in the environment word list like this:
1.21      crook    8373: 
1.26      crook    8374: @example
1.79      anton    8375: environment-wordlist >order words previous
1.26      crook    8376: @end example
1.21      crook    8377: 
                   8378: 
1.26      crook    8379: @c -------------------------------------------------------------
                   8380: @node Files, Blocks, Environmental Queries, Words
                   8381: @section Files
1.28      crook    8382: @cindex files
                   8383: @cindex I/O - file-handling
1.21      crook    8384: 
1.26      crook    8385: Gforth provides facilities for accessing files that are stored in the
                   8386: host operating system's file-system. Files that are processed by Gforth
                   8387: can be divided into two categories:
1.21      crook    8388: 
1.23      crook    8389: @itemize @bullet
                   8390: @item
1.29      crook    8391: Files that are processed by the Text Interpreter (@dfn{Forth source files}).
1.23      crook    8392: @item
1.29      crook    8393: Files that are processed by some other program (@dfn{general files}).
1.26      crook    8394: @end itemize
                   8395: 
                   8396: @menu
1.48      anton    8397: * Forth source files::          
                   8398: * General files::               
                   8399: * Search Paths::                
1.26      crook    8400: @end menu
                   8401: 
                   8402: @c -------------------------------------------------------------
                   8403: @node Forth source files, General files, Files, Files
                   8404: @subsection Forth source files
                   8405: @cindex including files
                   8406: @cindex Forth source files
1.21      crook    8407: 
1.26      crook    8408: The simplest way to interpret the contents of a file is to use one of
                   8409: these two formats:
1.21      crook    8410: 
1.26      crook    8411: @example
                   8412: include mysource.fs
                   8413: s" mysource.fs" included
                   8414: @end example
1.21      crook    8415: 
1.75      anton    8416: You usually want to include a file only if it is not included already
1.26      crook    8417: (by, say, another source file). In that case, you can use one of these
1.45      crook    8418: three formats:
1.21      crook    8419: 
1.26      crook    8420: @example
                   8421: require mysource.fs
                   8422: needs mysource.fs
                   8423: s" mysource.fs" required
                   8424: @end example
1.21      crook    8425: 
1.26      crook    8426: @cindex stack effect of included files
                   8427: @cindex including files, stack effect
1.45      crook    8428: It is good practice to write your source files such that interpreting them
                   8429: does not change the stack. Source files designed in this way can be used with
1.26      crook    8430: @code{required} and friends without complications. For example:
1.21      crook    8431: 
1.26      crook    8432: @example
1.75      anton    8433: 1024 require foo.fs drop
1.26      crook    8434: @end example
1.21      crook    8435: 
1.75      anton    8436: Here you want to pass the argument 1024 (e.g., a buffer size) to
                   8437: @file{foo.fs}.  Interpreting @file{foo.fs} has the stack effect ( n -- n
                   8438: ), which allows its use with @code{require}.  Of course with such
                   8439: parameters to required files, you have to ensure that the first
                   8440: @code{require} fits for all uses (i.e., @code{require} it early in the
                   8441: master load file).
1.44      crook    8442: 
1.26      crook    8443: doc-include-file
                   8444: doc-included
1.28      crook    8445: doc-included?
1.26      crook    8446: doc-include
                   8447: doc-required
                   8448: doc-require
                   8449: doc-needs
1.75      anton    8450: @c doc-init-included-files @c internal
                   8451: doc-sourcefilename
                   8452: doc-sourceline#
1.44      crook    8453: 
1.26      crook    8454: A definition in ANS Forth for @code{required} is provided in
                   8455: @file{compat/required.fs}.
1.21      crook    8456: 
1.26      crook    8457: @c -------------------------------------------------------------
                   8458: @node General files, Search Paths, Forth source files, Files
                   8459: @subsection General files
                   8460: @cindex general files
                   8461: @cindex file-handling
1.21      crook    8462: 
1.75      anton    8463: Files are opened/created by name and type. The following file access
                   8464: methods (FAMs) are recognised:
1.44      crook    8465: 
1.75      anton    8466: @cindex fam (file access method)
1.26      crook    8467: doc-r/o
                   8468: doc-r/w
                   8469: doc-w/o
                   8470: doc-bin
1.1       anton    8471: 
1.44      crook    8472: 
1.26      crook    8473: When a file is opened/created, it returns a file identifier,
1.29      crook    8474: @i{wfileid} that is used for all other file commands. All file
                   8475: commands also return a status value, @i{wior}, that is 0 for a
1.26      crook    8476: successful operation and an implementation-defined non-zero value in the
                   8477: case of an error.
1.21      crook    8478: 
1.44      crook    8479: 
1.26      crook    8480: doc-open-file
                   8481: doc-create-file
1.21      crook    8482: 
1.26      crook    8483: doc-close-file
                   8484: doc-delete-file
                   8485: doc-rename-file
                   8486: doc-read-file
                   8487: doc-read-line
                   8488: doc-write-file
                   8489: doc-write-line
                   8490: doc-emit-file
                   8491: doc-flush-file
1.21      crook    8492: 
1.26      crook    8493: doc-file-status
                   8494: doc-file-position
                   8495: doc-reposition-file
                   8496: doc-file-size
                   8497: doc-resize-file
1.21      crook    8498: 
1.93      anton    8499: doc-slurp-file
                   8500: doc-slurp-fid
1.44      crook    8501: 
1.26      crook    8502: @c ---------------------------------------------------------
1.48      anton    8503: @node Search Paths,  , General files, Files
1.26      crook    8504: @subsection Search Paths
                   8505: @cindex path for @code{included}
                   8506: @cindex file search path
                   8507: @cindex @code{include} search path
                   8508: @cindex search path for files
1.21      crook    8509: 
1.26      crook    8510: If you specify an absolute filename (i.e., a filename starting with
                   8511: @file{/} or @file{~}, or with @file{:} in the second position (as in
                   8512: @samp{C:...})) for @code{included} and friends, that file is included
                   8513: just as you would expect.
1.21      crook    8514: 
1.75      anton    8515: If the filename starts with @file{./}, this refers to the directory that
                   8516: the present file was @code{included} from.  This allows files to include
                   8517: other files relative to their own position (irrespective of the current
                   8518: working directory or the absolute position).  This feature is essential
                   8519: for libraries consisting of several files, where a file may include
                   8520: other files from the library.  It corresponds to @code{#include "..."}
                   8521: in C. If the current input source is not a file, @file{.} refers to the
                   8522: directory of the innermost file being included, or, if there is no file
                   8523: being included, to the current working directory.
                   8524: 
                   8525: For relative filenames (not starting with @file{./}), Gforth uses a
                   8526: search path similar to Forth's search order (@pxref{Word Lists}). It
                   8527: tries to find the given filename in the directories present in the path,
                   8528: and includes the first one it finds. There are separate search paths for
                   8529: Forth source files and general files.  If the search path contains the
                   8530: directory @file{.}, this refers to the directory of the current file, or
                   8531: the working directory, as if the file had been specified with @file{./}.
1.21      crook    8532: 
1.26      crook    8533: Use @file{~+} to refer to the current working directory (as in the
                   8534: @code{bash}).
1.1       anton    8535: 
1.75      anton    8536: @c anton: fold the following subsubsections into this subsection?
1.1       anton    8537: 
1.48      anton    8538: @menu
1.75      anton    8539: * Source Search Paths::         
1.48      anton    8540: * General Search Paths::        
                   8541: @end menu
                   8542: 
1.26      crook    8543: @c ---------------------------------------------------------
1.75      anton    8544: @node Source Search Paths, General Search Paths, Search Paths, Search Paths
                   8545: @subsubsection Source Search Paths
                   8546: @cindex search path control, source files
1.5       anton    8547: 
1.26      crook    8548: The search path is initialized when you start Gforth (@pxref{Invoking
1.75      anton    8549: Gforth}). You can display it and change it using @code{fpath} in
                   8550: combination with the general path handling words.
1.5       anton    8551: 
1.75      anton    8552: doc-fpath
                   8553: @c the functionality of the following words is easily available through
                   8554: @c   fpath and the general path words.  The may go away.
                   8555: @c doc-.fpath
                   8556: @c doc-fpath+
                   8557: @c doc-fpath=
                   8558: @c doc-open-fpath-file
1.44      crook    8559: 
                   8560: @noindent
1.26      crook    8561: Here is an example of using @code{fpath} and @code{require}:
1.5       anton    8562: 
1.26      crook    8563: @example
1.75      anton    8564: fpath path= /usr/lib/forth/|./
1.26      crook    8565: require timer.fs
                   8566: @end example
1.5       anton    8567: 
1.75      anton    8568: 
1.26      crook    8569: @c ---------------------------------------------------------
1.75      anton    8570: @node General Search Paths,  , Source Search Paths, Search Paths
1.26      crook    8571: @subsubsection General Search Paths
1.75      anton    8572: @cindex search path control, source files
1.5       anton    8573: 
1.26      crook    8574: Your application may need to search files in several directories, like
                   8575: @code{included} does. To facilitate this, Gforth allows you to define
                   8576: and use your own search paths, by providing generic equivalents of the
                   8577: Forth search path words:
1.5       anton    8578: 
1.75      anton    8579: doc-open-path-file
                   8580: doc-path-allot
                   8581: doc-clear-path
                   8582: doc-also-path
1.26      crook    8583: doc-.path
                   8584: doc-path+
                   8585: doc-path=
1.5       anton    8586: 
1.75      anton    8587: @c anton: better define a word for it, say "path-allot ( ucount -- path-addr )
1.44      crook    8588: 
1.75      anton    8589: Here's an example of creating an empty search path:
                   8590: @c
1.26      crook    8591: @example
1.75      anton    8592: create mypath 500 path-allot \ maximum length 500 chars (is checked)
1.26      crook    8593: @end example
1.5       anton    8594: 
1.26      crook    8595: @c -------------------------------------------------------------
                   8596: @node Blocks, Other I/O, Files, Words
                   8597: @section Blocks
1.28      crook    8598: @cindex I/O - blocks
                   8599: @cindex blocks
                   8600: 
                   8601: When you run Gforth on a modern desk-top computer, it runs under the
                   8602: control of an operating system which provides certain services.  One of
                   8603: these services is @var{file services}, which allows Forth source code
                   8604: and data to be stored in files and read into Gforth (@pxref{Files}).
                   8605: 
                   8606: Traditionally, Forth has been an important programming language on
                   8607: systems where it has interfaced directly to the underlying hardware with
                   8608: no intervening operating system. Forth provides a mechanism, called
1.29      crook    8609: @dfn{blocks}, for accessing mass storage on such systems.
1.28      crook    8610: 
                   8611: A block is a 1024-byte data area, which can be used to hold data or
                   8612: Forth source code. No structure is imposed on the contents of the
                   8613: block. A block is identified by its number; blocks are numbered
                   8614: contiguously from 1 to an implementation-defined maximum.
                   8615: 
                   8616: A typical system that used blocks but no operating system might use a
                   8617: single floppy-disk drive for mass storage, with the disks formatted to
                   8618: provide 256-byte sectors. Blocks would be implemented by assigning the
                   8619: first four sectors of the disk to block 1, the second four sectors to
                   8620: block 2 and so on, up to the limit of the capacity of the disk. The disk
                   8621: would not contain any file system information, just the set of blocks.
                   8622: 
1.29      crook    8623: @cindex blocks file
1.28      crook    8624: On systems that do provide file services, blocks are typically
1.29      crook    8625: implemented by storing a sequence of blocks within a single @dfn{blocks
1.28      crook    8626: file}.  The size of the blocks file will be an exact multiple of 1024
                   8627: bytes, corresponding to the number of blocks it contains. This is the
                   8628: mechanism that Gforth uses.
                   8629: 
1.29      crook    8630: @cindex @file{blocks.fb}
1.75      anton    8631: Only one blocks file can be open at a time. If you use block words without
1.28      crook    8632: having specified a blocks file, Gforth defaults to the blocks file
                   8633: @file{blocks.fb}. Gforth uses the Forth search path when attempting to
1.75      anton    8634: locate a blocks file (@pxref{Source Search Paths}).
1.28      crook    8635: 
1.29      crook    8636: @cindex block buffers
1.28      crook    8637: When you read and write blocks under program control, Gforth uses a
1.29      crook    8638: number of @dfn{block buffers} as intermediate storage. These buffers are
1.28      crook    8639: not used when you use @code{load} to interpret the contents of a block.
                   8640: 
1.75      anton    8641: The behaviour of the block buffers is analagous to that of a cache.
                   8642: Each block buffer has three states:
1.28      crook    8643: 
                   8644: @itemize @bullet
                   8645: @item
                   8646: Unassigned
                   8647: @item
                   8648: Assigned-clean
                   8649: @item
                   8650: Assigned-dirty
                   8651: @end itemize
                   8652: 
1.29      crook    8653: Initially, all block buffers are @i{unassigned}. In order to access a
1.28      crook    8654: block, the block (specified by its block number) must be assigned to a
                   8655: block buffer.
                   8656: 
                   8657: The assignment of a block to a block buffer is performed by @code{block}
                   8658: or @code{buffer}. Use @code{block} when you wish to modify the existing
                   8659: contents of a block. Use @code{buffer} when you don't care about the
                   8660: existing contents of the block@footnote{The ANS Forth definition of
1.35      anton    8661: @code{buffer} is intended not to cause disk I/O; if the data associated
1.28      crook    8662: with the particular block is already stored in a block buffer due to an
                   8663: earlier @code{block} command, @code{buffer} will return that block
                   8664: buffer and the existing contents of the block will be
                   8665: available. Otherwise, @code{buffer} will simply assign a new, empty
1.29      crook    8666: block buffer for the block.}.
1.28      crook    8667: 
1.47      crook    8668: Once a block has been assigned to a block buffer using @code{block} or
1.75      anton    8669: @code{buffer}, that block buffer becomes the @i{current block
                   8670: buffer}. Data may only be manipulated (read or written) within the
                   8671: current block buffer.
1.47      crook    8672: 
                   8673: When the contents of the current block buffer has been modified it is
1.48      anton    8674: necessary, @emph{before calling @code{block} or @code{buffer} again}, to
1.75      anton    8675: either abandon the changes (by doing nothing) or mark the block as
                   8676: changed (assigned-dirty), using @code{update}. Using @code{update} does
                   8677: not change the blocks file; it simply changes a block buffer's state to
                   8678: @i{assigned-dirty}.  The block will be written implicitly when it's
                   8679: buffer is needed for another block, or explicitly by @code{flush} or
                   8680: @code{save-buffers}.
                   8681: 
                   8682: word @code{Flush} writes all @i{assigned-dirty} blocks back to the
                   8683: blocks file on disk. Leaving Gforth with @code{bye} also performs a
                   8684: @code{flush}.
1.28      crook    8685: 
1.29      crook    8686: In Gforth, @code{block} and @code{buffer} use a @i{direct-mapped}
1.28      crook    8687: algorithm to assign a block buffer to a block. That means that any
                   8688: particular block can only be assigned to one specific block buffer,
1.29      crook    8689: called (for the particular operation) the @i{victim buffer}. If the
1.47      crook    8690: victim buffer is @i{unassigned} or @i{assigned-clean} it is allocated to
                   8691: the new block immediately. If it is @i{assigned-dirty} its current
                   8692: contents are written back to the blocks file on disk before it is
1.28      crook    8693: allocated to the new block.
                   8694: 
                   8695: Although no structure is imposed on the contents of a block, it is
                   8696: traditional to display the contents as 16 lines each of 64 characters.  A
                   8697: block provides a single, continuous stream of input (for example, it
                   8698: acts as a single parse area) -- there are no end-of-line characters
                   8699: within a block, and no end-of-file character at the end of a
                   8700: block. There are two consequences of this:
1.26      crook    8701: 
1.28      crook    8702: @itemize @bullet
                   8703: @item
                   8704: The last character of one line wraps straight into the first character
                   8705: of the following line
                   8706: @item
                   8707: The word @code{\} -- comment to end of line -- requires special
                   8708: treatment; in the context of a block it causes all characters until the
                   8709: end of the current 64-character ``line'' to be ignored.
                   8710: @end itemize
                   8711: 
                   8712: In Gforth, when you use @code{block} with a non-existent block number,
1.45      crook    8713: the current blocks file will be extended to the appropriate size and the
1.28      crook    8714: block buffer will be initialised with spaces.
                   8715: 
1.47      crook    8716: Gforth includes a simple block editor (type @code{use blocked.fb 0 list}
                   8717: for details) but doesn't encourage the use of blocks; the mechanism is
                   8718: only provided for backward compatibility -- ANS Forth requires blocks to
                   8719: be available when files are.
1.28      crook    8720: 
                   8721: Common techniques that are used when working with blocks include:
                   8722: 
                   8723: @itemize @bullet
                   8724: @item
                   8725: A screen editor that allows you to edit blocks without leaving the Forth
                   8726: environment.
                   8727: @item
                   8728: Shadow screens; where every code block has an associated block
                   8729: containing comments (for example: code in odd block numbers, comments in
                   8730: even block numbers). Typically, the block editor provides a convenient
                   8731: mechanism to toggle between code and comments.
                   8732: @item
                   8733: Load blocks; a single block (typically block 1) contains a number of
                   8734: @code{thru} commands which @code{load} the whole of the application.
                   8735: @end itemize
1.26      crook    8736: 
1.29      crook    8737: See Frank Sergeant's Pygmy Forth to see just how well blocks can be
                   8738: integrated into a Forth programming environment.
1.26      crook    8739: 
                   8740: @comment TODO what about errors on open-blocks?
1.44      crook    8741: 
1.26      crook    8742: doc-open-blocks
                   8743: doc-use
1.75      anton    8744: doc-block-offset
1.26      crook    8745: doc-get-block-fid
                   8746: doc-block-position
1.28      crook    8747: 
1.75      anton    8748: doc-list
1.28      crook    8749: doc-scr
                   8750: 
1.45      crook    8751: doc---gforthman-block
1.28      crook    8752: doc-buffer
                   8753: 
1.75      anton    8754: doc-empty-buffers
                   8755: doc-empty-buffer
1.26      crook    8756: doc-update
1.28      crook    8757: doc-updated?
1.26      crook    8758: doc-save-buffers
1.75      anton    8759: doc-save-buffer
1.26      crook    8760: doc-flush
1.28      crook    8761: 
1.26      crook    8762: doc-load
                   8763: doc-thru
                   8764: doc-+load
                   8765: doc-+thru
1.45      crook    8766: doc---gforthman--->
1.26      crook    8767: doc-block-included
                   8768: 
1.44      crook    8769: 
1.26      crook    8770: @c -------------------------------------------------------------
1.78      anton    8771: @node Other I/O, Locals, Blocks, Words
1.26      crook    8772: @section Other I/O
1.28      crook    8773: @cindex I/O - keyboard and display
1.26      crook    8774: 
                   8775: @menu
                   8776: * Simple numeric output::       Predefined formats
                   8777: * Formatted numeric output::    Formatted (pictured) output
                   8778: * String Formats::              How Forth stores strings in memory
1.67      anton    8779: * Displaying characters and strings::  Other stuff
1.26      crook    8780: * Input::                       Input
                   8781: @end menu
                   8782: 
                   8783: @node Simple numeric output, Formatted numeric output, Other I/O, Other I/O
                   8784: @subsection Simple numeric output
1.28      crook    8785: @cindex numeric output - simple/free-format
1.5       anton    8786: 
1.26      crook    8787: The simplest output functions are those that display numbers from the
                   8788: data or floating-point stacks. Floating-point output is always displayed
                   8789: using base 10. Numbers displayed from the data stack use the value stored
                   8790: in @code{base}.
1.5       anton    8791: 
1.44      crook    8792: 
1.26      crook    8793: doc-.
                   8794: doc-dec.
                   8795: doc-hex.
                   8796: doc-u.
                   8797: doc-.r
                   8798: doc-u.r
                   8799: doc-d.
                   8800: doc-ud.
                   8801: doc-d.r
                   8802: doc-ud.r
                   8803: doc-f.
                   8804: doc-fe.
                   8805: doc-fs.
1.5       anton    8806: 
1.44      crook    8807: 
1.26      crook    8808: Examples of printing the number 1234.5678E23 in the different floating-point output
                   8809: formats are shown below:
1.5       anton    8810: 
                   8811: @example
1.26      crook    8812: f. 123456779999999000000000000.
                   8813: fe. 123.456779999999E24
                   8814: fs. 1.23456779999999E26
1.5       anton    8815: @end example
                   8816: 
                   8817: 
1.26      crook    8818: @node Formatted numeric output, String Formats, Simple numeric output, Other I/O
                   8819: @subsection Formatted numeric output
1.28      crook    8820: @cindex formatted numeric output
1.26      crook    8821: @cindex pictured numeric output
1.28      crook    8822: @cindex numeric output - formatted
1.26      crook    8823: 
1.29      crook    8824: Forth traditionally uses a technique called @dfn{pictured numeric
1.26      crook    8825: output} for formatted printing of integers.  In this technique, digits
                   8826: are extracted from the number (using the current output radix defined by
                   8827: @code{base}), converted to ASCII codes and appended to a string that is
                   8828: built in a scratch-pad area of memory (@pxref{core-idef,
                   8829: Implementation-defined options, Implementation-defined
                   8830: options}). Arbitrary characters can be appended to the string during the
                   8831: extraction process. The completed string is specified by an address
                   8832: and length and can be manipulated (@code{TYPE}ed, copied, modified)
                   8833: under program control.
1.5       anton    8834: 
1.75      anton    8835: All of the integer output words described in the previous section
                   8836: (@pxref{Simple numeric output}) are implemented in Gforth using pictured
                   8837: numeric output.
1.5       anton    8838: 
1.47      crook    8839: Three important things to remember about pictured numeric output:
1.5       anton    8840: 
1.26      crook    8841: @itemize @bullet
                   8842: @item
1.28      crook    8843: It always operates on double-precision numbers; to display a
1.49      anton    8844: single-precision number, convert it first (for ways of doing this
                   8845: @pxref{Double precision}).
1.26      crook    8846: @item
1.28      crook    8847: It always treats the double-precision number as though it were
                   8848: unsigned. The examples below show ways of printing signed numbers.
1.26      crook    8849: @item
                   8850: The string is built up from right to left; least significant digit first.
                   8851: @end itemize
1.5       anton    8852: 
1.44      crook    8853: 
1.26      crook    8854: doc-<#
1.47      crook    8855: doc-<<#
1.26      crook    8856: doc-#
                   8857: doc-#s
                   8858: doc-hold
                   8859: doc-sign
                   8860: doc-#>
1.47      crook    8861: doc-#>>
1.5       anton    8862: 
1.26      crook    8863: doc-represent
1.5       anton    8864: 
1.44      crook    8865: 
                   8866: @noindent
1.26      crook    8867: Here are some examples of using pictured numeric output:
1.5       anton    8868: 
                   8869: @example
1.26      crook    8870: : my-u. ( u -- )
                   8871:   \ Simplest use of pns.. behaves like Standard u. 
                   8872:   0              \ convert to unsigned double
1.75      anton    8873:   <<#            \ start conversion
1.26      crook    8874:   #s             \ convert all digits
                   8875:   #>             \ complete conversion
1.75      anton    8876:   TYPE SPACE     \ display, with trailing space
                   8877:   #>> ;          \ release hold area
1.5       anton    8878: 
1.26      crook    8879: : cents-only ( u -- )
                   8880:   0              \ convert to unsigned double
1.75      anton    8881:   <<#            \ start conversion
1.26      crook    8882:   # #            \ convert two least-significant digits
                   8883:   #>             \ complete conversion, discard other digits
1.75      anton    8884:   TYPE SPACE     \ display, with trailing space
                   8885:   #>> ;          \ release hold area
1.5       anton    8886: 
1.26      crook    8887: : dollars-and-cents ( u -- )
                   8888:   0              \ convert to unsigned double
1.75      anton    8889:   <<#            \ start conversion
1.26      crook    8890:   # #            \ convert two least-significant digits
                   8891:   [char] . hold  \ insert decimal point
                   8892:   #s             \ convert remaining digits
                   8893:   [char] $ hold  \ append currency symbol
                   8894:   #>             \ complete conversion
1.75      anton    8895:   TYPE SPACE     \ display, with trailing space
                   8896:   #>> ;          \ release hold area
1.5       anton    8897: 
1.26      crook    8898: : my-. ( n -- )
                   8899:   \ handling negatives.. behaves like Standard .
                   8900:   s>d            \ convert to signed double
                   8901:   swap over dabs \ leave sign byte followed by unsigned double
1.75      anton    8902:   <<#            \ start conversion
1.26      crook    8903:   #s             \ convert all digits
                   8904:   rot sign       \ get at sign byte, append "-" if needed
                   8905:   #>             \ complete conversion
1.75      anton    8906:   TYPE SPACE     \ display, with trailing space
                   8907:   #>> ;          \ release hold area
1.5       anton    8908: 
1.26      crook    8909: : account. ( n -- )
1.75      anton    8910:   \ accountants don't like minus signs, they use parentheses
1.26      crook    8911:   \ for negative numbers
                   8912:   s>d            \ convert to signed double
                   8913:   swap over dabs \ leave sign byte followed by unsigned double
1.75      anton    8914:   <<#            \ start conversion
1.26      crook    8915:   2 pick         \ get copy of sign byte
                   8916:   0< IF [char] ) hold THEN \ right-most character of output
                   8917:   #s             \ convert all digits
                   8918:   rot            \ get at sign byte
                   8919:   0< IF [char] ( hold THEN
                   8920:   #>             \ complete conversion
1.75      anton    8921:   TYPE SPACE     \ display, with trailing space
                   8922:   #>> ;          \ release hold area
                   8923: 
1.5       anton    8924: @end example
                   8925: 
1.26      crook    8926: Here are some examples of using these words:
1.5       anton    8927: 
                   8928: @example
1.26      crook    8929: 1 my-u. 1
                   8930: hex -1 my-u. decimal FFFFFFFF
                   8931: 1 cents-only 01
                   8932: 1234 cents-only 34
                   8933: 2 dollars-and-cents $0.02
                   8934: 1234 dollars-and-cents $12.34
                   8935: 123 my-. 123
                   8936: -123 my. -123
                   8937: 123 account. 123
                   8938: -456 account. (456)
1.5       anton    8939: @end example
                   8940: 
                   8941: 
1.26      crook    8942: @node String Formats, Displaying characters and strings, Formatted numeric output, Other I/O
                   8943: @subsection String Formats
1.27      crook    8944: @cindex strings - see character strings
                   8945: @cindex character strings - formats
1.28      crook    8946: @cindex I/O - see character strings
1.75      anton    8947: @cindex counted strings
                   8948: 
                   8949: @c anton: this does not really belong here; maybe the memory section,
                   8950: @c  or the principles chapter
1.26      crook    8951: 
1.27      crook    8952: Forth commonly uses two different methods for representing character
                   8953: strings:
1.26      crook    8954: 
                   8955: @itemize @bullet
                   8956: @item
                   8957: @cindex address of counted string
1.45      crook    8958: @cindex counted string
1.29      crook    8959: As a @dfn{counted string}, represented by a @i{c-addr}. The char
                   8960: addressed by @i{c-addr} contains a character-count, @i{n}, of the
                   8961: string and the string occupies the subsequent @i{n} char addresses in
1.26      crook    8962: memory.
                   8963: @item
1.29      crook    8964: As cell pair on the stack; @i{c-addr u}, where @i{u} is the length
                   8965: of the string in characters, and @i{c-addr} is the address of the
1.26      crook    8966: first byte of the string.
                   8967: @end itemize
                   8968: 
                   8969: ANS Forth encourages the use of the second format when representing
1.75      anton    8970: strings.
1.26      crook    8971: 
1.44      crook    8972: 
1.26      crook    8973: doc-count
                   8974: 
1.44      crook    8975: 
1.49      anton    8976: For words that move, copy and search for strings see @ref{Memory
                   8977: Blocks}. For words that display characters and strings see
                   8978: @ref{Displaying characters and strings}.
1.26      crook    8979: 
                   8980: @node Displaying characters and strings, Input, String Formats, Other I/O
                   8981: @subsection Displaying characters and strings
1.27      crook    8982: @cindex characters - compiling and displaying
                   8983: @cindex character strings - compiling and displaying
1.26      crook    8984: 
                   8985: This section starts with a glossary of Forth words and ends with a set
                   8986: of examples.
                   8987: 
1.44      crook    8988: 
1.26      crook    8989: doc-bl
                   8990: doc-space
                   8991: doc-spaces
                   8992: doc-emit
                   8993: doc-toupper
                   8994: doc-."
                   8995: doc-.(
1.98      anton    8996: doc-.\"
1.26      crook    8997: doc-type
1.44      crook    8998: doc-typewhite
1.26      crook    8999: doc-cr
1.27      crook    9000: @cindex cursor control
1.26      crook    9001: doc-at-xy
                   9002: doc-page
                   9003: doc-s"
1.98      anton    9004: doc-s\"
1.26      crook    9005: doc-c"
                   9006: doc-char
                   9007: doc-[char]
                   9008: 
1.44      crook    9009: 
                   9010: @noindent
1.26      crook    9011: As an example, consider the following text, stored in a file @file{test.fs}:
1.5       anton    9012: 
                   9013: @example
1.26      crook    9014: .( text-1)
                   9015: : my-word
                   9016:   ." text-2" cr
                   9017:   .( text-3)
                   9018: ;
                   9019: 
                   9020: ." text-4"
                   9021: 
                   9022: : my-char
                   9023:   [char] ALPHABET emit
                   9024:   char emit
                   9025: ;
1.5       anton    9026: @end example
                   9027: 
1.26      crook    9028: When you load this code into Gforth, the following output is generated:
1.5       anton    9029: 
1.26      crook    9030: @example
1.30      anton    9031: @kbd{include test.fs @key{RET}} text-1text-3text-4 ok
1.26      crook    9032: @end example
1.5       anton    9033: 
1.26      crook    9034: @itemize @bullet
                   9035: @item
                   9036: Messages @code{text-1} and @code{text-3} are displayed because @code{.(} 
                   9037: is an immediate word; it behaves in the same way whether it is used inside
                   9038: or outside a colon definition.
                   9039: @item
                   9040: Message @code{text-4} is displayed because of Gforth's added interpretation
                   9041: semantics for @code{."}.
                   9042: @item
1.29      crook    9043: Message @code{text-2} is @i{not} displayed, because the text interpreter
1.26      crook    9044: performs the compilation semantics for @code{."} within the definition of
                   9045: @code{my-word}.
                   9046: @end itemize
1.5       anton    9047: 
1.26      crook    9048: Here are some examples of executing @code{my-word} and @code{my-char}:
1.5       anton    9049: 
1.26      crook    9050: @example
1.30      anton    9051: @kbd{my-word @key{RET}} text-2
1.26      crook    9052:  ok
1.30      anton    9053: @kbd{my-char fred @key{RET}} Af ok
                   9054: @kbd{my-char jim @key{RET}} Aj ok
1.26      crook    9055: @end example
1.5       anton    9056: 
                   9057: @itemize @bullet
                   9058: @item
1.26      crook    9059: Message @code{text-2} is displayed because of the run-time behaviour of
                   9060: @code{."}.
                   9061: @item
                   9062: @code{[char]} compiles the ``A'' from ``ALPHABET'' and puts its display code
                   9063: on the stack at run-time. @code{emit} always displays the character
                   9064: when @code{my-char} is executed.
                   9065: @item
                   9066: @code{char} parses a string at run-time and the second @code{emit} displays
                   9067: the first character of the string.
1.5       anton    9068: @item
1.26      crook    9069: If you type @code{see my-char} you can see that @code{[char]} discarded
                   9070: the text ``LPHABET'' and only compiled the display code for ``A'' into the
                   9071: definition of @code{my-char}.
1.5       anton    9072: @end itemize
                   9073: 
                   9074: 
                   9075: 
1.48      anton    9076: @node Input,  , Displaying characters and strings, Other I/O
1.26      crook    9077: @subsection Input
                   9078: @cindex input
1.28      crook    9079: @cindex I/O - see input
                   9080: @cindex parsing a string
1.5       anton    9081: 
1.49      anton    9082: For ways of storing character strings in memory see @ref{String Formats}.
1.5       anton    9083: 
1.27      crook    9084: @comment TODO examples for >number >float accept key key? pad parse word refill
1.29      crook    9085: @comment then index them
1.27      crook    9086: 
1.44      crook    9087: 
1.27      crook    9088: doc-key
                   9089: doc-key?
1.45      crook    9090: doc-ekey
                   9091: doc-ekey?
                   9092: doc-ekey>char
1.26      crook    9093: doc->number
                   9094: doc->float
                   9095: doc-accept
1.109   ! anton    9096: doc-edit-line
1.27      crook    9097: doc-pad
1.75      anton    9098: @c anton: these belong in the input stream section
1.27      crook    9099: doc-parse
                   9100: doc-word
1.98      anton    9101: doc-name
                   9102: doc-parse-word
                   9103: doc-\"-parse
1.27      crook    9104: doc-sword
                   9105: doc-refill
                   9106: @comment obsolescent words..
                   9107: doc-convert
1.26      crook    9108: doc-query
                   9109: doc-expect
1.27      crook    9110: doc-span
1.5       anton    9111: 
                   9112: 
1.78      anton    9113: @c -------------------------------------------------------------
                   9114: @node Locals, Structures, Other I/O, Words
                   9115: @section Locals
                   9116: @cindex locals
                   9117: 
                   9118: Local variables can make Forth programming more enjoyable and Forth
                   9119: programs easier to read. Unfortunately, the locals of ANS Forth are
                   9120: laden with restrictions. Therefore, we provide not only the ANS Forth
                   9121: locals wordset, but also our own, more powerful locals wordset (we
                   9122: implemented the ANS Forth locals wordset through our locals wordset).
1.44      crook    9123: 
1.78      anton    9124: The ideas in this section have also been published in M. Anton Ertl,
                   9125: @cite{@uref{http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz,
                   9126: Automatic Scoping of Local Variables}}, EuroForth '94.
1.12      anton    9127: 
                   9128: @menu
1.78      anton    9129: * Gforth locals::               
                   9130: * ANS Forth locals::            
1.5       anton    9131: @end menu
                   9132: 
1.78      anton    9133: @node Gforth locals, ANS Forth locals, Locals, Locals
                   9134: @subsection Gforth locals
                   9135: @cindex Gforth locals
                   9136: @cindex locals, Gforth style
1.5       anton    9137: 
1.78      anton    9138: Locals can be defined with
1.44      crook    9139: 
1.78      anton    9140: @example
                   9141: @{ local1 local2 ... -- comment @}
                   9142: @end example
                   9143: or
                   9144: @example
                   9145: @{ local1 local2 ... @}
                   9146: @end example
1.5       anton    9147: 
1.78      anton    9148: E.g.,
                   9149: @example
                   9150: : max @{ n1 n2 -- n3 @}
                   9151:  n1 n2 > if
                   9152:    n1
                   9153:  else
                   9154:    n2
                   9155:  endif ;
                   9156: @end example
1.44      crook    9157: 
1.78      anton    9158: The similarity of locals definitions with stack comments is intended. A
                   9159: locals definition often replaces the stack comment of a word. The order
                   9160: of the locals corresponds to the order in a stack comment and everything
                   9161: after the @code{--} is really a comment.
1.77      anton    9162: 
1.78      anton    9163: This similarity has one disadvantage: It is too easy to confuse locals
                   9164: declarations with stack comments, causing bugs and making them hard to
                   9165: find. However, this problem can be avoided by appropriate coding
                   9166: conventions: Do not use both notations in the same program. If you do,
                   9167: they should be distinguished using additional means, e.g. by position.
1.77      anton    9168: 
1.78      anton    9169: @cindex types of locals
                   9170: @cindex locals types
                   9171: The name of the local may be preceded by a type specifier, e.g.,
                   9172: @code{F:} for a floating point value:
1.5       anton    9173: 
1.78      anton    9174: @example
                   9175: : CX* @{ F: Ar F: Ai F: Br F: Bi -- Cr Ci @}
                   9176: \ complex multiplication
                   9177:  Ar Br f* Ai Bi f* f-
                   9178:  Ar Bi f* Ai Br f* f+ ;
                   9179: @end example
1.44      crook    9180: 
1.78      anton    9181: @cindex flavours of locals
                   9182: @cindex locals flavours
                   9183: @cindex value-flavoured locals
                   9184: @cindex variable-flavoured locals
                   9185: Gforth currently supports cells (@code{W:}, @code{W^}), doubles
                   9186: (@code{D:}, @code{D^}), floats (@code{F:}, @code{F^}) and characters
                   9187: (@code{C:}, @code{C^}) in two flavours: a value-flavoured local (defined
                   9188: with @code{W:}, @code{D:} etc.) produces its value and can be changed
                   9189: with @code{TO}. A variable-flavoured local (defined with @code{W^} etc.)
                   9190: produces its address (which becomes invalid when the variable's scope is
                   9191: left). E.g., the standard word @code{emit} can be defined in terms of
                   9192: @code{type} like this:
1.5       anton    9193: 
1.78      anton    9194: @example
                   9195: : emit @{ C^ char* -- @}
                   9196:     char* 1 type ;
                   9197: @end example
1.5       anton    9198: 
1.78      anton    9199: @cindex default type of locals
                   9200: @cindex locals, default type
                   9201: A local without type specifier is a @code{W:} local. Both flavours of
                   9202: locals are initialized with values from the data or FP stack.
1.44      crook    9203: 
1.78      anton    9204: Currently there is no way to define locals with user-defined data
                   9205: structures, but we are working on it.
1.5       anton    9206: 
1.78      anton    9207: Gforth allows defining locals everywhere in a colon definition. This
                   9208: poses the following questions:
1.5       anton    9209: 
1.78      anton    9210: @menu
                   9211: * Where are locals visible by name?::  
                   9212: * How long do locals live?::    
                   9213: * Locals programming style::    
                   9214: * Locals implementation::       
                   9215: @end menu
1.44      crook    9216: 
1.78      anton    9217: @node Where are locals visible by name?, How long do locals live?, Gforth locals, Gforth locals
                   9218: @subsubsection Where are locals visible by name?
                   9219: @cindex locals visibility
                   9220: @cindex visibility of locals
                   9221: @cindex scope of locals
1.5       anton    9222: 
1.78      anton    9223: Basically, the answer is that locals are visible where you would expect
                   9224: it in block-structured languages, and sometimes a little longer. If you
                   9225: want to restrict the scope of a local, enclose its definition in
                   9226: @code{SCOPE}...@code{ENDSCOPE}.
1.5       anton    9227: 
                   9228: 
1.78      anton    9229: doc-scope
                   9230: doc-endscope
1.5       anton    9231: 
                   9232: 
1.78      anton    9233: These words behave like control structure words, so you can use them
                   9234: with @code{CS-PICK} and @code{CS-ROLL} to restrict the scope in
                   9235: arbitrary ways.
1.77      anton    9236: 
1.78      anton    9237: If you want a more exact answer to the visibility question, here's the
                   9238: basic principle: A local is visible in all places that can only be
                   9239: reached through the definition of the local@footnote{In compiler
                   9240: construction terminology, all places dominated by the definition of the
                   9241: local.}. In other words, it is not visible in places that can be reached
                   9242: without going through the definition of the local. E.g., locals defined
                   9243: in @code{IF}...@code{ENDIF} are visible until the @code{ENDIF}, locals
                   9244: defined in @code{BEGIN}...@code{UNTIL} are visible after the
                   9245: @code{UNTIL} (until, e.g., a subsequent @code{ENDSCOPE}).
1.77      anton    9246: 
1.78      anton    9247: The reasoning behind this solution is: We want to have the locals
                   9248: visible as long as it is meaningful. The user can always make the
                   9249: visibility shorter by using explicit scoping. In a place that can
                   9250: only be reached through the definition of a local, the meaning of a
                   9251: local name is clear. In other places it is not: How is the local
                   9252: initialized at the control flow path that does not contain the
                   9253: definition? Which local is meant, if the same name is defined twice in
                   9254: two independent control flow paths?
1.77      anton    9255: 
1.78      anton    9256: This should be enough detail for nearly all users, so you can skip the
                   9257: rest of this section. If you really must know all the gory details and
                   9258: options, read on.
1.77      anton    9259: 
1.78      anton    9260: In order to implement this rule, the compiler has to know which places
                   9261: are unreachable. It knows this automatically after @code{AHEAD},
                   9262: @code{AGAIN}, @code{EXIT} and @code{LEAVE}; in other cases (e.g., after
                   9263: most @code{THROW}s), you can use the word @code{UNREACHABLE} to tell the
                   9264: compiler that the control flow never reaches that place. If
                   9265: @code{UNREACHABLE} is not used where it could, the only consequence is
                   9266: that the visibility of some locals is more limited than the rule above
                   9267: says. If @code{UNREACHABLE} is used where it should not (i.e., if you
                   9268: lie to the compiler), buggy code will be produced.
1.77      anton    9269: 
1.5       anton    9270: 
1.78      anton    9271: doc-unreachable
1.5       anton    9272: 
1.23      crook    9273: 
1.78      anton    9274: Another problem with this rule is that at @code{BEGIN}, the compiler
                   9275: does not know which locals will be visible on the incoming
                   9276: back-edge. All problems discussed in the following are due to this
                   9277: ignorance of the compiler (we discuss the problems using @code{BEGIN}
                   9278: loops as examples; the discussion also applies to @code{?DO} and other
                   9279: loops). Perhaps the most insidious example is:
1.26      crook    9280: @example
1.78      anton    9281: AHEAD
                   9282: BEGIN
                   9283:   x
                   9284: [ 1 CS-ROLL ] THEN
                   9285:   @{ x @}
                   9286:   ...
                   9287: UNTIL
1.26      crook    9288: @end example
1.23      crook    9289: 
1.78      anton    9290: This should be legal according to the visibility rule. The use of
                   9291: @code{x} can only be reached through the definition; but that appears
                   9292: textually below the use.
                   9293: 
                   9294: From this example it is clear that the visibility rules cannot be fully
                   9295: implemented without major headaches. Our implementation treats common
                   9296: cases as advertised and the exceptions are treated in a safe way: The
                   9297: compiler makes a reasonable guess about the locals visible after a
                   9298: @code{BEGIN}; if it is too pessimistic, the
                   9299: user will get a spurious error about the local not being defined; if the
                   9300: compiler is too optimistic, it will notice this later and issue a
                   9301: warning. In the case above the compiler would complain about @code{x}
                   9302: being undefined at its use. You can see from the obscure examples in
                   9303: this section that it takes quite unusual control structures to get the
                   9304: compiler into trouble, and even then it will often do fine.
1.23      crook    9305: 
1.78      anton    9306: If the @code{BEGIN} is reachable from above, the most optimistic guess
                   9307: is that all locals visible before the @code{BEGIN} will also be
                   9308: visible after the @code{BEGIN}. This guess is valid for all loops that
                   9309: are entered only through the @code{BEGIN}, in particular, for normal
                   9310: @code{BEGIN}...@code{WHILE}...@code{REPEAT} and
                   9311: @code{BEGIN}...@code{UNTIL} loops and it is implemented in our
                   9312: compiler. When the branch to the @code{BEGIN} is finally generated by
                   9313: @code{AGAIN} or @code{UNTIL}, the compiler checks the guess and
                   9314: warns the user if it was too optimistic:
1.26      crook    9315: @example
1.78      anton    9316: IF
                   9317:   @{ x @}
                   9318: BEGIN
                   9319:   \ x ? 
                   9320: [ 1 cs-roll ] THEN
                   9321:   ...
                   9322: UNTIL
1.26      crook    9323: @end example
1.23      crook    9324: 
1.78      anton    9325: Here, @code{x} lives only until the @code{BEGIN}, but the compiler
                   9326: optimistically assumes that it lives until the @code{THEN}. It notices
                   9327: this difference when it compiles the @code{UNTIL} and issues a
                   9328: warning. The user can avoid the warning, and make sure that @code{x}
                   9329: is not used in the wrong area by using explicit scoping:
                   9330: @example
                   9331: IF
                   9332:   SCOPE
                   9333:   @{ x @}
                   9334:   ENDSCOPE
                   9335: BEGIN
                   9336: [ 1 cs-roll ] THEN
                   9337:   ...
                   9338: UNTIL
                   9339: @end example
1.23      crook    9340: 
1.78      anton    9341: Since the guess is optimistic, there will be no spurious error messages
                   9342: about undefined locals.
1.44      crook    9343: 
1.78      anton    9344: If the @code{BEGIN} is not reachable from above (e.g., after
                   9345: @code{AHEAD} or @code{EXIT}), the compiler cannot even make an
                   9346: optimistic guess, as the locals visible after the @code{BEGIN} may be
                   9347: defined later. Therefore, the compiler assumes that no locals are
                   9348: visible after the @code{BEGIN}. However, the user can use
                   9349: @code{ASSUME-LIVE} to make the compiler assume that the same locals are
                   9350: visible at the BEGIN as at the point where the top control-flow stack
                   9351: item was created.
1.23      crook    9352: 
1.44      crook    9353: 
1.78      anton    9354: doc-assume-live
1.26      crook    9355: 
1.23      crook    9356: 
1.78      anton    9357: @noindent
                   9358: E.g.,
                   9359: @example
                   9360: @{ x @}
                   9361: AHEAD
                   9362: ASSUME-LIVE
                   9363: BEGIN
                   9364:   x
                   9365: [ 1 CS-ROLL ] THEN
                   9366:   ...
                   9367: UNTIL
                   9368: @end example
1.44      crook    9369: 
1.78      anton    9370: Other cases where the locals are defined before the @code{BEGIN} can be
                   9371: handled by inserting an appropriate @code{CS-ROLL} before the
                   9372: @code{ASSUME-LIVE} (and changing the control-flow stack manipulation
                   9373: behind the @code{ASSUME-LIVE}).
1.23      crook    9374: 
1.78      anton    9375: Cases where locals are defined after the @code{BEGIN} (but should be
                   9376: visible immediately after the @code{BEGIN}) can only be handled by
                   9377: rearranging the loop. E.g., the ``most insidious'' example above can be
                   9378: arranged into:
                   9379: @example
                   9380: BEGIN
                   9381:   @{ x @}
                   9382:   ... 0=
                   9383: WHILE
                   9384:   x
                   9385: REPEAT
                   9386: @end example
1.44      crook    9387: 
1.78      anton    9388: @node How long do locals live?, Locals programming style, Where are locals visible by name?, Gforth locals
                   9389: @subsubsection How long do locals live?
                   9390: @cindex locals lifetime
                   9391: @cindex lifetime of locals
1.23      crook    9392: 
1.78      anton    9393: The right answer for the lifetime question would be: A local lives at
                   9394: least as long as it can be accessed. For a value-flavoured local this
                   9395: means: until the end of its visibility. However, a variable-flavoured
                   9396: local could be accessed through its address far beyond its visibility
                   9397: scope. Ultimately, this would mean that such locals would have to be
                   9398: garbage collected. Since this entails un-Forth-like implementation
                   9399: complexities, I adopted the same cowardly solution as some other
                   9400: languages (e.g., C): The local lives only as long as it is visible;
                   9401: afterwards its address is invalid (and programs that access it
                   9402: afterwards are erroneous).
1.23      crook    9403: 
1.78      anton    9404: @node Locals programming style, Locals implementation, How long do locals live?, Gforth locals
                   9405: @subsubsection Locals programming style
                   9406: @cindex locals programming style
                   9407: @cindex programming style, locals
1.23      crook    9408: 
1.78      anton    9409: The freedom to define locals anywhere has the potential to change
                   9410: programming styles dramatically. In particular, the need to use the
                   9411: return stack for intermediate storage vanishes. Moreover, all stack
                   9412: manipulations (except @code{PICK}s and @code{ROLL}s with run-time
                   9413: determined arguments) can be eliminated: If the stack items are in the
                   9414: wrong order, just write a locals definition for all of them; then
                   9415: write the items in the order you want.
1.23      crook    9416: 
1.78      anton    9417: This seems a little far-fetched and eliminating stack manipulations is
                   9418: unlikely to become a conscious programming objective. Still, the number
                   9419: of stack manipulations will be reduced dramatically if local variables
                   9420: are used liberally (e.g., compare @code{max} (@pxref{Gforth locals}) with
                   9421: a traditional implementation of @code{max}).
1.23      crook    9422: 
1.78      anton    9423: This shows one potential benefit of locals: making Forth programs more
                   9424: readable. Of course, this benefit will only be realized if the
                   9425: programmers continue to honour the principle of factoring instead of
                   9426: using the added latitude to make the words longer.
1.23      crook    9427: 
1.78      anton    9428: @cindex single-assignment style for locals
                   9429: Using @code{TO} can and should be avoided.  Without @code{TO},
                   9430: every value-flavoured local has only a single assignment and many
                   9431: advantages of functional languages apply to Forth. I.e., programs are
                   9432: easier to analyse, to optimize and to read: It is clear from the
                   9433: definition what the local stands for, it does not turn into something
                   9434: different later.
1.23      crook    9435: 
1.78      anton    9436: E.g., a definition using @code{TO} might look like this:
                   9437: @example
                   9438: : strcmp @{ addr1 u1 addr2 u2 -- n @}
                   9439:  u1 u2 min 0
                   9440:  ?do
                   9441:    addr1 c@@ addr2 c@@ -
                   9442:    ?dup-if
                   9443:      unloop exit
                   9444:    then
                   9445:    addr1 char+ TO addr1
                   9446:    addr2 char+ TO addr2
                   9447:  loop
                   9448:  u1 u2 - ;
1.26      crook    9449: @end example
1.78      anton    9450: Here, @code{TO} is used to update @code{addr1} and @code{addr2} at
                   9451: every loop iteration. @code{strcmp} is a typical example of the
                   9452: readability problems of using @code{TO}. When you start reading
                   9453: @code{strcmp}, you think that @code{addr1} refers to the start of the
                   9454: string. Only near the end of the loop you realize that it is something
                   9455: else.
1.23      crook    9456: 
1.78      anton    9457: This can be avoided by defining two locals at the start of the loop that
                   9458: are initialized with the right value for the current iteration.
                   9459: @example
                   9460: : strcmp @{ addr1 u1 addr2 u2 -- n @}
                   9461:  addr1 addr2
                   9462:  u1 u2 min 0 
                   9463:  ?do @{ s1 s2 @}
                   9464:    s1 c@@ s2 c@@ -
                   9465:    ?dup-if
                   9466:      unloop exit
                   9467:    then
                   9468:    s1 char+ s2 char+
                   9469:  loop
                   9470:  2drop
                   9471:  u1 u2 - ;
                   9472: @end example
                   9473: Here it is clear from the start that @code{s1} has a different value
                   9474: in every loop iteration.
1.23      crook    9475: 
1.78      anton    9476: @node Locals implementation,  , Locals programming style, Gforth locals
                   9477: @subsubsection Locals implementation
                   9478: @cindex locals implementation
                   9479: @cindex implementation of locals
1.23      crook    9480: 
1.78      anton    9481: @cindex locals stack
                   9482: Gforth uses an extra locals stack. The most compelling reason for
                   9483: this is that the return stack is not float-aligned; using an extra stack
                   9484: also eliminates the problems and restrictions of using the return stack
                   9485: as locals stack. Like the other stacks, the locals stack grows toward
                   9486: lower addresses. A few primitives allow an efficient implementation:
                   9487: 
                   9488: 
                   9489: doc-@local#
                   9490: doc-f@local#
                   9491: doc-laddr#
                   9492: doc-lp+!#
                   9493: doc-lp!
                   9494: doc->l
                   9495: doc-f>l
                   9496: 
                   9497: 
                   9498: In addition to these primitives, some specializations of these
                   9499: primitives for commonly occurring inline arguments are provided for
                   9500: efficiency reasons, e.g., @code{@@local0} as specialization of
                   9501: @code{@@local#} for the inline argument 0. The following compiling words
                   9502: compile the right specialized version, or the general version, as
                   9503: appropriate:
1.23      crook    9504: 
1.5       anton    9505: 
1.107     dvdkhlng 9506: @c doc-compile-@local
                   9507: @c doc-compile-f@local
1.78      anton    9508: doc-compile-lp+!
1.5       anton    9509: 
                   9510: 
1.78      anton    9511: Combinations of conditional branches and @code{lp+!#} like
                   9512: @code{?branch-lp+!#} (the locals pointer is only changed if the branch
                   9513: is taken) are provided for efficiency and correctness in loops.
1.5       anton    9514: 
1.78      anton    9515: A special area in the dictionary space is reserved for keeping the
                   9516: local variable names. @code{@{} switches the dictionary pointer to this
                   9517: area and @code{@}} switches it back and generates the locals
                   9518: initializing code. @code{W:} etc.@ are normal defining words. This
                   9519: special area is cleared at the start of every colon definition.
1.5       anton    9520: 
1.78      anton    9521: @cindex word list for defining locals
                   9522: A special feature of Gforth's dictionary is used to implement the
                   9523: definition of locals without type specifiers: every word list (aka
                   9524: vocabulary) has its own methods for searching
                   9525: etc. (@pxref{Word Lists}). For the present purpose we defined a word list
                   9526: with a special search method: When it is searched for a word, it
                   9527: actually creates that word using @code{W:}. @code{@{} changes the search
                   9528: order to first search the word list containing @code{@}}, @code{W:} etc.,
                   9529: and then the word list for defining locals without type specifiers.
1.5       anton    9530: 
1.78      anton    9531: The lifetime rules support a stack discipline within a colon
                   9532: definition: The lifetime of a local is either nested with other locals
                   9533: lifetimes or it does not overlap them.
1.23      crook    9534: 
1.78      anton    9535: At @code{BEGIN}, @code{IF}, and @code{AHEAD} no code for locals stack
                   9536: pointer manipulation is generated. Between control structure words
                   9537: locals definitions can push locals onto the locals stack. @code{AGAIN}
                   9538: is the simplest of the other three control flow words. It has to
                   9539: restore the locals stack depth of the corresponding @code{BEGIN}
                   9540: before branching. The code looks like this:
                   9541: @format
                   9542: @code{lp+!#} current-locals-size @minus{} dest-locals-size
                   9543: @code{branch} <begin>
                   9544: @end format
1.26      crook    9545: 
1.78      anton    9546: @code{UNTIL} is a little more complicated: If it branches back, it
                   9547: must adjust the stack just like @code{AGAIN}. But if it falls through,
                   9548: the locals stack must not be changed. The compiler generates the
                   9549: following code:
                   9550: @format
                   9551: @code{?branch-lp+!#} <begin> current-locals-size @minus{} dest-locals-size
                   9552: @end format
                   9553: The locals stack pointer is only adjusted if the branch is taken.
1.44      crook    9554: 
1.78      anton    9555: @code{THEN} can produce somewhat inefficient code:
                   9556: @format
                   9557: @code{lp+!#} current-locals-size @minus{} orig-locals-size
                   9558: <orig target>:
                   9559: @code{lp+!#} orig-locals-size @minus{} new-locals-size
                   9560: @end format
                   9561: The second @code{lp+!#} adjusts the locals stack pointer from the
                   9562: level at the @i{orig} point to the level after the @code{THEN}. The
                   9563: first @code{lp+!#} adjusts the locals stack pointer from the current
                   9564: level to the level at the orig point, so the complete effect is an
                   9565: adjustment from the current level to the right level after the
                   9566: @code{THEN}.
1.26      crook    9567: 
1.78      anton    9568: @cindex locals information on the control-flow stack
                   9569: @cindex control-flow stack items, locals information
                   9570: In a conventional Forth implementation a dest control-flow stack entry
                   9571: is just the target address and an orig entry is just the address to be
                   9572: patched. Our locals implementation adds a word list to every orig or dest
                   9573: item. It is the list of locals visible (or assumed visible) at the point
                   9574: described by the entry. Our implementation also adds a tag to identify
                   9575: the kind of entry, in particular to differentiate between live and dead
                   9576: (reachable and unreachable) orig entries.
1.26      crook    9577: 
1.78      anton    9578: A few unusual operations have to be performed on locals word lists:
1.44      crook    9579: 
1.5       anton    9580: 
1.78      anton    9581: doc-common-list
                   9582: doc-sub-list?
                   9583: doc-list-size
1.52      anton    9584: 
                   9585: 
1.78      anton    9586: Several features of our locals word list implementation make these
                   9587: operations easy to implement: The locals word lists are organised as
                   9588: linked lists; the tails of these lists are shared, if the lists
                   9589: contain some of the same locals; and the address of a name is greater
                   9590: than the address of the names behind it in the list.
1.5       anton    9591: 
1.78      anton    9592: Another important implementation detail is the variable
                   9593: @code{dead-code}. It is used by @code{BEGIN} and @code{THEN} to
                   9594: determine if they can be reached directly or only through the branch
                   9595: that they resolve. @code{dead-code} is set by @code{UNREACHABLE},
                   9596: @code{AHEAD}, @code{EXIT} etc., and cleared at the start of a colon
                   9597: definition, by @code{BEGIN} and usually by @code{THEN}.
1.5       anton    9598: 
1.78      anton    9599: Counted loops are similar to other loops in most respects, but
                   9600: @code{LEAVE} requires special attention: It performs basically the same
                   9601: service as @code{AHEAD}, but it does not create a control-flow stack
                   9602: entry. Therefore the information has to be stored elsewhere;
                   9603: traditionally, the information was stored in the target fields of the
                   9604: branches created by the @code{LEAVE}s, by organizing these fields into a
                   9605: linked list. Unfortunately, this clever trick does not provide enough
                   9606: space for storing our extended control flow information. Therefore, we
                   9607: introduce another stack, the leave stack. It contains the control-flow
                   9608: stack entries for all unresolved @code{LEAVE}s.
1.44      crook    9609: 
1.78      anton    9610: Local names are kept until the end of the colon definition, even if
                   9611: they are no longer visible in any control-flow path. In a few cases
                   9612: this may lead to increased space needs for the locals name area, but
                   9613: usually less than reclaiming this space would cost in code size.
1.5       anton    9614: 
1.44      crook    9615: 
1.78      anton    9616: @node ANS Forth locals,  , Gforth locals, Locals
                   9617: @subsection ANS Forth locals
                   9618: @cindex locals, ANS Forth style
1.5       anton    9619: 
1.78      anton    9620: The ANS Forth locals wordset does not define a syntax for locals, but
                   9621: words that make it possible to define various syntaxes. One of the
                   9622: possible syntaxes is a subset of the syntax we used in the Gforth locals
                   9623: wordset, i.e.:
1.29      crook    9624: 
                   9625: @example
1.78      anton    9626: @{ local1 local2 ... -- comment @}
                   9627: @end example
                   9628: @noindent
                   9629: or
                   9630: @example
                   9631: @{ local1 local2 ... @}
1.29      crook    9632: @end example
                   9633: 
1.78      anton    9634: The order of the locals corresponds to the order in a stack comment. The
                   9635: restrictions are:
1.5       anton    9636: 
1.78      anton    9637: @itemize @bullet
                   9638: @item
                   9639: Locals can only be cell-sized values (no type specifiers are allowed).
                   9640: @item
                   9641: Locals can be defined only outside control structures.
                   9642: @item
                   9643: Locals can interfere with explicit usage of the return stack. For the
                   9644: exact (and long) rules, see the standard. If you don't use return stack
                   9645: accessing words in a definition using locals, you will be all right. The
                   9646: purpose of this rule is to make locals implementation on the return
                   9647: stack easier.
                   9648: @item
                   9649: The whole definition must be in one line.
                   9650: @end itemize
1.5       anton    9651: 
1.78      anton    9652: Locals defined in ANS Forth behave like @code{VALUE}s
                   9653: (@pxref{Values}). I.e., they are initialized from the stack. Using their
                   9654: name produces their value. Their value can be changed using @code{TO}.
1.77      anton    9655: 
1.78      anton    9656: Since the syntax above is supported by Gforth directly, you need not do
                   9657: anything to use it. If you want to port a program using this syntax to
                   9658: another ANS Forth system, use @file{compat/anslocal.fs} to implement the
                   9659: syntax on the other system.
1.5       anton    9660: 
1.78      anton    9661: Note that a syntax shown in the standard, section A.13 looks
                   9662: similar, but is quite different in having the order of locals
                   9663: reversed. Beware!
1.5       anton    9664: 
1.78      anton    9665: The ANS Forth locals wordset itself consists of one word:
1.5       anton    9666: 
1.78      anton    9667: doc-(local)
1.5       anton    9668: 
1.78      anton    9669: The ANS Forth locals extension wordset defines a syntax using
                   9670: @code{locals|}, but it is so awful that we strongly recommend not to use
                   9671: it. We have implemented this syntax to make porting to Gforth easy, but
                   9672: do not document it here. The problem with this syntax is that the locals
                   9673: are defined in an order reversed with respect to the standard stack
                   9674: comment notation, making programs harder to read, and easier to misread
                   9675: and miswrite. The only merit of this syntax is that it is easy to
                   9676: implement using the ANS Forth locals wordset.
1.53      anton    9677: 
                   9678: 
1.78      anton    9679: @c ----------------------------------------------------------
                   9680: @node Structures, Object-oriented Forth, Locals, Words
                   9681: @section  Structures
                   9682: @cindex structures
                   9683: @cindex records
1.53      anton    9684: 
1.78      anton    9685: This section presents the structure package that comes with Gforth. A
                   9686: version of the package implemented in ANS Forth is available in
                   9687: @file{compat/struct.fs}. This package was inspired by a posting on
                   9688: comp.lang.forth in 1989 (unfortunately I don't remember, by whom;
                   9689: possibly John Hayes). A version of this section has been published in
                   9690: M. Anton Ertl,
                   9691: @uref{http://www.complang.tuwien.ac.at/forth/objects/structs.html, Yet
                   9692: Another Forth Structures Package}, Forth Dimensions 19(3), pages
                   9693: 13--16. Marcel Hendrix provided helpful comments.
1.53      anton    9694: 
1.78      anton    9695: @menu
                   9696: * Why explicit structure support?::  
                   9697: * Structure Usage::             
                   9698: * Structure Naming Convention::  
                   9699: * Structure Implementation::    
                   9700: * Structure Glossary::          
                   9701: @end menu
1.55      anton    9702: 
1.78      anton    9703: @node Why explicit structure support?, Structure Usage, Structures, Structures
                   9704: @subsection Why explicit structure support?
1.53      anton    9705: 
1.78      anton    9706: @cindex address arithmetic for structures
                   9707: @cindex structures using address arithmetic
                   9708: If we want to use a structure containing several fields, we could simply
                   9709: reserve memory for it, and access the fields using address arithmetic
                   9710: (@pxref{Address arithmetic}). As an example, consider a structure with
                   9711: the following fields
1.57      anton    9712: 
1.78      anton    9713: @table @code
                   9714: @item a
                   9715: is a float
                   9716: @item b
                   9717: is a cell
                   9718: @item c
                   9719: is a float
                   9720: @end table
1.57      anton    9721: 
1.78      anton    9722: Given the (float-aligned) base address of the structure we get the
                   9723: address of the field
1.52      anton    9724: 
1.78      anton    9725: @table @code
                   9726: @item a
                   9727: without doing anything further.
                   9728: @item b
                   9729: with @code{float+}
                   9730: @item c
                   9731: with @code{float+ cell+ faligned}
                   9732: @end table
1.52      anton    9733: 
1.78      anton    9734: It is easy to see that this can become quite tiring. 
1.52      anton    9735: 
1.78      anton    9736: Moreover, it is not very readable, because seeing a
                   9737: @code{cell+} tells us neither which kind of structure is
                   9738: accessed nor what field is accessed; we have to somehow infer the kind
                   9739: of structure, and then look up in the documentation, which field of
                   9740: that structure corresponds to that offset.
1.53      anton    9741: 
1.78      anton    9742: Finally, this kind of address arithmetic also causes maintenance
                   9743: troubles: If you add or delete a field somewhere in the middle of the
                   9744: structure, you have to find and change all computations for the fields
                   9745: afterwards.
1.52      anton    9746: 
1.78      anton    9747: So, instead of using @code{cell+} and friends directly, how
                   9748: about storing the offsets in constants:
1.52      anton    9749: 
1.78      anton    9750: @example
                   9751: 0 constant a-offset
                   9752: 0 float+ constant b-offset
                   9753: 0 float+ cell+ faligned c-offset
                   9754: @end example
1.64      pazsan   9755: 
1.78      anton    9756: Now we can get the address of field @code{x} with @code{x-offset
                   9757: +}. This is much better in all respects. Of course, you still
                   9758: have to change all later offset definitions if you add a field. You can
                   9759: fix this by declaring the offsets in the following way:
1.57      anton    9760: 
1.78      anton    9761: @example
                   9762: 0 constant a-offset
                   9763: a-offset float+ constant b-offset
                   9764: b-offset cell+ faligned constant c-offset
                   9765: @end example
1.57      anton    9766: 
1.78      anton    9767: Since we always use the offsets with @code{+}, we could use a defining
                   9768: word @code{cfield} that includes the @code{+} in the action of the
                   9769: defined word:
1.64      pazsan   9770: 
1.78      anton    9771: @example
                   9772: : cfield ( n "name" -- )
                   9773:     create ,
                   9774: does> ( name execution: addr1 -- addr2 )
                   9775:     @@ + ;
1.64      pazsan   9776: 
1.78      anton    9777: 0 cfield a
                   9778: 0 a float+ cfield b
                   9779: 0 b cell+ faligned cfield c
                   9780: @end example
1.64      pazsan   9781: 
1.78      anton    9782: Instead of @code{x-offset +}, we now simply write @code{x}.
1.64      pazsan   9783: 
1.78      anton    9784: The structure field words now can be used quite nicely. However,
                   9785: their definition is still a bit cumbersome: We have to repeat the
                   9786: name, the information about size and alignment is distributed before
                   9787: and after the field definitions etc.  The structure package presented
                   9788: here addresses these problems.
1.64      pazsan   9789: 
1.78      anton    9790: @node Structure Usage, Structure Naming Convention, Why explicit structure support?, Structures
                   9791: @subsection Structure Usage
                   9792: @cindex structure usage
1.57      anton    9793: 
1.78      anton    9794: @cindex @code{field} usage
                   9795: @cindex @code{struct} usage
                   9796: @cindex @code{end-struct} usage
                   9797: You can define a structure for a (data-less) linked list with:
1.57      anton    9798: @example
1.78      anton    9799: struct
                   9800:     cell% field list-next
                   9801: end-struct list%
1.57      anton    9802: @end example
                   9803: 
1.78      anton    9804: With the address of the list node on the stack, you can compute the
                   9805: address of the field that contains the address of the next node with
                   9806: @code{list-next}. E.g., you can determine the length of a list
                   9807: with:
1.57      anton    9808: 
                   9809: @example
1.78      anton    9810: : list-length ( list -- n )
                   9811: \ "list" is a pointer to the first element of a linked list
                   9812: \ "n" is the length of the list
                   9813:     0 BEGIN ( list1 n1 )
                   9814:         over
                   9815:     WHILE ( list1 n1 )
                   9816:         1+ swap list-next @@ swap
                   9817:     REPEAT
                   9818:     nip ;
1.57      anton    9819: @end example
                   9820: 
1.78      anton    9821: You can reserve memory for a list node in the dictionary with
                   9822: @code{list% %allot}, which leaves the address of the list node on the
                   9823: stack. For the equivalent allocation on the heap you can use @code{list%
                   9824: %alloc} (or, for an @code{allocate}-like stack effect (i.e., with ior),
                   9825: use @code{list% %allocate}). You can get the the size of a list
                   9826: node with @code{list% %size} and its alignment with @code{list%
                   9827: %alignment}.
                   9828: 
                   9829: Note that in ANS Forth the body of a @code{create}d word is
                   9830: @code{aligned} but not necessarily @code{faligned};
                   9831: therefore, if you do a:
1.57      anton    9832: 
                   9833: @example
1.78      anton    9834: create @emph{name} foo% %allot drop
1.57      anton    9835: @end example
                   9836: 
1.78      anton    9837: @noindent
                   9838: then the memory alloted for @code{foo%} is guaranteed to start at the
                   9839: body of @code{@emph{name}} only if @code{foo%} contains only character,
                   9840: cell and double fields.  Therefore, if your structure contains floats,
                   9841: better use
1.57      anton    9842: 
                   9843: @example
1.78      anton    9844: foo% %allot constant @emph{name}
1.57      anton    9845: @end example
                   9846: 
1.78      anton    9847: @cindex structures containing structures
                   9848: You can include a structure @code{foo%} as a field of
                   9849: another structure, like this:
1.65      anton    9850: @example
1.78      anton    9851: struct
                   9852: ...
                   9853:     foo% field ...
                   9854: ...
                   9855: end-struct ...
1.65      anton    9856: @end example
1.52      anton    9857: 
1.78      anton    9858: @cindex structure extension
                   9859: @cindex extended records
                   9860: Instead of starting with an empty structure, you can extend an
                   9861: existing structure. E.g., a plain linked list without data, as defined
                   9862: above, is hardly useful; You can extend it to a linked list of integers,
                   9863: like this:@footnote{This feature is also known as @emph{extended
                   9864: records}. It is the main innovation in the Oberon language; in other
                   9865: words, adding this feature to Modula-2 led Wirth to create a new
                   9866: language, write a new compiler etc.  Adding this feature to Forth just
                   9867: required a few lines of code.}
1.52      anton    9868: 
1.78      anton    9869: @example
                   9870: list%
                   9871:     cell% field intlist-int
                   9872: end-struct intlist%
                   9873: @end example
1.55      anton    9874: 
1.78      anton    9875: @code{intlist%} is a structure with two fields:
                   9876: @code{list-next} and @code{intlist-int}.
1.55      anton    9877: 
1.78      anton    9878: @cindex structures containing arrays
                   9879: You can specify an array type containing @emph{n} elements of
                   9880: type @code{foo%} like this:
1.55      anton    9881: 
                   9882: @example
1.78      anton    9883: foo% @emph{n} *
1.56      anton    9884: @end example
1.55      anton    9885: 
1.78      anton    9886: You can use this array type in any place where you can use a normal
                   9887: type, e.g., when defining a @code{field}, or with
                   9888: @code{%allot}.
                   9889: 
                   9890: @cindex first field optimization
                   9891: The first field is at the base address of a structure and the word for
                   9892: this field (e.g., @code{list-next}) actually does not change the address
                   9893: on the stack. You may be tempted to leave it away in the interest of
                   9894: run-time and space efficiency. This is not necessary, because the
                   9895: structure package optimizes this case: If you compile a first-field
                   9896: words, no code is generated. So, in the interest of readability and
                   9897: maintainability you should include the word for the field when accessing
                   9898: the field.
1.52      anton    9899: 
                   9900: 
1.78      anton    9901: @node Structure Naming Convention, Structure Implementation, Structure Usage, Structures
                   9902: @subsection Structure Naming Convention
                   9903: @cindex structure naming convention
1.52      anton    9904: 
1.78      anton    9905: The field names that come to (my) mind are often quite generic, and,
                   9906: if used, would cause frequent name clashes. E.g., many structures
                   9907: probably contain a @code{counter} field. The structure names
                   9908: that come to (my) mind are often also the logical choice for the names
                   9909: of words that create such a structure.
1.52      anton    9910: 
1.78      anton    9911: Therefore, I have adopted the following naming conventions: 
1.52      anton    9912: 
1.78      anton    9913: @itemize @bullet
                   9914: @cindex field naming convention
                   9915: @item
                   9916: The names of fields are of the form
                   9917: @code{@emph{struct}-@emph{field}}, where
                   9918: @code{@emph{struct}} is the basic name of the structure, and
                   9919: @code{@emph{field}} is the basic name of the field. You can
                   9920: think of field words as converting the (address of the)
                   9921: structure into the (address of the) field.
1.52      anton    9922: 
1.78      anton    9923: @cindex structure naming convention
                   9924: @item
                   9925: The names of structures are of the form
                   9926: @code{@emph{struct}%}, where
                   9927: @code{@emph{struct}} is the basic name of the structure.
                   9928: @end itemize
1.52      anton    9929: 
1.78      anton    9930: This naming convention does not work that well for fields of extended
                   9931: structures; e.g., the integer list structure has a field
                   9932: @code{intlist-int}, but has @code{list-next}, not
                   9933: @code{intlist-next}.
1.53      anton    9934: 
1.78      anton    9935: @node Structure Implementation, Structure Glossary, Structure Naming Convention, Structures
                   9936: @subsection Structure Implementation
                   9937: @cindex structure implementation
                   9938: @cindex implementation of structures
1.52      anton    9939: 
1.78      anton    9940: The central idea in the implementation is to pass the data about the
                   9941: structure being built on the stack, not in some global
                   9942: variable. Everything else falls into place naturally once this design
                   9943: decision is made.
1.53      anton    9944: 
1.78      anton    9945: The type description on the stack is of the form @emph{align
                   9946: size}. Keeping the size on the top-of-stack makes dealing with arrays
                   9947: very simple.
1.53      anton    9948: 
1.78      anton    9949: @code{field} is a defining word that uses @code{Create}
                   9950: and @code{DOES>}. The body of the field contains the offset
                   9951: of the field, and the normal @code{DOES>} action is simply:
1.53      anton    9952: 
                   9953: @example
1.78      anton    9954: @@ +
1.53      anton    9955: @end example
                   9956: 
1.78      anton    9957: @noindent
                   9958: i.e., add the offset to the address, giving the stack effect
                   9959: @i{addr1 -- addr2} for a field.
                   9960: 
                   9961: @cindex first field optimization, implementation
                   9962: This simple structure is slightly complicated by the optimization
                   9963: for fields with offset 0, which requires a different
                   9964: @code{DOES>}-part (because we cannot rely on there being
                   9965: something on the stack if such a field is invoked during
                   9966: compilation). Therefore, we put the different @code{DOES>}-parts
                   9967: in separate words, and decide which one to invoke based on the
                   9968: offset. For a zero offset, the field is basically a noop; it is
                   9969: immediate, and therefore no code is generated when it is compiled.
1.53      anton    9970: 
1.78      anton    9971: @node Structure Glossary,  , Structure Implementation, Structures
                   9972: @subsection Structure Glossary
                   9973: @cindex structure glossary
1.53      anton    9974: 
1.5       anton    9975: 
1.78      anton    9976: doc-%align
                   9977: doc-%alignment
                   9978: doc-%alloc
                   9979: doc-%allocate
                   9980: doc-%allot
                   9981: doc-cell%
                   9982: doc-char%
                   9983: doc-dfloat%
                   9984: doc-double%
                   9985: doc-end-struct
                   9986: doc-field
                   9987: doc-float%
                   9988: doc-naligned
                   9989: doc-sfloat%
                   9990: doc-%size
                   9991: doc-struct
1.54      anton    9992: 
                   9993: 
1.26      crook    9994: @c -------------------------------------------------------------
1.78      anton    9995: @node Object-oriented Forth, Programming Tools, Structures, Words
                   9996: @section Object-oriented Forth
                   9997: 
                   9998: Gforth comes with three packages for object-oriented programming:
                   9999: @file{objects.fs}, @file{oof.fs}, and @file{mini-oof.fs}; none of them
                   10000: is preloaded, so you have to @code{include} them before use. The most
                   10001: important differences between these packages (and others) are discussed
                   10002: in @ref{Comparison with other object models}. All packages are written
                   10003: in ANS Forth and can be used with any other ANS Forth.
1.5       anton    10004: 
1.78      anton    10005: @menu
                   10006: * Why object-oriented programming?::  
                   10007: * Object-Oriented Terminology::  
                   10008: * Objects::                     
                   10009: * OOF::                         
                   10010: * Mini-OOF::                    
                   10011: * Comparison with other object models::  
                   10012: @end menu
1.5       anton    10013: 
1.78      anton    10014: @c ----------------------------------------------------------------
                   10015: @node Why object-oriented programming?, Object-Oriented Terminology, Object-oriented Forth, Object-oriented Forth
                   10016: @subsection Why object-oriented programming?
                   10017: @cindex object-oriented programming motivation
                   10018: @cindex motivation for object-oriented programming
1.44      crook    10019: 
1.78      anton    10020: Often we have to deal with several data structures (@emph{objects}),
                   10021: that have to be treated similarly in some respects, but differently in
                   10022: others. Graphical objects are the textbook example: circles, triangles,
                   10023: dinosaurs, icons, and others, and we may want to add more during program
                   10024: development. We want to apply some operations to any graphical object,
                   10025: e.g., @code{draw} for displaying it on the screen. However, @code{draw}
                   10026: has to do something different for every kind of object.
                   10027: @comment TODO add some other operations eg perimeter, area
                   10028: @comment and tie in to concrete examples later..
1.5       anton    10029: 
1.78      anton    10030: We could implement @code{draw} as a big @code{CASE}
                   10031: control structure that executes the appropriate code depending on the
                   10032: kind of object to be drawn. This would be not be very elegant, and,
                   10033: moreover, we would have to change @code{draw} every time we add
                   10034: a new kind of graphical object (say, a spaceship).
1.44      crook    10035: 
1.78      anton    10036: What we would rather do is: When defining spaceships, we would tell
                   10037: the system: ``Here's how you @code{draw} a spaceship; you figure
                   10038: out the rest''.
1.5       anton    10039: 
1.78      anton    10040: This is the problem that all systems solve that (rightfully) call
                   10041: themselves object-oriented; the object-oriented packages presented here
                   10042: solve this problem (and not much else).
                   10043: @comment TODO ?list properties of oo systems.. oo vs o-based?
1.44      crook    10044: 
1.78      anton    10045: @c ------------------------------------------------------------------------
                   10046: @node Object-Oriented Terminology, Objects, Why object-oriented programming?, Object-oriented Forth
                   10047: @subsection Object-Oriented Terminology
                   10048: @cindex object-oriented terminology
                   10049: @cindex terminology for object-oriented programming
1.5       anton    10050: 
1.78      anton    10051: This section is mainly for reference, so you don't have to understand
                   10052: all of it right away.  The terminology is mainly Smalltalk-inspired.  In
                   10053: short:
1.44      crook    10054: 
1.78      anton    10055: @table @emph
                   10056: @cindex class
                   10057: @item class
                   10058: a data structure definition with some extras.
1.5       anton    10059: 
1.78      anton    10060: @cindex object
                   10061: @item object
                   10062: an instance of the data structure described by the class definition.
1.5       anton    10063: 
1.78      anton    10064: @cindex instance variables
                   10065: @item instance variables
                   10066: fields of the data structure.
1.5       anton    10067: 
1.78      anton    10068: @cindex selector
                   10069: @cindex method selector
                   10070: @cindex virtual function
                   10071: @item selector
                   10072: (or @emph{method selector}) a word (e.g.,
                   10073: @code{draw}) that performs an operation on a variety of data
                   10074: structures (classes). A selector describes @emph{what} operation to
                   10075: perform. In C++ terminology: a (pure) virtual function.
1.5       anton    10076: 
1.78      anton    10077: @cindex method
                   10078: @item method
                   10079: the concrete definition that performs the operation
                   10080: described by the selector for a specific class. A method specifies
                   10081: @emph{how} the operation is performed for a specific class.
1.5       anton    10082: 
1.78      anton    10083: @cindex selector invocation
                   10084: @cindex message send
                   10085: @cindex invoking a selector
                   10086: @item selector invocation
                   10087: a call of a selector. One argument of the call (the TOS (top-of-stack))
                   10088: is used for determining which method is used. In Smalltalk terminology:
                   10089: a message (consisting of the selector and the other arguments) is sent
                   10090: to the object.
1.5       anton    10091: 
1.78      anton    10092: @cindex receiving object
                   10093: @item receiving object
                   10094: the object used for determining the method executed by a selector
                   10095: invocation. In the @file{objects.fs} model, it is the object that is on
                   10096: the TOS when the selector is invoked. (@emph{Receiving} comes from
                   10097: the Smalltalk @emph{message} terminology.)
1.5       anton    10098: 
1.78      anton    10099: @cindex child class
                   10100: @cindex parent class
                   10101: @cindex inheritance
                   10102: @item child class
                   10103: a class that has (@emph{inherits}) all properties (instance variables,
                   10104: selectors, methods) from a @emph{parent class}. In Smalltalk
                   10105: terminology: The subclass inherits from the superclass. In C++
                   10106: terminology: The derived class inherits from the base class.
1.5       anton    10107: 
1.78      anton    10108: @end table
1.5       anton    10109: 
1.78      anton    10110: @c If you wonder about the message sending terminology, it comes from
                   10111: @c a time when each object had it's own task and objects communicated via
                   10112: @c message passing; eventually the Smalltalk developers realized that
                   10113: @c they can do most things through simple (indirect) calls. They kept the
                   10114: @c terminology.
1.5       anton    10115: 
1.78      anton    10116: @c --------------------------------------------------------------
                   10117: @node Objects, OOF, Object-Oriented Terminology, Object-oriented Forth
                   10118: @subsection The @file{objects.fs} model
                   10119: @cindex objects
                   10120: @cindex object-oriented programming
1.26      crook    10121: 
1.78      anton    10122: @cindex @file{objects.fs}
                   10123: @cindex @file{oof.fs}
1.26      crook    10124: 
1.78      anton    10125: This section describes the @file{objects.fs} package. This material also
                   10126: has been published in M. Anton Ertl,
                   10127: @cite{@uref{http://www.complang.tuwien.ac.at/forth/objects/objects.html,
                   10128: Yet Another Forth Objects Package}}, Forth Dimensions 19(2), pages
                   10129: 37--43.
                   10130: @c McKewan's and Zsoter's packages
1.26      crook    10131: 
1.78      anton    10132: This section assumes that you have read @ref{Structures}.
1.5       anton    10133: 
1.78      anton    10134: The techniques on which this model is based have been used to implement
                   10135: the parser generator, Gray, and have also been used in Gforth for
                   10136: implementing the various flavours of word lists (hashed or not,
                   10137: case-sensitive or not, special-purpose word lists for locals etc.).
1.5       anton    10138: 
                   10139: 
1.26      crook    10140: @menu
1.78      anton    10141: * Properties of the Objects model::  
                   10142: * Basic Objects Usage::         
                   10143: * The Objects base class::      
                   10144: * Creating objects::            
                   10145: * Object-Oriented Programming Style::  
                   10146: * Class Binding::               
                   10147: * Method conveniences::         
                   10148: * Classes and Scoping::         
                   10149: * Dividing classes::            
                   10150: * Object Interfaces::           
                   10151: * Objects Implementation::      
                   10152: * Objects Glossary::            
1.26      crook    10153: @end menu
1.5       anton    10154: 
1.78      anton    10155: Marcel Hendrix provided helpful comments on this section.
1.5       anton    10156: 
1.78      anton    10157: @node Properties of the Objects model, Basic Objects Usage, Objects, Objects
                   10158: @subsubsection Properties of the @file{objects.fs} model
                   10159: @cindex @file{objects.fs} properties
1.5       anton    10160: 
1.78      anton    10161: @itemize @bullet
                   10162: @item
                   10163: It is straightforward to pass objects on the stack. Passing
                   10164: selectors on the stack is a little less convenient, but possible.
1.44      crook    10165: 
1.78      anton    10166: @item
                   10167: Objects are just data structures in memory, and are referenced by their
                   10168: address. You can create words for objects with normal defining words
                   10169: like @code{constant}. Likewise, there is no difference between instance
                   10170: variables that contain objects and those that contain other data.
1.5       anton    10171: 
1.78      anton    10172: @item
                   10173: Late binding is efficient and easy to use.
1.44      crook    10174: 
1.78      anton    10175: @item
                   10176: It avoids parsing, and thus avoids problems with state-smartness
                   10177: and reduced extensibility; for convenience there are a few parsing
                   10178: words, but they have non-parsing counterparts. There are also a few
                   10179: defining words that parse. This is hard to avoid, because all standard
                   10180: defining words parse (except @code{:noname}); however, such
                   10181: words are not as bad as many other parsing words, because they are not
                   10182: state-smart.
1.5       anton    10183: 
1.78      anton    10184: @item
                   10185: It does not try to incorporate everything. It does a few things and does
                   10186: them well (IMO). In particular, this model was not designed to support
                   10187: information hiding (although it has features that may help); you can use
                   10188: a separate package for achieving this.
1.5       anton    10189: 
1.78      anton    10190: @item
                   10191: It is layered; you don't have to learn and use all features to use this
                   10192: model. Only a few features are necessary (@pxref{Basic Objects Usage},
                   10193: @pxref{The Objects base class}, @pxref{Creating objects}.), the others
                   10194: are optional and independent of each other.
1.5       anton    10195: 
1.78      anton    10196: @item
                   10197: An implementation in ANS Forth is available.
1.5       anton    10198: 
1.78      anton    10199: @end itemize
1.5       anton    10200: 
1.44      crook    10201: 
1.78      anton    10202: @node Basic Objects Usage, The Objects base class, Properties of the Objects model, Objects
                   10203: @subsubsection Basic @file{objects.fs} Usage
                   10204: @cindex basic objects usage
                   10205: @cindex objects, basic usage
1.5       anton    10206: 
1.78      anton    10207: You can define a class for graphical objects like this:
1.44      crook    10208: 
1.78      anton    10209: @cindex @code{class} usage
                   10210: @cindex @code{end-class} usage
                   10211: @cindex @code{selector} usage
1.5       anton    10212: @example
1.78      anton    10213: object class \ "object" is the parent class
                   10214:   selector draw ( x y graphical -- )
                   10215: end-class graphical
                   10216: @end example
                   10217: 
                   10218: This code defines a class @code{graphical} with an
                   10219: operation @code{draw}.  We can perform the operation
                   10220: @code{draw} on any @code{graphical} object, e.g.:
                   10221: 
                   10222: @example
                   10223: 100 100 t-rex draw
1.26      crook    10224: @end example
1.5       anton    10225: 
1.78      anton    10226: @noindent
                   10227: where @code{t-rex} is a word (say, a constant) that produces a
                   10228: graphical object.
                   10229: 
                   10230: @comment TODO add a 2nd operation eg perimeter.. and use for
                   10231: @comment a concrete example
1.5       anton    10232: 
1.78      anton    10233: @cindex abstract class
                   10234: How do we create a graphical object? With the present definitions,
                   10235: we cannot create a useful graphical object. The class
                   10236: @code{graphical} describes graphical objects in general, but not
                   10237: any concrete graphical object type (C++ users would call it an
                   10238: @emph{abstract class}); e.g., there is no method for the selector
                   10239: @code{draw} in the class @code{graphical}.
1.5       anton    10240: 
1.78      anton    10241: For concrete graphical objects, we define child classes of the
                   10242: class @code{graphical}, e.g.:
1.5       anton    10243: 
1.78      anton    10244: @cindex @code{overrides} usage
                   10245: @cindex @code{field} usage in class definition
1.26      crook    10246: @example
1.78      anton    10247: graphical class \ "graphical" is the parent class
                   10248:   cell% field circle-radius
1.5       anton    10249: 
1.78      anton    10250: :noname ( x y circle -- )
                   10251:   circle-radius @@ draw-circle ;
                   10252: overrides draw
1.5       anton    10253: 
1.78      anton    10254: :noname ( n-radius circle -- )
                   10255:   circle-radius ! ;
                   10256: overrides construct
1.5       anton    10257: 
1.78      anton    10258: end-class circle
                   10259: @end example
1.44      crook    10260: 
1.78      anton    10261: Here we define a class @code{circle} as a child of @code{graphical},
                   10262: with field @code{circle-radius} (which behaves just like a field
                   10263: (@pxref{Structures}); it defines (using @code{overrides}) new methods
                   10264: for the selectors @code{draw} and @code{construct} (@code{construct} is
                   10265: defined in @code{object}, the parent class of @code{graphical}).
1.5       anton    10266: 
1.78      anton    10267: Now we can create a circle on the heap (i.e.,
                   10268: @code{allocate}d memory) with:
1.44      crook    10269: 
1.78      anton    10270: @cindex @code{heap-new} usage
1.5       anton    10271: @example
1.78      anton    10272: 50 circle heap-new constant my-circle
1.5       anton    10273: @end example
                   10274: 
1.78      anton    10275: @noindent
                   10276: @code{heap-new} invokes @code{construct}, thus
                   10277: initializing the field @code{circle-radius} with 50. We can draw
                   10278: this new circle at (100,100) with:
1.5       anton    10279: 
                   10280: @example
1.78      anton    10281: 100 100 my-circle draw
1.5       anton    10282: @end example
                   10283: 
1.78      anton    10284: @cindex selector invocation, restrictions
                   10285: @cindex class definition, restrictions
                   10286: Note: You can only invoke a selector if the object on the TOS
                   10287: (the receiving object) belongs to the class where the selector was
                   10288: defined or one of its descendents; e.g., you can invoke
                   10289: @code{draw} only for objects belonging to @code{graphical}
                   10290: or its descendents (e.g., @code{circle}).  Immediately before
                   10291: @code{end-class}, the search order has to be the same as
                   10292: immediately after @code{class}.
                   10293: 
                   10294: @node The Objects base class, Creating objects, Basic Objects Usage, Objects
                   10295: @subsubsection The @file{object.fs} base class
                   10296: @cindex @code{object} class
                   10297: 
                   10298: When you define a class, you have to specify a parent class.  So how do
                   10299: you start defining classes? There is one class available from the start:
                   10300: @code{object}. It is ancestor for all classes and so is the
                   10301: only class that has no parent. It has two selectors: @code{construct}
                   10302: and @code{print}.
                   10303: 
                   10304: @node Creating objects, Object-Oriented Programming Style, The Objects base class, Objects
                   10305: @subsubsection Creating objects
                   10306: @cindex creating objects
                   10307: @cindex object creation
                   10308: @cindex object allocation options
                   10309: 
                   10310: @cindex @code{heap-new} discussion
                   10311: @cindex @code{dict-new} discussion
                   10312: @cindex @code{construct} discussion
                   10313: You can create and initialize an object of a class on the heap with
                   10314: @code{heap-new} ( ... class -- object ) and in the dictionary
                   10315: (allocation with @code{allot}) with @code{dict-new} (
                   10316: ... class -- object ). Both words invoke @code{construct}, which
                   10317: consumes the stack items indicated by "..." above.
                   10318: 
                   10319: @cindex @code{init-object} discussion
                   10320: @cindex @code{class-inst-size} discussion
                   10321: If you want to allocate memory for an object yourself, you can get its
                   10322: alignment and size with @code{class-inst-size 2@@} ( class --
                   10323: align size ). Once you have memory for an object, you can initialize
                   10324: it with @code{init-object} ( ... class object -- );
                   10325: @code{construct} does only a part of the necessary work.
                   10326: 
                   10327: @node Object-Oriented Programming Style, Class Binding, Creating objects, Objects
                   10328: @subsubsection Object-Oriented Programming Style
                   10329: @cindex object-oriented programming style
                   10330: @cindex programming style, object-oriented
1.5       anton    10331: 
1.78      anton    10332: This section is not exhaustive.
1.5       anton    10333: 
1.78      anton    10334: @cindex stack effects of selectors
                   10335: @cindex selectors and stack effects
                   10336: In general, it is a good idea to ensure that all methods for the
                   10337: same selector have the same stack effect: when you invoke a selector,
                   10338: you often have no idea which method will be invoked, so, unless all
                   10339: methods have the same stack effect, you will not know the stack effect
                   10340: of the selector invocation.
1.5       anton    10341: 
1.78      anton    10342: One exception to this rule is methods for the selector
                   10343: @code{construct}. We know which method is invoked, because we
                   10344: specify the class to be constructed at the same place. Actually, I
                   10345: defined @code{construct} as a selector only to give the users a
                   10346: convenient way to specify initialization. The way it is used, a
                   10347: mechanism different from selector invocation would be more natural
                   10348: (but probably would take more code and more space to explain).
1.5       anton    10349: 
1.78      anton    10350: @node Class Binding, Method conveniences, Object-Oriented Programming Style, Objects
                   10351: @subsubsection Class Binding
                   10352: @cindex class binding
                   10353: @cindex early binding
1.5       anton    10354: 
1.78      anton    10355: @cindex late binding
                   10356: Normal selector invocations determine the method at run-time depending
                   10357: on the class of the receiving object. This run-time selection is called
                   10358: @i{late binding}.
1.5       anton    10359: 
1.78      anton    10360: Sometimes it's preferable to invoke a different method. For example,
                   10361: you might want to use the simple method for @code{print}ing
                   10362: @code{object}s instead of the possibly long-winded @code{print} method
                   10363: of the receiver class. You can achieve this by replacing the invocation
                   10364: of @code{print} with:
1.5       anton    10365: 
1.78      anton    10366: @cindex @code{[bind]} usage
1.5       anton    10367: @example
1.78      anton    10368: [bind] object print
1.5       anton    10369: @end example
                   10370: 
1.78      anton    10371: @noindent
                   10372: in compiled code or:
                   10373: 
                   10374: @cindex @code{bind} usage
1.5       anton    10375: @example
1.78      anton    10376: bind object print
1.5       anton    10377: @end example
                   10378: 
1.78      anton    10379: @cindex class binding, alternative to
                   10380: @noindent
                   10381: in interpreted code. Alternatively, you can define the method with a
                   10382: name (e.g., @code{print-object}), and then invoke it through the
                   10383: name. Class binding is just a (often more convenient) way to achieve
                   10384: the same effect; it avoids name clutter and allows you to invoke
                   10385: methods directly without naming them first.
1.5       anton    10386: 
1.78      anton    10387: @cindex superclass binding
                   10388: @cindex parent class binding
                   10389: A frequent use of class binding is this: When we define a method
                   10390: for a selector, we often want the method to do what the selector does
                   10391: in the parent class, and a little more. There is a special word for
                   10392: this purpose: @code{[parent]}; @code{[parent]
                   10393: @emph{selector}} is equivalent to @code{[bind] @emph{parent
                   10394: selector}}, where @code{@emph{parent}} is the parent
                   10395: class of the current class. E.g., a method definition might look like:
1.44      crook    10396: 
1.78      anton    10397: @cindex @code{[parent]} usage
                   10398: @example
                   10399: :noname
                   10400:   dup [parent] foo \ do parent's foo on the receiving object
                   10401:   ... \ do some more
                   10402: ; overrides foo
                   10403: @end example
1.6       pazsan   10404: 
1.78      anton    10405: @cindex class binding as optimization
                   10406: In @cite{Object-oriented programming in ANS Forth} (Forth Dimensions,
                   10407: March 1997), Andrew McKewan presents class binding as an optimization
                   10408: technique. I recommend not using it for this purpose unless you are in
                   10409: an emergency. Late binding is pretty fast with this model anyway, so the
                   10410: benefit of using class binding is small; the cost of using class binding
                   10411: where it is not appropriate is reduced maintainability.
1.44      crook    10412: 
1.78      anton    10413: While we are at programming style questions: You should bind
                   10414: selectors only to ancestor classes of the receiving object. E.g., say,
                   10415: you know that the receiving object is of class @code{foo} or its
                   10416: descendents; then you should bind only to @code{foo} and its
                   10417: ancestors.
1.12      anton    10418: 
1.78      anton    10419: @node Method conveniences, Classes and Scoping, Class Binding, Objects
                   10420: @subsubsection Method conveniences
                   10421: @cindex method conveniences
1.44      crook    10422: 
1.78      anton    10423: In a method you usually access the receiving object pretty often.  If
                   10424: you define the method as a plain colon definition (e.g., with
                   10425: @code{:noname}), you may have to do a lot of stack
                   10426: gymnastics. To avoid this, you can define the method with @code{m:
                   10427: ... ;m}. E.g., you could define the method for
                   10428: @code{draw}ing a @code{circle} with
1.6       pazsan   10429: 
1.78      anton    10430: @cindex @code{this} usage
                   10431: @cindex @code{m:} usage
                   10432: @cindex @code{;m} usage
                   10433: @example
                   10434: m: ( x y circle -- )
                   10435:   ( x y ) this circle-radius @@ draw-circle ;m
                   10436: @end example
1.6       pazsan   10437: 
1.78      anton    10438: @cindex @code{exit} in @code{m: ... ;m}
                   10439: @cindex @code{exitm} discussion
                   10440: @cindex @code{catch} in @code{m: ... ;m}
                   10441: When this method is executed, the receiver object is removed from the
                   10442: stack; you can access it with @code{this} (admittedly, in this
                   10443: example the use of @code{m: ... ;m} offers no advantage). Note
                   10444: that I specify the stack effect for the whole method (i.e. including
                   10445: the receiver object), not just for the code between @code{m:}
                   10446: and @code{;m}. You cannot use @code{exit} in
                   10447: @code{m:...;m}; instead, use
                   10448: @code{exitm}.@footnote{Moreover, for any word that calls
                   10449: @code{catch} and was defined before loading
                   10450: @code{objects.fs}, you have to redefine it like I redefined
                   10451: @code{catch}: @code{: catch this >r catch r> to-this ;}}
1.12      anton    10452: 
1.78      anton    10453: @cindex @code{inst-var} usage
                   10454: You will frequently use sequences of the form @code{this
                   10455: @emph{field}} (in the example above: @code{this
                   10456: circle-radius}). If you use the field only in this way, you can
                   10457: define it with @code{inst-var} and eliminate the
                   10458: @code{this} before the field name. E.g., the @code{circle}
                   10459: class above could also be defined with:
1.6       pazsan   10460: 
1.78      anton    10461: @example
                   10462: graphical class
                   10463:   cell% inst-var radius
1.6       pazsan   10464: 
1.78      anton    10465: m: ( x y circle -- )
                   10466:   radius @@ draw-circle ;m
                   10467: overrides draw
1.6       pazsan   10468: 
1.78      anton    10469: m: ( n-radius circle -- )
                   10470:   radius ! ;m
                   10471: overrides construct
1.6       pazsan   10472: 
1.78      anton    10473: end-class circle
                   10474: @end example
1.6       pazsan   10475: 
1.78      anton    10476: @code{radius} can only be used in @code{circle} and its
                   10477: descendent classes and inside @code{m:...;m}.
1.6       pazsan   10478: 
1.78      anton    10479: @cindex @code{inst-value} usage
                   10480: You can also define fields with @code{inst-value}, which is
                   10481: to @code{inst-var} what @code{value} is to
                   10482: @code{variable}.  You can change the value of such a field with
                   10483: @code{[to-inst]}.  E.g., we could also define the class
                   10484: @code{circle} like this:
1.44      crook    10485: 
1.78      anton    10486: @example
                   10487: graphical class
                   10488:   inst-value radius
1.6       pazsan   10489: 
1.78      anton    10490: m: ( x y circle -- )
                   10491:   radius draw-circle ;m
                   10492: overrides draw
1.44      crook    10493: 
1.78      anton    10494: m: ( n-radius circle -- )
                   10495:   [to-inst] radius ;m
                   10496: overrides construct
1.6       pazsan   10497: 
1.78      anton    10498: end-class circle
                   10499: @end example
1.6       pazsan   10500: 
1.78      anton    10501: @c !! :m is easy to confuse with m:.  Another name would be better.
1.6       pazsan   10502: 
1.78      anton    10503: @c Finally, you can define named methods with @code{:m}.  One use of this
                   10504: @c feature is the definition of words that occur only in one class and are
                   10505: @c not intended to be overridden, but which still need method context
                   10506: @c (e.g., for accessing @code{inst-var}s).  Another use is for methods that
                   10507: @c would be bound frequently, if defined anonymously.
1.6       pazsan   10508: 
                   10509: 
1.78      anton    10510: @node Classes and Scoping, Dividing classes, Method conveniences, Objects
                   10511: @subsubsection Classes and Scoping
                   10512: @cindex classes and scoping
                   10513: @cindex scoping and classes
1.6       pazsan   10514: 
1.78      anton    10515: Inheritance is frequent, unlike structure extension. This exacerbates
                   10516: the problem with the field name convention (@pxref{Structure Naming
                   10517: Convention}): One always has to remember in which class the field was
                   10518: originally defined; changing a part of the class structure would require
                   10519: changes for renaming in otherwise unaffected code.
1.6       pazsan   10520: 
1.78      anton    10521: @cindex @code{inst-var} visibility
                   10522: @cindex @code{inst-value} visibility
                   10523: To solve this problem, I added a scoping mechanism (which was not in my
                   10524: original charter): A field defined with @code{inst-var} (or
                   10525: @code{inst-value}) is visible only in the class where it is defined and in
                   10526: the descendent classes of this class.  Using such fields only makes
                   10527: sense in @code{m:}-defined methods in these classes anyway.
1.6       pazsan   10528: 
1.78      anton    10529: This scoping mechanism allows us to use the unadorned field name,
                   10530: because name clashes with unrelated words become much less likely.
1.6       pazsan   10531: 
1.78      anton    10532: @cindex @code{protected} discussion
                   10533: @cindex @code{private} discussion
                   10534: Once we have this mechanism, we can also use it for controlling the
                   10535: visibility of other words: All words defined after
                   10536: @code{protected} are visible only in the current class and its
                   10537: descendents. @code{public} restores the compilation
                   10538: (i.e. @code{current}) word list that was in effect before. If you
                   10539: have several @code{protected}s without an intervening
                   10540: @code{public} or @code{set-current}, @code{public}
                   10541: will restore the compilation word list in effect before the first of
                   10542: these @code{protected}s.
1.6       pazsan   10543: 
1.78      anton    10544: @node Dividing classes, Object Interfaces, Classes and Scoping, Objects
                   10545: @subsubsection Dividing classes
                   10546: @cindex Dividing classes
                   10547: @cindex @code{methods}...@code{end-methods}
1.6       pazsan   10548: 
1.78      anton    10549: You may want to do the definition of methods separate from the
                   10550: definition of the class, its selectors, fields, and instance variables,
                   10551: i.e., separate the implementation from the definition.  You can do this
                   10552: in the following way:
1.6       pazsan   10553: 
1.78      anton    10554: @example
                   10555: graphical class
                   10556:   inst-value radius
                   10557: end-class circle
1.6       pazsan   10558: 
1.78      anton    10559: ... \ do some other stuff
1.6       pazsan   10560: 
1.78      anton    10561: circle methods \ now we are ready
1.44      crook    10562: 
1.78      anton    10563: m: ( x y circle -- )
                   10564:   radius draw-circle ;m
                   10565: overrides draw
1.6       pazsan   10566: 
1.78      anton    10567: m: ( n-radius circle -- )
                   10568:   [to-inst] radius ;m
                   10569: overrides construct
1.44      crook    10570: 
1.78      anton    10571: end-methods
                   10572: @end example
1.7       pazsan   10573: 
1.78      anton    10574: You can use several @code{methods}...@code{end-methods} sections.  The
                   10575: only things you can do to the class in these sections are: defining
                   10576: methods, and overriding the class's selectors.  You must not define new
                   10577: selectors or fields.
1.7       pazsan   10578: 
1.78      anton    10579: Note that you often have to override a selector before using it.  In
                   10580: particular, you usually have to override @code{construct} with a new
                   10581: method before you can invoke @code{heap-new} and friends.  E.g., you
                   10582: must not create a circle before the @code{overrides construct} sequence
                   10583: in the example above.
1.7       pazsan   10584: 
1.78      anton    10585: @node Object Interfaces, Objects Implementation, Dividing classes, Objects
                   10586: @subsubsection Object Interfaces
                   10587: @cindex object interfaces
                   10588: @cindex interfaces for objects
1.7       pazsan   10589: 
1.78      anton    10590: In this model you can only call selectors defined in the class of the
                   10591: receiving objects or in one of its ancestors. If you call a selector
                   10592: with a receiving object that is not in one of these classes, the
                   10593: result is undefined; if you are lucky, the program crashes
                   10594: immediately.
1.7       pazsan   10595: 
1.78      anton    10596: @cindex selectors common to hardly-related classes
                   10597: Now consider the case when you want to have a selector (or several)
                   10598: available in two classes: You would have to add the selector to a
                   10599: common ancestor class, in the worst case to @code{object}. You
                   10600: may not want to do this, e.g., because someone else is responsible for
                   10601: this ancestor class.
1.7       pazsan   10602: 
1.78      anton    10603: The solution for this problem is interfaces. An interface is a
                   10604: collection of selectors. If a class implements an interface, the
                   10605: selectors become available to the class and its descendents. A class
                   10606: can implement an unlimited number of interfaces. For the problem
                   10607: discussed above, we would define an interface for the selector(s), and
                   10608: both classes would implement the interface.
1.7       pazsan   10609: 
1.78      anton    10610: As an example, consider an interface @code{storage} for
                   10611: writing objects to disk and getting them back, and a class
                   10612: @code{foo} that implements it. The code would look like this:
1.7       pazsan   10613: 
1.78      anton    10614: @cindex @code{interface} usage
                   10615: @cindex @code{end-interface} usage
                   10616: @cindex @code{implementation} usage
                   10617: @example
                   10618: interface
                   10619:   selector write ( file object -- )
                   10620:   selector read1 ( file object -- )
                   10621: end-interface storage
1.13      pazsan   10622: 
1.78      anton    10623: bar class
                   10624:   storage implementation
1.13      pazsan   10625: 
1.78      anton    10626: ... overrides write
                   10627: ... overrides read1
                   10628: ...
                   10629: end-class foo
                   10630: @end example
1.13      pazsan   10631: 
1.78      anton    10632: @noindent
                   10633: (I would add a word @code{read} @i{( file -- object )} that uses
                   10634: @code{read1} internally, but that's beyond the point illustrated
                   10635: here.)
1.13      pazsan   10636: 
1.78      anton    10637: Note that you cannot use @code{protected} in an interface; and
                   10638: of course you cannot define fields.
1.13      pazsan   10639: 
1.78      anton    10640: In the Neon model, all selectors are available for all classes;
                   10641: therefore it does not need interfaces. The price you pay in this model
                   10642: is slower late binding, and therefore, added complexity to avoid late
                   10643: binding.
1.13      pazsan   10644: 
1.78      anton    10645: @node Objects Implementation, Objects Glossary, Object Interfaces, Objects
                   10646: @subsubsection @file{objects.fs} Implementation
                   10647: @cindex @file{objects.fs} implementation
1.13      pazsan   10648: 
1.78      anton    10649: @cindex @code{object-map} discussion
                   10650: An object is a piece of memory, like one of the data structures
                   10651: described with @code{struct...end-struct}. It has a field
                   10652: @code{object-map} that points to the method map for the object's
                   10653: class.
1.13      pazsan   10654: 
1.78      anton    10655: @cindex method map
                   10656: @cindex virtual function table
                   10657: The @emph{method map}@footnote{This is Self terminology; in C++
                   10658: terminology: virtual function table.} is an array that contains the
                   10659: execution tokens (@i{xt}s) of the methods for the object's class. Each
                   10660: selector contains an offset into a method map.
1.13      pazsan   10661: 
1.78      anton    10662: @cindex @code{selector} implementation, class
                   10663: @code{selector} is a defining word that uses
                   10664: @code{CREATE} and @code{DOES>}. The body of the
                   10665: selector contains the offset; the @code{DOES>} action for a
                   10666: class selector is, basically:
1.8       pazsan   10667: 
                   10668: @example
1.78      anton    10669: ( object addr ) @@ over object-map @@ + @@ execute
1.13      pazsan   10670: @end example
                   10671: 
1.78      anton    10672: Since @code{object-map} is the first field of the object, it
                   10673: does not generate any code. As you can see, calling a selector has a
                   10674: small, constant cost.
1.26      crook    10675: 
1.78      anton    10676: @cindex @code{current-interface} discussion
                   10677: @cindex class implementation and representation
                   10678: A class is basically a @code{struct} combined with a method
                   10679: map. During the class definition the alignment and size of the class
                   10680: are passed on the stack, just as with @code{struct}s, so
                   10681: @code{field} can also be used for defining class
                   10682: fields. However, passing more items on the stack would be
                   10683: inconvenient, so @code{class} builds a data structure in memory,
                   10684: which is accessed through the variable
                   10685: @code{current-interface}. After its definition is complete, the
                   10686: class is represented on the stack by a pointer (e.g., as parameter for
                   10687: a child class definition).
1.26      crook    10688: 
1.78      anton    10689: A new class starts off with the alignment and size of its parent,
                   10690: and a copy of the parent's method map. Defining new fields extends the
                   10691: size and alignment; likewise, defining new selectors extends the
                   10692: method map. @code{overrides} just stores a new @i{xt} in the method
                   10693: map at the offset given by the selector.
1.13      pazsan   10694: 
1.78      anton    10695: @cindex class binding, implementation
                   10696: Class binding just gets the @i{xt} at the offset given by the selector
                   10697: from the class's method map and @code{compile,}s (in the case of
                   10698: @code{[bind]}) it.
1.13      pazsan   10699: 
1.78      anton    10700: @cindex @code{this} implementation
                   10701: @cindex @code{catch} and @code{this}
                   10702: @cindex @code{this} and @code{catch}
                   10703: I implemented @code{this} as a @code{value}. At the
                   10704: start of an @code{m:...;m} method the old @code{this} is
                   10705: stored to the return stack and restored at the end; and the object on
                   10706: the TOS is stored @code{TO this}. This technique has one
                   10707: disadvantage: If the user does not leave the method via
                   10708: @code{;m}, but via @code{throw} or @code{exit},
                   10709: @code{this} is not restored (and @code{exit} may
                   10710: crash). To deal with the @code{throw} problem, I have redefined
                   10711: @code{catch} to save and restore @code{this}; the same
                   10712: should be done with any word that can catch an exception. As for
                   10713: @code{exit}, I simply forbid it (as a replacement, there is
                   10714: @code{exitm}).
1.13      pazsan   10715: 
1.78      anton    10716: @cindex @code{inst-var} implementation
                   10717: @code{inst-var} is just the same as @code{field}, with
                   10718: a different @code{DOES>} action:
1.13      pazsan   10719: @example
1.78      anton    10720: @@ this +
1.8       pazsan   10721: @end example
1.78      anton    10722: Similar for @code{inst-value}.
1.8       pazsan   10723: 
1.78      anton    10724: @cindex class scoping implementation
                   10725: Each class also has a word list that contains the words defined with
                   10726: @code{inst-var} and @code{inst-value}, and its protected
                   10727: words. It also has a pointer to its parent. @code{class} pushes
                   10728: the word lists of the class and all its ancestors onto the search order stack,
                   10729: and @code{end-class} drops them.
1.20      pazsan   10730: 
1.78      anton    10731: @cindex interface implementation
                   10732: An interface is like a class without fields, parent and protected
                   10733: words; i.e., it just has a method map. If a class implements an
                   10734: interface, its method map contains a pointer to the method map of the
                   10735: interface. The positive offsets in the map are reserved for class
                   10736: methods, therefore interface map pointers have negative
                   10737: offsets. Interfaces have offsets that are unique throughout the
                   10738: system, unlike class selectors, whose offsets are only unique for the
                   10739: classes where the selector is available (invokable).
1.20      pazsan   10740: 
1.78      anton    10741: This structure means that interface selectors have to perform one
                   10742: indirection more than class selectors to find their method. Their body
                   10743: contains the interface map pointer offset in the class method map, and
                   10744: the method offset in the interface method map. The
                   10745: @code{does>} action for an interface selector is, basically:
1.20      pazsan   10746: 
                   10747: @example
1.78      anton    10748: ( object selector-body )
                   10749: 2dup selector-interface @@ ( object selector-body object interface-offset )
                   10750: swap object-map @@ + @@ ( object selector-body map )
                   10751: swap selector-offset @@ + @@ execute
1.20      pazsan   10752: @end example
                   10753: 
1.78      anton    10754: where @code{object-map} and @code{selector-offset} are
                   10755: first fields and generate no code.
1.20      pazsan   10756: 
1.78      anton    10757: As a concrete example, consider the following code:
1.20      pazsan   10758: 
                   10759: @example
1.78      anton    10760: interface
                   10761:   selector if1sel1
                   10762:   selector if1sel2
                   10763: end-interface if1
1.20      pazsan   10764: 
1.78      anton    10765: object class
                   10766:   if1 implementation
                   10767:   selector cl1sel1
                   10768:   cell% inst-var cl1iv1
1.20      pazsan   10769: 
1.78      anton    10770: ' m1 overrides construct
                   10771: ' m2 overrides if1sel1
                   10772: ' m3 overrides if1sel2
                   10773: ' m4 overrides cl1sel2
                   10774: end-class cl1
1.20      pazsan   10775: 
1.78      anton    10776: create obj1 object dict-new drop
                   10777: create obj2 cl1    dict-new drop
                   10778: @end example
1.20      pazsan   10779: 
1.78      anton    10780: The data structure created by this code (including the data structure
                   10781: for @code{object}) is shown in the
                   10782: @uref{objects-implementation.eps,figure}, assuming a cell size of 4.
                   10783: @comment TODO add this diagram..
1.20      pazsan   10784: 
1.78      anton    10785: @node Objects Glossary,  , Objects Implementation, Objects
                   10786: @subsubsection @file{objects.fs} Glossary
                   10787: @cindex @file{objects.fs} Glossary
1.20      pazsan   10788: 
                   10789: 
1.78      anton    10790: doc---objects-bind
                   10791: doc---objects-<bind>
                   10792: doc---objects-bind'
                   10793: doc---objects-[bind]
                   10794: doc---objects-class
                   10795: doc---objects-class->map
                   10796: doc---objects-class-inst-size
                   10797: doc---objects-class-override!
1.79      anton    10798: doc---objects-class-previous
                   10799: doc---objects-class>order
1.78      anton    10800: doc---objects-construct
                   10801: doc---objects-current'
                   10802: doc---objects-[current]
                   10803: doc---objects-current-interface
                   10804: doc---objects-dict-new
                   10805: doc---objects-end-class
                   10806: doc---objects-end-class-noname
                   10807: doc---objects-end-interface
                   10808: doc---objects-end-interface-noname
                   10809: doc---objects-end-methods
                   10810: doc---objects-exitm
                   10811: doc---objects-heap-new
                   10812: doc---objects-implementation
                   10813: doc---objects-init-object
                   10814: doc---objects-inst-value
                   10815: doc---objects-inst-var
                   10816: doc---objects-interface
                   10817: doc---objects-m:
                   10818: doc---objects-:m
                   10819: doc---objects-;m
                   10820: doc---objects-method
                   10821: doc---objects-methods
                   10822: doc---objects-object
                   10823: doc---objects-overrides
                   10824: doc---objects-[parent]
                   10825: doc---objects-print
                   10826: doc---objects-protected
                   10827: doc---objects-public
                   10828: doc---objects-selector
                   10829: doc---objects-this
                   10830: doc---objects-<to-inst>
                   10831: doc---objects-[to-inst]
                   10832: doc---objects-to-this
                   10833: doc---objects-xt-new
1.20      pazsan   10834: 
                   10835: 
1.78      anton    10836: @c -------------------------------------------------------------
                   10837: @node OOF, Mini-OOF, Objects, Object-oriented Forth
                   10838: @subsection The @file{oof.fs} model
                   10839: @cindex oof
                   10840: @cindex object-oriented programming
1.20      pazsan   10841: 
1.78      anton    10842: @cindex @file{objects.fs}
                   10843: @cindex @file{oof.fs}
1.20      pazsan   10844: 
1.78      anton    10845: This section describes the @file{oof.fs} package.
1.20      pazsan   10846: 
1.78      anton    10847: The package described in this section has been used in bigFORTH since 1991, and
                   10848: used for two large applications: a chromatographic system used to
                   10849: create new medicaments, and a graphic user interface library (MINOS).
1.20      pazsan   10850: 
1.78      anton    10851: You can find a description (in German) of @file{oof.fs} in @cite{Object
                   10852: oriented bigFORTH} by Bernd Paysan, published in @cite{Vierte Dimension}
                   10853: 10(2), 1994.
1.20      pazsan   10854: 
1.78      anton    10855: @menu
                   10856: * Properties of the OOF model::  
                   10857: * Basic OOF Usage::             
                   10858: * The OOF base class::          
                   10859: * Class Declaration::           
                   10860: * Class Implementation::        
                   10861: @end menu
1.20      pazsan   10862: 
1.78      anton    10863: @node Properties of the OOF model, Basic OOF Usage, OOF, OOF
                   10864: @subsubsection Properties of the @file{oof.fs} model
                   10865: @cindex @file{oof.fs} properties
1.20      pazsan   10866: 
1.78      anton    10867: @itemize @bullet
                   10868: @item
                   10869: This model combines object oriented programming with information
                   10870: hiding. It helps you writing large application, where scoping is
                   10871: necessary, because it provides class-oriented scoping.
1.20      pazsan   10872: 
1.78      anton    10873: @item
                   10874: Named objects, object pointers, and object arrays can be created,
                   10875: selector invocation uses the ``object selector'' syntax. Selector invocation
                   10876: to objects and/or selectors on the stack is a bit less convenient, but
                   10877: possible.
1.44      crook    10878: 
1.78      anton    10879: @item
                   10880: Selector invocation and instance variable usage of the active object is
                   10881: straightforward, since both make use of the active object.
1.44      crook    10882: 
1.78      anton    10883: @item
                   10884: Late binding is efficient and easy to use.
1.20      pazsan   10885: 
1.78      anton    10886: @item
                   10887: State-smart objects parse selectors. However, extensibility is provided
                   10888: using a (parsing) selector @code{postpone} and a selector @code{'}.
1.20      pazsan   10889: 
1.78      anton    10890: @item
                   10891: An implementation in ANS Forth is available.
1.20      pazsan   10892: 
1.78      anton    10893: @end itemize
1.23      crook    10894: 
                   10895: 
1.78      anton    10896: @node Basic OOF Usage, The OOF base class, Properties of the OOF model, OOF
                   10897: @subsubsection Basic @file{oof.fs} Usage
                   10898: @cindex @file{oof.fs} usage
1.23      crook    10899: 
1.78      anton    10900: This section uses the same example as for @code{objects} (@pxref{Basic Objects Usage}).
1.23      crook    10901: 
1.78      anton    10902: You can define a class for graphical objects like this:
1.23      crook    10903: 
1.78      anton    10904: @cindex @code{class} usage
                   10905: @cindex @code{class;} usage
                   10906: @cindex @code{method} usage
                   10907: @example
                   10908: object class graphical \ "object" is the parent class
                   10909:   method draw ( x y graphical -- )
                   10910: class;
                   10911: @end example
1.23      crook    10912: 
1.78      anton    10913: This code defines a class @code{graphical} with an
                   10914: operation @code{draw}.  We can perform the operation
                   10915: @code{draw} on any @code{graphical} object, e.g.:
1.23      crook    10916: 
1.78      anton    10917: @example
                   10918: 100 100 t-rex draw
                   10919: @end example
1.23      crook    10920: 
1.78      anton    10921: @noindent
                   10922: where @code{t-rex} is an object or object pointer, created with e.g.
                   10923: @code{graphical : t-rex}.
1.23      crook    10924: 
1.78      anton    10925: @cindex abstract class
                   10926: How do we create a graphical object? With the present definitions,
                   10927: we cannot create a useful graphical object. The class
                   10928: @code{graphical} describes graphical objects in general, but not
                   10929: any concrete graphical object type (C++ users would call it an
                   10930: @emph{abstract class}); e.g., there is no method for the selector
                   10931: @code{draw} in the class @code{graphical}.
1.23      crook    10932: 
1.78      anton    10933: For concrete graphical objects, we define child classes of the
                   10934: class @code{graphical}, e.g.:
1.23      crook    10935: 
1.78      anton    10936: @example
                   10937: graphical class circle \ "graphical" is the parent class
                   10938:   cell var circle-radius
                   10939: how:
                   10940:   : draw ( x y -- )
                   10941:     circle-radius @@ draw-circle ;
1.23      crook    10942: 
1.78      anton    10943:   : init ( n-radius -- (
                   10944:     circle-radius ! ;
                   10945: class;
                   10946: @end example
1.1       anton    10947: 
1.78      anton    10948: Here we define a class @code{circle} as a child of @code{graphical},
                   10949: with a field @code{circle-radius}; it defines new methods for the
                   10950: selectors @code{draw} and @code{init} (@code{init} is defined in
                   10951: @code{object}, the parent class of @code{graphical}).
1.1       anton    10952: 
1.78      anton    10953: Now we can create a circle in the dictionary with:
1.1       anton    10954: 
1.78      anton    10955: @example
                   10956: 50 circle : my-circle
                   10957: @end example
1.21      crook    10958: 
1.78      anton    10959: @noindent
                   10960: @code{:} invokes @code{init}, thus initializing the field
                   10961: @code{circle-radius} with 50. We can draw this new circle at (100,100)
                   10962: with:
1.1       anton    10963: 
1.78      anton    10964: @example
                   10965: 100 100 my-circle draw
                   10966: @end example
1.1       anton    10967: 
1.78      anton    10968: @cindex selector invocation, restrictions
                   10969: @cindex class definition, restrictions
                   10970: Note: You can only invoke a selector if the receiving object belongs to
                   10971: the class where the selector was defined or one of its descendents;
                   10972: e.g., you can invoke @code{draw} only for objects belonging to
                   10973: @code{graphical} or its descendents (e.g., @code{circle}). The scoping
                   10974: mechanism will check if you try to invoke a selector that is not
                   10975: defined in this class hierarchy, so you'll get an error at compilation
                   10976: time.
1.1       anton    10977: 
                   10978: 
1.78      anton    10979: @node The OOF base class, Class Declaration, Basic OOF Usage, OOF
                   10980: @subsubsection The @file{oof.fs} base class
                   10981: @cindex @file{oof.fs} base class
1.1       anton    10982: 
1.78      anton    10983: When you define a class, you have to specify a parent class.  So how do
                   10984: you start defining classes? There is one class available from the start:
                   10985: @code{object}. You have to use it as ancestor for all classes. It is the
                   10986: only class that has no parent. Classes are also objects, except that
                   10987: they don't have instance variables; class manipulation such as
                   10988: inheritance or changing definitions of a class is handled through
                   10989: selectors of the class @code{object}.
1.1       anton    10990: 
1.78      anton    10991: @code{object} provides a number of selectors:
1.1       anton    10992: 
1.78      anton    10993: @itemize @bullet
                   10994: @item
                   10995: @code{class} for subclassing, @code{definitions} to add definitions
                   10996: later on, and @code{class?} to get type informations (is the class a
                   10997: subclass of the class passed on the stack?).
1.1       anton    10998: 
1.78      anton    10999: doc---object-class
                   11000: doc---object-definitions
                   11001: doc---object-class?
1.1       anton    11002: 
                   11003: 
1.26      crook    11004: @item
1.78      anton    11005: @code{init} and @code{dispose} as constructor and destructor of the
                   11006: object. @code{init} is invocated after the object's memory is allocated,
                   11007: while @code{dispose} also handles deallocation. Thus if you redefine
                   11008: @code{dispose}, you have to call the parent's dispose with @code{super
                   11009: dispose}, too.
                   11010: 
                   11011: doc---object-init
                   11012: doc---object-dispose
                   11013: 
1.1       anton    11014: 
1.26      crook    11015: @item
1.78      anton    11016: @code{new}, @code{new[]}, @code{:}, @code{ptr}, @code{asptr}, and
                   11017: @code{[]} to create named and unnamed objects and object arrays or
                   11018: object pointers.
                   11019: 
                   11020: doc---object-new
                   11021: doc---object-new[]
                   11022: doc---object-:
                   11023: doc---object-ptr
                   11024: doc---object-asptr
                   11025: doc---object-[]
                   11026: 
1.1       anton    11027: 
1.26      crook    11028: @item
1.78      anton    11029: @code{::} and @code{super} for explicit scoping. You should use explicit
                   11030: scoping only for super classes or classes with the same set of instance
                   11031: variables. Explicitly-scoped selectors use early binding.
1.21      crook    11032: 
1.78      anton    11033: doc---object-::
                   11034: doc---object-super
1.21      crook    11035: 
                   11036: 
1.26      crook    11037: @item
1.78      anton    11038: @code{self} to get the address of the object
1.21      crook    11039: 
1.78      anton    11040: doc---object-self
1.21      crook    11041: 
                   11042: 
1.78      anton    11043: @item
                   11044: @code{bind}, @code{bound}, @code{link}, and @code{is} to assign object
                   11045: pointers and instance defers.
1.21      crook    11046: 
1.78      anton    11047: doc---object-bind
                   11048: doc---object-bound
                   11049: doc---object-link
                   11050: doc---object-is
1.21      crook    11051: 
                   11052: 
1.78      anton    11053: @item
                   11054: @code{'} to obtain selector tokens, @code{send} to invocate selectors
                   11055: form the stack, and @code{postpone} to generate selector invocation code.
1.21      crook    11056: 
1.78      anton    11057: doc---object-'
                   11058: doc---object-postpone
1.21      crook    11059: 
                   11060: 
1.78      anton    11061: @item
                   11062: @code{with} and @code{endwith} to select the active object from the
                   11063: stack, and enable its scope. Using @code{with} and @code{endwith}
                   11064: also allows you to create code using selector @code{postpone} without being
                   11065: trapped by the state-smart objects.
1.21      crook    11066: 
1.78      anton    11067: doc---object-with
                   11068: doc---object-endwith
1.21      crook    11069: 
                   11070: 
1.78      anton    11071: @end itemize
1.21      crook    11072: 
1.78      anton    11073: @node Class Declaration, Class Implementation, The OOF base class, OOF
                   11074: @subsubsection Class Declaration
                   11075: @cindex class declaration
1.21      crook    11076: 
1.78      anton    11077: @itemize @bullet
                   11078: @item
                   11079: Instance variables
1.21      crook    11080: 
1.78      anton    11081: doc---oof-var
1.21      crook    11082: 
                   11083: 
1.78      anton    11084: @item
                   11085: Object pointers
1.21      crook    11086: 
1.78      anton    11087: doc---oof-ptr
                   11088: doc---oof-asptr
1.21      crook    11089: 
                   11090: 
1.78      anton    11091: @item
                   11092: Instance defers
1.21      crook    11093: 
1.78      anton    11094: doc---oof-defer
1.21      crook    11095: 
                   11096: 
1.78      anton    11097: @item
                   11098: Method selectors
1.21      crook    11099: 
1.78      anton    11100: doc---oof-early
                   11101: doc---oof-method
1.21      crook    11102: 
                   11103: 
1.78      anton    11104: @item
                   11105: Class-wide variables
1.21      crook    11106: 
1.78      anton    11107: doc---oof-static
1.21      crook    11108: 
                   11109: 
1.78      anton    11110: @item
                   11111: End declaration
1.1       anton    11112: 
1.78      anton    11113: doc---oof-how:
                   11114: doc---oof-class;
1.21      crook    11115: 
                   11116: 
1.78      anton    11117: @end itemize
1.21      crook    11118: 
1.78      anton    11119: @c -------------------------------------------------------------
                   11120: @node Class Implementation,  , Class Declaration, OOF
                   11121: @subsubsection Class Implementation
                   11122: @cindex class implementation
1.21      crook    11123: 
1.78      anton    11124: @c -------------------------------------------------------------
                   11125: @node Mini-OOF, Comparison with other object models, OOF, Object-oriented Forth
                   11126: @subsection The @file{mini-oof.fs} model
                   11127: @cindex mini-oof
1.21      crook    11128: 
1.78      anton    11129: Gforth's third object oriented Forth package is a 12-liner. It uses a
1.79      anton    11130: mixture of the @file{objects.fs} and the @file{oof.fs} syntax,
1.78      anton    11131: and reduces to the bare minimum of features. This is based on a posting
                   11132: of Bernd Paysan in comp.lang.forth.
1.21      crook    11133: 
1.78      anton    11134: @menu
                   11135: * Basic Mini-OOF Usage::        
                   11136: * Mini-OOF Example::            
                   11137: * Mini-OOF Implementation::     
                   11138: @end menu
1.21      crook    11139: 
1.78      anton    11140: @c -------------------------------------------------------------
                   11141: @node Basic Mini-OOF Usage, Mini-OOF Example, Mini-OOF, Mini-OOF
                   11142: @subsubsection Basic @file{mini-oof.fs} Usage
                   11143: @cindex mini-oof usage
1.21      crook    11144: 
1.78      anton    11145: There is a base class (@code{class}, which allocates one cell for the
                   11146: object pointer) plus seven other words: to define a method, a variable,
                   11147: a class; to end a class, to resolve binding, to allocate an object and
                   11148: to compile a class method.
                   11149: @comment TODO better description of the last one
1.26      crook    11150: 
1.21      crook    11151: 
1.78      anton    11152: doc-object
                   11153: doc-method
                   11154: doc-var
                   11155: doc-class
                   11156: doc-end-class
                   11157: doc-defines
                   11158: doc-new
                   11159: doc-::
1.21      crook    11160: 
                   11161: 
                   11162: 
1.78      anton    11163: @c -------------------------------------------------------------
                   11164: @node Mini-OOF Example, Mini-OOF Implementation, Basic Mini-OOF Usage, Mini-OOF
                   11165: @subsubsection Mini-OOF Example
                   11166: @cindex mini-oof example
1.1       anton    11167: 
1.78      anton    11168: A short example shows how to use this package. This example, in slightly
                   11169: extended form, is supplied as @file{moof-exm.fs}
                   11170: @comment TODO could flesh this out with some comments from the Forthwrite article
1.20      pazsan   11171: 
1.26      crook    11172: @example
1.78      anton    11173: object class
                   11174:   method init
                   11175:   method draw
                   11176: end-class graphical
1.26      crook    11177: @end example
1.20      pazsan   11178: 
1.78      anton    11179: This code defines a class @code{graphical} with an
                   11180: operation @code{draw}.  We can perform the operation
                   11181: @code{draw} on any @code{graphical} object, e.g.:
1.20      pazsan   11182: 
1.26      crook    11183: @example
1.78      anton    11184: 100 100 t-rex draw
1.26      crook    11185: @end example
1.12      anton    11186: 
1.78      anton    11187: where @code{t-rex} is an object or object pointer, created with e.g.
                   11188: @code{graphical new Constant t-rex}.
1.12      anton    11189: 
1.78      anton    11190: For concrete graphical objects, we define child classes of the
                   11191: class @code{graphical}, e.g.:
1.12      anton    11192: 
1.26      crook    11193: @example
                   11194: graphical class
1.78      anton    11195:   cell var circle-radius
                   11196: end-class circle \ "graphical" is the parent class
1.12      anton    11197: 
1.78      anton    11198: :noname ( x y -- )
                   11199:   circle-radius @@ draw-circle ; circle defines draw
                   11200: :noname ( r -- )
                   11201:   circle-radius ! ; circle defines init
                   11202: @end example
1.12      anton    11203: 
1.78      anton    11204: There is no implicit init method, so we have to define one. The creation
                   11205: code of the object now has to call init explicitely.
1.21      crook    11206: 
1.78      anton    11207: @example
                   11208: circle new Constant my-circle
                   11209: 50 my-circle init
1.12      anton    11210: @end example
                   11211: 
1.78      anton    11212: It is also possible to add a function to create named objects with
                   11213: automatic call of @code{init}, given that all objects have @code{init}
                   11214: on the same place:
1.38      anton    11215: 
1.78      anton    11216: @example
                   11217: : new: ( .. o "name" -- )
                   11218:     new dup Constant init ;
                   11219: 80 circle new: large-circle
                   11220: @end example
1.12      anton    11221: 
1.78      anton    11222: We can draw this new circle at (100,100) with:
1.12      anton    11223: 
1.78      anton    11224: @example
                   11225: 100 100 my-circle draw
                   11226: @end example
1.12      anton    11227: 
1.78      anton    11228: @node Mini-OOF Implementation,  , Mini-OOF Example, Mini-OOF
                   11229: @subsubsection @file{mini-oof.fs} Implementation
1.12      anton    11230: 
1.78      anton    11231: Object-oriented systems with late binding typically use a
                   11232: ``vtable''-approach: the first variable in each object is a pointer to a
                   11233: table, which contains the methods as function pointers. The vtable
                   11234: may also contain other information.
1.12      anton    11235: 
1.79      anton    11236: So first, let's declare selectors:
1.37      anton    11237: 
                   11238: @example
1.79      anton    11239: : method ( m v "name" -- m' v ) Create  over , swap cell+ swap
1.78      anton    11240:   DOES> ( ... o -- ... ) @@ over @@ + @@ execute ;
                   11241: @end example
1.37      anton    11242: 
1.79      anton    11243: During selector declaration, the number of selectors and instance
                   11244: variables is on the stack (in address units). @code{method} creates one
                   11245: selector and increments the selector number. To execute a selector, it
1.78      anton    11246: takes the object, fetches the vtable pointer, adds the offset, and
1.79      anton    11247: executes the method @i{xt} stored there. Each selector takes the object
                   11248: it is invoked with as top of stack parameter; it passes the parameters
                   11249: (including the object) unchanged to the appropriate method which should
1.78      anton    11250: consume that object.
1.37      anton    11251: 
1.78      anton    11252: Now, we also have to declare instance variables
1.37      anton    11253: 
1.78      anton    11254: @example
1.79      anton    11255: : var ( m v size "name" -- m v' ) Create  over , +
1.78      anton    11256:   DOES> ( o -- addr ) @@ + ;
1.37      anton    11257: @end example
                   11258: 
1.78      anton    11259: As before, a word is created with the current offset. Instance
                   11260: variables can have different sizes (cells, floats, doubles, chars), so
                   11261: all we do is take the size and add it to the offset. If your machine
                   11262: has alignment restrictions, put the proper @code{aligned} or
                   11263: @code{faligned} before the variable, to adjust the variable
                   11264: offset. That's why it is on the top of stack.
1.37      anton    11265: 
1.78      anton    11266: We need a starting point (the base object) and some syntactic sugar:
1.37      anton    11267: 
1.78      anton    11268: @example
                   11269: Create object  1 cells , 2 cells ,
1.79      anton    11270: : class ( class -- class selectors vars ) dup 2@@ ;
1.78      anton    11271: @end example
1.12      anton    11272: 
1.78      anton    11273: For inheritance, the vtable of the parent object has to be
                   11274: copied when a new, derived class is declared. This gives all the
                   11275: methods of the parent class, which can be overridden, though.
1.12      anton    11276: 
1.78      anton    11277: @example
1.79      anton    11278: : end-class  ( class selectors vars "name" -- )
1.78      anton    11279:   Create  here >r , dup , 2 cells ?DO ['] noop , 1 cells +LOOP
                   11280:   cell+ dup cell+ r> rot @@ 2 cells /string move ;
                   11281: @end example
1.12      anton    11282: 
1.78      anton    11283: The first line creates the vtable, initialized with
                   11284: @code{noop}s. The second line is the inheritance mechanism, it
                   11285: copies the xts from the parent vtable.
1.12      anton    11286: 
1.78      anton    11287: We still have no way to define new methods, let's do that now:
1.12      anton    11288: 
1.26      crook    11289: @example
1.79      anton    11290: : defines ( xt class "name" -- ) ' >body @@ + ! ;
1.78      anton    11291: @end example
1.12      anton    11292: 
1.78      anton    11293: To allocate a new object, we need a word, too:
1.12      anton    11294: 
1.78      anton    11295: @example
                   11296: : new ( class -- o )  here over @@ allot swap over ! ;
1.12      anton    11297: @end example
                   11298: 
1.78      anton    11299: Sometimes derived classes want to access the method of the
                   11300: parent object. There are two ways to achieve this with Mini-OOF:
                   11301: first, you could use named words, and second, you could look up the
                   11302: vtable of the parent object.
1.12      anton    11303: 
1.78      anton    11304: @example
                   11305: : :: ( class "name" -- ) ' >body @@ + @@ compile, ;
                   11306: @end example
1.12      anton    11307: 
                   11308: 
1.78      anton    11309: Nothing can be more confusing than a good example, so here is
                   11310: one. First let's declare a text object (called
                   11311: @code{button}), that stores text and position:
1.12      anton    11312: 
1.78      anton    11313: @example
                   11314: object class
                   11315:   cell var text
                   11316:   cell var len
                   11317:   cell var x
                   11318:   cell var y
                   11319:   method init
                   11320:   method draw
                   11321: end-class button
                   11322: @end example
1.12      anton    11323: 
1.78      anton    11324: @noindent
                   11325: Now, implement the two methods, @code{draw} and @code{init}:
1.21      crook    11326: 
1.26      crook    11327: @example
1.78      anton    11328: :noname ( o -- )
                   11329:  >r r@@ x @@ r@@ y @@ at-xy  r@@ text @@ r> len @@ type ;
                   11330:  button defines draw
                   11331: :noname ( addr u o -- )
                   11332:  >r 0 r@@ x ! 0 r@@ y ! r@@ len ! r> text ! ;
                   11333:  button defines init
1.26      crook    11334: @end example
1.12      anton    11335: 
1.78      anton    11336: @noindent
                   11337: To demonstrate inheritance, we define a class @code{bold-button}, with no
1.79      anton    11338: new data and no new selectors:
1.78      anton    11339: 
                   11340: @example
                   11341: button class
                   11342: end-class bold-button
1.12      anton    11343: 
1.78      anton    11344: : bold   27 emit ." [1m" ;
                   11345: : normal 27 emit ." [0m" ;
                   11346: @end example
1.1       anton    11347: 
1.78      anton    11348: @noindent
                   11349: The class @code{bold-button} has a different draw method to
                   11350: @code{button}, but the new method is defined in terms of the draw method
                   11351: for @code{button}:
1.20      pazsan   11352: 
1.78      anton    11353: @example
                   11354: :noname bold [ button :: draw ] normal ; bold-button defines draw
                   11355: @end example
1.21      crook    11356: 
1.78      anton    11357: @noindent
1.79      anton    11358: Finally, create two objects and apply selectors:
1.21      crook    11359: 
1.26      crook    11360: @example
1.78      anton    11361: button new Constant foo
                   11362: s" thin foo" foo init
                   11363: page
                   11364: foo draw
                   11365: bold-button new Constant bar
                   11366: s" fat bar" bar init
                   11367: 1 bar y !
                   11368: bar draw
1.26      crook    11369: @end example
1.21      crook    11370: 
                   11371: 
1.78      anton    11372: @node Comparison with other object models,  , Mini-OOF, Object-oriented Forth
                   11373: @subsection Comparison with other object models
                   11374: @cindex comparison of object models
                   11375: @cindex object models, comparison
                   11376: 
                   11377: Many object-oriented Forth extensions have been proposed (@cite{A survey
                   11378: of object-oriented Forths} (SIGPLAN Notices, April 1996) by Bradford
                   11379: J. Rodriguez and W. F. S. Poehlman lists 17). This section discusses the
                   11380: relation of the object models described here to two well-known and two
                   11381: closely-related (by the use of method maps) models.  Andras Zsoter
                   11382: helped us with this section.
                   11383: 
                   11384: @cindex Neon model
                   11385: The most popular model currently seems to be the Neon model (see
                   11386: @cite{Object-oriented programming in ANS Forth} (Forth Dimensions, March
                   11387: 1997) by Andrew McKewan) but this model has a number of limitations
                   11388: @footnote{A longer version of this critique can be
                   11389: found in @cite{On Standardizing Object-Oriented Forth Extensions} (Forth
                   11390: Dimensions, May 1997) by Anton Ertl.}:
                   11391: 
                   11392: @itemize @bullet
                   11393: @item
                   11394: It uses a @code{@emph{selector object}} syntax, which makes it unnatural
                   11395: to pass objects on the stack.
1.21      crook    11396: 
1.78      anton    11397: @item
                   11398: It requires that the selector parses the input stream (at
1.79      anton    11399: compile time); this leads to reduced extensibility and to bugs that are
1.78      anton    11400: hard to find.
1.21      crook    11401: 
1.78      anton    11402: @item
1.79      anton    11403: It allows using every selector on every object; this eliminates the
                   11404: need for interfaces, but makes it harder to create efficient
                   11405: implementations.
1.78      anton    11406: @end itemize
1.21      crook    11407: 
1.78      anton    11408: @cindex Pountain's object-oriented model
                   11409: Another well-known publication is @cite{Object-Oriented Forth} (Academic
                   11410: Press, London, 1987) by Dick Pountain. However, it is not really about
                   11411: object-oriented programming, because it hardly deals with late
                   11412: binding. Instead, it focuses on features like information hiding and
                   11413: overloading that are characteristic of modular languages like Ada (83).
1.26      crook    11414: 
1.78      anton    11415: @cindex Zsoter's object-oriented model
1.79      anton    11416: In @uref{http://www.forth.org/oopf.html, Does late binding have to be
                   11417: slow?} (Forth Dimensions 18(1) 1996, pages 31-35) Andras Zsoter
                   11418: describes a model that makes heavy use of an active object (like
                   11419: @code{this} in @file{objects.fs}): The active object is not only used
                   11420: for accessing all fields, but also specifies the receiving object of
                   11421: every selector invocation; you have to change the active object
                   11422: explicitly with @code{@{ ... @}}, whereas in @file{objects.fs} it
                   11423: changes more or less implicitly at @code{m: ... ;m}. Such a change at
                   11424: the method entry point is unnecessary with Zsoter's model, because the
                   11425: receiving object is the active object already. On the other hand, the
                   11426: explicit change is absolutely necessary in that model, because otherwise
                   11427: no one could ever change the active object. An ANS Forth implementation
                   11428: of this model is available through
                   11429: @uref{http://www.forth.org/oopf.html}.
1.21      crook    11430: 
1.78      anton    11431: @cindex @file{oof.fs}, differences to other models
                   11432: The @file{oof.fs} model combines information hiding and overloading
                   11433: resolution (by keeping names in various word lists) with object-oriented
                   11434: programming. It sets the active object implicitly on method entry, but
                   11435: also allows explicit changing (with @code{>o...o>} or with
                   11436: @code{with...endwith}). It uses parsing and state-smart objects and
                   11437: classes for resolving overloading and for early binding: the object or
                   11438: class parses the selector and determines the method from this. If the
                   11439: selector is not parsed by an object or class, it performs a call to the
                   11440: selector for the active object (late binding), like Zsoter's model.
                   11441: Fields are always accessed through the active object. The big
                   11442: disadvantage of this model is the parsing and the state-smartness, which
                   11443: reduces extensibility and increases the opportunities for subtle bugs;
                   11444: essentially, you are only safe if you never tick or @code{postpone} an
                   11445: object or class (Bernd disagrees, but I (Anton) am not convinced).
1.21      crook    11446: 
1.78      anton    11447: @cindex @file{mini-oof.fs}, differences to other models
                   11448: The @file{mini-oof.fs} model is quite similar to a very stripped-down
                   11449: version of the @file{objects.fs} model, but syntactically it is a
                   11450: mixture of the @file{objects.fs} and @file{oof.fs} models.
1.21      crook    11451: 
                   11452: 
1.78      anton    11453: @c -------------------------------------------------------------
                   11454: @node Programming Tools, Assembler and Code Words, Object-oriented Forth, Words
                   11455: @section Programming Tools
                   11456: @cindex programming tools
1.21      crook    11457: 
1.78      anton    11458: @c !! move this and assembler down below OO stuff.
1.21      crook    11459: 
1.78      anton    11460: @menu
                   11461: * Examining::                   
                   11462: * Forgetting words::            
                   11463: * Debugging::                   Simple and quick.
                   11464: * Assertions::                  Making your programs self-checking.
                   11465: * Singlestep Debugger::         Executing your program word by word.
                   11466: @end menu
1.21      crook    11467: 
1.78      anton    11468: @node Examining, Forgetting words, Programming Tools, Programming Tools
                   11469: @subsection Examining data and code
                   11470: @cindex examining data and code
                   11471: @cindex data examination
                   11472: @cindex code examination
1.44      crook    11473: 
1.78      anton    11474: The following words inspect the stack non-destructively:
1.21      crook    11475: 
1.78      anton    11476: doc-.s
                   11477: doc-f.s
1.44      crook    11478: 
1.78      anton    11479: There is a word @code{.r} but it does @i{not} display the return stack!
                   11480: It is used for formatted numeric output (@pxref{Simple numeric output}).
1.21      crook    11481: 
1.78      anton    11482: doc-depth
                   11483: doc-fdepth
                   11484: doc-clearstack
1.21      crook    11485: 
1.78      anton    11486: The following words inspect memory.
1.21      crook    11487: 
1.78      anton    11488: doc-?
                   11489: doc-dump
1.21      crook    11490: 
1.78      anton    11491: And finally, @code{see} allows to inspect code:
1.21      crook    11492: 
1.78      anton    11493: doc-see
                   11494: doc-xt-see
1.21      crook    11495: 
1.78      anton    11496: @node Forgetting words, Debugging, Examining, Programming Tools
                   11497: @subsection Forgetting words
                   11498: @cindex words, forgetting
                   11499: @cindex forgeting words
1.21      crook    11500: 
1.78      anton    11501: @c  anton: other, maybe better places for this subsection: Defining Words;
                   11502: @c  Dictionary allocation.  At least a reference should be there.
1.21      crook    11503: 
1.78      anton    11504: Forth allows you to forget words (and everything that was alloted in the
                   11505: dictonary after them) in a LIFO manner.
1.21      crook    11506: 
1.78      anton    11507: doc-marker
1.21      crook    11508: 
1.78      anton    11509: The most common use of this feature is during progam development: when
                   11510: you change a source file, forget all the words it defined and load it
                   11511: again (since you also forget everything defined after the source file
                   11512: was loaded, you have to reload that, too).  Note that effects like
                   11513: storing to variables and destroyed system words are not undone when you
                   11514: forget words.  With a system like Gforth, that is fast enough at
                   11515: starting up and compiling, I find it more convenient to exit and restart
                   11516: Gforth, as this gives me a clean slate.
1.21      crook    11517: 
1.78      anton    11518: Here's an example of using @code{marker} at the start of a source file
                   11519: that you are debugging; it ensures that you only ever have one copy of
                   11520: the file's definitions compiled at any time:
1.21      crook    11521: 
1.78      anton    11522: @example
                   11523: [IFDEF] my-code
                   11524:     my-code
                   11525: [ENDIF]
1.26      crook    11526: 
1.78      anton    11527: marker my-code
                   11528: init-included-files
1.21      crook    11529: 
1.78      anton    11530: \ .. definitions start here
                   11531: \ .
                   11532: \ .
                   11533: \ end
                   11534: @end example
1.21      crook    11535: 
1.26      crook    11536: 
1.78      anton    11537: @node Debugging, Assertions, Forgetting words, Programming Tools
                   11538: @subsection Debugging
                   11539: @cindex debugging
1.21      crook    11540: 
1.78      anton    11541: Languages with a slow edit/compile/link/test development loop tend to
                   11542: require sophisticated tracing/stepping debuggers to facilate debugging.
1.21      crook    11543: 
1.78      anton    11544: A much better (faster) way in fast-compiling languages is to add
                   11545: printing code at well-selected places, let the program run, look at
                   11546: the output, see where things went wrong, add more printing code, etc.,
                   11547: until the bug is found.
1.21      crook    11548: 
1.78      anton    11549: The simple debugging aids provided in @file{debugs.fs}
                   11550: are meant to support this style of debugging.
1.21      crook    11551: 
1.78      anton    11552: The word @code{~~} prints debugging information (by default the source
                   11553: location and the stack contents). It is easy to insert. If you use Emacs
                   11554: it is also easy to remove (@kbd{C-x ~} in the Emacs Forth mode to
                   11555: query-replace them with nothing). The deferred words
1.101     anton    11556: @code{printdebugdata} and @code{.debugline} control the output of
1.78      anton    11557: @code{~~}. The default source location output format works well with
                   11558: Emacs' compilation mode, so you can step through the program at the
                   11559: source level using @kbd{C-x `} (the advantage over a stepping debugger
                   11560: is that you can step in any direction and you know where the crash has
                   11561: happened or where the strange data has occurred).
1.21      crook    11562: 
1.78      anton    11563: doc-~~
                   11564: doc-printdebugdata
1.101     anton    11565: doc-.debugline
1.21      crook    11566: 
1.106     anton    11567: @cindex filenames in @code{~~} output
                   11568: @code{~~} (and assertions) will usually print the wrong file name if a
                   11569: marker is executed in the same file after their occurance.  They will
                   11570: print @samp{*somewhere*} as file name if a marker is executed in the
                   11571: same file before their occurance.
                   11572: 
                   11573: 
1.78      anton    11574: @node Assertions, Singlestep Debugger, Debugging, Programming Tools
                   11575: @subsection Assertions
                   11576: @cindex assertions
1.21      crook    11577: 
1.78      anton    11578: It is a good idea to make your programs self-checking, especially if you
                   11579: make an assumption that may become invalid during maintenance (for
                   11580: example, that a certain field of a data structure is never zero). Gforth
                   11581: supports @dfn{assertions} for this purpose. They are used like this:
1.21      crook    11582: 
                   11583: @example
1.78      anton    11584: assert( @i{flag} )
1.26      crook    11585: @end example
                   11586: 
1.78      anton    11587: The code between @code{assert(} and @code{)} should compute a flag, that
                   11588: should be true if everything is alright and false otherwise. It should
                   11589: not change anything else on the stack. The overall stack effect of the
                   11590: assertion is @code{( -- )}. E.g.
1.21      crook    11591: 
1.26      crook    11592: @example
1.78      anton    11593: assert( 1 1 + 2 = ) \ what we learn in school
                   11594: assert( dup 0<> ) \ assert that the top of stack is not zero
                   11595: assert( false ) \ this code should not be reached
1.21      crook    11596: @end example
                   11597: 
1.78      anton    11598: The need for assertions is different at different times. During
                   11599: debugging, we want more checking, in production we sometimes care more
                   11600: for speed. Therefore, assertions can be turned off, i.e., the assertion
                   11601: becomes a comment. Depending on the importance of an assertion and the
                   11602: time it takes to check it, you may want to turn off some assertions and
                   11603: keep others turned on. Gforth provides several levels of assertions for
                   11604: this purpose:
                   11605: 
                   11606: 
                   11607: doc-assert0(
                   11608: doc-assert1(
                   11609: doc-assert2(
                   11610: doc-assert3(
                   11611: doc-assert(
                   11612: doc-)
1.21      crook    11613: 
                   11614: 
1.78      anton    11615: The variable @code{assert-level} specifies the highest assertions that
                   11616: are turned on. I.e., at the default @code{assert-level} of one,
                   11617: @code{assert0(} and @code{assert1(} assertions perform checking, while
                   11618: @code{assert2(} and @code{assert3(} assertions are treated as comments.
1.26      crook    11619: 
1.78      anton    11620: The value of @code{assert-level} is evaluated at compile-time, not at
                   11621: run-time. Therefore you cannot turn assertions on or off at run-time;
                   11622: you have to set the @code{assert-level} appropriately before compiling a
                   11623: piece of code. You can compile different pieces of code at different
                   11624: @code{assert-level}s (e.g., a trusted library at level 1 and
                   11625: newly-written code at level 3).
1.26      crook    11626: 
                   11627: 
1.78      anton    11628: doc-assert-level
1.26      crook    11629: 
                   11630: 
1.78      anton    11631: If an assertion fails, a message compatible with Emacs' compilation mode
                   11632: is produced and the execution is aborted (currently with @code{ABORT"}.
                   11633: If there is interest, we will introduce a special throw code. But if you
                   11634: intend to @code{catch} a specific condition, using @code{throw} is
                   11635: probably more appropriate than an assertion).
1.106     anton    11636: 
                   11637: @cindex filenames in assertion output
                   11638: Assertions (and @code{~~}) will usually print the wrong file name if a
                   11639: marker is executed in the same file after their occurance.  They will
                   11640: print @samp{*somewhere*} as file name if a marker is executed in the
                   11641: same file before their occurance.
1.44      crook    11642: 
1.78      anton    11643: Definitions in ANS Forth for these assertion words are provided
                   11644: in @file{compat/assert.fs}.
1.26      crook    11645: 
1.44      crook    11646: 
1.78      anton    11647: @node Singlestep Debugger,  , Assertions, Programming Tools
                   11648: @subsection Singlestep Debugger
                   11649: @cindex singlestep Debugger
                   11650: @cindex debugging Singlestep
1.44      crook    11651: 
1.78      anton    11652: When you create a new word there's often the need to check whether it
                   11653: behaves correctly or not. You can do this by typing @code{dbg
                   11654: badword}. A debug session might look like this:
1.26      crook    11655: 
1.78      anton    11656: @example
                   11657: : badword 0 DO i . LOOP ;  ok
                   11658: 2 dbg badword 
                   11659: : badword  
                   11660: Scanning code...
1.44      crook    11661: 
1.78      anton    11662: Nesting debugger ready!
1.44      crook    11663: 
1.78      anton    11664: 400D4738  8049BC4 0              -> [ 2 ] 00002 00000 
                   11665: 400D4740  8049F68 DO             -> [ 0 ] 
                   11666: 400D4744  804A0C8 i              -> [ 1 ] 00000 
                   11667: 400D4748 400C5E60 .              -> 0 [ 0 ] 
                   11668: 400D474C  8049D0C LOOP           -> [ 0 ] 
                   11669: 400D4744  804A0C8 i              -> [ 1 ] 00001 
                   11670: 400D4748 400C5E60 .              -> 1 [ 0 ] 
                   11671: 400D474C  8049D0C LOOP           -> [ 0 ] 
                   11672: 400D4758  804B384 ;              ->  ok
                   11673: @end example
1.21      crook    11674: 
1.78      anton    11675: Each line displayed is one step. You always have to hit return to
                   11676: execute the next word that is displayed. If you don't want to execute
                   11677: the next word in a whole, you have to type @kbd{n} for @code{nest}. Here is
                   11678: an overview what keys are available:
1.44      crook    11679: 
1.78      anton    11680: @table @i
1.44      crook    11681: 
1.78      anton    11682: @item @key{RET}
                   11683: Next; Execute the next word.
1.21      crook    11684: 
1.78      anton    11685: @item n
                   11686: Nest; Single step through next word.
1.44      crook    11687: 
1.78      anton    11688: @item u
                   11689: Unnest; Stop debugging and execute rest of word. If we got to this word
                   11690: with nest, continue debugging with the calling word.
1.44      crook    11691: 
1.78      anton    11692: @item d
                   11693: Done; Stop debugging and execute rest.
1.21      crook    11694: 
1.78      anton    11695: @item s
                   11696: Stop; Abort immediately.
1.44      crook    11697: 
1.78      anton    11698: @end table
1.44      crook    11699: 
1.78      anton    11700: Debugging large application with this mechanism is very difficult, because
                   11701: you have to nest very deeply into the program before the interesting part
                   11702: begins. This takes a lot of time. 
1.26      crook    11703: 
1.78      anton    11704: To do it more directly put a @code{BREAK:} command into your source code.
                   11705: When program execution reaches @code{BREAK:} the single step debugger is
                   11706: invoked and you have all the features described above.
1.44      crook    11707: 
1.78      anton    11708: If you have more than one part to debug it is useful to know where the
                   11709: program has stopped at the moment. You can do this by the 
                   11710: @code{BREAK" string"} command. This behaves like @code{BREAK:} except that
                   11711: string is typed out when the ``breakpoint'' is reached.
1.44      crook    11712: 
1.26      crook    11713: 
1.78      anton    11714: doc-dbg
                   11715: doc-break:
                   11716: doc-break"
1.44      crook    11717: 
                   11718: 
1.26      crook    11719: 
1.78      anton    11720: @c -------------------------------------------------------------
                   11721: @node Assembler and Code Words, Threading Words, Programming Tools, Words
                   11722: @section Assembler and Code Words
                   11723: @cindex assembler
                   11724: @cindex code words
1.44      crook    11725: 
1.78      anton    11726: @menu
                   11727: * Code and ;code::              
                   11728: * Common Assembler::            Assembler Syntax
                   11729: * Common Disassembler::         
                   11730: * 386 Assembler::               Deviations and special cases
                   11731: * Alpha Assembler::             Deviations and special cases
                   11732: * MIPS assembler::              Deviations and special cases
                   11733: * Other assemblers::            How to write them
                   11734: @end menu
1.21      crook    11735: 
1.78      anton    11736: @node Code and ;code, Common Assembler, Assembler and Code Words, Assembler and Code Words
                   11737: @subsection @code{Code} and @code{;code}
1.26      crook    11738: 
1.78      anton    11739: Gforth provides some words for defining primitives (words written in
                   11740: machine code), and for defining the machine-code equivalent of
                   11741: @code{DOES>}-based defining words. However, the machine-independent
                   11742: nature of Gforth poses a few problems: First of all, Gforth runs on
                   11743: several architectures, so it can provide no standard assembler. What's
                   11744: worse is that the register allocation not only depends on the processor,
                   11745: but also on the @code{gcc} version and options used.
1.44      crook    11746: 
1.78      anton    11747: The words that Gforth offers encapsulate some system dependences (e.g.,
                   11748: the header structure), so a system-independent assembler may be used in
                   11749: Gforth. If you do not have an assembler, you can compile machine code
                   11750: directly with @code{,} and @code{c,}@footnote{This isn't portable,
                   11751: because these words emit stuff in @i{data} space; it works because
                   11752: Gforth has unified code/data spaces. Assembler isn't likely to be
                   11753: portable anyway.}.
1.21      crook    11754: 
1.44      crook    11755: 
1.78      anton    11756: doc-assembler
                   11757: doc-init-asm
                   11758: doc-code
                   11759: doc-end-code
                   11760: doc-;code
                   11761: doc-flush-icache
1.44      crook    11762: 
1.21      crook    11763: 
1.78      anton    11764: If @code{flush-icache} does not work correctly, @code{code} words
                   11765: etc. will not work (reliably), either.
1.44      crook    11766: 
1.78      anton    11767: The typical usage of these @code{code} words can be shown most easily by
                   11768: analogy to the equivalent high-level defining words:
1.44      crook    11769: 
1.78      anton    11770: @example
                   11771: : foo                              code foo
                   11772:    <high-level Forth words>              <assembler>
                   11773: ;                                  end-code
                   11774:                                 
                   11775: : bar                              : bar
                   11776:    <high-level Forth words>           <high-level Forth words>
                   11777:    CREATE                             CREATE
                   11778:       <high-level Forth words>           <high-level Forth words>
                   11779:    DOES>                              ;code
                   11780:       <high-level Forth words>           <assembler>
                   11781: ;                                  end-code
                   11782: @end example
1.21      crook    11783: 
1.78      anton    11784: @c anton: the following stuff is also in "Common Assembler", in less detail.
1.44      crook    11785: 
1.78      anton    11786: @cindex registers of the inner interpreter
                   11787: In the assembly code you will want to refer to the inner interpreter's
                   11788: registers (e.g., the data stack pointer) and you may want to use other
                   11789: registers for temporary storage. Unfortunately, the register allocation
                   11790: is installation-dependent.
1.44      crook    11791: 
1.78      anton    11792: In particular, @code{ip} (Forth instruction pointer) and @code{rp}
1.100     anton    11793: (return stack pointer) may be in different places in @code{gforth} and
                   11794: @code{gforth-fast}, or different installations.  This means that you
                   11795: cannot write a @code{NEXT} routine that works reliably on both versions
                   11796: or different installations; so for doing @code{NEXT}, I recommend
                   11797: jumping to @code{' noop >code-address}, which contains nothing but a
                   11798: @code{NEXT}.
1.21      crook    11799: 
1.78      anton    11800: For general accesses to the inner interpreter's registers, the easiest
                   11801: solution is to use explicit register declarations (@pxref{Explicit Reg
                   11802: Vars, , Variables in Specified Registers, gcc.info, GNU C Manual}) for
                   11803: all of the inner interpreter's registers: You have to compile Gforth
                   11804: with @code{-DFORCE_REG} (configure option @code{--enable-force-reg}) and
                   11805: the appropriate declarations must be present in the @code{machine.h}
                   11806: file (see @code{mips.h} for an example; you can find a full list of all
                   11807: declarable register symbols with @code{grep register engine.c}). If you
                   11808: give explicit registers to all variables that are declared at the
                   11809: beginning of @code{engine()}, you should be able to use the other
                   11810: caller-saved registers for temporary storage. Alternatively, you can use
                   11811: the @code{gcc} option @code{-ffixed-REG} (@pxref{Code Gen Options, ,
                   11812: Options for Code Generation Conventions, gcc.info, GNU C Manual}) to
                   11813: reserve a register (however, this restriction on register allocation may
                   11814: slow Gforth significantly).
1.44      crook    11815: 
1.78      anton    11816: If this solution is not viable (e.g., because @code{gcc} does not allow
                   11817: you to explicitly declare all the registers you need), you have to find
                   11818: out by looking at the code where the inner interpreter's registers
                   11819: reside and which registers can be used for temporary storage. You can
                   11820: get an assembly listing of the engine's code with @code{make engine.s}.
1.44      crook    11821: 
1.78      anton    11822: In any case, it is good practice to abstract your assembly code from the
                   11823: actual register allocation. E.g., if the data stack pointer resides in
                   11824: register @code{$17}, create an alias for this register called @code{sp},
                   11825: and use that in your assembly code.
1.21      crook    11826: 
1.78      anton    11827: @cindex code words, portable
                   11828: Another option for implementing normal and defining words efficiently
                   11829: is to add the desired functionality to the source of Gforth. For normal
                   11830: words you just have to edit @file{primitives} (@pxref{Automatic
                   11831: Generation}). Defining words (equivalent to @code{;CODE} words, for fast
                   11832: defined words) may require changes in @file{engine.c}, @file{kernel.fs},
                   11833: @file{prims2x.fs}, and possibly @file{cross.fs}.
1.44      crook    11834: 
1.78      anton    11835: @node Common Assembler, Common Disassembler, Code and ;code, Assembler and Code Words
                   11836: @subsection Common Assembler
1.44      crook    11837: 
1.78      anton    11838: The assemblers in Gforth generally use a postfix syntax, i.e., the
                   11839: instruction name follows the operands.
1.21      crook    11840: 
1.78      anton    11841: The operands are passed in the usual order (the same that is used in the
                   11842: manual of the architecture).  Since they all are Forth words, they have
                   11843: to be separated by spaces; you can also use Forth words to compute the
                   11844: operands.
1.44      crook    11845: 
1.78      anton    11846: The instruction names usually end with a @code{,}.  This makes it easier
                   11847: to visually separate instructions if you put several of them on one
                   11848: line; it also avoids shadowing other Forth words (e.g., @code{and}).
1.21      crook    11849: 
1.78      anton    11850: Registers are usually specified by number; e.g., (decimal) @code{11}
                   11851: specifies registers R11 and F11 on the Alpha architecture (which one,
                   11852: depends on the instruction).  The usual names are also available, e.g.,
                   11853: @code{s2} for R11 on Alpha.
1.21      crook    11854: 
1.78      anton    11855: Control flow is specified similar to normal Forth code (@pxref{Arbitrary
                   11856: control structures}), with @code{if,}, @code{ahead,}, @code{then,},
                   11857: @code{begin,}, @code{until,}, @code{again,}, @code{cs-roll},
                   11858: @code{cs-pick}, @code{else,}, @code{while,}, and @code{repeat,}.  The
                   11859: conditions are specified in a way specific to each assembler.
1.1       anton    11860: 
1.78      anton    11861: Note that the register assignments of the Gforth engine can change
                   11862: between Gforth versions, or even between different compilations of the
                   11863: same Gforth version (e.g., if you use a different GCC version).  So if
                   11864: you want to refer to Gforth's registers (e.g., the stack pointer or
                   11865: TOS), I recommend defining your own words for refering to these
                   11866: registers, and using them later on; then you can easily adapt to a
                   11867: changed register assignment.  The stability of the register assignment
                   11868: is usually better if you build Gforth with @code{--enable-force-reg}.
1.1       anton    11869: 
1.100     anton    11870: The most common use of these registers is to dispatch to the next word
                   11871: (the @code{next} routine).  A portable way to do this is to jump to
                   11872: @code{' noop >code-address} (of course, this is less efficient than
                   11873: integrating the @code{next} code and scheduling it well).
1.1       anton    11874: 
1.96      anton    11875: Another difference between Gforth version is that the top of stack is
                   11876: kept in memory in @code{gforth} and, on most platforms, in a register in
                   11877: @code{gforth-fast}.
                   11878: 
1.78      anton    11879: @node  Common Disassembler, 386 Assembler, Common Assembler, Assembler and Code Words
                   11880: @subsection Common Disassembler
1.1       anton    11881: 
1.78      anton    11882: You can disassemble a @code{code} word with @code{see}
                   11883: (@pxref{Debugging}).  You can disassemble a section of memory with
1.1       anton    11884: 
1.78      anton    11885: doc-disasm
1.44      crook    11886: 
1.78      anton    11887: The disassembler generally produces output that can be fed into the
                   11888: assembler (i.e., same syntax, etc.).  It also includes additional
                   11889: information in comments.  In particular, the address of the instruction
                   11890: is given in a comment before the instruction.
1.1       anton    11891: 
1.78      anton    11892: @code{See} may display more or less than the actual code of the word,
                   11893: because the recognition of the end of the code is unreliable.  You can
                   11894: use @code{disasm} if it did not display enough.  It may display more, if
                   11895: the code word is not immediately followed by a named word.  If you have
                   11896: something else there, you can follow the word with @code{align last @ ,}
                   11897: to ensure that the end is recognized.
1.21      crook    11898: 
1.78      anton    11899: @node 386 Assembler, Alpha Assembler, Common Disassembler, Assembler and Code Words
                   11900: @subsection 386 Assembler
1.44      crook    11901: 
1.78      anton    11902: The 386 assembler included in Gforth was written by Bernd Paysan, it's
                   11903: available under GPL, and originally part of bigFORTH.
1.21      crook    11904: 
1.78      anton    11905: The 386 disassembler included in Gforth was written by Andrew McKewan
                   11906: and is in the public domain.
1.21      crook    11907: 
1.91      anton    11908: The disassembler displays code in an Intel-like prefix syntax.
1.21      crook    11909: 
1.78      anton    11910: The assembler uses a postfix syntax with reversed parameters.
1.1       anton    11911: 
1.78      anton    11912: The assembler includes all instruction of the Athlon, i.e. 486 core
                   11913: instructions, Pentium and PPro extensions, floating point, MMX, 3Dnow!,
                   11914: but not ISSE. It's an integrated 16- and 32-bit assembler. Default is 32
                   11915: bit, you can switch to 16 bit with .86 and back to 32 bit with .386.
1.1       anton    11916: 
1.78      anton    11917: There are several prefixes to switch between different operation sizes,
                   11918: @code{.b} for byte accesses, @code{.w} for word accesses, @code{.d} for
                   11919: double-word accesses. Addressing modes can be switched with @code{.wa}
                   11920: for 16 bit addresses, and @code{.da} for 32 bit addresses. You don't
                   11921: need a prefix for byte register names (@code{AL} et al).
1.1       anton    11922: 
1.78      anton    11923: For floating point operations, the prefixes are @code{.fs} (IEEE
                   11924: single), @code{.fl} (IEEE double), @code{.fx} (extended), @code{.fw}
                   11925: (word), @code{.fd} (double-word), and @code{.fq} (quad-word).
1.21      crook    11926: 
1.78      anton    11927: The MMX opcodes don't have size prefixes, they are spelled out like in
                   11928: the Intel assembler. Instead of move from and to memory, there are
                   11929: PLDQ/PLDD and PSTQ/PSTD.
1.21      crook    11930: 
1.78      anton    11931: The registers lack the 'e' prefix; even in 32 bit mode, eax is called
                   11932: ax.  Immediate values are indicated by postfixing them with @code{#},
1.91      anton    11933: e.g., @code{3 #}.  Here are some examples of addressing modes in various
                   11934: syntaxes:
1.21      crook    11935: 
1.26      crook    11936: @example
1.91      anton    11937: Gforth          Intel (NASM)   AT&T (gas)      Name
                   11938: .w ax           ax             %ax             register (16 bit)
                   11939: ax              eax            %eax            register (32 bit)
                   11940: 3 #             offset 3       $3              immediate
                   11941: 1000 #)         byte ptr 1000  1000            displacement
                   11942: bx )            [ebx]          (%ebx)          base
                   11943: 100 di d)       100[edi]       100(%edi)       base+displacement
                   11944: 20 ax *4 i#)    20[eax*4]      20(,%eax,4)     (index*scale)+displacement
                   11945: di ax *4 i)     [edi][eax*4]   (%edi,%eax,4)   base+(index*scale)
                   11946: 4 bx cx di)     4[ebx][ecx]    4(%ebx,%ecx)    base+index+displacement
                   11947: 12 sp ax *2 di) 12[esp][eax*2] 12(%esp,%eax,2) base+(index*scale)+displacement
                   11948: @end example
                   11949: 
                   11950: You can use @code{L)} and @code{LI)} instead of @code{D)} and
                   11951: @code{DI)} to enforce 32-bit displacement fields (useful for
                   11952: later patching).
1.21      crook    11953: 
1.78      anton    11954: Some example of instructions are:
1.1       anton    11955: 
                   11956: @example
1.78      anton    11957: ax bx mov             \ move ebx,eax
                   11958: 3 # ax mov            \ mov eax,3
                   11959: 100 di ) ax mov       \ mov eax,100[edi]
                   11960: 4 bx cx di) ax mov    \ mov eax,4[ebx][ecx]
                   11961: .w ax bx mov          \ mov bx,ax
1.1       anton    11962: @end example
                   11963: 
1.78      anton    11964: The following forms are supported for binary instructions:
1.1       anton    11965: 
                   11966: @example
1.78      anton    11967: <reg> <reg> <inst>
                   11968: <n> # <reg> <inst>
                   11969: <mem> <reg> <inst>
                   11970: <reg> <mem> <inst>
1.1       anton    11971: @end example
                   11972: 
1.78      anton    11973: Immediate to memory is not supported.  The shift/rotate syntax is:
1.1       anton    11974: 
1.26      crook    11975: @example
1.78      anton    11976: <reg/mem> 1 # shl \ shortens to shift without immediate
                   11977: <reg/mem> 4 # shl
                   11978: <reg/mem> cl shl
1.26      crook    11979: @end example
1.1       anton    11980: 
1.78      anton    11981: Precede string instructions (@code{movs} etc.) with @code{.b} to get
                   11982: the byte version.
1.1       anton    11983: 
1.78      anton    11984: The control structure words @code{IF} @code{UNTIL} etc. must be preceded
                   11985: by one of these conditions: @code{vs vc u< u>= 0= 0<> u<= u> 0< 0>= ps
                   11986: pc < >= <= >}. (Note that most of these words shadow some Forth words
                   11987: when @code{assembler} is in front of @code{forth} in the search path,
                   11988: e.g., in @code{code} words).  Currently the control structure words use
                   11989: one stack item, so you have to use @code{roll} instead of @code{cs-roll}
                   11990: to shuffle them (you can also use @code{swap} etc.).
1.21      crook    11991: 
1.78      anton    11992: Here is an example of a @code{code} word (assumes that the stack pointer
                   11993: is in esi and the TOS is in ebx):
1.21      crook    11994: 
1.26      crook    11995: @example
1.78      anton    11996: code my+ ( n1 n2 -- n )
                   11997:     4 si D) bx add
                   11998:     4 # si add
                   11999:     Next
                   12000: end-code
1.26      crook    12001: @end example
1.21      crook    12002: 
1.78      anton    12003: @node Alpha Assembler, MIPS assembler, 386 Assembler, Assembler and Code Words
                   12004: @subsection Alpha Assembler
1.21      crook    12005: 
1.78      anton    12006: The Alpha assembler and disassembler were originally written by Bernd
                   12007: Thallner.
1.26      crook    12008: 
1.78      anton    12009: The register names @code{a0}--@code{a5} are not available to avoid
                   12010: shadowing hex numbers.
1.2       jwilke   12011: 
1.78      anton    12012: Immediate forms of arithmetic instructions are distinguished by a
                   12013: @code{#} just before the @code{,}, e.g., @code{and#,} (note: @code{lda,}
                   12014: does not count as arithmetic instruction).
1.2       jwilke   12015: 
1.78      anton    12016: You have to specify all operands to an instruction, even those that
                   12017: other assemblers consider optional, e.g., the destination register for
                   12018: @code{br,}, or the destination register and hint for @code{jmp,}.
1.2       jwilke   12019: 
1.78      anton    12020: You can specify conditions for @code{if,} by removing the first @code{b}
                   12021: and the trailing @code{,} from a branch with a corresponding name; e.g.,
1.2       jwilke   12022: 
1.26      crook    12023: @example
1.78      anton    12024: 11 fgt if, \ if F11>0e
                   12025:   ...
                   12026: endif,
1.26      crook    12027: @end example
1.2       jwilke   12028: 
1.78      anton    12029: @code{fbgt,} gives @code{fgt}.  
                   12030: 
                   12031: @node MIPS assembler, Other assemblers, Alpha Assembler, Assembler and Code Words
                   12032: @subsection MIPS assembler
1.2       jwilke   12033: 
1.78      anton    12034: The MIPS assembler was originally written by Christian Pirker.
1.2       jwilke   12035: 
1.78      anton    12036: Currently the assembler and disassembler only cover the MIPS-I
                   12037: architecture (R3000), and don't support FP instructions.
1.2       jwilke   12038: 
1.78      anton    12039: The register names @code{$a0}--@code{$a3} are not available to avoid
                   12040: shadowing hex numbers.
1.2       jwilke   12041: 
1.78      anton    12042: Because there is no way to distinguish registers from immediate values,
                   12043: you have to explicitly use the immediate forms of instructions, i.e.,
                   12044: @code{addiu,}, not just @code{addu,} (@command{as} does this
                   12045: implicitly).
1.2       jwilke   12046: 
1.78      anton    12047: If the architecture manual specifies several formats for the instruction
                   12048: (e.g., for @code{jalr,}), you usually have to use the one with more
                   12049: arguments (i.e., two for @code{jalr,}).  When in doubt, see
                   12050: @code{arch/mips/testasm.fs} for an example of correct use.
1.2       jwilke   12051: 
1.78      anton    12052: Branches and jumps in the MIPS architecture have a delay slot.  You have
                   12053: to fill it yourself (the simplest way is to use @code{nop,}), the
                   12054: assembler does not do it for you (unlike @command{as}).  Even
                   12055: @code{if,}, @code{ahead,}, @code{until,}, @code{again,}, @code{while,},
                   12056: @code{else,} and @code{repeat,} need a delay slot.  Since @code{begin,}
                   12057: and @code{then,} just specify branch targets, they are not affected.
1.2       jwilke   12058: 
1.78      anton    12059: Note that you must not put branches, jumps, or @code{li,} into the delay
                   12060: slot: @code{li,} may expand to several instructions, and control flow
                   12061: instructions may not be put into the branch delay slot in any case.
1.2       jwilke   12062: 
1.78      anton    12063: For branches the argument specifying the target is a relative address;
                   12064: You have to add the address of the delay slot to get the absolute
                   12065: address.
1.1       anton    12066: 
1.78      anton    12067: The MIPS architecture also has load delay slots and restrictions on
                   12068: using @code{mfhi,} and @code{mflo,}; you have to order the instructions
                   12069: yourself to satisfy these restrictions, the assembler does not do it for
                   12070: you.
1.1       anton    12071: 
1.78      anton    12072: You can specify the conditions for @code{if,} etc. by taking a
                   12073: conditional branch and leaving away the @code{b} at the start and the
                   12074: @code{,} at the end.  E.g.,
1.1       anton    12075: 
1.26      crook    12076: @example
1.78      anton    12077: 4 5 eq if,
                   12078:   ... \ do something if $4 equals $5
                   12079: then,
1.26      crook    12080: @end example
1.1       anton    12081: 
1.78      anton    12082: @node Other assemblers,  , MIPS assembler, Assembler and Code Words
                   12083: @subsection Other assemblers
                   12084: 
                   12085: If you want to contribute another assembler/disassembler, please contact
1.103     anton    12086: us (@email{anton@@mips.complang.tuwien.ac.at}) to check if we have such
                   12087: an assembler already.  If you are writing them from scratch, please use
                   12088: a similar syntax style as the one we use (i.e., postfix, commas at the
                   12089: end of the instruction names, @pxref{Common Assembler}); make the output
                   12090: of the disassembler be valid input for the assembler, and keep the style
1.78      anton    12091: similar to the style we used.
                   12092: 
                   12093: Hints on implementation: The most important part is to have a good test
                   12094: suite that contains all instructions.  Once you have that, the rest is
                   12095: easy.  For actual coding you can take a look at
                   12096: @file{arch/mips/disasm.fs} to get some ideas on how to use data for both
                   12097: the assembler and disassembler, avoiding redundancy and some potential
                   12098: bugs.  You can also look at that file (and @pxref{Advanced does> usage
                   12099: example}) to get ideas how to factor a disassembler.
                   12100: 
                   12101: Start with the disassembler, because it's easier to reuse data from the
                   12102: disassembler for the assembler than the other way round.
1.1       anton    12103: 
1.78      anton    12104: For the assembler, take a look at @file{arch/alpha/asm.fs}, which shows
                   12105: how simple it can be.
1.1       anton    12106: 
1.78      anton    12107: @c -------------------------------------------------------------
                   12108: @node Threading Words, Passing Commands to the OS, Assembler and Code Words, Words
                   12109: @section Threading Words
                   12110: @cindex threading words
1.1       anton    12111: 
1.78      anton    12112: @cindex code address
                   12113: These words provide access to code addresses and other threading stuff
                   12114: in Gforth (and, possibly, other interpretive Forths). It more or less
                   12115: abstracts away the differences between direct and indirect threading
                   12116: (and, for direct threading, the machine dependences). However, at
                   12117: present this wordset is still incomplete. It is also pretty low-level;
                   12118: some day it will hopefully be made unnecessary by an internals wordset
                   12119: that abstracts implementation details away completely.
1.1       anton    12120: 
1.78      anton    12121: The terminology used here stems from indirect threaded Forth systems; in
                   12122: such a system, the XT of a word is represented by the CFA (code field
                   12123: address) of a word; the CFA points to a cell that contains the code
                   12124: address.  The code address is the address of some machine code that
                   12125: performs the run-time action of invoking the word (e.g., the
                   12126: @code{dovar:} routine pushes the address of the body of the word (a
                   12127: variable) on the stack
                   12128: ).
1.1       anton    12129: 
1.78      anton    12130: @cindex code address
                   12131: @cindex code field address
                   12132: In an indirect threaded Forth, you can get the code address of @i{name}
                   12133: with @code{' @i{name} @@}; in Gforth you can get it with @code{' @i{name}
                   12134: >code-address}, independent of the threading method.
1.1       anton    12135: 
1.78      anton    12136: doc-threading-method
                   12137: doc->code-address
                   12138: doc-code-address!
1.1       anton    12139: 
1.78      anton    12140: @cindex @code{does>}-handler
                   12141: @cindex @code{does>}-code
                   12142: For a word defined with @code{DOES>}, the code address usually points to
                   12143: a jump instruction (the @dfn{does-handler}) that jumps to the dodoes
                   12144: routine (in Gforth on some platforms, it can also point to the dodoes
                   12145: routine itself).  What you are typically interested in, though, is
                   12146: whether a word is a @code{DOES>}-defined word, and what Forth code it
                   12147: executes; @code{>does-code} tells you that.
1.1       anton    12148: 
1.78      anton    12149: doc->does-code
1.1       anton    12150: 
1.78      anton    12151: To create a @code{DOES>}-defined word with the following basic words,
                   12152: you have to set up a @code{DOES>}-handler with @code{does-handler!};
                   12153: @code{/does-handler} aus behind you have to place your executable Forth
                   12154: code.  Finally you have to create a word and modify its behaviour with
                   12155: @code{does-handler!}.
1.1       anton    12156: 
1.78      anton    12157: doc-does-code!
                   12158: doc-does-handler!
                   12159: doc-/does-handler
1.1       anton    12160: 
1.78      anton    12161: The code addresses produced by various defining words are produced by
                   12162: the following words:
1.1       anton    12163: 
1.78      anton    12164: doc-docol:
                   12165: doc-docon:
                   12166: doc-dovar:
                   12167: doc-douser:
                   12168: doc-dodefer:
                   12169: doc-dofield:
1.1       anton    12170: 
1.99      anton    12171: @cindex definer
                   12172: The following two words generalize @code{>code-address},
                   12173: @code{>does-code}, @code{code-address!}, and @code{does-code!}:
                   12174: 
                   12175: doc->definer
                   12176: doc-definer!
                   12177: 
1.26      crook    12178: @c -------------------------------------------------------------
1.78      anton    12179: @node Passing Commands to the OS, Keeping track of Time, Threading Words, Words
1.21      crook    12180: @section Passing Commands to the Operating System
                   12181: @cindex operating system - passing commands
                   12182: @cindex shell commands
                   12183: 
                   12184: Gforth allows you to pass an arbitrary string to the host operating
                   12185: system shell (if such a thing exists) for execution.
                   12186: 
1.44      crook    12187: 
1.21      crook    12188: doc-sh
                   12189: doc-system
                   12190: doc-$?
1.23      crook    12191: doc-getenv
1.21      crook    12192: 
1.44      crook    12193: 
1.26      crook    12194: @c -------------------------------------------------------------
1.47      crook    12195: @node Keeping track of Time, Miscellaneous Words, Passing Commands to the OS, Words
                   12196: @section Keeping track of Time
                   12197: @cindex time-related words
                   12198: 
                   12199: doc-ms
                   12200: doc-time&date
1.79      anton    12201: doc-utime
                   12202: doc-cputime
1.47      crook    12203: 
                   12204: 
                   12205: @c -------------------------------------------------------------
                   12206: @node Miscellaneous Words,  , Keeping track of Time, Words
1.21      crook    12207: @section Miscellaneous Words
                   12208: @cindex miscellaneous words
                   12209: 
1.29      crook    12210: @comment TODO find homes for these
                   12211: 
1.26      crook    12212: These section lists the ANS Forth words that are not documented
1.21      crook    12213: elsewhere in this manual. Ultimately, they all need proper homes.
                   12214: 
1.68      anton    12215: doc-quit
1.44      crook    12216: 
1.26      crook    12217: The following ANS Forth words are not currently supported by Gforth 
1.27      crook    12218: (@pxref{ANS conformance}):
1.21      crook    12219: 
                   12220: @code{EDITOR} 
                   12221: @code{EMIT?} 
                   12222: @code{FORGET} 
                   12223: 
1.24      anton    12224: @c ******************************************************************
                   12225: @node Error messages, Tools, Words, Top
                   12226: @chapter Error messages
                   12227: @cindex error messages
                   12228: @cindex backtrace
                   12229: 
                   12230: A typical Gforth error message looks like this:
                   12231: 
                   12232: @example
1.86      anton    12233: in file included from \evaluated string/:-1
1.24      anton    12234: in file included from ./yyy.fs:1
                   12235: ./xxx.fs:4: Invalid memory address
                   12236: bar
                   12237: ^^^
1.79      anton    12238: Backtrace:
1.25      anton    12239: $400E664C @@
                   12240: $400E6664 foo
1.24      anton    12241: @end example
                   12242: 
                   12243: The message identifying the error is @code{Invalid memory address}.  The
                   12244: error happened when text-interpreting line 4 of the file
                   12245: @file{./xxx.fs}. This line is given (it contains @code{bar}), and the
                   12246: word on the line where the error happened, is pointed out (with
                   12247: @code{^^^}).
                   12248: 
                   12249: The file containing the error was included in line 1 of @file{./yyy.fs},
                   12250: and @file{yyy.fs} was included from a non-file (in this case, by giving
                   12251: @file{yyy.fs} as command-line parameter to Gforth).
                   12252: 
                   12253: At the end of the error message you find a return stack dump that can be
                   12254: interpreted as a backtrace (possibly empty). On top you find the top of
                   12255: the return stack when the @code{throw} happened, and at the bottom you
                   12256: find the return stack entry just above the return stack of the topmost
                   12257: text interpreter.
                   12258: 
                   12259: To the right of most return stack entries you see a guess for the word
                   12260: that pushed that return stack entry as its return address. This gives a
                   12261: backtrace. In our case we see that @code{bar} called @code{foo}, and
                   12262: @code{foo} called @code{@@} (and @code{@@} had an @emph{Invalid memory
                   12263: address} exception).
                   12264: 
                   12265: Note that the backtrace is not perfect: We don't know which return stack
                   12266: entries are return addresses (so we may get false positives); and in
                   12267: some cases (e.g., for @code{abort"}) we cannot determine from the return
                   12268: address the word that pushed the return address, so for some return
                   12269: addresses you see no names in the return stack dump.
1.25      anton    12270: 
                   12271: @cindex @code{catch} and backtraces
                   12272: The return stack dump represents the return stack at the time when a
                   12273: specific @code{throw} was executed.  In programs that make use of
                   12274: @code{catch}, it is not necessarily clear which @code{throw} should be
                   12275: used for the return stack dump (e.g., consider one @code{throw} that
                   12276: indicates an error, which is caught, and during recovery another error
1.42      anton    12277: happens; which @code{throw} should be used for the stack dump?).  Gforth
1.25      anton    12278: presents the return stack dump for the first @code{throw} after the last
                   12279: executed (not returned-to) @code{catch}; this works well in the usual
                   12280: case.
                   12281: 
                   12282: @cindex @code{gforth-fast} and backtraces
                   12283: @cindex @code{gforth-fast}, difference from @code{gforth}
                   12284: @cindex backtraces with @code{gforth-fast}
                   12285: @cindex return stack dump with @code{gforth-fast}
1.79      anton    12286: @code{Gforth} is able to do a return stack dump for throws generated
1.25      anton    12287: from primitives (e.g., invalid memory address, stack empty etc.);
                   12288: @code{gforth-fast} is only able to do a return stack dump from a
1.96      anton    12289: directly called @code{throw} (including @code{abort} etc.).  Given an
1.30      anton    12290: exception caused by a primitive in @code{gforth-fast}, you will
                   12291: typically see no return stack dump at all; however, if the exception is
                   12292: caught by @code{catch} (e.g., for restoring some state), and then
                   12293: @code{throw}n again, the return stack dump will be for the first such
                   12294: @code{throw}.
1.2       jwilke   12295: 
1.5       anton    12296: @c ******************************************************************
1.24      anton    12297: @node Tools, ANS conformance, Error messages, Top
1.1       anton    12298: @chapter Tools
                   12299: 
                   12300: @menu
                   12301: * ANS Report::                  Report the words used, sorted by wordset.
                   12302: @end menu
                   12303: 
                   12304: See also @ref{Emacs and Gforth}.
                   12305: 
                   12306: @node ANS Report,  , Tools, Tools
                   12307: @section @file{ans-report.fs}: Report the words used, sorted by wordset
                   12308: @cindex @file{ans-report.fs}
                   12309: @cindex report the words used in your program
                   12310: @cindex words used in your program
                   12311: 
                   12312: If you want to label a Forth program as ANS Forth Program, you must
                   12313: document which wordsets the program uses; for extension wordsets, it is
                   12314: helpful to list the words the program requires from these wordsets
                   12315: (because Forth systems are allowed to provide only some words of them).
                   12316: 
                   12317: The @file{ans-report.fs} tool makes it easy for you to determine which
                   12318: words from which wordset and which non-ANS words your application
                   12319: uses. You simply have to include @file{ans-report.fs} before loading the
                   12320: program you want to check. After loading your program, you can get the
                   12321: report with @code{print-ans-report}. A typical use is to run this as
                   12322: batch job like this:
                   12323: @example
                   12324: gforth ans-report.fs myprog.fs -e "print-ans-report bye"
                   12325: @end example
                   12326: 
                   12327: The output looks like this (for @file{compat/control.fs}):
                   12328: @example
                   12329: The program uses the following words
                   12330: from CORE :
                   12331: : POSTPONE THEN ; immediate ?dup IF 0= 
                   12332: from BLOCK-EXT :
                   12333: \ 
                   12334: from FILE :
                   12335: ( 
                   12336: @end example
                   12337: 
                   12338: @subsection Caveats
                   12339: 
                   12340: Note that @file{ans-report.fs} just checks which words are used, not whether
                   12341: they are used in an ANS Forth conforming way!
                   12342: 
                   12343: Some words are defined in several wordsets in the
                   12344: standard. @file{ans-report.fs} reports them for only one of the
                   12345: wordsets, and not necessarily the one you expect. It depends on usage
                   12346: which wordset is the right one to specify. E.g., if you only use the
                   12347: compilation semantics of @code{S"}, it is a Core word; if you also use
                   12348: its interpretation semantics, it is a File word.
                   12349: 
                   12350: @c ******************************************************************
1.65      anton    12351: @node ANS conformance, Standard vs Extensions, Tools, Top
1.1       anton    12352: @chapter ANS conformance
                   12353: @cindex ANS conformance of Gforth
                   12354: 
                   12355: To the best of our knowledge, Gforth is an
                   12356: 
                   12357: ANS Forth System
                   12358: @itemize @bullet
                   12359: @item providing the Core Extensions word set
                   12360: @item providing the Block word set
                   12361: @item providing the Block Extensions word set
                   12362: @item providing the Double-Number word set
                   12363: @item providing the Double-Number Extensions word set
                   12364: @item providing the Exception word set
                   12365: @item providing the Exception Extensions word set
                   12366: @item providing the Facility word set
1.40      anton    12367: @item providing @code{EKEY}, @code{EKEY>CHAR}, @code{EKEY?}, @code{MS} and @code{TIME&DATE} from the Facility Extensions word set
1.1       anton    12368: @item providing the File Access word set
                   12369: @item providing the File Access Extensions word set
                   12370: @item providing the Floating-Point word set
                   12371: @item providing the Floating-Point Extensions word set
                   12372: @item providing the Locals word set
                   12373: @item providing the Locals Extensions word set
                   12374: @item providing the Memory-Allocation word set
                   12375: @item providing the Memory-Allocation Extensions word set (that one's easy)
                   12376: @item providing the Programming-Tools word set
                   12377: @item providing @code{;CODE}, @code{AHEAD}, @code{ASSEMBLER}, @code{BYE}, @code{CODE}, @code{CS-PICK}, @code{CS-ROLL}, @code{STATE}, @code{[ELSE]}, @code{[IF]}, @code{[THEN]} from the Programming-Tools Extensions word set
                   12378: @item providing the Search-Order word set
                   12379: @item providing the Search-Order Extensions word set
                   12380: @item providing the String word set
                   12381: @item providing the String Extensions word set (another easy one)
                   12382: @end itemize
                   12383: 
                   12384: @cindex system documentation
                   12385: In addition, ANS Forth systems are required to document certain
                   12386: implementation choices. This chapter tries to meet these
                   12387: requirements. In many cases it gives a way to ask the system for the
                   12388: information instead of providing the information directly, in
                   12389: particular, if the information depends on the processor, the operating
                   12390: system or the installation options chosen, or if they are likely to
                   12391: change during the maintenance of Gforth.
                   12392: 
                   12393: @comment The framework for the rest has been taken from pfe.
                   12394: 
                   12395: @menu
                   12396: * The Core Words::              
                   12397: * The optional Block word set::  
                   12398: * The optional Double Number word set::  
                   12399: * The optional Exception word set::  
                   12400: * The optional Facility word set::  
                   12401: * The optional File-Access word set::  
                   12402: * The optional Floating-Point word set::  
                   12403: * The optional Locals word set::  
                   12404: * The optional Memory-Allocation word set::  
                   12405: * The optional Programming-Tools word set::  
                   12406: * The optional Search-Order word set::  
                   12407: @end menu
                   12408: 
                   12409: 
                   12410: @c =====================================================================
                   12411: @node The Core Words, The optional Block word set, ANS conformance, ANS conformance
                   12412: @comment  node-name,  next,  previous,  up
                   12413: @section The Core Words
                   12414: @c =====================================================================
                   12415: @cindex core words, system documentation
                   12416: @cindex system documentation, core words
                   12417: 
                   12418: @menu
                   12419: * core-idef::                   Implementation Defined Options                   
                   12420: * core-ambcond::                Ambiguous Conditions                
                   12421: * core-other::                  Other System Documentation                  
                   12422: @end menu
                   12423: 
                   12424: @c ---------------------------------------------------------------------
                   12425: @node core-idef, core-ambcond, The Core Words, The Core Words
                   12426: @subsection Implementation Defined Options
                   12427: @c ---------------------------------------------------------------------
                   12428: @cindex core words, implementation-defined options
                   12429: @cindex implementation-defined options, core words
                   12430: 
                   12431: 
                   12432: @table @i
                   12433: @item (Cell) aligned addresses:
                   12434: @cindex cell-aligned addresses
                   12435: @cindex aligned addresses
                   12436: processor-dependent. Gforth's alignment words perform natural alignment
                   12437: (e.g., an address aligned for a datum of size 8 is divisible by
                   12438: 8). Unaligned accesses usually result in a @code{-23 THROW}.
                   12439: 
                   12440: @item @code{EMIT} and non-graphic characters:
                   12441: @cindex @code{EMIT} and non-graphic characters
                   12442: @cindex non-graphic characters and @code{EMIT}
                   12443: The character is output using the C library function (actually, macro)
                   12444: @code{putc}.
                   12445: 
                   12446: @item character editing of @code{ACCEPT} and @code{EXPECT}:
                   12447: @cindex character editing of @code{ACCEPT} and @code{EXPECT}
                   12448: @cindex editing in @code{ACCEPT} and @code{EXPECT}
                   12449: @cindex @code{ACCEPT}, editing
                   12450: @cindex @code{EXPECT}, editing
                   12451: This is modeled on the GNU readline library (@pxref{Readline
                   12452: Interaction, , Command Line Editing, readline, The GNU Readline
                   12453: Library}) with Emacs-like key bindings. @kbd{Tab} deviates a little by
                   12454: producing a full word completion every time you type it (instead of
1.28      crook    12455: producing the common prefix of all completions). @xref{Command-line editing}.
1.1       anton    12456: 
                   12457: @item character set:
                   12458: @cindex character set
                   12459: The character set of your computer and display device. Gforth is
                   12460: 8-bit-clean (but some other component in your system may make trouble).
                   12461: 
                   12462: @item Character-aligned address requirements:
                   12463: @cindex character-aligned address requirements
                   12464: installation-dependent. Currently a character is represented by a C
                   12465: @code{unsigned char}; in the future we might switch to @code{wchar_t}
                   12466: (Comments on that requested).
                   12467: 
                   12468: @item character-set extensions and matching of names:
                   12469: @cindex character-set extensions and matching of names
1.26      crook    12470: @cindex case-sensitivity for name lookup
                   12471: @cindex name lookup, case-sensitivity
                   12472: @cindex locale and case-sensitivity
1.21      crook    12473: Any character except the ASCII NUL character can be used in a
1.1       anton    12474: name. Matching is case-insensitive (except in @code{TABLE}s). The
1.47      crook    12475: matching is performed using the C library function @code{strncasecmp}, whose
1.1       anton    12476: function is probably influenced by the locale. E.g., the @code{C} locale
                   12477: does not know about accents and umlauts, so they are matched
                   12478: case-sensitively in that locale. For portability reasons it is best to
                   12479: write programs such that they work in the @code{C} locale. Then one can
                   12480: use libraries written by a Polish programmer (who might use words
                   12481: containing ISO Latin-2 encoded characters) and by a French programmer
                   12482: (ISO Latin-1) in the same program (of course, @code{WORDS} will produce
                   12483: funny results for some of the words (which ones, depends on the font you
                   12484: are using)). Also, the locale you prefer may not be available in other
                   12485: operating systems. Hopefully, Unicode will solve these problems one day.
                   12486: 
                   12487: @item conditions under which control characters match a space delimiter:
                   12488: @cindex space delimiters
                   12489: @cindex control characters as delimiters
                   12490: If @code{WORD} is called with the space character as a delimiter, all
                   12491: white-space characters (as identified by the C macro @code{isspace()})
                   12492: are delimiters. @code{PARSE}, on the other hand, treats space like other
1.44      crook    12493: delimiters. @code{SWORD} treats space like @code{WORD}, but behaves
1.79      anton    12494: like @code{PARSE} otherwise. @code{Name}, which is used by the outer
1.1       anton    12495: interpreter (aka text interpreter) by default, treats all white-space
                   12496: characters as delimiters.
                   12497: 
1.26      crook    12498: @item format of the control-flow stack:
                   12499: @cindex control-flow stack, format
                   12500: The data stack is used as control-flow stack. The size of a control-flow
1.1       anton    12501: stack item in cells is given by the constant @code{cs-item-size}. At the
                   12502: time of this writing, an item consists of a (pointer to a) locals list
                   12503: (third), an address in the code (second), and a tag for identifying the
                   12504: item (TOS). The following tags are used: @code{defstart},
                   12505: @code{live-orig}, @code{dead-orig}, @code{dest}, @code{do-dest},
                   12506: @code{scopestart}.
                   12507: 
                   12508: @item conversion of digits > 35
                   12509: @cindex digits > 35
                   12510: The characters @code{[\]^_'} are the digits with the decimal value
                   12511: 36@minus{}41. There is no way to input many of the larger digits.
                   12512: 
                   12513: @item display after input terminates in @code{ACCEPT} and @code{EXPECT}:
                   12514: @cindex @code{EXPECT}, display after end of input
                   12515: @cindex @code{ACCEPT}, display after end of input
                   12516: The cursor is moved to the end of the entered string. If the input is
                   12517: terminated using the @kbd{Return} key, a space is typed.
                   12518: 
                   12519: @item exception abort sequence of @code{ABORT"}:
                   12520: @cindex exception abort sequence of @code{ABORT"}
                   12521: @cindex @code{ABORT"}, exception abort sequence
                   12522: The error string is stored into the variable @code{"error} and a
                   12523: @code{-2 throw} is performed.
                   12524: 
                   12525: @item input line terminator:
                   12526: @cindex input line terminator
                   12527: @cindex line terminator on input
1.26      crook    12528: @cindex newline character on input
1.1       anton    12529: For interactive input, @kbd{C-m} (CR) and @kbd{C-j} (LF) terminate
                   12530: lines. One of these characters is typically produced when you type the
                   12531: @kbd{Enter} or @kbd{Return} key.
                   12532: 
                   12533: @item maximum size of a counted string:
                   12534: @cindex maximum size of a counted string
                   12535: @cindex counted string, maximum size
                   12536: @code{s" /counted-string" environment? drop .}. Currently 255 characters
1.79      anton    12537: on all platforms, but this may change.
1.1       anton    12538: 
                   12539: @item maximum size of a parsed string:
                   12540: @cindex maximum size of a parsed string
                   12541: @cindex parsed string, maximum size
                   12542: Given by the constant @code{/line}. Currently 255 characters.
                   12543: 
                   12544: @item maximum size of a definition name, in characters:
                   12545: @cindex maximum size of a definition name, in characters
                   12546: @cindex name, maximum length
                   12547: 31
                   12548: 
                   12549: @item maximum string length for @code{ENVIRONMENT?}, in characters:
                   12550: @cindex maximum string length for @code{ENVIRONMENT?}, in characters
                   12551: @cindex @code{ENVIRONMENT?} string length, maximum
                   12552: 31
                   12553: 
                   12554: @item method of selecting the user input device:
                   12555: @cindex user input device, method of selecting
                   12556: The user input device is the standard input. There is currently no way to
                   12557: change it from within Gforth. However, the input can typically be
                   12558: redirected in the command line that starts Gforth.
                   12559: 
                   12560: @item method of selecting the user output device:
                   12561: @cindex user output device, method of selecting
                   12562: @code{EMIT} and @code{TYPE} output to the file-id stored in the value
1.10      anton    12563: @code{outfile-id} (@code{stdout} by default). Gforth uses unbuffered
                   12564: output when the user output device is a terminal, otherwise the output
                   12565: is buffered.
1.1       anton    12566: 
                   12567: @item methods of dictionary compilation:
                   12568: What are we expected to document here?
                   12569: 
                   12570: @item number of bits in one address unit:
                   12571: @cindex number of bits in one address unit
                   12572: @cindex address unit, size in bits
                   12573: @code{s" address-units-bits" environment? drop .}. 8 in all current
1.79      anton    12574: platforms.
1.1       anton    12575: 
                   12576: @item number representation and arithmetic:
                   12577: @cindex number representation and arithmetic
1.79      anton    12578: Processor-dependent. Binary two's complement on all current platforms.
1.1       anton    12579: 
                   12580: @item ranges for integer types:
                   12581: @cindex ranges for integer types
                   12582: @cindex integer types, ranges
                   12583: Installation-dependent. Make environmental queries for @code{MAX-N},
                   12584: @code{MAX-U}, @code{MAX-D} and @code{MAX-UD}. The lower bounds for
                   12585: unsigned (and positive) types is 0. The lower bound for signed types on
                   12586: two's complement and one's complement machines machines can be computed
                   12587: by adding 1 to the upper bound.
                   12588: 
                   12589: @item read-only data space regions:
                   12590: @cindex read-only data space regions
                   12591: @cindex data-space, read-only regions
                   12592: The whole Forth data space is writable.
                   12593: 
                   12594: @item size of buffer at @code{WORD}:
                   12595: @cindex size of buffer at @code{WORD}
                   12596: @cindex @code{WORD} buffer size
                   12597: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   12598: shared with the pictured numeric output string. If overwriting
                   12599: @code{PAD} is acceptable, it is as large as the remaining dictionary
                   12600: space, although only as much can be sensibly used as fits in a counted
                   12601: string.
                   12602: 
                   12603: @item size of one cell in address units:
                   12604: @cindex cell size
                   12605: @code{1 cells .}.
                   12606: 
                   12607: @item size of one character in address units:
                   12608: @cindex char size
1.79      anton    12609: @code{1 chars .}. 1 on all current platforms.
1.1       anton    12610: 
                   12611: @item size of the keyboard terminal buffer:
                   12612: @cindex size of the keyboard terminal buffer
                   12613: @cindex terminal buffer, size
                   12614: Varies. You can determine the size at a specific time using @code{lp@@
                   12615: tib - .}. It is shared with the locals stack and TIBs of files that
                   12616: include the current file. You can change the amount of space for TIBs
                   12617: and locals stack at Gforth startup with the command line option
                   12618: @code{-l}.
                   12619: 
                   12620: @item size of the pictured numeric output buffer:
                   12621: @cindex size of the pictured numeric output buffer
                   12622: @cindex pictured numeric output buffer, size
                   12623: @code{PAD HERE - .}. 104 characters on 32-bit machines. The buffer is
                   12624: shared with @code{WORD}.
                   12625: 
                   12626: @item size of the scratch area returned by @code{PAD}:
                   12627: @cindex size of the scratch area returned by @code{PAD}
                   12628: @cindex @code{PAD} size
                   12629: The remainder of dictionary space. @code{unused pad here - - .}.
                   12630: 
                   12631: @item system case-sensitivity characteristics:
                   12632: @cindex case-sensitivity characteristics
1.26      crook    12633: Dictionary searches are case-insensitive (except in
1.1       anton    12634: @code{TABLE}s). However, as explained above under @i{character-set
                   12635: extensions}, the matching for non-ASCII characters is determined by the
                   12636: locale you are using. In the default @code{C} locale all non-ASCII
                   12637: characters are matched case-sensitively.
                   12638: 
                   12639: @item system prompt:
                   12640: @cindex system prompt
                   12641: @cindex prompt
                   12642: @code{ ok} in interpret state, @code{ compiled} in compile state.
                   12643: 
                   12644: @item division rounding:
                   12645: @cindex division rounding
                   12646: installation dependent. @code{s" floored" environment? drop .}. We leave
                   12647: the choice to @code{gcc} (what to use for @code{/}) and to you (whether
                   12648: to use @code{fm/mod}, @code{sm/rem} or simply @code{/}).
                   12649: 
                   12650: @item values of @code{STATE} when true:
                   12651: @cindex @code{STATE} values
                   12652: -1.
                   12653: 
                   12654: @item values returned after arithmetic overflow:
                   12655: On two's complement machines, arithmetic is performed modulo
                   12656: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   12657: arithmetic (with appropriate mapping for signed types). Division by zero
                   12658: typically results in a @code{-55 throw} (Floating-point unidentified
1.80      anton    12659: fault) or @code{-10 throw} (divide by zero).
1.1       anton    12660: 
                   12661: @item whether the current definition can be found after @t{DOES>}:
                   12662: @cindex @t{DOES>}, visibility of current definition
                   12663: No.
                   12664: 
                   12665: @end table
                   12666: 
                   12667: @c ---------------------------------------------------------------------
                   12668: @node core-ambcond, core-other, core-idef, The Core Words
                   12669: @subsection Ambiguous conditions
                   12670: @c ---------------------------------------------------------------------
                   12671: @cindex core words, ambiguous conditions
                   12672: @cindex ambiguous conditions, core words
                   12673: 
                   12674: @table @i
                   12675: 
                   12676: @item a name is neither a word nor a number:
                   12677: @cindex name not found
1.26      crook    12678: @cindex undefined word
1.80      anton    12679: @code{-13 throw} (Undefined word).
1.1       anton    12680: 
                   12681: @item a definition name exceeds the maximum length allowed:
1.26      crook    12682: @cindex word name too long
1.1       anton    12683: @code{-19 throw} (Word name too long)
                   12684: 
                   12685: @item addressing a region not inside the various data spaces of the forth system:
                   12686: @cindex Invalid memory address
1.32      anton    12687: The stacks, code space and header space are accessible. Machine code space is
1.1       anton    12688: typically readable. Accessing other addresses gives results dependent on
                   12689: the operating system. On decent systems: @code{-9 throw} (Invalid memory
                   12690: address).
                   12691: 
                   12692: @item argument type incompatible with parameter:
1.26      crook    12693: @cindex argument type mismatch
1.1       anton    12694: This is usually not caught. Some words perform checks, e.g., the control
                   12695: flow words, and issue a @code{ABORT"} or @code{-12 THROW} (Argument type
                   12696: mismatch).
                   12697: 
                   12698: @item attempting to obtain the execution token of a word with undefined execution semantics:
                   12699: @cindex Interpreting a compile-only word, for @code{'} etc.
                   12700: @cindex execution token of words with undefined execution semantics
                   12701: @code{-14 throw} (Interpreting a compile-only word). In some cases, you
                   12702: get an execution token for @code{compile-only-error} (which performs a
                   12703: @code{-14 throw} when executed).
                   12704: 
                   12705: @item dividing by zero:
                   12706: @cindex dividing by zero
                   12707: @cindex floating point unidentified fault, integer division
1.80      anton    12708: On some platforms, this produces a @code{-10 throw} (Division by
1.24      anton    12709: zero); on other systems, this typically results in a @code{-55 throw}
                   12710: (Floating-point unidentified fault).
1.1       anton    12711: 
                   12712: @item insufficient data stack or return stack space:
                   12713: @cindex insufficient data stack or return stack space
                   12714: @cindex stack overflow
1.26      crook    12715: @cindex address alignment exception, stack overflow
1.1       anton    12716: @cindex Invalid memory address, stack overflow
                   12717: Depending on the operating system, the installation, and the invocation
                   12718: of Gforth, this is either checked by the memory management hardware, or
1.24      anton    12719: it is not checked. If it is checked, you typically get a @code{-3 throw}
                   12720: (Stack overflow), @code{-5 throw} (Return stack overflow), or @code{-9
                   12721: throw} (Invalid memory address) (depending on the platform and how you
                   12722: achieved the overflow) as soon as the overflow happens. If it is not
                   12723: checked, overflows typically result in mysterious illegal memory
                   12724: accesses, producing @code{-9 throw} (Invalid memory address) or
                   12725: @code{-23 throw} (Address alignment exception); they might also destroy
                   12726: the internal data structure of @code{ALLOCATE} and friends, resulting in
                   12727: various errors in these words.
1.1       anton    12728: 
                   12729: @item insufficient space for loop control parameters:
                   12730: @cindex insufficient space for loop control parameters
1.80      anton    12731: Like other return stack overflows.
1.1       anton    12732: 
                   12733: @item insufficient space in the dictionary:
                   12734: @cindex insufficient space in the dictionary
                   12735: @cindex dictionary overflow
1.12      anton    12736: If you try to allot (either directly with @code{allot}, or indirectly
                   12737: with @code{,}, @code{create} etc.) more memory than available in the
                   12738: dictionary, you get a @code{-8 throw} (Dictionary overflow). If you try
                   12739: to access memory beyond the end of the dictionary, the results are
                   12740: similar to stack overflows.
1.1       anton    12741: 
                   12742: @item interpreting a word with undefined interpretation semantics:
                   12743: @cindex interpreting a word with undefined interpretation semantics
                   12744: @cindex Interpreting a compile-only word
                   12745: For some words, we have defined interpretation semantics. For the
                   12746: others: @code{-14 throw} (Interpreting a compile-only word).
                   12747: 
                   12748: @item modifying the contents of the input buffer or a string literal:
                   12749: @cindex modifying the contents of the input buffer or a string literal
                   12750: These are located in writable memory and can be modified.
                   12751: 
                   12752: @item overflow of the pictured numeric output string:
                   12753: @cindex overflow of the pictured numeric output string
                   12754: @cindex pictured numeric output string, overflow
1.24      anton    12755: @code{-17 throw} (Pictured numeric ouput string overflow).
1.1       anton    12756: 
                   12757: @item parsed string overflow:
                   12758: @cindex parsed string overflow
                   12759: @code{PARSE} cannot overflow. @code{WORD} does not check for overflow.
                   12760: 
                   12761: @item producing a result out of range:
                   12762: @cindex result out of range
                   12763: On two's complement machines, arithmetic is performed modulo
                   12764: 2**bits-per-cell for single arithmetic and 4**bits-per-cell for double
                   12765: arithmetic (with appropriate mapping for signed types). Division by zero
1.24      anton    12766: typically results in a @code{-10 throw} (divide by zero) or @code{-55
                   12767: throw} (floating point unidentified fault). @code{convert} and
                   12768: @code{>number} currently overflow silently.
1.1       anton    12769: 
                   12770: @item reading from an empty data or return stack:
                   12771: @cindex stack empty
                   12772: @cindex stack underflow
1.24      anton    12773: @cindex return stack underflow
1.1       anton    12774: The data stack is checked by the outer (aka text) interpreter after
                   12775: every word executed. If it has underflowed, a @code{-4 throw} (Stack
                   12776: underflow) is performed. Apart from that, stacks may be checked or not,
1.24      anton    12777: depending on operating system, installation, and invocation. If they are
                   12778: caught by a check, they typically result in @code{-4 throw} (Stack
                   12779: underflow), @code{-6 throw} (Return stack underflow) or @code{-9 throw}
                   12780: (Invalid memory address), depending on the platform and which stack
                   12781: underflows and by how much. Note that even if the system uses checking
                   12782: (through the MMU), your program may have to underflow by a significant
                   12783: number of stack items to trigger the reaction (the reason for this is
                   12784: that the MMU, and therefore the checking, works with a page-size
                   12785: granularity).  If there is no checking, the symptoms resulting from an
                   12786: underflow are similar to those from an overflow.  Unbalanced return
1.80      anton    12787: stack errors can result in a variety of symptoms, including @code{-9 throw}
1.24      anton    12788: (Invalid memory address) and Illegal Instruction (typically @code{-260
                   12789: throw}).
1.1       anton    12790: 
                   12791: @item unexpected end of the input buffer, resulting in an attempt to use a zero-length string as a name:
                   12792: @cindex unexpected end of the input buffer
                   12793: @cindex zero-length string as a name
                   12794: @cindex Attempt to use zero-length string as a name
                   12795: @code{Create} and its descendants perform a @code{-16 throw} (Attempt to
                   12796: use zero-length string as a name). Words like @code{'} probably will not
                   12797: find what they search. Note that it is possible to create zero-length
                   12798: names with @code{nextname} (should it not?).
                   12799: 
                   12800: @item @code{>IN} greater than input buffer:
                   12801: @cindex @code{>IN} greater than input buffer
                   12802: The next invocation of a parsing word returns a string with length 0.
                   12803: 
                   12804: @item @code{RECURSE} appears after @code{DOES>}:
                   12805: @cindex @code{RECURSE} appears after @code{DOES>}
                   12806: Compiles a recursive call to the defining word, not to the defined word.
                   12807: 
                   12808: @item argument input source different than current input source for @code{RESTORE-INPUT}:
                   12809: @cindex argument input source different than current input source for @code{RESTORE-INPUT}
1.26      crook    12810: @cindex argument type mismatch, @code{RESTORE-INPUT}
1.1       anton    12811: @cindex @code{RESTORE-INPUT}, Argument type mismatch
                   12812: @code{-12 THROW}. Note that, once an input file is closed (e.g., because
                   12813: the end of the file was reached), its source-id may be
                   12814: reused. Therefore, restoring an input source specification referencing a
                   12815: closed file may lead to unpredictable results instead of a @code{-12
                   12816: THROW}.
                   12817: 
                   12818: In the future, Gforth may be able to restore input source specifications
                   12819: from other than the current input source.
                   12820: 
                   12821: @item data space containing definitions gets de-allocated:
                   12822: @cindex data space containing definitions gets de-allocated
                   12823: Deallocation with @code{allot} is not checked. This typically results in
                   12824: memory access faults or execution of illegal instructions.
                   12825: 
                   12826: @item data space read/write with incorrect alignment:
                   12827: @cindex data space read/write with incorrect alignment
                   12828: @cindex alignment faults
1.26      crook    12829: @cindex address alignment exception
1.1       anton    12830: Processor-dependent. Typically results in a @code{-23 throw} (Address
1.12      anton    12831: alignment exception). Under Linux-Intel on a 486 or later processor with
1.1       anton    12832: alignment turned on, incorrect alignment results in a @code{-9 throw}
                   12833: (Invalid memory address). There are reportedly some processors with
1.12      anton    12834: alignment restrictions that do not report violations.
1.1       anton    12835: 
                   12836: @item data space pointer not properly aligned, @code{,}, @code{C,}:
                   12837: @cindex data space pointer not properly aligned, @code{,}, @code{C,}
                   12838: Like other alignment errors.
                   12839: 
                   12840: @item less than u+2 stack items (@code{PICK} and @code{ROLL}):
                   12841: Like other stack underflows.
                   12842: 
                   12843: @item loop control parameters not available:
                   12844: @cindex loop control parameters not available
                   12845: Not checked. The counted loop words simply assume that the top of return
                   12846: stack items are loop control parameters and behave accordingly.
                   12847: 
                   12848: @item most recent definition does not have a name (@code{IMMEDIATE}):
                   12849: @cindex most recent definition does not have a name (@code{IMMEDIATE})
                   12850: @cindex last word was headerless
                   12851: @code{abort" last word was headerless"}.
                   12852: 
                   12853: @item name not defined by @code{VALUE} used by @code{TO}:
                   12854: @cindex name not defined by @code{VALUE} used by @code{TO}
                   12855: @cindex @code{TO} on non-@code{VALUE}s
                   12856: @cindex Invalid name argument, @code{TO}
                   12857: @code{-32 throw} (Invalid name argument) (unless name is a local or was
                   12858: defined by @code{CONSTANT}; in the latter case it just changes the constant).
                   12859: 
                   12860: @item name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}):
                   12861: @cindex name not found (@code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]})
1.26      crook    12862: @cindex undefined word, @code{'}, @code{POSTPONE}, @code{[']}, @code{[COMPILE]}
1.1       anton    12863: @code{-13 throw} (Undefined word)
                   12864: 
                   12865: @item parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN}):
                   12866: @cindex parameters are not of the same type (@code{DO}, @code{?DO}, @code{WITHIN})
                   12867: Gforth behaves as if they were of the same type. I.e., you can predict
                   12868: the behaviour by interpreting all parameters as, e.g., signed.
                   12869: 
                   12870: @item @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}:
                   12871: @cindex @code{POSTPONE} or @code{[COMPILE]} applied to @code{TO}
                   12872: Assume @code{: X POSTPONE TO ; IMMEDIATE}. @code{X} performs the
                   12873: compilation semantics of @code{TO}.
                   12874: 
                   12875: @item String longer than a counted string returned by @code{WORD}:
1.26      crook    12876: @cindex string longer than a counted string returned by @code{WORD}
1.1       anton    12877: @cindex @code{WORD}, string overflow
                   12878: Not checked. The string will be ok, but the count will, of course,
                   12879: contain only the least significant bits of the length.
                   12880: 
                   12881: @item u greater than or equal to the number of bits in a cell (@code{LSHIFT}, @code{RSHIFT}):
                   12882: @cindex @code{LSHIFT}, large shift counts
                   12883: @cindex @code{RSHIFT}, large shift counts
                   12884: Processor-dependent. Typical behaviours are returning 0 and using only
                   12885: the low bits of the shift count.
                   12886: 
                   12887: @item word not defined via @code{CREATE}:
                   12888: @cindex @code{>BODY} of non-@code{CREATE}d words
                   12889: @code{>BODY} produces the PFA of the word no matter how it was defined.
                   12890: 
                   12891: @cindex @code{DOES>} of non-@code{CREATE}d words
                   12892: @code{DOES>} changes the execution semantics of the last defined word no
                   12893: matter how it was defined. E.g., @code{CONSTANT DOES>} is equivalent to
                   12894: @code{CREATE , DOES>}.
                   12895: 
                   12896: @item words improperly used outside @code{<#} and @code{#>}:
                   12897: Not checked. As usual, you can expect memory faults.
                   12898: 
                   12899: @end table
                   12900: 
                   12901: 
                   12902: @c ---------------------------------------------------------------------
                   12903: @node core-other,  , core-ambcond, The Core Words
                   12904: @subsection Other system documentation
                   12905: @c ---------------------------------------------------------------------
                   12906: @cindex other system documentation, core words
                   12907: @cindex core words, other system documentation
                   12908: 
                   12909: @table @i
                   12910: @item nonstandard words using @code{PAD}:
                   12911: @cindex @code{PAD} use by nonstandard words
                   12912: None.
                   12913: 
                   12914: @item operator's terminal facilities available:
                   12915: @cindex operator's terminal facilities available
1.80      anton    12916: After processing the OS's command line, Gforth goes into interactive mode,
1.1       anton    12917: and you can give commands to Gforth interactively. The actual facilities
                   12918: available depend on how you invoke Gforth.
                   12919: 
                   12920: @item program data space available:
                   12921: @cindex program data space available
                   12922: @cindex data space available
                   12923: @code{UNUSED .} gives the remaining dictionary space. The total
                   12924: dictionary space can be specified with the @code{-m} switch
                   12925: (@pxref{Invoking Gforth}) when Gforth starts up.
                   12926: 
                   12927: @item return stack space available:
                   12928: @cindex return stack space available
                   12929: You can compute the total return stack space in cells with
                   12930: @code{s" RETURN-STACK-CELLS" environment? drop .}. You can specify it at
                   12931: startup time with the @code{-r} switch (@pxref{Invoking Gforth}).
                   12932: 
                   12933: @item stack space available:
                   12934: @cindex stack space available
                   12935: You can compute the total data stack space in cells with
                   12936: @code{s" STACK-CELLS" environment? drop .}. You can specify it at
                   12937: startup time with the @code{-d} switch (@pxref{Invoking Gforth}).
                   12938: 
                   12939: @item system dictionary space required, in address units:
                   12940: @cindex system dictionary space required, in address units
                   12941: Type @code{here forthstart - .} after startup. At the time of this
                   12942: writing, this gives 80080 (bytes) on a 32-bit system.
                   12943: @end table
                   12944: 
                   12945: 
                   12946: @c =====================================================================
                   12947: @node The optional Block word set, The optional Double Number word set, The Core Words, ANS conformance
                   12948: @section The optional Block word set
                   12949: @c =====================================================================
                   12950: @cindex system documentation, block words
                   12951: @cindex block words, system documentation
                   12952: 
                   12953: @menu
                   12954: * block-idef::                  Implementation Defined Options
                   12955: * block-ambcond::               Ambiguous Conditions               
                   12956: * block-other::                 Other System Documentation                 
                   12957: @end menu
                   12958: 
                   12959: 
                   12960: @c ---------------------------------------------------------------------
                   12961: @node block-idef, block-ambcond, The optional Block word set, The optional Block word set
                   12962: @subsection Implementation Defined Options
                   12963: @c ---------------------------------------------------------------------
                   12964: @cindex implementation-defined options, block words
                   12965: @cindex block words, implementation-defined options
                   12966: 
                   12967: @table @i
                   12968: @item the format for display by @code{LIST}:
                   12969: @cindex @code{LIST} display format
                   12970: First the screen number is displayed, then 16 lines of 64 characters,
                   12971: each line preceded by the line number.
                   12972: 
                   12973: @item the length of a line affected by @code{\}:
                   12974: @cindex length of a line affected by @code{\}
                   12975: @cindex @code{\}, line length in blocks
                   12976: 64 characters.
                   12977: @end table
                   12978: 
                   12979: 
                   12980: @c ---------------------------------------------------------------------
                   12981: @node block-ambcond, block-other, block-idef, The optional Block word set
                   12982: @subsection Ambiguous conditions
                   12983: @c ---------------------------------------------------------------------
                   12984: @cindex block words, ambiguous conditions
                   12985: @cindex ambiguous conditions, block words
                   12986: 
                   12987: @table @i
                   12988: @item correct block read was not possible:
                   12989: @cindex block read not possible
                   12990: Typically results in a @code{throw} of some OS-derived value (between
                   12991: -512 and -2048). If the blocks file was just not long enough, blanks are
                   12992: supplied for the missing portion.
                   12993: 
                   12994: @item I/O exception in block transfer:
                   12995: @cindex I/O exception in block transfer
                   12996: @cindex block transfer, I/O exception
                   12997: Typically results in a @code{throw} of some OS-derived value (between
                   12998: -512 and -2048).
                   12999: 
                   13000: @item invalid block number:
                   13001: @cindex invalid block number
                   13002: @cindex block number invalid
                   13003: @code{-35 throw} (Invalid block number)
                   13004: 
                   13005: @item a program directly alters the contents of @code{BLK}:
                   13006: @cindex @code{BLK}, altering @code{BLK}
                   13007: The input stream is switched to that other block, at the same
                   13008: position. If the storing to @code{BLK} happens when interpreting
                   13009: non-block input, the system will get quite confused when the block ends.
                   13010: 
                   13011: @item no current block buffer for @code{UPDATE}:
                   13012: @cindex @code{UPDATE}, no current block buffer
                   13013: @code{UPDATE} has no effect.
                   13014: 
                   13015: @end table
                   13016: 
                   13017: @c ---------------------------------------------------------------------
                   13018: @node block-other,  , block-ambcond, The optional Block word set
                   13019: @subsection Other system documentation
                   13020: @c ---------------------------------------------------------------------
                   13021: @cindex other system documentation, block words
                   13022: @cindex block words, other system documentation
                   13023: 
                   13024: @table @i
                   13025: @item any restrictions a multiprogramming system places on the use of buffer addresses:
                   13026: No restrictions (yet).
                   13027: 
                   13028: @item the number of blocks available for source and data:
                   13029: depends on your disk space.
                   13030: 
                   13031: @end table
                   13032: 
                   13033: 
                   13034: @c =====================================================================
                   13035: @node The optional Double Number word set, The optional Exception word set, The optional Block word set, ANS conformance
                   13036: @section The optional Double Number word set
                   13037: @c =====================================================================
                   13038: @cindex system documentation, double words
                   13039: @cindex double words, system documentation
                   13040: 
                   13041: @menu
                   13042: * double-ambcond::              Ambiguous Conditions              
                   13043: @end menu
                   13044: 
                   13045: 
                   13046: @c ---------------------------------------------------------------------
                   13047: @node double-ambcond,  , The optional Double Number word set, The optional Double Number word set
                   13048: @subsection Ambiguous conditions
                   13049: @c ---------------------------------------------------------------------
                   13050: @cindex double words, ambiguous conditions
                   13051: @cindex ambiguous conditions, double words
                   13052: 
                   13053: @table @i
1.29      crook    13054: @item @i{d} outside of range of @i{n} in @code{D>S}:
                   13055: @cindex @code{D>S}, @i{d} out of range of @i{n} 
                   13056: The least significant cell of @i{d} is produced.
1.1       anton    13057: 
                   13058: @end table
                   13059: 
                   13060: 
                   13061: @c =====================================================================
                   13062: @node The optional Exception word set, The optional Facility word set, The optional Double Number word set, ANS conformance
                   13063: @section The optional Exception word set
                   13064: @c =====================================================================
                   13065: @cindex system documentation, exception words
                   13066: @cindex exception words, system documentation
                   13067: 
                   13068: @menu
                   13069: * exception-idef::              Implementation Defined Options              
                   13070: @end menu
                   13071: 
                   13072: 
                   13073: @c ---------------------------------------------------------------------
                   13074: @node exception-idef,  , The optional Exception word set, The optional Exception word set
                   13075: @subsection Implementation Defined Options
                   13076: @c ---------------------------------------------------------------------
                   13077: @cindex implementation-defined options, exception words
                   13078: @cindex exception words, implementation-defined options
                   13079: 
                   13080: @table @i
                   13081: @item @code{THROW}-codes used in the system:
                   13082: @cindex @code{THROW}-codes used in the system
                   13083: The codes -256@minus{}-511 are used for reporting signals. The mapping
1.29      crook    13084: from OS signal numbers to throw codes is -256@minus{}@i{signal}. The
1.1       anton    13085: codes -512@minus{}-2047 are used for OS errors (for file and memory
                   13086: allocation operations). The mapping from OS error numbers to throw codes
                   13087: is -512@minus{}@code{errno}. One side effect of this mapping is that
                   13088: undefined OS errors produce a message with a strange number; e.g.,
                   13089: @code{-1000 THROW} results in @code{Unknown error 488} on my system.
                   13090: @end table
                   13091: 
                   13092: @c =====================================================================
                   13093: @node The optional Facility word set, The optional File-Access word set, The optional Exception word set, ANS conformance
                   13094: @section The optional Facility word set
                   13095: @c =====================================================================
                   13096: @cindex system documentation, facility words
                   13097: @cindex facility words, system documentation
                   13098: 
                   13099: @menu
                   13100: * facility-idef::               Implementation Defined Options               
                   13101: * facility-ambcond::            Ambiguous Conditions            
                   13102: @end menu
                   13103: 
                   13104: 
                   13105: @c ---------------------------------------------------------------------
                   13106: @node facility-idef, facility-ambcond, The optional Facility word set, The optional Facility word set
                   13107: @subsection Implementation Defined Options
                   13108: @c ---------------------------------------------------------------------
                   13109: @cindex implementation-defined options, facility words
                   13110: @cindex facility words, implementation-defined options
                   13111: 
                   13112: @table @i
                   13113: @item encoding of keyboard events (@code{EKEY}):
                   13114: @cindex keyboard events, encoding in @code{EKEY}
                   13115: @cindex @code{EKEY}, encoding of keyboard events
1.40      anton    13116: Keys corresponding to ASCII characters are encoded as ASCII characters.
1.41      anton    13117: Other keys are encoded with the constants @code{k-left}, @code{k-right},
                   13118: @code{k-up}, @code{k-down}, @code{k-home}, @code{k-end}, @code{k1},
                   13119: @code{k2}, @code{k3}, @code{k4}, @code{k5}, @code{k6}, @code{k7},
                   13120: @code{k8}, @code{k9}, @code{k10}, @code{k11}, @code{k12}.
1.40      anton    13121: 
1.1       anton    13122: 
                   13123: @item duration of a system clock tick:
                   13124: @cindex duration of a system clock tick
                   13125: @cindex clock tick duration
                   13126: System dependent. With respect to @code{MS}, the time is specified in
                   13127: microseconds. How well the OS and the hardware implement this, is
                   13128: another question.
                   13129: 
                   13130: @item repeatability to be expected from the execution of @code{MS}:
                   13131: @cindex repeatability to be expected from the execution of @code{MS}
                   13132: @cindex @code{MS}, repeatability to be expected
                   13133: System dependent. On Unix, a lot depends on load. If the system is
                   13134: lightly loaded, and the delay is short enough that Gforth does not get
                   13135: swapped out, the performance should be acceptable. Under MS-DOS and
                   13136: other single-tasking systems, it should be good.
                   13137: 
                   13138: @end table
                   13139: 
                   13140: 
                   13141: @c ---------------------------------------------------------------------
                   13142: @node facility-ambcond,  , facility-idef, The optional Facility word set
                   13143: @subsection Ambiguous conditions
                   13144: @c ---------------------------------------------------------------------
                   13145: @cindex facility words, ambiguous conditions
                   13146: @cindex ambiguous conditions, facility words
                   13147: 
                   13148: @table @i
                   13149: @item @code{AT-XY} can't be performed on user output device:
                   13150: @cindex @code{AT-XY} can't be performed on user output device
                   13151: Largely terminal dependent. No range checks are done on the arguments.
                   13152: No errors are reported. You may see some garbage appearing, you may see
                   13153: simply nothing happen.
                   13154: 
                   13155: @end table
                   13156: 
                   13157: 
                   13158: @c =====================================================================
                   13159: @node The optional File-Access word set, The optional Floating-Point word set, The optional Facility word set, ANS conformance
                   13160: @section The optional File-Access word set
                   13161: @c =====================================================================
                   13162: @cindex system documentation, file words
                   13163: @cindex file words, system documentation
                   13164: 
                   13165: @menu
                   13166: * file-idef::                   Implementation Defined Options
                   13167: * file-ambcond::                Ambiguous Conditions                
                   13168: @end menu
                   13169: 
                   13170: @c ---------------------------------------------------------------------
                   13171: @node file-idef, file-ambcond, The optional File-Access word set, The optional File-Access word set
                   13172: @subsection Implementation Defined Options
                   13173: @c ---------------------------------------------------------------------
                   13174: @cindex implementation-defined options, file words
                   13175: @cindex file words, implementation-defined options
                   13176: 
                   13177: @table @i
                   13178: @item file access methods used:
                   13179: @cindex file access methods used
                   13180: @code{R/O}, @code{R/W} and @code{BIN} work as you would
                   13181: expect. @code{W/O} translates into the C file opening mode @code{w} (or
                   13182: @code{wb}): The file is cleared, if it exists, and created, if it does
                   13183: not (with both @code{open-file} and @code{create-file}).  Under Unix
                   13184: @code{create-file} creates a file with 666 permissions modified by your
                   13185: umask.
                   13186: 
                   13187: @item file exceptions:
                   13188: @cindex file exceptions
                   13189: The file words do not raise exceptions (except, perhaps, memory access
                   13190: faults when you pass illegal addresses or file-ids).
                   13191: 
                   13192: @item file line terminator:
                   13193: @cindex file line terminator
                   13194: System-dependent. Gforth uses C's newline character as line
                   13195: terminator. What the actual character code(s) of this are is
                   13196: system-dependent.
                   13197: 
                   13198: @item file name format:
                   13199: @cindex file name format
                   13200: System dependent. Gforth just uses the file name format of your OS.
                   13201: 
                   13202: @item information returned by @code{FILE-STATUS}:
                   13203: @cindex @code{FILE-STATUS}, returned information
                   13204: @code{FILE-STATUS} returns the most powerful file access mode allowed
                   13205: for the file: Either @code{R/O}, @code{W/O} or @code{R/W}. If the file
                   13206: cannot be accessed, @code{R/O BIN} is returned. @code{BIN} is applicable
                   13207: along with the returned mode.
                   13208: 
                   13209: @item input file state after an exception when including source:
                   13210: @cindex exception when including source
                   13211: All files that are left via the exception are closed.
                   13212: 
1.29      crook    13213: @item @i{ior} values and meaning:
                   13214: @cindex @i{ior} values and meaning
1.68      anton    13215: @cindex @i{wior} values and meaning
1.29      crook    13216: The @i{ior}s returned by the file and memory allocation words are
1.1       anton    13217: intended as throw codes. They typically are in the range
                   13218: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
1.29      crook    13219: @i{ior}s is -512@minus{}@i{errno}.
1.1       anton    13220: 
                   13221: @item maximum depth of file input nesting:
                   13222: @cindex maximum depth of file input nesting
                   13223: @cindex file input nesting, maximum depth
                   13224: limited by the amount of return stack, locals/TIB stack, and the number
                   13225: of open files available. This should not give you troubles.
                   13226: 
                   13227: @item maximum size of input line:
                   13228: @cindex maximum size of input line
                   13229: @cindex input line size, maximum
                   13230: @code{/line}. Currently 255.
                   13231: 
                   13232: @item methods of mapping block ranges to files:
                   13233: @cindex mapping block ranges to files
                   13234: @cindex files containing blocks
                   13235: @cindex blocks in files
                   13236: By default, blocks are accessed in the file @file{blocks.fb} in the
                   13237: current working directory. The file can be switched with @code{USE}.
                   13238: 
                   13239: @item number of string buffers provided by @code{S"}:
                   13240: @cindex @code{S"}, number of string buffers
                   13241: 1
                   13242: 
                   13243: @item size of string buffer used by @code{S"}:
                   13244: @cindex @code{S"}, size of string buffer
                   13245: @code{/line}. currently 255.
                   13246: 
                   13247: @end table
                   13248: 
                   13249: @c ---------------------------------------------------------------------
                   13250: @node file-ambcond,  , file-idef, The optional File-Access word set
                   13251: @subsection Ambiguous conditions
                   13252: @c ---------------------------------------------------------------------
                   13253: @cindex file words, ambiguous conditions
                   13254: @cindex ambiguous conditions, file words
                   13255: 
                   13256: @table @i
                   13257: @item attempting to position a file outside its boundaries:
                   13258: @cindex @code{REPOSITION-FILE}, outside the file's boundaries
                   13259: @code{REPOSITION-FILE} is performed as usual: Afterwards,
                   13260: @code{FILE-POSITION} returns the value given to @code{REPOSITION-FILE}.
                   13261: 
                   13262: @item attempting to read from file positions not yet written:
                   13263: @cindex reading from file positions not yet written
                   13264: End-of-file, i.e., zero characters are read and no error is reported.
                   13265: 
1.29      crook    13266: @item @i{file-id} is invalid (@code{INCLUDE-FILE}):
                   13267: @cindex @code{INCLUDE-FILE}, @i{file-id} is invalid 
1.1       anton    13268: An appropriate exception may be thrown, but a memory fault or other
                   13269: problem is more probable.
                   13270: 
1.29      crook    13271: @item I/O exception reading or closing @i{file-id} (@code{INCLUDE-FILE}, @code{INCLUDED}):
                   13272: @cindex @code{INCLUDE-FILE}, I/O exception reading or closing @i{file-id}
                   13273: @cindex @code{INCLUDED}, I/O exception reading or closing @i{file-id}
                   13274: The @i{ior} produced by the operation, that discovered the problem, is
1.1       anton    13275: thrown.
                   13276: 
                   13277: @item named file cannot be opened (@code{INCLUDED}):
                   13278: @cindex @code{INCLUDED}, named file cannot be opened
1.29      crook    13279: The @i{ior} produced by @code{open-file} is thrown.
1.1       anton    13280: 
                   13281: @item requesting an unmapped block number:
                   13282: @cindex unmapped block numbers
                   13283: There are no unmapped legal block numbers. On some operating systems,
                   13284: writing a block with a large number may overflow the file system and
                   13285: have an error message as consequence.
                   13286: 
                   13287: @item using @code{source-id} when @code{blk} is non-zero:
                   13288: @cindex @code{SOURCE-ID}, behaviour when @code{BLK} is non-zero
                   13289: @code{source-id} performs its function. Typically it will give the id of
                   13290: the source which loaded the block. (Better ideas?)
                   13291: 
                   13292: @end table
                   13293: 
                   13294: 
                   13295: @c =====================================================================
                   13296: @node  The optional Floating-Point word set, The optional Locals word set, The optional File-Access word set, ANS conformance
                   13297: @section The optional Floating-Point word set
                   13298: @c =====================================================================
                   13299: @cindex system documentation, floating-point words
                   13300: @cindex floating-point words, system documentation
                   13301: 
                   13302: @menu
                   13303: * floating-idef::               Implementation Defined Options
                   13304: * floating-ambcond::            Ambiguous Conditions            
                   13305: @end menu
                   13306: 
                   13307: 
                   13308: @c ---------------------------------------------------------------------
                   13309: @node floating-idef, floating-ambcond, The optional Floating-Point word set, The optional Floating-Point word set
                   13310: @subsection Implementation Defined Options
                   13311: @c ---------------------------------------------------------------------
                   13312: @cindex implementation-defined options, floating-point words
                   13313: @cindex floating-point words, implementation-defined options
                   13314: 
                   13315: @table @i
                   13316: @item format and range of floating point numbers:
                   13317: @cindex format and range of floating point numbers
                   13318: @cindex floating point numbers, format and range
                   13319: System-dependent; the @code{double} type of C.
                   13320: 
1.29      crook    13321: @item results of @code{REPRESENT} when @i{float} is out of range:
                   13322: @cindex  @code{REPRESENT}, results when @i{float} is out of range
1.1       anton    13323: System dependent; @code{REPRESENT} is implemented using the C library
                   13324: function @code{ecvt()} and inherits its behaviour in this respect.
                   13325: 
                   13326: @item rounding or truncation of floating-point numbers:
                   13327: @cindex rounding of floating-point numbers
                   13328: @cindex truncation of floating-point numbers
                   13329: @cindex floating-point numbers, rounding or truncation
                   13330: System dependent; the rounding behaviour is inherited from the hosting C
                   13331: compiler. IEEE-FP-based (i.e., most) systems by default round to
                   13332: nearest, and break ties by rounding to even (i.e., such that the last
                   13333: bit of the mantissa is 0).
                   13334: 
                   13335: @item size of floating-point stack:
                   13336: @cindex floating-point stack size
                   13337: @code{s" FLOATING-STACK" environment? drop .} gives the total size of
                   13338: the floating-point stack (in floats). You can specify this on startup
                   13339: with the command-line option @code{-f} (@pxref{Invoking Gforth}).
                   13340: 
                   13341: @item width of floating-point stack:
                   13342: @cindex floating-point stack width 
                   13343: @code{1 floats}.
                   13344: 
                   13345: @end table
                   13346: 
                   13347: 
                   13348: @c ---------------------------------------------------------------------
                   13349: @node floating-ambcond,  , floating-idef, The optional Floating-Point word set
                   13350: @subsection Ambiguous conditions
                   13351: @c ---------------------------------------------------------------------
                   13352: @cindex floating-point words, ambiguous conditions
                   13353: @cindex ambiguous conditions, floating-point words
                   13354: 
                   13355: @table @i
                   13356: @item @code{df@@} or @code{df!} used with an address that is not double-float  aligned:
                   13357: @cindex @code{df@@} or @code{df!} used with an address that is not double-float  aligned
                   13358: System-dependent. Typically results in a @code{-23 THROW} like other
                   13359: alignment violations.
                   13360: 
                   13361: @item @code{f@@} or @code{f!} used with an address that is not float  aligned:
                   13362: @cindex @code{f@@} used with an address that is not float aligned
                   13363: @cindex @code{f!} used with an address that is not float aligned
                   13364: System-dependent. Typically results in a @code{-23 THROW} like other
                   13365: alignment violations.
                   13366: 
                   13367: @item floating-point result out of range:
                   13368: @cindex floating-point result out of range
1.80      anton    13369: System-dependent. Can result in a @code{-43 throw} (floating point
                   13370: overflow), @code{-54 throw} (floating point underflow), @code{-41 throw}
                   13371: (floating point inexact result), @code{-55 THROW} (Floating-point
1.1       anton    13372: unidentified fault), or can produce a special value representing, e.g.,
                   13373: Infinity.
                   13374: 
                   13375: @item @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned:
                   13376: @cindex @code{sf@@} or @code{sf!} used with an address that is not single-float  aligned
                   13377: System-dependent. Typically results in an alignment fault like other
                   13378: alignment violations.
                   13379: 
1.35      anton    13380: @item @code{base} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.}):
                   13381: @cindex @code{base} is not decimal (@code{REPRESENT}, @code{F.}, @code{FE.}, @code{FS.})
1.1       anton    13382: The floating-point number is converted into decimal nonetheless.
                   13383: 
                   13384: @item Both arguments are equal to zero (@code{FATAN2}):
                   13385: @cindex @code{FATAN2}, both arguments are equal to zero
                   13386: System-dependent. @code{FATAN2} is implemented using the C library
                   13387: function @code{atan2()}.
                   13388: 
1.29      crook    13389: @item Using @code{FTAN} on an argument @i{r1} where cos(@i{r1}) is zero:
                   13390: @cindex @code{FTAN} on an argument @i{r1} where cos(@i{r1}) is zero
                   13391: System-dependent. Anyway, typically the cos of @i{r1} will not be zero
1.1       anton    13392: because of small errors and the tan will be a very large (or very small)
                   13393: but finite number.
                   13394: 
1.29      crook    13395: @item @i{d} cannot be presented precisely as a float in @code{D>F}:
                   13396: @cindex @code{D>F}, @i{d} cannot be presented precisely as a float
1.1       anton    13397: The result is rounded to the nearest float.
                   13398: 
                   13399: @item dividing by zero:
                   13400: @cindex dividing by zero, floating-point
                   13401: @cindex floating-point dividing by zero
                   13402: @cindex floating-point unidentified fault, FP divide-by-zero
1.80      anton    13403: Platform-dependent; can produce an Infinity, NaN, @code{-42 throw}
                   13404: (floating point divide by zero) or @code{-55 throw} (Floating-point
                   13405: unidentified fault).
1.1       anton    13406: 
                   13407: @item exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@}):
                   13408: @cindex exponent too big for conversion (@code{DF!}, @code{DF@@}, @code{SF!}, @code{SF@@})
                   13409: System dependent. On IEEE-FP based systems the number is converted into
                   13410: an infinity.
                   13411: 
1.29      crook    13412: @item @i{float}<1 (@code{FACOSH}):
                   13413: @cindex @code{FACOSH}, @i{float}<1
1.1       anton    13414: @cindex floating-point unidentified fault, @code{FACOSH}
1.80      anton    13415: Platform-dependent; on IEEE-FP systems typically produces a NaN.
1.1       anton    13416: 
1.29      crook    13417: @item @i{float}=<-1 (@code{FLNP1}):
                   13418: @cindex @code{FLNP1}, @i{float}=<-1
1.1       anton    13419: @cindex floating-point unidentified fault, @code{FLNP1}
1.80      anton    13420: Platform-dependent; on IEEE-FP systems typically produces a NaN (or a
                   13421: negative infinity for @i{float}=-1).
1.1       anton    13422: 
1.29      crook    13423: @item @i{float}=<0 (@code{FLN}, @code{FLOG}):
                   13424: @cindex @code{FLN}, @i{float}=<0
                   13425: @cindex @code{FLOG}, @i{float}=<0
1.1       anton    13426: @cindex floating-point unidentified fault, @code{FLN} or @code{FLOG}
1.80      anton    13427: Platform-dependent; on IEEE-FP systems typically produces a NaN (or a
                   13428: negative infinity for @i{float}=0).
1.1       anton    13429: 
1.29      crook    13430: @item @i{float}<0 (@code{FASINH}, @code{FSQRT}):
                   13431: @cindex @code{FASINH}, @i{float}<0
                   13432: @cindex @code{FSQRT}, @i{float}<0
1.1       anton    13433: @cindex floating-point unidentified fault, @code{FASINH} or @code{FSQRT}
1.80      anton    13434: Platform-dependent; for @code{fsqrt} this typically gives a NaN, for
                   13435: @code{fasinh} some platforms produce a NaN, others a number (bug in the
                   13436: C library?).
1.1       anton    13437: 
1.29      crook    13438: @item |@i{float}|>1 (@code{FACOS}, @code{FASIN}, @code{FATANH}):
                   13439: @cindex @code{FACOS}, |@i{float}|>1
                   13440: @cindex @code{FASIN}, |@i{float}|>1
                   13441: @cindex @code{FATANH}, |@i{float}|>1
1.1       anton    13442: @cindex floating-point unidentified fault, @code{FACOS}, @code{FASIN} or @code{FATANH}
1.80      anton    13443: Platform-dependent; IEEE-FP systems typically produce a NaN.
1.1       anton    13444: 
1.29      crook    13445: @item integer part of float cannot be represented by @i{d} in @code{F>D}:
                   13446: @cindex @code{F>D}, integer part of float cannot be represented by @i{d}
1.1       anton    13447: @cindex floating-point unidentified fault, @code{F>D}
1.80      anton    13448: Platform-dependent; typically, some double number is produced and no
                   13449: error is reported.
1.1       anton    13450: 
                   13451: @item string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.}):
                   13452: @cindex string larger than pictured numeric output area (@code{f.}, @code{fe.}, @code{fs.})
1.80      anton    13453: @code{Precision} characters of the numeric output area are used.  If
                   13454: @code{precision} is too high, these words will smash the data or code
                   13455: close to @code{here}.
1.1       anton    13456: @end table
                   13457: 
                   13458: @c =====================================================================
                   13459: @node  The optional Locals word set, The optional Memory-Allocation word set, The optional Floating-Point word set, ANS conformance
                   13460: @section The optional Locals word set
                   13461: @c =====================================================================
                   13462: @cindex system documentation, locals words
                   13463: @cindex locals words, system documentation
                   13464: 
                   13465: @menu
                   13466: * locals-idef::                 Implementation Defined Options                 
                   13467: * locals-ambcond::              Ambiguous Conditions              
                   13468: @end menu
                   13469: 
                   13470: 
                   13471: @c ---------------------------------------------------------------------
                   13472: @node locals-idef, locals-ambcond, The optional Locals word set, The optional Locals word set
                   13473: @subsection Implementation Defined Options
                   13474: @c ---------------------------------------------------------------------
                   13475: @cindex implementation-defined options, locals words
                   13476: @cindex locals words, implementation-defined options
                   13477: 
                   13478: @table @i
                   13479: @item maximum number of locals in a definition:
                   13480: @cindex maximum number of locals in a definition
                   13481: @cindex locals, maximum number in a definition
                   13482: @code{s" #locals" environment? drop .}. Currently 15. This is a lower
                   13483: bound, e.g., on a 32-bit machine there can be 41 locals of up to 8
                   13484: characters. The number of locals in a definition is bounded by the size
                   13485: of locals-buffer, which contains the names of the locals.
                   13486: 
                   13487: @end table
                   13488: 
                   13489: 
                   13490: @c ---------------------------------------------------------------------
                   13491: @node locals-ambcond,  , locals-idef, The optional Locals word set
                   13492: @subsection Ambiguous conditions
                   13493: @c ---------------------------------------------------------------------
                   13494: @cindex locals words, ambiguous conditions
                   13495: @cindex ambiguous conditions, locals words
                   13496: 
                   13497: @table @i
                   13498: @item executing a named local in interpretation state:
                   13499: @cindex local in interpretation state
                   13500: @cindex Interpreting a compile-only word, for a local
                   13501: Locals have no interpretation semantics. If you try to perform the
                   13502: interpretation semantics, you will get a @code{-14 throw} somewhere
                   13503: (Interpreting a compile-only word). If you perform the compilation
                   13504: semantics, the locals access will be compiled (irrespective of state).
                   13505: 
1.29      crook    13506: @item @i{name} not defined by @code{VALUE} or @code{(LOCAL)} (@code{TO}):
1.1       anton    13507: @cindex name not defined by @code{VALUE} or @code{(LOCAL)} used by @code{TO}
                   13508: @cindex @code{TO} on non-@code{VALUE}s and non-locals
                   13509: @cindex Invalid name argument, @code{TO}
                   13510: @code{-32 throw} (Invalid name argument)
                   13511: 
                   13512: @end table
                   13513: 
                   13514: 
                   13515: @c =====================================================================
                   13516: @node  The optional Memory-Allocation word set, The optional Programming-Tools word set, The optional Locals word set, ANS conformance
                   13517: @section The optional Memory-Allocation word set
                   13518: @c =====================================================================
                   13519: @cindex system documentation, memory-allocation words
                   13520: @cindex memory-allocation words, system documentation
                   13521: 
                   13522: @menu
                   13523: * memory-idef::                 Implementation Defined Options                 
                   13524: @end menu
                   13525: 
                   13526: 
                   13527: @c ---------------------------------------------------------------------
                   13528: @node memory-idef,  , The optional Memory-Allocation word set, The optional Memory-Allocation word set
                   13529: @subsection Implementation Defined Options
                   13530: @c ---------------------------------------------------------------------
                   13531: @cindex implementation-defined options, memory-allocation words
                   13532: @cindex memory-allocation words, implementation-defined options
                   13533: 
                   13534: @table @i
1.29      crook    13535: @item values and meaning of @i{ior}:
                   13536: @cindex  @i{ior} values and meaning
                   13537: The @i{ior}s returned by the file and memory allocation words are
1.1       anton    13538: intended as throw codes. They typically are in the range
                   13539: -512@minus{}-2047 of OS errors.  The mapping from OS error numbers to
1.29      crook    13540: @i{ior}s is -512@minus{}@i{errno}.
1.1       anton    13541: 
                   13542: @end table
                   13543: 
                   13544: @c =====================================================================
                   13545: @node  The optional Programming-Tools word set, The optional Search-Order word set, The optional Memory-Allocation word set, ANS conformance
                   13546: @section The optional Programming-Tools word set
                   13547: @c =====================================================================
                   13548: @cindex system documentation, programming-tools words
                   13549: @cindex programming-tools words, system documentation
                   13550: 
                   13551: @menu
                   13552: * programming-idef::            Implementation Defined Options            
                   13553: * programming-ambcond::         Ambiguous Conditions         
                   13554: @end menu
                   13555: 
                   13556: 
                   13557: @c ---------------------------------------------------------------------
                   13558: @node programming-idef, programming-ambcond, The optional Programming-Tools word set, The optional Programming-Tools word set
                   13559: @subsection Implementation Defined Options
                   13560: @c ---------------------------------------------------------------------
                   13561: @cindex implementation-defined options, programming-tools words
                   13562: @cindex programming-tools words, implementation-defined options
                   13563: 
                   13564: @table @i
                   13565: @item ending sequence for input following @code{;CODE} and @code{CODE}:
                   13566: @cindex @code{;CODE} ending sequence
                   13567: @cindex @code{CODE} ending sequence
                   13568: @code{END-CODE}
                   13569: 
                   13570: @item manner of processing input following @code{;CODE} and @code{CODE}:
                   13571: @cindex @code{;CODE}, processing input
                   13572: @cindex @code{CODE}, processing input
                   13573: The @code{ASSEMBLER} vocabulary is pushed on the search order stack, and
                   13574: the input is processed by the text interpreter, (starting) in interpret
                   13575: state.
                   13576: 
                   13577: @item search order capability for @code{EDITOR} and @code{ASSEMBLER}:
                   13578: @cindex @code{ASSEMBLER}, search order capability
                   13579: The ANS Forth search order word set.
                   13580: 
                   13581: @item source and format of display by @code{SEE}:
                   13582: @cindex @code{SEE}, source and format of output
1.80      anton    13583: The source for @code{see} is the executable code used by the inner
1.1       anton    13584: interpreter.  The current @code{see} tries to output Forth source code
1.80      anton    13585: (and on some platforms, assembly code for primitives) as well as
                   13586: possible.
1.1       anton    13587: 
                   13588: @end table
                   13589: 
                   13590: @c ---------------------------------------------------------------------
                   13591: @node programming-ambcond,  , programming-idef, The optional Programming-Tools word set
                   13592: @subsection Ambiguous conditions
                   13593: @c ---------------------------------------------------------------------
                   13594: @cindex programming-tools words, ambiguous conditions
                   13595: @cindex ambiguous conditions, programming-tools words
                   13596: 
                   13597: @table @i
                   13598: 
1.21      crook    13599: @item deleting the compilation word list (@code{FORGET}):
                   13600: @cindex @code{FORGET}, deleting the compilation word list
1.1       anton    13601: Not implemented (yet).
                   13602: 
1.29      crook    13603: @item fewer than @i{u}+1 items on the control-flow stack (@code{CS-PICK}, @code{CS-ROLL}):
                   13604: @cindex @code{CS-PICK}, fewer than @i{u}+1 items on the control flow-stack
                   13605: @cindex @code{CS-ROLL}, fewer than @i{u}+1 items on the control flow-stack
1.1       anton    13606: @cindex control-flow stack underflow
                   13607: This typically results in an @code{abort"} with a descriptive error
                   13608: message (may change into a @code{-22 throw} (Control structure mismatch)
                   13609: in the future). You may also get a memory access error. If you are
                   13610: unlucky, this ambiguous condition is not caught.
                   13611: 
1.29      crook    13612: @item @i{name} can't be found (@code{FORGET}):
                   13613: @cindex @code{FORGET}, @i{name} can't be found
1.1       anton    13614: Not implemented (yet).
                   13615: 
1.29      crook    13616: @item @i{name} not defined via @code{CREATE}:
                   13617: @cindex @code{;CODE}, @i{name} not defined via @code{CREATE}
1.1       anton    13618: @code{;CODE} behaves like @code{DOES>} in this respect, i.e., it changes
                   13619: the execution semantics of the last defined word no matter how it was
                   13620: defined.
                   13621: 
                   13622: @item @code{POSTPONE} applied to @code{[IF]}:
                   13623: @cindex @code{POSTPONE} applied to @code{[IF]}
                   13624: @cindex @code{[IF]} and @code{POSTPONE}
                   13625: After defining @code{: X POSTPONE [IF] ; IMMEDIATE}. @code{X} is
                   13626: equivalent to @code{[IF]}.
                   13627: 
                   13628: @item reaching the end of the input source before matching @code{[ELSE]} or @code{[THEN]}:
                   13629: @cindex @code{[IF]}, end of the input source before matching @code{[ELSE]} or @code{[THEN]}
                   13630: Continue in the same state of conditional compilation in the next outer
                   13631: input source. Currently there is no warning to the user about this.
                   13632: 
                   13633: @item removing a needed definition (@code{FORGET}):
                   13634: @cindex @code{FORGET}, removing a needed definition
                   13635: Not implemented (yet).
                   13636: 
                   13637: @end table
                   13638: 
                   13639: 
                   13640: @c =====================================================================
                   13641: @node  The optional Search-Order word set,  , The optional Programming-Tools word set, ANS conformance
                   13642: @section The optional Search-Order word set
                   13643: @c =====================================================================
                   13644: @cindex system documentation, search-order words
                   13645: @cindex search-order words, system documentation
                   13646: 
                   13647: @menu
                   13648: * search-idef::                 Implementation Defined Options                 
                   13649: * search-ambcond::              Ambiguous Conditions              
                   13650: @end menu
                   13651: 
                   13652: 
                   13653: @c ---------------------------------------------------------------------
                   13654: @node search-idef, search-ambcond, The optional Search-Order word set, The optional Search-Order word set
                   13655: @subsection Implementation Defined Options
                   13656: @c ---------------------------------------------------------------------
                   13657: @cindex implementation-defined options, search-order words
                   13658: @cindex search-order words, implementation-defined options
                   13659: 
                   13660: @table @i
                   13661: @item maximum number of word lists in search order:
                   13662: @cindex maximum number of word lists in search order
                   13663: @cindex search order, maximum depth
                   13664: @code{s" wordlists" environment? drop .}. Currently 16.
                   13665: 
                   13666: @item minimum search order:
                   13667: @cindex minimum search order
                   13668: @cindex search order, minimum
                   13669: @code{root root}.
                   13670: 
                   13671: @end table
                   13672: 
                   13673: @c ---------------------------------------------------------------------
                   13674: @node search-ambcond,  , search-idef, The optional Search-Order word set
                   13675: @subsection Ambiguous conditions
                   13676: @c ---------------------------------------------------------------------
                   13677: @cindex search-order words, ambiguous conditions
                   13678: @cindex ambiguous conditions, search-order words
                   13679: 
                   13680: @table @i
1.21      crook    13681: @item changing the compilation word list (during compilation):
                   13682: @cindex changing the compilation word list (during compilation)
                   13683: @cindex compilation word list, change before definition ends
                   13684: The word is entered into the word list that was the compilation word list
1.1       anton    13685: at the start of the definition. Any changes to the name field (e.g.,
                   13686: @code{immediate}) or the code field (e.g., when executing @code{DOES>})
                   13687: are applied to the latest defined word (as reported by @code{last} or
1.21      crook    13688: @code{lastxt}), if possible, irrespective of the compilation word list.
1.1       anton    13689: 
                   13690: @item search order empty (@code{previous}):
                   13691: @cindex @code{previous}, search order empty
1.26      crook    13692: @cindex vocstack empty, @code{previous}
1.1       anton    13693: @code{abort" Vocstack empty"}.
                   13694: 
                   13695: @item too many word lists in search order (@code{also}):
                   13696: @cindex @code{also}, too many word lists in search order
1.26      crook    13697: @cindex vocstack full, @code{also}
1.1       anton    13698: @code{abort" Vocstack full"}.
                   13699: 
                   13700: @end table
                   13701: 
                   13702: @c ***************************************************************
1.65      anton    13703: @node Standard vs Extensions, Model, ANS conformance, Top
                   13704: @chapter Should I use Gforth extensions?
                   13705: @cindex Gforth extensions
                   13706: 
                   13707: As you read through the rest of this manual, you will see documentation
                   13708: for @i{Standard} words, and documentation for some appealing Gforth
                   13709: @i{extensions}. You might ask yourself the question: @i{``Should I
                   13710: restrict myself to the standard, or should I use the extensions?''}
                   13711: 
                   13712: The answer depends on the goals you have for the program you are working
                   13713: on:
                   13714: 
                   13715: @itemize @bullet
                   13716: 
                   13717: @item Is it just for yourself or do you want to share it with others?
                   13718: 
                   13719: @item
                   13720: If you want to share it, do the others all use Gforth?
                   13721: 
                   13722: @item
                   13723: If it is just for yourself, do you want to restrict yourself to Gforth?
                   13724: 
                   13725: @end itemize
                   13726: 
                   13727: If restricting the program to Gforth is ok, then there is no reason not
                   13728: to use extensions.  It is still a good idea to keep to the standard
                   13729: where it is easy, in case you want to reuse these parts in another
                   13730: program that you want to be portable.
                   13731: 
                   13732: If you want to be able to port the program to other Forth systems, there
                   13733: are the following points to consider:
                   13734: 
                   13735: @itemize @bullet
                   13736: 
                   13737: @item
                   13738: Most Forth systems that are being maintained support the ANS Forth
                   13739: standard.  So if your program complies with the standard, it will be
                   13740: portable among many systems.
                   13741: 
                   13742: @item
                   13743: A number of the Gforth extensions can be implemented in ANS Forth using
                   13744: public-domain files provided in the @file{compat/} directory. These are
                   13745: mentioned in the text in passing.  There is no reason not to use these
                   13746: extensions, your program will still be ANS Forth compliant; just include
                   13747: the appropriate compat files with your program.
                   13748: 
                   13749: @item
                   13750: The tool @file{ans-report.fs} (@pxref{ANS Report}) makes it easy to
                   13751: analyse your program and determine what non-Standard words it relies
                   13752: upon.  However, it does not check whether you use standard words in a
                   13753: non-standard way.
                   13754: 
                   13755: @item
                   13756: Some techniques are not standardized by ANS Forth, and are hard or
                   13757: impossible to implement in a standard way, but can be implemented in
                   13758: most Forth systems easily, and usually in similar ways (e.g., accessing
                   13759: word headers).  Forth has a rich historical precedent for programmers
                   13760: taking advantage of implementation-dependent features of their tools
                   13761: (for example, relying on a knowledge of the dictionary
                   13762: structure). Sometimes these techniques are necessary to extract every
                   13763: last bit of performance from the hardware, sometimes they are just a
                   13764: programming shorthand.
                   13765: 
                   13766: @item
                   13767: Does using a Gforth extension save more work than the porting this part
                   13768: to other Forth systems (if any) will cost?
                   13769: 
                   13770: @item
                   13771: Is the additional functionality worth the reduction in portability and
                   13772: the additional porting problems?
                   13773: 
                   13774: @end itemize
                   13775: 
                   13776: In order to perform these consideratios, you need to know what's
                   13777: standard and what's not.  This manual generally states if something is
1.81      anton    13778: non-standard, but the authoritative source is the
                   13779: @uref{http://www.taygeta.com/forth/dpans.html,standard document}.
1.65      anton    13780: Appendix A of the Standard (@var{Rationale}) provides a valuable insight
                   13781: into the thought processes of the technical committee.
                   13782: 
                   13783: Note also that portability between Forth systems is not the only
                   13784: portability issue; there is also the issue of portability between
                   13785: different platforms (processor/OS combinations).
                   13786: 
                   13787: @c ***************************************************************
                   13788: @node Model, Integrating Gforth, Standard vs Extensions, Top
1.1       anton    13789: @chapter Model
                   13790: 
                   13791: This chapter has yet to be written. It will contain information, on
                   13792: which internal structures you can rely.
                   13793: 
                   13794: @c ***************************************************************
                   13795: @node Integrating Gforth, Emacs and Gforth, Model, Top
                   13796: @chapter Integrating Gforth into C programs
                   13797: 
                   13798: This is not yet implemented.
                   13799: 
                   13800: Several people like to use Forth as scripting language for applications
                   13801: that are otherwise written in C, C++, or some other language.
                   13802: 
                   13803: The Forth system ATLAST provides facilities for embedding it into
                   13804: applications; unfortunately it has several disadvantages: most
                   13805: importantly, it is not based on ANS Forth, and it is apparently dead
                   13806: (i.e., not developed further and not supported). The facilities
1.21      crook    13807: provided by Gforth in this area are inspired by ATLAST's facilities, so
1.1       anton    13808: making the switch should not be hard.
                   13809: 
                   13810: We also tried to design the interface such that it can easily be
                   13811: implemented by other Forth systems, so that we may one day arrive at a
                   13812: standardized interface. Such a standard interface would allow you to
                   13813: replace the Forth system without having to rewrite C code.
                   13814: 
                   13815: You embed the Gforth interpreter by linking with the library
                   13816: @code{libgforth.a} (give the compiler the option @code{-lgforth}).  All
                   13817: global symbols in this library that belong to the interface, have the
                   13818: prefix @code{forth_}. (Global symbols that are used internally have the
                   13819: prefix @code{gforth_}).
                   13820: 
                   13821: You can include the declarations of Forth types and the functions and
                   13822: variables of the interface with @code{#include <forth.h>}.
                   13823: 
                   13824: Types.
                   13825: 
                   13826: Variables.
                   13827: 
                   13828: Data and FP Stack pointer. Area sizes.
                   13829: 
                   13830: functions.
                   13831: 
                   13832: forth_init(imagefile)
                   13833: forth_evaluate(string) exceptions?
                   13834: forth_goto(address) (or forth_execute(xt)?)
                   13835: forth_continue() (a corountining mechanism)
                   13836: 
                   13837: Adding primitives.
                   13838: 
                   13839: No checking.
                   13840: 
                   13841: Signals?
                   13842: 
                   13843: Accessing the Stacks
                   13844: 
1.26      crook    13845: @c ******************************************************************
1.1       anton    13846: @node Emacs and Gforth, Image Files, Integrating Gforth, Top
                   13847: @chapter Emacs and Gforth
                   13848: @cindex Emacs and Gforth
                   13849: 
                   13850: @cindex @file{gforth.el}
                   13851: @cindex @file{forth.el}
                   13852: @cindex Rydqvist, Goran
1.107     dvdkhlng 13853: @cindex Kuehling, David
1.1       anton    13854: @cindex comment editing commands
                   13855: @cindex @code{\}, editing with Emacs
                   13856: @cindex debug tracer editing commands
                   13857: @cindex @code{~~}, removal with Emacs
                   13858: @cindex Forth mode in Emacs
1.107     dvdkhlng 13859: 
1.1       anton    13860: Gforth comes with @file{gforth.el}, an improved version of
                   13861: @file{forth.el} by Goran Rydqvist (included in the TILE package). The
1.26      crook    13862: improvements are:
                   13863: 
                   13864: @itemize @bullet
                   13865: @item
1.107     dvdkhlng 13866: A better handling of indentation.
                   13867: @item
                   13868: A custom hilighting engine for Forth-code.
1.26      crook    13869: @item
                   13870: Comment paragraph filling (@kbd{M-q})
                   13871: @item
                   13872: Commenting (@kbd{C-x \}) and uncommenting (@kbd{C-u C-x \}) of regions
                   13873: @item
                   13874: Removal of debugging tracers (@kbd{C-x ~}, @pxref{Debugging}).
1.41      anton    13875: @item
                   13876: Support of the @code{info-lookup} feature for looking up the
                   13877: documentation of a word.
1.107     dvdkhlng 13878: @item
                   13879: Support for reading and writing blocks files.
1.26      crook    13880: @end itemize
                   13881: 
1.107     dvdkhlng 13882: To get a basic description of these features, enter Forth mode and
                   13883: type @kbd{C-h m}.
1.1       anton    13884: 
                   13885: @cindex source location of error or debugging output in Emacs
                   13886: @cindex error output, finding the source location in Emacs
                   13887: @cindex debugging output, finding the source location in Emacs
                   13888: In addition, Gforth supports Emacs quite well: The source code locations
                   13889: given in error messages, debugging output (from @code{~~}) and failed
                   13890: assertion messages are in the right format for Emacs' compilation mode
                   13891: (@pxref{Compilation, , Running Compilations under Emacs, emacs, Emacs
                   13892: Manual}) so the source location corresponding to an error or other
                   13893: message is only a few keystrokes away (@kbd{C-x `} for the next error,
                   13894: @kbd{C-c C-c} for the error under the cursor).
                   13895: 
1.107     dvdkhlng 13896: @cindex viewing the documentation of a word in Emacs
                   13897: @cindex context-sensitive help
                   13898: Moreover, for words documented in this manual, you can look up the
                   13899: glossary entry quickly by using @kbd{C-h TAB}
                   13900: (@code{info-lookup-symbol}, @pxref{Documentation, ,Documentation
                   13901: Commands, emacs, Emacs Manual}).  This feature requires Emacs 20.3 or
                   13902: later and does not work for words containing @code{:}.
                   13903: 
                   13904: @menu
                   13905: * Installing gforth.el::        Making Emacs aware of Forth.
                   13906: * Emacs Tags::                  Viewing the source of a word in Emacs.
                   13907: * Hilighting::                  Making Forth code look prettier.
                   13908: * Auto-Indentation::            Customizing auto-indentation.
                   13909: * Blocks Files::                Reading and writing blocks files.
                   13910: @end menu
                   13911: 
                   13912: @c ----------------------------------
1.109   ! anton    13913: @node Installing gforth.el, Emacs Tags, Emacs and Gforth, Emacs and Gforth
1.107     dvdkhlng 13914: @section Installing gforth.el
                   13915: @cindex @file{.emacs}
                   13916: @cindex @file{gforth.el}, installation
                   13917: To make the features from @file{gforth.el} available in Emacs, add
                   13918: the following lines to your @file{.emacs} file:
                   13919: 
                   13920: @example
                   13921: (autoload 'forth-mode "gforth.el")
                   13922: (setq auto-mode-alist (cons '("\\.fs\\'" . forth-mode) 
                   13923:                            auto-mode-alist))
                   13924: (autoload 'forth-block-mode "gforth.el")
                   13925: (setq auto-mode-alist (cons '("\\.fb\\'" . forth-block-mode) 
                   13926:                            auto-mode-alist))
                   13927: (add-hook 'forth-mode-hook (function (lambda ()
                   13928:    ;; customize variables here:
                   13929:    (setq forth-indent-level 4)
                   13930:    (setq forth-minor-indent-level 2)
                   13931:    (setq forth-hilight-level 3)
                   13932:    ;;; ...
                   13933: )))
                   13934: @end example
                   13935: 
                   13936: @c ----------------------------------
                   13937: @node Emacs Tags, Hilighting, Installing gforth.el, Emacs and Gforth
                   13938: @section Emacs Tags
1.1       anton    13939: @cindex @file{TAGS} file
                   13940: @cindex @file{etags.fs}
                   13941: @cindex viewing the source of a word in Emacs
1.43      anton    13942: @cindex @code{require}, placement in files
                   13943: @cindex @code{include}, placement in files
1.107     dvdkhlng 13944: If you @code{require} @file{etags.fs}, a new @file{TAGS} file will be
                   13945: produced (@pxref{Tags, , Tags Tables, emacs, Emacs Manual}) that
1.1       anton    13946: contains the definitions of all words defined afterwards. You can then
1.107     dvdkhlng 13947: find the source for a word using @kbd{M-.}. Note that Emacs can use
1.1       anton    13948: several tags files at the same time (e.g., one for the Gforth sources
                   13949: and one for your program, @pxref{Select Tags Table,,Selecting a Tags
                   13950: Table,emacs, Emacs Manual}). The TAGS file for the preloaded words is
                   13951: @file{$(datadir)/gforth/$(VERSION)/TAGS} (e.g.,
1.43      anton    13952: @file{/usr/local/share/gforth/0.2.0/TAGS}).  To get the best behaviour
                   13953: with @file{etags.fs}, you should avoid putting definitions both before
                   13954: and after @code{require} etc., otherwise you will see the same file
                   13955: visited several times by commands like @code{tags-search}.
1.1       anton    13956: 
1.107     dvdkhlng 13957: @c ----------------------------------
                   13958: @node Hilighting, Auto-Indentation, Emacs Tags, Emacs and Gforth
                   13959: @section Hilighting
                   13960: @cindex hilighting Forth code in Emacs
                   13961: @cindex highlighting Forth code in Emacs
                   13962: @file{gforth.el} comes with a custom source hilighting engine.  When
                   13963: you open a file in @code{forth-mode}, it will be completely parsed,
                   13964: assigning faces to keywords, comments, strings etc.  While you edit
                   13965: the file, modified regions get parsed and updated on-the-fly. 
                   13966: 
                   13967: Use the variable `forth-hilight-level' to change the level of
                   13968: decoration from 0 (no hilighting at all) to 3 (the default).  Even if
                   13969: you set the hilighting level to 0, the parser will still work in the
                   13970: background, collecting information about whether regions of text are
                   13971: ``compiled'' or ``interpreted''.  Those information are required for
                   13972: auto-indentation to work properly.  Set `forth-disable-parser' to
                   13973: non-nil if your computer is too slow to handle parsing.  This will
                   13974: have an impact on the smartness of the auto-indentation engine,
                   13975: though.
                   13976: 
                   13977: Sometimes Forth sources define new features that should be hilighted,
                   13978: new control structures, defining-words etc.  You can use the variable
                   13979: `forth-custom-words' to make @code{forth-mode} hilight additional
                   13980: words and constructs.  See the docstring of `forth-words' for details
                   13981: (in Emacs, type @kbd{C-h v forth-words}).
                   13982: 
                   13983: `forth-custom-words' is meant to be customized in your
                   13984: @file{.emacs} file.  To customize hilighing in a file-specific manner,
                   13985: set `forth-local-words' in a local-variables section at the end of
                   13986: your source file (@pxref{Local Variables in Files,, Variables, emacs, Emacs Manual}).
                   13987: 
                   13988: Example:
                   13989: @example
                   13990: 0 [IF]
                   13991:    Local Variables:
                   13992:    forth-local-words:
                   13993:       ((("t:") definition-starter (font-lock-keyword-face . 1)
                   13994:         "[ \t\n]" t name (font-lock-function-name-face . 3))
                   13995:        ((";t") definition-ender (font-lock-keyword-face . 1)))
                   13996:    End:
                   13997: [THEN]
                   13998: @end example
                   13999: 
                   14000: @c ----------------------------------
                   14001: @node Auto-Indentation, Blocks Files, Hilighting, Emacs and Gforth
                   14002: @section Auto-Indentation
                   14003: @cindex auto-indentation of Forth code in Emacs
                   14004: @cindex indentation of Forth code in Emacs
                   14005: @code{forth-mode} automatically tries to indent lines in a smart way,
                   14006: whenever you type @key{TAB} or break a line with @kbd{C-m}.
                   14007: 
                   14008: Simple customization can be achieved by setting
                   14009: `forth-indent-level' and `forth-minor-indent-level' in your
                   14010: @file{.emacs} file. For historical reasons @file{gforth.el} indents
                   14011: per default by multiples of 4 columns.  To use the more traditional
                   14012: 3-column indentation, add the following lines to your @file{.emacs}:
                   14013: 
                   14014: @example
                   14015: (add-hook 'forth-mode-hook (function (lambda ()
                   14016:    ;; customize variables here:
                   14017:    (setq forth-indent-level 3)
                   14018:    (setq forth-minor-indent-level 1)
                   14019: )))
                   14020: @end example
                   14021: 
                   14022: If you want indentation to recognize non-default words, customize it
                   14023: by setting `forth-custom-indent-words' in your @file{.emacs}.  See the
                   14024: docstring of `forth-indent-words' for details (in Emacs, type @kbd{C-h
                   14025: v forth-indent-words}).
                   14026: 
                   14027: To customize indentation in a file-specific manner, set
                   14028: `forth-local-indent-words' in a local-variables section at the end of
                   14029: your source file (@pxref{Local Variables in Files, Variables,,emacs,
                   14030: Emacs Manual}).
                   14031: 
                   14032: Example:
                   14033: @example
                   14034: 0 [IF]
                   14035:    Local Variables:
                   14036:    forth-local-indent-words:
                   14037:       ((("t:") (0 . 2) (0 . 2))
                   14038:        ((";t") (-2 . 0) (0 . -2)))
                   14039:    End:
                   14040: [THEN]
                   14041: @end example
                   14042: 
                   14043: @c ----------------------------------
1.109   ! anton    14044: @node Blocks Files,  , Auto-Indentation, Emacs and Gforth
1.107     dvdkhlng 14045: @section Blocks Files
                   14046: @cindex blocks files, use with Emacs
                   14047: @code{forth-mode} Autodetects blocks files by checking whether the
                   14048: length of the first line exceeds 1023 characters.  It then tries to
                   14049: convert the file into normal text format.  When you save the file, it
                   14050: will be written to disk as normal stream-source file.
                   14051: 
                   14052: If you want to write blocks files, use @code{forth-blocks-mode}.  It
                   14053: inherits all the features from @code{forth-mode}, plus some additions:
1.41      anton    14054: 
1.107     dvdkhlng 14055: @itemize @bullet
                   14056: @item
                   14057: Files are written to disk in blocks file format.
                   14058: @item
                   14059: Screen numbers are displayed in the mode line (enumerated beginning
                   14060: with the value of `forth-block-base')
                   14061: @item
                   14062: Warnings are displayed when lines exceed 64 characters.
                   14063: @item
                   14064: The beginning of the currently edited block is marked with an
                   14065: overlay-arrow. 
                   14066: @end itemize
1.41      anton    14067: 
1.107     dvdkhlng 14068: There are some restrictions you should be aware of.  When you open a
                   14069: blocks file that contains tabulator or newline characters, these
                   14070: characters will be translated into spaces when the file is written
                   14071: back to disk.  If tabs or newlines are encountered during blocks file
                   14072: reading, an error is output to the echo area. So have a look at the
                   14073: `*Messages*' buffer, when Emacs' bell rings during reading.
1.1       anton    14074: 
1.107     dvdkhlng 14075: Please consult the docstring of @code{forth-blocks-mode} for more
                   14076: information by typing @kbd{C-h v forth-blocks-mode}).
1.1       anton    14077: 
1.26      crook    14078: @c ******************************************************************
1.1       anton    14079: @node Image Files, Engine, Emacs and Gforth, Top
                   14080: @chapter Image Files
1.26      crook    14081: @cindex image file
                   14082: @cindex @file{.fi} files
1.1       anton    14083: @cindex precompiled Forth code
                   14084: @cindex dictionary in persistent form
                   14085: @cindex persistent form of dictionary
                   14086: 
                   14087: An image file is a file containing an image of the Forth dictionary,
                   14088: i.e., compiled Forth code and data residing in the dictionary.  By
                   14089: convention, we use the extension @code{.fi} for image files.
                   14090: 
                   14091: @menu
1.18      anton    14092: * Image Licensing Issues::      Distribution terms for images.
                   14093: * Image File Background::       Why have image files?
1.67      anton    14094: * Non-Relocatable Image Files::  don't always work.
1.18      anton    14095: * Data-Relocatable Image Files::  are better.
1.67      anton    14096: * Fully Relocatable Image Files::  better yet.
1.18      anton    14097: * Stack and Dictionary Sizes::  Setting the default sizes for an image.
1.29      crook    14098: * Running Image Files::         @code{gforth -i @i{file}} or @i{file}.
1.18      anton    14099: * Modifying the Startup Sequence::  and turnkey applications.
1.1       anton    14100: @end menu
                   14101: 
1.18      anton    14102: @node Image Licensing Issues, Image File Background, Image Files, Image Files
                   14103: @section Image Licensing Issues
                   14104: @cindex license for images
                   14105: @cindex image license
                   14106: 
                   14107: An image created with @code{gforthmi} (@pxref{gforthmi}) or
                   14108: @code{savesystem} (@pxref{Non-Relocatable Image Files}) includes the
                   14109: original image; i.e., according to copyright law it is a derived work of
                   14110: the original image.
                   14111: 
                   14112: Since Gforth is distributed under the GNU GPL, the newly created image
                   14113: falls under the GNU GPL, too. In particular, this means that if you
                   14114: distribute the image, you have to make all of the sources for the image
                   14115: available, including those you wrote.  For details see @ref{License, ,
                   14116: GNU General Public License (Section 3)}.
                   14117: 
                   14118: If you create an image with @code{cross} (@pxref{cross.fs}), the image
                   14119: contains only code compiled from the sources you gave it; if none of
                   14120: these sources is under the GPL, the terms discussed above do not apply
                   14121: to the image. However, if your image needs an engine (a gforth binary)
                   14122: that is under the GPL, you should make sure that you distribute both in
                   14123: a way that is at most a @emph{mere aggregation}, if you don't want the
                   14124: terms of the GPL to apply to the image.
                   14125: 
                   14126: @node Image File Background, Non-Relocatable Image Files, Image Licensing Issues, Image Files
1.1       anton    14127: @section Image File Background
                   14128: @cindex image file background
                   14129: 
1.80      anton    14130: Gforth consists not only of primitives (in the engine), but also of
1.1       anton    14131: definitions written in Forth. Since the Forth compiler itself belongs to
                   14132: those definitions, it is not possible to start the system with the
1.80      anton    14133: engine and the Forth source alone. Therefore we provide the Forth
1.26      crook    14134: code as an image file in nearly executable form. When Gforth starts up,
                   14135: a C routine loads the image file into memory, optionally relocates the
                   14136: addresses, then sets up the memory (stacks etc.) according to
                   14137: information in the image file, and (finally) starts executing Forth
                   14138: code.
1.1       anton    14139: 
                   14140: The image file variants represent different compromises between the
                   14141: goals of making it easy to generate image files and making them
                   14142: portable.
                   14143: 
                   14144: @cindex relocation at run-time
1.26      crook    14145: Win32Forth 3.4 and Mitch Bradley's @code{cforth} use relocation at
1.1       anton    14146: run-time. This avoids many of the complications discussed below (image
                   14147: files are data relocatable without further ado), but costs performance
                   14148: (one addition per memory access).
                   14149: 
                   14150: @cindex relocation at load-time
1.26      crook    14151: By contrast, the Gforth loader performs relocation at image load time. The
                   14152: loader also has to replace tokens that represent primitive calls with the
1.1       anton    14153: appropriate code-field addresses (or code addresses in the case of
                   14154: direct threading).
                   14155: 
                   14156: There are three kinds of image files, with different degrees of
                   14157: relocatability: non-relocatable, data-relocatable, and fully relocatable
                   14158: image files.
                   14159: 
                   14160: @cindex image file loader
                   14161: @cindex relocating loader
                   14162: @cindex loader for image files
                   14163: These image file variants have several restrictions in common; they are
                   14164: caused by the design of the image file loader:
                   14165: 
                   14166: @itemize @bullet
                   14167: @item
                   14168: There is only one segment; in particular, this means, that an image file
                   14169: cannot represent @code{ALLOCATE}d memory chunks (and pointers to
1.26      crook    14170: them). The contents of the stacks are not represented, either.
1.1       anton    14171: 
                   14172: @item
                   14173: The only kinds of relocation supported are: adding the same offset to
                   14174: all cells that represent data addresses; and replacing special tokens
                   14175: with code addresses or with pieces of machine code.
                   14176: 
                   14177: If any complex computations involving addresses are performed, the
                   14178: results cannot be represented in the image file. Several applications that
                   14179: use such computations come to mind:
                   14180: @itemize @minus
                   14181: @item
                   14182: Hashing addresses (or data structures which contain addresses) for table
                   14183: lookup. If you use Gforth's @code{table}s or @code{wordlist}s for this
                   14184: purpose, you will have no problem, because the hash tables are
                   14185: recomputed automatically when the system is started. If you use your own
                   14186: hash tables, you will have to do something similar.
                   14187: 
                   14188: @item
                   14189: There's a cute implementation of doubly-linked lists that uses
                   14190: @code{XOR}ed addresses. You could represent such lists as singly-linked
                   14191: in the image file, and restore the doubly-linked representation on
                   14192: startup.@footnote{In my opinion, though, you should think thrice before
                   14193: using a doubly-linked list (whatever implementation).}
                   14194: 
                   14195: @item
                   14196: The code addresses of run-time routines like @code{docol:} cannot be
                   14197: represented in the image file (because their tokens would be replaced by
                   14198: machine code in direct threaded implementations). As a workaround,
                   14199: compute these addresses at run-time with @code{>code-address} from the
                   14200: executions tokens of appropriate words (see the definitions of
1.80      anton    14201: @code{docol:} and friends in @file{kernel/getdoers.fs}).
1.1       anton    14202: 
                   14203: @item
                   14204: On many architectures addresses are represented in machine code in some
                   14205: shifted or mangled form. You cannot put @code{CODE} words that contain
                   14206: absolute addresses in this form in a relocatable image file. Workarounds
                   14207: are representing the address in some relative form (e.g., relative to
                   14208: the CFA, which is present in some register), or loading the address from
                   14209: a place where it is stored in a non-mangled form.
                   14210: @end itemize
                   14211: @end itemize
                   14212: 
                   14213: @node  Non-Relocatable Image Files, Data-Relocatable Image Files, Image File Background, Image Files
                   14214: @section Non-Relocatable Image Files
                   14215: @cindex non-relocatable image files
1.26      crook    14216: @cindex image file, non-relocatable
1.1       anton    14217: 
                   14218: These files are simple memory dumps of the dictionary. They are specific
                   14219: to the executable (i.e., @file{gforth} file) they were created
                   14220: with. What's worse, they are specific to the place on which the
                   14221: dictionary resided when the image was created. Now, there is no
                   14222: guarantee that the dictionary will reside at the same place the next
                   14223: time you start Gforth, so there's no guarantee that a non-relocatable
                   14224: image will work the next time (Gforth will complain instead of crashing,
                   14225: though).
                   14226: 
                   14227: You can create a non-relocatable image file with
                   14228: 
1.44      crook    14229: 
1.1       anton    14230: doc-savesystem
                   14231: 
1.44      crook    14232: 
1.1       anton    14233: @node Data-Relocatable Image Files, Fully Relocatable Image Files, Non-Relocatable Image Files, Image Files
                   14234: @section Data-Relocatable Image Files
                   14235: @cindex data-relocatable image files
1.26      crook    14236: @cindex image file, data-relocatable
1.1       anton    14237: 
                   14238: These files contain relocatable data addresses, but fixed code addresses
                   14239: (instead of tokens). They are specific to the executable (i.e.,
                   14240: @file{gforth} file) they were created with. For direct threading on some
                   14241: architectures (e.g., the i386), data-relocatable images do not work. You
                   14242: get a data-relocatable image, if you use @file{gforthmi} with a
                   14243: Gforth binary that is not doubly indirect threaded (@pxref{Fully
                   14244: Relocatable Image Files}).
                   14245: 
                   14246: @node Fully Relocatable Image Files, Stack and Dictionary Sizes, Data-Relocatable Image Files, Image Files
                   14247: @section Fully Relocatable Image Files
                   14248: @cindex fully relocatable image files
1.26      crook    14249: @cindex image file, fully relocatable
1.1       anton    14250: 
                   14251: @cindex @file{kern*.fi}, relocatability
                   14252: @cindex @file{gforth.fi}, relocatability
                   14253: These image files have relocatable data addresses, and tokens for code
                   14254: addresses. They can be used with different binaries (e.g., with and
                   14255: without debugging) on the same machine, and even across machines with
                   14256: the same data formats (byte order, cell size, floating point
                   14257: format). However, they are usually specific to the version of Gforth
                   14258: they were created with. The files @file{gforth.fi} and @file{kernl*.fi}
                   14259: are fully relocatable.
                   14260: 
                   14261: There are two ways to create a fully relocatable image file:
                   14262: 
                   14263: @menu
1.29      crook    14264: * gforthmi::                    The normal way
1.1       anton    14265: * cross.fs::                    The hard way
                   14266: @end menu
                   14267: 
                   14268: @node gforthmi, cross.fs, Fully Relocatable Image Files, Fully Relocatable Image Files
                   14269: @subsection @file{gforthmi}
                   14270: @cindex @file{comp-i.fs}
                   14271: @cindex @file{gforthmi}
                   14272: 
                   14273: You will usually use @file{gforthmi}. If you want to create an
1.29      crook    14274: image @i{file} that contains everything you would load by invoking
                   14275: Gforth with @code{gforth @i{options}}, you simply say:
1.1       anton    14276: @example
1.29      crook    14277: gforthmi @i{file} @i{options}
1.1       anton    14278: @end example
                   14279: 
                   14280: E.g., if you want to create an image @file{asm.fi} that has the file
                   14281: @file{asm.fs} loaded in addition to the usual stuff, you could do it
                   14282: like this:
                   14283: 
                   14284: @example
                   14285: gforthmi asm.fi asm.fs
                   14286: @end example
                   14287: 
1.27      crook    14288: @file{gforthmi} is implemented as a sh script and works like this: It
                   14289: produces two non-relocatable images for different addresses and then
                   14290: compares them. Its output reflects this: first you see the output (if
1.62      crook    14291: any) of the two Gforth invocations that produce the non-relocatable image
1.27      crook    14292: files, then you see the output of the comparing program: It displays the
                   14293: offset used for data addresses and the offset used for code addresses;
1.1       anton    14294: moreover, for each cell that cannot be represented correctly in the
1.44      crook    14295: image files, it displays a line like this:
1.1       anton    14296: 
                   14297: @example
                   14298:      78DC         BFFFFA50         BFFFFA40
                   14299: @end example
                   14300: 
                   14301: This means that at offset $78dc from @code{forthstart}, one input image
                   14302: contains $bffffa50, and the other contains $bffffa40. Since these cells
                   14303: cannot be represented correctly in the output image, you should examine
                   14304: these places in the dictionary and verify that these cells are dead
                   14305: (i.e., not read before they are written).
1.39      anton    14306: 
                   14307: @cindex --application, @code{gforthmi} option
                   14308: If you insert the option @code{--application} in front of the image file
                   14309: name, you will get an image that uses the @code{--appl-image} option
                   14310: instead of the @code{--image-file} option (@pxref{Invoking
                   14311: Gforth}). When you execute such an image on Unix (by typing the image
                   14312: name as command), the Gforth engine will pass all options to the image
                   14313: instead of trying to interpret them as engine options.
1.1       anton    14314: 
1.27      crook    14315: If you type @file{gforthmi} with no arguments, it prints some usage
                   14316: instructions.
                   14317: 
1.1       anton    14318: @cindex @code{savesystem} during @file{gforthmi}
                   14319: @cindex @code{bye} during @file{gforthmi}
                   14320: @cindex doubly indirect threaded code
1.44      crook    14321: @cindex environment variables
                   14322: @cindex @code{GFORTHD} -- environment variable
                   14323: @cindex @code{GFORTH} -- environment variable
1.1       anton    14324: @cindex @code{gforth-ditc}
1.29      crook    14325: There are a few wrinkles: After processing the passed @i{options}, the
1.1       anton    14326: words @code{savesystem} and @code{bye} must be visible. A special doubly
                   14327: indirect threaded version of the @file{gforth} executable is used for
1.62      crook    14328: creating the non-relocatable images; you can pass the exact filename of
1.1       anton    14329: this executable through the environment variable @code{GFORTHD}
                   14330: (default: @file{gforth-ditc}); if you pass a version that is not doubly
                   14331: indirect threaded, you will not get a fully relocatable image, but a
1.27      crook    14332: data-relocatable image (because there is no code address offset). The
                   14333: normal @file{gforth} executable is used for creating the relocatable
                   14334: image; you can pass the exact filename of this executable through the
                   14335: environment variable @code{GFORTH}.
1.1       anton    14336: 
                   14337: @node cross.fs,  , gforthmi, Fully Relocatable Image Files
                   14338: @subsection @file{cross.fs}
                   14339: @cindex @file{cross.fs}
                   14340: @cindex cross-compiler
                   14341: @cindex metacompiler
1.47      crook    14342: @cindex target compiler
1.1       anton    14343: 
                   14344: You can also use @code{cross}, a batch compiler that accepts a Forth-like
1.47      crook    14345: programming language (@pxref{Cross Compiler}).
1.1       anton    14346: 
1.47      crook    14347: @code{cross} allows you to create image files for machines with
1.1       anton    14348: different data sizes and data formats than the one used for generating
                   14349: the image file. You can also use it to create an application image that
                   14350: does not contain a Forth compiler. These features are bought with
                   14351: restrictions and inconveniences in programming. E.g., addresses have to
                   14352: be stored in memory with special words (@code{A!}, @code{A,}, etc.) in
                   14353: order to make the code relocatable.
                   14354: 
                   14355: 
                   14356: @node Stack and Dictionary Sizes, Running Image Files, Fully Relocatable Image Files, Image Files
                   14357: @section Stack and Dictionary Sizes
                   14358: @cindex image file, stack and dictionary sizes
                   14359: @cindex dictionary size default
                   14360: @cindex stack size default
                   14361: 
                   14362: If you invoke Gforth with a command line flag for the size
                   14363: (@pxref{Invoking Gforth}), the size you specify is stored in the
                   14364: dictionary. If you save the dictionary with @code{savesystem} or create
                   14365: an image with @file{gforthmi}, this size will become the default
                   14366: for the resulting image file. E.g., the following will create a
1.21      crook    14367: fully relocatable version of @file{gforth.fi} with a 1MB dictionary:
1.1       anton    14368: 
                   14369: @example
                   14370: gforthmi gforth.fi -m 1M
                   14371: @end example
                   14372: 
                   14373: In other words, if you want to set the default size for the dictionary
                   14374: and the stacks of an image, just invoke @file{gforthmi} with the
                   14375: appropriate options when creating the image.
                   14376: 
                   14377: @cindex stack size, cache-friendly
                   14378: Note: For cache-friendly behaviour (i.e., good performance), you should
                   14379: make the sizes of the stacks modulo, say, 2K, somewhat different. E.g.,
                   14380: the default stack sizes are: data: 16k (mod 2k=0); fp: 15.5k (mod
                   14381: 2k=1.5k); return: 15k(mod 2k=1k); locals: 14.5k (mod 2k=0.5k).
                   14382: 
                   14383: @node Running Image Files, Modifying the Startup Sequence, Stack and Dictionary Sizes, Image Files
                   14384: @section Running Image Files
                   14385: @cindex running image files
                   14386: @cindex invoking image files
                   14387: @cindex image file invocation
                   14388: 
                   14389: @cindex -i, invoke image file
                   14390: @cindex --image file, invoke image file
1.29      crook    14391: You can invoke Gforth with an image file @i{image} instead of the
1.1       anton    14392: default @file{gforth.fi} with the @code{-i} flag (@pxref{Invoking Gforth}):
                   14393: @example
1.29      crook    14394: gforth -i @i{image}
1.1       anton    14395: @end example
                   14396: 
                   14397: @cindex executable image file
1.26      crook    14398: @cindex image file, executable
1.1       anton    14399: If your operating system supports starting scripts with a line of the
                   14400: form @code{#! ...}, you just have to type the image file name to start
                   14401: Gforth with this image file (note that the file extension @code{.fi} is
1.29      crook    14402: just a convention). I.e., to run Gforth with the image file @i{image},
                   14403: you can just type @i{image} instead of @code{gforth -i @i{image}}.
1.27      crook    14404: This works because every @code{.fi} file starts with a line of this
                   14405: format:
                   14406: 
                   14407: @example
                   14408: #! /usr/local/bin/gforth-0.4.0 -i
                   14409: @end example
                   14410: 
                   14411: The file and pathname for the Gforth engine specified on this line is
                   14412: the specific Gforth executable that it was built against; i.e. the value
                   14413: of the environment variable @code{GFORTH} at the time that
                   14414: @file{gforthmi} was executed.
1.1       anton    14415: 
1.27      crook    14416: You can make use of the same shell capability to make a Forth source
                   14417: file into an executable. For example, if you place this text in a file:
1.26      crook    14418: 
                   14419: @example
                   14420: #! /usr/local/bin/gforth
                   14421: 
                   14422: ." Hello, world" CR
                   14423: bye
                   14424: @end example
                   14425: 
                   14426: @noindent
1.27      crook    14427: and then make the file executable (chmod +x in Unix), you can run it
1.26      crook    14428: directly from the command line. The sequence @code{#!} is used in two
                   14429: ways; firstly, it is recognised as a ``magic sequence'' by the operating
1.29      crook    14430: system@footnote{The Unix kernel actually recognises two types of files:
                   14431: executable files and files of data, where the data is processed by an
                   14432: interpreter that is specified on the ``interpreter line'' -- the first
                   14433: line of the file, starting with the sequence #!. There may be a small
                   14434: limit (e.g., 32) on the number of characters that may be specified on
                   14435: the interpreter line.} secondly it is treated as a comment character by
                   14436: Gforth. Because of the second usage, a space is required between
1.80      anton    14437: @code{#!} and the path to the executable (moreover, some Unixes
                   14438: require the sequence @code{#! /}).
1.27      crook    14439: 
                   14440: The disadvantage of this latter technique, compared with using
1.80      anton    14441: @file{gforthmi}, is that it is slightly slower; the Forth source code is
                   14442: compiled on-the-fly, each time the program is invoked.
1.26      crook    14443: 
1.1       anton    14444: doc-#!
                   14445: 
1.44      crook    14446: 
1.1       anton    14447: @node Modifying the Startup Sequence,  , Running Image Files, Image Files
                   14448: @section Modifying the Startup Sequence
                   14449: @cindex startup sequence for image file
                   14450: @cindex image file initialization sequence
                   14451: @cindex initialization sequence of image file
                   14452: 
                   14453: You can add your own initialization to the startup sequence through the
1.26      crook    14454: deferred word @code{'cold}. @code{'cold} is invoked just before the
1.80      anton    14455: image-specific command line processing (i.e., loading files and
1.26      crook    14456: evaluating (@code{-e}) strings) starts.
1.1       anton    14457: 
                   14458: A sequence for adding your initialization usually looks like this:
                   14459: 
                   14460: @example
                   14461: :noname
                   14462:     Defers 'cold \ do other initialization stuff (e.g., rehashing wordlists)
                   14463:     ... \ your stuff
                   14464: ; IS 'cold
                   14465: @end example
                   14466: 
                   14467: @cindex turnkey image files
1.26      crook    14468: @cindex image file, turnkey applications
1.1       anton    14469: You can make a turnkey image by letting @code{'cold} execute a word
                   14470: (your turnkey application) that never returns; instead, it exits Gforth
                   14471: via @code{bye} or @code{throw}.
                   14472: 
                   14473: @cindex command-line arguments, access
                   14474: @cindex arguments on the command line, access
                   14475: You can access the (image-specific) command-line arguments through the
1.26      crook    14476: variables @code{argc} and @code{argv}. @code{arg} provides convenient
1.1       anton    14477: access to @code{argv}.
                   14478: 
1.26      crook    14479: If @code{'cold} exits normally, Gforth processes the command-line
                   14480: arguments as files to be loaded and strings to be evaluated.  Therefore,
                   14481: @code{'cold} should remove the arguments it has used in this case.
                   14482: 
1.44      crook    14483: 
                   14484: 
1.26      crook    14485: doc-'cold
1.1       anton    14486: doc-argc
                   14487: doc-argv
                   14488: doc-arg
                   14489: 
                   14490: 
1.44      crook    14491: 
1.1       anton    14492: @c ******************************************************************
1.13      pazsan   14493: @node Engine, Binding to System Library, Image Files, Top
1.1       anton    14494: @chapter Engine
                   14495: @cindex engine
                   14496: @cindex virtual machine
                   14497: 
1.26      crook    14498: Reading this chapter is not necessary for programming with Gforth. It
1.1       anton    14499: may be helpful for finding your way in the Gforth sources.
                   14500: 
1.109   ! anton    14501: The ideas in this section have also been published in the following
        !          14502: papers: Bernd Paysan, @cite{ANS fig/GNU/??? Forth} (in German),
        !          14503: Forth-Tagung '93; M. Anton Ertl,
        !          14504: @cite{@uref{http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z, A
        !          14505: Portable Forth Engine}}, EuroForth '93; M. Anton Ertl,
        !          14506: @cite{@uref{http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz,
        !          14507: Threaded code variations and optimizations (extended version)}},
        !          14508: Forth-Tagung '02.
1.1       anton    14509: 
                   14510: @menu
                   14511: * Portability::                 
                   14512: * Threading::                   
                   14513: * Primitives::                  
                   14514: * Performance::                 
                   14515: @end menu
                   14516: 
                   14517: @node Portability, Threading, Engine, Engine
                   14518: @section Portability
                   14519: @cindex engine portability
                   14520: 
1.26      crook    14521: An important goal of the Gforth Project is availability across a wide
                   14522: range of personal machines. fig-Forth, and, to a lesser extent, F83,
                   14523: achieved this goal by manually coding the engine in assembly language
                   14524: for several then-popular processors. This approach is very
                   14525: labor-intensive and the results are short-lived due to progress in
                   14526: computer architecture.
1.1       anton    14527: 
                   14528: @cindex C, using C for the engine
                   14529: Others have avoided this problem by coding in C, e.g., Mitch Bradley
                   14530: (cforth), Mikael Patel (TILE) and Dirk Zoller (pfe). This approach is
                   14531: particularly popular for UNIX-based Forths due to the large variety of
                   14532: architectures of UNIX machines. Unfortunately an implementation in C
                   14533: does not mix well with the goals of efficiency and with using
                   14534: traditional techniques: Indirect or direct threading cannot be expressed
                   14535: in C, and switch threading, the fastest technique available in C, is
                   14536: significantly slower. Another problem with C is that it is very
                   14537: cumbersome to express double integer arithmetic.
                   14538: 
                   14539: @cindex GNU C for the engine
                   14540: @cindex long long
                   14541: Fortunately, there is a portable language that does not have these
                   14542: limitations: GNU C, the version of C processed by the GNU C compiler
                   14543: (@pxref{C Extensions, , Extensions to the C Language Family, gcc.info,
                   14544: GNU C Manual}). Its labels as values feature (@pxref{Labels as Values, ,
                   14545: Labels as Values, gcc.info, GNU C Manual}) makes direct and indirect
                   14546: threading possible, its @code{long long} type (@pxref{Long Long, ,
                   14547: Double-Word Integers, gcc.info, GNU C Manual}) corresponds to Forth's
1.109   ! anton    14548: double numbers on many systems.  GNU C is freely available on all
1.1       anton    14549: important (and many unimportant) UNIX machines, VMS, 80386s running
                   14550: MS-DOS, the Amiga, and the Atari ST, so a Forth written in GNU C can run
                   14551: on all these machines.
                   14552: 
                   14553: Writing in a portable language has the reputation of producing code that
                   14554: is slower than assembly. For our Forth engine we repeatedly looked at
                   14555: the code produced by the compiler and eliminated most compiler-induced
                   14556: inefficiencies by appropriate changes in the source code.
                   14557: 
                   14558: @cindex explicit register declarations
                   14559: @cindex --enable-force-reg, configuration flag
                   14560: @cindex -DFORCE_REG
                   14561: However, register allocation cannot be portably influenced by the
                   14562: programmer, leading to some inefficiencies on register-starved
                   14563: machines. We use explicit register declarations (@pxref{Explicit Reg
                   14564: Vars, , Variables in Specified Registers, gcc.info, GNU C Manual}) to
                   14565: improve the speed on some machines. They are turned on by using the
                   14566: configuration flag @code{--enable-force-reg} (@code{gcc} switch
                   14567: @code{-DFORCE_REG}). Unfortunately, this feature not only depends on the
                   14568: machine, but also on the compiler version: On some machines some
                   14569: compiler versions produce incorrect code when certain explicit register
                   14570: declarations are used. So by default @code{-DFORCE_REG} is not used.
                   14571: 
                   14572: @node Threading, Primitives, Portability, Engine
                   14573: @section Threading
                   14574: @cindex inner interpreter implementation
                   14575: @cindex threaded code implementation
                   14576: 
                   14577: @cindex labels as values
                   14578: GNU C's labels as values extension (available since @code{gcc-2.0},
                   14579: @pxref{Labels as Values, , Labels as Values, gcc.info, GNU C Manual})
1.29      crook    14580: makes it possible to take the address of @i{label} by writing
                   14581: @code{&&@i{label}}.  This address can then be used in a statement like
                   14582: @code{goto *@i{address}}. I.e., @code{goto *&&x} is the same as
1.1       anton    14583: @code{goto x}.
                   14584: 
1.26      crook    14585: @cindex @code{NEXT}, indirect threaded
1.1       anton    14586: @cindex indirect threaded inner interpreter
                   14587: @cindex inner interpreter, indirect threaded
1.26      crook    14588: With this feature an indirect threaded @code{NEXT} looks like:
1.1       anton    14589: @example
                   14590: cfa = *ip++;
                   14591: ca = *cfa;
                   14592: goto *ca;
                   14593: @end example
                   14594: @cindex instruction pointer
                   14595: For those unfamiliar with the names: @code{ip} is the Forth instruction
                   14596: pointer; the @code{cfa} (code-field address) corresponds to ANS Forths
                   14597: execution token and points to the code field of the next word to be
                   14598: executed; The @code{ca} (code address) fetched from there points to some
                   14599: executable code, e.g., a primitive or the colon definition handler
                   14600: @code{docol}.
                   14601: 
1.26      crook    14602: @cindex @code{NEXT}, direct threaded
1.1       anton    14603: @cindex direct threaded inner interpreter
                   14604: @cindex inner interpreter, direct threaded
                   14605: Direct threading is even simpler:
                   14606: @example
                   14607: ca = *ip++;
                   14608: goto *ca;
                   14609: @end example
                   14610: 
                   14611: Of course we have packaged the whole thing neatly in macros called
1.26      crook    14612: @code{NEXT} and @code{NEXT1} (the part of @code{NEXT} after fetching the cfa).
1.1       anton    14613: 
                   14614: @menu
                   14615: * Scheduling::                  
                   14616: * Direct or Indirect Threaded?::  
1.109   ! anton    14617: * Dynamic Superinstructions::   
1.1       anton    14618: * DOES>::                       
                   14619: @end menu
                   14620: 
                   14621: @node Scheduling, Direct or Indirect Threaded?, Threading, Threading
                   14622: @subsection Scheduling
                   14623: @cindex inner interpreter optimization
                   14624: 
                   14625: There is a little complication: Pipelined and superscalar processors,
                   14626: i.e., RISC and some modern CISC machines can process independent
                   14627: instructions while waiting for the results of an instruction. The
                   14628: compiler usually reorders (schedules) the instructions in a way that
                   14629: achieves good usage of these delay slots. However, on our first tries
                   14630: the compiler did not do well on scheduling primitives. E.g., for
                   14631: @code{+} implemented as
                   14632: @example
                   14633: n=sp[0]+sp[1];
                   14634: sp++;
                   14635: sp[0]=n;
                   14636: NEXT;
                   14637: @end example
1.81      anton    14638: the @code{NEXT} comes strictly after the other code, i.e., there is
                   14639: nearly no scheduling. After a little thought the problem becomes clear:
                   14640: The compiler cannot know that @code{sp} and @code{ip} point to different
1.21      crook    14641: addresses (and the version of @code{gcc} we used would not know it even
                   14642: if it was possible), so it could not move the load of the cfa above the
                   14643: store to the TOS. Indeed the pointers could be the same, if code on or
                   14644: very near the top of stack were executed. In the interest of speed we
                   14645: chose to forbid this probably unused ``feature'' and helped the compiler
1.81      anton    14646: in scheduling: @code{NEXT} is divided into several parts:
                   14647: @code{NEXT_P0}, @code{NEXT_P1} and @code{NEXT_P2}). @code{+} now looks
                   14648: like:
1.1       anton    14649: @example
1.81      anton    14650: NEXT_P0;
1.1       anton    14651: n=sp[0]+sp[1];
                   14652: sp++;
                   14653: NEXT_P1;
                   14654: sp[0]=n;
                   14655: NEXT_P2;
                   14656: @end example
                   14657: 
1.81      anton    14658: There are various schemes that distribute the different operations of
                   14659: NEXT between these parts in several ways; in general, different schemes
                   14660: perform best on different processors.  We use a scheme for most
                   14661: architectures that performs well for most processors of this
1.109   ! anton    14662: architecture; in the future we may switch to benchmarking and chosing
1.81      anton    14663: the scheme on installation time.
                   14664: 
1.1       anton    14665: 
1.109   ! anton    14666: @node Direct or Indirect Threaded?, Dynamic Superinstructions, Scheduling, Threading
1.1       anton    14667: @subsection Direct or Indirect Threaded?
                   14668: @cindex threading, direct or indirect?
                   14669: 
1.109   ! anton    14670: Threaded forth code consists of references to primitives (simple machine
        !          14671: code routines like @code{+}) and to non-primitives (e.g., colon
        !          14672: definitions, variables, constants); for a specific class of
        !          14673: non-primitives (e.g., variables) there is one code routine (e.g.,
        !          14674: @code{dovar}), but each variable needs a separate reference to its data.
        !          14675: 
        !          14676: Traditionally Forth has been implemented as indirect threaded code,
        !          14677: because this allows to use only one cell to reference a non-primitive
        !          14678: (basically you point to the data, and find the code address there).
        !          14679: 
        !          14680: @cindex primitive-centric threaded code
        !          14681: However, threaded code in Gforth (since 0.6.0) uses two cells for
        !          14682: non-primitives, one for the code address, and one for the data address;
        !          14683: the data pointer is an immediate argument for the virtual machine
        !          14684: instruction represented by the code address.  We call this
        !          14685: @emph{primitive-centric} threaded code, because all code addresses point
        !          14686: to simple primitives.  E.g., for a variable, the code address is for
        !          14687: @code{lit} (also used for integer literals like @code{99}).
        !          14688: 
        !          14689: Primitive-centric threaded code allows us to use (faster) direct
        !          14690: threading as dispatch method, completely portably (direct threaded code
        !          14691: in Gforth before 0.6.0 required architecture-specific code).  It also
        !          14692: eliminates the performance problems related to I-cache consistency that
        !          14693: 386 implementations have with direct threaded code, and allows
        !          14694: additional optimizations.
        !          14695: 
        !          14696: @cindex hybrid direct/indirect threaded code
        !          14697: There is a catch, however: the @var{xt} parameter of @code{execute} can
        !          14698: occupy only one cell, so how do we pass non-primitives with their code
        !          14699: @emph{and} data addresses to them?  Our answer is to use indirect
        !          14700: threaded dispatch for @code{execute} and other words that use a
        !          14701: single-cell xt.  So, normal threaded code in colon definitions uses
        !          14702: direct threading, and @code{execute} and similar words, which dispatch
        !          14703: to xts on the data stack, use indirect threaded code.  We call this
        !          14704: @emph{hybrid direct/indirect} threaded code.
        !          14705: 
        !          14706: @cindex engines, gforth vs. gforth-fast vs. gforth-itc
        !          14707: @cindex gforth engine
        !          14708: @cindex gforth-fast engine
        !          14709: The engines @command{gforth} and @command{gforth-fast} use hybrid
        !          14710: direct/indirect threaded code.  This means that with these engines you
        !          14711: cannot use @code{,} to compile an xt.  Instead, you have to use
        !          14712: @code{compile,}.
        !          14713: 
        !          14714: @cindex gforth-itc engine
        !          14715: If you want to compile xts with @code{,}, use @command{gforth-itc}.  This
        !          14716: engine uses plain old indirect threaded code.  It still compiles in a
        !          14717: primitive-centric style, so you cannot use @code{compile,} instead of
        !          14718: @code{,} (e.g., for producing tables of xts with @code{] word1 word2
        !          14719: ... [}.  If you want to do that, you have to use @command{gforth-itc}
        !          14720: and execute @code{' , is compile,}.  Your program can check if it is
        !          14721: running on a hybrid direct/indirect threaded engine or a pure indirect
        !          14722: threaded engine with @code{threading-method} (@pxref{Threading Words}).
        !          14723: 
        !          14724: 
        !          14725: @node Dynamic Superinstructions, DOES>, Direct or Indirect Threaded?, Threading
        !          14726: @subsection Dynamic Superinstructions
        !          14727: @cindex Dynamic superinstructions with replication
        !          14728: @cindex Superinstructions
        !          14729: @cindex Replication
        !          14730: 
        !          14731: The engines @command{gforth} and @command{gforth-fast} use another
        !          14732: optimization: Dynamic superinstructions with replication.  As an
        !          14733: example, consider the following colon definition:
        !          14734: 
        !          14735: @example
        !          14736: : squared ( n1 -- n2 )
        !          14737:   dup * ;
        !          14738: @end example
        !          14739: 
        !          14740: Gforth compiles this into the threaded code sequence
        !          14741: 
        !          14742: @example
        !          14743: dup
        !          14744: *
        !          14745: ;s
        !          14746: @end example
        !          14747: 
        !          14748: In normal direct threaded code there is a code address occupying one
        !          14749: cell for each of these primitives.  Each code address points to a
        !          14750: machine code routine, and the interpreter jumps to this machine code in
        !          14751: order to execute the primitive.  The routines for these three
        !          14752: primitives are (in @command{gforth-fast} on the 386):
        !          14753: 
        !          14754: @example
        !          14755: Code dup  
        !          14756: ( $804B950 )  add     esi , # -4  \ $83 $C6 $FC 
        !          14757: ( $804B953 )  add     ebx , # 4  \ $83 $C3 $4 
        !          14758: ( $804B956 )  mov     dword ptr 4 [esi] , ecx  \ $89 $4E $4 
        !          14759: ( $804B959 )  jmp     dword ptr FC [ebx]  \ $FF $63 $FC 
        !          14760: end-code
        !          14761: Code *  
        !          14762: ( $804ACC4 )  mov     eax , dword ptr 4 [esi]  \ $8B $46 $4 
        !          14763: ( $804ACC7 )  add     esi , # 4  \ $83 $C6 $4 
        !          14764: ( $804ACCA )  add     ebx , # 4  \ $83 $C3 $4 
        !          14765: ( $804ACCD )  imul    ecx , eax  \ $F $AF $C8 
        !          14766: ( $804ACD0 )  jmp     dword ptr FC [ebx]  \ $FF $63 $FC 
        !          14767: end-code
        !          14768: Code ;s  
        !          14769: ( $804A693 )  mov     eax , dword ptr [edi]  \ $8B $7 
        !          14770: ( $804A695 )  add     edi , # 4  \ $83 $C7 $4 
        !          14771: ( $804A698 )  lea     ebx , dword ptr 4 [eax]  \ $8D $58 $4 
        !          14772: ( $804A69B )  jmp     dword ptr FC [ebx]  \ $FF $63 $FC 
        !          14773: end-code
        !          14774: @end example
        !          14775: 
        !          14776: With dynamic superinstructions and replication the compiler does not
        !          14777: just lay down the threaded code, but also copies the machine code
        !          14778: fragments, usually without the jump at the end.
        !          14779: 
        !          14780: @example
        !          14781: ( $4057D27D )  add     esi , # -4  \ $83 $C6 $FC 
        !          14782: ( $4057D280 )  add     ebx , # 4  \ $83 $C3 $4 
        !          14783: ( $4057D283 )  mov     dword ptr 4 [esi] , ecx  \ $89 $4E $4 
        !          14784: ( $4057D286 )  mov     eax , dword ptr 4 [esi]  \ $8B $46 $4 
        !          14785: ( $4057D289 )  add     esi , # 4  \ $83 $C6 $4 
        !          14786: ( $4057D28C )  add     ebx , # 4  \ $83 $C3 $4 
        !          14787: ( $4057D28F )  imul    ecx , eax  \ $F $AF $C8 
        !          14788: ( $4057D292 )  mov     eax , dword ptr [edi]  \ $8B $7 
        !          14789: ( $4057D294 )  add     edi , # 4  \ $83 $C7 $4 
        !          14790: ( $4057D297 )  lea     ebx , dword ptr 4 [eax]  \ $8D $58 $4 
        !          14791: ( $4057D29A )  jmp     dword ptr FC [ebx]  \ $FF $63 $FC 
        !          14792: @end example
        !          14793: 
        !          14794: Only when a threaded-code control-flow change happens (e.g., in
        !          14795: @code{;s}), the jump is appended.  This optimization eliminates many of
        !          14796: these jumps and makes the rest much more predictable.  The speedup
        !          14797: depends on the processor and the application; on the Athlon and Pentium
        !          14798: III this optimization typically produces a speedup by a factor of 2.
        !          14799: 
        !          14800: The code addresses in the direct-threaded code are set to point to the
        !          14801: appropriate points in the copied machine code, in this example like
        !          14802: this:
1.1       anton    14803: 
1.109   ! anton    14804: @example
        !          14805: primitive  code address
        !          14806:    dup       $4057D27D
        !          14807:    *         $4057D286
        !          14808:    ;s        $4057D292
        !          14809: @end example
        !          14810: 
        !          14811: Thus there can be threaded-code jumps to any place in this piece of
        !          14812: code.  This also simplifies decompilation quite a bit.
        !          14813: 
        !          14814: @cindex --no-dynamic command-line option
        !          14815: @cindex --no-super command-line option
        !          14816: You can disable this optimization with @option{--no-dynamic}.  You can
        !          14817: use the copying without eliminating the jumps (i.e., dynamic
        !          14818: replication, but without superinstructions) with @option{--no-super};
        !          14819: this gives the branch prediction benefit alone; the effect on
        !          14820: performance depends on the CPU.
        !          14821: 
        !          14822: @cindex --dynamic command-line option
        !          14823: On some machines this optimization is disabled by default, because it is
        !          14824: unsafe on these machines.  However, if you feel adventurous, you can
        !          14825: enable it with @option{--dynamic}.
        !          14826: 
        !          14827: @node DOES>,  , Dynamic Superinstructions, Threading
1.1       anton    14828: @subsection DOES>
                   14829: @cindex @code{DOES>} implementation
                   14830: 
1.26      crook    14831: @cindex @code{dodoes} routine
                   14832: @cindex @code{DOES>}-code
1.1       anton    14833: One of the most complex parts of a Forth engine is @code{dodoes}, i.e.,
                   14834: the chunk of code executed by every word defined by a
1.109   ! anton    14835: @code{CREATE}...@code{DOES>} pair; actually with primitive-centric code,
        !          14836: this is only needed if the xt of the word is @code{execute}d. The main
        !          14837: problem here is: How to find the Forth code to be executed, i.e. the
        !          14838: code after the @code{DOES>} (the @code{DOES>}-code)? There are two
        !          14839: solutions:
1.1       anton    14840: 
1.21      crook    14841: In fig-Forth the code field points directly to the @code{dodoes} and the
1.109   ! anton    14842: @code{DOES>}-code address is stored in the cell after the code address
        !          14843: (i.e. at @code{@i{CFA} cell+}). It may seem that this solution is
        !          14844: illegal in the Forth-79 and all later standards, because in fig-Forth
        !          14845: this address lies in the body (which is illegal in these
        !          14846: standards). However, by making the code field larger for all words this
        !          14847: solution becomes legal again.  We use this approach.  Leaving a cell
        !          14848: unused in most words is a bit wasteful, but on the machines we are
        !          14849: targeting this is hardly a problem.
        !          14850: 
1.1       anton    14851: 
                   14852: @node Primitives, Performance, Threading, Engine
                   14853: @section Primitives
                   14854: @cindex primitives, implementation
                   14855: @cindex virtual machine instructions, implementation
                   14856: 
                   14857: @menu
                   14858: * Automatic Generation::        
                   14859: * TOS Optimization::            
                   14860: * Produced code::               
                   14861: @end menu
                   14862: 
                   14863: @node Automatic Generation, TOS Optimization, Primitives, Primitives
                   14864: @subsection Automatic Generation
                   14865: @cindex primitives, automatic generation
                   14866: 
                   14867: @cindex @file{prims2x.fs}
1.109   ! anton    14868: 
1.1       anton    14869: Since the primitives are implemented in a portable language, there is no
                   14870: longer any need to minimize the number of primitives. On the contrary,
                   14871: having many primitives has an advantage: speed. In order to reduce the
                   14872: number of errors in primitives and to make programming them easier, we
1.109   ! anton    14873: provide a tool, the primitive generator (@file{prims2x.fs} aka Vmgen,
        !          14874: @pxref{Top, Vmgen, Introduction, vmgen, Vmgen}), that automatically
        !          14875: generates most (and sometimes all) of the C code for a primitive from
        !          14876: the stack effect notation.  The source for a primitive has the following
        !          14877: form:
1.1       anton    14878: 
                   14879: @cindex primitive source format
                   14880: @format
1.58      anton    14881: @i{Forth-name}  ( @i{stack-effect} )        @i{category}    [@i{pronounc.}]
1.29      crook    14882: [@code{""}@i{glossary entry}@code{""}]
                   14883: @i{C code}
1.1       anton    14884: [@code{:}
1.29      crook    14885: @i{Forth code}]
1.1       anton    14886: @end format
                   14887: 
                   14888: The items in brackets are optional. The category and glossary fields
                   14889: are there for generating the documentation, the Forth code is there
                   14890: for manual implementations on machines without GNU C. E.g., the source
                   14891: for the primitive @code{+} is:
                   14892: @example
1.58      anton    14893: +    ( n1 n2 -- n )   core    plus
1.1       anton    14894: n = n1+n2;
                   14895: @end example
                   14896: 
                   14897: This looks like a specification, but in fact @code{n = n1+n2} is C
                   14898: code. Our primitive generation tool extracts a lot of information from
                   14899: the stack effect notations@footnote{We use a one-stack notation, even
                   14900: though we have separate data and floating-point stacks; The separate
                   14901: notation can be generated easily from the unified notation.}: The number
                   14902: of items popped from and pushed on the stack, their type, and by what
                   14903: name they are referred to in the C code. It then generates a C code
                   14904: prelude and postlude for each primitive. The final C code for @code{+}
                   14905: looks like this:
                   14906: 
                   14907: @example
1.46      pazsan   14908: I_plus: /* + ( n1 n2 -- n ) */  /* label, stack effect */
1.1       anton    14909: /*  */                          /* documentation */
1.81      anton    14910: NAME("+")                       /* debugging output (with -DDEBUG) */
1.1       anton    14911: @{
                   14912: DEF_CA                          /* definition of variable ca (indirect threading) */
                   14913: Cell n1;                        /* definitions of variables */
                   14914: Cell n2;
                   14915: Cell n;
1.81      anton    14916: NEXT_P0;                        /* NEXT part 0 */
1.1       anton    14917: n1 = (Cell) sp[1];              /* input */
                   14918: n2 = (Cell) TOS;
                   14919: sp += 1;                        /* stack adjustment */
                   14920: @{
                   14921: n = n1+n2;                      /* C code taken from the source */
                   14922: @}
                   14923: NEXT_P1;                        /* NEXT part 1 */
                   14924: TOS = (Cell)n;                  /* output */
                   14925: NEXT_P2;                        /* NEXT part 2 */
                   14926: @}
                   14927: @end example
                   14928: 
                   14929: This looks long and inefficient, but the GNU C compiler optimizes quite
                   14930: well and produces optimal code for @code{+} on, e.g., the R3000 and the
                   14931: HP RISC machines: Defining the @code{n}s does not produce any code, and
                   14932: using them as intermediate storage also adds no cost.
                   14933: 
1.26      crook    14934: There are also other optimizations that are not illustrated by this
                   14935: example: assignments between simple variables are usually for free (copy
1.1       anton    14936: propagation). If one of the stack items is not used by the primitive
                   14937: (e.g.  in @code{drop}), the compiler eliminates the load from the stack
                   14938: (dead code elimination). On the other hand, there are some things that
                   14939: the compiler does not do, therefore they are performed by
                   14940: @file{prims2x.fs}: The compiler does not optimize code away that stores
                   14941: a stack item to the place where it just came from (e.g., @code{over}).
                   14942: 
                   14943: While programming a primitive is usually easy, there are a few cases
                   14944: where the programmer has to take the actions of the generator into
                   14945: account, most notably @code{?dup}, but also words that do not (always)
1.26      crook    14946: fall through to @code{NEXT}.
1.109   ! anton    14947: 
        !          14948: For more information
1.1       anton    14949: 
                   14950: @node TOS Optimization, Produced code, Automatic Generation, Primitives
                   14951: @subsection TOS Optimization
                   14952: @cindex TOS optimization for primitives
                   14953: @cindex primitives, keeping the TOS in a register
                   14954: 
                   14955: An important optimization for stack machine emulators, e.g., Forth
                   14956: engines, is keeping  one or more of the top stack items in
1.29      crook    14957: registers.  If a word has the stack effect @i{in1}...@i{inx} @code{--}
                   14958: @i{out1}...@i{outy}, keeping the top @i{n} items in registers
1.1       anton    14959: @itemize @bullet
                   14960: @item
1.29      crook    14961: is better than keeping @i{n-1} items, if @i{x>=n} and @i{y>=n},
1.1       anton    14962: due to fewer loads from and stores to the stack.
1.29      crook    14963: @item is slower than keeping @i{n-1} items, if @i{x<>y} and @i{x<n} and
                   14964: @i{y<n}, due to additional moves between registers.
1.1       anton    14965: @end itemize
                   14966: 
                   14967: @cindex -DUSE_TOS
                   14968: @cindex -DUSE_NO_TOS
                   14969: In particular, keeping one item in a register is never a disadvantage,
                   14970: if there are enough registers. Keeping two items in registers is a
                   14971: disadvantage for frequent words like @code{?branch}, constants,
                   14972: variables, literals and @code{i}. Therefore our generator only produces
                   14973: code that keeps zero or one items in registers. The generated C code
                   14974: covers both cases; the selection between these alternatives is made at
                   14975: C-compile time using the switch @code{-DUSE_TOS}. @code{TOS} in the C
                   14976: code for @code{+} is just a simple variable name in the one-item case,
                   14977: otherwise it is a macro that expands into @code{sp[0]}. Note that the
                   14978: GNU C compiler tries to keep simple variables like @code{TOS} in
                   14979: registers, and it usually succeeds, if there are enough registers.
                   14980: 
                   14981: @cindex -DUSE_FTOS
                   14982: @cindex -DUSE_NO_FTOS
                   14983: The primitive generator performs the TOS optimization for the
                   14984: floating-point stack, too (@code{-DUSE_FTOS}). For floating-point
                   14985: operations the benefit of this optimization is even larger:
                   14986: floating-point operations take quite long on most processors, but can be
                   14987: performed in parallel with other operations as long as their results are
                   14988: not used. If the FP-TOS is kept in a register, this works. If
                   14989: it is kept on the stack, i.e., in memory, the store into memory has to
                   14990: wait for the result of the floating-point operation, lengthening the
                   14991: execution time of the primitive considerably.
                   14992: 
                   14993: The TOS optimization makes the automatic generation of primitives a
                   14994: bit more complicated. Just replacing all occurrences of @code{sp[0]} by
                   14995: @code{TOS} is not sufficient. There are some special cases to
                   14996: consider:
                   14997: @itemize @bullet
                   14998: @item In the case of @code{dup ( w -- w w )} the generator must not
                   14999: eliminate the store to the original location of the item on the stack,
                   15000: if the TOS optimization is turned on.
                   15001: @item Primitives with stack effects of the form @code{--}
1.29      crook    15002: @i{out1}...@i{outy} must store the TOS to the stack at the start.
                   15003: Likewise, primitives with the stack effect @i{in1}...@i{inx} @code{--}
1.1       anton    15004: must load the TOS from the stack at the end. But for the null stack
                   15005: effect @code{--} no stores or loads should be generated.
                   15006: @end itemize
                   15007: 
                   15008: @node Produced code,  , TOS Optimization, Primitives
                   15009: @subsection Produced code
                   15010: @cindex primitives, assembly code listing
                   15011: 
                   15012: @cindex @file{engine.s}
                   15013: To see what assembly code is produced for the primitives on your machine
                   15014: with your compiler and your flag settings, type @code{make engine.s} and
1.81      anton    15015: look at the resulting file @file{engine.s}.  Alternatively, you can also
                   15016: disassemble the code of primitives with @code{see} on some architectures.
1.1       anton    15017: 
                   15018: @node  Performance,  , Primitives, Engine
                   15019: @section Performance
                   15020: @cindex performance of some Forth interpreters
                   15021: @cindex engine performance
                   15022: @cindex benchmarking Forth systems
                   15023: @cindex Gforth performance
                   15024: 
                   15025: On RISCs the Gforth engine is very close to optimal; i.e., it is usually
                   15026: impossible to write a significantly faster engine.
                   15027: 
                   15028: On register-starved machines like the 386 architecture processors
                   15029: improvements are possible, because @code{gcc} does not utilize the
                   15030: registers as well as a human, even with explicit register declarations;
                   15031: e.g., Bernd Beuster wrote a Forth system fragment in assembly language
                   15032: and hand-tuned it for the 486; this system is 1.19 times faster on the
                   15033: Sieve benchmark on a 486DX2/66 than Gforth compiled with
1.40      anton    15034: @code{gcc-2.6.3} with @code{-DFORCE_REG}.  The situation has improved
                   15035: with gcc-2.95 and gforth-0.4.9; now the most important virtual machine
                   15036: registers fit in real registers (and we can even afford to use the TOS
                   15037: optimization), resulting in a speedup of 1.14 on the sieve over the
                   15038: earlier results.
1.1       anton    15039: 
                   15040: @cindex Win32Forth performance
                   15041: @cindex NT Forth performance
                   15042: @cindex eforth performance
                   15043: @cindex ThisForth performance
                   15044: @cindex PFE performance
                   15045: @cindex TILE performance
1.81      anton    15046: The potential advantage of assembly language implementations is not
                   15047: necessarily realized in complete Forth systems: We compared Gforth-0.4.9
                   15048: (direct threaded, compiled with @code{gcc-2.95.1} and
                   15049: @code{-DFORCE_REG}) with Win32Forth 1.2093 (newer versions are
                   15050: reportedly much faster), LMI's NT Forth (Beta, May 1994) and Eforth
                   15051: (with and without peephole (aka pinhole) optimization of the threaded
                   15052: code); all these systems were written in assembly language. We also
                   15053: compared Gforth with three systems written in C: PFE-0.9.14 (compiled
                   15054: with @code{gcc-2.6.3} with the default configuration for Linux:
                   15055: @code{-O2 -fomit-frame-pointer -DUSE_REGS -DUNROLL_NEXT}), ThisForth
                   15056: Beta (compiled with @code{gcc-2.6.3 -O3 -fomit-frame-pointer}; ThisForth
                   15057: employs peephole optimization of the threaded code) and TILE (compiled
                   15058: with @code{make opt}). We benchmarked Gforth, PFE, ThisForth and TILE on
                   15059: a 486DX2/66 under Linux. Kenneth O'Heskin kindly provided the results
                   15060: for Win32Forth and NT Forth on a 486DX2/66 with similar memory
                   15061: performance under Windows NT. Marcel Hendrix ported Eforth to Linux,
                   15062: then extended it to run the benchmarks, added the peephole optimizer,
                   15063: ran the benchmarks and reported the results.
1.40      anton    15064: 
1.1       anton    15065: We used four small benchmarks: the ubiquitous Sieve; bubble-sorting and
                   15066: matrix multiplication come from the Stanford integer benchmarks and have
                   15067: been translated into Forth by Martin Fraeman; we used the versions
                   15068: included in the TILE Forth package, but with bigger data set sizes; and
                   15069: a recursive Fibonacci number computation for benchmarking calling
                   15070: performance. The following table shows the time taken for the benchmarks
                   15071: scaled by the time taken by Gforth (in other words, it shows the speedup
                   15072: factor that Gforth achieved over the other systems).
                   15073: 
                   15074: @example
1.40      anton    15075: relative      Win32-    NT       eforth       This-      
1.1       anton    15076:   time  Gforth Forth Forth eforth  +opt   PFE Forth  TILE
1.81      anton    15077: sieve     1.00  1.60  1.32   1.60  0.98  1.82  3.67  9.91
                   15078: bubble    1.00  1.55  1.66   1.75  1.04  1.78        4.58
                   15079: matmul    1.00  1.71  1.57   1.69  0.86  1.83        4.74
                   15080: fib       1.00  1.76  1.54   1.41  1.00  2.01  3.45  4.96
1.1       anton    15081: @end example
                   15082: 
1.26      crook    15083: You may be quite surprised by the good performance of Gforth when
                   15084: compared with systems written in assembly language. One important reason
                   15085: for the disappointing performance of these other systems is probably
                   15086: that they are not written optimally for the 486 (e.g., they use the
                   15087: @code{lods} instruction). In addition, Win32Forth uses a comfortable,
                   15088: but costly method for relocating the Forth image: like @code{cforth}, it
                   15089: computes the actual addresses at run time, resulting in two address
                   15090: computations per @code{NEXT} (@pxref{Image File Background}).
                   15091: 
1.40      anton    15092: Only Eforth with the peephole optimizer performs comparable to
                   15093: Gforth. The speedups achieved with peephole optimization of threaded
                   15094: code are quite remarkable. Adding a peephole optimizer to Gforth should
                   15095: cause similar speedups.
1.1       anton    15096: 
                   15097: The speedup of Gforth over PFE, ThisForth and TILE can be easily
                   15098: explained with the self-imposed restriction of the latter systems to
                   15099: standard C, which makes efficient threading impossible (however, the
1.4       anton    15100: measured implementation of PFE uses a GNU C extension: @pxref{Global Reg
1.1       anton    15101: Vars, , Defining Global Register Variables, gcc.info, GNU C Manual}).
                   15102: Moreover, current C compilers have a hard time optimizing other aspects
                   15103: of the ThisForth and the TILE source.
                   15104: 
1.26      crook    15105: The performance of Gforth on 386 architecture processors varies widely
                   15106: with the version of @code{gcc} used. E.g., @code{gcc-2.5.8} failed to
                   15107: allocate any of the virtual machine registers into real machine
                   15108: registers by itself and would not work correctly with explicit register
1.40      anton    15109: declarations, giving a 1.5 times slower engine (on a 486DX2/66 running
1.26      crook    15110: the Sieve) than the one measured above.
1.1       anton    15111: 
1.26      crook    15112: Note that there have been several releases of Win32Forth since the
                   15113: release presented here, so the results presented above may have little
1.40      anton    15114: predictive value for the performance of Win32Forth today (results for
                   15115: the current release on an i486DX2/66 are welcome).
1.1       anton    15116: 
                   15117: @cindex @file{Benchres}
1.66      anton    15118: In
                   15119: @cite{@uref{http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz,
                   15120: Translating Forth to Efficient C}} by M. Anton Ertl and Martin
1.1       anton    15121: Maierhofer (presented at EuroForth '95), an indirect threaded version of
1.66      anton    15122: Gforth is compared with Win32Forth, NT Forth, PFE, ThisForth, and
                   15123: several native code systems; that version of Gforth is slower on a 486
                   15124: than the direct threaded version used here. You can find a newer version
                   15125: of these measurements at
1.47      crook    15126: @uref{http://www.complang.tuwien.ac.at/forth/performance.html}. You can
1.1       anton    15127: find numbers for Gforth on various machines in @file{Benchres}.
                   15128: 
1.26      crook    15129: @c ******************************************************************
1.13      pazsan   15130: @node Binding to System Library, Cross Compiler, Engine, Top
1.14      pazsan   15131: @chapter Binding to System Library
1.13      pazsan   15132: 
                   15133: @node Cross Compiler, Bugs, Binding to System Library, Top
1.14      pazsan   15134: @chapter Cross Compiler
1.47      crook    15135: @cindex @file{cross.fs}
                   15136: @cindex cross-compiler
                   15137: @cindex metacompiler
                   15138: @cindex target compiler
1.13      pazsan   15139: 
1.46      pazsan   15140: The cross compiler is used to bootstrap a Forth kernel. Since Gforth is
                   15141: mostly written in Forth, including crucial parts like the outer
                   15142: interpreter and compiler, it needs compiled Forth code to get
                   15143: started. The cross compiler allows to create new images for other
                   15144: architectures, even running under another Forth system.
1.13      pazsan   15145: 
                   15146: @menu
1.67      anton    15147: * Using the Cross Compiler::    
                   15148: * How the Cross Compiler Works::  
1.13      pazsan   15149: @end menu
                   15150: 
1.21      crook    15151: @node Using the Cross Compiler, How the Cross Compiler Works, Cross Compiler, Cross Compiler
1.14      pazsan   15152: @section Using the Cross Compiler
1.46      pazsan   15153: 
                   15154: The cross compiler uses a language that resembles Forth, but isn't. The
                   15155: main difference is that you can execute Forth code after definition,
                   15156: while you usually can't execute the code compiled by cross, because the
                   15157: code you are compiling is typically for a different computer than the
                   15158: one you are compiling on.
                   15159: 
1.81      anton    15160: @c anton: This chapter is somewhat different from waht I would expect: I
                   15161: @c would expect an explanation of the cross language and how to create an
                   15162: @c application image with it.  The section explains some aspects of
                   15163: @c creating a Gforth kernel.
                   15164: 
1.46      pazsan   15165: The Makefile is already set up to allow you to create kernels for new
                   15166: architectures with a simple make command. The generic kernels using the
                   15167: GCC compiled virtual machine are created in the normal build process
                   15168: with @code{make}. To create a embedded Gforth executable for e.g. the
                   15169: 8086 processor (running on a DOS machine), type
                   15170: 
                   15171: @example
                   15172: make kernl-8086.fi
                   15173: @end example
                   15174: 
                   15175: This will use the machine description from the @file{arch/8086}
                   15176: directory to create a new kernel. A machine file may look like that:
                   15177: 
                   15178: @example
                   15179: \ Parameter for target systems                         06oct92py
                   15180: 
                   15181:     4 Constant cell             \ cell size in bytes
                   15182:     2 Constant cell<<           \ cell shift to bytes
                   15183:     5 Constant cell>bit         \ cell shift to bits
                   15184:     8 Constant bits/char        \ bits per character
                   15185:     8 Constant bits/byte        \ bits per byte [default: 8]
                   15186:     8 Constant float            \ bytes per float
                   15187:     8 Constant /maxalign        \ maximum alignment in bytes
                   15188: false Constant bigendian        \ byte order
                   15189: ( true=big, false=little )
                   15190: 
                   15191: include machpc.fs               \ feature list
                   15192: @end example
                   15193: 
                   15194: This part is obligatory for the cross compiler itself, the feature list
                   15195: is used by the kernel to conditionally compile some features in and out,
                   15196: depending on whether the target supports these features.
                   15197: 
                   15198: There are some optional features, if you define your own primitives,
                   15199: have an assembler, or need special, nonstandard preparation to make the
1.81      anton    15200: boot process work. @code{asm-include} includes an assembler,
1.46      pazsan   15201: @code{prims-include} includes primitives, and @code{>boot} prepares for
                   15202: booting.
                   15203: 
                   15204: @example
                   15205: : asm-include    ." Include assembler" cr
                   15206:   s" arch/8086/asm.fs" included ;
                   15207: 
                   15208: : prims-include  ." Include primitives" cr
                   15209:   s" arch/8086/prim.fs" included ;
                   15210: 
                   15211: : >boot          ." Prepare booting" cr
                   15212:   s" ' boot >body into-forth 1+ !" evaluate ;
                   15213: @end example
                   15214: 
                   15215: These words are used as sort of macro during the cross compilation in
1.81      anton    15216: the file @file{kernel/main.fs}. Instead of using these macros, it would
1.46      pazsan   15217: be possible --- but more complicated --- to write a new kernel project
                   15218: file, too.
                   15219: 
                   15220: @file{kernel/main.fs} expects the machine description file name on the
                   15221: stack; the cross compiler itself (@file{cross.fs}) assumes that either
                   15222: @code{mach-file} leaves a counted string on the stack, or
                   15223: @code{machine-file} leaves an address, count pair of the filename on the
                   15224: stack.
                   15225: 
                   15226: The feature list is typically controlled using @code{SetValue}, generic
                   15227: files that are used by several projects can use @code{DefaultValue}
                   15228: instead. Both functions work like @code{Value}, when the value isn't
                   15229: defined, but @code{SetValue} works like @code{to} if the value is
                   15230: defined, and @code{DefaultValue} doesn't set anything, if the value is
                   15231: defined.
                   15232: 
                   15233: @example
                   15234: \ generic mach file for pc gforth                       03sep97jaw
                   15235: 
                   15236: true DefaultValue NIL  \ relocating
                   15237: 
                   15238: >ENVIRON
                   15239: 
                   15240: true DefaultValue file          \ controls the presence of the
                   15241:                                 \ file access wordset
                   15242: true DefaultValue OS            \ flag to indicate a operating system
                   15243: 
                   15244: true DefaultValue prims         \ true: primitives are c-code
                   15245: 
                   15246: true DefaultValue floating      \ floating point wordset is present
                   15247: 
                   15248: true DefaultValue glocals       \ gforth locals are present
                   15249:                                 \ will be loaded
                   15250: true DefaultValue dcomps        \ double number comparisons
                   15251: 
                   15252: true DefaultValue hash          \ hashing primitives are loaded/present
                   15253: 
                   15254: true DefaultValue xconds        \ used together with glocals,
                   15255:                                 \ special conditionals supporting gforths'
                   15256:                                 \ local variables
                   15257: true DefaultValue header        \ save a header information
                   15258: 
                   15259: true DefaultValue backtrace     \ enables backtrace code
                   15260: 
                   15261: false DefaultValue ec
                   15262: false DefaultValue crlf
                   15263: 
                   15264: cell 2 = [IF] &32 [ELSE] &256 [THEN] KB DefaultValue kernel-size
                   15265: 
                   15266: &16 KB          DefaultValue stack-size
                   15267: &15 KB &512 +   DefaultValue fstack-size
                   15268: &15 KB          DefaultValue rstack-size
                   15269: &14 KB &512 +   DefaultValue lstack-size
                   15270: @end example
1.13      pazsan   15271: 
1.48      anton    15272: @node How the Cross Compiler Works,  , Using the Cross Compiler, Cross Compiler
1.14      pazsan   15273: @section How the Cross Compiler Works
1.13      pazsan   15274: 
                   15275: @node Bugs, Origin, Cross Compiler, Top
1.21      crook    15276: @appendix Bugs
1.1       anton    15277: @cindex bug reporting
                   15278: 
1.21      crook    15279: Known bugs are described in the file @file{BUGS} in the Gforth distribution.
1.1       anton    15280: 
1.103     anton    15281: If you find a bug, please submit a bug report through
                   15282: @uref{https://savannah.gnu.org/bugs/?func=addbug&group=gforth}.
1.21      crook    15283: 
                   15284: @itemize @bullet
                   15285: @item
1.81      anton    15286: A program (or a sequence of keyboard commands) that reproduces the bug.
                   15287: @item
                   15288: A description of what you think constitutes the buggy behaviour.
                   15289: @item
1.21      crook    15290: The Gforth version used (it is announced at the start of an
                   15291: interactive Gforth session).
                   15292: @item
                   15293: The machine and operating system (on Unix
                   15294: systems @code{uname -a} will report this information).
                   15295: @item
1.81      anton    15296: The installation options (you can find the configure options at the
                   15297: start of @file{config.status}) and configuration (@code{configure}
                   15298: output or @file{config.cache}).
1.21      crook    15299: @item
                   15300: A complete list of changes (if any) you (or your installer) have made to the
                   15301: Gforth sources.
                   15302: @end itemize
1.1       anton    15303: 
                   15304: For a thorough guide on reporting bugs read @ref{Bug Reporting, , How
                   15305: to Report Bugs, gcc.info, GNU C Manual}.
                   15306: 
                   15307: 
1.21      crook    15308: @node Origin, Forth-related information, Bugs, Top
                   15309: @appendix Authors and Ancestors of Gforth
1.1       anton    15310: 
                   15311: @section Authors and Contributors
                   15312: @cindex authors of Gforth
                   15313: @cindex contributors to Gforth
                   15314: 
                   15315: The Gforth project was started in mid-1992 by Bernd Paysan and Anton
1.81      anton    15316: Ertl. The third major author was Jens Wilke.  Neal Crook contributed a
                   15317: lot to the manual.  Assemblers and disassemblers were contributed by
                   15318: Andrew McKewan, Christian Pirker, and Bernd Thallner.  Lennart Benschop
                   15319: (who was one of Gforth's first users, in mid-1993) and Stuart Ramsden
                   15320: inspired us with their continuous feedback. Lennart Benshop contributed
1.1       anton    15321: @file{glosgen.fs}, while Stuart Ramsden has been working on automatic
                   15322: support for calling C libraries. Helpful comments also came from Paul
                   15323: Kleinrubatscher, Christian Pirker, Dirk Zoller, Marcel Hendrix, John
1.58      anton    15324: Wavrik, Barrie Stott, Marc de Groot, Jorge Acerada, Bruce Hoyt, and
                   15325: Robert Epprecht. Since the release of Gforth-0.2.1 there were also
                   15326: helpful comments from many others; thank you all, sorry for not listing
                   15327: you here (but digging through my mailbox to extract your names is on my
1.81      anton    15328: to-do list).
1.1       anton    15329: 
                   15330: Gforth also owes a lot to the authors of the tools we used (GCC, CVS,
                   15331: and autoconf, among others), and to the creators of the Internet: Gforth
1.21      crook    15332: was developed across the Internet, and its authors did not meet
1.20      pazsan   15333: physically for the first 4 years of development.
1.1       anton    15334: 
                   15335: @section Pedigree
1.26      crook    15336: @cindex pedigree of Gforth
1.1       anton    15337: 
1.81      anton    15338: Gforth descends from bigFORTH (1993) and fig-Forth.  Of course, a
                   15339: significant part of the design of Gforth was prescribed by ANS Forth.
1.1       anton    15340: 
1.20      pazsan   15341: Bernd Paysan wrote bigFORTH, a descendent from TurboForth, an unreleased
1.1       anton    15342: 32 bit native code version of VolksForth for the Atari ST, written
                   15343: mostly by Dietrich Weineck.
                   15344: 
1.81      anton    15345: VolksForth was written by Klaus Schleisiek, Bernd Pennemann, Georg
                   15346: Rehfeld and Dietrich Weineck for the C64 (called UltraForth there) in
                   15347: the mid-80s and ported to the Atari ST in 1986.  It descends from F83.
1.1       anton    15348: 
                   15349: Henry Laxen and Mike Perry wrote F83 as a model implementation of the
                   15350: Forth-83 standard. !! Pedigree? When?
                   15351: 
                   15352: A team led by Bill Ragsdale implemented fig-Forth on many processors in
                   15353: 1979. Robert Selzer and Bill Ragsdale developed the original
                   15354: implementation of fig-Forth for the 6502 based on microForth.
                   15355: 
                   15356: The principal architect of microForth was Dean Sanderson. microForth was
                   15357: FORTH, Inc.'s first off-the-shelf product. It was developed in 1976 for
                   15358: the 1802, and subsequently implemented on the 8080, the 6800 and the
                   15359: Z80.
                   15360: 
                   15361: All earlier Forth systems were custom-made, usually by Charles Moore,
                   15362: who discovered (as he puts it) Forth during the late 60s. The first full
                   15363: Forth existed in 1971.
                   15364: 
1.81      anton    15365: A part of the information in this section comes from
                   15366: @cite{@uref{http://www.forth.com/Content/History/History1.htm,The
                   15367: Evolution of Forth}} by Elizabeth D. Rather, Donald R. Colburn and
                   15368: Charles H. Moore, presented at the HOPL-II conference and preprinted in
                   15369: SIGPLAN Notices 28(3), 1993.  You can find more historical and
                   15370: genealogical information about Forth there.
1.1       anton    15371: 
1.81      anton    15372: @c ------------------------------------------------------------------
1.21      crook    15373: @node Forth-related information, Word Index, Origin, Top
                   15374: @appendix Other Forth-related information
                   15375: @cindex Forth-related information
                   15376: 
1.81      anton    15377: @c anton: I threw most of this stuff out, because it can be found through
                   15378: @c the FAQ and the FAQ is more likely to be up-to-date.
1.21      crook    15379: 
                   15380: @cindex comp.lang.forth
                   15381: @cindex frequently asked questions
1.81      anton    15382: There is an active news group (comp.lang.forth) discussing Forth
                   15383: (including Gforth) and Forth-related issues. Its
                   15384: @uref{http://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html,FAQs}
                   15385: (frequently asked questions and their answers) contains a lot of
                   15386: information on Forth.  You should read it before posting to
                   15387: comp.lang.forth.
1.21      crook    15388: 
1.81      anton    15389: The ANS Forth standard is most usable in its
                   15390: @uref{http://www.taygeta.com/forth/dpans.html, HTML form}.
1.21      crook    15391: 
1.81      anton    15392: @c ------------------------------------------------------------------
                   15393: @node Word Index, Concept Index, Forth-related information, Top
1.1       anton    15394: @unnumbered Word Index
                   15395: 
1.26      crook    15396: This index is a list of Forth words that have ``glossary'' entries
                   15397: within this manual. Each word is listed with its stack effect and
                   15398: wordset.
1.1       anton    15399: 
                   15400: @printindex fn
                   15401: 
1.81      anton    15402: @c anton: the name index seems superfluous given the word and concept indices.
                   15403: 
                   15404: @c @node Name Index, Concept Index, Word Index, Top
                   15405: @c @unnumbered Name Index
1.41      anton    15406: 
1.81      anton    15407: @c This index is a list of Forth words that have ``glossary'' entries
                   15408: @c within this manual.
1.41      anton    15409: 
1.81      anton    15410: @c @printindex ky
1.41      anton    15411: 
1.81      anton    15412: @node Concept Index,  , Word Index, Top
1.1       anton    15413: @unnumbered Concept and Word Index
                   15414: 
1.26      crook    15415: Not all entries listed in this index are present verbatim in the
                   15416: text. This index also duplicates, in abbreviated form, all of the words
                   15417: listed in the Word Index (only the names are listed for the words here).
1.1       anton    15418: 
                   15419: @printindex cp
                   15420: 
                   15421: @contents
                   15422: @bye
1.81      anton    15423: 
                   15424: 
1.1       anton    15425: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>