File:  [gforth] / gforth / Attic / primitives
Revision 1.14: download - view: text, annotated - select for diffs
Thu Aug 25 15:25:32 1994 UTC (29 years, 7 months ago) by anton
Branches: MAIN
CVS tags: HEAD
make now generates both images
the image names were changed
added C-level support for deferred words (dodefer)
made 2>r 2r> 2r@ 2rdrop primitives
some tuning of the outer interpreter; eliminated many words based on
 counted strings
Replaced the hash function with one that works better for larger tables

\ Copyright 1992 by the ANSI figForth Development Group
\ 
\ WARNING: This file is processed by m4. Make sure your identifiers
\ don't collide with m4's (e.g. by undefining them).
\ 
\ This file contains instructions in the following format:
\ 
\ forth name	stack effect	category	[pronounciation]
\ [""glossary entry""]
\ C code
\ [:
\ Forth code]
\ 
\ The pronounciataion is also used for forming C names.
\ 
\ These informations are automagically translated into C-code for the
\ interpreter and into some other files. The forth name of a word is
\ automatically turned into upper case. I hope that your C compiler has
\ decent optimization, otherwise the automatically generated code will
\ be somewhat slow. The Forth version of the code is included for manual
\ compilers, so they will need to compile only the important words.
\ 
\ Note that stack pointer adjustment is performed according to stack
\ effect by automatically generated code and NEXT is automatically
\ appended to the C code. Also, you can use the names in the stack
\ effect in the C code. Stack access is automatic. One exception: if
\ your code does not fall through, the results are not stored into the
\ stack. Use different names on both sides of the '--', if you change a
\ value (some stores to the stack are optimized away).
\ 
\ The stack variables have the following types:
\ name matches	type
\ f.*		Bool
\ c.*		Char
\ [nw].*		Cell
\ u.*		UCell
\ d.*		DCell
\ ud.*		UDCell
\ r.*		Float
\ a_.*		Cell *
\ c_.*		Char *
\ f_.*		Float *
\ df_.*		DFloat *
\ sf_.*		SFloat *
\ xt.*		XT
\ wid.*		WID
\ f83name.*	F83Name *
\ 
\ In addition the following names can be used:
\ ip	the instruction pointer
\ sp	the data stack pointer
\ rp	the parameter stack pointer
\ NEXT	executes NEXT
\ cfa	
\ NEXT1	executes NEXT1
\ FLAG(x)	makes a Forth flag from a C flag
\ 
\ Percentages in comments are from Koopmans book: average/maximum use
\ (taken from four, not very representattive benchmarks)
\ 
\ To do:
\ make sensible error returns for file words
\ 
\ throw execute, cfa and NEXT1 out?
\ macroize *ip, ip++, *ip++ (pipelining)?

\ these m4 macros would collide with identifiers
undefine(`index')
undefine(`shift')

noop	--		fig
;

lit	-- w		fig
w = (Cell)*ip++;

execute		xt --		core,fig
cfa = xt;
IF_TOS(TOS = sp[0]);
NEXT1;

branch-lp+!#	--	new	branch_lp_plus_store_number
/* this will probably not be used */
branch_adjust_lp:
lp += (int)(ip[1]);
goto branch;

branch	--		fig
branch:
ip = (Xt *)(((int)ip)+(int)*ip);

\ condbranch(forthname,restline,code)
\ this is non-syntactical: code must open a brace that is close by the macro
define(condbranch,
$1	$2
$3    goto branch;
}
else
    ip++;

$1-lp+!#	$2_lp_plus_store_number
$3    goto branch_adjust_lp;
}
else
    ip+=2;

)

condbranch(?branch,f --		f83	question_branch,
if (f==0) {
    IF_TOS(TOS = sp[0]);
)

condbranch((next),--		cmFORTH	paren_next,
if ((*rp)--) {
)

condbranch((loop),--		fig	paren_loop,
int index = *rp+1;
int limit = rp[1];
if (index != limit) {
    *rp = index;
)

condbranch((+loop),n --		fig	paren_plus_loop,
/* !! check this thoroughly */
int index = *rp;
int olddiff = index-rp[1];
/* sign bit manipulation and test: (x^y)<0 is equivalent to (x<0) != (y<0) */
/* dependent upon two's complement arithmetic */
if ((olddiff^(olddiff+n))>=0   /* the limit is not crossed */
    || (olddiff^n)>=0          /* it is a wrap-around effect */) {
    *rp = index+n;
    IF_TOS(TOS = sp[0]);
)

condbranch((s+loop),n --		new	paren_symmetric_plus_loop,
""The run-time procedure compiled by S+LOOP. It loops until the index
crosses the boundary between limit and limit-sign(n). I.e. a symmetric
version of (+LOOP).""
/* !! check this thoroughly */
int oldindex = *rp;
int diff = oldindex-rp[1];
int newdiff = diff+n;
if (n<0) {
    diff = -diff;
    newdiff = - newdiff;
}
if (diff>=0 || newdiff<0) {
    *rp = oldindex+n;
    IF_TOS(TOS = sp[0]);
)

unloop		--	core
rp += 2;

(for)	ncount --		cmFORTH		paren_for
/* or (for) = >r -- collides with unloop! */
*--rp = 0;
*--rp = ncount;

(do)	nlimit nstart --		fig		paren_do
/* or do it in high-level? 0.09/0.23% */
*--rp = nlimit;
*--rp = nstart;
:
 r> -rot swap >r >r >r ;

(?do)	nlimit nstart --	core-ext	paren_question_do
*--rp = nlimit;
*--rp = nstart;
if (nstart == nlimit) {
    IF_TOS(TOS = sp[0]);
    goto branch;
    }
else {
    ip++;
}

i	-- n		core,fig
n = *rp;

j	-- n		core
n = rp[2];

\ digit is high-level: 0/0%

(emit)	c --		fig	paren_emit
putchar(c);
emitcounter++;

(type)	c_addr n --	fig	paren_type
fwrite(c_addr,sizeof(Char),n,stdout);
emitcounter += n;

key	-- n		fig
fflush(stdout);
/* !! noecho */
n = key();

key?	-- n		fig	key_q
fflush(stdout);
n = key_query;

cr	--		fig
puts("");

move	c_from c_to ucount --		core
memmove(c_to,c_from,ucount);
/* make an Ifdef for bsd and others? */

cmove	c_from c_to u --	string
while (u-- > 0)
  *c_to++ = *c_from++;

cmove>	c_from c_to u --	string	c_move_up
while (u-- > 0)
  c_to[u] = c_from[u];

fill	c_addr u c --	core
memset(c_addr,c,u);

compare		c_addr1 u1 c_addr2 u2 -- n	string
n = memcmp(c_addr1, c_addr2, u1<u2 ? u1 : u2);
if (n==0)
  n = u1-u2;
if (n<0)
  n = -1;
else if (n>0)
  n = 1;

-text		c_addr1 u c_addr2 -- n	new	dash_text
n = memcmp(c_addr1, c_addr2, u);
if (n<0)
  n = -1;
else if (n>0)
  n = 1;

capscomp	c_addr1 u c_addr2 -- n	new
Char c1, c2;
for (;; u--, c_addr1++, c_addr2++) {
  if (u == 0) {
    n = 0;
    break;
  }
  c1 = toupper(*c_addr1);
  c2 = toupper(*c_addr2);
  if (c1 != c2) {
    if (c1 < c2)
      n = -1;
    else
      n = 1;
    break;
  }
}

-trailing	c_addr u1 -- c_addr u2		string	dash_trailing
u2 = u1;
while (c_addr[u2-1] == ' ')
  u2--;

/string		c_addr1 u1 n -- c_addr2 u2	string	slash_string
c_addr2 = c_addr1+n;
u2 = u1-n;

+	n1 n2 -- n		core,fig	plus
n = n1+n2;

-	n1 n2 -- n		core,fig	minus
n = n1-n2;

negate	n1 -- n2		core,fig
/* use minus as alias */
n2 = -n1;

1+	n1 -- n2		core		one_plus
n2 = n1+1;

1-	n1 -- n2		core		one_minus
n2 = n1-1;

max	n1 n2 -- n	core
if (n1<n2)
  n = n2;
else
  n = n1;
:
 2dup < if
  swap drop
 else
  drop
 endif ;

min	n1 n2 -- n	core
if (n1<n2)
  n = n1;
else
  n = n2;

abs	n1 -- n2	core
if (n1<0)
  n2 = -n1;
else
  n2 = n1;

*	n1 n2 -- n		core,fig	star
n = n1*n2;

/	n1 n2 -- n		core,fig	slash
n = n1/n2;

mod	n1 n2 -- n		core
n = n1%n2;

/mod	n1 n2 -- n3 n4		core		slash_mod
n4 = n1/n2;
n3 = n1%n2; /* !! is this correct? look into C standard! */

2*	n1 -- n2		core		two_star
n2 = 2*n1;

2/	n1 -- n2		core		two_slash
/* !! is this still correct? */
n2 = n1>>1;

fm/mod	d1 n1 -- n2 n3		core		f_m_slash_mod
""floored division: d1 = n3*n1+n2, n1>n2>=0 or 0>=n2>n1""
/* assumes that the processor uses either floored or symmetric division */
n3 = d1/n1;
n2 = d1%n1;
/* note that this 1%-3>0 is optimized by the compiler */
if (1%-3>0 && (d1<0) != (n1<0) && n2!=0) {
  n3--;
  n2+=n1;
}

sm/rem	d1 n1 -- n2 n3		core		s_m_slash_rem
""symmetric division: d1 = n3*n1+n2, sign(n2)=sign(d1) or 0""
/* assumes that the processor uses either floored or symmetric division */
n3 = d1/n1;
n2 = d1%n1;
/* note that this 1%-3<0 is optimized by the compiler */
if (1%-3<0 && (d1<0) != (n1<0) && n2!=0) {
  n3++;
  n2-=n1;
}

m*	n1 n2 -- d		core	m_star
d = (DCell)n1 * (DCell)n2;

um*	u1 u2 -- ud		core	u_m_star
/* use u* as alias */
ud = (UDCell)u1 * (UDCell)u2;

um/mod	ud u1 -- u2 u3		core	u_m_slash_mod
u3 = ud/u1;
u2 = ud%u1;

m+	d1 n -- d2		double		m_plus
d2 = d1+n;

d+	d1 d2 -- d		double,fig	d_plus
d = d1+d2;

d-	d1 d2 -- d		double		d_minus
d = d1-d2;

dnegate	d1 -- d2		double
/* use dminus as alias */
d2 = -d1;

dmax	d1 d2 -- d	double
if (d1<d2)
  d = d2;
else
  d = d1;

dmin	d1 d2 -- d	double
if (d1<d2)
  d = d1;
else
  d = d2;

dabs	d1 -- d2	double
if (d1<0)
  d2 = -d1;
else
  d2 = d1;

d2*	d1 -- d2		double		d_two_star
d2 = 2*d1;

d2/	d1 -- d2		double		d_two_slash
/* !! is this still correct? */
d2 = d1>>1;

d>s	d -- n			double		d_to_s
/* make this an alias for drop? */
n = d;

and	w1 w2 -- w		core,fig
w = w1&w2;

or	w1 w2 -- w		core,fig
w = w1|w2;

xor	w1 w2 -- w		core,fig
w = w1^w2;

invert	w1 -- w2		core
w2 = ~w1;

rshift	u1 n -- u2		core
  u2 = u1>>n;

lshift	u1 n -- u2		core
  u2 = u1<<n;

\ comparisons(prefix, args, prefix, arg1, arg2, wordsets...)
define(comparisons,
$1=	$2 -- f		$6	$3equals
f = FLAG($4==$5);

$1<>	$2 -- f		$7	$3different
/* use != as alias ? */
f = FLAG($4!=$5);

$1<	$2 -- f		$8	$3less
f = FLAG($4<$5);

$1>	$2 -- f		$9	$3greater
f = FLAG($4>$5);

$1<=	$2 -- f		new	$3less_or_equal
f = FLAG($4<=$5);

$1>=	$2 -- f		new	$3greater_or_equal
f = FLAG($4>=$5);

)

comparisons(0, n, zero_, n, 0, core, core-ext, core, core-ext)
comparisons(, n1 n2, , n1, n2, core, core-ext, core, core)
comparisons(u, u1 u2, u_, u1, u2, new, new, core, core-ext)
comparisons(d, d1 d2, d_, d1, d2, double, new, double, new)
comparisons(d0, d, d_zero_, d, 0, double, new, double, new)
comparisons(du, ud1 ud2, d_u_, ud1, ud2, new, new, double-ext, new)

within	u1 u2 u3 -- f		core-ext
f = FLAG(u1-u2 < u3-u2);

sp@	-- a_addr		fig		spat
a_addr = sp;

sp!	a_addr --		fig		spstore
sp = a_addr+1;
/* works with and without TOS caching */

rp@	-- a_addr		fig		rpat
a_addr = rp;

rp!	a_addr --		fig		rpstore
rp = a_addr;

fp@	-- f_addr	new	fp_fetch
f_addr = fp;

fp!	f_addr --	new	fp_store
fp = f_addr;

;s	--		core	exit
ip = (Xt *)(*rp++);

>r	w --		core,fig	to_r
*--rp = w;

r>	-- w		core,fig	r_from
w = *rp++;

r@	-- w		core,fig	r_fetch
/* use r as alias */
/* make r@ an alias for i */
w = *rp;

rdrop	--		fig
rp++;

i'	-- w		fig		i_tick
w=rp[1];

2>r	w1 w2 --	core-ext	two_to_r
*--rp = w1;
*--rp = w2;

2r>	-- w1 w2	core-ext	two_r_from
w2 = *rp++;
w1 = *rp++;

2r@	-- w1 w2	core-ext	two_r_fetch
w2 = rp[0];
w1 = rp[1];

2rdrop	--		new	two_r_drop
rp+=2;

over	w1 w2 -- w1 w2 w1		core,fig

drop	w --		core,fig

swap	w1 w2 -- w2 w1		core,fig

dup	w -- w w		core,fig

rot	w1 w2 w3 -- w2 w3 w1	core	rote

-rot	w1 w2 w3 -- w3 w1 w2	fig	not_rote

nip	w1 w2 -- w2		core-ext

tuck	w1 w2 -- w2 w1 w2	core-ext

?dup	w -- w			core	question_dupe
if (w!=0) {
  IF_TOS(*sp-- = w;)
#ifndef USE_TOS
  *--sp = w;
#endif
}

pick	u -- w			core-ext
w = sp[u+1];

2drop	w1 w2 --		core	two_drop

2dup	w1 w2 -- w1 w2 w1 w2	core	two_dupe

2over	w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2	core	two_over

2swap	w1 w2 w3 w4 -- w3 w4 w1 w2	core	two_swap

2rot	w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2	double	two_rote

\ toggle is high-level: 0.11/0.42%

@	a_addr -- w		fig	fetch
w = *a_addr;

!	w a_addr --		core,fig	store
*a_addr = w;

+!	n a_addr --		core,fig	plus_store
*a_addr += n;

c@	c_addr -- c		fig	cfetch
c = *c_addr;

c!	c c_addr --		fig	cstore
*c_addr = c;

2!	w1 w2 a_addr --		core	two_store
a_addr[0] = w2;
a_addr[1] = w1;

2@	a_addr -- w1 w2		core	two_fetch
w2 = a_addr[0];
w1 = a_addr[1];

d!	d a_addr --		double	d_store
/* !! alignment problems on some machines */
*(DCell *)a_addr = d;

d@	a_addr -- d		double	d_fetch
d = *(DCell *)a_addr;

cell+	a_addr1 -- a_addr2	core	cell_plus
a_addr2 = a_addr1+1;

cells	n1 -- n2		core
n2 = n1 * sizeof(Cell);

char+	c_addr1 -- c_addr2	core	care_plus
c_addr2 = c_addr1+1;

chars	n1 -- n2		core	cares
n2 = n1 * sizeof(Char);

count	c_addr1 -- c_addr2 u	core
u = *c_addr1;
c_addr2 = c_addr1+1;

(bye)	n --	toolkit-ext	paren_bye
deprep_terminal();
exit(n);

system	c_addr u -- n	own
char pname[u+1];
cstr(pname,c_addr,u);
n=system(pname);

popen	c_addr u n -- wfileid	own
char pname[u+1];
static char* mode[2]={"r","w"};
cstr(pname,c_addr,u);
wfileid=(Cell)popen(pname,mode[n]);

pclose	wfileid -- wior	own
wior=pclose((FILE *)wfileid);

time&date	-- nyear nmonth nday nhour nmin nsec	ansi	time_and_date
struct timeval time1;
struct timezone zone1;
struct tm *ltime;
gettimeofday(&time1,&zone1);
ltime=localtime(&time1.tv_sec);
nyear =ltime->tm_year+1900;
nmonth=ltime->tm_mon;
nday  =ltime->tm_mday;
nhour =ltime->tm_hour;
nmin  =ltime->tm_min;
nsec  =ltime->tm_sec;

ms	n --	ansi
struct timeval timeout;
timeout.tv_sec=n/1000;
timeout.tv_usec=1000*(n%1000);
(void)select(0,0,0,0,&timeout);

allocate	u -- a_addr wior	memory
a_addr = (Cell *)malloc(u);
wior = a_addr==NULL;	/* !! Define a return code */

free		a_addr -- wior		memory
free(a_addr);
wior = 0;

resize		a_addr1 u -- a_addr2 wior	memory
a_addr2 = realloc(a_addr1, u);
wior = a_addr2==NULL;	/* !! Define a return code */

(f83find)	c_addr u f83name1 -- f83name2	new	paren_f83find
for (; f83name1 != NULL; f83name1 = f83name1->next)
  if (F83NAME_COUNT(f83name1)==u &&
      strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
    break;
f83name2=f83name1;

(hashfind)	c_addr u a_addr -- f83name2	new	paren_hashfind
F83Name *f83name1;
f83name2=NULL;
while(a_addr != NULL)
{
   f83name1=(F83Name *)(a_addr[1]);
   a_addr=(Cell *)(a_addr[0]);
   if (F83NAME_COUNT(f83name1)==u &&
       strncasecmp(c_addr, f83name1->name, u)== 0 /* or inline? */)
     {
	f83name2=f83name1;
	break;
     }
}

(hashkey)	c_addr u1 -- u2		new	paren_hashkey
u2=0;
while(u1--)
   u2+=(int)toupper(*c_addr++);

(hashkey1)	c_addr u ubits -- ukey		new	paren_hashkey1
""ukey is the hash key for the string c_addr u fitting in ubits bits""
/* this hash function rotates the key at every step by rot bits within
   ubits bits and xors it with the character. This function does ok in
   the chi-sqare-test.  Rot should be <=7 (preferably <=5) for
   ASCII strings (larger if ubits is large), and should share no
   divisors with ubits.
*/
unsigned rot = ((char []){5,0,1,2,3,4,5,5,5,5,3,5,5,5,5,7,5,5,5,5,7,5,5,5,5,6,5,5,5,5,7,5,5})[ubits];
Char *cp = c_addr;
for (ukey=0; cp<c_addr+u; cp++)
    ukey = ((((ukey<<rot) | (ukey>>(ubits-rot))) 
	     ^ toupper(*cp))
	    & ((1<<ubits)-1));

(parse-white)	c_addr1 u1 -- c_addr2 u2	new	paren_parse_white
/* use !isgraph instead of isspace? */
Char *endp = c_addr1+u1;
while (c_addr1<endp && isspace(*c_addr1))
  c_addr1++;
if (c_addr1<endp) {
  for (c_addr2 = c_addr1; c_addr1<endp && !isspace(*c_addr1); c_addr1++)
    ;
  u2 = c_addr1-c_addr2;
}
else {
  c_addr2 = c_addr1;
  u2 = 0;
}

close-file	wfileid -- wior	file	close_file
wior = FILEIO(fclose((FILE *)wfileid)==EOF);

open-file	c_addr u ntype -- w2 wior	file	open_file
char fname[u+1];
cstr(fname, c_addr, u);
w2 = (Cell)fopen(fname, fileattr[ntype]);
wior =  FILEEXIST(w2 == NULL);

create-file	c_addr u ntype -- w2 wior	file	create_file
int	fd;
char fname[u+1];
cstr(fname, c_addr, u);
fd = creat(fname, 0666);
if (fd > -1) {
  w2 = (Cell)fdopen(fd, fileattr[ntype]);
  assert(w2 != NULL);
  wior = 0;
} else {
  assert(fd == -1);
  wior = FILEIO(fd);
  w2 = 0;
}

delete-file	c_addr u -- wior		file	delete_file
char fname[u+1];
cstr(fname, c_addr, u);
wior = FILEEXIST(unlink(fname));

rename-file	c_addr1 u1 c_addr2 u2 -- wior	file-ext	rename_file
char fname1[u1+1];
char fname2[u2+1];
cstr(fname1, c_addr1, u1);
cstr(fname2, c_addr2, u2);
wior = FILEEXIST(rename(fname1, fname2));

file-position	wfileid -- ud wior	file	file_position
/* !! use tell and lseek? */
ud = ftell((FILE *)wfileid);
wior = 0; /* !! or wior = FLAG(ud<0) */

reposition-file	ud wfileid -- wior	file	reposition_file
wior = FILEIO(fseek((FILE *)wfileid, (long)ud, SEEK_SET));

file-size	wfileid -- ud wior	file	file_size
struct stat buf;
wior = FILEEXIST(fstat(fileno((FILE *)wfileid), &buf));
ud = buf.st_size;

resize-file	ud wfileid -- wior	file	resize_file
wior = FILEIO(ftruncate(fileno((FILE *)wfileid), (int)ud));

read-file	c_addr u1 wfileid -- u2 wior	file	read_file
/* !! fread does not guarantee enough */
u2 = fread(c_addr, sizeof(Char), u1, (FILE *)wfileid);
wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
/* !! who performs clearerr((FILE *)wfileid); ? */

read-line	c_addr u1 wfileid -- u2 flag wior	file	read_line
/*
Cell c;
flag=-1;
for(u2=0; u2<u1; u2++)
{
   *c_addr++ = (Char)(c = getc((FILE *)wfileid));
   if(c=='\n') break;
   if(c==EOF)
     {
	flag=FLAG(u2!=0);
	break;
     }
}
wior=FILEIO(ferror((FILE *)wfileid));
*/
if ((flag=FLAG(!feof((FILE *)wfileid) &&
	       fgets(c_addr,u1+1,(FILE *)wfileid) != NULL))) {
  wior=FILEIO(ferror((FILE *)wfileid));
  u2 = strlen(c_addr);
  u2-=((u2>0) && (c_addr[u2-1]==NEWLINE));
}
else {
  wior=0;
  u2=0;
}

write-file	c_addr u1 wfileid -- wior	file	write_file
/* !! fwrite does not guarantee enough */
{
  int u2 = fwrite(c_addr, sizeof(Char), u1, (FILE *)wfileid);
  wior = FILEIO(u2<u1 && ferror((FILE *)wfileid));
}

flush-file	wfileid -- wior		file-ext	flush_file
wior = FILEIO(fflush((FILE *) wfileid));

comparisons(f, r1 r2, f_, r1, r2, new, new, float, new)
comparisons(f0, r, f_zero_, r, 0., float, new, float, new)

d>f		d -- r		float	d_to_f
r = d;

f>d		r -- d		float	f_to_d
/* !! basis 15 is not very specific */
d = r;

f!		r f_addr --	float	f_store
*f_addr = r;

f@		f_addr -- r	float	f_fetch
r = *f_addr;

df@		df_addr -- r	float-ext	d_f_fetch
#ifdef IEEE_FP
r = *df_addr;
#else
!! df@
#endif

df!		r df_addr --	float-ext	d_f_store
#ifdef IEEE_FP
*df_addr = r;
#else
!! df!
#endif

sf@		sf_addr -- r	float-ext	s_f_fetch
#ifdef IEEE_FP
r = *sf_addr;
#else
!! sf@
#endif

sf!		r sf_addr --	float-ext	s_f_store
#ifdef IEEE_FP
*sf_addr = r;
#else
!! sf!
#endif

f+		r1 r2 -- r3	float	f_plus
r3 = r1+r2;

f-		r1 r2 -- r3	float	f_minus
r3 = r1-r2;

f*		r1 r2 -- r3	float	f_star
r3 = r1*r2;

f/		r1 r2 -- r3	float	f_slash
r3 = r1/r2;

f**		r1 r2 -- r3	float-ext	f_star_star
r3 = pow(r1,r2);

fnegate		r1 -- r2	float
r2 = - r1;

fdrop		r --		float

fdup		r -- r r	float

fswap		r1 r2 -- r2 r1	float

fover		r1 r2 -- r1 r2 r1	float

frot		r1 r2 r3 -- r2 r3 r1	float

float+		f_addr1 -- f_addr2	float	float_plus
f_addr2 = f_addr1+1;

floats		n1 -- n2	float
n2 = n1*sizeof(Float);

floor		r1 -- r2	float
/* !! unclear wording */
r2 = floor(r1);

fround		r1 -- r2	float
/* !! unclear wording */
r2 = rint(r1);

fmax		r1 r2 -- r3	float
if (r1<r2)
  r3 = r2;
else
  r3 = r1;

fmin		r1 r2 -- r3	float
if (r1<r2)
  r3 = r1;
else
  r3 = r2;

represent		r c_addr u -- n f1 f2	float
char *sig;
int flag;
int decpt;
sig=ecvt(r, u, &decpt, &flag);
n=decpt;
f1=FLAG(flag!=0);
f2=FLAG(isdigit(sig[0])!=0);
memmove(c_addr,sig,u);

>float	c_addr u -- flag	float	to_float
/* real signature: c_addr u -- r t / f */
Float r;
char number[u+1];
char *endconv;
cstr(number, c_addr, u);
r=strtod(number,&endconv);
if((flag=FLAG(!(int)*endconv)))
{
	IF_FTOS(fp[0] = FTOS);
	fp += -1;
	FTOS = r;
}
else if(*endconv=='d' || *endconv=='D')
{
	*endconv='E';
	r=strtod(number,&endconv);
	if((flag=FLAG(!(int)*endconv)))
	{
		IF_FTOS(fp[0] = FTOS);
		fp += -1;
		FTOS = r;
	}
}

fabs		r1 -- r2	float-ext
r2 = fabs(r1);

facos		r1 -- r2	float-ext
r2 = acos(r1);

fasin		r1 -- r2	float-ext
r2 = asin(r1);

fatan		r1 -- r2	float-ext
r2 = atan(r1);

fatan2		r1 r2 -- r3	float-ext
r3 = atan2(r1,r2);

fcos		r1 -- r2	float-ext
r2 = cos(r1);

fexp		r1 -- r2	float-ext
r2 = exp(r1);

fexpm1		r1 -- r2	float-ext
r2 =
#ifdef expm1
	expm1(r1);
#else
	exp(r1)-1;
#endif

fln		r1 -- r2	float-ext
r2 = log(r1);

flnp1		r1 -- r2	float-ext
r2 =
#ifdef log1p
	log1p(r1);
#else
	log(r1+1);
#endif

flog		r1 -- r2	float-ext
r2 = log10(r1);

fsin		r1 -- r2	float-ext
r2 = sin(r1);

fsincos		r1 -- r2 r3	float-ext
r2 = sin(r1);
r3 = cos(r1);

fsqrt		r1 -- r2	float-ext
r2 = sqrt(r1);

ftan		r1 -- r2	float-ext
r2 = tan(r1);

\ The following words access machine/OS/installation-dependent ANSI
\   figForth internals
\ !! how about environmental queries DIRECT-THREADED,
\   INDIRECT-THREADED, TOS-CACHED, FTOS-CACHED, CODEFIELD-DOES */

>body		xt -- a_addr	core	to_body
a_addr = PFA(xt);

>code-address		xt -- c_addr		new	to_code_address
""c_addr is the code address of the word xt""
/* !! This behaves installation-dependently for DOES-words */
c_addr = CODE_ADDRESS(xt);

>does-code	xt -- a_addr		new	to_does_code
""If xt ist the execution token of a defining-word-defined word,
a_addr is the start of the Forth code after the DOES>; Otherwise the
behaviour is uundefined""
/* !! there is currently no way to determine whether a word is
defining-word-defined */
a_addr = DOES_CODE(xt);

code-address!		n xt --	new	code_address_store
""Creates a code field with code address c_addr at xt""
MAKE_CF(xt, symbols[CF(n)]);
CACHE_FLUSH(xt,PFA(0));

does-code!	a_addr xt --		new	does_code_store
""creates a code field at xt for a defining-word-defined word; a_addr
is the start of the Forth code after DOES>""
MAKE_DOES_CF(xt, a_addr);
CACHE_FLUSH(xt,PFA(0));

does-handler!	a_addr --	new	does_jump_store
""creates a DOES>-handler at address a_addr. a_addr usually points
just behind a DOES>.""
MAKE_DOES_HANDLER(a_addr);
CACHE_FLUSH(a_addr,DOES_HANDLER_SIZE);

/does-handler	-- n	new	slash_does_handler
""the size of a does-handler (includes possible padding)""
/* !! a constant or environmental query might be better */
n = DOES_HANDLER_SIZE;

toupper	c1 -- c2	new
c2 = toupper(c1);

\ local variable implementation primitives
@local#		-- w	new	fetch_local_number
w = *(Cell *)(lp+(int)(*ip++));

@local0	-- w	new	fetch_local_zero
w = *(Cell *)(lp+0);

@local4	-- w	new	fetch_local_four
w = *(Cell *)(lp+4);

@local8	-- w	new	fetch_local_eight
w = *(Cell *)(lp+8);

@local12	-- w	new	fetch_local_twelve
w = *(Cell *)(lp+12);

f@local#	-- r	new	f_fetch_local_number
r = *(Float *)(lp+(int)(*ip++));

f@local0	-- r	new	f_fetch_local_zero
r = *(Float *)(lp+0);

f@local8	-- r	new	f_fetch_local_eight
r = *(Float *)(lp+8);

laddr#		-- c_addr	new	laddr_number
/* this can also be used to implement lp@ */
c_addr = (Char *)(lp+(int)(*ip++));

lp+!#	--	new	lp_plus_store_number
""used with negative immediate values it allocates memory on the
local stack, a positive immediate argument drops memory from the local
stack""
lp += (int)(*ip++);

-4lp+!	--	new	minus_four_lp_plus_store
lp += -4;

8lp+!	--	new	eight_lp_plus_store
lp += 8;

16lp+!	--	new	sixteen_lp_plus_store
lp += 16;

lp!	c_addr --	new	lp_store
lp = (Address)c_addr;

>l	w --	new	to_l
lp -= sizeof(Cell);
*(Cell *)lp = w;

f>l	r --	new	f_to_l
lp -= sizeof(Float);
*(Float *)lp = r;

up!	a_addr --	new	up_store
up=(char *)a_addr;
up0=(char *)a_addr;

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>