File:  [gforth] / gforth / Attic / primitives
Revision 1.48: download - view: text, annotated - select for diffs
Sat Dec 23 16:21:58 1995 UTC (28 years, 4 months ago) by anton
Branches: MAIN
CVS tags: HEAD
Improved etags support
prims2x now supports synclines ("#line ...")
improved strsignal replacement

    1: \ Gforth primitives
    2: 
    3: \ Copyright (C) 1995 Free Software Foundation, Inc.
    4: 
    5: \ This file is part of Gforth.
    6: 
    7: \ Gforth is free software; you can redistribute it and/or
    8: \ modify it under the terms of the GNU General Public License
    9: \ as published by the Free Software Foundation; either version 2
   10: \ of the License, or (at your option) any later version.
   11: 
   12: \ This program is distributed in the hope that it will be useful,
   13: \ but WITHOUT ANY WARRANTY; without even the implied warranty of
   14: \ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   15: \ GNU General Public License for more details.
   16: 
   17: \ You should have received a copy of the GNU General Public License
   18: \ along with this program; if not, write to the Free Software
   19: \ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
   20: 
   21: 
   22: \ WARNING: This file is processed by m4. Make sure your identifiers
   23: \ don't collide with m4's (e.g. by undefining them).
   24: \ 
   25: \ 
   26: \ 
   27: \ This file contains primitive specifications in the following format:
   28: \ 
   29: \ forth name	stack effect	category	[pronunciation]
   30: \ [""glossary entry""]
   31: \ C code
   32: \ [:
   33: \ Forth code]
   34: \ 
   35: \ prims2x is pedantic about tabs vs. blanks. The fields of the first
   36: \ line of a primitive are separated by tabs, the stack items in a
   37: \ stack effect by blanks.
   38: \
   39: \ Both pronounciation and stack items (in the stack effect) must
   40: \ conform to the C name syntax or the C compiler will complain.
   41: \ 
   42: \ 
   43: \ These specifications are automatically translated into C-code for the
   44: \ interpreter and into some other files. I hope that your C compiler has
   45: \ decent optimization, otherwise the automatically generated code will
   46: \ be somewhat slow. The Forth version of the code is included for manual
   47: \ compilers, so they will need to compile only the important words.
   48: \ 
   49: \ Note that stack pointer adjustment is performed according to stack
   50: \ effect by automatically generated code and NEXT is automatically
   51: \ appended to the C code. Also, you can use the names in the stack
   52: \ effect in the C code. Stack access is automatic. One exception: if
   53: \ your code does not fall through, the results are not stored into the
   54: \ stack. Use different names on both sides of the '--', if you change a
   55: \ value (some stores to the stack are optimized away).
   56: \ 
   57: \ 
   58: \ 
   59: \ The stack variables have the following types:
   60: \ 
   61: \ name matches	type
   62: \ f.*		Bool
   63: \ c.*		Char
   64: \ [nw].*		Cell
   65: \ u.*		UCell
   66: \ d.*		DCell
   67: \ ud.*		UDCell
   68: \ r.*		Float
   69: \ a_.*		Cell *
   70: \ c_.*		Char *
   71: \ f_.*		Float *
   72: \ df_.*		DFloat *
   73: \ sf_.*		SFloat *
   74: \ xt.*		XT
   75: \ wid.*		WID
   76: \ f83name.*	F83Name *
   77: \ 
   78: \ 
   79: \ 
   80: \ In addition the following names can be used:
   81: \ ip	the instruction pointer
   82: \ sp	the data stack pointer
   83: \ rp	the parameter stack pointer
   84: \ lp	the locals stack pointer
   85: \ NEXT	executes NEXT
   86: \ cfa	
   87: \ NEXT1	executes NEXT1
   88: \ FLAG(x)	makes a Forth flag from a C flag
   89: \ 
   90: \ 
   91: \ 
   92: \ Percentages in comments are from Koopmans book: average/maximum use
   93: \ (taken from four, not very representative benchmarks)
   94: \ 
   95: \ 
   96: \ 
   97: \ To do:
   98: \ 
   99: \ throw execute, cfa and NEXT1 out?
  100: \ macroize *ip, ip++, *ip++ (pipelining)?
  101: 
  102: \ these m4 macros would collide with identifiers
  103: undefine(`index')
  104: undefine(`shift')
  105: 
  106: noop	--		gforth
  107: ;
  108: :
  109:  ;
  110: 
  111: lit	-- w		gforth
  112: w = (Cell)NEXT_INST;
  113: INC_IP(1);
  114: 
  115: execute		xt --		core
  116: ip=IP;
  117: IF_TOS(TOS = sp[0]);
  118: EXEC(xt);
  119: 
  120: branch-lp+!#	--	gforth	branch_lp_plus_store_number
  121: /* this will probably not be used */
  122: branch_adjust_lp:
  123: lp += (Cell)(IP[1]);
  124: goto branch;
  125: 
  126: branch	--		gforth
  127: branch:
  128: ip = (Xt *)(((Cell)IP)+(Cell)NEXT_INST);
  129: NEXT_P0;
  130: :
  131:  r> dup @ + >r ;
  132: 
  133: \ condbranch(forthname,restline,code)
  134: \ this is non-syntactical: code must open a brace that is closed by the macro
  135: define(condbranch,
  136: $1	$2
  137: $3	ip = (Xt *)(((Cell)IP)+(Cell)NEXT_INST);
  138:         NEXT_P0;
  139: 	NEXT;
  140: }
  141: else
  142:     INC_IP(1);
  143: 
  144: $1-lp+!#	$2_lp_plus_store_number
  145: $3    goto branch_adjust_lp;
  146: }
  147: else
  148:     INC_IP(2);
  149: 
  150: )
  151: 
  152: condbranch(?branch,f --		f83	question_branch,
  153: if (f==0) {
  154:     IF_TOS(TOS = sp[0]);
  155: )
  156: 
  157: condbranch((next),--		cmFORTH	paren_next,
  158: if ((*rp)--) {
  159: )
  160: 
  161: condbranch((loop),--		gforth	paren_loop,
  162: Cell index = *rp+1;
  163: Cell limit = rp[1];
  164: if (index != limit) {
  165:     *rp = index;
  166: )
  167: 
  168: condbranch((+loop),n --		gforth	paren_plus_loop,
  169: /* !! check this thoroughly */
  170: Cell index = *rp;
  171: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  172: /* dependent upon two's complement arithmetic */
  173: Cell olddiff = index-rp[1];
  174: #ifndef undefined
  175: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  176:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  177: #else
  178: #ifndef MAXINT
  179: #define MAXINT ((((Cell)1)<<(8*sizeof(Cell)-1))-1)
  180: #endif
  181: if(((olddiff^MAXINT) >= n) ^ ((olddiff+n) < 0)) {
  182: #endif
  183: #ifdef i386
  184:     *rp += n;
  185: #else
  186:     *rp = index + n;
  187: #endif
  188:     IF_TOS(TOS = sp[0]);
  189: )
  190: 
  191: condbranch((-loop),u --		gforth	paren_minus_loop,
  192: /* !! check this thoroughly */
  193: Cell index = *rp;
  194: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  195: /* dependent upon two's complement arithmetic */
  196: UCell olddiff = index-rp[1];
  197: if (olddiff>u) {
  198: #ifdef i386
  199:     *rp -= u;
  200: #else
  201:     *rp = index - u;
  202: #endif
  203:     IF_TOS(TOS = sp[0]);
  204: )
  205: 
  206: condbranch((s+loop),n --		gforth	paren_symmetric_plus_loop,
  207: ""The run-time procedure compiled by S+LOOP. It loops until the index
  208: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  209: version of (+LOOP).""
  210: /* !! check this thoroughly */
  211: Cell index = *rp;
  212: Cell diff = index-rp[1];
  213: Cell newdiff = diff+n;
  214: if (n<0) {
  215:     diff = -diff;
  216:     newdiff = -newdiff;
  217: }
  218: if (diff>=0 || newdiff<0) {
  219: #ifdef i386
  220:     *rp += n;
  221: #else
  222:     *rp = index + n;
  223: #endif
  224:     IF_TOS(TOS = sp[0]);
  225: )
  226: 
  227: unloop		--	core
  228: rp += 2;
  229: :
  230:  r> rdrop rdrop >r ;
  231: 
  232: (for)	ncount --		cmFORTH		paren_for
  233: /* or (for) = >r -- collides with unloop! */
  234: *--rp = 0;
  235: *--rp = ncount;
  236: :
  237:  r> swap 0 >r >r >r ;
  238: 
  239: (do)	nlimit nstart --		gforth		paren_do
  240: /* or do it in high-level? 0.09/0.23% */
  241: *--rp = nlimit;
  242: *--rp = nstart;
  243: :
  244:  r> -rot swap >r >r >r ;
  245: 
  246: (?do)	nlimit nstart --	gforth	paren_question_do
  247: *--rp = nlimit;
  248: *--rp = nstart;
  249: if (nstart == nlimit) {
  250:     IF_TOS(TOS = sp[0]);
  251:     goto branch;
  252:     }
  253: else {
  254:     INC_IP(1);
  255: }
  256: 
  257: (+do)	nlimit nstart --	gforth	paren_plus_do
  258: *--rp = nlimit;
  259: *--rp = nstart;
  260: if (nstart >= nlimit) {
  261:     IF_TOS(TOS = sp[0]);
  262:     goto branch;
  263:     }
  264: else {
  265:     INC_IP(1);
  266: }
  267: 
  268: (u+do)	ulimit ustart --	gforth	paren_u_plus_do
  269: *--rp = ulimit;
  270: *--rp = ustart;
  271: if (ustart >= ulimit) {
  272:     IF_TOS(TOS = sp[0]);
  273:     goto branch;
  274:     }
  275: else {
  276:     INC_IP(1);
  277: }
  278: 
  279: (-do)	nlimit nstart --	gforth	paren_minus_do
  280: *--rp = nlimit;
  281: *--rp = nstart;
  282: if (nstart <= nlimit) {
  283:     IF_TOS(TOS = sp[0]);
  284:     goto branch;
  285:     }
  286: else {
  287:     INC_IP(1);
  288: }
  289: 
  290: (u-do)	ulimit ustart --	gforth	paren_u_minus_do
  291: *--rp = ulimit;
  292: *--rp = ustart;
  293: if (ustart <= ulimit) {
  294:     IF_TOS(TOS = sp[0]);
  295:     goto branch;
  296:     }
  297: else {
  298:     INC_IP(1);
  299: }
  300: 
  301: i	-- n		core
  302: n = *rp;
  303: 
  304: j	-- n		core
  305: n = rp[2];
  306: 
  307: \ digit is high-level: 0/0%
  308: 
  309: (emit)	c --		gforth	paren_emit
  310: putchar(c);
  311: emitcounter++;
  312: 
  313: (type)	c_addr n --	gforth	paren_type
  314: fwrite(c_addr,sizeof(Char),n,stdout);
  315: emitcounter += n;
  316: 
  317: (key)	-- n		gforth	paren_key
  318: fflush(stdout);
  319: /* !! noecho */
  320: n = key();
  321: 
  322: key?	-- n		facility	key_q
  323: fflush(stdout);
  324: n = key_query;
  325: 
  326: cr	--		core
  327: puts("");
  328: :
  329:  $0A emit ;
  330: 
  331: move	c_from c_to ucount --		core
  332: memmove(c_to,c_from,ucount);
  333: /* make an Ifdef for bsd and others? */
  334: :
  335:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  336: 
  337: cmove	c_from c_to u --	string
  338: while (u-- > 0)
  339:   *c_to++ = *c_from++;
  340: :
  341:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  342: 
  343: cmove>	c_from c_to u --	string	c_move_up
  344: while (u-- > 0)
  345:   c_to[u] = c_from[u];
  346: :
  347:  dup 0= IF  drop 2drop exit  THEN
  348:  rot over + -rot bounds swap 1-
  349:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  350: 
  351: fill	c_addr u c --	core
  352: memset(c_addr,c,u);
  353: :
  354:  -rot bounds
  355:  ?DO  dup I c!  LOOP  drop ;
  356: 
  357: compare		c_addr1 u1 c_addr2 u2 -- n	string
  358: ""Compare the strings lexicographically. If they are equal, n is 0; if
  359: the first string is smaller, n is -1; if the first string is larger, n
  360: is 1. Currently this is based on the machine's character
  361: comparison. In the future, this may change to considering the current
  362: locale and its collation order.""
  363: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  364: if (n==0)
  365:   n = u1-u2;
  366: if (n<0)
  367:   n = -1;
  368: else if (n>0)
  369:   n = 1;
  370: :
  371:  rot 2dup - >r min swap -text dup
  372:  IF    rdrop
  373:  ELSE  drop r@ 0>
  374:        IF    rdrop -1
  375:        ELSE  r> 1 and
  376:        THEN
  377:  THEN ;
  378: 
  379: -text		c_addr1 u c_addr2 -- n	new	dash_text
  380: n = memcmp(c_addr1, c_addr2, u);
  381: if (n<0)
  382:   n = -1;
  383: else if (n>0)
  384:   n = 1;
  385: :
  386:  swap bounds
  387:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  388:  ELSE  c@ I c@ - unloop  THEN  -text-flag ;
  389: : -text-flag ( n -- -1/0/1 )
  390:  dup 0< IF  drop -1  ELSE  0>  IF  1  ELSE  0  THEN  THEN  ;
  391: 
  392: capscomp	c_addr1 u c_addr2 -- n	new
  393: Char c1, c2;
  394: for (;; u--, c_addr1++, c_addr2++) {
  395:   if (u == 0) {
  396:     n = 0;
  397:     break;
  398:   }
  399:   c1 = toupper(*c_addr1);
  400:   c2 = toupper(*c_addr2);
  401:   if (c1 != c2) {
  402:     if (c1 < c2)
  403:       n = -1;
  404:     else
  405:       n = 1;
  406:     break;
  407:   }
  408: }
  409: :
  410:  swap bounds
  411:  ?DO  dup c@ toupper I c@ toupper = WHILE  1+  LOOP  drop 0
  412:  ELSE  c@ toupper I c@ toupper - unloop  THEN  -text-flag ;
  413: 
  414: -trailing	c_addr u1 -- c_addr u2		string	dash_trailing
  415: u2 = u1;
  416: while (c_addr[u2-1] == ' ')
  417:   u2--;
  418: :
  419:  BEGIN  1- 2dup + c@ bl =  WHILE
  420:         dup  0= UNTIL  ELSE  1+  THEN ;
  421: 
  422: /string		c_addr1 u1 n -- c_addr2 u2	string	slash_string
  423: c_addr2 = c_addr1+n;
  424: u2 = u1-n;
  425: :
  426:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  427: 
  428: +	n1 n2 -- n		core	plus
  429: n = n1+n2;
  430: 
  431: -	n1 n2 -- n		core	minus
  432: n = n1-n2;
  433: :
  434:  negate + ;
  435: 
  436: negate	n1 -- n2		core
  437: /* use minus as alias */
  438: n2 = -n1;
  439: :
  440:  invert 1+ ;
  441: 
  442: 1+	n1 -- n2		core		one_plus
  443: n2 = n1+1;
  444: :
  445:  1 + ;
  446: 
  447: 1-	n1 -- n2		core		one_minus
  448: n2 = n1-1;
  449: :
  450:  1 - ;
  451: 
  452: max	n1 n2 -- n	core
  453: if (n1<n2)
  454:   n = n2;
  455: else
  456:   n = n1;
  457: :
  458:  2dup < IF swap THEN drop ;
  459: 
  460: min	n1 n2 -- n	core
  461: if (n1<n2)
  462:   n = n1;
  463: else
  464:   n = n2;
  465: :
  466:  2dup > IF swap THEN drop ;
  467: 
  468: abs	n1 -- n2	core
  469: if (n1<0)
  470:   n2 = -n1;
  471: else
  472:   n2 = n1;
  473: :
  474:  dup 0< IF negate THEN ;
  475: 
  476: *	n1 n2 -- n		core	star
  477: n = n1*n2;
  478: :
  479:  um* drop ;
  480: 
  481: /	n1 n2 -- n		core	slash
  482: n = n1/n2;
  483: :
  484:  /mod nip ;
  485: 
  486: mod	n1 n2 -- n		core
  487: n = n1%n2;
  488: :
  489:  /mod drop ;
  490: 
  491: /mod	n1 n2 -- n3 n4		core		slash_mod
  492: n4 = n1/n2;
  493: n3 = n1%n2; /* !! is this correct? look into C standard! */
  494: :
  495:  >r s>d r> fm/mod ;
  496: 
  497: 2*	n1 -- n2		core		two_star
  498: n2 = 2*n1;
  499: :
  500:  dup + ;
  501: 
  502: 2/	n1 -- n2		core		two_slash
  503: /* !! is this still correct? */
  504: n2 = n1>>1;
  505: 
  506: fm/mod	d1 n1 -- n2 n3		core		f_m_slash_mod
  507: ""floored division: d1 = n3*n1+n2, n1>n2>=0 or 0>=n2>n1""
  508: /* assumes that the processor uses either floored or symmetric division */
  509: n3 = d1/n1;
  510: n2 = d1%n1;
  511: /* note that this 1%-3>0 is optimized by the compiler */
  512: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  513:   n3--;
  514:   n2+=n1;
  515: }
  516: 
  517: sm/rem	d1 n1 -- n2 n3		core		s_m_slash_rem
  518: ""symmetric division: d1 = n3*n1+n2, sign(n2)=sign(d1) or 0""
  519: /* assumes that the processor uses either floored or symmetric division */
  520: n3 = d1/n1;
  521: n2 = d1%n1;
  522: /* note that this 1%-3<0 is optimized by the compiler */
  523: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  524:   n3++;
  525:   n2-=n1;
  526: }
  527: :
  528:  over >r dup >r abs -rot
  529:  dabs rot um/mod
  530:  r> 0< IF       negate       THEN
  531:  r> 0< IF  swap negate swap  THEN ;
  532: 
  533: m*	n1 n2 -- d		core	m_star
  534: d = (DCell)n1 * (DCell)n2;
  535: :
  536:  2dup      0< and >r
  537:  2dup swap 0< and >r
  538:  um* r> - r> - ;
  539: 
  540: um*	u1 u2 -- ud		core	u_m_star
  541: /* use u* as alias */
  542: ud = (UDCell)u1 * (UDCell)u2;
  543: 
  544: um/mod	ud u1 -- u2 u3		core	u_m_slash_mod
  545: u3 = ud/u1;
  546: u2 = ud%u1;
  547: :
  548:   dup IF  0 (um/mod)  THEN  nip ; 
  549: : (um/mod)  ( ud ud--ud u)
  550:   2dup >r >r  dup 0< 
  551:   IF    2drop 0 
  552:   ELSE  2dup d+  (um/mod)  2*  THEN 
  553:   -rot  r> r> 2over 2over  du<
  554:   IF    2drop rot 
  555:   ELSE  dnegate  d+  rot 1+  THEN ; 
  556: 
  557: m+	d1 n -- d2		double		m_plus
  558: d2 = d1+n;
  559: :
  560:  s>d d+ ;
  561: 
  562: d+	d1 d2 -- d		double	d_plus
  563: d = d1+d2;
  564: :
  565:  >r swap >r over 2/ over 2/ + >r over 1 and over 1 and + 2/
  566:  r> + >r + r> 0< r> r> + swap - ;
  567: 
  568: d-	d1 d2 -- d		double		d_minus
  569: d = d1-d2;
  570: :
  571:  dnegate d+ ;
  572: 
  573: dnegate	d1 -- d2		double
  574: /* use dminus as alias */
  575: d2 = -d1;
  576: :
  577:  invert swap negate tuck 0= - ;
  578: 
  579: dmax	d1 d2 -- d	double
  580: if (d1<d2)
  581:   d = d2;
  582: else
  583:   d = d1;
  584: :
  585:  2over 2over d> IF  2swap  THEN 2drop ;
  586: 
  587: dmin	d1 d2 -- d	double
  588: if (d1<d2)
  589:   d = d1;
  590: else
  591:   d = d2;
  592: :
  593:  2over 2over d< IF  2swap  THEN 2drop ;
  594: 
  595: dabs	d1 -- d2	double
  596: if (d1<0)
  597:   d2 = -d1;
  598: else
  599:   d2 = d1;
  600: :
  601:  dup 0< IF dnegate THEN ;
  602: 
  603: d2*	d1 -- d2		double		d_two_star
  604: d2 = 2*d1;
  605: :
  606:  2dup d+ ;
  607: 
  608: d2/	d1 -- d2		double		d_two_slash
  609: /* !! is this still correct? */
  610: d2 = d1>>1;
  611: :
  612:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  613:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  614: 
  615: d>s	d -- n			double		d_to_s
  616: /* make this an alias for drop? */
  617: n = d;
  618: :
  619:  drop ;
  620: 
  621: and	w1 w2 -- w		core
  622: w = w1&w2;
  623: 
  624: or	w1 w2 -- w		core
  625: w = w1|w2;
  626: 
  627: xor	w1 w2 -- w		core
  628: w = w1^w2;
  629: 
  630: invert	w1 -- w2		core
  631: w2 = ~w1;
  632: :
  633:  -1 xor ;
  634: 
  635: rshift	u1 n -- u2		core
  636:   u2 = u1>>n;
  637: 
  638: lshift	u1 n -- u2		core
  639:   u2 = u1<<n;
  640: 
  641: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  642: define(comparisons,
  643: $1=	$2 -- f		$6	$3equals
  644: f = FLAG($4==$5);
  645: 
  646: $1<>	$2 -- f		$7	$3different
  647: /* use != as alias ? */
  648: f = FLAG($4!=$5);
  649: 
  650: $1<	$2 -- f		$8	$3less
  651: f = FLAG($4<$5);
  652: 
  653: $1>	$2 -- f		$9	$3greater
  654: f = FLAG($4>$5);
  655: 
  656: $1<=	$2 -- f		gforth	$3less_or_equal
  657: f = FLAG($4<=$5);
  658: 
  659: $1>=	$2 -- f		gforth	$3greater_or_equal
  660: f = FLAG($4>=$5);
  661: 
  662: )
  663: 
  664: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  665: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  666: comparisons(u, u1 u2, u_, u1, u2, gforth, gforth, core, core-ext)
  667: comparisons(d, d1 d2, d_, d1, d2, double, gforth, double, gforth)
  668: comparisons(d0, d, d_zero_, d, 0, double, gforth, double, gforth)
  669: comparisons(du, ud1 ud2, d_u_, ud1, ud2, gforth, gforth, double-ext, gforth)
  670: 
  671: within	u1 u2 u3 -- f		core-ext
  672: f = FLAG(u1-u2 < u3-u2);
  673: :
  674:  over - >r - r> u< ;
  675: 
  676: sp@	-- a_addr		gforth		spat
  677: a_addr = sp+1;
  678: 
  679: sp!	a_addr --		gforth		spstore
  680: sp = a_addr;
  681: /* works with and without TOS caching */
  682: 
  683: rp@	-- a_addr		gforth		rpat
  684: a_addr = rp;
  685: 
  686: rp!	a_addr --		gforth		rpstore
  687: rp = a_addr;
  688: 
  689: fp@	-- f_addr	gforth	fp_fetch
  690: f_addr = fp;
  691: 
  692: fp!	f_addr --	gforth	fp_store
  693: fp = f_addr;
  694: 
  695: ;s	--		gforth	semis
  696: ip = (Xt *)(*rp++);
  697: NEXT_P0;
  698: 
  699: >r	w --		core	to_r
  700: *--rp = w;
  701: 
  702: r>	-- w		core	r_from
  703: w = *rp++;
  704: 
  705: r@	-- w		core	r_fetch
  706: /* use r as alias */
  707: /* make r@ an alias for i */
  708: w = *rp;
  709: 
  710: rdrop	--		gforth
  711: rp++;
  712: 
  713: i'	-- w		gforth		i_tick
  714: w=rp[1];
  715: 
  716: 2>r	w1 w2 --	core-ext	two_to_r
  717: *--rp = w1;
  718: *--rp = w2;
  719: 
  720: 2r>	-- w1 w2	core-ext	two_r_from
  721: w2 = *rp++;
  722: w1 = *rp++;
  723: 
  724: 2r@	-- w1 w2	core-ext	two_r_fetch
  725: w2 = rp[0];
  726: w1 = rp[1];
  727: 
  728: 2rdrop	--		gforth	two_r_drop
  729: rp+=2;
  730: 
  731: over	w1 w2 -- w1 w2 w1		core
  732: 
  733: drop	w --		core
  734: 
  735: swap	w1 w2 -- w2 w1		core
  736: 
  737: dup	w -- w w		core
  738: 
  739: rot	w1 w2 w3 -- w2 w3 w1	core	rote
  740: 
  741: -rot	w1 w2 w3 -- w3 w1 w2	gforth	not_rote
  742: :
  743:  rot rot ;
  744: 
  745: nip	w1 w2 -- w2		core-ext
  746: :
  747:  swap drop ;
  748: 
  749: tuck	w1 w2 -- w2 w1 w2	core-ext
  750: :
  751:  swap over ;
  752: 
  753: ?dup	w -- w			core	question_dupe
  754: if (w!=0) {
  755:   IF_TOS(*sp-- = w;)
  756: #ifndef USE_TOS
  757:   *--sp = w;
  758: #endif
  759: }
  760: :
  761:  dup IF dup THEN ;
  762: 
  763: pick	u -- w			core-ext
  764: w = sp[u+1];
  765: :
  766:  1+ cells sp@ + @ ;
  767: 
  768: 2drop	w1 w2 --		core	two_drop
  769: :
  770:  drop drop ;
  771: 
  772: 2dup	w1 w2 -- w1 w2 w1 w2	core	two_dupe
  773: :
  774:  over over ;
  775: 
  776: 2over	w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2	core	two_over
  777: :
  778:  3 pick 3 pick ;
  779: 
  780: 2swap	w1 w2 w3 w4 -- w3 w4 w1 w2	core	two_swap
  781: :
  782:  >r -rot r> -rot ;
  783: 
  784: 2rot	w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2	double-ext	two_rote
  785: :
  786:  >r >r 2swap r> r> 2swap ;
  787: 
  788: 2nip	w1 w2 w3 w4 -- w3 w4	gforth	two_nip
  789: :
  790:  2swap 2drop ;
  791: 
  792: 2tuck	w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4	gforth	two_tuck
  793: :
  794:  2swap 2over ;
  795: 
  796: \ toggle is high-level: 0.11/0.42%
  797: 
  798: @	a_addr -- w		core	fetch
  799: w = *a_addr;
  800: 
  801: !	w a_addr --		core	store
  802: *a_addr = w;
  803: 
  804: +!	n a_addr --		core	plus_store
  805: *a_addr += n;
  806: 
  807: c@	c_addr -- c		core	cfetch
  808: c = *c_addr;
  809: 
  810: c!	c c_addr --		core	cstore
  811: *c_addr = c;
  812: 
  813: 2!	w1 w2 a_addr --		core	two_store
  814: a_addr[0] = w2;
  815: a_addr[1] = w1;
  816: :
  817:  tuck ! cell+ ! ;
  818: 
  819: 2@	a_addr -- w1 w2		core	two_fetch
  820: w2 = a_addr[0];
  821: w1 = a_addr[1];
  822: :
  823:  dup cell+ @ swap @ ;
  824: 
  825: d!	d a_addr --		double	d_store
  826: /* !! alignment problems on some machines */
  827: *(DCell *)a_addr = d;
  828: 
  829: d@	a_addr -- d		double	d_fetch
  830: d = *(DCell *)a_addr;
  831: 
  832: cell+	a_addr1 -- a_addr2	core	cell_plus
  833: a_addr2 = a_addr1+1;
  834: :
  835:  [ cell ] Literal + ;
  836: 
  837: cells	n1 -- n2		core
  838: n2 = n1 * sizeof(Cell);
  839: :
  840:  [ cell ]
  841:  [ 2/ dup ] [IF] 2* [THEN]
  842:  [ 2/ dup ] [IF] 2* [THEN]
  843:  [ 2/ dup ] [IF] 2* [THEN]
  844:  [ 2/ dup ] [IF] 2* [THEN]
  845:  [ drop ] ;
  846: 
  847: char+	c_addr1 -- c_addr2	core	care_plus
  848: c_addr2 = c_addr1 + 1;
  849: :
  850:  1+ ;
  851: 
  852: (chars)		n1 -- n2	gforth	paren_cares
  853: n2 = n1 * sizeof(Char);
  854: :
  855:  ;
  856: 
  857: count	c_addr1 -- c_addr2 u	core
  858: u = *c_addr1;
  859: c_addr2 = c_addr1+1;
  860: :
  861:  dup 1+ swap c@ ;
  862: 
  863: (bye)	n --	gforth	paren_bye
  864: return (Label *)n;
  865: 
  866: system	c_addr u -- n	gforth
  867: n=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
  868: 
  869: getenv	c_addr1 u1 -- c_addr2 u2	gforth
  870: c_addr2 = getenv(cstr(c_addr1,u1,1));
  871: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
  872: 
  873: popen	c_addr u n -- wfileid	own
  874: static char* mode[2]={"r","w"}; /* !! should we use FAM here? */
  875: wfileid=(Cell)popen(cstr(c_addr,u,1),mode[n]); /* ~ expansion of 1st arg? */
  876: 
  877: pclose	wfileid -- wior		own
  878: wior=pclose((FILE *)wfileid); /* !! what to do with the result */
  879: 
  880: time&date	-- nsec nmin nhour nday nmonth nyear	facility-ext	time_and_date
  881: struct timeval time1;
  882: struct timezone zone1;
  883: struct tm *ltime;
  884: gettimeofday(&time1,&zone1);
  885: ltime=localtime((time_t *)&time1.tv_sec);
  886: nyear =ltime->tm_year+1900;
  887: nmonth=ltime->tm_mon+1;
  888: nday  =ltime->tm_mday;
  889: nhour =ltime->tm_hour;
  890: nmin  =ltime->tm_min;
  891: nsec  =ltime->tm_sec;
  892: 
  893: ms	n --	facility-ext
  894: struct timeval timeout;
  895: timeout.tv_sec=n/1000;
  896: timeout.tv_usec=1000*(n%1000);
  897: (void)select(0,0,0,0,&timeout);
  898: 
  899: allocate	u -- a_addr wior	memory
  900: a_addr = (Cell *)malloc(u?u:1);
  901: wior = IOR(a_addr==NULL);
  902: 
  903: free		a_addr -- wior		memory
  904: free(a_addr);
  905: wior = 0;
  906: 
  907: resize		a_addr1 u -- a_addr2 wior	memory
  908: ""Change the size of the allocated area at @i{a_addr1} to @i{u}
  909: address units, possibly moving the contents to a different
  910: area. @i{a_addr2} is the address of the resulting area. If
  911: @code{a_addr2} is 0, gforth's (but not the standard) @code{resize}
  912: @code{allocate}s @i{u} address units.""
  913: /* the following check is not necessary on most OSs, but it is needed
  914:    on SunOS 4.1.2. */
  915: if (a_addr1==NULL)
  916:   a_addr2 = (Cell *)malloc(u);
  917: else
  918:   a_addr2 = (Cell *)realloc(a_addr1, u);
  919: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
  920: 
  921: (f83find)	c_addr u f83name1 -- f83name2	new	paren_f83find
  922: for (; f83name1 != NULL; f83name1 = f83name1->next)
  923:   if (F83NAME_COUNT(f83name1)==u &&
  924:       strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
  925:     break;
  926: f83name2=f83name1;
  927: :
  928:  BEGIN  dup  WHILE
  929:         >r dup r@ cell+ c@ $1F and =
  930: 	IF  2dup r@ cell+ char+ capscomp  0=
  931: 	    IF  2drop r>  EXIT  THEN  THEN
  932: 	r> @
  933:  REPEAT  nip nip ;
  934: 
  935: (hashfind)	c_addr u a_addr -- f83name2	new	paren_hashfind
  936: F83Name *f83name1;
  937: f83name2=NULL;
  938: while(a_addr != NULL)
  939: {
  940:    f83name1=(F83Name *)(a_addr[1]);
  941:    a_addr=(Cell *)(a_addr[0]);
  942:    if (F83NAME_COUNT(f83name1)==u &&
  943:        strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
  944:      {
  945: 	f83name2=f83name1;
  946: 	break;
  947:      }
  948: }
  949: :
  950:  BEGIN  dup  WHILE
  951:         2@ >r >r dup r@ cell+ c@ $1F and =
  952:         IF  2dup r@ cell+ char+ capscomp 0=
  953: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
  954: 	rdrop r>
  955:  REPEAT nip nip ;
  956: 
  957: (hashkey)	c_addr u1 -- u2		gforth	paren_hashkey
  958: u2=0;
  959: while(u1--)
  960:    u2+=(Cell)toupper(*c_addr++);
  961: :
  962:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
  963: 
  964: (hashkey1)	c_addr u ubits -- ukey		gforth	paren_hashkey1
  965: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
  966: /* this hash function rotates the key at every step by rot bits within
  967:    ubits bits and xors it with the character. This function does ok in
  968:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
  969:    ASCII strings (larger if ubits is large), and should share no
  970:    divisors with ubits.
  971: */
  972: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
  973: Char *cp = c_addr;
  974: for (ukey=0; cp<c_addr+u; cp++)
  975:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
  976: 	     ^ toupper(*cp))
  977: 	    & ((1<<ubits)-1));
  978: :
  979:  dup rot-values + c@ over 1 swap lshift 1- >r
  980:  tuck - 2swap r> 0 2swap bounds
  981:  ?DO  dup 4 pick lshift swap 3 pick rshift or
  982:       I c@ toupper xor
  983:       over and  LOOP
  984:  nip nip nip ;
  985: Create rot-values
  986:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
  987:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
  988:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
  989:   7 c, 5 c, 5 c,
  990: 
  991: (parse-white)	c_addr1 u1 -- c_addr2 u2	gforth	paren_parse_white
  992: /* use !isgraph instead of isspace? */
  993: Char *endp = c_addr1+u1;
  994: while (c_addr1<endp && isspace(*c_addr1))
  995:   c_addr1++;
  996: if (c_addr1<endp) {
  997:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
  998:     ;
  999:   u2 = c_addr1-c_addr2;
 1000: }
 1001: else {
 1002:   c_addr2 = c_addr1;
 1003:   u2 = 0;
 1004: }
 1005: :
 1006:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
 1007:  REPEAT  THEN  2dup
 1008:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
 1009:  REPEAT  THEN  nip - ;
 1010: 
 1011: close-file	wfileid -- wior		file	close_file
 1012: wior = IOR(fclose((FILE *)wfileid)==EOF);
 1013: 
 1014: open-file	c_addr u ntype -- w2 wior	file	open_file
 1015: w2 = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[ntype]);
 1016: wior =  IOR(w2 == 0);
 1017: 
 1018: create-file	c_addr u ntype -- w2 wior	file	create_file
 1019: Cell	fd;
 1020: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_RDWR|O_TRUNC, 0666);
 1021: if (fd != -1) {
 1022:   w2 = (Cell)fdopen(fd, fileattr[ntype]);
 1023:   wior = IOR(w2 == 0);
 1024: } else {
 1025:   w2 = 0;
 1026:   wior = IOR(1);
 1027: }
 1028: 
 1029: delete-file	c_addr u -- wior		file	delete_file
 1030: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1031: 
 1032: rename-file	c_addr1 u1 c_addr2 u2 -- wior	file-ext	rename_file
 1033: char *s1=tilde_cstr(c_addr2, u2, 1);
 1034: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1035: 
 1036: file-position	wfileid -- ud wior	file	file_position
 1037: /* !! use tell and lseek? */
 1038: ud = ftell((FILE *)wfileid);
 1039: wior = IOR(ud==-1);
 1040: 
 1041: reposition-file	ud wfileid -- wior	file	reposition_file
 1042: wior = IOR(fseek((FILE *)wfileid, (long)ud, SEEK_SET)==-1);
 1043: 
 1044: file-size	wfileid -- ud wior	file	file_size
 1045: struct stat buf;
 1046: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1047: ud = buf.st_size;
 1048: 
 1049: resize-file	ud wfileid -- wior	file	resize_file
 1050: wior = IOR(ftruncate(fileno((FILE *)wfileid), (Cell)ud)==-1);
 1051: 
 1052: read-file	c_addr u1 wfileid -- u2 wior	file	read_file
 1053: /* !! fread does not guarantee enough */
 1054: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1055: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1056: /* !! is the value of ferror errno-compatible? */
 1057: if (wior)
 1058:   clearerr((FILE *)wfileid);
 1059: 
 1060: read-line	c_addr u1 wfileid -- u2 flag wior	file	read_line
 1061: /*
 1062: Cell c;
 1063: flag=-1;
 1064: for(u2=0; u2<u1; u2++)
 1065: {
 1066:    *c_addr++ = (Char)(c = getc((FILE *)wfileid));
 1067:    if(c=='\n') break;
 1068:    if(c==EOF)
 1069:      {
 1070: 	flag=FLAG(u2!=0);
 1071: 	break;
 1072:      }
 1073: }
 1074: wior=FILEIO(ferror((FILE *)wfileid));
 1075: */
 1076: if ((flag=FLAG(!feof((FILE *)wfileid) &&
 1077: 	       fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {
 1078:   wior=FILEIO(ferror((FILE *)wfileid)); /* !! ior? */
 1079:   if (wior)
 1080:     clearerr((FILE *)wfileid);
 1081:   u2 = strlen(c_addr);
 1082:   u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));
 1083: }
 1084: else {
 1085:   wior=0;
 1086:   u2=0;
 1087: }
 1088: 
 1089: write-file	c_addr u1 wfileid -- wior	file	write_file
 1090: /* !! fwrite does not guarantee enough */
 1091: {
 1092:   Cell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1093:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1094:   if (wior)
 1095:     clearerr((FILE *)wfileid);
 1096: }
 1097: 
 1098: flush-file	wfileid -- wior		file-ext	flush_file
 1099: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1100: 
 1101: file-status	c_addr u -- ntype wior	file-ext	file_status
 1102: char *filename=tilde_cstr(c_addr, u, 1);
 1103: if (access (filename, F_OK) != 0) {
 1104:   ntype=0;
 1105:   wior=IOR(1);
 1106: }
 1107: else if (access (filename, R_OK | W_OK) == 0) {
 1108:   ntype=2; /* r/w */
 1109:   wior=0;
 1110: }
 1111: else if (access (filename, R_OK) == 0) {
 1112:   ntype=0; /* r/o */
 1113:   wior=0;
 1114: }
 1115: else if (access (filename, W_OK) == 0) {
 1116:   ntype=4; /* w/o */
 1117:   wior=0;
 1118: }
 1119: else {
 1120:   ntype=1; /* well, we cannot access the file, but better deliver a legal
 1121: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1122:   wior=0;
 1123: }
 1124: 
 1125: comparisons(f, r1 r2, f_, r1, r2, gforth, gforth, float, gforth)
 1126: comparisons(f0, r, f_zero_, r, 0., float, gforth, float, gforth)
 1127: 
 1128: d>f		d -- r		float	d_to_f
 1129: r = d;
 1130: 
 1131: f>d		r -- d		float	f_to_d
 1132: /* !! basis 15 is not very specific */
 1133: d = r;
 1134: 
 1135: f!		r f_addr --	float	f_store
 1136: *f_addr = r;
 1137: 
 1138: f@		f_addr -- r	float	f_fetch
 1139: r = *f_addr;
 1140: 
 1141: df@		df_addr -- r	float-ext	d_f_fetch
 1142: #ifdef IEEE_FP
 1143: r = *df_addr;
 1144: #else
 1145: !! df@
 1146: #endif
 1147: 
 1148: df!		r df_addr --	float-ext	d_f_store
 1149: #ifdef IEEE_FP
 1150: *df_addr = r;
 1151: #else
 1152: !! df!
 1153: #endif
 1154: 
 1155: sf@		sf_addr -- r	float-ext	s_f_fetch
 1156: #ifdef IEEE_FP
 1157: r = *sf_addr;
 1158: #else
 1159: !! sf@
 1160: #endif
 1161: 
 1162: sf!		r sf_addr --	float-ext	s_f_store
 1163: #ifdef IEEE_FP
 1164: *sf_addr = r;
 1165: #else
 1166: !! sf!
 1167: #endif
 1168: 
 1169: f+		r1 r2 -- r3	float	f_plus
 1170: r3 = r1+r2;
 1171: 
 1172: f-		r1 r2 -- r3	float	f_minus
 1173: r3 = r1-r2;
 1174: 
 1175: f*		r1 r2 -- r3	float	f_star
 1176: r3 = r1*r2;
 1177: 
 1178: f/		r1 r2 -- r3	float	f_slash
 1179: r3 = r1/r2;
 1180: 
 1181: f**		r1 r2 -- r3	float-ext	f_star_star
 1182: ""@i{r3} is @i{r1} raised to the @i{r2}th power""
 1183: r3 = pow(r1,r2);
 1184: 
 1185: fnegate		r1 -- r2	float
 1186: r2 = - r1;
 1187: 
 1188: fdrop		r --		float
 1189: 
 1190: fdup		r -- r r	float
 1191: 
 1192: fswap		r1 r2 -- r2 r1	float
 1193: 
 1194: fover		r1 r2 -- r1 r2 r1	float
 1195: 
 1196: frot		r1 r2 r3 -- r2 r3 r1	float
 1197: 
 1198: fnip		r1 r2 -- r2	gforth
 1199: 
 1200: ftuck		r1 r2 -- r2 r1 r2	gforth
 1201: 
 1202: float+		f_addr1 -- f_addr2	float	float_plus
 1203: f_addr2 = f_addr1+1;
 1204: 
 1205: floats		n1 -- n2	float
 1206: n2 = n1*sizeof(Float);
 1207: 
 1208: floor		r1 -- r2	float
 1209: ""round towards the next smaller integral value, i.e., round toward negative infinity""
 1210: /* !! unclear wording */
 1211: r2 = floor(r1);
 1212: 
 1213: fround		r1 -- r2	float
 1214: ""round to the nearest integral value""
 1215: /* !! unclear wording */
 1216: #ifdef HAVE_RINT
 1217: r2 = rint(r1);
 1218: #else
 1219: r2 = floor(r1+0.5);
 1220: /* !! This is not quite true to the rounding rules given in the standard */
 1221: #endif
 1222: 
 1223: fmax		r1 r2 -- r3	float
 1224: if (r1<r2)
 1225:   r3 = r2;
 1226: else
 1227:   r3 = r1;
 1228: 
 1229: fmin		r1 r2 -- r3	float
 1230: if (r1<r2)
 1231:   r3 = r1;
 1232: else
 1233:   r3 = r2;
 1234: 
 1235: represent		r c_addr u -- n f1 f2	float
 1236: char *sig;
 1237: Cell flag;
 1238: Cell decpt;
 1239: sig=ecvt(r, u, (int *)&decpt, (int *)&flag);
 1240: n=(r==0 ? 1 : decpt);
 1241: f1=FLAG(flag!=0);
 1242: f2=FLAG(isdigit(sig[0])!=0);
 1243: memmove(c_addr,sig,u);
 1244: 
 1245: >float	c_addr u -- flag	float	to_float
 1246: /* real signature: c_addr u -- r t / f */
 1247: Float r;
 1248: char *number=cstr(c_addr, u, 1);
 1249: char *endconv;
 1250: while(isspace(number[--u]) && u>0);
 1251: switch(number[u])
 1252: {
 1253:    case 'd':
 1254:    case 'D':
 1255:    case 'e':
 1256:    case 'E':  break;
 1257:    default :  u++; break;
 1258: }
 1259: number[u]='\0';
 1260: r=strtod(number,&endconv);
 1261: if((flag=FLAG(!(Cell)*endconv)))
 1262: {
 1263:    IF_FTOS(fp[0] = FTOS);
 1264:    fp += -1;
 1265:    FTOS = r;
 1266: }
 1267: else if(*endconv=='d' || *endconv=='D')
 1268: {
 1269:    *endconv='E';
 1270:    r=strtod(number,&endconv);
 1271:    if((flag=FLAG(!(Cell)*endconv)))
 1272:      {
 1273: 	IF_FTOS(fp[0] = FTOS);
 1274: 	fp += -1;
 1275: 	FTOS = r;
 1276:      }
 1277: }
 1278: 
 1279: fabs		r1 -- r2	float-ext
 1280: r2 = fabs(r1);
 1281: 
 1282: facos		r1 -- r2	float-ext
 1283: r2 = acos(r1);
 1284: 
 1285: fasin		r1 -- r2	float-ext
 1286: r2 = asin(r1);
 1287: 
 1288: fatan		r1 -- r2	float-ext
 1289: r2 = atan(r1);
 1290: 
 1291: fatan2		r1 r2 -- r3	float-ext
 1292: ""@i{r1/r2}=tan@i{r3}. The standard does not require, but probably
 1293: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1294: r3 = atan2(r1,r2);
 1295: 
 1296: fcos		r1 -- r2	float-ext
 1297: r2 = cos(r1);
 1298: 
 1299: fexp		r1 -- r2	float-ext
 1300: r2 = exp(r1);
 1301: 
 1302: fexpm1		r1 -- r2	float-ext
 1303: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1304: #ifdef HAVE_EXPM1
 1305: extern double expm1(double);
 1306: r2 = expm1(r1);
 1307: #else
 1308: r2 = exp(r1)-1.;
 1309: #endif
 1310: 
 1311: fln		r1 -- r2	float-ext
 1312: r2 = log(r1);
 1313: 
 1314: flnp1		r1 -- r2	float-ext
 1315: ""@i{r2}=ln(@i{r1}+1)""
 1316: #ifdef HAVE_LOG1P
 1317: extern double log1p(double);
 1318: r2 = log1p(r1);
 1319: #else
 1320: r2 = log(r1+1.);
 1321: #endif
 1322: 
 1323: flog		r1 -- r2	float-ext
 1324: ""the decimal logarithm""
 1325: r2 = log10(r1);
 1326: 
 1327: falog		r1 -- r2	float-ext
 1328: ""@i{r2}=10**@i{r1}""
 1329: extern double pow10(double);
 1330: r2 = pow10(r1);
 1331: 
 1332: fsin		r1 -- r2	float-ext
 1333: r2 = sin(r1);
 1334: 
 1335: fsincos		r1 -- r2 r3	float-ext
 1336: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1337: r2 = sin(r1);
 1338: r3 = cos(r1);
 1339: 
 1340: fsqrt		r1 -- r2	float-ext
 1341: r2 = sqrt(r1);
 1342: 
 1343: ftan		r1 -- r2	float-ext
 1344: r2 = tan(r1);
 1345: :
 1346:  fsincos f/ ;
 1347: 
 1348: fsinh		r1 -- r2	float-ext
 1349: r2 = sinh(r1);
 1350: :
 1351:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1352: 
 1353: fcosh		r1 -- r2	float-ext
 1354: r2 = cosh(r1);
 1355: :
 1356:  fexp fdup 1/f f+ f2/ ;
 1357: 
 1358: ftanh		r1 -- r2	float-ext
 1359: r2 = tanh(r1);
 1360: :
 1361:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1362: 
 1363: fasinh		r1 -- r2	float-ext
 1364: r2 = asinh(r1);
 1365: :
 1366:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1367: 
 1368: facosh		r1 -- r2	float-ext
 1369: r2 = acosh(r1);
 1370: :
 1371:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1372: 
 1373: fatanh		r1 -- r2	float-ext
 1374: r2 = atanh(r1);
 1375: :
 1376:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1377:  r> IF  fnegate  THEN ;
 1378: 
 1379: sfloats		n1 -- n2	float-ext	s_floats
 1380: n2 = n1*sizeof(SFloat);
 1381: 
 1382: dfloats		n1 -- n2	float-ext	d_floats
 1383: n2 = n1*sizeof(DFloat);
 1384: 
 1385: aligned		c_addr -- a_addr	core
 1386: a_addr = (Cell *)((((Cell)c_addr)+(sizeof(Cell)-1))&(-sizeof(Cell)));
 1387: :
 1388:  [ cell 1- ] Literal + [ -1 cells ] Literal and ;
 1389: 
 1390: faligned	c_addr -- f_addr	float	f_aligned
 1391: f_addr = (Float *)((((Cell)c_addr)+(sizeof(Float)-1))&(-sizeof(Float)));
 1392: :
 1393:  [ 1 floats 1- ] Literal + [ -1 floats ] Literal and ;
 1394: 
 1395: sfaligned	c_addr -- sf_addr	float-ext	s_f_aligned
 1396: sf_addr = (SFloat *)((((Cell)c_addr)+(sizeof(SFloat)-1))&(-sizeof(SFloat)));
 1397: :
 1398:  [ 1 sfloats 1- ] Literal + [ -1 sfloats ] Literal and ;
 1399: 
 1400: dfaligned	c_addr -- df_addr	float-ext	d_f_aligned
 1401: df_addr = (DFloat *)((((Cell)c_addr)+(sizeof(DFloat)-1))&(-sizeof(DFloat)));
 1402: :
 1403:  [ 1 dfloats 1- ] Literal + [ -1 dfloats ] Literal and ;
 1404: 
 1405: \ The following words access machine/OS/installation-dependent
 1406: \   Gforth internals
 1407: \ !! how about environmental queries DIRECT-THREADED,
 1408: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1409: 
 1410: >body		xt -- a_addr	core	to_body
 1411: a_addr = PFA(xt);
 1412: 
 1413: >code-address		xt -- c_addr		gforth	to_code_address
 1414: ""c_addr is the code address of the word xt""
 1415: /* !! This behaves installation-dependently for DOES-words */
 1416: c_addr = CODE_ADDRESS(xt);
 1417: 
 1418: >does-code	xt -- a_addr		gforth	to_does_code
 1419: ""If xt ist the execution token of a defining-word-defined word,
 1420: a_addr is the start of the Forth code after the DOES>; Otherwise the
 1421: behaviour is undefined""
 1422: /* !! there is currently no way to determine whether a word is
 1423: defining-word-defined */
 1424: a_addr = (Cell *)DOES_CODE(xt);
 1425: 
 1426: code-address!		c_addr xt --		gforth	code_address_store
 1427: ""Creates a code field with code address c_addr at xt""
 1428: MAKE_CF(xt, c_addr);
 1429: CACHE_FLUSH(xt,PFA(0));
 1430: 
 1431: does-code!	a_addr xt --		gforth	does_code_store
 1432: ""creates a code field at xt for a defining-word-defined word; a_addr
 1433: is the start of the Forth code after DOES>""
 1434: MAKE_DOES_CF(xt, a_addr);
 1435: CACHE_FLUSH(xt,PFA(0));
 1436: 
 1437: does-handler!	a_addr --	gforth	does_handler_store
 1438: ""creates a DOES>-handler at address a_addr. a_addr usually points
 1439: just behind a DOES>.""
 1440: MAKE_DOES_HANDLER(a_addr);
 1441: CACHE_FLUSH(a_addr,DOES_HANDLER_SIZE);
 1442: 
 1443: /does-handler	-- n	gforth	slash_does_handler
 1444: ""the size of a does-handler (includes possible padding)""
 1445: /* !! a constant or environmental query might be better */
 1446: n = DOES_HANDLER_SIZE;
 1447: 
 1448: flush-icache	c_addr u --	gforth	flush_icache
 1449: ""Make sure that the instruction cache of the processor (if there is
 1450: one) does not contain stale data at @var{c_addr} and @var{u} bytes
 1451: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1452: automatically. Caveat: @code{flush-icache} might not work on your
 1453: installation; this is usually the case if direct threading is not
 1454: supported on your machine (take a look at your @file{machine.h}) and
 1455: your machine has a separate instruction cache. In such cases,
 1456: @code{flush-icache} does nothing instead of flushing the instruction
 1457: cache.""
 1458: FLUSH_ICACHE(c_addr,u);
 1459: 
 1460: toupper	c1 -- c2	gforth
 1461: c2 = toupper(c1);
 1462: 
 1463: \ local variable implementation primitives
 1464: @local#		-- w	gforth	fetch_local_number
 1465: w = *(Cell *)(lp+(Cell)NEXT_INST);
 1466: INC_IP(1);
 1467: 
 1468: @local0	-- w	new	fetch_local_zero
 1469: w = *(Cell *)(lp+0*sizeof(Cell));
 1470: 
 1471: @local1	-- w	new	fetch_local_four
 1472: w = *(Cell *)(lp+1*sizeof(Cell));
 1473: 
 1474: @local2	-- w	new	fetch_local_eight
 1475: w = *(Cell *)(lp+2*sizeof(Cell));
 1476: 
 1477: @local3	-- w	new	fetch_local_twelve
 1478: w = *(Cell *)(lp+3*sizeof(Cell));
 1479: 
 1480: f@local#	-- r	gforth	f_fetch_local_number
 1481: r = *(Float *)(lp+(Cell)NEXT_INST);
 1482: INC_IP(1);
 1483: 
 1484: f@local0	-- r	new	f_fetch_local_zero
 1485: r = *(Float *)(lp+0*sizeof(Float));
 1486: 
 1487: f@local1	-- r	new	f_fetch_local_eight
 1488: r = *(Float *)(lp+1*sizeof(Float));
 1489: 
 1490: laddr#		-- c_addr	gforth	laddr_number
 1491: /* this can also be used to implement lp@ */
 1492: c_addr = (Char *)(lp+(Cell)NEXT_INST);
 1493: INC_IP(1);
 1494: 
 1495: lp+!#	--	gforth	lp_plus_store_number
 1496: ""used with negative immediate values it allocates memory on the
 1497: local stack, a positive immediate argument drops memory from the local
 1498: stack""
 1499: lp += (Cell)NEXT_INST;
 1500: INC_IP(1);
 1501: 
 1502: lp-	--	new	minus_four_lp_plus_store
 1503: lp += -sizeof(Cell);
 1504: 
 1505: lp+	--	new	eight_lp_plus_store
 1506: lp += sizeof(Float);
 1507: 
 1508: lp+2	--	new	sixteen_lp_plus_store
 1509: lp += 2*sizeof(Float);
 1510: 
 1511: lp!	c_addr --	gforth	lp_store
 1512: lp = (Address)c_addr;
 1513: 
 1514: >l	w --	gforth	to_l
 1515: lp -= sizeof(Cell);
 1516: *(Cell *)lp = w;
 1517: 
 1518: f>l	r --	gforth	f_to_l
 1519: lp -= sizeof(Float);
 1520: *(Float *)lp = r;
 1521: 
 1522: up!	a_addr --	gforth	up_store
 1523: up0=up=(char *)a_addr;
 1524: 
 1525: call-c	w --	gforth	call_c
 1526: ""Call the C function pointed to by @i{w}. The C function has to
 1527: access the stack itself. The stack pointers are exported in the gloabl
 1528: variables @code{SP} and @code{FP}.""
 1529: /* This is a first attempt at support for calls to C. This may change in
 1530:    the future */
 1531: IF_FTOS(fp[0]=FTOS);
 1532: FP=fp;
 1533: SP=sp;
 1534: ((void (*)())w)();
 1535: sp=SP;
 1536: fp=FP;
 1537: IF_TOS(TOS=sp[0]);
 1538: IF_FTOS(FTOS=fp[0]);
 1539: 
 1540: strerror	n -- c_addr u	gforth
 1541: c_addr = strerror(n);
 1542: u = strlen(c_addr);
 1543: 
 1544: strsignal	n -- c_addr u	gforth
 1545: c_addr = strsignal(n);
 1546: u = strlen(c_addr);

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>