File:  [gforth] / gforth / Attic / primitives
Revision 1.42: download - view: text, annotated - select for diffs
Wed Oct 11 19:39:35 1995 UTC (28 years, 6 months ago) by anton
Branches: MAIN
CVS tags: HEAD
Now gforth.fi is a nonrelocatable image containing all of startup.fs etc.
savesystem now saves `included-files', too (so require does not start from
 scratch)
added/fixed stack effect and wordset documentation for many words in kernal.fs
some reformatting in kernal.fs
fixed some wordset info in primitives
added strsignal

    1: \ Copyright 1992 by the ANSI figForth Development Group
    2: \ 
    3: \ WARNING: This file is processed by m4. Make sure your identifiers
    4: \ don't collide with m4's (e.g. by undefining them).
    5: \ 
    6: \ 
    7: \ 
    8: \ This file contains instructions in the following format:
    9: \ 
   10: \ forth name	stack effect	category	[pronunciation]
   11: \ [""glossary entry""]
   12: \ C code
   13: \ [:
   14: \ Forth code]
   15: \ 
   16: \ The pronunciation is also used for forming C names.
   17: \ 
   18: \ 
   19: \ 
   20: \ These informations are automatically translated into C-code for the
   21: \ interpreter and into some other files. I hope that your C compiler has
   22: \ decent optimization, otherwise the automatically generated code will
   23: \ be somewhat slow. The Forth version of the code is included for manual
   24: \ compilers, so they will need to compile only the important words.
   25: \ 
   26: \ Note that stack pointer adjustment is performed according to stack
   27: \ effect by automatically generated code and NEXT is automatically
   28: \ appended to the C code. Also, you can use the names in the stack
   29: \ effect in the C code. Stack access is automatic. One exception: if
   30: \ your code does not fall through, the results are not stored into the
   31: \ stack. Use different names on both sides of the '--', if you change a
   32: \ value (some stores to the stack are optimized away).
   33: \ 
   34: \ 
   35: \ 
   36: \ The stack variables have the following types:
   37: \ 
   38: \ name matches	type
   39: \ f.*		Bool
   40: \ c.*		Char
   41: \ [nw].*		Cell
   42: \ u.*		UCell
   43: \ d.*		DCell
   44: \ ud.*		UDCell
   45: \ r.*		Float
   46: \ a_.*		Cell *
   47: \ c_.*		Char *
   48: \ f_.*		Float *
   49: \ df_.*		DFloat *
   50: \ sf_.*		SFloat *
   51: \ xt.*		XT
   52: \ wid.*		WID
   53: \ f83name.*	F83Name *
   54: \ 
   55: \ 
   56: \ 
   57: \ In addition the following names can be used:
   58: \ ip	the instruction pointer
   59: \ sp	the data stack pointer
   60: \ rp	the parameter stack pointer
   61: \ lp	the locals stack pointer
   62: \ NEXT	executes NEXT
   63: \ cfa	
   64: \ NEXT1	executes NEXT1
   65: \ FLAG(x)	makes a Forth flag from a C flag
   66: \ 
   67: \ 
   68: \ 
   69: \ Percentages in comments are from Koopmans book: average/maximum use
   70: \ (taken from four, not very representative benchmarks)
   71: \ 
   72: \ 
   73: \ 
   74: \ To do:
   75: \ 
   76: \ throw execute, cfa and NEXT1 out?
   77: \ macroize *ip, ip++, *ip++ (pipelining)?
   78: 
   79: \ these m4 macros would collide with identifiers
   80: undefine(`index')
   81: undefine(`shift')
   82: 
   83: noop	--		fig
   84: ;
   85: :
   86:  ;
   87: 
   88: lit	-- w		fig
   89: w = (Cell)NEXT_INST;
   90: INC_IP(1);
   91: 
   92: execute		xt --		core
   93: ip=IP;
   94: cfa = xt;
   95: IF_TOS(TOS = sp[0]);
   96: NEXT1;
   97: 
   98: branch-lp+!#	--	new	branch_lp_plus_store_number
   99: /* this will probably not be used */
  100: branch_adjust_lp:
  101: lp += (Cell)(IP[1]);
  102: goto branch;
  103: 
  104: branch	--		fig
  105: branch:
  106: ip = (Xt *)(((Cell)IP)+(Cell)NEXT_INST);
  107: NEXT_P0;
  108: :
  109:  r> dup @ + >r ;
  110: 
  111: \ condbranch(forthname,restline,code)
  112: \ this is non-syntactical: code must open a brace that is closed by the macro
  113: define(condbranch,
  114: $1	$2
  115: $3	ip = (Xt *)(((Cell)IP)+(Cell)NEXT_INST);
  116:         NEXT_P0;
  117: 	NEXT;
  118: }
  119: else
  120:     INC_IP(1);
  121: 
  122: $1-lp+!#	$2_lp_plus_store_number
  123: $3    goto branch_adjust_lp;
  124: }
  125: else
  126:     INC_IP(2);
  127: 
  128: )
  129: 
  130: condbranch(?branch,f --		f83	question_branch,
  131: if (f==0) {
  132:     IF_TOS(TOS = sp[0]);
  133: )
  134: 
  135: condbranch((next),--		cmFORTH	paren_next,
  136: if ((*rp)--) {
  137: )
  138: 
  139: condbranch((loop),--		fig	paren_loop,
  140: Cell index = *rp+1;
  141: Cell limit = rp[1];
  142: if (index != limit) {
  143:     *rp = index;
  144: )
  145: 
  146: condbranch((+loop),n --		gforth	paren_plus_loop,
  147: /* !! check this thoroughly */
  148: Cell index = *rp;
  149: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  150: /* dependent upon two's complement arithmetic */
  151: Cell olddiff = index-rp[1];
  152: #ifndef undefined
  153: if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
  154:     || (olddiff^n)>=0          /* it is a wrap-around effect */) {
  155: #else
  156: #ifndef MAXINT
  157: #define MAXINT ((((Cell)1)<<(8*sizeof(Cell)-1))-1)
  158: #endif
  159: if(((olddiff^MAXINT) >= n) ^ ((olddiff+n) < 0)) {
  160: #endif
  161: #ifdef i386
  162:     *rp += n;
  163: #else
  164:     *rp = index + n;
  165: #endif
  166:     IF_TOS(TOS = sp[0]);
  167: )
  168: 
  169: condbranch((-loop),u --		gforth	paren_minus_loop,
  170: /* !! check this thoroughly */
  171: Cell index = *rp;
  172: /* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
  173: /* dependent upon two's complement arithmetic */
  174: UCell olddiff = index-rp[1];
  175: if (olddiff>u) {
  176:     *rp = index - u;
  177:     IF_TOS(TOS = sp[0]);
  178: )
  179: 
  180: condbranch((s+loop),n --		gforth	paren_symmetric_plus_loop,
  181: ""The run-time procedure compiled by S+LOOP. It loops until the index
  182: crosses the boundary between limit and limit-sign(n). I.e. a symmetric
  183: version of (+LOOP).""
  184: /* !! check this thoroughly */
  185: Cell index = *rp;
  186: Cell diff = index-rp[1];
  187: Cell newdiff = diff+n;
  188: if (n<0) {
  189:     diff = -diff;
  190:     newdiff = -newdiff;
  191: }
  192: if (diff>=0 || newdiff<0) {
  193: #ifdef i386
  194:     *rp += n;
  195: #else
  196:     *rp = index + n;
  197: #endif
  198:     IF_TOS(TOS = sp[0]);
  199: )
  200: 
  201: unloop		--	core
  202: rp += 2;
  203: :
  204:  r> rdrop rdrop >r ;
  205: 
  206: (for)	ncount --		cmFORTH		paren_for
  207: /* or (for) = >r -- collides with unloop! */
  208: *--rp = 0;
  209: *--rp = ncount;
  210: :
  211:  r> swap 0 >r >r >r ;
  212: 
  213: (do)	nlimit nstart --		fig		paren_do
  214: /* or do it in high-level? 0.09/0.23% */
  215: *--rp = nlimit;
  216: *--rp = nstart;
  217: :
  218:  r> -rot swap >r >r >r ;
  219: 
  220: (?do)	nlimit nstart --	new	paren_question_do
  221: *--rp = nlimit;
  222: *--rp = nstart;
  223: if (nstart == nlimit) {
  224:     IF_TOS(TOS = sp[0]);
  225:     goto branch;
  226:     }
  227: else {
  228:     INC_IP(1);
  229: }
  230: 
  231: (+do)	nlimit nstart --	new	paren_plus_do
  232: *--rp = nlimit;
  233: *--rp = nstart;
  234: if (nstart >= nlimit) {
  235:     IF_TOS(TOS = sp[0]);
  236:     goto branch;
  237:     }
  238: else {
  239:     INC_IP(1);
  240: }
  241: 
  242: (u+do)	ulimit ustart --	new	paren_u_plus_do
  243: *--rp = ulimit;
  244: *--rp = ustart;
  245: if (ustart >= ulimit) {
  246:     IF_TOS(TOS = sp[0]);
  247:     goto branch;
  248:     }
  249: else {
  250:     INC_IP(1);
  251: }
  252: 
  253: (-do)	nlimit nstart --	new	paren_minus_do
  254: *--rp = nlimit;
  255: *--rp = nstart;
  256: if (nstart <= nlimit) {
  257:     IF_TOS(TOS = sp[0]);
  258:     goto branch;
  259:     }
  260: else {
  261:     INC_IP(1);
  262: }
  263: 
  264: (u-do)	ulimit ustart --	new	paren_u_minus_do
  265: *--rp = ulimit;
  266: *--rp = ustart;
  267: if (ustart <= ulimit) {
  268:     IF_TOS(TOS = sp[0]);
  269:     goto branch;
  270:     }
  271: else {
  272:     INC_IP(1);
  273: }
  274: 
  275: i	-- n		core
  276: n = *rp;
  277: 
  278: j	-- n		core
  279: n = rp[2];
  280: 
  281: \ digit is high-level: 0/0%
  282: 
  283: (emit)	c --		fig	paren_emit
  284: putchar(c);
  285: emitcounter++;
  286: 
  287: (type)	c_addr n --	gforth	paren_type
  288: fwrite(c_addr,sizeof(Char),n,stdout);
  289: emitcounter += n;
  290: 
  291: (key)	-- n		fig	paren_key
  292: fflush(stdout);
  293: /* !! noecho */
  294: n = key();
  295: 
  296: key?	-- n		facility	key_q
  297: fflush(stdout);
  298: n = key_query;
  299: 
  300: cr	--		core
  301: puts("");
  302: :
  303:  $0A emit ;
  304: 
  305: move	c_from c_to ucount --		core
  306: memmove(c_to,c_from,ucount);
  307: /* make an Ifdef for bsd and others? */
  308: :
  309:  >r 2dup u< IF r> cmove> ELSE r> cmove THEN ;
  310: 
  311: cmove	c_from c_to u --	string
  312: while (u-- > 0)
  313:   *c_to++ = *c_from++;
  314: :
  315:  bounds ?DO  dup c@ I c! 1+  LOOP  drop ;
  316: 
  317: cmove>	c_from c_to u --	string	c_move_up
  318: while (u-- > 0)
  319:   c_to[u] = c_from[u];
  320: :
  321:  dup 0= IF  drop 2drop exit  THEN
  322:  rot over + -rot bounds swap 1-
  323:  DO  1- dup c@ I c!  -1 +LOOP  drop ;
  324: 
  325: fill	c_addr u c --	core
  326: memset(c_addr,c,u);
  327: :
  328:  -rot bounds
  329:  ?DO  dup I c!  LOOP  drop ;
  330: 
  331: compare		c_addr1 u1 c_addr2 u2 -- n	string
  332: ""Compare the strings lexicographically. If they are equal, n is 0; if
  333: the first string is smaller, n is -1; if the first string is larger, n
  334: is 1. Currently this is based on the machine's character
  335: comparison. In the future, this may change to considering the current
  336: locale and its collation order.""
  337: n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
  338: if (n==0)
  339:   n = u1-u2;
  340: if (n<0)
  341:   n = -1;
  342: else if (n>0)
  343:   n = 1;
  344: :
  345:  rot 2dup - >r min swap -text dup
  346:  IF    rdrop
  347:  ELSE  drop r@ 0>
  348:        IF    rdrop -1
  349:        ELSE  r> 1 and
  350:        THEN
  351:  THEN ;
  352: 
  353: -text		c_addr1 u c_addr2 -- n	new	dash_text
  354: n = memcmp(c_addr1, c_addr2, u);
  355: if (n<0)
  356:   n = -1;
  357: else if (n>0)
  358:   n = 1;
  359: :
  360:  swap bounds
  361:  ?DO  dup c@ I c@ = WHILE  1+  LOOP  drop 0
  362:  ELSE  c@ I c@ - unloop  THEN  -text-flag ;
  363: : -text-flag ( n -- -1/0/1 )
  364:  dup 0< IF  drop -1  ELSE  0>  IF  1  ELSE  0  THEN  THEN  ;
  365: 
  366: capscomp	c_addr1 u c_addr2 -- n	new
  367: Char c1, c2;
  368: for (;; u--, c_addr1++, c_addr2++) {
  369:   if (u == 0) {
  370:     n = 0;
  371:     break;
  372:   }
  373:   c1 = toupper(*c_addr1);
  374:   c2 = toupper(*c_addr2);
  375:   if (c1 != c2) {
  376:     if (c1 < c2)
  377:       n = -1;
  378:     else
  379:       n = 1;
  380:     break;
  381:   }
  382: }
  383: :
  384:  swap bounds
  385:  ?DO  dup c@ toupper I c@ toupper = WHILE  1+  LOOP  drop 0
  386:  ELSE  c@ toupper I c@ toupper - unloop  THEN  -text-flag ;
  387: 
  388: -trailing	c_addr u1 -- c_addr u2		string	dash_trailing
  389: u2 = u1;
  390: while (c_addr[u2-1] == ' ')
  391:   u2--;
  392: :
  393:  BEGIN  1- 2dup + c@ bl =  WHILE
  394:         dup  0= UNTIL  ELSE  1+  THEN ;
  395: 
  396: /string		c_addr1 u1 n -- c_addr2 u2	string	slash_string
  397: c_addr2 = c_addr1+n;
  398: u2 = u1-n;
  399: :
  400:  tuck - >r + r> dup 0< IF  - 0  THEN ;
  401: 
  402: +	n1 n2 -- n		core	plus
  403: n = n1+n2;
  404: 
  405: -	n1 n2 -- n		core	minus
  406: n = n1-n2;
  407: :
  408:  negate + ;
  409: 
  410: negate	n1 -- n2		core
  411: /* use minus as alias */
  412: n2 = -n1;
  413: :
  414:  invert 1+ ;
  415: 
  416: 1+	n1 -- n2		core		one_plus
  417: n2 = n1+1;
  418: :
  419:  1 + ;
  420: 
  421: 1-	n1 -- n2		core		one_minus
  422: n2 = n1-1;
  423: :
  424:  1 - ;
  425: 
  426: max	n1 n2 -- n	core
  427: if (n1<n2)
  428:   n = n2;
  429: else
  430:   n = n1;
  431: :
  432:  2dup < IF swap THEN drop ;
  433: 
  434: min	n1 n2 -- n	core
  435: if (n1<n2)
  436:   n = n1;
  437: else
  438:   n = n2;
  439: :
  440:  2dup > IF swap THEN drop ;
  441: 
  442: abs	n1 -- n2	core
  443: if (n1<0)
  444:   n2 = -n1;
  445: else
  446:   n2 = n1;
  447: :
  448:  dup 0< IF negate THEN ;
  449: 
  450: *	n1 n2 -- n		core	star
  451: n = n1*n2;
  452: :
  453:  um* drop ;
  454: 
  455: /	n1 n2 -- n		core	slash
  456: n = n1/n2;
  457: :
  458:  /mod nip ;
  459: 
  460: mod	n1 n2 -- n		core
  461: n = n1%n2;
  462: :
  463:  /mod drop ;
  464: 
  465: /mod	n1 n2 -- n3 n4		core		slash_mod
  466: n4 = n1/n2;
  467: n3 = n1%n2; /* !! is this correct? look into C standard! */
  468: :
  469:  >r s>d r> fm/mod ;
  470: 
  471: 2*	n1 -- n2		core		two_star
  472: n2 = 2*n1;
  473: :
  474:  dup + ;
  475: 
  476: 2/	n1 -- n2		core		two_slash
  477: /* !! is this still correct? */
  478: n2 = n1>>1;
  479: 
  480: fm/mod	d1 n1 -- n2 n3		core		f_m_slash_mod
  481: ""floored division: d1 = n3*n1+n2, n1>n2>=0 or 0>=n2>n1""
  482: /* assumes that the processor uses either floored or symmetric division */
  483: n3 = d1/n1;
  484: n2 = d1%n1;
  485: /* note that this 1%-3>0 is optimized by the compiler */
  486: if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  487:   n3--;
  488:   n2+=n1;
  489: }
  490: 
  491: sm/rem	d1 n1 -- n2 n3		core		s_m_slash_rem
  492: ""symmetric division: d1 = n3*n1+n2, sign(n2)=sign(d1) or 0""
  493: /* assumes that the processor uses either floored or symmetric division */
  494: n3 = d1/n1;
  495: n2 = d1%n1;
  496: /* note that this 1%-3<0 is optimized by the compiler */
  497: if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  498:   n3++;
  499:   n2-=n1;
  500: }
  501: :
  502:  over >r dup >r abs -rot
  503:  dabs rot um/mod
  504:  r> 0< IF       negate       THEN
  505:  r> 0< IF  swap negate swap  THEN ;
  506: 
  507: m*	n1 n2 -- d		core	m_star
  508: d = (DCell)n1 * (DCell)n2;
  509: :
  510:  2dup      0< and >r
  511:  2dup swap 0< and >r
  512:  um* r> - r> - ;
  513: 
  514: um*	u1 u2 -- ud		core	u_m_star
  515: /* use u* as alias */
  516: ud = (UDCell)u1 * (UDCell)u2;
  517: 
  518: um/mod	ud u1 -- u2 u3		core	u_m_slash_mod
  519: u3 = ud/u1;
  520: u2 = ud%u1;
  521: :
  522:   dup IF  0 (um/mod)  THEN  nip ; 
  523: : (um/mod)  ( ud ud--ud u)
  524:   2dup >r >r  dup 0< 
  525:   IF    2drop 0 
  526:   ELSE  2dup d+  (um/mod)  2*  THEN 
  527:   -rot  r> r> 2over 2over  du<
  528:   IF    2drop rot 
  529:   ELSE  dnegate  d+  rot 1+  THEN ; 
  530: 
  531: m+	d1 n -- d2		double		m_plus
  532: d2 = d1+n;
  533: :
  534:  s>d d+ ;
  535: 
  536: d+	d1 d2 -- d		double	d_plus
  537: d = d1+d2;
  538: :
  539:  >r swap >r over 2/ over 2/ + >r over 1 and over 1 and + 2/
  540:  r> + >r + r> 0< r> r> + swap - ;
  541: 
  542: d-	d1 d2 -- d		double		d_minus
  543: d = d1-d2;
  544: :
  545:  dnegate d+ ;
  546: 
  547: dnegate	d1 -- d2		double
  548: /* use dminus as alias */
  549: d2 = -d1;
  550: :
  551:  invert swap negate tuck 0= - ;
  552: 
  553: dmax	d1 d2 -- d	double
  554: if (d1<d2)
  555:   d = d2;
  556: else
  557:   d = d1;
  558: :
  559:  2over 2over d> IF  2swap  THEN 2drop ;
  560: 
  561: dmin	d1 d2 -- d	double
  562: if (d1<d2)
  563:   d = d1;
  564: else
  565:   d = d2;
  566: :
  567:  2over 2over d< IF  2swap  THEN 2drop ;
  568: 
  569: dabs	d1 -- d2	double
  570: if (d1<0)
  571:   d2 = -d1;
  572: else
  573:   d2 = d1;
  574: :
  575:  dup 0< IF dnegate THEN ;
  576: 
  577: d2*	d1 -- d2		double		d_two_star
  578: d2 = 2*d1;
  579: :
  580:  2dup d+ ;
  581: 
  582: d2/	d1 -- d2		double		d_two_slash
  583: /* !! is this still correct? */
  584: d2 = d1>>1;
  585: :
  586:  dup 1 and >r 2/ swap 2/ [ 1 8 cells 1- lshift 1- ] Literal and
  587:  r> IF  [ 1 8 cells 1- lshift ] Literal + THEN  swap ;
  588: 
  589: d>s	d -- n			double		d_to_s
  590: /* make this an alias for drop? */
  591: n = d;
  592: :
  593:  drop ;
  594: 
  595: and	w1 w2 -- w		core
  596: w = w1&w2;
  597: 
  598: or	w1 w2 -- w		core
  599: w = w1|w2;
  600: 
  601: xor	w1 w2 -- w		core
  602: w = w1^w2;
  603: 
  604: invert	w1 -- w2		core
  605: w2 = ~w1;
  606: :
  607:  -1 xor ;
  608: 
  609: rshift	u1 n -- u2		core
  610:   u2 = u1>>n;
  611: 
  612: lshift	u1 n -- u2		core
  613:   u2 = u1<<n;
  614: 
  615: \ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
  616: define(comparisons,
  617: $1=	$2 -- f		$6	$3equals
  618: f = FLAG($4==$5);
  619: 
  620: $1<>	$2 -- f		$7	$3different
  621: /* use != as alias ? */
  622: f = FLAG($4!=$5);
  623: 
  624: $1<	$2 -- f		$8	$3less
  625: f = FLAG($4<$5);
  626: 
  627: $1>	$2 -- f		$9	$3greater
  628: f = FLAG($4>$5);
  629: 
  630: $1<=	$2 -- f		new	$3less_or_equal
  631: f = FLAG($4<=$5);
  632: 
  633: $1>=	$2 -- f		new	$3greater_or_equal
  634: f = FLAG($4>=$5);
  635: 
  636: )
  637: 
  638: comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
  639: comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
  640: comparisons(u, u1 u2, u_, u1, u2, new, new, core, core-ext)
  641: comparisons(d, d1 d2, d_, d1, d2, double, new, double, new)
  642: comparisons(d0, d, d_zero_, d, 0, double, new, double, new)
  643: comparisons(du, ud1 ud2, d_u_, ud1, ud2, new, new, double-ext, new)
  644: 
  645: within	u1 u2 u3 -- f		core-ext
  646: f = FLAG(u1-u2 < u3-u2);
  647: :
  648:  over - >r - r> u< ;
  649: 
  650: sp@	-- a_addr		fig		spat
  651: a_addr = sp+1;
  652: 
  653: sp!	a_addr --		fig		spstore
  654: sp = a_addr;
  655: /* works with and without TOS caching */
  656: 
  657: rp@	-- a_addr		fig		rpat
  658: a_addr = rp;
  659: 
  660: rp!	a_addr --		fig		rpstore
  661: rp = a_addr;
  662: 
  663: fp@	-- f_addr	new	fp_fetch
  664: f_addr = fp;
  665: 
  666: fp!	f_addr --	new	fp_store
  667: fp = f_addr;
  668: 
  669: ;s	--		fig	semis
  670: ip = (Xt *)(*rp++);
  671: NEXT_P0;
  672: 
  673: >r	w --		core	to_r
  674: *--rp = w;
  675: 
  676: r>	-- w		core	r_from
  677: w = *rp++;
  678: 
  679: r@	-- w		core	r_fetch
  680: /* use r as alias */
  681: /* make r@ an alias for i */
  682: w = *rp;
  683: 
  684: rdrop	--		gforth
  685: rp++;
  686: 
  687: i'	-- w		gforth		i_tick
  688: w=rp[1];
  689: 
  690: 2>r	w1 w2 --	core-ext	two_to_r
  691: *--rp = w1;
  692: *--rp = w2;
  693: 
  694: 2r>	-- w1 w2	core-ext	two_r_from
  695: w2 = *rp++;
  696: w1 = *rp++;
  697: 
  698: 2r@	-- w1 w2	core-ext	two_r_fetch
  699: w2 = rp[0];
  700: w1 = rp[1];
  701: 
  702: 2rdrop	--		gforth	two_r_drop
  703: rp+=2;
  704: 
  705: over	w1 w2 -- w1 w2 w1		core
  706: 
  707: drop	w --		core
  708: 
  709: swap	w1 w2 -- w2 w1		core
  710: 
  711: dup	w -- w w		core
  712: 
  713: rot	w1 w2 w3 -- w2 w3 w1	core	rote
  714: 
  715: -rot	w1 w2 w3 -- w3 w1 w2	gforth	not_rote
  716: :
  717:  rot rot ;
  718: 
  719: nip	w1 w2 -- w2		core-ext
  720: :
  721:  swap drop ;
  722: 
  723: tuck	w1 w2 -- w2 w1 w2	core-ext
  724: :
  725:  swap over ;
  726: 
  727: ?dup	w -- w			core	question_dupe
  728: if (w!=0) {
  729:   IF_TOS(*sp-- = w;)
  730: #ifndef USE_TOS
  731:   *--sp = w;
  732: #endif
  733: }
  734: :
  735:  dup IF dup THEN ;
  736: 
  737: pick	u -- w			core-ext
  738: w = sp[u+1];
  739: :
  740:  1+ cells sp@ + @ ;
  741: 
  742: 2drop	w1 w2 --		core	two_drop
  743: :
  744:  drop drop ;
  745: 
  746: 2dup	w1 w2 -- w1 w2 w1 w2	core	two_dupe
  747: :
  748:  over over ;
  749: 
  750: 2over	w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2	core	two_over
  751: :
  752:  3 pick 3 pick ;
  753: 
  754: 2swap	w1 w2 w3 w4 -- w3 w4 w1 w2	core	two_swap
  755: :
  756:  >r -rot r> -rot ;
  757: 
  758: 2rot	w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2	double	two_rote
  759: :
  760:  >r >r 2swap r> r> 2swap ;
  761: 
  762: 2nip	w1 w2 w3 w4 -- w3 w4	gforth	two_nip
  763: :
  764:  2swap 2drop ;
  765: 
  766: 2tuck	w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4	gforth	two_tuck
  767: :
  768:  2swap 2over ;
  769: 
  770: \ toggle is high-level: 0.11/0.42%
  771: 
  772: @	a_addr -- w		core	fetch
  773: w = *a_addr;
  774: 
  775: !	w a_addr --		core	store
  776: *a_addr = w;
  777: 
  778: +!	n a_addr --		core	plus_store
  779: *a_addr += n;
  780: 
  781: c@	c_addr -- c		core	cfetch
  782: c = *c_addr;
  783: 
  784: c!	c c_addr --		core	cstore
  785: *c_addr = c;
  786: 
  787: 2!	w1 w2 a_addr --		core	two_store
  788: a_addr[0] = w2;
  789: a_addr[1] = w1;
  790: :
  791:  tuck ! cell+ ! ;
  792: 
  793: 2@	a_addr -- w1 w2		core	two_fetch
  794: w2 = a_addr[0];
  795: w1 = a_addr[1];
  796: :
  797:  dup cell+ @ swap @ ;
  798: 
  799: d!	d a_addr --		double	d_store
  800: /* !! alignment problems on some machines */
  801: *(DCell *)a_addr = d;
  802: 
  803: d@	a_addr -- d		double	d_fetch
  804: d = *(DCell *)a_addr;
  805: 
  806: cell+	a_addr1 -- a_addr2	core	cell_plus
  807: a_addr2 = a_addr1+1;
  808: :
  809:  [ cell ] Literal + ;
  810: 
  811: cells	n1 -- n2		core
  812: n2 = n1 * sizeof(Cell);
  813: :
  814:  [ cell ]
  815:  [ 2/ dup ] [IF] 2* [THEN]
  816:  [ 2/ dup ] [IF] 2* [THEN]
  817:  [ 2/ dup ] [IF] 2* [THEN]
  818:  [ 2/ dup ] [IF] 2* [THEN]
  819:  [ drop ] ;
  820: 
  821: char+	c_addr1 -- c_addr2	core	care_plus
  822: c_addr2 = c_addr1 + 1;
  823: :
  824:  1+ ;
  825: 
  826: (chars)		n1 -- n2	gforth	paren_cares
  827: n2 = n1 * sizeof(Char);
  828: :
  829:  ;
  830: 
  831: count	c_addr1 -- c_addr2 u	core
  832: u = *c_addr1;
  833: c_addr2 = c_addr1+1;
  834: :
  835:  dup 1+ swap c@ ;
  836: 
  837: (bye)	n --	gforth	paren_bye
  838: return (Label *)n;
  839: 
  840: system	c_addr u -- n	gforth
  841: n=system(cstr(c_addr,u,1)); /* ~ expansion on first part of string? */
  842: 
  843: getenv	c_addr1 u1 -- c_addr2 u2	gforth
  844: c_addr2 = getenv(cstr(c_addr1,u1,1));
  845: u2 = (c_addr2 == NULL ? 0 : strlen(c_addr2));
  846: 
  847: popen	c_addr u n -- wfileid	own
  848: static char* mode[2]={"r","w"}; /* !! should we use FAM here? */
  849: wfileid=(Cell)popen(cstr(c_addr,u,1),mode[n]); /* ~ expansion of 1st arg? */
  850: 
  851: pclose	wfileid -- wior		own
  852: wior=pclose((FILE *)wfileid); /* !! what to do with the result */
  853: 
  854: time&date	-- nsec nmin nhour nday nmonth nyear	facility-ext	time_and_date
  855: struct timeval time1;
  856: struct timezone zone1;
  857: struct tm *ltime;
  858: gettimeofday(&time1,&zone1);
  859: ltime=localtime((time_t *)&time1.tv_sec);
  860: nyear =ltime->tm_year+1900;
  861: nmonth=ltime->tm_mon+1;
  862: nday  =ltime->tm_mday;
  863: nhour =ltime->tm_hour;
  864: nmin  =ltime->tm_min;
  865: nsec  =ltime->tm_sec;
  866: 
  867: ms	n --	facility-ext
  868: struct timeval timeout;
  869: timeout.tv_sec=n/1000;
  870: timeout.tv_usec=1000*(n%1000);
  871: (void)select(0,0,0,0,&timeout);
  872: 
  873: allocate	u -- a_addr wior	memory
  874: a_addr = (Cell *)malloc(u);
  875: wior = IOR(a_addr==NULL);
  876: 
  877: free		a_addr -- wior		memory
  878: free(a_addr);
  879: wior = 0;
  880: 
  881: resize		a_addr1 u -- a_addr2 wior	memory
  882: ""Change the size of the allocated area at @i{a_addr1} to @i{u}
  883: address units, possibly moving the contents to a different
  884: area. @i{a_addr2} is the address of the resulting area. If
  885: @code{a_addr2} is 0, gforth's (but not the standard) @code{resize}
  886: @code{allocate}s @i{u} address units.""
  887: /* the following check is not necessary on most OSs, but it is needed
  888:    on SunOS 4.1.2. */
  889: if (a_addr1==NULL)
  890:   a_addr2 = (Cell *)malloc(u);
  891: else
  892:   a_addr2 = (Cell *)realloc(a_addr1, u);
  893: wior = IOR(a_addr2==NULL);	/* !! Define a return code */
  894: 
  895: (f83find)	c_addr u f83name1 -- f83name2	new	paren_f83find
  896: for (; f83name1 != NULL; f83name1 = f83name1->next)
  897:   if (F83NAME_COUNT(f83name1)==u &&
  898:       strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
  899:     break;
  900: f83name2=f83name1;
  901: :
  902:  BEGIN  dup  WHILE
  903:         >r dup r@ cell+ c@ $1F and =
  904: 	IF  2dup r@ cell+ char+ capscomp  0=
  905: 	    IF  2drop r>  EXIT  THEN  THEN
  906: 	r> @
  907:  REPEAT  nip nip ;
  908: 
  909: (hashfind)	c_addr u a_addr -- f83name2	new	paren_hashfind
  910: F83Name *f83name1;
  911: f83name2=NULL;
  912: while(a_addr != NULL)
  913: {
  914:    f83name1=(F83Name *)(a_addr[1]);
  915:    a_addr=(Cell *)(a_addr[0]);
  916:    if (F83NAME_COUNT(f83name1)==u &&
  917:        strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
  918:      {
  919: 	f83name2=f83name1;
  920: 	break;
  921:      }
  922: }
  923: :
  924:  BEGIN  dup  WHILE
  925:         2@ >r >r dup r@ cell+ c@ $1F and =
  926:         IF  2dup r@ cell+ char+ capscomp 0=
  927: 	    IF  2drop r> rdrop  EXIT  THEN  THEN
  928: 	rdrop r>
  929:  REPEAT nip nip ;
  930: 
  931: (hashkey)	c_addr u1 -- u2		new	paren_hashkey
  932: u2=0;
  933: while(u1--)
  934:    u2+=(Cell)toupper(*c_addr++);
  935: :
  936:  0 -rot bounds ?DO  I c@ toupper +  LOOP ;
  937: 
  938: (hashkey1)	c_addr u ubits -- ukey		new	paren_hashkey1
  939: ""ukey is the hash key for the string c_addr u fitting in ubits bits""
  940: /* this hash function rotates the key at every step by rot bits within
  941:    ubits bits and xors it with the character. This function does ok in
  942:    the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
  943:    ASCII strings (larger if ubits is large), and should share no
  944:    divisors with ubits.
  945: */
  946: unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
  947: Char *cp = c_addr;
  948: for (ukey=0; cp<c_addr+u; cp++)
  949:     ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
  950: 	     ^ toupper(*cp))
  951: 	    & ((1<<ubits)-1));
  952: :
  953:  dup rot-values + c@ over 1 swap lshift 1- >r
  954:  tuck - 2swap r> 0 2swap bounds
  955:  ?DO  dup 4 pick lshift swap 3 pick rshift or
  956:       I c@ toupper xor
  957:       over and  LOOP
  958:  nip nip nip ;
  959: Create rot-values
  960:   5 c, 0 c, 1 c, 2 c, 3 c,  4 c, 5 c, 5 c, 5 c, 5 c,
  961:   3 c, 5 c, 5 c, 5 c, 5 c,  7 c, 5 c, 5 c, 5 c, 5 c,
  962:   7 c, 5 c, 5 c, 5 c, 5 c,  6 c, 5 c, 5 c, 5 c, 5 c,
  963:   7 c, 5 c, 5 c,
  964: 
  965: (parse-white)	c_addr1 u1 -- c_addr2 u2	new	paren_parse_white
  966: /* use !isgraph instead of isspace? */
  967: Char *endp = c_addr1+u1;
  968: while (c_addr1<endp && isspace(*c_addr1))
  969:   c_addr1++;
  970: if (c_addr1<endp) {
  971:   for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
  972:     ;
  973:   u2 = c_addr1-c_addr2;
  974: }
  975: else {
  976:   c_addr2 = c_addr1;
  977:   u2 = 0;
  978: }
  979: :
  980:  BEGIN  dup  WHILE  over c@ bl <=  WHILE  1 /string
  981:  REPEAT  THEN  2dup
  982:  BEGIN  dup  WHILE  over c@ bl >   WHILE  1 /string
  983:  REPEAT  THEN  nip - ;
  984: 
  985: close-file	wfileid -- wior		file	close_file
  986: wior = IOR(fclose((FILE *)wfileid)==EOF);
  987: 
  988: open-file	c_addr u ntype -- w2 wior	file	open_file
  989: w2 = (Cell)fopen(tilde_cstr(c_addr, u, 1), fileattr[ntype]);
  990: wior =  IOR(w2 == 0);
  991: 
  992: create-file	c_addr u ntype -- w2 wior	file	create_file
  993: Cell	fd;
  994: fd = open(tilde_cstr(c_addr, u, 1), O_CREAT|O_RDWR|O_TRUNC, 0666);
  995: if (fd != -1) {
  996:   w2 = (Cell)fdopen(fd, fileattr[ntype]);
  997:   wior = IOR(w2 == 0);
  998: } else {
  999:   w2 = 0;
 1000:   wior = IOR(1);
 1001: }
 1002: 
 1003: delete-file	c_addr u -- wior		file	delete_file
 1004: wior = IOR(unlink(tilde_cstr(c_addr, u, 1))==-1);
 1005: 
 1006: rename-file	c_addr1 u1 c_addr2 u2 -- wior	file-ext	rename_file
 1007: char *s1=tilde_cstr(c_addr2, u2, 1);
 1008: wior = IOR(rename(tilde_cstr(c_addr1, u1, 0), s1)==-1);
 1009: 
 1010: file-position	wfileid -- ud wior	file	file_position
 1011: /* !! use tell and lseek? */
 1012: ud = ftell((FILE *)wfileid);
 1013: wior = IOR(ud==-1);
 1014: 
 1015: reposition-file	ud wfileid -- wior	file	reposition_file
 1016: wior = IOR(fseek((FILE *)wfileid, (long)ud, SEEK_SET)==-1);
 1017: 
 1018: file-size	wfileid -- ud wior	file	file_size
 1019: struct stat buf;
 1020: wior = IOR(fstat(fileno((FILE *)wfileid), &buf)==-1);
 1021: ud = buf.st_size;
 1022: 
 1023: resize-file	ud wfileid -- wior	file	resize_file
 1024: wior = IOR(ftruncate(fileno((FILE *)wfileid), (Cell)ud)==-1);
 1025: 
 1026: read-file	c_addr u1 wfileid -- u2 wior	file	read_file
 1027: /* !! fread does not guarantee enough */
 1028: u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1029: wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1030: /* !! is the value of ferror errno-compatible? */
 1031: if (wior)
 1032:   clearerr((FILE *)wfileid);
 1033: 
 1034: read-line	c_addr u1 wfileid -- u2 flag wior	file	read_line
 1035: /*
 1036: Cell c;
 1037: flag=-1;
 1038: for(u2=0; u2<u1; u2++)
 1039: {
 1040:    *c_addr++ = (Char)(c = getc((FILE *)wfileid));
 1041:    if(c=='\n') break;
 1042:    if(c==EOF)
 1043:      {
 1044: 	flag=FLAG(u2!=0);
 1045: 	break;
 1046:      }
 1047: }
 1048: wior=FILEIO(ferror((FILE *)wfileid));
 1049: */
 1050: if ((flag=FLAG(!feof((FILE *)wfileid) &&
 1051: 	       fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {
 1052:   wior=FILEIO(ferror((FILE *)wfileid)); /* !! ior? */
 1053:   if (wior)
 1054:     clearerr((FILE *)wfileid);
 1055:   u2 = strlen(c_addr);
 1056:   u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));
 1057: }
 1058: else {
 1059:   wior=0;
 1060:   u2=0;
 1061: }
 1062: 
 1063: write-file	c_addr u1 wfileid -- wior	file	write_file
 1064: /* !! fwrite does not guarantee enough */
 1065: {
 1066:   Cell u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
 1067:   wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
 1068:   if (wior)
 1069:     clearerr((FILE *)wfileid);
 1070: }
 1071: 
 1072: flush-file	wfileid -- wior		file-ext	flush_file
 1073: wior = IOR(fflush((FILE *) wfileid)==EOF);
 1074: 
 1075: file-status	c_addr u -- ntype wior	file-ext	file_status
 1076: char *filename=tilde_cstr(c_addr, u, 1);
 1077: if (access (filename, F_OK) != 0) {
 1078:   ntype=0;
 1079:   wior=IOR(1);
 1080: }
 1081: else if (access (filename, R_OK | W_OK) == 0) {
 1082:   ntype=2; /* r/w */
 1083:   wior=0;
 1084: }
 1085: else if (access (filename, R_OK) == 0) {
 1086:   ntype=0; /* r/o */
 1087:   wior=0;
 1088: }
 1089: else if (access (filename, W_OK) == 0) {
 1090:   ntype=4; /* w/o */
 1091:   wior=0;
 1092: }
 1093: else {
 1094:   ntype=1; /* well, we cannot access the file, but better deliver a legal
 1095: 	    access mode (r/o bin), so we get a decent error later upon open. */
 1096:   wior=0;
 1097: }
 1098: 
 1099: comparisons(f, r1 r2, f_, r1, r2, new, new, float, new)
 1100: comparisons(f0, r, f_zero_, r, 0., float, new, float, new)
 1101: 
 1102: d>f		d -- r		float	d_to_f
 1103: r = d;
 1104: 
 1105: f>d		r -- d		float	f_to_d
 1106: /* !! basis 15 is not very specific */
 1107: d = r;
 1108: 
 1109: f!		r f_addr --	float	f_store
 1110: *f_addr = r;
 1111: 
 1112: f@		f_addr -- r	float	f_fetch
 1113: r = *f_addr;
 1114: 
 1115: df@		df_addr -- r	float-ext	d_f_fetch
 1116: #ifdef IEEE_FP
 1117: r = *df_addr;
 1118: #else
 1119: !! df@
 1120: #endif
 1121: 
 1122: df!		r df_addr --	float-ext	d_f_store
 1123: #ifdef IEEE_FP
 1124: *df_addr = r;
 1125: #else
 1126: !! df!
 1127: #endif
 1128: 
 1129: sf@		sf_addr -- r	float-ext	s_f_fetch
 1130: #ifdef IEEE_FP
 1131: r = *sf_addr;
 1132: #else
 1133: !! sf@
 1134: #endif
 1135: 
 1136: sf!		r sf_addr --	float-ext	s_f_store
 1137: #ifdef IEEE_FP
 1138: *sf_addr = r;
 1139: #else
 1140: !! sf!
 1141: #endif
 1142: 
 1143: f+		r1 r2 -- r3	float	f_plus
 1144: r3 = r1+r2;
 1145: 
 1146: f-		r1 r2 -- r3	float	f_minus
 1147: r3 = r1-r2;
 1148: 
 1149: f*		r1 r2 -- r3	float	f_star
 1150: r3 = r1*r2;
 1151: 
 1152: f/		r1 r2 -- r3	float	f_slash
 1153: r3 = r1/r2;
 1154: 
 1155: f**		r1 r2 -- r3	float-ext	f_star_star
 1156: ""@i{r3} is @i{r1} raised to the @i{r2}th power""
 1157: r3 = pow(r1,r2);
 1158: 
 1159: fnegate		r1 -- r2	float
 1160: r2 = - r1;
 1161: 
 1162: fdrop		r --		float
 1163: 
 1164: fdup		r -- r r	float
 1165: 
 1166: fswap		r1 r2 -- r2 r1	float
 1167: 
 1168: fover		r1 r2 -- r1 r2 r1	float
 1169: 
 1170: frot		r1 r2 r3 -- r2 r3 r1	float
 1171: 
 1172: fnip		r1 r2 -- r2	gforth
 1173: 
 1174: ftuck		r1 r2 -- r2 r1 r2	gforth
 1175: 
 1176: float+		f_addr1 -- f_addr2	float	float_plus
 1177: f_addr2 = f_addr1+1;
 1178: 
 1179: floats		n1 -- n2	float
 1180: n2 = n1*sizeof(Float);
 1181: 
 1182: floor		r1 -- r2	float
 1183: ""round towards the next smaller integral value, i.e., round toward negative infinity""
 1184: /* !! unclear wording */
 1185: r2 = floor(r1);
 1186: 
 1187: fround		r1 -- r2	float
 1188: ""round to the nearest integral value""
 1189: /* !! unclear wording */
 1190: #ifdef HAVE_RINT
 1191: r2 = rint(r1);
 1192: #else
 1193: r2 = floor(r1+0.5);
 1194: /* !! This is not quite true to the rounding rules given in the standard */
 1195: #endif
 1196: 
 1197: fmax		r1 r2 -- r3	float
 1198: if (r1<r2)
 1199:   r3 = r2;
 1200: else
 1201:   r3 = r1;
 1202: 
 1203: fmin		r1 r2 -- r3	float
 1204: if (r1<r2)
 1205:   r3 = r1;
 1206: else
 1207:   r3 = r2;
 1208: 
 1209: represent		r c_addr u -- n f1 f2	float
 1210: char *sig;
 1211: Cell flag;
 1212: Cell decpt;
 1213: sig=ecvt(r, u, (int *)&decpt, (int *)&flag);
 1214: n=(r==0 ? 1 : decpt);
 1215: f1=FLAG(flag!=0);
 1216: f2=FLAG(isdigit(sig[0])!=0);
 1217: memmove(c_addr,sig,u);
 1218: 
 1219: >float	c_addr u -- flag	float	to_float
 1220: /* real signature: c_addr u -- r t / f */
 1221: Float r;
 1222: char *number=cstr(c_addr, u, 1);
 1223: char *endconv;
 1224: while(isspace(number[--u]) && u>0);
 1225: switch(number[u])
 1226: {
 1227:    case 'd':
 1228:    case 'D':
 1229:    case 'e':
 1230:    case 'E':  break;
 1231:    default :  u++; break;
 1232: }
 1233: number[u]='\0';
 1234: r=strtod(number,&endconv);
 1235: if((flag=FLAG(!(Cell)*endconv)))
 1236: {
 1237:    IF_FTOS(fp[0] = FTOS);
 1238:    fp += -1;
 1239:    FTOS = r;
 1240: }
 1241: else if(*endconv=='d' || *endconv=='D')
 1242: {
 1243:    *endconv='E';
 1244:    r=strtod(number,&endconv);
 1245:    if((flag=FLAG(!(Cell)*endconv)))
 1246:      {
 1247: 	IF_FTOS(fp[0] = FTOS);
 1248: 	fp += -1;
 1249: 	FTOS = r;
 1250:      }
 1251: }
 1252: 
 1253: fabs		r1 -- r2	float-ext
 1254: r2 = fabs(r1);
 1255: 
 1256: facos		r1 -- r2	float-ext
 1257: r2 = acos(r1);
 1258: 
 1259: fasin		r1 -- r2	float-ext
 1260: r2 = asin(r1);
 1261: 
 1262: fatan		r1 -- r2	float-ext
 1263: r2 = atan(r1);
 1264: 
 1265: fatan2		r1 r2 -- r3	float-ext
 1266: ""@i{r1/r2}=tan@i{r3}. The standard does not require, but probably
 1267: intends this to be the inverse of @code{fsincos}. In gforth it is.""
 1268: r3 = atan2(r1,r2);
 1269: 
 1270: fcos		r1 -- r2	float-ext
 1271: r2 = cos(r1);
 1272: 
 1273: fexp		r1 -- r2	float-ext
 1274: r2 = exp(r1);
 1275: 
 1276: fexpm1		r1 -- r2	float-ext
 1277: ""@i{r2}=@i{e}**@i{r1}@minus{}1""
 1278: #ifdef HAVE_EXPM1
 1279: extern double expm1(double);
 1280: r2 = expm1(r1);
 1281: #else
 1282: r2 = exp(r1)-1.;
 1283: #endif
 1284: 
 1285: fln		r1 -- r2	float-ext
 1286: r2 = log(r1);
 1287: 
 1288: flnp1		r1 -- r2	float-ext
 1289: ""@i{r2}=ln(@i{r1}+1)""
 1290: #ifdef HAVE_LOG1P
 1291: extern double log1p(double);
 1292: r2 = log1p(r1);
 1293: #else
 1294: r2 = log(r1+1.);
 1295: #endif
 1296: 
 1297: flog		r1 -- r2	float-ext
 1298: ""the decimal logarithm""
 1299: r2 = log10(r1);
 1300: 
 1301: falog		r1 -- r2	float-ext
 1302: ""@i{r2}=10**@i{r1}""
 1303: extern double pow10(double);
 1304: r2 = pow10(r1);
 1305: 
 1306: fsin		r1 -- r2	float-ext
 1307: r2 = sin(r1);
 1308: 
 1309: fsincos		r1 -- r2 r3	float-ext
 1310: ""@i{r2}=sin(@i{r1}), @i{r3}=cos(@i{r1})""
 1311: r2 = sin(r1);
 1312: r3 = cos(r1);
 1313: 
 1314: fsqrt		r1 -- r2	float-ext
 1315: r2 = sqrt(r1);
 1316: 
 1317: ftan		r1 -- r2	float-ext
 1318: r2 = tan(r1);
 1319: :
 1320:  fsincos f/ ;
 1321: 
 1322: fsinh		r1 -- r2	float-ext
 1323: r2 = sinh(r1);
 1324: :
 1325:  fexpm1 fdup fdup 1. d>f f+ f/ f+ f2/ ;
 1326: 
 1327: fcosh		r1 -- r2	float-ext
 1328: r2 = cosh(r1);
 1329: :
 1330:  fexp fdup 1/f f+ f2/ ;
 1331: 
 1332: ftanh		r1 -- r2	float-ext
 1333: r2 = tanh(r1);
 1334: :
 1335:  f2* fexpm1 fdup 2. d>f f+ f/ ;
 1336: 
 1337: fasinh		r1 -- r2	float-ext
 1338: r2 = asinh(r1);
 1339: :
 1340:  fdup fdup f* 1. d>f f+ fsqrt f/ fatanh ;
 1341: 
 1342: facosh		r1 -- r2	float-ext
 1343: r2 = acosh(r1);
 1344: :
 1345:  fdup fdup f* 1. d>f f- fsqrt f+ fln ;
 1346: 
 1347: fatanh		r1 -- r2	float-ext
 1348: r2 = atanh(r1);
 1349: :
 1350:  fdup f0< >r fabs 1. d>f fover f- f/  f2* flnp1 f2/
 1351:  r> IF  fnegate  THEN ;
 1352: 
 1353: \ The following words access machine/OS/installation-dependent ANSI
 1354: \   figForth internals
 1355: \ !! how about environmental queries DIRECT-THREADED,
 1356: \   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */
 1357: 
 1358: >body		xt -- a_addr	core	to_body
 1359: a_addr = PFA(xt);
 1360: 
 1361: >code-address		xt -- c_addr		new	to_code_address
 1362: ""c_addr is the code address of the word xt""
 1363: /* !! This behaves installation-dependently for DOES-words */
 1364: c_addr = CODE_ADDRESS(xt);
 1365: 
 1366: >does-code	xt -- a_addr		new	to_does_code
 1367: ""If xt ist the execution token of a defining-word-defined word,
 1368: a_addr is the start of the Forth code after the DOES>; Otherwise the
 1369: behaviour is undefined""
 1370: /* !! there is currently no way to determine whether a word is
 1371: defining-word-defined */
 1372: a_addr = (Cell *)DOES_CODE(xt);
 1373: 
 1374: code-address!		c_addr xt --		new	code_address_store
 1375: ""Creates a code field with code address c_addr at xt""
 1376: MAKE_CF(xt, c_addr);
 1377: CACHE_FLUSH(xt,PFA(0));
 1378: 
 1379: does-code!	a_addr xt --		new	does_code_store
 1380: ""creates a code field at xt for a defining-word-defined word; a_addr
 1381: is the start of the Forth code after DOES>""
 1382: MAKE_DOES_CF(xt, a_addr);
 1383: CACHE_FLUSH(xt,PFA(0));
 1384: 
 1385: does-handler!	a_addr --	new	does_handler_store
 1386: ""creates a DOES>-handler at address a_addr. a_addr usually points
 1387: just behind a DOES>.""
 1388: MAKE_DOES_HANDLER(a_addr);
 1389: CACHE_FLUSH(a_addr,DOES_HANDLER_SIZE);
 1390: 
 1391: /does-handler	-- n	new	slash_does_handler
 1392: ""the size of a does-handler (includes possible padding)""
 1393: /* !! a constant or environmental query might be better */
 1394: n = DOES_HANDLER_SIZE;
 1395: 
 1396: flush-icache	c_addr u --	gforth	flush_icache
 1397: ""Make sure that the instruction cache of the processor (if there is
 1398: one) does not contain stale data at @var{c_addr} and @var{u} bytes
 1399: afterwards. @code{END-CODE} performs a @code{flush-icache}
 1400: automatically. Caveat: @code{flush-icache} might not work on your
 1401: installation; this is usually the case if direct threading is not
 1402: supported on your machine (take a look at your @file{machine.h}) and
 1403: your machine has a separate instruction cache. In such cases,
 1404: @code{flush-icache} does nothing instead of flushing the instruction
 1405: cache.""
 1406: FLUSH_ICACHE(c_addr,u);
 1407: 
 1408: toupper	c1 -- c2	new
 1409: c2 = toupper(c1);
 1410: 
 1411: \ local variable implementation primitives
 1412: @local#		-- w	new	fetch_local_number
 1413: w = *(Cell *)(lp+(Cell)NEXT_INST);
 1414: INC_IP(1);
 1415: 
 1416: @local0	-- w	new	fetch_local_zero
 1417: w = *(Cell *)(lp+0*sizeof(Cell));
 1418: 
 1419: @local1	-- w	new	fetch_local_four
 1420: w = *(Cell *)(lp+1*sizeof(Cell));
 1421: 
 1422: @local2	-- w	new	fetch_local_eight
 1423: w = *(Cell *)(lp+2*sizeof(Cell));
 1424: 
 1425: @local3	-- w	new	fetch_local_twelve
 1426: w = *(Cell *)(lp+3*sizeof(Cell));
 1427: 
 1428: f@local#	-- r	new	f_fetch_local_number
 1429: r = *(Float *)(lp+(Cell)NEXT_INST);
 1430: INC_IP(1);
 1431: 
 1432: f@local0	-- r	new	f_fetch_local_zero
 1433: r = *(Float *)(lp+0*sizeof(Float));
 1434: 
 1435: f@local1	-- r	new	f_fetch_local_eight
 1436: r = *(Float *)(lp+1*sizeof(Float));
 1437: 
 1438: laddr#		-- c_addr	new	laddr_number
 1439: /* this can also be used to implement lp@ */
 1440: c_addr = (Char *)(lp+(Cell)NEXT_INST);
 1441: INC_IP(1);
 1442: 
 1443: lp+!#	--	new	lp_plus_store_number
 1444: ""used with negative immediate values it allocates memory on the
 1445: local stack, a positive immediate argument drops memory from the local
 1446: stack""
 1447: lp += (Cell)NEXT_INST;
 1448: INC_IP(1);
 1449: 
 1450: lp-	--	new	minus_four_lp_plus_store
 1451: lp += -sizeof(Cell);
 1452: 
 1453: lp+	--	new	eight_lp_plus_store
 1454: lp += sizeof(Float);
 1455: 
 1456: lp+2	--	new	sixteen_lp_plus_store
 1457: lp += 2*sizeof(Float);
 1458: 
 1459: lp!	c_addr --	new	lp_store
 1460: lp = (Address)c_addr;
 1461: 
 1462: >l	w --	new	to_l
 1463: lp -= sizeof(Cell);
 1464: *(Cell *)lp = w;
 1465: 
 1466: f>l	r --	new	f_to_l
 1467: lp -= sizeof(Float);
 1468: *(Float *)lp = r;
 1469: 
 1470: up!	a_addr --	new	up_store
 1471: up0=up=(char *)a_addr;
 1472: 
 1473: call-c	w --	new	call_c
 1474: ""Call the C function pointed to by @i{w}. The C function has to
 1475: access the stack itself. The stack pointers are exported in the gloabl
 1476: variables @code{SP} and @code{FP}.""
 1477: /* This is a first attempt at support for calls to C. This may change in
 1478:    the future */
 1479: IF_FTOS(fp[0]=FTOS);
 1480: FP=fp;
 1481: SP=sp;
 1482: ((void (*)())w)();
 1483: sp=SP;
 1484: fp=FP;
 1485: IF_TOS(TOS=sp[0]);
 1486: IF_FTOS(FTOS=fp[0]);
 1487: 
 1488: strerror	n -- c_addr u	new
 1489: c_addr = strerror(n);
 1490: u = strlen(c_addr);
 1491: 
 1492: strsignal	n -- c_addr u	new
 1493: c_addr = strsignal(n);
 1494: u = strlen(c_addr);

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>