
On a Triptych of Software Development 0

(-1.)

Start of Lecture 1: SUMMARY & INTRODUCTION

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 1

(-1.)

FROM DOMAINS TO REQUIREMENTS

April 16–30, 2010 Lectures, TUWien

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Denmark

bjorner@gmail.com, www.imm.dtu.dk/˜db

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 2

0. Abstract

• We shall present core aspects of the Triptych approach to software
engineering.

• The benefits from deploying this approach are that we both achieve
the right software and software that is right[Boehm 1981]).

• The right software is software that meets all of the customers’ ex-
pectations and only those.

• Software that is right is software that is correct with respect to
specific requirements prescriptions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 3

(0. Abstract)

• Experience has shown that using also the formal techniques part of
the Triptych approach has lead to projects that are on time and at
initially estimated costs.

• To achieve the right software we “prefix” the phase of requirements
engineering with a phase of domain engineering – and these lecture
slides will present core aspects of domain engineering.

• To achieve software that is right we do two things:

– (i) “derive” requirements prescriptions from domain descriptions and software
design from requirements prescriptions – and this these lecture slides will
present core aspects of a somewhat different approach to requirements engi-
neering, and

– (ii) formulate descriptions and prescriptions both informally, in precise, say
English narratives, and formally. The latter is not shown in these lecture
slides.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 4

(0. Abstract)

• The “somewhat” different approach to requirements engineering,
however, and as we shall see, fits reasonably “smoothly” with current
requirements engineering approaches[van Lamsweerde].

• Precursors of the ‘triptych’ approach was used in DDC’s 44 man-year
Ada Compiler development project [Bjørner and Oest].

– That project was on time and at cost,

– and time and cost were significantly below those of other commer-
cial Ada compiler developments .

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 5

(0. Abstract)

• The ‘triptych’ approach has been in partial use since the early 1990s,

– including at the United Nations University’s International Insti-
tute for Software Technology (www.iist.unu.edu).

– Young software engineers, while being tutored by UNU-IIST’s sci-
ence & engineering staff,

∗ domain engineered,

∗ requirements engineered

∗ and software designed (incl. implemented)[2002, LNCS 2757]

· trustworthy software systems

· that have met customer expectations –

· with what seems be substantially fewer man-power resources
than usually experienced and within planned time limits.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 6

(0. Abstract)

• Domain engineering, in the sense of these lecture slides,

– is offered as a means to help secure that software engineers deliver
the right software –

– where formalisation of relevant stages and steps of software devel-
opment helps secure that the software is right.

• In these lecture slides we shall present the essence of a software
development triptych:

– from domains

– via requirements

– to software design.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 7

(0. Abstract)

• We emphasize the two first phases: domain engineering and re-
quirements engineering.

– We show the pragmatic stages of the construction of domain de-
scriptions: the facets of

– intrinsics,

– support technologies,

– rules & regulations,

– script (licenses and contracts),

– management & organisation, and

– human behaviour.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 8

(0. Abstract)

• And we show how to construct main facets of requirements pre-
scriptions:

– domain requirements and

– interface requirements.

• In this respect we focus in particular on the domain requirements
development stages of

– projection,

– instantiation,

– determination and

– extension.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 9

Lecture Notes for TU Wien, April 2010

• The present version of this document is intended as the “written”
support for my April 2010 lectures at the Technical University of
Vienna. Austria.

– The www.imm.dtu.dk/˜db/wien web page gives details.

– From there you can see that Sects. 1–5 covers 5 lectures

– and that Appendix A covers 8 lectures.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 10

(0. Abstract)

• To examples of sections 2–4 we have “added” formalisations.

• These formalisations are in the RAISE specification languages RSL.

• And I have additionally added an extensive appendix,

– An RSL Primer1,

• so that students can also learn RSL, the specification language for a
rigorous approach to industrial software engineering, RAISE.

• The primer contains many examples which expands on the examples
of sections 2–4.

1a small introductory book on a subject

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 11

(0. Abstract)

“Formalisation–Parametrised” Examples and Primer

• The formalisations of the examples of sections 2–4 could as well be expressed in
one of the other prominent formal specifications languages current at this time
(April 22, 2010), for example:

– Alloy,

– Event B,

– VDM-SL or

– Z.

• It could be interesting

– if this little book could entice

– my Alloy, Event B, VDM-SL and Z colleagues

– to “rewrite/reformulate” the formal parts of all examples

– into their main tool of formal expression (besides mathematics).

• I would be very willing to engage in such a project

– having the aim of making my and their notes

– Internet-based and thus publically available.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 12

(0. Abstract)

On Studying the Examples

• In order to learn to write poems one must read poetry.

• In order to learn th write formal specifications one must read formal specifications

• We have ourselves found

– that even if students attend pedagogically and didactically exciting and sound
lectures

– they must still, in the quiet of their study room, without listening to Ipod (or
the like),

– carefully study the examples we are presenting.

• And we are presenting many examples, 49 in all !

– To begin with little explanation is given of the formulas.

– Instead we rely on the student’s ability to relate the numbered formulas to the numbered annotation
textst.

– As from Appendix we present a schematic syntax and informal semantics of the spexification language,

RSL, used in these lectures.

• Students are well adviced in studying all examples.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 13

(0. Abstract)

On Course Lectures Based on these Slides

1. Summary of Lectures and Introduction 0–36

2. The Triptych Specification Ontology 37–59

3. Domain Engineering 60–97

4. Requirements Engineering 98–139

5. Entities 312–347

6. RSL Types 162–188

7. RSL Values & Operations 189–234

8. RSL Logic and λ-Calculus 235–258

9. RSL Applicativeness 259–274

10. RSL Imperativeness and

Concurrency (CSP) 275–297

11. RSL Specifications 298–311

12. Mereology 361–453

13. Discussion and Conclusion 140–161

14. Discussion

15. Exam

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 14

1. Introduction
1.1. Some Observations

• Current software development,

– when it is pursued in a state-of-the-art,

– but still a conventional manner,

– starts with requirements engineering and

– proceeds to software design.

• Current software development practices

– appears to be focused on processes

– (viz.: “best practices’: tools and techniques’).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 15

(1. Introduction 1.1. Some Observations)

• An aeronautics engineer to be hired by Airbus to their design team
for a next generation aircraft must be pretty well versed in applied
mathematics and in aerodynamics.

• A radio communications engineer to be hired by Ericsson to their
design team for a next generation mobile telephony antennas must
be likewise well versed in applied mathematics and in the physics of
electromagnetic wave propagation in matter.

• And so forth.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 16

(1. Introduction 1.1. Some Observations)

• Software engineers hired for the development of software

– for hospitals,

– or for railways,

• know little, if anything, about

– health care,

– respectively rail transportation (scheduling, rostering, signalling,
etc.).

• The Ericsson radio communications engineer can be expected to
understand Maxwell’s Equations, and to base the design of antenna
characteristics on the transformation and instantiation of these equa-
tions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 17

(1. Introduction 1.1. Some Observations)

• It is therefore quite reasonable to expect the domain-specific software
engineer to understand proper, including formal descriptions of their
domains:

– for railways cf. www.railwaydomain.org,

– and for pipelines pipelines.pdf,

– logistics logistics.pdf

– and for container lines container-paper.pdf –

– all at www.imm.dtu.dk/~db/.

• For the Vienna course the above — and other such — examples are
temporarily blocked !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 18

(1. Introduction 1.1. Some Observations)

• The process knowledge and “best” practices of the triptych software
engineering

– is well-founded and takes place in

– the context of established domain model

– and an established, carefully phrased (and formalised) require-
ments model.

• The 24 hour 7 days a week trustworthy operation of many software
systems

– is so crucial that utmost care must be taken

– to ensure that they

∗ fulfill all (and only) the customers expectations

∗ and are correct.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 19

(1. Introduction 1.1. Some Observations)

• Barry Boehm has coined the statement: it is the right software
and the software is right.

• Extra care must be taken to ensure those two “rights”.

• And here it is not enough to only follow current “best process, tech-
nique and tool practices”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 20

(1. Introduction 1.1. Some Observations)

1.2. A Triptych of Software Engineering

Dogma:

• Before we can design software

• we must have a robust understanding of its requirements.

• And before we can prescribe requirements

• we must have a robust understanding of the environment,

– or, as we shall call it, the domain in which the software is to
serve

– and as it is at the time such software is first being contem-
plated.

• In consequence we suggest that software, “ideally”2, be developed in
three phases.

2Section [Item 5] will discuss renditions of “idealism”!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 21

(1. Introduction 1.2. A Triptych of Software Engineering)

• First a phase of domain engineering.

– In this phase a reasonably comprehensive description is constructed
from an analysis of the domain.

– That description, as it evolves, is analysed with respect to incon-
sistencies, conflicts and relative completeness.

– Properties, as stated by domain stakeholders, are proved with
respect to the domain description (D|=P).

– This phase is the most important, we think, when it comes to
secure the first of the two “rights”: that we are on our way to
develop the right software.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 22

(1. Introduction 1.2. A Triptych of Software Engineering)

• Then a phase of requirements engineering.

– This phase is strongly based on an available, necessary and suffi-
cient domain description.

– Guided by the domain and requirements engineers the require-
ments stakeholders points out which domain description parts
are

∗ to be kept (projected) out of the domain requirements,

and for those kept in,

∗ what instantiations,

∗ determinations

∗ and extensions are required.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 23

(1. Introduction 1.2. A Triptych of Software Engineering)

– Similarly the requirements stakeholders, guided by the domain
and requirements engineers, informs as to

∗ which domain entities: simple, actions, events and behaviours

∗ are shared between the domain and the machine,

– that is, the hardware and the software being required.

• In these lectures we shall only very briefly cover aspects of machine
requirements.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 24

(1. Introduction 1.2. A Triptych of Software Engineering)

• And finally a phase of software design.

– We shall not cover this phase in these lectures –

– other than saying this:

∗ the design is “derived” from the requirements model.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 25

(1. Introduction 1.2. A Triptych of Software Engineering)

• To ensure that the software being developed is right, that is, correct,

– we can then rigorously

– argue, informally,

– or formally – test, model check and/or prove,

– that the Software is correct

∗ with respect to the Requirements

∗ in the context of the Domain:

∗ D,S |= R.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 26

(1. Introduction 1.2. A Triptych of Software Engineering)

1.3. What are Domains ?

• By a domain we shall here understand a universe of discourse,

– an area of nature subject to laws of physics and study by physi-
cists, or

– an area of human activity subject to its interfaces with other do-
mains and to nature.

• There are other domains – which we shall ignore.

• We shall focus on the human-made domains.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 27

(1. Introduction 1.3. What are Domains ?)

• “Large scale” examples are

– the financial service industry: banking, insurance, securities
trading, portfolio management, etc.;

– health care: hospitals, clinics, patients, medical staff, etc.;

– transportation: road, rail/train, sea/shipping, and air/aircraft
transport (vehicles, transport nets, etc.);

– oil and gas systems: pumps, pipes, valves, refineries, distri-
bution, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 28

(1. Introduction 1.3. What are Domains ?)

• “Intermediate scale” examples are

– automobiles: manufacturing or monitoring and control, etc.;

– heating systems;

– heart pumps;

– etc.

• The above explication was “randomised”:

– for some domains, to wit, the financial service industry, we men-
tioned major functionalities,

– for others, to wit, health care, we mentioned major entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 29

(1. Introduction 1.3. What are Domains ?)

1.4. What is a Domain Description ?

• By a domain description we understand a description of

– the simple entities,

– the actions,

– the events and

– the behaviours

of the domain, including its interfaces to other domains.

• A domain description describes the domain as it is.

• A domain description does not contain requirements let alone refer-
ences to any software.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 30

(1. Introduction 1.4. What is a Domain Description ?)

• A description is syntax.

• The meaning (semantics) of a domain description is usually a set of
domain models.

• We shall take domain models to be mathematical structures (the-
ories).

• The form of domain descriptions that we shall advocate “come in
pairs”: precise, say, English text alternates with clearly related for-
mula text.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 31

(1. Introduction 1.4. What is a Domain Description ?)

1.5. Description Languages

• Besides using

– as precise a subset of a national language, as here English, as
possible, and in enumerated expressions and statements,

– we “pair” such narrative elements with corresponding enumerated
clauses of a formal specification language.

• We shall be using the RAISE Specification Language, RSL in our
formal texts.

• But any of the model-oriented approaches and languages offered by

– Alloy,

– Event B,

– VDM and

– Z,

should work as well.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 32

(1. Introduction 1.5. Description Languages)

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP: Communicating Sequential Processes,

– MSC: Message Sequence Charts,

– Statecharts,

– and some temporal logic, for example

∗ either DC: Duration Calculus

∗ or TLA+.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 33

(1. Introduction 1.5. Description Languages)

1.6. Contributions of these Lectures

• We claim that the major contributions of the Triptych approach to
software engineering as presented in this paper are the following:

– (1) the clear identification of domain engineering, or, for some,
its clear separation from requirements engineering;

– (2) the identification and ‘elaboration’ of the pragmatically de-
termined domain facets of intrinsics, support technologies, man-
agement and organisation, rules and regulations, scripts (li-
censes and contracts) and human behaviour whereby ‘elabora-
tion’ we mean that we provide principles and techniques for the
construction of these facet description parts;

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 34

(1. Introduction 1.6. Contributions of these Lectures)

– (3) the re-identification and ‘elaboration’ of the concept of busi-
ness process re-engineering on the basis of the notion of busi-
ness processes;

– (4) the identification and ‘elaboration’ of the technically de-
termined domain requirements facets of projection, instanti-
ation, determination, extension and fitting requirements prin-
ciples and techniques – and, in particular the “discovery” that
these requirements engineering stages are strongly dependent on
necessary and sufficient domain descriptions ;

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 35

(1. Introduction 1.6. Contributions of these Lectures)

and

– (5) the identification and ‘elaboration’ of the technically deter-
mined interface requirements facets of shared entity, shared
action, shared event and shared behaviour requirements prin-
ciples and techniques. We claim that the facets of (2, 3, 4) and
(5) are all novel.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 36

(1. Introduction 1.6. Contributions of these Lectures)

1.7. Structure of Lectures

• Before going into some details on domain enginering and require-
ments engineering

• cover the basic concepts of specifications, whether domain descrip-
tions or requirements prescriptions.

• These are:

– entities,

– actions,

– events and

– behaviours.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 36

(1. Introduction 1.7. Structure of Lectures)

End of Lecture 1: SUMMARY & INTRODUCTION

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 36

(1. Introduction 1.7. Structure of Lectures)

Start of Lecture 2: A SPECIFICATION ONTOLOGY

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 37

2. A Specification Ontology

• In order to describe domains we postulate the following related spe-
cification components:

– entities,

– actions,

– events and

– behaviours.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 38

(2. A Specification Ontology)

2.1. Entities

• By an entity we shall understand

– a phenomenon we can point to in the domain

– or a concept formed from such phenomena.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 39

(2. A Specification Ontology 2.1. Entities)

Example 1 – Entities

• The example is that of aspects of a transportation net.

• You may think of such a net as being either a road net, a rail net, a
shipping net or an air traffic net.

• Hubs are then street intersections, train stations, harbours, respec-
tively airports.

• Links are then street segments between immediately adjacent intersec-
tions, rail tracks between train stations, sea lanes between harbours,
respectively air lanes between airports.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 40

(2. A Specification Ontology 2.1. Entities)

1 There are hubs and links.

2 There are nets, and a net consists of a set of two or more hubs and
one or more links.

3 There are hub and link identifiers.

4 Each hub (and each link) has an own, unique hub (respectively link)
identifier (which can be observed (ω) from the hub [respectively link]).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 41

(2. A Specification Ontology 2.1. Entities)

type

[1] H, L,
[2] N = H-set × L-set

axiom [nets−hubs−links−1]
[2] ∀ (hs,ls):N • card hs≥2 ∧ card ls≥1

type

[3] HI, LI
value

[4] ωHI: H → HI, ωLI: L → LI
axiom [nets−hubs−links−2]

[4] ∀ h,h′:H, l,l′:L • h 6=h′ ⇒ ωHI(h) 6=ωHI(h′) ∧ l6=l′⇒ωLI(l) 6=ωLI(l′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 42

(2. A Specification Ontology 2.1. Entities)

• In order to model the physical (i.e., domain) fact

– that links are delimited by two hubs and

– that one or more links emanate from and are, at the same time,
incident upon a hub

• we express the following:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 43

(2. A Specification Ontology 2.1. Entities)

5 From any link of a net one can observe the two hubs to which the link
is connected. We take this ‘observing’ to mean the following: from
any link of a net one can observe the two distinct identifiers of these
hubs.

6 From any hub of a net one can observe the identifiers of one or more
links which are connected to the hub.

7 Extending Item [5]: the observed hub identifiers must be identifiers of
hubs of the net to which the link belongs.

8 Extending Item [6]: the observed link identifiers must be identifiers of
links of the net to which the hub belongs.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 44

(2. A Specification Ontology 2.1. Entities)

l:L
h:H

hi

{hi,hi’}

hi’

{lia,li’,...,li"}liah’:H

lib

lic

li’

li"

{lia,lib,...,lic}

Figure 1: Connected links and hubs with observable identifiers

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 45

(2. A Specification Ontology 2.1. Entities)

value

[5] ωHIs: L → HI-set,
[6] ωLIs: H → LI-set,

axiom [net−hub−link−identifiers−1]
[5] ∀ l:L • card ωHIs(l)=2 ∧
[6] ∀ h:H • card ωLIs(h)≥1 ∧
∀ (hs,ls):N •

[5] ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ ωLIs(h)
⇒ ∃ l′:L • l′ ∈ ls ∧ li=ωLI(l′) ∧ ωHI(h) ∈ ωHIs(l′) ∧

[6] ∀ l:L • l ∈ ls ⇒ ∃ h′,h′′:H • {h′,h′′}⊆hs ∧ ωHIs(l)={ωHI(h′),ωHI(h′′)}
[7] ∀ h:H • h ∈ hs ⇒ ωLIs(h) ⊆ iols(ls)
[8] ∀ l:L • l ∈ ls ⇒ ωHIs(h) ⊆ iohs(hs)

value

iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {ωHI(h)|h:H•h ∈ hs}
iols(ls) ≡ {ωLI(l)|l:L•l ∈ ls}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 46

(2. A Specification Ontology 2.1. Entities)

• In the above extensive example we have focused on just five entities:
nets, hubs, links and their identifiers.

• The nets, hubs and links can be seen as separable phenomena.

• The hub and link identifiers are conceptual models of the fact that
hubs and links are connected

– so the identifiers are abstract models of ‘connection’,

– i.e., the mereology of nets, that is, of how nets are composed.

• These identifiers are attributes of entities.

• Links and hubs have been modelled to possess link and hub identifiers.

– A link’s “own” link identifier enables us to refer to the link,

– A link’s two hub identifiers enables us to refer to the connected
hubs.

– Similarly for the hub and link identifiers of hubs and links.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 47

(2. A Specification Ontology 2.1. Entities)

9 A hub, hi, state, hσ, is a set of hub traversals.

10 A hub traversal is a triple of link, hub and link identifiers (liin, hii, liout)
such that liin and liout can be observed from hub hi and such that
hii is the identifier of hub hi.

11 A hub state space is a set of hub states such that all hub states concern
the same hub.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 48

(2. A Specification Ontology 2.1. Entities)

type

[9] HT = (LI×HI×LI)
[10] HΣ = HT-set

[11] HΩ = HΣ-set

value

[10] ωHΣ: H → HΣ
[11] ωHΩ: H → HΩ

axiom [hub−states]
∀ n:N,h:H•h ∈ ωHs(n)⇒wf HΣ(ωHΣ(h))∧wf HΩ(h,ωHΩ(h))

value

wf HΣ: HΣ → Bool, wf HΩ: H×HΩ → Bool

wf HΣ(hσ) ≡ ∀ (li,hi,li′),(,hi′,):HT•(li,hi,li′)∈ hσ ⇒ {li,li′}⊆ωLIs(h)∧hi=ωHI(h)∧hi′=hi
wf HΩ(h,hω) ≡ ∀ hσ:HΣ•hσ ∈ hω⇒wf HΣ(hσ)∧hσ 6={} ⇒

let (li,hi,li′):HT•(li,hi,li′)∈ hσ in hi=ωHI(h) end

End of Example 1

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 49

(2. A Specification Ontology 2.1. Entities)

2.2. Actions

• A set of entities form a domain state.

• It is the domain engineer which decides on such states.

• A function is an action if,

– when applied

∗ to zero, one or more arguments

∗ and a state,

– it then results in a state change.

• (Arguments could be other entities or just values of entity attributes.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 50

(2. A Specification Ontology 2.2. Actions)

Example 2 – Deterministic Hub State Setting

12 Our example action is that of setting the state of hub.

13 The setting applies to a hub

14 and a hub state in the hub state space

13 and yields a “new” hub.

15A The before and after hub identifier remains the same.

15B The before and after link identifiers remain the same.

16 The before and after hub state space remains the same.

17 The result hub state is that being set (i.e., the argument hub state).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 51

(2. A Specification Ontology 2.2. Actions)

value

[12] set HΣ: H × HΣ → H
[13] set HΣ(h,hσ) as h′

[14] pre hσ ∈ ωHΩ(h)
[15A] post ωHI(h)=ωHI(h′)∧
[15B] ωLIs(h)=ωLIs(h′)∧
[16] ωHΩ(h)=ωHΩ(h′)∧
[17] ωHΣ(h′)=hσ

End of Example 2

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 52

(2. A Specification Ontology 2.2. Actions)

• Example 2 illustrated a deterministic action:

– one that always succeeded

– in carrying out the prescribed operation.

• But, as we shall see later,

– the domain technology may be faulty and

– an action, as carried out by such a technology,

– may fail to have the desired effect.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 53

(2. A Specification Ontology 2.2. Actions)

Example 3 – Non-Deterministic Hub State Setting

17 The result hub state is one of the hub states of the hub state space.

value

[12] set HΣ: H × HΣ → H
[13] set HΣ(h,hσ) as h′

[14] pre hσ ∈ ωHΩ(h)
[15A] post ωHI(h)=ωHI(h′)∧
[15B] ωLIs(h)=ωLIs(h′)∧
[16] ωHΩ(h)=ωHΩ(h′)∧
[17] ωHΣ(h′) ∈ ωHΩ(h)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 54

(2. A Specification Ontology 2.2. Actions)

2.3. Events

• Any domain state change is an event.

• A situation

– in which a (specific) state change was expected

– but none (or another) occurred is an event.

• Some events are more “interesting” than other events.

• Not all state changes are caused by actions of the domain.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 55

(2. A Specification Ontology 2.3. Events)

Example 4 – Events: Failure State Transitions

18 A hub is in some state, hσ.

19 An action directs it to change to state hσ′ where hσ′ 6= hσ.

20 But after that action the hub remains either in state hσ or is possibly
in a third state, hσ′′ where hσ′′ 6∈ {hσ,hσ′}.

21 Thus an “interesting event” has occurred !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 56

(2. A Specification Ontology 2.3. Events)

∃ n:N,h:H,hσ,hσ′:HΣ•h ∈ ωHs(n)∧
[19,20] {hσ,hσ′}⊆ωHΩ(h)∧card{hσ,hσ′}=2 ∧
[18] ωHΣ(h)=hσ ;
[19] let h′ = set HΣ(h,hσ′) in

[20] ωHΣ(h′)∈ ωHΣ(h′)\{hσ′} ⇒
[21] ”interesting event” end

• It only makes sense to change hub states if there are more than just
one single such state.

End of Example 4

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 57

(2. A Specification Ontology 2.3. Events)

2.4. Behaviours

• A behaviour is a set of

– zero, one or more sequences of sets of

∗ actions

∗ or behaviours,

∗ including events.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 58

(2. A Specification Ontology 2.4. Behaviours)

Example 5 – Behaviours: Blinking Semaphores

22 Let h be a hub of a net n.

23 Let hσ and hσ′ be two distinct states of h.

24 Let ti : TI be some time interval.

25 Let h start in an initial state hσ.

26 Now let hub h undergo an ongoing sequence of n changes

26a from hσ to hσ′ and

26b then, after a wait of ti seconds,

26c and then back to hσ.

26d After n blinks a pause, tp : TI, is made and blinking restarts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 59

(2. A Specification Ontology 2.4. Behaviours)

type

TI

value

ti,tj:TI [axiom tj>>ti]

n:Nat,

[26] blinking: H × HΣ × HΣ → Unit

[26] blinking(h,hσ,hσ′,m) in

[25] let h′ = set HΣ(h,hσ) in

[26c] wait ti ;

[26a] let h′′ = set HΣ(h′,hσ′) in

[26c] wait ti ;

[26] if m=1

[26] then skip

[26] else blinking(h,hσ,hσ′,m−1) end end end

[26] wait tj ;

[26d] blinking(h,hσ,hσ′,n)

[23] pre {hσ,hσ′}⊆ωHΩ(h)∧hσ 6=hσ′

[26] ∧ initial m=n

End of Example 5

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 59

(2. A Specification Ontology 2.4. Behaviours)

End of Lecture 2: A SPECIFICATION ONTOLOGY

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 59

(2. A Specification Ontology 2.4. Behaviours)

Start of Lecture 3: DOMAIN ENGINEERING

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 60

3. Domain Engineering

• We focus on the facet components of a domain description

• and shall not here cover such aspects of domain engineering as

– stakeholder identification and liaison,

– domain acquisition and analysis,

– terminologisation,

– verification, testing, model-checking, validation and

– domain theory formation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 61

(3. Domain Engineering)

• By understanding, first, the facet components

– the domain engineer is in a better position to effectively

– establish the regime of stakeholders,

– pursue acquisition and analysis,

– and construct a necessary and sufficient terminology.

• The domain description components each cover their domain facet.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 62

(3. Domain Engineering)

• We outline six such facets:

– intrinsics,

– support technology,

– rules and regulations,

– scripts (licenses and contracts),

– management and organisation, and

– human behaviour.

• But first we cover a notion of business processes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 63

(3. Domain Engineering)

3.1. Business Processes

• By a business process we understand

– a set of one or more, possibly interacting behaviours

– which fulfill a business objective.

• We advocate that domain engineers,

– typically together with domain stakeholder groups,

– rough-sketch their individual business processes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 64

(3. Domain Engineering 3.1. Business Processes)

Example 6 – Some Transport Net Business Processes

• With respect to one and the same underlying road net

• we suggest some business-processes

• and invite the reader to rough-sketch these.

27 Private citizen automobile transports: Private citizens use the
road net for pleasure and for business, for sightseeing and to get to
and from work.

A private citizen automobile transport “business process rough-sketch”
might be:

A car owner drives to work: Drives out, onto the street, turns
left, goes down the street, straight through the next three
intersections, then turns left, two blocks straight, etcetera,
finally arrives at destination, and finally turns into a garage.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 65

(3. Domain Engineering 3.1. Business Processes)

28 Public bus (&c.) transport: Province and city councils contract
bus (&c.) companies to provide regular passenger transports according
to timetables and at cost or free of cost.

A public bus transport “business process rough-sketch” might be:

A bus drive from station of origin to station of final destination:
Bus driver starts from station of origin at the designated
time for this drive; drives to first passenger stop; open doors
to let passenger in; leaves stop at time table designated
time; drives to next stop adjusting speed to traffic condi-
tions and to “keep time” as per the time table; repeats this
process: “from stop to stop”, letting passengers off and on
the bus; after having (thus, i.e., in this manner) completed
last stop “turns” bus around to commence a return drive.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 66

(3. Domain Engineering 3.1. Business Processes)

29 Road maintenance and repair: Province and city councils hire
contractors to monitor road (link and hub) surface quality, to main-
tain set standards of surface quality, and to “emergency” re-establish
sudden occurrences of low quality.

30 Toll road traffic: State and province governments hire contractors
to run toll road nets with toll booth plazas.

31 Net revision: road (&c.) building: State government and province
and city councils contract road building contractors to extend (or
shrink) road nets.

• The detailed description of the above rough-sketched business process
synopses now becomes part of the domain description as partially
exemplified in the previous and the next many examples.

End of Example 6

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 67

(3. Domain Engineering 3.1. Business Processes)

• Rough-sketching such business processes helps bootstrap the process
of domain acquisition.

3.2. Intrinsics

• By intrinsics we shall understand

– the very basics,

– that without which none of the other facets can be described,

– i.e., that which is common to two or more, usually all of these
other facets.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 68

(3. Domain Engineering 3.2. Intrinsics)

Example 7 – Intrinsics

• Most of the descriptions of earlier examples model intrinsics.

• We add a little more:

32 A link traversal is a triple of a (from) hub identifier, an along link
identifier, and a (towards) hub identifier

33 such that these identifiers make sense in any given net.

34 A link state is a set of link traversals.

35 And a link state space is a set of link states.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 69

(3. Domain Engineering 3.2. Intrinsics)

value

n:N
type

[32] LT′ = HI × LI × HI
[33] LT = {|lt:LT′

•wfLT(lt)(n)|}
[34] LΣ′ = LT-set

[34] LΣ = {|lσ:LΣ′
•wf LΣ(lσ)(n)|}

[35] LΩ′ = LΣ-set

[35] LΩ = {|lω:LΩ′
•wf LΩ(lω)(n)|}

value

[33] wfLT: LT → N → Bool

[33] wfLT(hi,li,hi′)(n) ≡
[33] ∃ h,h′:H•{h,h′}⊆ωHs(n)∧
[33] ωHI(h)=hi∧ωHI(h′)=hi′∧
[33] li ∈ ωLIs(h)∧li ∈ ωLIs(h′)

End of Example 7

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 70

(3. Domain Engineering 3.2. Intrinsics)

3.3. Support Technologies

• By support technologies we shall understand

– the ways and means by which

∗ humans and/or

∗ technologies

∗ support

· the representation of entities and

· the carrying out of actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 71

(3. Domain Engineering 3.3. Support Technologies)

Example 8 – Support Technologies

• Some road intersections (i.e., hubs) are controlled by semaphores

– alternately shining red–yellow–green

– in carefully interleaved sequences

– in each of the in-directions from links incident upon the hubs.

• Usually these signalings are initiated as a result of road traffic sensors
placed below the surface of these links.

• We shall model just the signaling:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 72

(3. Domain Engineering 3.3. Support Technologies)

36 There are three colours: red, yellow and green.

37 Each hub traversal is extended with a colour and so is the hub state.

38 There is a notion of time interval.

39 Signaling is now a sequence, 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′,
tδ′···′)〉 such that the first hub state hσ′ is to be set first and followed
by a time delay tδ′ whereupon the next state is set, etc.

40 A semaphore is now abstracted by the signalings that are prescribed
for any change from a hub state hσ to a hub state hσ′.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 73

(3. Domain Engineering 3.3. Support Technologies)

type

[36] Colour == red | yellow | green
[37] X = LI×HI×LI×Colour [crossings of a hub]
[37] HΣ = X-set [hub states]
[38] TI [time interval]
[39] Signalling = (HΣ × TI)∗

[40] Semaphore = (HΣ × HΣ) →m Signalling
value

[37] ωHΣ: H → HΣ
[40] ωSemaphore: H → Sema,
[41] chg HΣ: H × HΣ → H
[41] chg HΣ(h,hσ) as h′

[41] pre hσ ∈ ωHΩ(h) post ωHΣ(h′)=hσ

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 74

(3. Domain Engineering 3.3. Support Technologies)

[39] chg HΣ Seq: H × HΣ → H
[39] chg HΣ Seq(h,hσ) ≡
[39] let sigseq = (ωSemaphore(h))(ωΣ(h),hσ) in

[39] sig seq(h)(sigseq) end

[39] sig seq: H → Signalling → H
[39] sig seq(h)(sigseq) ≡
[39] if sigseq=〈〉 then h else

[39] let (hσ,tδ) = hd sigseq in let h′ = chg HΣ(h,hσ);
[39] wait tδ;
[39] sig seq(h′)(tl sigseq) end end end

End of Example 8

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 75

(3. Domain Engineering 3.3. Support Technologies)

3.4. Rules and Regulations

• By a rule we shall understand

– a text which describe how the domain is
— i.e., how people and technology are —

– expected to behave.

• The meaning of a rule is

– a predicate over “before/after” states of actions
(simple, one step behaviours):

– if the predicate holds then the rule has been obeyed.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 76

(3. Domain Engineering 3.4. Rules and Regulations)

• By a regulation we shall understand

– a text which describes actions to be performed

– should its corresponding rule fail to hold.

• The meaning of a regulation is therefore

– a state-to-state transition,

– one that brings the domain into a rule-holding “after” state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 77

(3. Domain Engineering 3.4. Rules and Regulations)

Example 9 – Rules We give two examples related to railway systems
where train stations are the hubs and the rail tracks between train stations
are the links:

41 Trains arriving at or leaving train stations:

(a) (In China:) No two trains

(b) must arrive at or leave a train station

(c) in any two minute time interval.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 78

(3. Domain Engineering 3.4. Rules and Regulations)

42 Trains travelling “down” a railway track. We must introduce a notion
of links being a sequence of adjacent sectors.

(a) Trains must travel in the same direction;

(b) and there must be at least one “free-from-trains” sector

(c) between any two such trains.

We omit showing somewhat “lengthy” formalisations.
. End of Example 9

We omit exemplification of regulations.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 79

(3. Domain Engineering 3.4. Rules and Regulations)

3.5. Scripts, Licenses and Contracts
3.5.1. Scripts

• By a script we understand

– a usually structured set of pairs of rules and regulations —

– structured, for example, as a simple “algorithm description”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 80

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

Example 10 – Timetable Scripts

43 Time is considered discrete. Bus lines and bus rides have unique names
(across any set of time tables).

44 A T imeTable associates Bus Line Identifiers (blid) to sets of Journies.

45 Journies are designated by a pair of a BusRoute and a set of BusRides.

46 A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or
more intermediate Bus Stops and a destination Bus Stop.

47 A set of BusRides associates, to each of a number of Bus Identifiers
(bid) a Bus Schedule.

48 A Bus Schedule is a triple of the initial departure T ime, a list of zero,
one or more intermediate bus stop T imes and a destination arrival
T ime.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 81

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

49 A Bus Stop (i.e., its position) is a Fraction of the distance along
a link (identified by a Link Identifier) f rom an identified hub to an
identified hub.

50 A Fraction is a Real properly between 0 and 1.

51 The Journies must be well f ormed in the context of some net.

52 A set of journies is well-formed if

53 the bus stops are all different,

54 a bus line is embedded in some line of the net, and

55 all defined bus trips of a bus line are equivalent.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 82

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

type

[43] T, BLId, BId
[44] TT = BLId →m Journies
[45] Journies′ = BusRoute × BusRides
[46] BusRoute = BusStop × BusStop∗ × BusStop
[47] BusRides = BId →m BusSched
[49] BusSched = T × T∗ × T
[50] BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
[51] Frac = {|r:Real•0<r<1|}
[45] Journies = {|j:Journies′

•∃ n:N • wf Journies(j)(n)|}
value

[52] wf Journies: Journies → N → Bool

[52] wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
[53] diff bus stops(bs1,bsl,bsn) ∧
[54] is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
[55] commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

End of Example 10

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 83

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.1. Scripts)

• Timetables are used in Example 11 on the following page.

3.5.2. Licenses and Contracts

• By a license (a contract) language we understand a pair of lan-
guages

– of licenses and

– of the set of actions allowed by the license

– such that non-allowable license (contract) actions

∗ incur moral obligations

∗ (respectively legal responsibilities).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 84

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

Example 11 – Public Bus Transport Contracts

• An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee
to perform operations
{"conduct","cancel","insert","subcontract"}
with respect to timetable tt.

We assume a context (a global state) in which all contract actions (in-
cluding contracting) takes place and in which the implicit net is defined.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 85

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

• Concrete examples of actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license shown earlier is almost like an action; here is the
action form:

(d) cid: contractor cnm′ is granted a contract cid′

to perform operations
{”conduct”,”cancel”,”insert”,sublicense”}

with respect to timetable tt′.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 86

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

• All actions are being performed by a sub-contractor in a context which
defines

– that sub-contractor cnm,

– the relevant net, say n,

– the base contract, referred here to by cid (from which this is a
sublicense), and

– a timetable tt of which tt′ is a subset.

• contract name cnm′ is new and is to be unique.

• The subcontracting action can (thus) be simply transformed into a
contract as shown on Slide 84.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 87

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

type

Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Conduct | Cancel | Insert
Conduct == µConduct(s blid:BLId,s bid:BId)
Cancel == µCancel(s blid:BLId,s bid:BId)
Insert = µInsert(s blid:BLId,s bid:BId)
SubCon == µSubCon(s cid:CId,s cnm:CNm,s body:body)

where body = (s ops:Op-set,s tt:TT)

End of Example 11

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 88

(3. Domain Engineering 3.5. Scripts, Licenses and Contracts 3.5.2. Licenses and Contracts)

3.6. Management and Organisation

• By management we shall understand

– the set of behaviours which perform

∗ strategic,

∗ tactical and

∗ operational

actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 89

(3. Domain Engineering 3.6. Management and Organisation)

• By organisation we shall understand

– the decomposition of these behaviours into, for example, clearly
separate

∗ strategic,

∗ tactical and

∗ operational

“areas”,

∗ possibly further decomposed

∗ by geographical and/or

∗ “subject matter” concerns.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 90

(3. Domain Engineering 3.6. Management and Organisation)

• To explain differences between strategic, tactical and operational
issues we introduce notions of

– strategic, tactical and operational funds, FS,T ,O,

– and other resources, R,

– a notion of contexts, C,

– and a notion of states, S.

• Contexts bind resources to bindings from locations to disjoint time
intervals (allocation and scheduling),

• states bind resource identifiers to resource values.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 91

(3. Domain Engineering 3.6. Management and Organisation)

• Simplified types of the strategic, tactical and operational actions are
now of the following types:

– executive functions apply to contexts, states and funds and obtain
and redistribute funds;

– strategic functions apply to contexts and strategic funds and cre-
ate new contexts and states and consume some funds;

– tactical functions apply to resources, contexts, states tactical funds
and create new contexts while consuming some tactical funds;

– etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 92

(3. Domain Engineering 3.6. Management and Organisation)

type

R, RID, RVAL,FS , FT , FO
C = R →m ((T × T) →m L)
S = RID →m RVAL

value

ωRID: R → RID

ωRVAL: R → RVAL

Executive functions: C × S × FS,T ,O → FS,T ,O
Strategic functions: C × FS → FS × R × C × S

Tactic functions: R × C × S × FT → C × FT
Operational functions: C × S × FO → S × FO

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 93

(3. Domain Engineering 3.6. Management and Organisation)

Example 12 – Public Bus Transport Management We relate to
Example 11:

56 The conduct, cancel and insert bus ride actions are operational
functions.

57 The actual subcontract actions are tactical functions;

58 but the decision to carry out such a tactical function may very well be
a strategic function as would be the acquisition or disposal of busses.

59 Forming new timetables, in consort with the contractor, is a strategic
function.

We omit formalisations. End of Example 12

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 94

(3. Domain Engineering 3.6. Management and Organisation)

3.7. Human Behaviour

• By human behaviour we shall understand

– those aspects of the behaviour of domain stakeholders

– which have a direct bearing on the “functioning” of the domain

• Behaviours “fall” in a spectrum

– from diligent

– via sloppy

– to delinquent and

– outright criminal neglect

in the observance of maintaining

– entities,

– carrying our actions and

– responding to events.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 95

(3. Domain Engineering 3.7. Human Behaviour)

Example 13 – Human Behaviour Cf. Examples 11–12:

60 no failures to conduct a bus ride must be classified as diligent;

61 rare failures to conduct a bus ride must be classified as sloppy if no
technical reasons were the cause;

62 occasional failures · · · as delinquent;

63 repeated patterns of failures · · · as criminal.

We omit showing somewhat “lengthy” formalisations.
. End of Example 13

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 96

(3. Domain Engineering 3.7. Human Behaviour)

3.8. Discussion

• We have briefly outlined six concepts of domain facets and we have
exemplified each of these.

• Real-scale domain descriptions are, of course, much larger than what
we can show. Typically, say for the domain of logistics, a basic de-
scription is approximately 30 pages; for “small” parts of railway
systems we easily get up to 100–200 pages – both including formali-
sations.

• You should now have gotten a reasonably clear idea as to what con-
stitutes a domain description.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 97

(3. Domain Engineering 3.8. Discussion)

• As mentioned, in the introduction to this lecture, we shall not cover
post-modelling activities such a validation and domain theory forma-
tion. The latter is usually part of the verification (theorem proving,
model checking and formal testing) of the formal domain description.

• Final validation of a domain description is with respect to the nar-
rative part of the narrative/formalisation pairs of descriptions.

• The reader should also be able to form a technical opinion about
what can be formalised, and that not all can be formalised within
the framework of a single formal specification language, cf. Sect. .

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 97

(3. Domain Engineering 3.8. Discussion)

End of Lecture 3: DOMAIN ENGINEERING

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 97

(3. Domain Engineering 3.8. Discussion)

Start of Lecture 4: REQUIREMENTS ENGINEERING

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 98

4. Requirements Engineering

• Whereas

– a domain description presents a domain as it is,

– a requirements prescription presents a domain as it would be

if some required machine was implemented (from these require-
ments).

• The machine is the hardware plus software to be designed from
the requirements.

• That is, the machine is what the requirements are about.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 99

(4. Requirements Engineering)

• We distinguish between three kinds of requirements:

– the domain requirements are those requirements which can
be expressed solely using terms of the domain;

– the machine requirements are those requirements which can
be expressed solely using terms of the machine and

– the interface requirements are those requirements which
must use terms from both the domain and the machine in order
to be expressed.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 100

(4. Requirements Engineering)

• We make a distinction between goals and requirements.

• Goals are what we expect satisfied by the software implemented from
the requirements.

• But goals could also be of the system for which the software is re-
quired.

• First we exemply the latter, then the former.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 101

(4. Requirements Engineering)

Example 14 – Goals of a Toll Road System

• A goal for a toll road system may be

– to decrease the travel time between certain hubs and

– to lower the number of traffic accidents between certain hubs,

End of Example 14

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 102

(4. Requirements Engineering)

Example 15 – Goals of Toll Road System Software

• The goal of the toll road system software is to help automate

– the recording of vehicles entering, passing and leaving the toll road
system

– and collecting the fees for doing so.

End of Example 15

• Goals are usually expressed in terms of properties.

• Requirements can then be proved to satisfy the Goals: D,R |= G.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 103

(4. Requirements Engineering)

Example 16 – Arguing Goal-satisfaction of a Toll Road System

• By endowing links and hubs with average traversal times for both
ordinary road and for toll road links and hubs

– one can calculate traversal times between hubs

– and thus argue that the toll road system satisfies “quicker” traversal times.

• By endowing links and hubs with traffic accident statistics (real, re-
spectively estimated)

– for both ordinary road and for toll road links and hubs

– one can calculate estimated traffic accident statistics between all hubs

– and thus argue that the combined ordinary road plus toll road system
satisfies lower traffic fatalities.

End of Example 16

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 104

(4. Requirements Engineering)

Example 17 – Arguing Goal-satisfaction of Toll Road System
Software

• By recording

– tickets issued and collected at toll boths and

– toll road hubs and links entered and left

– as per the requirements specification brought in
(forthcoming) Examples 19-23,

• we can eventually argue that

– the requirements of (the forthcoming) Examples 19-23

– help satisfy the goal of Example 15 on page 102.

End of Example 17

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 105

(4. Requirements Engineering)

• We shall assume that the (goal and) requirements engineer elicit both
Goals and Requirements from requirements stakeholders.

• But we shall focus only on

– domain and

– interface

requirements such as “derived” from domain descriptions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 106

(4. Requirements Engineering)

4.1. Business Process Re-engineering

• There are the business processes of the domain before installation of the required
computing systems.

• The potential of installing computing systems invariably requires revision of es-
tablished business processes.

• Business process re-engineering (BPR) is a development of new business processes

– – whether or not complemented by computing and communication.

• BPR, such as we advocate it,

– proceeds on the basis of an existing domain description and

– outlines needed changes (additions, deletions, modifications) to entities, ac-
tions, events and behaviours

– following the six domain facets.

• The goals help us formulate the BPR prescriptions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 107

(4. Requirements Engineering 4.1. Business Process Re-engineering)

Example 18 – Rough-sketching a Re-engineered Road Net

• Our sketch centers around a toll road net with toll booth plazas.

• The BPR focuses

– first on entities, actions, events and behaviours,

– then on the six domain facets.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 108

(4. Requirements Engineering 4.1. Business Process Re-engineering)

64 Re-engineered Entities:

• We shall focus on a linear sequence of toll road intersections (i.e.,
hubs) connected by pairs of one-way (opposite direction) toll roads
(i.e., links).

• Each toll road intersection is connected by a two way road to a toll
plaza.

• Each toll plaza contains a pair of sets of entry and exit toll booths.

• (Example 20 brings more details.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 109

(4. Requirements Engineering 4.1. Business Process Re-engineering)

65 Re-engineered Actions:

• Cars enter and leave the toll road net through one of the toll plazas.

• Upon entering, car drivers receive, from the entry booth, a plas-
tic/paper/electronic ticket which they place in a special holder in
the front window.

• Cars arriving at intermediate toll road intersections choose, on their
own, to turn either “up” the toll road or “down” the toll road —
with that choice being registered by the electronic ticket.

• Cars arriving at a toll road intersection may choose to “circle”
around that intersection one or more times — with that choice
being registered by the electronic ticket.

• Upon leaving, car drivers “return” their electronic ticket to the exit
booth and pay the amount “asked” for.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 110

(4. Requirements Engineering 4.1. Business Process Re-engineering)

66 Re-engineered Events:

• A car entering the toll road net at a toll both plaza entry booth
constitutes an event.

• A car leaving the toll road net at a toll both plaza entry booth
constitutes an event.

• A car entering a toll road hub constitutes an event.

• A car entering a toll road link constitutes an event.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 111

(4. Requirements Engineering 4.1. Business Process Re-engineering)

67 Re-engineered Behaviours:

• The journey of a car,
– from entering the toll road net at a toll booth plaza,

– via repeated visits to toll road intersections

– interleaved with repeated visits to toll road links

– to leaving the toll road net at a toll booth plaza,

constitutes a behaviour — with
– receipt of tickets,

– return of tickets and

– payment of fees

being part of these behaviours.

• Notice that a toll road visitor is allowed to cruise “up” and “down”
the linear toll road net – while (probably) paying for that pleasure
(through the recordings of “repeated” hub and link entries).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 112

(4. Requirements Engineering 4.1. Business Process Re-engineering)

68 Re-engineered Intrinsics:

• Toll plazas and abstracted booths are added to domain intrinsics.

69 Re-engineered Support Technologies:

• There is a definite need for domain-describing the failure-prone toll
plaza entry and exit booths.

70 Re-engineered Rules and Regulations:

• Rules for entering and leaving toll booth entry and exit booths must
be described as must related regulations.

• Rules and regulations for driving around the toll road net must be
likewise be described.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 113

(4. Requirements Engineering 4.1. Business Process Re-engineering)

71 Re-engineered Scripts:

• No need.

72 Re-engineered Management and Organisation:

• There is a definite need for domain describing

• the management and possibly distributed organisation

• of toll booth plazas.

73 Re-engineered Human Behaviour:

• Humans, in this case car drivers, may not change their behaviour in
the spectrum from diligent and accurate via sloppy and delinquent
to outright traffic-law breaking – so we see no need for any “re-
engineering”.

End of Example 18

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 114

(4. Requirements Engineering 4.1. Business Process Re-engineering)

4.2. Domain Requirements

• For the phase of domain requirements the requirements stakeholders
“sit together” with the domain cum requirements engineers and read
the domain description, line-by-line, in order to “derive” the domain
requirements.

• They do so in five rounds (in which the BPR rough sketch is both
regularly referred to and possibly, i.e., most likely regularly updated).

• Domain requirements are “derived” from the domain description.

• The goals then determine the derivations: which projections, instan-
tiations, determinations, etcetera, to perform.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 115

(4. Requirements Engineering 4.2. Domain Requirements)

4.2.1. Projection
By domain projection we understand an operation

• that applies to a domain description

• and yields a domain requirements prescription.

• The latter represents a projection of the former

• in which only those parts of the domain are present

• that shall be of interest in the ongoing requirements development

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 116

(4. Requirements Engineering 4.2. Domain Requirements 4.2.1. Projection)

Example 19 – Projection

• Our requirements is for a simple toll road:

– a linear sequence of links and hubs outlined in Example 18:

∗ see Items [1–11] of Example 1 on page 39

∗ and Items [32–35] of Example 7 on page 68.

End of Example 19

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 117

(4. Requirements Engineering 4.2. Domain Requirements 4.2.1. Projection)

4.2.2. Instantiation

• By domain instantiation we understand an operation

– that applies to a (projected) domain description,
i.e., a requirements prescription,

– and yields a domain requirements prescription,

– where the latter has been made more specific,
usually by constraining a domain description.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 118

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

Example 20 – Instantiation

• Here the toll road net topology as outlined in Example 18 on page 107
is introduced:

– a straight sequence of toll road hubs

– pairwise connected with pairs of one way links

– and with each hub two way link connected to a toll road plaza.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 119

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

type

H, L, P = H
N′ = (H × L) × H × ((L × L) × H × (H × L))∗

N′′ = {|n:N′

•wf(n)|}
value

wf N′′: N′ → Bool

wf N′′((h,l),h′,llhpl) ≡ ... 6 lines ... !
αN: N′′ → N
αN((h,l),h′,llhpl) ≡ ... 2 lines ... !

• wf N′′ secures linearity;

• αN allows abstraction from more concrete N′′ to more abstract N.

End of Example 20

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 120

(4. Requirements Engineering 4.2. Domain Requirements 4.2.2. Instantiation)

4.2.3. Determination

• By domain determination we understand an operation

– that applies to a (projected and possibly instantiated) domain
description, i.e., a requirements prescription,

– and yields a domain requirements prescription,

– where (attributes of) entities, actions, events and behaviours have
been made less indeterminate.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 121

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

Example 21 – Determination

• Pairs of links between toll way hubs are open in opposite directions;

• all hubs are open in all directions;

• links between toll way hubs and toll plazas are open in both directions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 122

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

type

LΣ = (HI×HI)-set, LΩ = LΣ-set

HΣ = (LI×LI)-set, HΩ = HΣ-set

N′ = (H × L) × H × ((L × L) × H × (H × L))∗

value

ωLΣ: L → LΣ, ωLΩ: L → LΩ
ωHΣ: H → HΣ, ωHΩ: H → HΩ

axiom

∀ ((h,l),h′,llhhl:〈(l′,l′′),h′′,(h′′′,l′′′)〉̂llhhl′):N′′
•

ωLΣ(l)={(ωHI(h),ωHI(h′)),(ωHI(h′),ωHI(h))}∧
ωLΣ(l′′′)={(ωHI(h′′),ωHI(h′′′)),(ωHI(h′′′),ωHI(h′′))}∧
∀ i,i+1:Nat • {i,i+1}⊆inds llhhl ⇒
let ((li,li′),hi,(hi′′,li′′))=llhhl(i), (,hj,(hj′′,lj′′))=llhhl(i+1) in

ωLΩ(li)= {{(ωHI(hi),ωHI(hj))}}∧ωLΩ(li′)={{(ωHI(hj),ωHI(hi))}}∧
ωHΩ(hi)= { ... } ... 3 lines end

End of Example 21

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 123

(4. Requirements Engineering 4.2. Domain Requirements 4.2.3. Determination)

4.2.4. Extension

• By domain extension we understand an operation

– that applies to a (projected and possibly determined and instanti-
ated) domain description, i.e., a (domain) requirements prescrip-
tion,

– and yields a (domain) requirements prescription.

– The latter prescribes that a software system is to support, partially
or fully, entities, operations, events and/or behaviours that were
not feasible (or not computable in reasonable time or space) in a
domain without computing support, but which are now are not
only feasible but also computable in reasonable time and space.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 124

(4. Requirements Engineering 4.2. Domain Requirements 4.2.4. Extension)

Example 22 – Extension

• We extend the domain by introducing toll road entry and exit booths as well as
electronic ticket hub sensors and actuators.

• There should now follow a careful narrative and formalisation of these three ma-
chines:

– the car driver/machine “dialogues” upon entry and exit

– as well as the sensor/car/actuator machine “dialogues” when cars enter hubs.

• The description

– should first, we suggest, be ideal;

– then it should take into account

∗ failures of booth equipment,

∗ electronic tickets,

∗ car drivers,

∗ and of sensors and actuators.

End of Example 22

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 125

(4. Requirements Engineering 4.2. Domain Requirements 4.2.4. Extension)

4.2.5. Fitting

• By domain requirements fitting we understand an operation

– which takes two or more (say n) domain requirements prescrip-
tions, dri,

– that are claimed to share entities, actions, events and/or be-
haviours and

– map these into n+1 domain requirements prescriptions, δri,

– where one of these, δrn+1 capture the shared phenomena and con-
cepts and the other n prescriptions, δri,

– are like the n “input” domain requirements prescriptions, dri,

– except that they now, instead of the “more-or-less” shared pre-
scriptions,

– that are now consolidated in δrn+1, prescribe interfaces between
δri and δrn+1 for i : {1..n}.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 126

(4. Requirements Engineering 4.2. Domain Requirements 4.2.5. Fitting)

Example 23 – Fitting

• We assume three ongoing requirements development projects, all focused around
road transport net software systems:

– (i) road maintenance,

– (ii) toll road car monitoring and

– (iii) bus services on ordinary plus toll road nets.

• The main shared phenomenon is the road net, i.e., the links and the hubs.

• The consolidated, shared road net domain requirements prescription, δrn+1, is to
become a prescription for the domain requirements for shared hubs and links.

• Tuples of these relations then prescribe representation of all hub, respectively all
link attributes – common to the three applications.

• Functions (including actions) on hubs and links become database queries and up-
dates. Etc.

End of Example 23

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 127

(4. Requirements Engineering 4.2. Domain Requirements 4.2.5. Fitting)

4.2.6. Discussion:

• This section has very briefly surveyed and illustrated domain require-
ments.

• The reader should take cognizance of the fact that these are indeed
“derived” from the domain description.

• They are not domain descriptions, but, once the business process
re-engineering has been adopted

• and the required software has been installed,

• then the domain requirements become part of a revised domain de-
scription !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 128

(4. Requirements Engineering 4.2. Domain Requirements 4.2.6. Discussion:)

4.3. Interface Requirements

• By interface requirements we understand such requirements which
are concerned with the phenomena and concepts shared between the
domain and the machine.

• Thus such requirements can only be expressed using terms from both
the domain and the machine.

• We tackle the problem of “deriving”, i.e., constructing interface re-
quirements by tackling four “smaller” problems:

– those of “deriving” interface requirements for

∗ entities,

∗ actions,

∗ events and

∗ behaviours

respectively.

– Again goals help state which phenomena and concepts are to be shared.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 129

(4. Requirements Engineering 4.3. Interface Requirements)

4.3.1. Entity Interfaces

• Entities that are shared between the domain and the machine must
initially be input to the machine.

• Dynamically arising or attribute value changing entities must like-
wise be input and all such machine entities must have their attributes
updated, when need arise.

• Requirements for shared entities thus entail

– requirements for their representation

– and for their human/machine and/or machine/machine transfer-
dialogues.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 130

(4. Requirements Engineering 4.3. Interface Requirements 4.3.1. Entity Interfaces)

Example 24 – Shared Entities

• Main shared entities are those of hubs and links.

• We suggest that eventually a relational database be used for repre-
senting hubs links in relations.

• As for human input,

– some man/machine dialogue

– based around a set of visual display unit screens

– with fields for the input of hub,

– respectively link attributes

can then be devised.

• Etc.

End of Example 24

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 131

(4. Requirements Engineering 4.3. Interface Requirements 4.3.1. Entity Interfaces)

4.3.2. Action Interfaces

• By a shared action we mean an action that can only be partly com-
puted by the machine.

• That is, the machine, in order to complete an action,

– may have to inquire with the domain

– (some measurable, time-varying entity attribute value, or some
domain stakeholder)

– in order to proceed in its computation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 132

(4. Requirements Engineering 4.3. Interface Requirements 4.3.2. Action Interfaces)

Example 25 – Shared Actions

• In order for a car driver to leave an exit toll both the following com-
ponent actions must take place:

– the driver inserts the electronic pass in the exit toll booth machine;

– the machine scans and accepts the ticket and calculates the fee for
the car journey from entry booth via the toll road net to the exit
booth;

– the driver is alerted to the cost and is requested to pay this amount;

– once paid the exit booth toll gate is raised.

• Notice that a number of details of the new support technology is left out.

• It could either be elaborated upon here, or be part of the system design.

End of Example 25

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 133

(4. Requirements Engineering 4.3. Interface Requirements 4.3.2. Action Interfaces)

4.3.3. Event Interfaces

• By a shared event we mean an event

– whose occurrence in the domain

– need be communicated to the machine

– and, vice-versa, an event

– whose occurrence in the machine

– need be communicated to the domain.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 134

(4. Requirements Engineering 4.3. Interface Requirements 4.3.3. Event Interfaces)

Example 26 – Shared Events

• The arrival of a car at a toll plaza entry booth is an event that must
be communicated to the machine so that the entry booth may issue
a proper pass (ticket).

• Similarly for the arrival at a toll plaza exit booth so that the machine
may request the return of the pass and compute the fee.

• The end of that computation is an event that is communicated to
the driver (in the domain) requesting that person to pay a certain fee
after which the exit gate is opened.

End of Example 26

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 135

(4. Requirements Engineering 4.3. Interface Requirements 4.3.3. Event Interfaces)

4.3.4. Behaviour Interfaces

• By a shared behaviour we understand

– a sequence of zero, one or more

∗ shared actions and

∗ shared events.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 136

(4. Requirements Engineering 4.3. Interface Requirements 4.3.4. Behaviour Interfaces)

Example 27 – Shared Behaviour

• A typical toll road net use behaviour is as follows:

– Entry at some toll plaza: receipt of electronic ticket,

– placement of ticket in special ticket “pocket” in front window,

– the raising of the entry booth toll gate;

– drive up to [first] toll road hub (with electronic registration of time of occurrence),

– drive down a selected link (with electronic registration of time of occurrence of
entry to and exit from link),

– then a repeated number of zero, one or more

∗ toll road hub and

∗ link visits –

∗ some of which may be “repeats” –

– ending with a drive down from a toll road hub to a toll plaza

– with the return of the electronic ticket, etc.

End of Example 27

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 137

(4. Requirements Engineering 4.3. Interface Requirements 4.3.4. Behaviour Interfaces)

4.3.5. Discussion

• Once the machine has been installed

• it, the machine, is part of the new domain !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 138

(4. Requirements Engineering 4.3. Interface Requirements 4.3.5. Discussion)

4.4. Machine Requirements

• We shall not cover this stage of requirements development other than
saying that it consists of the following concerns:

– performance requirements (storage, speed, other resources),

– dependability requirements (availability, accessibility, integrity, re-
liability, safety, security),

– maintainability requirements (adaptive, extensional, corrective,
perfective, preventive),

– portability requirements (development platform, execution plat-
form, maintenance platform, demo platform) and

– documentation requirements.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 139

(4. Requirements Engineering 4.4. Machine Requirements)

• Only dependability seems to be subjectable to rigorous, formal treat-
ment.

• The discussions of earlier carry over to this paragraph.

• That is, once the machine has been installed it, the machine, is part
of the new domain !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 139

(4. Requirements Engineering 4.4. Machine Requirements)

End of Lecture 4: REQUIREMENTS ENGINEERING

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 139

(4. Requirements Engineering 4.4. Machine Requirements)

Start of Lecture 13: CONCLUDING DISCUSSION & CONCLUSION

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 140

5. Discussion

• We discuss a number of issues that were left open above.

5.1. What Have We Omitted

• Our coverage of domain and requirements engineering has focused
on modelling techniques for domain and requirements facets.

• We have omitted the important software engineering tasks of

– stakeholder identification and liaison,

– domain and, to some extents also requirements, especially goal
acquisition and analysis,

– terminologisation, and

– techniques for domain and requirements and goal validation and
[goal] verification (D,R |= G).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 141

(5. Discussion 5.1. What Have We Omitted)

5.2. Domain Descriptions Are Not Normative

• The description of, for example,

– “the” domain of the New York Stock Exchange would describe

∗ the set of rules and regulations governing the submission of sell offers and
buy bids

∗ as well as those of clearing (‘matching’) sell offers and buy bids.

– These rules and regulations appears to be quite different from those of the
Tokyo Stock Exchange.

– A normative description of stock exchanges would abstract these rules so as to
be rather un-informative.

– And, anyway, rules and regulations changes and business process re-engineering
changes entities, actions, events and behaviours.

– For any given software development one may thus have to rewrite parts of
existing domain descriptions, or construct an entirely new such description.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 142

(5. Discussion 5.2. Domain Descriptions Are Not Normative)

5.3. “Requirements Always Change”

• This claim is often used as a hidden excuse for not doing a proper,
professional job of requirements prescription, let alone “deriving”
them, as we advocate, from domain descriptions.

• Instead we now make the following counterclaims

– [1] “domains are far more stable than requirements” and

– [2] “requirements changes arise more as a result of business process
re-engineering than as a result of changing stakeholder ideas”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 143

(5. Discussion 5.3. “Requirements Always Change”)

• Closer studies of a number of domain descriptions,

– for example of a financial service industry,

– reveals that the domain in terms of which an “ever expanding”
variety of financial products are offered,

– are, in effect, based on a small set of very basic domain functions
which have been offered for well-nigh centuries !

• We claim that

– thoroughly developed domain descriptions and

– thoroughly “derived” requirements prescriptions

– tend to stabilise the requirements re-design,

– but never alleviate it.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 144

(5. Discussion 5.3. “Requirements Always Change”)

5.4. What Can Be Described and Prescribed

• The issue of “what can be described” has been a constant challenge
to philosophers.

– Bertran Russell covers , in a 1919 publication, Theory of De-
scriptions, and

– in [Philosophy of Mathematics] a revision, as The Philosophy of
Logical Atomism.

• The issue is not that straightforward.

• In two recent papers we try to broach the topic from the point of
view of the kind of domain engineering presented in these lectures.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 145

(5. Discussion 5.4. What Can Be Described and Prescribed)

• Our approach is simple; perhaps too simple !

• We can describe what can be observed.

• We do so,

– first by postulating types of observable phenomena and of derived
concepts;

– then by the introduction of observer functions and by axioms over
these, that is, over values of postulated types and observers.

– To this we add defined functions; usually described by pre/post-
conditions.

∗ The narratives refer to the “real” phenomena

∗ whereas the formalisations refer to related phenomenological
concepts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 146

(5. Discussion 5.4. What Can Be Described and Prescribed)

• The narrative/formalisation problem is that one can ‘describe’ phe-
nomena without always knowing how to formalise them.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 147

(5. Discussion 5.4. What Can Be Described and Prescribed)

5.5. What Have We Achieved – and What Not

• Earlier we made some claims.

• We think we have substantiated them all, albeit ever so briefly.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 148

(5. Discussion 5.5. What Have We Achieved – and What Not)

• Each of the domain facets

– (intrinsics,

– support technologies,

– rules and regulations,

– scripts [licenses and contracts],

– management and organisation and

– human behaviour)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 149

(5. Discussion 5.5. What Have We Achieved – and What Not)

• and each of the requirements facets

– (projection,

– instantiation,

– determination,

– extension and

– fitting)

• provide rich grounds for both specification methodology studies and and for more
theoretical studies.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 150

(5. Discussion 5.5. What Have We Achieved – and What Not)

5.6. Relation to Other Work

• The most obvious ‘other’ work is that of Michael jackson’s [Problem
Frames].

– In that book Jackson, like is done here,

∗ departs radically from conventional requirements engineering.

∗ In his approach understandings of the domain, the requirements
and possible software designs

∗ are arrived at, not hierarchically, but in parallel, interacting
streams of decomposition.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 151

(5. Discussion 5.6. Relation to Other Work)

• Thus the ‘Problem Frame’ development approach iterates between
concerns of

– domains,

– requirements and

– software design.

• “Ideally” our approach pursues

– domain engineering

– prior to requirements engineering,

– and, the latter, prior to software design.

• But see next.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 152

(5. Discussion 5.6. Relation to Other Work)

• The recent book [Axel van Lamsweerde]

– appears to represent the most definitive work on Requirements
Engineering today.

– Much of its requirements and goal acquisition and analysis tech-
niques

– carries over to main aspects of domain acquisition and analysis
techniques

– and the goal-related techniques of apply to determining which

∗ projections,

∗ instantiation,

∗ determination and

∗ extension operations

to perform on domain descriptions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 153

(5. Discussion 5.6. Relation to Other Work)

5.7. “Ideal” Versus Real Developments

• The term ‘ideal’ has been used in connection with ‘ideal development’
from domain to requirements.

• We now discuss that usage.

• Ideally software development could proceed

– from developing domain descriptions

– via “deriving” requirements prescriptions

– to software design,

each phase involving extensive

– formal specifications,

– verifications (formal testing, model checking and theorem proving)
and validation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 154

(5. Discussion 5.7. “Ideal” Versus Real Developments)

• More realistically

– less comprehensive domain description development (D)

– may alternate with both requirements development (R) work

– and with software design (S) –

– in some

∗ controlled,

∗ contained

∗ iterated and

∗ “spiralling”

manner

– and such that it is at all times clear which development step is
what: D, R or S!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 155

(5. Discussion 5.7. “Ideal” Versus Real Developments)

5.8. Description Languages

• We have used the RSL specification language, for the formalisations
of this report,

• but any of the model-oriented approaches and languages offered by

– Alloy,

– Event B,

– RAISE,

– VDM and

– Z,

should work as well.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 156

(5. Discussion 5.8. Description Languages)

• No single one of the above-mentioned formal specification languages,
however, suffices.

• Often one has to carefully combine the above with elements of

– Petri Nets,

– CSP,

– MSC,

– Statecharts,

and/or some temporal logic, for example

– either DC or

– TLA+.

• Research into how such diverse textual and diagrammatic languages
can be combined is ongoing.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 157

(5. Discussion 5.8. Description Languages)

5.9. D,S |= R

• In a proof of correctness of Software design with respect toRequirements
prescriptions one often has to refer to assumptions about theDomain.

• Formalising our understandings of the Domain, the Requirements
and the Software design enables proofs that the software is right and
the formalisation of the “derivation” of Requirements from Domain
specifications help ensure that it is the right software .

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 158

(5. Discussion 5.9. D,S |= R)

5.10. Domain Versus Ontology Engineering

• In the information science community an ontology is a

– “formal, explicit specification of a shared conceptualisation”.

• Most of the information science ontology work seems aimed primarily
at axiomatisations of properties of entities.

• Apart from that there are many issues of “ontological engineering”
that are similar to the triptych kind of domain engineering;

– but then, we claim, that domain engineering goes well beyond
ontological engineering and makes free use of whatever formal
specification languages are needes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 159

6. Conclusion

• These lecture slides are based on the paper:

From Domains to Requirements

Submitted for publication

December 7, 2009

• Versions of that paper are found on the Internet”

www.imm.dtu.dk/~db/short-from-domains-to-requirements.p

www.imm.dtu.dk/~db/long-from-domains-to-requirements.pd

– The examples of the short version are without formulas.

– The examples of the long version are with formulas.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 160

(6. Conclusion)

• The idea of extending that (8-11 page two column) paper

– into a brief set of lectures notes and slides

– arose in connection with the author’s

– April 2010 lectures at the Technical University of Vienna.

• In addition to a normal format paper

– a full-fledged “RSL primer”,

– a number of clarifying methodology sections and

– further examples

have been added as appendices.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 161

(6. Conclusion)

• The formalisations of these lecture notes (and slides)

– which are expressed in RSL,

– the RAISE Specification Languange,

– can be expressed in either of

∗ Alloy,

∗ Event B,

∗ VDM-SL or

∗ Z.

– The present author

∗ would like to work with “enthusiasts” (i.e., “followers”)

∗ of the above-listed specification languages

∗ to achieve versions of these lecture notes (and slides)

∗ for any and all of these other formal specification languages.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 161

(6. Conclusion)

End of Lecture 13: CONCLUDING DISCUSSION & CONCLUSION

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 161

(. Conclusion)

Start of Lecture 6: RSL: TYPES

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 162

A. An RSL Primer
A.1. Types

A.1.1. Type Expressions

• Type expressions are expressions whose value are type, that is,

• possibly infinite sets of values (of “that” type).

A.1.1.1. Atomic Types

• Atomic types have (atomic) values.

• That is, values which we consider to have no proper constituent
(sub-)values,

• i.e., cannot, to us, be meaningfully “taken apart”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 163

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

type

[1] Bool

[2] Int

[3] Nat

[4] Real

[5] Char

[6] Text

1. The Boolean type of truth values false

and true.

2. The integer type on integers ..., –2, –1,
0, 1, 2,

3. The natural number type of positive
integer values 0, 1, 2, ...

4. The real number type of real values,

i.e., values whose numerals can be writ-
ten as an integer, followed by a period
(“.”), followed by a natural number
(the fraction).

5. The character type of character values
′′a′′, ′′b′′, ...

6. The text type of character string val-
ues ′′aa′′, ′′aaa′′, ..., ′′abc′′, ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 164

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

Example 28 – Basic Net Attributes:

• For safe, uncluttered traffic, hubs and links can ‘carry’ a maximum of
vehicles.

• Links have lengths. (We ignore hub (traveersal) lengths.)

• One can calculate whether a link is a two-way link.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 165

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

type

MAX = Nat

LEN = Real

is Two Way Link = Bool

value

ωMax: (H|L) → MAX
ωLen: L → LEN
is two way link: L → is Two Way Link
is two way link(l) ≡ ∃ lσ:LΣ • lσ ∈ ωHΣ(l)∧card lσ=2

End of Example 28

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 166

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.1. Atomic Types)

A.1.1.2. Composite Types

• Composite types have composite values.

• That is, values which we consider to have proper constituent (sub-)-
values,

• i.e., can, to us, be meaningfully “taken apart”.

[7] A-set

[8] A-infset

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B

[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 167

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

Example 29 – Composite Net Type Expressions:

• The type clauses of function signatures:

value

f: A → B

• often have the type expressions A and/or B

• be composite type expressions:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 168

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

value

ωHIs: L → HI-set Example 1 Item [5]
ωLIs: H → LI-set Example 1 Item [6]
ωHΣ: H → HT-set Example 1 Item [10]
set HΣ: H × HΣ → H Example 2 Item [12]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 169

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

• Right-hand sides of type definitions often have composite type expres-
sions:

type

N = H-set × L-set Example 1 Item [2]
HT = LI × HI × LI Example 1 Item [9]
LT′ = HI × LI × HI Example 7 Item [32]

End of Example 29

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 170

(A. An RSL Primer A.1. Types A.1.1. Type Expressions A.1.1.2. Composite Types)

A.1.2. Type Definitions
A.1.2.1. Concrete Types

• Types can be concrete

• in which case the structure of the type is specified by type expres-
sions:

type

A = Type expr

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 171

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

Example 30 – Composite Net Types:

• There are many ways in which nets can be concretely modelled:

• Sorts + Observers + Axioms: First we show an example of type
definitions without right-hand side, that is, of sort definitions.

From a net one can observe many things.

Of the things we focus on are the hubs and the links.

A net contains two or more hubs and one or more links.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 172

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

[sorts] Nα, H, L, HI, LI
value

ωHs: Nα → H-set

ωLs: Nα → L-set
axiom

∀ n:Nα • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧ ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 173

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Cartesians + Wellformedness: A net can be considered as a
Cartesian of sets of two or more hubs and sets of one or more links.

type

[sorts] H, L
Nβ = H-set × L-set

value

wf Nβ: Nβ → Bool

wf Nβ(hs,ls) ≡ card hs≥2 ∧ card ls≥1

inject Nβ: Nα
∼
→ Nβ pre: wf Nβ(hs,ls)

inject Nβ(nα) ≡ (ωHs(nα),ωLs(nα))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 174

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Cartesians + Maps + Wellformedness: Or a net can be mod-
elled as a triple of

– hubs (modelled as a map from hub identfiers to hubs),

– links (modelled as a map from link identfiers to links), and

– a graph from hub hi identifiers hii to maps from identfiers liji
of

hub hi connected links lij to the identfiers hji of link connected
hubs hj.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 175

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

[sorts] H, HI, L, LI
Nγ = HUBS × LINKS × GRAPH

[a] HUBS = HI →m H
[b] LINKS = LI →m L
[c] GRAPH = HI →m (LI −m> HI)

– [a,b] hs:HUBS and ls:LINKS are maps from hub (link) identifiers to
hubs (links) where one can still observe these identfiers from these
hubs (link).

• Example 39 on page 231 defines the well-formedness predicates for
the above map types.

End of Example 30

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 176

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• Schematic type definitions:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name′

• P(v) |}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 177

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

• where a form of [2–3] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1′,a2′,...,ai′) = a in

a1′ = s a1(a) ∧ a2′ = s a2(a) ∧ ... ∧ ai′ = s ai(a) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 178

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

Example 31 – Net Record Types: Insert Links:

7. To a net one can insert a new link in either of three ways:

(a) Either the link is connected to two existing hubs — and the insert operation
must therefore specify the new link and the identifiers of two existing hubs;

(b) or the link is connected to one existing hub and to a new hub — and the insert
operation must therefore specify the new link, the identifier of an existing hub,
and a new hub;

(c) or the link is connected to two new hubs — and the insert operation must
therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of respective hubs.

8. From a net one can remove a link.3 The removal command specifies a link identifier.

3– provided that what remains is still a proper net

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 179

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

type

7 Insert == Ins(s ins:Ins)
7 Ins = 2xHubs | 1x1nH | 2nHs
7(a) 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
7(b) 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
7(c) 2nHs == 2newH(s h1:H,s l:L,s h2:H)
8 Remove == Rmv(s li:LI)

axiom

7(d) ∀ 2oldH(hi′,l,hi′′):Ins • hi′6=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

Example ?? on page ?? presents the semantics functions for int Insert
and int Remove. End of Example 31

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 180

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.1. Concrete Types)

A.1.2.2. Subtypes

• In RSL, each type represents a set of values. Such a set can be
delimited by means of predicates.

• The set of values b which have type B and which satisfy the predicate
P , constitute the subtype A:

type

A = {| b:B • P(b) |}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 181

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

Example 32 – Net Subtypes:

• In Example 30 on page 171 we gave three examples.

– For the first we gave an example, Sorts + Observers + Axioms,
“purely” in terms of sets, see Sorts — Abstract Types below.

– For the second and third we gave concrete types in terms of Carte-
sians and Maps.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 182

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Sorts + Observers + Axioms part of Example 30

– a net was defined as a sort, and so were its hubs, links, hub identi-
fiers and link identifiers;

– axioms – making use of appropriate observer functions - make up
the wellformedness condition on such nets.

We now redefine this as follows:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 183

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

type

[sorts] N′, H, L, HI, LI
N = {|n:N′

• wf N(n)|}
value

wf N: N′ → Bool

wf N(n) ≡
∀ n:N • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧
[5−−8] of example 1

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 184

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Cartesians + Wellformedness part of Example 30

– a net was a Cartesian of a set of hubs and a set of links

– with the wellformedness that there were at least two hubs and at
least one link

– and that these were connected appropriately (treated as ...).

We now redefine this as follows:

type

N′ = H-set × L-set
N = {|n:N′

• wf N(n)|}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 185

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

• In the Cartesians + Maps + Wellformedness part of Example 30

– a net was a triple of hubs, links and a graph,

– each with their wellformednes predicates.

We now redefine this as follows:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 186

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

type

[sorts] L, H, LI, HI
N′ = HUBS × LINKS × GRAPH
N = {|(hs,ls,g):N′

• wf HUBS(hs)∧wf LINKS(ls)∧wf GRAPH(g)(hs,ls)|}
HUBS′ = HI →m H
HUBS = {|hs:HUBS′

• wf HUBS(hs)|}
LINKS′ = LI → L
LINKS = {|ls:LINKS′

• wf LINKS(ls)|}
GRAPH′ = HI →m (LI →m HI)
GRAPH = {|g:GRAPH′

• wf GRAPH(g)|}
value

wf GRAPH: GRAPH′ → (HUBS × LINKS) → Bool

wf GRAPH(g)(hs,ls) ≡ wf N(hs,ls,g)

• Example 39 on page 231 presents a definition of wf GRAPH.

End of Example 32

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 187

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.2. Subtypes)

A.1.2.3. Sorts — Abstract Types

• Types can be (abstract) sorts

• in which case their structure is not specified:

type

A, B, ..., C

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 188

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

Example 33 – Net Sorts:

• In formula lines of Examples 30–32

• we have indicated those type clauses which define sorts,

• by bracketed [sorts] literals.

End of Example 33

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 188

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

End of Lecture 6: RSL: TYPES

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 188

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

Start of Lecture 7: RSL: VALUES & OPERATIONS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 189

(A. An RSL Primer A.1. Types A.1.2. Type Definitions A.1.2.3. Sorts — Abstract Types)

A.2. Concrete RSL Types: Values and Operations
A.2.1. Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=, 6=,≥,> (Nat|Int|Real) × (Nat|Int|Real) → Bool

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 190

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.1. Arithmetic)

A.2.2. Set Expressions
A.2.2.1. Set Enumerations

Let the below a’s denote values of type A, then the below designate
simple set enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ⊆ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ⊆ A-infset

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 191

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Example 34 – Set Expressions over Nets:

• We now consider hubs to abstract cities, towns, villages, etcetera.

• Thus with hubs we can associate sets of citizens.

• Let c:C stand for a citizen value c being an element in the type C of
all such.

• Let g:G stand for any (group) of citizens, respectively the type of all
such.

• Let s:S stand for any set of groups, respectively the type of all such.

• Two otherwise distinct groups are related to one another if they share
at least one citizen, the liaisons.

• A network nw:NW is a set of groups such that for every group in
the network one can always find another group with which it shares
liaisons.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 192

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Solely using the set data type and the concept of subtypes, we can model
the above:

type

C
G′ = C-set, G = {| g:G′

• g6={} |}
S = G-set

L′ = C-set, L = {| ℓ:L′

• ℓ 6={} |}
NW′ = S, NW = {| s:S • wf S(s) |}

value

wf S: S → Bool

wf S(s) ≡ ∀ g:G • g ∈ s ⇒ ∃ g′:G • g′ ∈ s ∧ share(g,g′)
share: G×G → Bool

share(g,g′) ≡ g6=g′ ∧ g ∩ g′ 6= {}
liaisons: G×G → L
liaisons(g,g′) = g ∩ g′ pre share(g,g′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 193

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

Annotations:

• L stands for proper liaisons (of at least one liaison).

• G′, L′ and N′ are the “raw” types which are constrained to G, L and N.

• {| binding:type expr • bool expr |} is the general form of the subtype expression.

• For G and L we state the constraints “in-line”, i.e., as direct part of the subtype
expression.

• For NW we state the constraints by referring to a separately defined predicate.

• wf S(s) expresses — through the auxiliary predicate — that s contains at least two
groups and that any such two groups share at least one citizen.

• liaisons is a “truly” auxiliary function in that we have yet to “find an active need”
for this function!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 194

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

• The idea is that citizens can be associated with more than one city,
town, village, etc.

• (primary home, summer and/or winter house, working place, etc.).

• A group is now a set of citizens related by some “interest”

• (Rotary club membership, political party “grassroots”, religion, et.).

• The student is invited to define, for example, such functions as:

– The set of groups (or networks) which are represented in all hubs [or in only one
hub].

– The set of hubs whose citizens partake in no groups [respectively networks].

– The group [network] with the largest coverage in terms of number of hubs in
which that group [network] is represented.

End of Example 34

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 195

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.1. Set Enumerations)

A.2.2.2. Set Comprehension

• The expression, last line below, to the right of the ≡, expresses set
comprehension.

• The expression “builds” the set of values satisfying the given predi-
cate.

• It is abstract in the sense that it does not do so by following a
concrete algorithm.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 196

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 197

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

Example 35 – Set Comprehensions:

• Example 30 on page 171 illustrates, in the Cartesians + Maps
+ Wellformedness part the following set comprehensions in the
wf N(hs,ls,g) wellformedness predicate definition:

– [d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g}

∗ It expresses the distributed union

∗ of sets (dom g(hi)) of link identfiers

∗ (for each of the hi indexed maps from (definition set, dom) link
identiers

∗ to (range set, rng) hub identifiers, where hi:HI ranges over dom

g).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 198

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

– [e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g}

∗ It expresses the distributed union

∗ of sets (rng g(hi)) of hub identfiers

∗ (for each of the hi indexed maps from (definition set, dom) link
identiers

∗ to (range set, rng) hub identifiers, where hi:HI ranges over
deom g).

End of Example 35

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 199

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.2. Set Expressions A.2.2.2. Set Comprehension)

A.2.3. Cartesian Expressions
A.2.3.1. Cartesian Enumerations

• Let e range over values of Cartesian types involving A, B, . . ., C,

• then the below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 200

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

Example 36 – Cartesian Net Types:

• So far we have abstracted hubs and links as sorts.

• That is, we have not defined their types concretely.

• Instead we have postulated some attributes such as:

– observable hub identifiers of hubs and

– sets of observable link identifiers of links connected to hubs.

• We now claim the following further attributes of hubs and links.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 201

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

• Concrete links have

– link identifiers,

– link names – where two or more connected links may have the same link name,

– two (unordered) hub identifiers,

– lenghts,

– locations – where we do not presently defined what we main by locations,

– etcetera

• Concrete hubs have

– hub identifiers,

– unique hub names,

– a set of one or more observable link identifiers,

– locations,

– etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 202

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

type

LN, HN, LEN, LOC
cL = LI × LN × (HI × HI) × LOC × ...
cH = HI × HN × LI-set × LOC × ...

End of Example 36

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 203

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.3. Cartesian Expressions A.2.3.1. Cartesian Enumerations)

A.2.4. List Expressions
A.2.4.1. List Enumerations

• Let a range over values of type A,

• then the below expressions are simple list enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ⊆ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ⊆ Aω

〈 a i .. a j 〉

• The last line above assumes ai and aj to be integer-valued expres-
sions.

• It then expresses the set of integers from the value of ei to and
including the value of ej.

• If the latter is smaller than the former, then the list is empty.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 204

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.1. List Enumerations)

A.2.4.2. List Comprehension

• The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 205

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

Example 37 – Routes in Nets:

• A phenomenological (i.e., a physical) route of a net is a sequence of
one or more adjacent links of that net.

• A conceptual route is a sequence of one or more link identifiers.

• An abstract route is a conceptual route

– for which there is a phenomenological route of the net

– for which the link identifiers of the abstract route

– map one-to-one onto links of the phenomenological route.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 206

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

type

N, H, L, HI, LI
PR′ = L∗

PR = {| pr:PR′
• ∃ n:N • wf PR(pr)(n)|}

CR = LI∗

AR′ = LI∗

AR = {| ar:AR′
• ∃ n:N • wf AR(ar)(n) |}

value

wf PR: PR′ → N → Bool

wf PR(pr)(n) ≡
∀ i:Nat • {i,i+1}⊆inds pr ⇒

ωHIs(l(i)) ∩ ωHIs(l(i+1)) 6= {}
wf AR′: AR′ → N → Bool

wf AR(ar)(n) ≡
∃ pr:PR • pr ∈ routes(n) ∧ wf PR(pr)(n) ∧ len pr=len ar ∧

∀ i:Nat • i ∈ inds ar ⇒ ωLI(pr(i))=ar(i)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 207

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

• A single link is a phenomenological route.

• If r and r′ are phenomenological routes

– such that the last link r

– and the first link of r′

– share observable hub identifiers,

then the concatenation r̂r′ is a route.

This inductive definition implies a recursive set comprehension.

• A circular phenomenological route is a phenomenological route whose first and last
links are distinct but share hub identifiers.

• A looped phenomenological route is a phenomenological route where two distinctly
positions (i.e., indexed) links share hub identifiers.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 208

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

value

routes: N → PR-infset

routes(n) ≡
let prs = {〈l〉|l:L•ωLs(n)} ∪

∪ {pr̂pr′|pr,pr′:PR•{pr,pr′}⊆prs∧ωHIs(r(len pr))∩ωHIs(pr′(1)) 6={}}
prs end

is circular: PR → Bool

is circular(pr) ≡ ωHIs(pr(1))∩ωHIs(pr(len pr))6={}

is looped: PR → Bool

is looped(pr) ≡ ∃ i,j:Nat • i6=j∧{i,j}⊆index pr ⇒ ωHIs(pr(i))∩ωHIs(pr(j))6={}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 209

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

• Straight routes are Phenomenological routes without loops.

• Phenomenological routes with no loops can be constructed from phe-
nomenological routes by removing suffix routes whose first link give
rise to looping.

value

straight routes: N → PR-set

straight routes(n) ≡
let prs = routes(n) in {straight route(pr)|pr:PR•ps ∈ prs} end

straight route: PR → PR
straight route(pr) ≡
〈pr(i)|i:Nat•i:[1..len pr] ∧ pr(i) 6∈ elems〈pr(j)|j:Nat•j:[1..i]〉〉

End of Example 37

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 210

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.4. List Expressions A.2.4.2. List Comprehension)

A.2.5. Map Expressions
A.2.5.1. Map Enumerations

• Let (possibly indexed) u and v range over values of type T1 and T2,
respectively,

• then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
{[], [u 7→v], ..., [u1 7→v1,u27→v2,...,un 7→vn],...} ⊆ M

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 211

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.1. Map Enumerations)

A.2.5.2. Map Comprehension

• The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 212

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

Example 38 – Concrete Net Type Construction:

• We Define a function con[struct] Nγ (of the Cartesians + Maps
+ Wellformedness part of Example 30.

– The base of the construction is the fully abstract sort definition of
Nα in the Sorts + Observers + Axioms part of Example 30
– where the sorts of hub and link identifiers are taken from earlier
examples.

– The target of the construction is the Nγ of the Cartesians +
Maps + Wellformedness part of Example 30.

– First we recall the ssential types of that Nγ.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 213

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

type

Nγ = HUBS × LINKS × GRAPH
HUBS = HI →m H
LINKS = LI →m L
GRAPH = HI →m (LI →m HI)

value

con Nγ: Nα → Nγ

con Nγ(nα) ≡
let hubs = [ωHI(h) 7→ h | h:H • h ∈ ωHs(nα)],

links = [ωLI(h) 7→ l | l:L • l ∈ ωLs(nα)],
graph = [ωHI(h) 7→ [ωLI(l) 7→ ι(ωHIs(l)\{ωHI(h)})

| l:L • l ∈ ωLs(nα)∧li ∈ ωLIs(h)]
| H:h • h ∈ ωHs(nα)] in

(hubs.links,graph) end

ι: A-set
∼
→ A [A could be LI-set]

ι(as) ≡ if card as=1 then let {a}=as in a else chaos end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 214

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

theorem:

nα satisfies axioms [2,5–8] for N of Example 1 ⇒ wf Nγcon Nγ(nα)

End of Example 38

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 215

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.5. Map Expressions A.2.5.2. Map Comprehension)

A.2.6. Set Operations
A.2.6.1. Set Operator Signatures

value

9 ∈: A × A-infset → Bool

10 6∈: A × A-infset → Bool

11 ∪: A-infset × A-infset → A-infset

12 ∪: (A-infset)-infset → A-infset

13 ∩: A-infset × A-infset → A-infset

14 ∩: (A-infset)-infset → A-infset

15 \: A-infset × A-infset → A-infset

16 ⊂: A-infset × A-infset → Bool

17 ⊆: A-infset × A-infset → Bool

18 =: A-infset × A-infset → Bool

19 6=: A-infset × A-infset → Bool

20 card: A-infset
∼
→ Nat

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 216

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.1. Set Operator Signatures)

A.2.6.2. Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 217

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.2. Set Examples)

A.2.6.3. Informal Explication

9. ∈: The membership operator expresses that an element is a member of a set.

10. 6∈: The nonmembership operator expresses that an element is not a member of a
set.

11. ∪: The infix union operator. When applied to two sets, the operator gives the set
whose members are in either or both of the two operand sets.

12. ∪: The distributed prefix union operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.

13. ∩: The infix intersection operator. When applied to two sets, the operator gives
the set whose members are in both of the two operand sets.

14. ∩: The prefix distributed intersection operator. When applied to a set of sets, the
operator gives the set whose members are in some of the operand sets.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 218

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.3. Informal Explication)

15. \: The set complement (or set subtraction) operator. When applied
to two sets, the operator gives the set whose members are those of
the left operand set which are not in the right operand set.

16. ⊆: The proper subset operator expresses that all members of the
left operand set are also in the right operand set.

17. ⊂: The proper subset operator expresses that all members of the
left operand set are also in the right operand set, and that the two
sets are not identical.

18. =: The equal operator expresses that the two operand sets are iden-
tical.

19. 6=: The nonequal operator expresses that the two operand sets are
not identical.

20. card: The cardinality operator gives the number of elements in a
finite set.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 219

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.3. Informal Explication)

A.2.6.4. Set Operator Definitions

value

s′ ∪ s′′ ≡ { a | a:A • a ∈ s′ ∨ a ∈ s′′ }
s′ ∩ s′′ ≡ { a | a:A • a ∈ s′ ∧ a ∈ s′′ }
s′ \ s′′ ≡ { a | a:A • a ∈ s′ ∧ a 6∈ s′′ }
s′ ⊆ s′′ ≡ ∀ a:A • a ∈ s′ ⇒ a ∈ s′′

s′ ⊂ s′′ ≡ s′ ⊆ s′′ ∧ ∃ a:A • a ∈ s′′ ∧ a 6∈ s′

s′ = s′′ ≡ ∀ a:A • a ∈ s′ ≡ a ∈ s′′ ≡ s⊆s′ ∧ s′⊆s
s′ 6= s′′ ≡ s′ ∩ s′′ 6= {}
card s ≡
if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 220

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.6. Set Operations A.2.6.4. Set Operator Definitions)

A.2.7. Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1′,b1′,c1′) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 221

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.7. Cartesian Operations)

A.2.8. List Operations
A.2.8.1. List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

̂: A∗ × Aω → Aω

=: Aω × Aω → Bool

6=: Aω × Aω → Bool

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 222

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.1. List Operator Signatures)

A.2.8.2. List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 223

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.2. List Operation Examples)

A.2.8.3. Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is
removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a
nonempty list. For empty lists, this set is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct ele-
ments in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ
having a number of elements larger than or equal to i, gives the ith
element of the list.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 224

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.3. Informal Explication)

• ̂: Concatenates two operand lists into one. The elements of the
left operand list are followed by the elements of the right. The order
with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are iden-
tical.

• 6=: The nonequal operator expresses that the two operand lists are
not identical.

The operations can also be defined as follows:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 225

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.3. Informal Explication)

A.2.8.4. List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i 6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 226

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.4. List Operator Definitions)

q(i) ≡
case (q,i) of

(〈〉,1) → chaos,
(,1) → let a:A,q′:Q • q=〈a〉̂q′ in a end

→ q(i−1)
end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq′ = iq′′ ≡
inds iq′ = inds iq′′ ∧ ∀ i:Nat • i ∈ inds iq′ ⇒ iq′(i) = iq′′(i)

iq′ 6= iq′′ ≡ ∼(iq′ = iq′′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 227

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.8. List Operations A.2.8.4. List Operator Definitions)

A.2.9. Map Operations
A.2.9.1. Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a1 7→b1,a27→b2,...,an 7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a1 7→b1,a27→b2,...,an 7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a 7→b,a′7→b′,a′′7→b′′] † [a′7→b′′,a′′7→b′] = [a 7→b,a′7→b′′,a′′7→b′]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 228

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.1. Map Operator Signatures and Map Operation Examples

∪: M × M → M [merge ∪]
[a 7→b,a′7→b′,a′′7→b′′] ∪ [a′′′7→b′′′] = [a 7→b,a′7→b′,a′′7→b′′,a′′′7→b′′′]

\: M × A-infset → M [restriction by]
[a 7→b,a′7→b′,a′′7→b′′]\{a} = [a′7→b′,a′′7→b′′]

/: M × A-infset → M [restriction to]
[a 7→b,a′7→b′,a′′7→b′′]/{a′,a′′} = [a′7→b′,a′′7→b′′]

=, 6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a 7→b,a′7→b′] ◦ [b 7→c,b′7→c′,b′′7→c′′] = [a 7→c,a′7→c′]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 229

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.1. Map Operator Signatures and Map Operation Examples

A.2.9.2. Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to

in a map.

• rng: Range/Image Set gives the set of values which are mapped to

in a map.

• †: Override/Extend. When applied to two operand maps, it gives
the map which is like an override of the left operand map by all or
some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of
these maps.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 230

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

• \: Restriction. When applied to two operand maps, it gives the map which

is a restriction of the left operand map to the elements that are not in the right

operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is

a restriction of the left operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are
identical.

• 6=: The nonequal operator expresses that the two operand maps are
not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from

definition set elements of the left operand map, m1, to the range elements of the

right operand map, m2, such that if a is in the definition set of m1 and maps into

b, and if b is in the definition set of m2 and maps into c, then a, in the composition,

maps into c.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 231

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

Example 39 – Miscellaneous Net Expressions: Maps: Ex-
ample 30 on page 171 left out defining the well-formedness of the map
types:

value

wf HUBS: HUBS → Bool

[a] wf HUBS(hubs) ≡ ∀ hi:HI • hi ∈ dom hubs ⇒ ωHIhubs(hi)=hi
wf LINKS: LINKS → Bool

[b] wf LINKS(links) ≡ ∀ li:LI • li ∈ dom links ⇒ ωLIlinks(li)=li
wf Nγ: Nγ → Bool

wf Nγ(hs,ls,g) ≡
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 232

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

• [c] HUBS record the same hubs as do the net corresponding GRAPHS (dom hs =
dom g ∧).

• [d] GRAPHS record the same links as do the net corresponding LINKS (∪ {dom

g(hi)|hi:HI • hi ∈ dom g} = dom links).

• [e] The target (or range) hub identifiers of graphs are the same as the domain of
the graph (∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g), that is none missing, no
new ones !

• [f] No links emanate from and are incident upon the same hub (∀ hi:HI • hi ∈ dom

g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi).

• [g] If there is a link from one hub to another in the GRAPH, then the same link also
connects the other hub to the former (∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom

g(hi) ⇒ ∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li) = hi′ ∧
(g(hi′))(li) = hi).

End of Example 39

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 233

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.2. Map Operation Explication)

A.2.9.3. Map Operation Redefinitions

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a 7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a 7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 234

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

m \ s ≡ [a 7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a 7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a 7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 234

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

End of Lecture 7: RSL: VALUES & OPERATIONS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 234

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

Start of Lecture 8: RSL: PREDICATE CALCULUS and λ–CALCULUS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 235

(A. An RSL Primer A.2. Concrete RSL Types: Values and Operations A.2.9. Map Operations A.2.9.3. Map Operation Redefinitions)

A.3. The RSL Predicate Calculus
A.3.1. Propositional Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values
(true or false [or chaos]).

• Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

• are propositional expressions having Boolean values.

• ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e., operators).

• They can be read as: not, and, or, if then (or implies), equal and not equal.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 236

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.1. Propositional Expressions)

A.3.2. Simple Predicate Expressions

• Let identifiers (or propositional expressions) a, b, ..., c designate
Boolean values,

• let x, y, ..., z (or term expressions) designate non-Boolean values

• and let i, j, . . ., k designate number values,

• then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a 6=b
x=y, x6=y,
i<j, i≤j, i≥j, i 6=j, i≥j, i>j

• are simple predicate expressions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 237

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.2. Simple Predicate Expressions)

A.3.3. Quantified Expressions

• Let X, Y, . . ., C be type names or type expressions,

• and let P(x), Q(y) and R(z) designate predicate expressions in
which x, y and z are free.

• Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

• are quantified expressions — also being predicate expressions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 238

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

Example 40 – Predicates Over Net Quantities:

• From earlier examples we show some predicates:

• Example 28: Right hand side of function definition is two way link(l):

∃ lσ:LΣ • lσ ∈ ωHΣ(l)∧card lσ=2

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 239

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

• Example 30:

– The Sorts + Observers + Axioms part:

∗ Right hand side of the wellformedness function wf N(n) defini-
tion:
∀ n:N • cardωHs(n)≥2 ∧ cardωLs(n)≥1 ∧ [5−−8] of exam-
ple 1

∗ Right hand side of the wellformedness function wf N(hs,ls) defi-
nition:
card hs≥2 ∧ card ls≥1 ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 240

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

– The Cartesians + Maps + Wellformedness part:

∗ Right hand side of the wf HUBS wellformedness function definition:
∀ hi:HI • hi ∈ dom hubs ⇒ ωHIhubs(hi)=hi

∗ Right hand side of the wf LINKS wellformedness function definition:
∀ li:LI • li ∈ dom links ⇒ ωLIlinks(li)=li

∗ Right hand side of the wf N(7 hs,ls,g) wellformedness function definition:
[c] dom hs = dom g ∧
[d] ∪ {dom g(hi)|hi:HI • hi ∈ dom g} = dom links ∧
[e] ∪ {rng g(hi)|hi:HI • hi ∈ dom g} = dom g ∧
[f] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒ (g(hi))(li)6=hi
[g] ∀ hi:HI • hi ∈ dom g ⇒ ∀ li:LI • li ∈ dom g(hi) ⇒

∃ hi′:HI • hi′ ∈ dom g ⇒ ∃ ! li:LI • li ∈ dom g(hi) ⇒
(g(hi))(li) = hi′ ∧ (g(hi′))(li) = hi

End of Example 40

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 241

(A. An RSL Primer A.3. The RSL Predicate Calculus A.3.3. Quantified Expressions)

A.4. λ-Calculus + Functions
A.4.1. The λ-Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 242

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.1. The λ-Calculus Syntax)

A.4.2. Free and Bound Variables
Let x, y be variable names and e, f be λ-expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λy •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 243

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.2. Free and Bound Variables)

A.4.3. Substitution

• subst([N/x]x) ≡ N;

• subst([N/x]a) ≡ a,

for all variables a6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λx•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λy• subst([N/x]P),

if x6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y6=x and y is free in N and x is free in P

(where z is not free in (N P)).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 244

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.3. Substitution)

A.4.4. α-Renaming and β-Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results
in λy•subst([y/x]M). We can rename the formal parameter of a λ-
function expression provided that no free variables of its body M
thereby become bound.

• β-reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N
provided that no free variables of N thereby become bound in the
result. (λx•M)(N) ≡ subst([N/x]M)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 245

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.4. α-Renaming and β-Reduction)

A.4.5. An Example

Example 41 – Network Traffic:

• We model traffic by introducing a number of model concepts.

• We simplify

– – without loosing the essence of this example, namely to show the use of λ–
functions –

– by omitting consideration of dynamically changing nets.

• These are introduced next:

– Let us assume a net, n:N.

– There is a dense set, T, of times – for which we omit giving an appropriate
definition.

– There is a sort, V, of vehicles.

– TS is a dense subset of T.

– For each ts:TS we can define a minimum and a maximum time.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 246

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

– The MIN and MAX functions are meta-linguistic.

– At any moment some vehicles, v:V, have a pos:Pos ition on the net
and VP records those.

– A Pos ition is either on a link or at a hub.

– An onLink position can be designated by the link identifier, the
identifiers of the from and to hubs, and the fraction, f:F, of the
distance down the link from the from hub to the to hub.

– An atHub position just designates the hub (by its identifier).

– Traffic, tf:TF, is now a continuous function from T ime to NP
(“recordings”).

– Modelling traffic in this way entails a (“serious”) number of well-
formedness conditions. These are defined in wf TF (omitted: ...).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 247

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

value

n:N
type

T, V
TS = T-infset

axiom

∀ ts:TS • ∃ tmin,tmax:T: tmin ∈ ts ∧ tmax ∈ ts ∧ ∀ t:T • t ∈ ts ⇒ tmin ≤ t ≤ tmax
[that is: ts = {MIN (ts)..MAX (ts)}]

type

VP = V →m Pos
TF′ = T → VP, TF = {|tf:TF′

•wf TF(tf)(n)|}
Pos = onL | atH
onL == mkLPos(hi:HI,li:LI,f:F,hi:HI), atH == mkHPos(hi:HI)

value

wf TF: TF→ N → Bool

wf TF(tf)(n) ≡ ...
DOMAIN : TF → TS
MIN ,MAX : TS → T

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 248

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

• We have defined the continuous, composite entity of traffic.

• Now let us define an operation of inserting a vehicle in a traffic.

• To insert a vehicle, v, in a traffic, tf , is prescribable as follows:

– the vehicle, v, must be designated;

– a time point, t, “inside” the traffic tf must be stated;

– a traffic, vtf , from time t of vehicle v must be stated;

– as well as traffic, tf , into which vtf is to be “merged”.

• The resulting traffic is referred to as tf ′.

value

insert V: V × T × TF → TF → TF
insert V(v,t,vtf)(tf) as tf′

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 249

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

• The function insert V is here defined in terms of a pair of pre/post
conditions.

• The pre-condition can be prescribed as follows:

– The insertion time t must be within to open interval of time points
in the traffic tf to which insertion applies.

– The vehicle v must not be among the vehicle positions of tf .

– The vehicle must be the only vehicle “contained” in the “inserted”
traffic vtf .

pre: MIN (DOMAIN (tf)≤t≤MAX (DOMAIN (tf)) ∧
∀ t′:T • t′ ∈ DOMAIN (tf) ⇒ v 6∈ dom tf(t′) ∧
MIN (DOMAIN (vtf)) = t ∧
∀ t′:T•t′ ∈ DOMAIN (vtf) ⇒ dom vtf(t′)={v}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 250

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

• The post condition “defines” tf ′, the traffic resulting from merging
vtf with tf :

– Let ts be the time points of tf and vtf , a time interval.

– The result traffic, tf ′, is defines as a λ-function.

– For any t′′ in the time interval

– if t′′ is less than t, the insertion time, then tf ′ is as tf ;

– if t′′ is t or larger then tf ′ applied to t′′, i.e., tf ′(t′′)

∗ for any v′ : V different from v yields the same as (tf (t))(v′),

∗ but for v it yields (vtf (t))(v).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 251

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

post: tf′ = λt′′

•

let ts = DOMAIN (tf) ∪ DOMAIN (vtf) in

if MIN (ts) ≤ t′′ ≤ MAX (ts)
then

((t′′<t) → tf(t′′),
(t′′≥t) → [v′7→ if v′6=v then (tf(t))(v′) else (vtf(t))(v) end

|v′:V•v′ ∈ vehicles(tf)])
else chaos end

end

assumption: wf TF(vtf)∧wf TF(tf)
theorem: wf TF(tf′)

value

vehicles: TF → V-set

vehicles(tf) ≡ {v|t:T,v:V•t ∈ DOMAIN (tf)∧v ∈ dom tf(t)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 252

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.5. An Example)

A.4.6. Function Signatures
For sorts we may want to postulate some functions:

type

A, B, ..., C
value

ωB: A → B
...
ωC: A → C

• These functions cannot be defined.

• Once a domain is presented

– in which sort A and sorts or types B, ... and C occurs

– these observer functions can be demonstrated.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 253

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.6. Function Signatures)

Example 42 – Hub and Link Observers:

• Let a net with several hubs and links be presented.

• Now observer functions

– ωHs and

– ωLs

can be demonstrated:

– one simply “walks” along the net, pointing out

– this hub and

– that link,

– one-by-one

– until all the net has been visited.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 254

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.6. Function Signatures)

• The observer functions

– ωHI and

– ωLI

can be likewise demonstrated, for example:

– when a hub is “visited”

– its unique identification

– can be postulated (and “calculated”)

– to be the unique geographic position of the hub

– one which is not overlapped by any other hub (or link),

• and likewise for links. End of Example 42

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 255

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.6. Function Signatures)

A.4.7. Function Definitions
Functions can be defined explicitly:

type

A, B
value

f: A → B [a total function]
f(a expr) ≡ b expr

g: A
∼
→ B [a partial function]

g(a expr) ≡ b expr
pre P(a expr)
P: A → Bool

• a expr, b expr are

• A, respectively B valued expressions

• of any of the kinds illustrated in earlier and later sections of this
primer.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 256

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

Or functions can be defined implicitly:

value

f: A→B
f(a expr) as b
post P(a expr,b)
P: A×B→Bool

g: A
∼
→B

g(a expr) as b
pre P′(a expr)
post P(a expr,b)
P′: A→Bool

where b is just an identifier.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 257

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

• Finally functions, f, g, ..., can be defined in terms of axioms

• over function identifiers, f, g, ..., and over identiers of function argu-
ments and results.

type

A, B, C, D, ...
value

f: A → B
g: C → D
...

axiom

∀ a:A, b:B, c:C, d:D, ...
P1(f,a,b) ∧ ... ∧ Pm(f,a,b)
...
Q1(g,c,d) ∧ ... ∧ Qn(g,c,d)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 258

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

Example 43 – Axioms over Hubs, Links and Their Observers:

• Example 1 on page 39 Items [4]–[8]

• clearly demonstrates how a number of entities and observer functions
are constrained

• (that is, partially defined)

• by function signatures and axioms. End of Example 43

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 258

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

End of Lecture 8: RSL: PREDICATE CALCULUS and λ–CALCULUS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 258

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

Start of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 259

(A. An RSL Primer A.4. λ-Calculus + Functions A.4.7. Function Definitions)

A.5. Other Applicative Expressions
A.5.1. Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 260

(A. An RSL Primer A.5. Other Applicative Expressions A.5.1. Simple let Expressions)

A.5.2. Recursive let Expressions
Recursive let expressions are written as:

let f = λa•E(f,a) in B(f,a) end

let f = (λgλa•E(g,a))(f) in B(f.a) end

let f = F(f) in E(f,a) end where F ≡ λgλa•E(g,a)
let f = YF in B(f,a) end where YF = F(YF)

• We read f = YF as “f is a fix point of F”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 261

(A. An RSL Primer A.5. Other Applicative Expressions A.5.2. Recursive let Expressions)

A.5.3. Non-deterministic let Clause

• The non-deterministic let clause:

let a:A • P(a) in B(a) end

• expresses the non-deterministic selection of a value a of type A

• which satisfies a predicate P(a) for evaluation in the body B(a).

• If no a:A • P(a) the clause evaluates to chaos.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 262

(A. An RSL Primer A.5. Other Applicative Expressions A.5.3. Non-deterministic let Clause)

A.5.4. Pattern and “Wild Card” let Expressions
Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ℓ = list in ... end

let 〈a, ,b〉̂ℓ = list in ... end

let [a 7→b] ∪ m = map in ... end

let [a 7→b,] ∪ m = map in ... end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 263

(A. An RSL Primer A.5. Other Applicative Expressions A.5.4. Pattern and “Wild Card” let Expressions)

A.5.5. Conditionals

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 264

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

Example 44 – Choice Pattern Case Expressions: Insert Links:
We consider the meaning of the Insert operation designators.

21. The insert operation takes an Insert command and a net and yields
either a new net or chaos for the case where the insertion command
“is at odds” with, that is, is not semantically well-formed with respect
to the net.

22. We characterise the “is not at odds”, i.e., is semantically well-formed,
that is:

• pre int Insert(op)(hs,ls),

as follows: it is a propositional function which applies to Insert actions,
op, and nets, (hs.ls), and yields a truth value if the below relation
between the command arguments and the net is satisfied. Let (hs,ls)
be a value of type N.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 265

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

23. If the command is of the form 2oldH(hi′,l,hi′) then

⋆1 hi′ must be the identifier of a hub in hs,

⋆s2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 hi′′ must be the identifier of a(nother) hub in hs.

24. If the command is of the form 1oldH1newH(hi,l,h) then

⋆1 hi must be the identifier of a hub in hs,

⋆2 l must not be in ls and its identifier must (also) not be observable
in ls, and

⋆3 h must not be in hs and its identifier must (also) not be observable
in hs.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 266

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

25. If the command is of the form 2newH(h′,l,h′′) then

⋆1 h′ — left to the reader as an exercise (see formalisation !),

⋆2 l — left to the reader as an exercise (see formalisation !), and

⋆3 h′′ — left to the reader as an exercise (see formalisation !).

Conditions concerning the new link (second ⋆s, ⋆2, in the above three
cases) can be expressed independent of the insert command category.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 267

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

value

21 int Insert: Insert → N
∼
→ N

22′ pre int Insert: Ins → N → Bool

22′′ pre int Insert(Ins(op))(hs,ls) ≡
⋆2 s l(op) 6∈ ls ∧ obs LI(s l(op)) 6∈ iols(ls) ∧

case op of

23) 2oldH(hi′,l,hi′′) → {hi′,hi′′}∈ iohs(hs),
24) 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs) ∧ h 6∈ hs ∧ obs HI(h) 6∈ iohs(hs),
25) 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={} ∧ {obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 268

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

26. Given a net, (hs,ls), and given a hub identifier, (hi), which can be
observed from some hub in the net, xtr H(hi)(hs,ls) extracts the hub
with that identifier.

27. Given a net, (hs,ls), and given a link identifier, (li), which can be
observed from some link in the net, xtr L(li)(hs,ls) extracts the hub
with that identifier.

value

26: xtr H: HI → N
∼
→ H

26: xtr H(hi)(hs,) ≡ let h:H•h ∈ hs ∧ obs HI(h)=hi in h end

pre hi ∈ iohs(hs)

27: xtr L: HI → N
∼
→ H

27: xtr L(li)(,ls) ≡ let l:L•l ∈ ls ∧ obs LI(l)=li in l end

pre li ∈ iols(ls)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 269

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

28. When a new link is joined to an existing hub then the observable link
identifiers of that hub must be updated to reflect the link identifier of
the new link.

29. When an existing link is removed from a remaining hub then the
observable link identifiers of that hub must be updated to reflect the
removed link (identifier).

value

aLI: H × LI → H, rLI: H × LI
∼
→ H

28: aLI(h,li) as h′

pre li 6∈ obs LIs(h)
post obs LIs(h′) = {li} ∪ obs LIs(h) ∧ non I eq(h,h′)

29: rLI(h′,li) as h
pre li ∈ obs LIs(h′) ∧ card obs LIs(h′)≥2
post obs LIs(h) = obs LIs(h′) \ {li} ∧ non I eq(h,h′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 270

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

30. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of hubs and
links, has

• the hubs hs joined, ∪, by the set {h′,h′′} and

• the links ls joined by the singleton set of {l}.

31. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net of hubs
and links, has

31.1 : the hub identified by hi updated, hi′, to reflect the link connected to that hub.

31.2 : The set of hubs has the hub identified by hi replaced by the updated hub hi′

and the new hub.

31.2 : The set of links augmented by the new link.

32. If the Insert command is of kind 2oldH(hi’,l,hi”) then

32.1–.2 : the two connecting hubs are updated to reflect the new link,

32.3 : and the resulting sets of hubs and links updated.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 271

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

int Insert(op)(hs,ls) ≡
⋆i case op of

30 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
31 1oldH1newH(hi,l,h) →
31.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in

31.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
32 2oldH(hi′,l,hi′′) →
32.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
32.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

32.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end

⋆j end

⋆k pre pre int Insert(op)(hs,ls)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 272

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

33. The remove command is of the form Rmv(li) for some li.

34. We now sketch the meaning of removing a link:

(a) The link identifier, li, is, by the pre int Remove pre-condition, that of a link, l,
in the net.

(b) That link connects to two hubs, let us refer to them as h′ and h′.

(c) For each of these two hubs, say h, the following holds wrt. removal of their
connecting link:

i. If l is the only link connected to h then hub h is removed. This may mean
that

• either one

• or two hubs

are also removed when the link is removed.

ii. If l is not the only link connected to h then the hub h is modified to reflect
that it is no longer connected to l.

(d) The resulting net is that of the pair of adjusted set of hubs and links.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 273

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

value

33 int Remove: Rmv → N
∼
→ N

34 int Remove(Rmv(li))(hs,ls) ≡
34(a)) let l = xtr L(li)(ls), {hi′,hi′′} = obs HIs(l) in

34(b)) let {h′,h′′} = {xtr H(hi′,hs),xtr H(hi′′,hs)} in

34(c)) let hs′ = cond rmv(h′,hs) ∪ cond rmv H(h′′,hs) in

34(d)) (hs\{h′,h′′} ∪ hs′,ls\{l}) end end end

34(a)) pre li ∈ iols(ls)

cond rmv: LI × H × H-set → H-set

cond rmv(li,h,hs) ≡
34((c))i) if obs HIs(h)={li} then {}
34((c))ii) else {sLI(li,h)} end

pre li ∈ obs HIs(h)

End of Example 44
April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 274

(A. An RSL Primer A.5. Other Applicative Expressions A.5.5. Conditionals)

A.5.6. Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 274

(A. An RSL Primer A.5. Other Applicative Expressions A.5.6. Operator/Operand Expressions)

End of Lecture 9: RSL: APPLICATIVE CONSTRUCTS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 274

(A. An RSL Primer A.5. Other Applicative Expressions A.5.6. Operator/Operand Expressions)

Start of Lecture 10: RSL: IMPERATIVE & PARALLEL CONSTRUCTS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 275

(A. An RSL Primer A.5. Other Applicative Expressions A.5.6. Operator/Operand Expressions)

A.6. Imperative Constructs
A.6.1. Statements and State Changes

Unit

value

stmt: Unit → Unit

stmt()

• The Unit clause, in a sense, denotes “an underlying state”

– which we, for simplicity, can consider as

– a mapping from identifiers of declared variables into their values.

• Statements accept no arguments and, usually, operate on the state

– through “reading” the value(s) of declared variables and

– through “writing”, i.e., assigning values to such declared variables.

• Statement execution thus changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Affixing () as an “only” arguments to a function “means” that () is an argument of type Unit.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 276

(A. An RSL Primer A.6. Imperative Constructs A.6.1. Statements and State Changes)

A.6.2. Variables and Assignment

0. variable v:Type := expression
1. v := expr

A.6.3. Statement Sequences and skip

2. skip

3. stm 1;stm 2;...;stm n

A.6.4. Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 277

(A. An RSL Primer A.6. Imperative Constructs A.6.4. Imperative Conditionals)

A.6.5. Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

A.6.6. Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 278

(A. An RSL Primer A.6. Imperative Constructs A.6.6. Iterative Sequencing)

A.7. Process Constructs
A.7.1. Process Channels

Let A, B and D stand for two types of (channel) messages and i:KIdx
for channel array indexes, then:

channel

c,c′:A
channel

{k[i]|i:KIdx}:B
{ch[i]i:KIdx}:B

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 279

(A. An RSL Primer A.7. Process Constructs A.7.1. Process Channels)

Example 45 – Modelling Connected Links and Hubs:

• Examples (45–48) are building up a model of one form of meaning
of a transport net.

– We model the movement of vehicles around hubs and links.

– We think of each hub, each link and each vehicle to be a process.

– These processes communicate via channels.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 280

(A. An RSL Primer A.7. Process Constructs A.7.1. Process Channels)

• We assume a net, n : N , and a set, vs, of vehicles.

• Each vehicle can potentially interact

– with each hub and

– with each link.

• Array channel indices (vi,hi):IVH and (vi,li):IVL serve to effect these interactions.

• Each hub can interact with each of its connected links and indices (hi,li):IHL serves
these interactions.

type

N, V, VI
value

n:N, vs:V-set

ωVI: V → VI
type

H, L, HI, LI, M
IVH = VI×HI, IVL = VI×LI, IHL = HI×LI

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 281

(A. An RSL Primer A.7. Process Constructs A.7.1. Process Channels)

• We need some auxiliary quantities in order to be able to express sub-
sequent channel declarations.

• Given that we assume a net, n : N and a set of vehicles, vs : V S, we
can now define the following (global) values:

– the sets of hubs, hs, and links, ls of the net;

– the set, ivhs, of indices between vehicles and hubs,

– the set, ivls, of indices between vehicles and links, and

– the set, ihls, of indices between hubs and links.

value

hs:H-set = ωHs(n), ls:L-set = ωLs(n)
his:HI-set = {ωHI(h)|h:H•h ∈ hs}, lis:LI-set = {ωLI(h)|l:L•l ∈ ls},
ivhs:IVH-set = {(ωVI(v),ωHI(h))|v:V,h:H•v ∈ vs∧h ∈ hs}
ivls:IVL-set = {(ωVI(v),ωLI(l))|v:V,l:L•v ∈ vs∧l ∈ ls}
ihls:IHL-set = {(hi,li)|h:H,(hi,li):IHL• h ∈ hs∧hi=ωHI(h)∧li ∈ ωLIs(h)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 282

(A. An RSL Primer A.7. Process Constructs A.7.1. Process Channels)

• We are now ready to declare the channels:

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable hubs;

– a set of channels, {vh[i]|i:IVH•i∈ivhs} between vehicles and all po-
tentially traversable links; and

– a set of channels, {hl[i]|i:IHL•i∈ihls}, between hubs and connected
links.

channel

{vh[i] | i:IVH • i ∈ ivhs} : M
{vl[i] | i:IVL • i ∈ ivls} : M
{hl[i] | i:IHL • i ∈ ihls} : M

End of Example 45

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 283

(A. An RSL Primer A.7. Process Constructs A.7.1. Process Channels)

A.7.2. Process Definitions

• A process definition is a function definition.

• The below signatures are just examples.

• They emphasise that process functions must somehow express,

– in their signature,

• via which channels they wish to engage in input and output events.

• Processes P and Q are to interact, and to do so “ad infinitum”.

• Processes R and S are to interact, and to do so “once”, and then
yielding B, respectively D values.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 284

(A. An RSL Primer A.7. Process Constructs A.7.2. Process Definitions)

value

P: Unit → in c out k[i] Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ... ; P()
Q(i) ≡ ... k[i] ? ... c ! e ... ; Q(i)

R: Unit → out c in k[i] B
S: i:KIdx → out c in k[i] D
R() ≡ ... c′ ? ... ch[i] ! e ... ; B Val Expr
S(i) ≡ ... ch[i] ? ... c ! e ...; D Val Expr

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 285

(A. An RSL Primer A.7. Process Constructs A.7.2. Process Definitions)

Example 46 – Communicating Hubs, Links and Vehicles:

• Hubs interact with links and vehicles:

– with all immediately adjacent links,

– and with potentially all vehicles.

• Links interact with hubs and vehicles:

– with both adjacent hubs,

– and with potentially all vehicles.

• Vehicles interact with hubs and links:

– with potentially all hubs.

– and with potentially all links.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 286

(A. An RSL Primer A.7. Process Constructs A.7.2. Process Definitions)

value

hub: hi:HI × h:H → in,out {hl[(hi,li)|li:LI•li ∈ ωLIs(h)]}
in,out {vh[(vi,hi)|vi:VI•vi ∈ vis]} Unit

link: li:LI × l:L → in,out {hl[(hi,li)|hi:HI•hi ∈ ωHIs(l)]}
in,out {vh[(vi,li)|vi:VI•vi ∈ vis]} Unit

vehicle: vi:VI → (Pos × Net) → v:V →
in,out {vh[(vi,hi)|hi:HI•hi ∈ his]}
in,out {vl[(vi,li)|li:LI•li ∈ lis]} Unit

End of Example 46

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 287

(A. An RSL Primer A.7. Process Constructs A.7.2. Process Definitions)

A.7.3. Process Composition

• Let P and Q stand for names of process functions,

• i.e., of functions which express willingness to engage in input and/or
output events,

• thereby communicating over declared channels.

• Let P and Q stand for process expressions,

• and let Pi stand for an indexed process expression, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition
O { Pi | i:Idx } Distributed composition, O = ‖,⌈⌉⌊⌋,⌈⌉,–‖

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 288

(A. An RSL Primer A.7. Process Constructs A.7.3. Process Composition)

Example 47 – Modelling Transport Nets:

• The net, with vehicles, potential or actual, is now considered a process.

• It is the parallel composition of

– all hub processes,

– all link processes and

– all vehicle processes.

value

net: N → V-set → Unit

net(n)(vs) ≡
‖ {hub(ωHI(h))(h)|h:H•h ∈ ωHs(n)} ‖
‖ {link(ωLI(l))(l)|l:L•l ∈ ωLs(n)} ‖
‖ {vehicle(ωVI(v))(ωPN(v))(v)|v:V•v ∈ vs}

ωPN: V → (Pos×Net)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 289

(A. An RSL Primer A.7. Process Constructs A.7.3. Process Composition)

• We illustrate a schematic definition of simplified hub processes.

• The hub process alternates, internally non-deterministically, ⌈⌉, be-
tween three sub-processes

– a sub-process which serves the link-hub connections,

– a sub-process which serves thos vehicles which communicate that
they somehow wish to enter or leave (or do something else with
respect to) the hub, and

– a sub-process which serves the hub itself — whatever that is !

hub(hi)(h) ≡
⌈⌉⌊⌋{let m = hl[(hi,li)] ? in hub(hi)(Ehℓ

(li)(m)(h)) end|i:LI•li ∈ ωLI(h)}
⌈⌉ ⌈⌉⌊⌋{let m = vh[(vi,hi)] ? in hub(vi)(Ehv

(vi)(m)(h)) end|vi:VI•vi ∈ vis}
⌈⌉ hub(hi)(Ehown

(h))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 290

(A. An RSL Primer A.7. Process Constructs A.7.3. Process Composition)

• The three auxiliary processes:

– Ehℓ
update the hub with respect to (wrt.) connected link, li, infor-

mation m,

– Ehv
update the hub with wrt. vehicle, vi, information m,

– Ehown
update the hub with wrt. whatever the hub so decides. An

example could be signalling dependent on previous link-to-hub com-
municated information, say about traffic density.

Ehℓ
: LI → M → H → H

Ehv
: VI → M → H → H

Ehown
: H → H

• The student is encouraged to sketch/define similarly schematic link
and vehicle processes. End of Example 47

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 291

(A. An RSL Primer A.7. Process Constructs A.7.3. Process Composition)

A.7.4. Input/Output Events

• Let c and k[i] designate channels of type A

• and e expression values of type A, then:

[1] c?, k[i]? input A value
[2] c!e, k[i]!e output A value

value

[3] P: ... → out c ..., P(...) ≡ ... c!e ... offer an A value,
[4] Q: ... → in c ..., Q(...) ≡ ... c? ... accept an A value
[5] S: ... → ..., S(...) = P(...)‖Q(...) synchronise and communicate

• [5] expresses the willingness of a process to engage in an event that

– [1,3] “reads” an input, respectively

– [2,4] “writes” an output.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 292

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

Example 48 – Modelling Vehicle Movements:

• Whereas hubs and links are modelled as basically static, passive, that
is, inert, processes we shall consider vehicles to be “highly” dynamic,
active processes.

• We assume that a vehicle possesses knowledge about the road net.

– The road net is here abstracted as an awareness of

– which links, by their link identifiers,

– are connected to any given hub, designated by its hub identifier,

– the length of the link,

– and the hub to which the link is connected “at the other end”, also
by its hub identifier

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 293

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

• A vehicle is further modelled by its current position on the net in terms
of either hub or link positions

– designated by appropriate identifiers

– and, when “on a link” “how far down the link”, by a measure of a
fraction of the total length of the link, the vehicle has progressed.

type

Net = HI →m (LI →m HI)
Pos = atH | onL
atH == µatH(hi:HI)
onL == µonL(fhi:HI,li:LI,f:F,thi:HI)
F = {|f:Real•0≤f≤1|}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 294

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

• We first assume that the vehicle is at a hub.

• There are now two possibilities (1–2] versus [4–8]).

– Either the vehicle remains at that hub

∗ [1] which is expressed by some non-deterministic wait

∗ [2] followed by a resumption of being that vehicle at that location.

– [3] Or the vehicle (driver) decides to “move on”:

∗ [5] Onto a link, li,

∗ [4] among the links, lis, emanating from the hub,

∗ [6] and towards a next hub, hi′.

– [4,6] The lis and hi′ quantities are obtained from the vehicles own knowledge of
the net.

– [7] The hub and the chosen link are notified by the vehicle of its leaving the hub
and entering the link,

– [8] whereupon the vehicle resumes its being a vehicle at the initial location on
the chosen link.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 295

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

type

M == µL H(li:LI,hi:HI) | µH L(hi:HI,li:LI)
value

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(µatH(hi),net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(µatH(hi),net)(v))
[3] ⌈⌉
[4] (let lis=dom net(hi) in

[5] let li:LI•li ∈ lis in

[6] let hi′=(net(hi))(li) in

[7] (vh[(vi,hi)]!µH L(hi,li)‖vl[(vi,li)]!µH L(hi,li));
[8] vehicle(vi)(µonL(hi,li,0,hi′),net)(v)
[9] end end end)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 296

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

• We then assume that the vehicle is on a link and at a certain distance “down”, f,
that link.

• There are now two possibilities ([1–2] versus [4–7]).

– Either the vehicle remains at that hub

∗ [1′] which is expressed by some non-deterministic wait

∗ [2′] followed by a resumption of being that vehicle at that location.

– [3′] Or the vehicle (driver) decides to “move on”.

– [4′] Either

∗ [5′] The vehicle is at the very end of the link and signals the link and the hub
of its leaving the link and entering the hub,

∗ [6′] whereupon the vehicle resumes its being a vehicle at hub h′.

– [7′] or the vehicle moves further down, some non-zero fraction down the link.

• The vehicle chooses between these two possibilities by an internal non-deterministic
choice ([3]).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 297

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

type

M == µL H(li:LI,hi:HI) | µH L(hi:HI,li:LI)
value

δ:Real = move(h,f) axiom 0<δ≪1
vehicle(vi)(µonL(hi,li,f,hi′),net)(v) ≡
[1′] (wait ;
[2′] vehicle(vi)(µonL(hi,li,f,hi′),net)(v))
[3′] ⌈⌉
[4′] (case f of

[5′] 1 → ((vl[vi,hi′]!µL H(li,hi′)‖vh[vi,li]!µL H(li,hi′));
[6′] vehicle(vi)(µatH(hi′),net)(v)),
[7′] → vehicle(vi)(µonL(hi,li,f+δ,hi′),net)(v)
[8′] end)
move: H × F → F

End of Example 48
April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 297

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

End of Lecture 10: RSL IMPERATIVE & PARALLEL CONSTRUCTS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 297

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

Start of Lecture 11: RSL SPECIFICATIONS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 298

(A. An RSL Primer A.7. Process Constructs A.7.4. Input/Output Events)

A.8. Simple RSL Specifications

• Besides the above constructs RSL also possesses module-oriented

– scheme, – class and – object

constructs.

• We shall not cover these here.

• An RSL specification is then simply

– a sequence of one or more clusters of

∗ zero, one or more sort and/or type definitions,

∗ zero, one or more variable declarations,

∗ zero, one or more channel declarations,

∗ zero, one or more value definitions (including functions) and

∗ zero, one or more and axioms.

• We can illustrate these specification components schematically:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 299

(A. An RSL Primer A.8. Simple RSL Specifications)

type

A, B, C, D, E, F, G

Hf = A-set, Hi = A-infset

J = B×C×...×D

Kf = E∗, Ki = Eω

L = F→m G

Mt = J → Kf, Mp = J
∼
→ Ki

N == alpha | beta | ... | omega

O == µHf(as:Hf)
| µKf(el:Kf) | ...

P = Hf | Kf | L | ...
variable

vhf:Hf := 〈〉
channel

chf:F, chg:G, {chb[i]|i:A}:B

value

va:A, vb:B, ..., ve:E

f1: A → B, f2: C
∼
→ D

f1(a) ≡ Ef1(a)

f2: E → in|out chf F

f2(e) ≡ Ef2(e)

f3: Unit → in chf out chg Unit

...
axiom

Pi(f1,va),

Pj(f2,vb),

...
Pk(f3,ve)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 300

(A. An RSL Primer A.8. Simple RSL Specifications)

• The ordering of these clauses is immaterial.

• Intuitively the meaning of these definitions and declarations are the following.

– The type clause introduces a number of user-defined type names;

∗ the type names are visible anywhere in the specification;

∗ and either denote sorts or concrete types.

– The variable clause declares some variable names;

∗ a variable name denote some value of decalred type;

∗ the variable names are visible anywhere in the specification:

· assigned to (‘written’) or

· values ‘read’.

– The channel clause declares some channel names;

∗ either simple channels or arrays of channels of some type;

∗ the channel names are visible anywhere in the specification.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 301

(A. An RSL Primer A.8. Simple RSL Specifications)

– The value clause bind (constant) values to value names.

∗ These value names are visible anywhere in the specification.

∗ The specification

type

A
value

a:A

∗ non-deterministically binds a to a value of type A.

∗ Thuis includes, for example

type

A, B
value

f: A → B

∗ which non-deterministically binds f to a function value of type
A→B.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 302

(A. An RSL Primer A.8. Simple RSL Specifications)

• The axiom clause is usually expressed as several “comma (,) sepa-
rated” predicates:

Pi(Ai, fi, vi),Pj(Aj, fj, vj), . . .,Pk(Ak, fk, vk)

• where (Ak, fℓ, vℓ) is an abbreviation for Aℓ1
, Aℓ2

, . . . , At, fℓ1
, fℓ2

,
. . . , fℓf

, vℓ1
, vℓ2

, . . . , vℓv.

• The indexed sort or type names, A and the indexed function names,
d, are defined elsewhere in the specification.

• The index value names, v are usually names of bound ‘variables’
of universally or existentially quantified predicates of the indexed
(“comma”-separated) P .

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 303

(A. An RSL Primer A.8. Simple RSL Specifications)

Example 49 – A Neat Little “System”:

• We present a self-contained specification of a simple system:

– The system models

∗ vehicles moving along a net, vehicle,

∗ the recording of vehicles entering links, enter sensor,

∗ the recording of vehicles leaving links, leave sensor, and

∗ the road pricing payment of a vehicle having traversed (entered
and left) a link.

– Note

∗ that vehicles only pay when completing a link traversal;

∗ that ‘road pricing’ only commences once a vehicle enters the first
link after possibly having left an earlier link (and hub); and

∗ that no road pricing payment is imposed on vehicles entering,
staying-in (or at) and leaving hubs.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 304

(A. An RSL Primer A.8. Simple RSL Specifications)

– We assume the following:

∗ that each link is somehow associated with two pairs of sensors:

· a pair of enter and leave sensors at one end, and

· a pair of enter and leave sensors at the other end;

and

∗ a road pricing process

· which records pairs of link enterings and leavings,

· first one, then, after any time interval, the other,

· with leavings leading to debiting of traversal fees;

• Our first specification

– define types,

– assume a net value,

– declares channels and

– state signatures of all processes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 305

(A. An RSL Primer A.8. Simple RSL Specifications)

• ves stand for vehicle entering (link) sensor channels,

• vls stand for vehicle leaving (link) sensor channels,

• rp stand for ‘road pricing’ channel

• enter sensor(hi,li) stand for vehicle entering [sensor] process from hub
hi to link (li).

• leave sensor(li,hi) stand for vehicle leaving [sensor] process from link
li to hub (hi).

• road pricing() stand for the unique ‘road pricing’ process.

• vehicle(vi)(...) stand for the vehicle vi process.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 306

(A. An RSL Primer A.8. Simple RSL Specifications)

type

N, H, HI, LI, VI
RPM == µEnter L(vi:VI,li:LI) | µLeave L(vi:VI,li:LI)

value

n:N
channel

{ves[ωHI(h),li]|h:H•h ∈ ωHs(n)∧li ∈ ωLIs(h)}:VI
{vls[li,ωHI(h)]|h:H•h ∈ ωHs(n)∧li ∈ ωLIs(h)}:VI
rp:RPM

type

Fee, Bal
LVS = LI →m VI-set, FEE = LI →m Fee, ACC = VI →m Bal

value

link: (li:LI × L) → Unit

enter sensor: (hi:HI × li:LI) → in ves[hi,li],out rp Unit

leave sensor: (li:LI × hi:HI) → in vls[li,hi],out rp Unit

road pricing: (LVS×FEE×ACC) → in rp Unit

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 307

(A. An RSL Primer A.8. Simple RSL Specifications)

• To understand the sensor behaviours let us review the vehicle be-
haviour.

• In the vehicle behaviour defined in Example 48, in two parts, Slide 295
and Slide 297 we focus on the events

– [7] where the vehicle enters a link, respectively

– [5′] where the vehicle leaves a link.

• These are summarised in the schematic reproduction of the vehicle
behaviour description.

– We redirect the interactions between vehicles and links to become

– interactions between vehicles and enter and leave sensors.

value

δ:Real = move(h,f) axiom 0<δ≪1
move: H × F → F

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 308

(A. An RSL Primer A.8. Simple RSL Specifications)

vehicle: VI → (Pos × Net) → V → Unit

vehicle(vi)(pos,net)(v) ≡
[1] (wait ;
[2] vehicle(vi)(pos,net)(v))
[3] ⌈⌉

case pos of

µatH(hi) →
[4−6] (let lis=dom net(hi) in let li:LI•li ∈ lis in let hi′=(net(hi))(li) in

[7] ves[hi,li]!vi;
[8] vehicle(vi)(µonL(hi,li,0,hi′),net)(v)
[9] end end end)

µonL(hi,li,f,hi′) →
[4′] (case f of

[5′−6′] 1 → (vls[li,hi]!vi; vehicle(vi)(µatH(hi′),net)(v)),
[7′] → vehicle(vi)(µonL(hi,li,f+δ,hi′),net)(v)
[8′] end)

end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 309

(A. An RSL Primer A.8. Simple RSL Specifications)

• As mentioned on Slide 304 link behaviours are associated with two
pairs of sensors:

– a pair of enter and leave sensors at one end, and

– a pair of enter and leave sensors at the other end;

value

link(li)(l) ≡
let {hi,hi′} = ωHIs(l) in

enter sensor(hi,li) ‖ leave sensor(li,hi) ‖
enter sensor(hi′,li) ‖ leave sensor(li,hi′) end

enter sensor(hi,li) ≡
let vi = ves[hi,li]? in rp!µEnter LI(vi,li); enter sensor(hi,li) end

leave sensor(li,hi) ≡
let vi = ves[li,hi]? in rp!µLeave LI(vi,li); enter sensor(li,hi) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 310

(A. An RSL Primer A.8. Simple RSL Specifications)

• The LVS component of the road pricing behaviour serves,

– among other purposes that are not mentioned here,

– to record whether the movement of a vehicles “originates” along a
link or not.

• Otherwise we leave it to the student to carefully read the formulas.

value

payment: VI × LI → (ACC × FEE) → ACC
payment(vi,li)(fee,acc) ≡
let bal′ = if vi ∈ dom acc then add(acc(vi),fee(li)) else fee(li) end

in acc † [vi 7→ bal′] end

add: Fee × Bal → Bal [add fee to balance]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 311

(A. An RSL Primer A.8. Simple RSL Specifications)

road pricing(lvs,fee,acc) ≡ in rp
let m = rp? in

case m of

µEnter LI(vi,li) →
road pricing(lvs†[li7→lvs(li)∪{vi}],fee,acc),

µLeave LI(vi,li) →
let lvs′ = if vi ∈ lvs(li) then lvs†[li7→lvs(li)\{vi}] else lvs end,

acc′ = payment(vi,li)(fee,acc) in

road pricing(lvs′,fee,acc′)
end end end

End of Example 49

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 311

(A. An RSL Primer A.8. Simple RSL Specifications)

End of Lecture 11: RSL SPECIFICATIONS

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 311

(A. An RSL Primer A.8. Simple RSL Specifications)

Start of Lecture 5: DOMAIN ENTITIES

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 312

B. Domain Entities
B.1. Entities

• The reason for our interest in ‘simple entities’

– is that assemblies and units of systems

– possess static and dynamic properties

– which become contexts and states of

– the processes into which we shall “transform” simple entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 313

(B. Domain Entities B.1. Entities)

B.1.1. Observable Phenomena

• We shall just consider ‘simple entities’.

– By a simple entity we shall here understand

∗ a phenomenon that we can designate, viz.

∗ see, touch, hear, smell or taste, or

∗ measure by some instrument (of physics, incl. chemistry).

– A simple entity thus has properties.

– A simple entity is

∗ either continuous

∗ or is discrete, and then it is

· either atomic

· or composite.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 314

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena)

B.1.1.1. Attributes: Types and Values

• By an attribute we mean a simple property of an entity.

– A simple entity has properties pi, pj, . . . , pk.

• Typically we express attributes by a pair of

– a type designator: the attribute is of type V , and

– a value: the attribute has value v (of type V , i.e., v : V).

• A simple entity may have many simple properties.

– A continuous entity, like ‘oil’, may have the following attributes:

∗ type: petroleum,

∗ kind: Brent-crude,

∗ amount: 6 barrels,

∗ price: 45 US $/barrel.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 315

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values)

– An atomic entity, like a ‘person’, may have the following at-
tributes:

∗ gender: male,

∗ name: Dines Bjørner,

∗ birth date: 4. Oct. 1937,

∗ marital status: married.

– A composite entity, like a railway system, may have the following
attributes:

∗ country: Denmark,

∗ name: DSB,

∗ electrified: partly,

∗ owner: independent public
enterprise owned by Danish
Ministry of Transport.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 316

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values)

B.1.1.2. Continuous Simple Entities

• A simple entity is said to be continuous

– if, within limits, reasonably sizable amounts of the simple entity,
can be arbitrarily decomposed into smaller parts

– each of which still remain simple continuous entities

– of the same simple entity kind.

• Examples of continuous entities are:

– oil, i.e., any fluid,

– air, i.e., any gas,

– time period and

– a measure of fabric.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 317

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.2. Continuous Simple Entities)

B.1.1.3. Discrete Simple Entities

• A simple entity is said to be discrete if its immediate structure is not
continuous.

– A simple discrete entity may, however, contain continuous sub-
entities.

• Examples of discrete entities are:

– persons,

– rail units,

– oil pipes,

– a group of persons,

– a railway line and

– an oil pipeline.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 318

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.3. Discrete Simple Entities)

B.1.1.4. Atomic Simple Entities

• A simple entity is said to be atomic

– if it cannot be meaningfully decomposed into parts

– where these parts has a useful “value” in the context in which the
simple entity is viewed and

– while still remaining an instantiation of that entity.

• Thus a ‘physically able person’, which we consider atomic,

– can, from the point of physical ability,

– not be decomposed into meaningful parts: a leg, an arm, a head,
etc.

• Other atomic entities could be a rail unit, an oil pipe, or a hospital
bed.

• The only thing characterising an atomic entity are its attributes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 319

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.4. Atomic Simple Entities)

B.1.1.5. Composite Simple Entities

• A simple entity, c, is said to be composite

– if it can be meaningfully decomposed

– into sub-entities that have separate

– meaning in the context in which c is viewed.

• We exemplify some composite entities.

– (1) A railway net can be decomposed into

∗ a set of one or more train lines and

∗ a set of two or more train stations.

– Lines and stations are themselves composite entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 320

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities)

– (2) An Oil industry whose decomposition include:

∗ one or more oil fields,

∗ one or more pipeline systems,

∗ one or more oil refineries and

∗ one or more one or more oil product distribution systems.

– Each of these sub-entities are also composite.

• Composite simple entities are thus characterisable by

– their attributes,

– their sub-entities, and

– the mereology of how these sub-entities are put together.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 321

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities)

B.1.2. Discussion

• In Sect. 3.2 we interpreted the model of mereology in six examples.

• The units of Sect. 2

– which in that section were left uninterpreted

– now got individuality —

∗ in the form of

· aircraft,

· building rooms,

· rail units and

· oil pipes.

– Similarly for the assemblies of Sect. 2. They became

∗ pipeline systems,

∗ oil refineries,

∗ train stations,

∗ banks, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 322

(B. Domain Entities B.1. Entities B.1.2. Discussion)

• In conventional modelling

– the mereology of an infrastructure component,

∗ of the kinds exemplified in Sect. 3.2,

– was modelled by modelling

∗ that infrastructure component’s special mereology

∗ together, “in line”, with the modelling

∗ of unit and assembly attributes.

• With the model of Sect. 2 now available

– we do not have to model the mereological aspects,

– but can, instead, instantiate the model of Sect. 2 appropriately.

– We leave that to be reported upon elsewhere.

• In many conventional infrastructure component models

– it was often difficult to separate

∗ what was mereology from

∗ what were attributes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 323

(B. Domain Entities B.1. Entities B.1.2. Discussion)

B.2. Examples of Composite Structures

• Before a semantic treatment of the concept of mereology

– let us review what we have done and

– let us interpret our abstraction

∗ (i.e., relate it to actual societal infrastructure components).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 324

(B. Domain Entities B.2. Examples of Composite Structures)

B.2.1. What We have Done So Far ?

• We have

– presented a model that is claimed to abstract essential mereolog-
ical properties of

∗ machine assemblies,

∗ railway nets,

∗ the oil industry,

∗ oil pipelines,

∗ buildings with installations,

∗ hospitals,

∗ etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 325

(B. Domain Entities B.2. Examples of Composite Structures B.2.1. What We have Done So Far ?)

B.2.2. Six Interpretations

• Let us substantiate the claims made in the previous paragraph.

– We will do so, albeit informally, in the next many paragraphs.

– Our substantiation is a form of diagrammatic reasoning.

– Subsets of diagrams will be claimed to represent parts, while

– Other subsets will be claimed to represent connectors.

• The reasoning is incomplete.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 326

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations)

B.2.2.1. Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Figure 2: An air traffic system. Black (rounded or edged) boxes and lines are units; red filled boxes are connections

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 327

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

• Figure 2 on the preceding page shows nine (9) boxes and eighteen
(18) lines.

– Together they form an assembly.

– Individually boxes and lines represent units.

∗ The rounded corner boxes denote buildings.

∗ The sharp corner box denote an aircraft.

∗ Lines denote radio telecommunication.

– Only where lines touch boxes do we have connections.

∗ These are shown as red horisontal or vertical boxes at both ends
of the double-headed arrows,

∗ overlapping both the arrows and the boxes.

• The index ranges shown attached to, i.e., labelling each unit,

– shall indicate that there are a multiple of the “single” (thus rep-
resentative) unit shown.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 328

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

• Notice that

– the ‘box’ units are fixed installations and that

– the double-headed arrows designate the ether where radio waves
may propagate.

– We could, for example, assume that each such line is characterised
by

∗ a combination of location and

∗ (possibly encrypted) radio communication frequency.

– That would allow us to consider all line for not overlapping.

– And if they were overlapping, then that must have been a decision
of the air traffic system.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 329

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

B.2.2.2. Buildings

A

H

I

J

L M

K

C

F

G

E

B
D

Door Connector

Door Connection

Installation Connector

(1 Unit)
Installation

Room
(1 Unit)

Sub−room of Room
Sharing walls
(1 Unit)

Adjacent Rooms
Sharing (one) wall
(2 Units)

κ

γ

ε

ι

ω

Figure 3: A building plan with installation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 330

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

• Figure 3 on the previous page shows a building plan — as an assembly

– of two neighbouring, common wall-sharing buildings, A and H,

– probably built at different times;

– with room sections B, C, D and E contained within A,

– and room sections I, J and K within H;

– with room sections L and M within K,

– and F and G within C.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 331

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

• Connector γ provides means of a connection between A and B.

• Connection κ provides “access” between B and F.

• Connectors ι and ω enable input, respectively output adaptors (re-
ceptor, resp. outlet) for electricity (or water, or oil),

• connection ǫ allow electricity (or water, or oil) to be conducted
through a wall.

• Etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 332

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

B.2.2.3. Financial Service Industry

Clients

C[c]

C[2]

C[1] T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

pb
/b

p[
1.

.p
,1

..b
]:P

B
|B

P

T
he

 F
in

an
ce

 In
du

st
ry

 "
W

at
ch

do
g"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]...

...

is/si[1..i]:IS|SI

B[1] B[2] B[b]...
Banks

P[1] P[2] P[p]...
Portfolio Managers

... Brokers
Traders

Figure 4: A financial service industry

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 333

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry)

• Figure 4 on the preceding page shows seven (7) larger boxes [6 of
which are shown by dashed lines] and twelve (12) double-arrowed
lines.

– Where double-arrowed lines touch upon (dashed) boxes we have
connections (also to inner boxes).

– Six (6) of the boxes, the dashed line boxes, are assemblies, five (5)
of them consisting of a variable number of units;

– five (5) are here shown as having three units each with bullets
“between” them to designate “variability”.

• People,

– not shown, access the outermost (and hence the “innermost”
boxes, but the latter is not shown)

– through connectors, shown by bullets, •.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 334

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry)

B.2.2.4. Machine Assemblies

Connection

Connector, part of Connection

Connector, part of Connection

Connection

Part

Assembly, embedded Part

Adjacent Parts

Bellows

Coil/

Air Load
Reservoir

Valve1

with one Unit

with two
Assembly

System Assembly

Assembly

Valve2

Unit

Unit Unit Unit

Unit

Unit

Unit

Units

Magnet

PumpPower Supply

Air Supply

Lever
UnitUnit

2 Parts, one
Assembly with

is an Assembly

Figure 5: An air pump, i.e., a physical mechanical system

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 335

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

• Figure 5 on the previous page shows a machine assembly.

– Square boxes show assemblies or units.

– Bullets, •, show connectors.

– Strands of two or three bullets on a thin line, encircled by a rounded box, show
connections.

– The full, i.e., the level 0, assembly consists of

∗ four parts

∗ and three internal and three external connections.

– The Pump unit

∗ is an assembly

· of six (6) parts,

· five (5) internal connections

· and three (3) external connectors.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 336

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

• Etcetera.

• One connector and some connections afford “transmission” of elec-
trical power.

• Other connections convey torque.

• Two connectors convey input air, respectively output air.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 337

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

B.2.2.5. Oil Industry
B.2.2.5.1. • “The” Overall Assembly•

Oil
Field

Pipeline
System

Refinery Port

Port Ocean

Port

Port

Port

Distrib.

Distrib.

Distrib.

Refinery

Distrib.

Assembly Connection (bound) Connection (free)

Figure 6: A Schematic of an Oil Industry

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 338

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

• Figure 6 on the preceding page shows

– an assembly consisting of fourteen (14) assemblies, left-to-right:

∗ one oil field,

∗ a crude oil pipeline system,

∗ two refineries and one, say, gasoline distribution network,

∗ two seaports,

∗ an ocean (with oil and ethanol tankers and their sea lanes),

∗ three (more) seaports,

∗ and three, say gasoline and ethanol distribution networks.

– Between all of the assembly units there are connections,

– and from some of the assembly units there are connectors (to an
external environment).

• The crude oil pipeline system assembly unit will be concretised next.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 339

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

B.2.2.5.2. • A Concretised Assembly Unit•

fpb

vz
vx

fpa fpc

vwfpdvu

vy

p1

p2

p3

p4 p5

p7

p6

p10

p11

p12

p8

p9
p13

p14

p15

inj

inl

onr

ons

Connector

Node unit

Connection (between pipe units and node units)

Pipe unit

ini

ink

may connect to refinery
onp

onq
may be left "dangling"

may be left dangling

may connect to oil field

Figure 7: A Pipeline System

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 340

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• Figure 7 on the previous page shows a pipeline system.

• It consists of 32 units:

– fifteen (15) pipe units (shown as directed arrows and labelled p1–
p15),

– four (4) input node units (shown as small circles, ◦, and labelled
ini–inℓ),

– four (4) flow pump units (shown as small circles, ◦, and labelled
fpa–fpd),

– five (5) valve units (shown as small circles, ◦, and labelled vx–vw),
and

– four (4) output node units (shown as small circles, ◦, and labelled
onp–ons).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 341

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• In this example the routes through the pipeline system

– start with node units and end with node units,

– alternates between node units and pipe units,

– and are connected as shown by fully filled-out red4 disc connec-
tions.

– Input and output nodes have input, respectively output connec-
tors, one each, and shown with green5

4This paper is most likely not published with colours, so red will be shown as darker colour.
5Shown as lighter coloured connections.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 342

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

B.2.2.6. Railway Nets

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Figure 8: Four example rail units

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 343

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

• Figure 8 on the preceding page diagrams

– four rail units,

– each with their two, three or four connectors.

• Multiple instances of these rail units

– can be assembled

– as shown on Fig. 9 on the next page

– into proper rail nets.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 344

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Figure 9: A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 8 on page 342.
There are 66 connections and four “dangling” connectors

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 345

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

• Figure 9 on the preceding page diagrams an example of a proper rail
net.

– It is assembled from the kind of units shown in Fig. 8.

– In Fig. 9 consider just the four dashed boxes:

∗ The dashed boxes are assembly units.

∗ Two designate stations, two designate lines (tracks) between
stations.

∗ We refer to to the caption four line text of Fig. 8 on page 342
for more “statistics”.

∗ We could have chosen to show, instead, for each of the four
“dangling’ connectors, a composition of a connection, a special
“end block” rail unit and a connector.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 346

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

B.2.3. Discussion

• It requires a somewhat more laborious effort,

– than just “flashing” and commenting on these diagrams,

– to show that the modelling of essential aspects of their structures

– can indeed be done by simple instantiation

– of the model given in the previous part of the talk.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 347

(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion)

• We can refer to a number of documents which give rather detailed
domain models of

– air traffic,

– container line industry,

– financial service industry,

– health-care,

– IT security,

– “the market”,

– “the” oil industry6,

– transportation nets7,

– railways, etcetera, etcetera.

• Seen in the perspective of the present paper

– we claim that much of the modelling work done in those references

– can now be considerably shortened and

– trust in these models correspondingly increased.

6http://www2.imm.dtu.dk/˜db/pipeline.pdf
7http://www2.imm.dtu.dk/˜db/transport.pdf

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 348

(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion)

B.3. Attributes and Sub-entities of Sort Values
B.3.1. General

• Entities are defined in terms of

– either sorts, that is, abstract types for whose values we do not
define mathematical models,

– or concrete types whose values are sets, Cartesians, lists, maps,
functions or other.

• Entities are

– either atomic,8 in which case they are characterised solely in terms
of all their attributes (types and values),

– or are composite, in which case they are characterised in terms of
all their attributes (types and values) and all their sub-entities.

8As dealt with elsewhere (Appendix Sect. , Pages 313–322) in these lecture notes: attributes of atomic or composite entities are (type and value) properties
of entities (save those of being a composite entity and of such composite entities sub-entities). Atomic entities are atomic in that they have no sub-entities.
Sub-entities of composite entities are proper entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 349

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General)

• For both atomic and composite sorts

– we introduce, as need be, observer functions,

– whether of attributes or (possibly, if composite) of sub-entities.9

• In this section we shall introduce and define an equality operator
that compares entities modulo some attribute:

– the name of the equality operator is ≃ωAattr
,

– and application of the equality operator to a pair of entities to
be compared and the attribute for which comparison is left is
expressed: ≃AattrA

(a′, a′′)(ωα).

• To explain this “modulo attribute” equality operator we first ιℓℓustrate10

the concepts of functions that observe attributes and sub-entities.
9Till now, in these lecture notes, we have used“the same kind” of observer functions (ωBi, ωCj) for observing attributes (Bi) of atomic or composite entities

and for observing sub-entities (Cj) of composite entities. In this section we shall distinguish between ωbserving αttributes (ωαB) and ωbserving sub-ǫntities
(ωǫC). Maybe we shall have an opportunity to do so in a next version of these lecture notes.

10In this section we distinguish between ιℓℓustrations (formally marked with ιℓℓs) and δǫφinitions (read: definitions, marked with δǫφs). ιℓℓustrations are like
schematic examples, but they are just that: rough-sketched generic examples. δǫφinitions are valid throughout these lecture notes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 350

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General)

B.3.2. Constant and Variable Valued Attributes

• There are two kinds of attributes to be considered.

– constant valued attributes, and

– variable valued attributes.

• Attributes with variable values are also called entity state compo-
nents.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 351

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes)

• Let A be (the type name of) a set of entities,

• let B1, . . . , Bm be all the (distinct names of) types of constant valued
attributes of A and

• let Σ1, . . . , Σn be all the (distinct names of) types of variable valued
attributes of A.

• We ιℓℓustrate these:

type

[ιℓℓ] A, B1, ..., Bm, Σ1, ..., Σn, C1, ..., Ck

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 352

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes)

B.3.3. Sub-Entities

• Let C1, . . . , Ck be all the (distinct names of) types of sub-entities of
A.

• We ιℓℓustrate these:

type

[ιℓℓ] C1, ..., Ck

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 353

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.3. Sub-Entities)

B.3.4. Attribute and Sub-Entity Observers

• Let {ωαB1, . . . , ωαBm} be the corresponding set of all the constant
valued observers of A,

• Let {ωαΣ1, . . . , ωαΣn} be the corresponding set of all the variable
valued observers of A and

• let {ωǫC1, . . . , ωǫCk} be the corresponding set of all the sub-entity
observers of A.

• We ιℓℓustrate these:

value

[ιℓℓ] ωαB1: A → B1, ..., ωαBn: A → Bm

[ιℓℓ] ωαΣ1: A → Σ1, ..., ωαΣn: A → Σn,
[ιℓℓ] ωǫC1: A → C1, ..., ωǫCk: A → C2

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 354

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.4. Attribute and Sub-Entity Observers)

B.3.5. Attribute and Sub-entity Meta-Observers

• Let AttrA
name the general type of a attribute observer function for

sort A.

• Let EsubsA
name the general type of a sub-entity observer functions

for sort A.

• We ιℓℓustrate, with respect to the above ιℓℓustrations, these general
types:

type

[ιℓℓ] AttrA
= ωαB1 | ... | ωαBm | ωαΣ1 | ... | ωαΣn

[ιℓℓ] EsubsA
= ωǫC1 | ... | ωǫCk

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 355

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers)

• Let ωAattrA
denote the function which from a type (A) observes all

it attribute observer functions.

• Let ωEsubs denote the function which from a type observes all it
possible sub-entity observer functions.

• We δǫϕne these:

value

[δǫφ] ωAttrA
s: A → AttrA

-set

[δǫφ] ωEsubsA
s: A → EsubsA

-set

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 356

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers)

B.3.6. Meta-Observer Properties

• Let AttrA
ιℓℓustrate the set of all attribute observers for type A, and

• let EsubsA
ιℓℓustrate the set of all sub-entity observers for type A,

• then the two axioms ιℓℓattr and ιℓℓsubs holds for the ιℓℓustrated
type A and its observer functions:

value

[ιℓℓattr] AttrA
:AttrA

-set = {ωαB1,...,ωαBm,ωαΣ1,...,ωαΣn},
[ιℓℓsubs] EsubsA

:EsubsA
-set = {ωǫC1,. . . ,ωǫCk}

axiom

[ιℓℓattr] ∀ a:A • ωAttrA
s(a) = AttrA

∧
[ιℓℓsubs] ∀ a:A • ωEsubsA

s(a) = EsubsA

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 357

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.6. Meta-Observer Properties)

B.3.7. Sort Value Equality

• Now to register a possible change in but one attribute of A we meta-linguistically
δǫφine the following equality operator:

value

[δǫφ] ≃AattrA
: A×A → AttrA

→ Bool

[δǫφ] ≃AattrA
(a′,a′′)(ωα) ≡

[δǫφ] ∀ ωF :ωAttrA
s(a′)\{ωα}⇒ωF (a′)=ωF (a′′) ∧ ∀ ω′

ǫ:EsubsA
⇒ω′

ǫ(a
′)=ω′

ǫ(a
′′)

[δǫφ] pre ωAttrA
s(a′) = ωAttrA

s(a′′)

• The ≃ωAattr
‘equality’ operator

– applies to two values a′,a′′:A and an attribute observer function, ωBi (given as
ωα),

– and yields true if a′ and a′′

∗ have all but the same attribute values except for attribute Bi, and

∗ have all exactly the same and equal sub-entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 358

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

Example 50 – Equality of Hubs Modulo Hub States:

• Please review Examples 2 on page 50 and 3 on page 53.

– In Example 3 on page 53 on Page 359, formula line item [17], a
comparison is made between two values of a sort:
ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ.

– We now redefine this comparion – which really does not capture all
the value aspects of the compared hubs!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 359

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

value

p:Real, axiom 0<p≤1, typically p≃ 1 − 10−7

p:Real, axiom p=1−p

[12] set HΣ: H × HΣ → H
[13] set HΣ(h,hσ) as h′

[14] pre hσ ∈ ωHΩ(h)
[15] post ≃ωAattrH

(h,h′)(ωHΣ) ∧

[17] ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ

End of Example 50

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 360

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

B.4. Unique Entity Identifiers

• In many domain and requirements modelling situations we make use
of the concept of unique entitiy identifiers.

– For any type A for which we introduce unique identifiers of all a:A
values

– we consider such unique identifiers as of sort AI11.

– The AI attribute shall be considered a constant-valued attribute.

–

–

11We may, in some immediate future, decide to instead of using the sort name AI using, for example, the sort name ℑA or ℑA.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 360

(B. Domain Entities B.4. Unique Entity Identifiers)

End of Lecture 5: DOMAIN ENTITIES

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 360

(B. Domain Entities B.4. Unique Entity Identifiers)

Start of Lecture 12: MEREOLOGY

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 361

C. Mereology
C.1. Opening

C.1.1. Definition

• By mereology we understand

– the study and knowledge about

– parts and wholes

– and the relationships between parts and between parts and holes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 362

(C. Mereology C.1. Opening C.1.1. Definition)

C.1.2. Examples

Example 51 – Simple and Composite Net Entities:

• We repeat some of the material from Example 1 on page 39.

• [1] A road, train, airlane (air traffic) or sea lane (shipping) net

• [2] consists, amongst other things, of hubs and links.

type

[1] N
[2] H, L

value

[2] ωHs: N → H-set, ωLs: N → L-set,

• We can consider nets as composite and, for the time being, hubs and
links as simple.

End of Example 51

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 363

(C. Mereology C.1. Opening C.1.2. Examples)

• Example 51 illustrated that entities can be either atomic of compos-
ite.

• But also functions, events and behaviours can be either atomic or
composite.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 364

(C. Mereology C.1. Opening C.1.2. Examples)

Example 52 – Simple and Composite Net Functions:

• [3] With every link we associate a length.

• [4] A journey is a pair of a link and a continuation.

• [5] A continuation is either "nil" or is a journey.

• [6] Journies have lengths:

– [6.1] the length of the link of the journey pair,

– [6.2] and the length of the continuation – where a "nil" continu-
ation has length 0.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 365

(C. Mereology C.1. Opening C.1.2. Examples)

type

[3] LEN
[4] Journey = L × C
[5] C = ′′nil′′ | Journey

value

[3] zero LEN:LEN
[3] ωLEN: L → LEN
[6] length: Journey → LEN
[6] length(l,c) ≡
[6.1] let ll = ωLEN(l),
[6.2] cl = if c=′′nil′′ then zero LEN else length(c) end in

[6] sum(ll,cl) end

sum: LEN × LEN → LEN

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 366

(C. Mereology C.1. Opening C.1.2. Examples)

• Both

– the journey and continuation entities, j and c , and

– the length function

are composite

• Both

– the link entities, ll,

– the ωLEN function

are atomic.

End of Example 52

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 367

(C. Mereology C.1. Opening C.1.2. Examples)

Example 53 – Simple and Composite Net Events:

• [7] The isolated crash of two vehicles, at time t, in a traffic, at a hub
or along a link can be construed as a single atomic event.

• [8] The crash, within a few seconds (t, t′, t ∼ t′), in a traffic, of three
or more vehicles,

– [8.1] in a hub,

– [8.2] or along a short segment of a link,

can be considered a composite event.

• We shall model this event by the predicates which holds of vehicles in
a traffic at given times.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 368

(C. Mereology C.1. Opening C.1.2. Examples)

type

TF = T → (V →m Pos)
Pos == µatH(hi:HI) | µonL(πhi:HI,πli:LI,πf:F,πhi′:HI)

type

value

[7] atomic crash: V × V → TF → T → Bool

[7] atomic crash(v,v′)(tf)(t) ≡ (tf(t))(v)=(tf(t))(v′)
[7] pre t ∈ DOMAIN tf ∧ {v,v′}⊆dom(tf(t))∧v6=v′

[8] composite crash: V-set → TF → (T×T) → Bool

[8] composite crash(vs)(tf)(t,t′) ≡
[8.1] ∃ hi:HI • card{v|v:V• ∈ vs∧(tf(t′′))(v)=µatH(hi)∧t≤t′′≤t′}≥3∨
[8.2] ∃ hi′,hi′′:HI,li:LI,fs:F-set •

[8.2] fs={r..r′} where 0≤r≃r′≤1 ∧
[8.2] card{(tf(t′′))(v)=µonL(hi′,li,f,hi′′)|v:V,f:F•v ∈ vs∧f ∈ fs∧t≤t′′≤t′}≥3
[8] pre {t,t′}⊆DOMAIN tf ∧ t∼t′ ∧ ∧ vs⊆dom(tf(t)) ∧ card vs≥3

End of Example 53

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 369

(C. Mereology C.1. Opening C.1.2. Examples)

• In the next, long example we consider a pipeline system (or either
oil or gas pipes).

Example 54 – Simple and Composite Net Behaviours:
Pipeline Systems and Their Units

35. We focus on nets, n : N , of pipes, π : Π, valves, v : V , pumps, p : P ,
forks, f : F , joins, j : J , wells, w : W and sinks, s : S.

36. Units, u : U , are either pipes, valves, pumps, forks, joins, wells or
sinks.

37. Units are explained in terms of disjoint types of PIpes, VAlves, PUmps,
FOrks, JOins, WElls and SKs.12

12This is a mere specification language technicality.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 370

(C. Mereology C.1. Opening C.1.2. Examples)

type

35 N, PI, VA, PU, FO, JO, WE, SK
36 U = Π | V | P | F | J | S| W
36 Π == mkΠ(pi:PI)
36 V == mkV(va:VA)
36 P == mkP(pu:PU)
36 F == mkF(fo:FO)
36 J == mkJ(jo:JO)
36 W == mkW(we:WE)
36 S == mkS(sk:SK)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 371

(C. Mereology C.1. Opening C.1.2. Examples)

Unit Identifiers and Unit Type Predicates

38. We associate with each unit a unique identifier, ui : UI.

39. From a unit we can observe its unique identifier.

40. From a unit we can observe whether it is a pipe, a valve, a pump, a
fork, a join, a well or a sink unit.

type

38 UI
value

39 obs UI: U → UI
40 is Π: U → Bool, is V: U → Bool, ..., is J: U → Bool

is Π(u) ≡ case u of mkPI() → true, → false end

is V(u) ≡ case u of mkV() → true, → false end

...
is S(u) ≡ case u of mkS() → true, → false end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 372

(C. Mereology C.1. Opening C.1.2. Examples)

Unit Connections

• A connection is a means of juxtaposing units.

• A connection may connect two units in which case one can observe
the identity of connected units from “the other side”.

41. With a pipe, a valve and a pump we associate exactly one input and
one output connection.

42. With a fork we associate a maximum number of output connections,
m, larger than one.

43. With a join we associate a maximum number of input connections,
m, larger than one.

44. With a well we associate zero input connections and exactly one output
connection.

45. With a sink we associate exactly one input connection and zero output
connections.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 373

(C. Mereology C.1. Opening C.1.2. Examples)

value

41 obs InCs,obs OutCs: Π|V|P → {|1:Nat|}
42 obs inCs: F → {|1:Nat|}, obs outCs: F → Nat

43 obs inCs: J → Nat, obs outCs: J → {|1:Nat|}
44 obs inCs: W → {|0:Nat|}, obs outCs: W → {|1:Nat|}
45 obs inCs: S → {|1:Nat|}, obs outCs: S → {|0:Nat|}

axiom

42 ∀ f:F • obs outCs(f) ≥ 2
43 ∀ j:J • obs inCs(j) ≥ 2

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 374

(C. Mereology C.1. Opening C.1.2. Examples)

• If a pipe, valve or pump unit is input-connected [output-connected] to
zero (other) units, then it means that the unit input [output] connector
has been sealed.

• If a fork is input-connected to zero (other) units, then it means that
the fork input connector has been sealed.

• If a fork is output-connected to n units less than the maximum fork-
connectability, then it means that the unconnected fork outputs have
been sealed.

• Similarly for joins: “the other way around”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 375

(C. Mereology C.1. Opening C.1.2. Examples)

Net Observers and Unit Connections

46. From a net one can observe all its units.

47. From a unit one can observe the the pairs of disjoint input and output
units to which it is connected:

(a) Wells can be connected to zero or one output unit — a pump.

(b) Sinks can be connected to zero or one input unit — a pump or a
valve.

(c) Pipes, valves and pumps can be connected to zero or one input
units and to zero or one output units.

(d) Forks, f , can be connected to zero or one input unit and to zero
or n, 2 ≤ n ≤obs Cs(f) output units.

(e) Joins, j, can be connected to zero or n, 2 ≤ n ≤obs Cs(j) input
units and zero or one output units.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 376

(C. Mereology C.1. Opening C.1.2. Examples)

value

46 obs Us: N → U-set

47 obs cUIs: U → UI-set × UI-set
wf Conns: U → Bool

wf Conns(u) ≡
let (iuis,ouis) = obs cUIs(u) in iuis ∩ ouis = {} ∧
case u of

47(a) mkW() → card iuis ∈ {0} ∧ card ouis ∈ {0,1},
47(b) mkS() → card iuis ∈ {0,1} ∧ card ouis ∈ {0},
47(c) mkΠ() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(c) mkV() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(c) mkP() → card iuis ∈ {0,1} ∧ card ouis ∈ {0,1},
47(d) mkF() → card iuis ∈ {0,1} ∧ card ouis ∈ {0}∪{2..obs inCs(j)},
47(e) mkJ() → card iuis ∈ {0}∪{2..obs inCs(j)} ∧ card ouis ∈ {0,1}

end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 377

(C. Mereology C.1. Opening C.1.2. Examples)

Well-formed Nets, Actual Connections

48. The unit identifiers observed by the obs cUIs observer must be iden-
tifiers of units of the net.

axiom

48 ∀ n:N,u:U • u ∈ obs Us(n) ⇒
48 let (iuis,ouis) = obs cUIs(u) in

48 ∀ ui:UI • ui ∈ iuis ∪ ouis ⇒
48 ∃ u′:U • u′ ∈ obs Us(n) ∧ u′6=u ∧ obs UI(u′)=ui end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 378

(C. Mereology C.1. Opening C.1.2. Examples)

Well-formed Nets, No Circular Nets

49. By a route we shall understand a sequence of units.

50. Units form routes of the net.

type

49 R = UIω

value

50 routes: N → R-infset

50 routes(n) ≡
50 let us = obs Us(n) in

50 let rs = {〈u〉|u:U•u ∈ us} ∪ {r̂r′|r,r′:R• {r,r′}⊆rs∧adj(r,r′)} in

50 rs end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 379

(C. Mereology C.1. Opening C.1.2. Examples)

51. A route of length two or more can be decomposed into two routes

52. such that the least unit of the first route “connects” to the first unit of the second
route.

value

51 adj: R × R → Bool

51 adj(fr,lr) ≡
51 let (lu,fu)=(fr(len fr),hd lr) in

52 let (lui,fui)=(obs UI(lu),obs UI(fu)) in

52 let ((,luis),(fuis,))=(obs cUIs(lu),obs cUIs(fu)) in

52 lui ∈ fuis ∧ fui ∈ luis end end end

53. No route must be circular, that is, the net must be acyclic.

value

53 acyclic: N → Bool

53 let rs = routes(n) in

53 ∼∃ r:R•r ∈ rs⇒∃ i,j:Nat•{i,j}⊆inds r∧i6=j∧r(i)=r(j) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 380

(C. Mereology C.1. Opening C.1.2. Examples)

Pipeline Processes

We now add connectors to our model:

54. From an oil pipeline system one can observe units and connectors.

55. Units are either well, or pipe, or pump, or valve, or join, or fork or sink
units.

56. Units and connectors have unique identifiers.

57. From a connector one can observe the ordered pair of the identity of
the two from-, respectively to-units that the connector connects.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 381

(C. Mereology C.1. Opening C.1.2. Examples)

type

54 OPLS, U, K
56 UI, KI
value

54 obs Us: OPLS → U-set, obs Ks: OPLS → K-set

55 is WeU, is PiU, is PuU, is VaU, is JoU, is FoU, is SiU: U → Bool [mutually
56 obs UI: U → UI, obs KI: K → KI
57 obs UIp: K → (UI|{nil}) × (UI|{nil})

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 382

(C. Mereology C.1. Opening C.1.2. Examples)

• Above, we think of the types OPLS, U, K, UI and KI as denoting
semantic entities.

• Below, in the next section, we shall consider exactly the same types
as denoting syntactic entities !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 383

(C. Mereology C.1. Opening C.1.2. Examples)

58. There is given an oil pipeline system, opls.

59. To every unit we associate a CSP behaviour.

60. Units are indexed by their unique unit identifiers.

61. To every connector we associate a CSP channel.

Channels are indexed by their unique ”k”onnector identifiers.

62. Unit behaviours are cyclic and over the state of their (static and dy-
namic) attributes, represented by u.

63. Channels, in this model, have no state.

64. Unit behaviours communicate with neighbouring units — those with
which they are connected.

65. Unit functions, Ui, change the unit state.

66. The pipeline system is now the parallel composition of all the unit
behaviours.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 384

(C. Mereology C.1. Opening C.1.2. Examples)

• Editorial Remark:

– Our use of the term unit and the RSL literal Unit may seem con-
fusing, and we apologise.

– The former, unit, is the generic name of a well, pipe, or pump, or
valve, or join, or fork, or sink.

– The literal Unit, in a function signature, before the → “announces”
that the function takes no argument.

– The literal Unit, in a function signature, after the → “announces”,
as used here, that the function never terminates.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 385

(C. Mereology C.1. Opening C.1.2. Examples)

value

58 opls:OPLS
channel

61 {ch[ki]|k:KI,k:K•k ∈ obs Ks(opls)∧ki=obs KI(k)} M
value

66 pipeline system: Unit → Unit

66 pipeline system() ≡
59 ‖ {unit(ui)(u)|u:U•u ∈ obs Us(opls)∧ui=obs UI(u)}

60 unit: ui:UI → U →
64 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
64 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} Unit

62 unit(ui)(u) ≡ let u′ = Ui(ui)(u) in unit(ui)(u′) end

65 Ui: ui:UI → U →
65 in,out {ch[ki]|k:K,ki:KI•k ∈ obs Ks(opls)∧ki=obs KI(k)∧
65 let (ui′,ui′′)=obs UIp(k) in ui ∈{ui′,ui′′}\{nil} end} U

End of Example 54

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 386

(C. Mereology C.1. Opening C.1.2. Examples)

C.1.3. Discussion

• In this lecture

– we shall mainly cover

– atomic and

– composite

entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 387

(C. Mereology C.1. Opening C.1.3. Discussion)

C.2. A Conceptual Model of Composite Entities
C.2.1. Systems, Assemblies, Units

• We speak of systems as assemblies.

• From an assembly we can immediately observe a set of parts.

• Parts are either assemblies or units.

• We do not further define what assemblies and units are.

type

S = A, A, U, P = A | U
value

obs Ps: (S|A) → P-set

• Parts observed from an assembly are said to be immediately embedded in, that
is, within, that assembly.

• Two or more different parts of an assembly are said to be immediately adjacent
to one another.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 388

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.1. Systems, Assemblies, Units)

"outermost" Assembly

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32

B2

C33

System = Environment

Figure 10: Assemblies and Units “embedded” in an Environment

• A system includes its environment.

• And we do not worry, so far, about the semiotics of all this !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 389

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.1. Systems, Assemblies, Units)

Embeddedness and adjacency generalise to transitive relations.

• Given obs Ps we can define a function, xtr Ps,

– which applies to an assembly a and

– which extracts all parts embedded in a and including a.

• The functions obs Ps and xtr Ps define the meaning of embedded-
ness.

value

xtr Ps: (S|A) → P-set

xtr Ps(a) ≡
let ps = {a} ∪ obs Ps(a) in ps ∪ union{xtr Ps(a′)|a′:A•a′ ∈ ps} end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 390

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.1. Systems, Assemblies, Units)

• union is the distributed union operator.

• Parts have unique identifiers.

• All parts observable from a system are distinct.

type

AUI
value

obs AUI: P → AUI
axiom

∀ a:A •

let ps = obs Ps(a) in

∀ p′,p′′:P • {p′,p′′}⊆ps ∧ p′6=p′′ ⇒ obs AUI(p′)6=obs AUI(p′′) ∧
∀ a′,a′′:A • {a′,a′′}⊆ps ∧ a′6=a′′ ⇒ xtr Ps(a′)∩ xtr Ps(a′′)={} end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 391

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.1. Systems, Assemblies, Units)

C.2.2. ‘Adjacency’ and ‘Within’ Relations

• Two parts, p,p′, are said to be immediately next to, i.e., i next to(p,p′)(a),
one another in an assembly a

– if there exists an assembly, a′ equal to or embedded in a

– such that p and p′ are observable in that assembly a′.

value

i next to: P × P → A
∼
→ Bool, pre i next to(p,p′)(a): p 6=p′

i next to(p,p′)(a) ≡ ∃ a′:A • a′=a ∨ a′ ∈ xtr Ps(a) • {p,p′}⊆obs Ps(a′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 392

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations)

• One part, p, is said to be immediately within another part, p′in an
assembly a

– if there exists an assembly, a′ equal to or embedded in a

– such that p is observable in a′.

value

i within: P × P → A
∼
→ Bool

i within(p,p′)(a) ≡
∃ a′:A • (a=a′ ∨ a′ ∈ xtr Ps(a)) • p′=a′ ∧ p ∈ obs Ps(a′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 393

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations)

• We can generalise the immediate ‘within’ property.

• A part, p, is (transitively) within a part p′, within(p,p′)(a), of an
assembly, a,

– either if p, is immediately within p′ of that assembly, a,

– or if there exists a (proper) part p′′ of p′

– such that within(p′′,p)(a).

value

within: P × P → A
∼
→ Bool

within(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ obs Ps(p) ∧ within(p′′,p′)(a)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 394

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations)

• The function within can be defined, alternatively,

• using xtr Ps and i within

• instead of obs Ps and within :

value

within′: P × P → A
∼
→ Bool

within′(p,p′)(a) ≡
i within(p,p′)(a) ∨ ∃ p′′:P • p′′ ∈ xtr Ps(p) ∧ i within(p′′,p′)(a)

lemma: within ≡ within′

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 395

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations)

• We can generalise the immediate ‘next to’ property.

• Two parts, p, p′ of an assembly, a, are adjacent if they are

– either ‘next to’ one another

– or if there are two parts po, p′o
∗ such that p, p′ are embedded in respectively po and p′o
∗ and such that po, p′o are immediately next to one another.

value

adjacent: P × P → A
∼
→ Bool

adjacent(p,p′)(a) ≡
i next to(p,p′)(a) ∨
∃ p′′,p′′′:P • {p′′,p′′′}⊆xtr Ps(a) ∧ i next to(p′′,p′′′)(a) ∧

((p=p′′)∨within(p,p′′)(a)) ∧ ((p′=p′′′)∨within(p′,p′′′)(a))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 396

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.2. ‘Adjacency’ and ‘Within’ Relations)

C.2.3. Mereology, Part I

• So far we have built a ground mereology model, MGround.

• Let ⊑ denote parthood, x is part of y, x ⊑ y.

∀x(x ⊑ x)13 (1)

∀x, y(x ⊑ y) ∧ (y ⊑ x) ⇒ (x = y) (2)

∀x, y, z(x ⊑ y) ∧ (y ⊑ z) ⇒ (x ⊑ z) (3)

• Let ⊏ denote proper parthood, x is part of y, x ⊏ y.

• Formula 4 defines x ⊏ y. Equivalence 5 can be proven to hold.

∀x ⊏ y =def x(x ⊑ y) ∧ ¬(x = y) (4)

∀∀x, y(x ⊑ y) ⇔ (x ⊏ y) ∨ (x = y) (5)
13Our notation now is not RSL but some conventional first-order predicate logic notation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 397

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• The proper part (x ⊏ y) relation is a strict partial ordering:

∀x¬(x ⊏ x) (6)

∀x, y(x ⊏ y) ⇒ ¬(y ⊏ x) (7)

∀x, y, z(x ⊏ y) ∧ (y ⊏ z) ⇒ (x ⊏ z) (8)

• Overlap, •, is also a relation of parts:

– Two individuals overlap if they have parts in common:

x • y =def ∃z(z ⊏ x) ∧ (z ⊏ y) (9)

∀x(x • x) (10)

∀x, y(x • y) ⇒ (y • x) (11)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 398

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• Proper overlap, ◦, can be defined:

x ◦ y =def (x • x) ∧ ¬(x ⊑ y) ∧ ¬(y ⊑ x) (12)

• Whereas Formulas (1-11) holds of the model of mereology we have
shown so far, Formula (12) does not.

• In the next section we shall repair that situation.

• The proper part relation, ⊏, reflects the within relation.

• The disjoint relation,
∮

, reflects the adjacency relation.

x

∮
y =def ¬(x • y) (13)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 399

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• Disjointness is symmetric:

∀x, y(x

∮
y) ⇒ (y

∮
x) (14)

• The weak supplementation relation, Formula 15, expresses

– that if y is a proper part of x

– then there exists a part z

– such that z is a proper part of x

– and z and y are disjoint

• That is, whenever an individual has one proper part then it has more
than one.

∀x, y(y ⊏ x) ⇒ ∃z(z ⊏ x) ∧ (z

∮
y) (15)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 400

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• Formulas 1–3 and 15 together determine the minimal mereology,
MMinimal.

• Formula 15 does not hold of the model of mereology we have shown
so far..

• Formula 15 on the preceding page expresses that

– whenever an individual has one proper part

– then it has more than one.

• We mentioned there, Slide 400, that we would comment on the fact
that our model appears to allow that assemblies may have just one
proper part.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 401

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• We now do so.

– We shall still allow assemblies to have just one proper part —

– in the sense of a sub-assembly or a unit —

– but we shall interpret the fact that an assembly always have at
least one attribute.

– Therefore we shall “generously” interpret the set of attributes of
an assembly to constitute a part.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 402

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

• In Sect. A.6

– we shall see how attributes of both units and assemblies of the
interpreted mereology

– contribute to the state components of the unit and assembly pro-
cesses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 403

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.3. Mereology, Part I)

C.2.4. Connectors

• So far we have only covered notions of

– parts being next to other parts or

– within one another.

• We shall now add to this a rather general notion of parts being
otherwise related.

• That notion is one of connectors.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 404

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

• Connectors provide for connections between parts.

• A connector is an ability be be connected.

• A connection is the actual fulfillment of that ability.

• Connections are relations between pairs of parts.

• Connections “cut across” the “classical”

– parts being part of the (or a) whole and

– parts being related by embeddedness or adjacency.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 405

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

K2

B2

C33

K1

System = Environment

Figure 11: Assembly and Unit Connectors: Internal and External

• For now, we do not “ask” for the meaning of connectors !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 406

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

• Figure 11 on the previous page “adds” connectors to Fig. 10 on
page 388.

• The idea is that connectors

– allow an assembly to be connected to any embedded part, and

– allow two adjacent parts to be connected.

• In Fig. 11 on the previous page

– the environment is connected, by K2, to part C11;

– the “external world” is connected, by K1, to B1;

– etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 407

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

• From a system we can observe all its connectors.

• From a connector we can observe

– its unique connector identifier and

– the set of part identifiers of the parts that the connector connects.

• All part identifiers of system connectors identify parts of the system.

• All observable connector identifiers of parts identify connectors of
the system.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 408

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

type

K
value

obs Ks: S → K-set

obs KI: K → KI
obs Is: K → AUI-set
obs KIs: P → KI-set

axiom

∀ k:K • card obs Is(k)=2,
∀ s:S,k:K • k ∈ obs Ks(s) ⇒
∃ p:P • p ∈ xtr Ps(s) ⇒ obs AUI(p) ∈ obs Is(k),

∀ s:S,p:P • ∀ ki:KI • ki ∈ obs KIs(p) ⇒
∃! k:K • k ∈ obs Ks(s) ∧ ki=obs KI(k)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 409

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

• This model allows for a rather “free-wheeling” notion of connectors

– one that allows internal connectors to “cut across” embedded and
adjacent parts;

– and one that allows external connectors to “penetrate” from an
outside to any embedded part.

• We need define an auxiliary function.

– xtr∀KIs(p) applies to a system

– and yields all its connector identifiers.

value

xtr∀KIs: S → KI-set
xtr∀Ks(s) ≡ {obs KI(k)|k:K•k ∈ obs Ks(s)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 410

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.4. Connectors)

C.2.5. Mereology, Part II
(See Sect. (Slide 396) for Mereology, Part I.)
We shall interpret connections as follows:

• A connection between parts pi and pj

– that enjoy a pi adjacent to pj relationship, means pi ◦ pj,

– that is, although parts pi and pj are adjacent

– they do share “something”, i.e., have something in common.

– What that “something” is we shall comment on later, when we have “mapped”
systems onto parallel compositions of CSP processes.

• A connection between parts pi and pj

– that enjoy a pi within pj relationship,

– does not add other meaning than

– commented upon later, again when we have “mapped” systems onto parallel
compositions of CSP processes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 411

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.5. Mereology, Part II)

• With the above interpretation we may arrive at the following, per-
haps somewhat “awkward-looking” case:

– a connection connects two adjacent parts pi and pj

∗ where part pi is within part pio
∗ and part pj is within part pjo
∗ where parts pio and pjo are adjacent

∗ but not otherwise connected.

– How are we to explain that !

∗ Since we have not otherwise interpreted the meaning of parts,

∗ we can just postulate that “so it is” !

∗ We shall, later, again when we have “mapped” systems onto
parallel compositions of CSP processes, give a more satisfactory
explanation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 412

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.5. Mereology, Part II)

• On Slides 396–399 we introduced the following operators:

– ⊑,⊏, •, ◦, and
∮

• In some of the mereology literature these operators are symbolised
with caligraphic letters:

– ⊑: P : part,

– ⊏: PP : proper part,

– • : O: overlap and

–
∮

: U : underlap.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 413

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.5. Mereology, Part II)

C.2.6. Discussion
Summary:

• This ends our first model of a concept of mereology.

• The parts are those of assemblies and units.

• The relations between parts and the whole are,

– on one hand, those of

∗ embeddedness i.e. within, and

∗ adjacency, i.e., adjacent,

and

– on the other hand, those expressed by connectors: relations

∗ between arbitrary parts and

∗ between arbitrary parts and the exterior.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 414

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.6. Discussion)

Extensions:

• A number of extensions are possible:

– one can add “mobile” parts and “free” connectors, and

– one can further add operations that allow such mobile parts to
move from one assembly to another along routes of connectors.

• Free connectors and mobility assumes static versus dynamic parts
and connectors:

– a free connector is one which allows a mobile part to be connected
to another part, fixed or mobile; and

– the potentiality of a move of a mobile part introduces a further
dimension of dynamics of a mereology.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 415

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.6. Discussion)

Environment

System =

A

D311 D312

C31

B3

C12

B1

Units

Assemblies

B4

C11

C21

C32
"outermost" Assembly

External Connectors

K2

B2

K5 Ma

Mc

Mb

Mobile PartFree Connector

C33

K1

Figure 12: Mobile Parts and Free Connectors

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 416

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.6. Discussion)

Comments:

• We shall leave the modelling of free connectors and mobile parts to
another time.

• Suffice it now to indicate that the mereology model given so far is
relevant:

– that it applies to a somewhat wide range of application domain
structures, and

– that it thus affords a uniform treatment of proper formal models
of these application domain structures.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 417

(C. Mereology C.2. A Conceptual Model of Composite Entities C.2.6. Discussion)

C.3. Functions and Events

•

•

•

•

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 418

(C. Mereology C.3. Functions and Events)

Example 55 – Pipeline Transport Functions and Events:

• We need introduce a number of auxiliary concepts

• in order to show examples of atomic and composite

• functions and events.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 419

(C. Mereology C.3. Functions and Events)

Well-formed Nets, Special Pairs, wfN SP

67. We define a “special-pairs” well-formedness function.

(a) Fork outputs are output-connected to valves.

(b) Join inputs are input-connected to valves.

(c) Wells are output-connected to pumps.

(d) Sinks are input-connected to either pumps or valves.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 420

(C. Mereology C.3. Functions and Events)

value

67 wfN SP: N → Bool

67 wfN SP(n) ≡
67 ∀ r:R • r ∈ routes(n) in

67 ∀ i:Nat • {i,i+1}⊆inds r ⇒
67 case r(i) of ∧
67(a) mkF() → ∀ u:U•adj(〈r(i)〉,〈u〉) ⇒ is V(u), →true end ∧
67 case r(i+1) of

67(b) mkJ() → ∀ u:U•adj(〈u〉,〈r(i)〉) ⇒ is V(u), →true end ∧
67 case r(1) of

67(c) mkW() → is P(r(2)), →true end ∧
67 case r(len r) of

67(d) mkS() → is P(r(len r−1))∨is V(r(len r−1)), →true end

• The true clauses may be negated by other case distinctions’ is V or
is V clauses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 421

(C. Mereology C.3. Functions and Events)

Special Routes, I

68. A pump-pump route is a route of length two or more whose first and last units are
pumps and whose intermediate units are pipes or forks or joins.

69. A simple pump-pump route is a pump-pump route with no forks and joins.

70. A pump-valve route is a route of length two or more whose first unit is a pump,
whose last unit is a valve and whose intermediate units are pipes or forks or joins.

71. A simple pump-valve route is a pump-valve route with no forks and joins.

72. A valve-pump route is a route of length two or more whose first unit is a valve,
whose last unit is a pump and whose intermediate units are pipes or forks or joins.

73. A simple valve-pump route is a valve-pump route with no forks and joins.

74. A valve-valve route is a route of length two or more whose first and last units are
valves and whose intermediate units are pipes or forks or joins.

75. A simple valve-valve route is a valve-valve route with no forks and joins.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 422

(C. Mereology C.3. Functions and Events)

value

68-75 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R → Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

68 ppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
69 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
70 pvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
71 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
72 vpr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
73 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
74 vvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
75 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R → Bool

is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)
is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 423

(C. Mereology C.3. Functions and Events)

Special Routes, II

Given a unit of a route,

76. if they exist (∃),

77. find the nearest pump or valve unit,

78. “upstream” and

79. “downstream” from the given unit.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 424

(C. Mereology C.3. Functions and Events)

value

76 ∃UpPoV: U × R → Bool

76 ∃DoPoV: U × R → Bool

78 find UpPoV: U × R
∼
→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

79 find DoPoV: U × R
∼
→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)

76 ∃UpPoV(u,r) ≡
76 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
76 ∃DoPoV(u,r) ≡
76 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))
78 find UpPoV(u,r) ≡
78 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end

79 find DoPoV(u,r) ≡
79 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧{is V|is P}(r(j)) in r(j) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 425

(C. Mereology C.3. Functions and Events)

State Attributes of Pipeline Units

• By a state attribute of a unit we mean either of the following three
kinds:

– (i) the open/close states of valves and the pumping/not pumping
states of pumps;

– (ii) the maximum (laminar) oil flow characteristics of all units; and

– (iii) the current oil flow and current oil leak states of all units.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 426

(C. Mereology C.3. Functions and Events)

80. Oil flow, φ : Φ, is measured in volume per time unit.

81. Pumps are either pumping or not pumping, and if not pumping they
are closed.

82. Valves are either open or closed.

83. Any unit permits a maximum input flow of oil while maintaining lam-
inar flow. We shall assume that we need not be concerned with tur-
bulent flows.

84. At any time any unit is sustaining a current input flow of oil (at its
input(s)).

85. While sustaining (even a zero) current input flow of oil a unit leaks a
current amount of oil (within the unit).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 427

(C. Mereology C.3. Functions and Events)

type

80 Φ
81 PΣ == pumping | not pumping
81 VΣ == open | closed

value

−,+: Φ × Φ → Φ, <,=,>: Φ × Φ → Bool

81 obs PΣ: P → PΣ
82 obs VΣ: V → VΣ
83–85 obs LamiΦ.obs CurrΦ,obs LeakΦ: U → Φ
is Open: U → Bool

case u of

mkΠ()→true,mkF()→true,mkJ()→true,mkW()→true,mkS()→true,
mkP()→obs PΣ(u)=pumping,
mkV()→obs VΣ(u)=open

end

acceptable LeakΦ, excessive LeakΦ: U → Φ
axiom

∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 428

(C. Mereology C.3. Functions and Events)

Flow Laws

• The sum of the current flows into a unit equals the the sum of the
current flows out of a unit minus the (current) leak of that unit.

• This is the same as the current flows out of a unit equals the current
flows into a unit minus the (current) leak of that unit.

• The above represents an interpretation which justifies the below laws.

86. When, in Item 84, for a unit u, we say that at any time any unit
is sustaining a current input flow of oil, and when we model that
by obs CurrΦ(u) then we mean that obs CurrΦ(u) - obs LeakΦ(u)
represents the flow of oil from its outputs.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 429

(C. Mereology C.3. Functions and Events)

value

86 obs inΦ: U → Φ
86 obs inΦ(u) ≡ obs CurrΦ(u)
86 obs outΦ: U → Φ

law:

86 ∀ u:U • obs outΦ(u) = obs CurrΦ(u)−obs LeakΦ(u)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 430

(C. Mereology C.3. Functions and Events)

87. Two connected units enjoy the following flow relation:

(a) If

i. two pipes, or

ii. a pipe and a valve, or

iii. a valve and a pipe, or

iv. a valve and a valve, or

v. a pipe and a pump, or

vi. a pump and a pipe, or

vii. a pump and a pump, or

viii. a pump and a valve, or

ix. a valve and a pump

are immediately connected

(b) then

i. the current flow out of the first unit’s connection to the second
unit

ii. equals the current flow into the second unit’s connection to the
first unit

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 431

(C. Mereology C.3. Functions and Events)

law:

87(a) ∀ u,u′:U • {is Π,is V,is P,is W}(u′|u′′) ∧ adj(〈u〉,〈u′〉)
87(a) is Π(u)∨is V(u)∨is P(u)∨is W(u) ∧
87(a) is Π(u′)∨is V(u′)∨is P(u′)∨is S(u′)
87(b) ⇒ obs outΦ(u)=obs inΦ(u′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 432

(C. Mereology C.3. Functions and Events)

• A similar law can be established for forks and joins.

– For a fork

∗ output-connected to, for example, pipes, valves and pumps,

∗ it is the case that for each fork output

∗ the out-flow equals the in-flow for that output-connected unit.

– For a join

∗ input-connected to, for example, pipes, valves and pumps,

∗ it is the case that for each join input

∗ the in-flow equals the out-flow for that input-connected unit.

– We leave the formalisation as an exercise.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 433

(C. Mereology C.3. Functions and Events)

Possibly Desirable Properties

88. Let r be a route of length two or more, whose first unit is a pump, p, whose last
unit is a valve, v and whose intermediate units are all pipes: if the pump, p is
pumping, then we expect the valve, v, to be open.

89. Let r be a route of length two or more, whose first unit is a pump, p, whose last
unit is another pump, p′ and whose intermediate units are all pipes: if the pump,
p is pumping, then we expect pump p′′, to also be pumping.

90. Let r be a route of length two or more, whose first unit is a valve, v, whose last
unit is a pump, p and whose intermediate units are all pipes: if the valve, v is
closed, then we expect pump p, to not be pumping.

91. Let r be a route of length two or more, whose first unit is a valve, v′, whose last
unit is a valve, v′′ and whose intermediate units are all pipes: if the valve, v′ is in
some state, then we expect valve v′′, to also be in the same state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 434

(C. Mereology C.3. Functions and Events)

desirable properties:

88 ∀ r:R • spvr(r) ∧
88 spvr prop(r): obs PΣ(hd r)=pumping ⇒ obs PΣ(r(len r))=open

89 ∀ r:R • sppr(r) ∧
89 sppr prop(r): obs PΣ(hd r)=pumping⇒obs PΣ(r(len r))=pumping

90 ∀ r:R • svpr(r) ∧
90 svpr prop(r): obs PΣ(hd r)=open⇒obs PΣ(r(len r))=pumping

91 ∀ r:R • svvr(r) ∧
91 svvr prop(r): obs PΣ(hd r)=obs PΣ(r(len r))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 435

(C. Mereology C.3. Functions and Events)

Pipeline Actions

•Simple Pump and Valve Actions

92. Pumps may be set to pumping or reset to not pumping irrespective
of the pump state.

93. Valves may be set to be open or to be closed irrespective of the valve
state.

94. In setting or resetting a pump or a valve a desirable property may
be lost.

value

92 pump to pump, pump to not pump: P → N → N
93 valve to open, valve to close: V → N → N

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 436

(C. Mereology C.3. Functions and Events)

value

92 pump to pump(p)(n) as n′

92 pre p ∈ obs Us(n)
92 post let p′:P•obs UI(p)=obs UI(p′) in

92 obs PΣ(p′)=pumping∧else equal(n,n′)(p,p′) end

92 pump to not pump(p)(n) as n′

92 pre p ∈ obs Us(n)
92 post let p′:P•obs UI(p)=obs UI(p′) in

92 obs PΣ(p′)=not pumping∧else equal(n,n′)(p,p′) end

93 valve to open(v)(n) as n′

92 pre v ∈ obs Us(n)
93 post let v′:V•obs UI(v)=obs UI(v′) in

92 obs VΣ(v′)=open∧else equal(n,n′)(v,v′) end

93 valve to close(v)(n) as n′

92 pre v ∈ obs Us(n)
93 post let v′:V•obs UI(v)=obs UI(v′) in

92 obs VΣ(v′)=close∧else equal(n,n′)(v,v′) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 437

(C. Mereology C.3. Functions and Events)

value

else equal: (N×N) → (U×U) → Bool

else equal(n,n′)(u,u′) ≡
obs UI(u)=obs UI(u′)
∧ u ∈ obs Us(n)∧u′ ∈ obs Us(n′)
∧ omit Σ(u)=omit Σ(u′)
∧ obs Us(n)\{u}=obs Us(n)\{u′}
∧ ∀ u′′:U•u′′ ∈ obs Us(n)\{u} ≡ u′′ ∈ obs Us(n′)\{u′}

omit Σ: U → Uno state −−− ′′magic′′ function

=: Uno state × Uno state → Bool

axiom

∀ u,u′:U•omit Σ(u)=omit Σ(u′) ≡ obs UI(u)=obs UI(u′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 438

(C. Mereology C.3. Functions and Events)

Events

•Unit Handling Events

95. Let n be any acyclic net.

95. If there exists p, p′, v, v′, pairs of distinct pumps and distinct valves of the net,

95. and if there exists a route, r, of length two or more of the net such that

96. all units, u, of the route, except its first and last unit, are pipes, then

97. if the route “spans” between p and p′ and the simple desirable property, sppr(r),
does not hold for the route, then we have a possibly undesirable event — that
occurred as soon as sppr(r) did not hold;

98. if the route “spans” between p and v and the simple desirable property, spvr(r),
does not hold for the route, then we have a possibly undesirable event;

99. if the route “spans” between v and p and the simple desirable property, svpr(r),
does not hold for the route, then we have a possibly undesirable event; and

100. if the route “spans” between v and v′ and the simple desirable property, svvr(r),
does not hold for the route, then we have a possibly undesirable event.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 439

(C. Mereology C.3. Functions and Events)

events:

95 ∀ n:N • acyclic(n) ∧
95 ∃ p,p′:P,v,v′:V • {p,p′,v,v′}⊆obs Us(n)⇒
95 ∧ ∃ r:R • routes(n) ∧
96 ∀ u:U • u ∈ elems(r)\{hd r,r(len r)} ⇒ is Π(i) ⇒
97 p=hd r∧p′=r(len r) ⇒ ∼sppr prop(r) ∧
98 p=hd r∧v=r(len r) ⇒ ∼spvr prop(r) ∧
99 v=hd r∧p=r(len r) ⇒ ∼svpr prop(r) ∧
100 v=hd r∧v′=r(len r) ⇒ ∼svvr prop(r)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 440

(C. Mereology C.3. Functions and Events)

• Foreseeable Accident Events

• A number of foreseeable accidents may occur.

101. A unit ceases to function, that is,

(a) a unit is clogged,

(b) a valve does not open or close,

(c) a pump does not pump or stop pumping.

102. A unit gives rise to excessive leakage.

103. A well becomes empty or a sunk becomes full.

104. A unit, or a connected net of units gets on fire.

105. Or a number of other such “accident”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 441

(C. Mereology C.3. Functions and Events)

Well-formed Operational Nets

106. A well-formed operational net

107. is a well-formed net

(a) with at least one well, w, and at least one sink, s,

(b) and such that there is a route in the net between w and s.

value

106 wf OpN: N → Bool

106 wf OpN(n) ≡
107 satisfies axiom 48 on page 377 ∧ acyclic(n): Item 53 on page 379 ∧
107 wfN SP(n): Item 67 on page 419 ∧
107 satisfies flow laws, 86 on page 428 and 87 on page 430 ∧
107(a) ∃ w:W,s:S • {w,s}⊆obs Us(n) ⇒
107(b) ∃ r:R• 〈w〉̂r̂〈s〉 ∈ routes(n)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 442

(C. Mereology C.3. Functions and Events)

Orderly Action Sequences

•Initial Operational Net

108. Let us assume a notion of an initial operational net.

109. Its pump and valve units are in the following states

(a) all pumps are not pumping, and

(b) all valves are closed.

value

108 initial OpN: N → Bool

109 initial OpN(n) ≡ wf OpN(n) ∧
109(a) ∀ p:P • p ∈ obs Us(n) ⇒ obs PΣ(p)=not pumping ∧
109(b) ∀ v:V • v ∈ obs Us(n) ⇒ obs VΣ(p)=closed

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 443

(C. Mereology C.3. Functions and Events)

Oil Pipeline Preparation and Engagement

110. We now wish to prepare a pipeline from some well, w : W , to some
sink, s : S, for flow.

(a) We assume that the underlying net is operational wrt. w and s,
that is, that there is a route, r, from w to s.

(b) Now, an orderly action sequence for engaging route r is to “work
backwards”, from s to w

(c) setting encountered pumps to pumping and valves to open.

• In this way the system is well-formed wrt. the desirable sppr, spvr,
svpr and svvr properties.

• Finally, setting the pump adjacent to the (preceding) well starts the
system.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 444

(C. Mereology C.3. Functions and Events)

value

110 prepare and engage: W × S → N
∼
→ N

110 prepare and engage(w,s)(n) ≡
110(a) let r:R • 〈w〉̂r̂〈s〉 ∈ routes(n) in

110(b) action sequence(〈w〉̂r̂〈s〉)(len〈w〉̂r̂〈s〉)(n) end

110 pre ∃ r:R • 〈w〉̂r̂〈s〉 ∈ routes(n)

110(c) action sequence: R → Nat → N → N
110(c) action sequence(r)(i)(n) ≡
110(c) if i=1 then n else

110(c) case r(i) of

110(c) mkV() → action sequence(r)(i−1)(valve to open(r(i))(n)),
110(c) mkP() → action sequence(r)(i−1)(pump to pump(r(i))(n)),
110(c) → action sequence(r)(i−1)(n)
110(c) end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 445

(C. Mereology C.3. Functions and Events)

Emergency Actions

111. If a unit starts leaking excessive oil

(a) then nearest up-stream valve(s) must be closed,

(b) and any pumps in-between this (these) valves and the leaking unit
must be set to not pumping

(c) — following an orderly sequence.

112. If, as a result, for example, of the above remedial actions, any of the
desirable properties cease to hold

(a) then — a ha !

(b) Left as an exercise.

End of Example 55

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 446

(C. Mereology C.3. Functions and Events)

C.4. Behaviours: A Semantic Model of a Class of Mereologies

• The model of mereology (Slides 387–347) given earlier focused on
the following simple entities (i) the assemblies, (ii) the units and (iii)
the connectors.

• To assemblies and units we associate CSP processes, and

• to connectors we associate a CSP channels,

• one-by-one.

• The connectors form the mereological attributes of the model.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 447

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies)

C.4.1. Channels

• The CSP channels,

– are each “anchored” in two parts:

– if a part is a unit then in “its corresponding” unit process, and

– if a part is an assembly then in “its corresponding” assembly pro-
cess.

• From a system assembly we can extract all connector identifiers.

• They become indexes into an array of channels.

– Each of the connector channel identifiers is mentioned

– in exactly two unit or assembly processes.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 448

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.1. Channels)

value

s:S
kis:KI-set = xtr∀KIs(s)

type

ChMap = AUI →m KI-set
value

cm:ChMap = [obs AUI(p)7→obs KIs(p)|p:P•p ∈ xtr Ps(s)]
channel

ch[i|i:KI•i ∈ kis] MSG

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 449

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.1. Channels)

C.4.2. Process Definitions

value

system: S → Process

system(s) ≡ assembly(s)

assembly: a:A→in,out {ch[cm(i)]|i:KI•i ∈ cm(obs AUI(a))} process

assembly(a) ≡
MA(a)(obs AΣ(a)) ‖
‖ {assembly(a′)|a′:A•a′ ∈ obs Ps(a)} ‖
‖ {unit(u)|u:U•u ∈ obs Ps(a)}

obs AΣ: A → AΣ

MA: a:A→AΣ→in,out {ch[cm(i)]|i:KI•i ∈ cm(obs AUI(a))} process

MA(a)(aσ) ≡ MA(a)(AF(a)(aσ))

AF : a:A → AΣ → in,out {ch[em(i)]|i:KI•i ∈
cm(obs AUI(a))}×AΣ

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 450

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.2. Process Definitions)

unit: u:U → in,out {ch[cm(i)]|i:KI•i ∈ cm(obs UI(u))} process

unit(u) ≡ MU(u)(obs UΣ(u))
obs UΣ: U → UΣ

MU : u:U → UΣ → in,out {ch[cm(i)]|i:KI•i ∈ cm(obs UI(u))} process

MU(u)(uσ) ≡ MU(u)(UF(u)(uσ))

UF : U → UΣ → in,out {ch[em(i)]|i:KI • i ∈ cm(obs AUI(u))} UΣ

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 451

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.2. Process Definitions)

C.4.3. Mereology, Part III

• (See Sect. on page 410 for Mereology, Part II.)

• A little more meaning has been added to the notions of parts and
connections.

• The within and adjacent to relations between parts (assemblies and
units) reflect a phenomenological world of geometry, and

• the connected relation between parts (assemblies and units)

– reflect both physical and conceptual world understandings:

∗ physical world in that, for example, radio waves cross geometric
“boundaries”, and

∗ conceptual world in that ontological classifications typically re-
flect lattice orderings where overlaps likewise cross geometric
“boundaries”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 452

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.3. Mereology, Part III)

C.4.4. Discussion
C.4.4.1. Partial Evaluation

• The assembly function “first” “functions” as a compiler.

• The ‘compiler’ translates an assembly structure into three process expressions:

– the MA(a)(aσ) invocation,

– the parallel composition of assembly processes, a′, one for each sub-assembly
of a, and

– the parallel composition of unit processes, one for each unit of assembly a —

– with these three process expressions “being put in parallel”.

– The recursion in assembly ends when a sub-. . . -assembly consists of no sub-
sub-. . . -assemblies.

• Then the compiling task ends and the many generatedMA(a)(aσ) andMU(u)(uσ)
process expressions are invoked.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 453

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.4. Discussion C.4.4.1. Partial Evaluation)

C.4.4.2. Generalised Channel Processes

• That completes our ‘contribution’:

– A mereology of systems has been given

– a syntactic explanation, Sect. 2,

– a semantic explanation, Sect. 5 and

– their relationship to classical mereologies.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 453

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.4. Discussion C.4.4.2. Generalised Channel Processes)

End of Lecture 12: MEREOLOGY

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 453

(C. Mereology C.4. Behaviours: A Semantic Model of a Class of Mereologies C.4.4. Discussion C.4.4.2. Generalised Channel Processes)

Start of Lecture 13: Domain Actions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 454

D. Domain Actions blank

D.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 455

(D. Domain Actions blank D.1. Definitions)

D.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 456

(D. Domain Actions blank D.2. Examples)

D.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 456

(D. Domain Actions blank D.3. Research Challenge)

End of Lecture 13: Domain Actions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 456

(D. Domain Actions blank D.3. Research Challenge)

Start of Lecture 14: Domain Events

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 457

E. Domain Events blank

E.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 458

(E. Domain Events blank E.1. Definitions)

E.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 459

(E. Domain Events blank E.2. Examples)

E.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 459

(E. Domain Events blank E.3. Research Challenge)

End of Lecture 14: Domain Events

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 459

(E. Domain Events blank E.3. Research Challenge)

Start of Lecture 15: Domain Behaviour

F Domain Behaviours blank

F.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 460

(F. Domain Events blank F.1. Definitions)

F.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 461

(F. Domain Events blank F.2. Examples)

F.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 461

(F. Domain Events blank F.3. Research Challenge)

End of Lecture 15: Domain Behaviour

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 461

(F. Domain Events blank F.3. Research Challenge)

Start of Lecture 16: A Specification Ontology

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 462

G. A Specification Ontology
G.1. Description Ontology Versus Ontology Description

• According to Wikipedia: Ontology is the philosophical study of

– (i) the nature of being, existence or reality in general,

– (ii) as well as of the basic categories of being and their rela-
tions.

• An earlier lecture emphasized the need for describing domain phe-
nomena and concepts.

• This section puts forward a description ontology:

– (i) which “natures of being, existence or reality” and

– (ii) which “categories of being and their relations”.

which we shall apply in the description of domain phenomena and
concepts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 463

(G. A Specification Ontology G.1. Description Ontology Versus Ontology Description)

• Yes, we do know that

– the term ‘description ontology’ can easily be confused with ‘ontology descrip-
tion’ —

– a term used very much in two computing related communities:

∗ AI (artificial intelligence) and

∗ WWW (World Wide Web).

– These communities use the term ‘ontology’ as we use the term ‘domain’.

• By [domain] ‘description ontology’ we shall mean

– a set of notions

– that are used in

– describing a domain.

• So the ontology is one of the description language

• not of the domain that is being described.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 464

(G. A Specification Ontology G.1. Description Ontology Versus Ontology Description)

G.2. Categories, Predicates and Observers for Describing Domains

• It is not the purpose of this talk to motivate the categories, predicates
and observer functions for describing phenomena and concepts.

• This is done elsewhere.

• Instead we shall more-or-less postulate one approach to the analysis
of domains.

• We do so by postulating a number of meta-categories, meta-predicates
and meta-observer functions.

• They characterise those non-meta categories, predicates and observer
functions that the domain engineer cum researcher is suggested to
make use of.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 465

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains)

G.2.1. The Hypothetical Nature of Categories, Predicates and Observers

• In the following we shall postulate some categories,

– that is, some meta-types:

categories

ALPHA, BETA, GAMMA

• What such a clause as the above means

– is that we postulate that there are such categories of “things”
(phenomena and concepts)

– in the world of domains.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 466

Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.1. The Hypothetical Nature of Categories, Predicates and Observers

• That is,

– there is no proof that such “things” exists.

– It is just our way of modelling domains.

– If that way is acceptable to other domain science researchers, fine.

– In the end,

∗ which we shall never reach,

∗ those aspects of a, or the domain science,

∗ may “survive”.

∗ If not, not !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 467

Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.1. The Hypothetical Nature of Categories, Predicates and Observers

G.2.2. Predicates and Observers

• With the categories just introduced we then go on to postulate some
predicate and observer functions.

• For example:

predicate signatures

is ALPHA: “Things” → Bool

is BETA: “Things” → Bool

is GAMMA: “Things” → Bool

observer signatures

obs ALPHA: “Things”
∼
→ ALPHA

obs BETA: ALPHA
∼
→ BETA

obs GAMMA: ALPHA
∼
→ GAMMA

• So we are “fixing” a logic !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 468

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.2. Predicates and Observers)

• The “Things” clause is a reference to the domain under scrutiny.

– Some ‘things’ in that domain are of category ALPHA, or BETA,
or GAMMA.

– Some are not.

• It is then postulated that

– from such things of category ALPHA

– one can observe things of categories BETA or GAMMA.

• Whether this is indeed the case,

– i.e., that one can observe these things

– is a matter of conjecture, not of proof.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 469

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.2. Predicates and Observers)

G.2.3. Meta-Conditions

• Finally we may sometimes postulate the existence of a meta-axiom:

meta condition:

Predicates over ALPHA, BETA and GAMMA

• Again,

– the promulgation of such logical meta-expressions

– are just conjectures,

– not the expression of “eternal” truths.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 470

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.3. Meta-Conditions)

G.2.4. Discussion

• So, all in all, we suggest four kinds of meta-notions:

– categories,

– is Category predicates,

– obs Property) predicates,

– obs Category observers

– obs Attribute observers, and

– meta-conditions (axiom-like predicates).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 471

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.4. Discussion)

• The

– category [type] A, B, ...,

– is A, is B, ...

– obs A, obs B, ...

– meta-condition [axiom] predicate

notions derive from McCarthy’s analytic syntax 1962 paper.

• In that paper McCarthy also suggested a synthetic syntax construc-
tor function: mk A,

– At present, we find no need to introduce this synthetic syntax
constructor function.

– A basic reason for this is that we are not constructing domain
phenomena.

– The reason McCarthy (and computing science) needed the syn-
thetic syntax constructor functions is that software is constructed.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 472

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.4. Discussion)

G.2.5. Entities

• What we shall describe is what we shall refer to as entities.

• In other words, there is a category and meta-logical predicate

ENTITY, is ENTITY.

• The is ENTITY predicate applies to “whatever” in the domain,
whether an entity or not, and “decides”, i.e., is postulated to analyse
whether that “thing” is an entity or not:

predicate signature:

is ENTITY: “Thing” → Bool

meta condition:

∀ e:ENTITY • is ENTITY(e)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 473

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.5. Entities)

• • •

• By introducing the predicate is ENTITY we have put the finger on
what this section is all about, namely

– “what exists ?” and

– “what can be described ?”

• We are postulating a description ontology.

– It may not be an adequate one.

– It may have flaws.

– But, for the purposes of raising some issues of epistemological and
ontological nature, it is adequate.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 474

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.5. Entities)

G.2.6. Entity Categories

• We postulate four entity categories:

category:

SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR

• Simple entities are phenomena or concepts.

• Simple entity phenomena are the things we can point to, touch
and see. They are manifest.

• Other phenomena, for example those we can hear, smell, taste, or
measure by physics (including chemistry) apparatus are properties
(attributes) of simple entity phenomena.

• Concepts are abstractions about phenomena and/or other concepts.

• A subset of simple domain entities form a state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 475

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.6. Entity Categories)

• Actions are the result of applying functions to simple domain enti-
ties and changing the state.

• Events are state changes that satisfy a predicate on the ‘before’
and ‘after states’.

• Behaviours are sets of sequences (of sets of) actions and events.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 476

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.6. Entity Categories)

category:

ENTITY = SIMPLE ENTITY ∪ ACTION ∪ EVENT ∪ BEHAVIOUR

• With each of the four categories there is a predicate:

predicate signature:

is SIMPLE ENTITY “Thing” → Bool

is ACTION “Thing” → Bool

is EVENT “Thing” → Bool

is BEHAVIOUR “Thing” → Bool

• Each of the above four predicates require that their argument t:“Thing” satisfies:

is ENTITY(t)

• The ∪ “union” is inclusive:

meta condition:

∀ t:̀̀Thing′′
•is ENTITY(t) ⇒

is SIMPLE ENTITY(t) ∨ is ACTION(t) ∨ is EVENT(t) ∨ is BEHAVIOUR(t)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 477

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.6. Entity Categories)

G.2.7. Simple Entities

• We postulate

– that there are atomic simple entities,

– that there are [therefrom distinct] composite simple entities,

– and that a simple entity is indeed either atomic or composite.

• That

– atomic simple entities cannot meaningfully be described as con-
sisting of proper other simple entities, but that

– composite simple entities indeed do consist of proper other simple
entities.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 478

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.7. Simple Entities)

• That is:

category:

SIMPLE ENTITY = ATOMIC ∪ COMPOSITE

observer signature:

is ATOMIC: SIMPLE ENTITY → Bool

is COMPOSITE: SIMPLE ENTITY → Bool

meta condition:

ATOMIC ∩ COMPOSITE = {}
∀ s: “Things”:SIMPLE ENTITY •

is ATOMIC(s) ≡ ∼is COMPOSITE(s)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 479

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.7. Simple Entities)

G.2.8. Discrete and Continuous Entities

• We postulate two forms of SIMPLE ENTITIES:

– DISCRETE, such as a railroad net, a bank, a pipeline pump, and a securities
instrument, and

– CONTINUOUS, such as oil and gas, coal and iron ore, and beer and wine.

category:

SIMPLE ENTITY = DISCRETE SIMPLE ENTITY ∪ CONTINUOUS SIMPLE ENTITY

predicate signatures:

is DISCRETE SIMPLE ENTITY: SIMPLE ENTITY → Bool

is CONTINUOUS SIMPLE ENTITY: SIMPLE ENTITY → Bool

meta condition:

[is it desirable to impose the following]
∀ s:SIMPLE ENTITY •

is DISCRETE SIMPLE ENTITY(s) ≡ ∼CONTINUOUS SIMPLE ENTITY(s) ?

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 480

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.8. Discrete and Continuous Entities)

G.2.9. Attributes

• Simple entities are characterised by their attributes:

– attributes have name, are of type and has some value;

– no two (otherwise distinct) attributes of a simple entity has the same name.

category:

ATTRIBUTE, NAME, TYPE, VALUE

observer signature:

obs ATTRIBUTEs: SIMPLE ENTITY → ATTRIBUTE-set

obs NAME: ATTRIBUTE → NAME

obs TYPE: ATTRIBUTE × NAME → TYPE

obs VALUE: ATTRIBUTE × NAME → VALUE

meta condition:

∀ s:SIMPLE ENTITY •

∀ a,a′:ATTRIBUTE • {a,a′}⊆obs ATTRIBUTEs(s)
∧ a6=a′ ⇒ obs NAME(a) 6=obs NAME(a′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 481

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.9. Attributes)

• Examples of attributes of atomic simple entities are:

– (i) A pipeline pump usually has the following attributes: maximum
pumping capacity, current pumping capacity, whether

for oil or gas, diameter (of pipes to which the valve

connects), etc.

– (ii) Attributes of a person usually includes name, gender, birth

date, central registration number, address, marital

state, nationality, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 482

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.9. Attributes)

• Examples of attributes of composite simple entities are:

– (iii) A railway system usually has the following attributes: name

of system, name of geographic areas of location of rail

nets and stations, whether a public or a private company,

whether fully, partly or not electrified, etc.

– (iv) Attributes of a bank usually includes: name of bank, name

of geographic areas of location of bank branch offices,

whether a commercial portfolio bank or a high street,

i.e., demand/deposit bank, etc.

• We do not further define what we mean by attribute names, types
and values.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 483

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.9. Attributes)

G.2.10. Atomic Simple Entities: Attributes

• Atomic simple entities are characterised only by their attributes.

G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology

• Composite simple entities are characterised by three properties:

– (i) their attributes,

– (ii) a proper set of one or more sub-entities (which are simple
entities) and

– (iii) a mereology of these latter, that is,

∗ how they relate to one another, i.e.,

∗ how they are composed.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 484

ecification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology

G.2.11.1. Sub-entities

• Proper sub-entities,

– that is simple entities properly contained, as immediate parts of
a composite simple entity,

can be observed (i.e., can be postulated to be observable):

observer signature:

obs SIMPLE ENTITIES: COMPOSITE → SIMPLE ENTITY-set

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 485

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.1.

G.2.11.2. Mereology, Part IV

• Mereology is the theory of part-hood relations:

– of the relations of part to whole

– and the relations of part to part within a whole.

• Suffice it to suggest some mereological structures:

– Set Mereology: The individual sub-entities of a composite
entity are “un-ordered” like elements of a set.

∗ The obs SIMPLE ENTITIES function yields the set elements.

predicate signature:

is SET: COMPOSITE → Bool

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 486

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

– Cartesian Mereology: The individual sub-entities of a compos-
ite entity are “ordered” like elements of a Cartesian (grouping).

∗ The function obs ARITY yields the arity, 2 or more, of the
simple Cartesian entity.

∗ The function obs CARTESIAN yields the Cartesian composite
simple entity.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 487

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

predicate signature:

is CARTESIAN: COMPOSITE → Bool

observer signatures:

obs ARITY: COMPOSITE
∼
→ Nat

pre: obs ARITY(s) is CARTESIAN(s)

obs CARTESIAN: COMPOSITE
∼
→

SIMPLE ENTITY × ... × SIMPLE ENTITY

pre obs CARTESIAN(s): is CARTESIAN(s)
meta condition:

∀ c:SIMPLE ENTITY•

is COMPOSITE(c)∧is CARTESIAN(c) ⇒
obs SIMPLE ENTITIES(c) = elements of obs CARTESIAN(c)
∧ cardinality of obs SIMPLE ENTITIES(c) = obs ARITY(c)

∗ We just postulate the elements of and the cardinality of meta-functions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 488

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

– List Mereology: The individual sub-entities of a composite entity are “or-
dered” like elements of a list (i.e., a sequence).

∗ Where Cartesians are fixed arity sequences,

∗ lists are variable length sequences.

predicate signature:

is LIST: COMPOSITE → Bool

observer signatures:

obs LIST: COMPOSITE
∼
→ list of SIMPLE ENTITY

pre is LIST(s): is COMPOSITE(s)

obs LENGTH: COMPOSITE
∼
→ Nat

pre is LIST(s): is COMPOSITE(s)
meta condition:

∀ s:SIMPLE ENTITY•

is COMPOSITE(s)∧is LIST(s) ⇒
obs SIMPLE ENTITIES(s) = elements of obs LIST(s)

∗ We also just postulate the list of and the elements of meta-functions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 489

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

– Map Mereology: The individual sub-entities of a map are
“indexed” by unique definition set elements.

– Thus we can speak of pairings of unique map definition set ele-
ment identifications and their not necessarily distinct range set
elements.

∗ By a map we shall therefore understand

· a function, with a finite definition set,

· from distinct definition set elements

· to not necessarily distinct range elements,

· such that the pairs of (definition set,range) elements,

· which are all simple entities,

· can be characterised by a predicate.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 490

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

∗ It is this,

· the finiteness of maps

· and the (potential, but often un-expressed) predicate,

which ‘distinguishes’ maps from functions.

∗ Let us refer to the map as being of category MAP.

∗ Let us refer to the definition set elements of a map as being the
DEFINITION SET of the MAP.

∗ Let us refer to the range elements of such a map as being the
RANGE of the MAP.

∗ No two definition set elements of a map, to repeat, are the same.

∗ Given a definition set element, s, of a map, m, one can obtain
its IMAGE of the RANGE of m.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 491

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

predicate signature:

is MAP: COMPOSITE → Bool

observer signatures:

obs MAP: COMPOSITE
∼
→ MAP

pre obs MAP(c): is MAP(c)
obs DEFINITION SET: MAP → SIMPLE ENTITY-set

pre obs MAP(c): is MAP(c)
obs RANGE: MAP → SIMPLE ENTITY-set

pre obs MAP(c): is MAP(c)

obs IMAGE: MAP × SIMPLE ENTITY
∼
→ SIMPLE ENTITY

pre obs IMAGE(m,d): is MAP(m) ∧ d ∈ obs DEFINITION SET(m)
meta condition:

∀ m:SIMPLE ENTITY•

is COMPOSITE(m)∧is MAP(m) ⇒
obs SIMPLE ENTITIES(m) =
{(d,obs IMAGE(c,d))|d:SIMPLE ENTITY•d ∈ obs DEFINITION SET(m)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 492

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

∗ Given that we can postulate “an existence” of

· the obs DEFINITION SET and

· the obs RANGE

observer functions

∗ we can likewise postulate a category

category

MAP = map of SIMPLE ENTITY into ENTITY

observer signatures

obs DEF SET: MAP → set of SIMPLE ENTITY

obs RNG: MAP → set of ENTITY

meta condition

∀ m:MAP •

obs DEF SET(m) = obs DEFINITION SET(m)
∧ obs RNG(m) = obs RANGE(m)

∗ Here, again, the map of ... into ... is further unexplained.

∗ We shall not pursue the notions of DEF SET and RNG further.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 493

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

– Graph Mereology: The individual sub-entities of a composite entity are
“ordered” like elements of a graph, i.e., a net, of elements.

∗ Trees and lattices are just special cases of graphs.

∗ Any (immediate) sub-entity of a composite simple entity of GRAPH mere-
ology may be related to any number of (not necessarily other) (immediate)
sub-entities of that same composite simple entity GRAPH in a number of
ways:

· it may immediately PRECEDE,

· or immediate SUCCEED

· or be BIDIRECTIONALLY LINKED

with these (immediate) sub-entities of that same composite simple entity.

∗ In the latter case

· some sub-entities PRECEDE a SIMPLE ENTITY of the
GRAPH,

· some sub-entities SUCCEED a SIMPLE ENTITY of the
GRAPH,

· some both.
April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 494

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

predicate signature:

is GRAPH: COMPOSITE → Bool

observer signatures:

obs GRAPH: COMPOSITE
∼
→ GRAPH

pre obs GRAPH(g): is GRAPH(g)

obs PRECEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEDING SIMPLE ENTITIES(c,s):

is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

obs SUCCEEDING SIMPLE ENTITIES:

COMPOSITE × SIMPLE ENTITY → SIMPLE ENTITY-set

pre obs PRECEDING SIMPLE ENTITIES(c,s):

is GRAPH(c) ∧ s ∈ obs SIMPLE ENTITIES(c)

meta condition:

∀ c:SIMPLE ENTITY • is COMPOSITE(c) ∧ is GRAPH(c)

⇒ let ss = SIMPLE ENTITIES(c) in

∀ s′:SIMPLE ENTITY • s′ ∈ ss

⇒ obs PRECEDING SIMPLE ENTITIES(c)(s′) ⊆ ss

∧ obs SUCCEEDING SIMPLE ENTITIES(c)(s′) ⊆ ss

end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 495

Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.11. Composite Simple Entities: Attributes, Sub-entities and Mereology G.2.11.2.

G.2.12. Discussion

• Given a “thing”, s, which satisfies is SIMPLE ENTITY(s),

– the domain engineer can now systematically analyse this “thing”

– using any of the predicates

∗ is ATOMIC(s),

∗ is COMPOSITE(s),

∗ is SET(s),

∗ is CARTESIAN(s),

∗ is LIST(s),

∗ is MAP(s),

∗ is GRAPH(s),

∗ etcetera.

and observer functions sketched above.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 496

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.12. Discussion)

• Given any SIMPLE ENTITY

– the domain engineer can now analyse it to find out whether it is

∗ an ATOMIC or

∗ a COMPOSITE

entity.

– An, in either case, the domain engineer can analyse it to find out
about its ATTRIBUTES.

– If the SIMPLE ENTITY is COMPOSITE

∗ then its SIMPLE ENTITIES and

∗ their MEREOLOGY

can be additionally ascertained.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 497

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.12. Discussion)

• In summery:

– If ATOMIC then ATTRIBUTES can be analysed.

– If COMPOSITE then

∗ ATTRIBUTES,

∗ SIMPLE ENTITIES and

∗ MEREOLOGY

can be analysed.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 498

ecification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.12. Composite Simple Entities: Attributes, Sub-entities and Mereology

G.2.13. Actions

• By a STATE we mean a set of one or more SIMPLE ENTITIES.

• By an ACTION we shall understand

– the application

– of a FUNCTION

– to (a set of, including the state of) SIMPLE ENTITIES

– such that a STATE change occurs.

• We postulate that the domain engineer can indeed decide,

• that is, conjecture,

• whether a “thing”, which is an ENTITY

• is an ACTION.

category:

ACTION, FUNCTION, STATE

predicate signature:

is ACTION: ENTITY → Bool

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 499

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.13. Actions)

• Given an ENTITY of category ACTION one can observe, i.e., con-
jecture

– the FUNCTION (being applied),

– the ARGUMENT CARTESIAN of SIMPLE ENTITIES to
which the FUNCTION is being applied, and

– the resulting change STATE change.

• Not all elements of the CARTESIAN ARGUMENT are SIMPLE

STATE ENTITIES.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 500

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.13. Actions)

category:

STATE = SIMPLE ENTITY

FUNCTION = SIMPLE ENTITY × STATE → STATE

ARGUMENT = {|s:SIMPLE ENTITY•is CARTESIAN(s)|}
observer signatures:

obs ACTION: ENTITY → ACTION

obs FUNCTION: ACTION → FUNCTION

obs ARGUMENT: ACTION → ARGUMENT

obs INPUT STATE: ACTION → STATE

obs RESULT STATE: ACTION → STATE

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 501

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.13. Actions)

G.2.13.1. “Half-way” Discussion15

• The domain engineer cum researcher makes decisions

• as to the modelling of the domain.

• Choices as to whether a “thing” is an entity,

• and, if so, whether it is a simple entity, an action, an event or a
behaviour,

• those choices represent abstractions and approximations.

15“Halfway”: after simple entities and actions and before events and
behaviours.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 502

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.13. Actions G.2.13.1. “Half-way” Discussion14)

G.2.14. Events

• By an EVENT we shall understand

– A pair, (σ, σ′), of STATEs,

– a STIMULUS, s,

– (which is like a FUNCTION of an ACTION),

– and an EVENT PREDICATE, p : P ,

– such that p(σ, σ′)(s),

yields true.

• The difference between an ACTION and an EVENT is two things:

– the EVENT ACTION need not originate within the analysed
DOMAIN, and

– the EVENT PREDICATE is trivially satisfied by most ACTIONs
which originate within the analysed DOMAIN.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 503

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.14. Events)

• Examples of events, that is, of predicates are:

– a bank goes “bust” (e.g., looses all its monies, i.e., bankruptcy),

– a bank account becomes negative,

– (unexpected) stop of gas flow and

– iron ore mine depleted.

• Respective stimuli of these events could be:

– (massive) loan defaults,

– a bank client account is overdrawn,

– pipeline breakage, respectively

– over-mining.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 504

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.14. Events)

• We postulate that the domain engineer from an EVENT can observe

– the STIMULUS,

– the BEFORE STATE,

– the AFTER STATE and

– the EVENT PREDICATE.

• As said before: the domain engineer cum researcher can decide on
these abstractions, these approximations.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 505

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.14. Events)

category:

STIMULUS = SIMPLE ENTITY × STATE → STATE

P = STATE × STATE → Bool

observer signatures:

obs STIMULUS: EVENT → STIMULUS

obs BEFORE STATE: EVENT → STATE

obs AFTER STATE: EVENT → STATE

obs EVENT PREDICATE: EVENT → P
meta condition:

∀ e:EVENT •

∃ s:STIMULUS •

INPUT STATE(e) = BEFORE STATE(s) ∧
RESULT STATE(e) = AFTER STATE(s) ∧
∃ p:P •p(s)(INPUT STATE(e),RESULT STATE(e))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 506

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.14. Events)

G.2.15. Behaviours

• By a BEHAVIOUR we shall understand

– a set of sequences of ACTIONs and EVENTs

– such that some EVENTs in two or more such sequences

∗ have their STATEs and PREDICATEs

∗ express, for example, mutually exclusive

∗ synchronisation and communication EVENTs

∗ between these sequences

∗ which are each to be considered as simple SEQUENTIAL BEHAVIOURs.

– Other forms than mutually exclusive synchronisation and communication EVENTs,

– that “somehow link” two or more behaviours,

– can be identified.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 507

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

• We may think of the mutually exclusive synchronisation and communication
EVENTs

• as being designated simply by their PREDICATEs

– such as, for example, in CSP:

type A, B, C, D, M
channel ch M
value

f: A → out ch C
g: B → in ch D
f(a) ≡ ... point ℓf :ch!e ...
g(b) ≡ ... point ℓg:ch? ...

– Here the zero capacity buffer communication channel, ch,

– express mutual exclusivity,

– and the output/input clauses: ch!e and ch?

– express synchronisation and communication.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 508

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

• The predicate is here, in the CSP schema, “buried” in

– the simultaneous occurrence

– behaviour f having “reached point” point ℓf and

– behaviour g having “reached point” point ℓg.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 509

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

• We abstract

– from the orderly example of synchronisation and communication
given above and

– introduce a further un-explained notion of behaviour (synchronisa-
tion and communication) BEHAVIOUR INTERACTION LABELs

– and allow BEHAVIOURs to now just be sets of sequences of

∗ ACTIONs and

∗ BEHAVIOUR INTERACTION LABELs.

– such that any one simple sequence has unique labels.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 510

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

• We can classify some BEHAVIOURs.

– (i) SIMPLE SEQUENTIAL BEHAVIOURs

∗ are sequences of ACTIONs.

– (ii) SIMPLE CONCURRENT BEHAVIOURs

∗ are sets of SIMPLE SEQUENTIAL BEHAVIOURs.

– (iii) COMMUNICATING CONCURRENT BEHAVIOURs

∗ are sets of sequences of

· ACTIONs and

· BEHAVIOUR INTERACTION LABELs.

∗ We say that two or more such COMMUNICATING CONCURRENT

BEHAVIOURs SYNCHRONISE & COMMUNICATE when
all distinct BEHAVIOURs “sharing” a (same) label have all
reached that label.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 511

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

• Many other composite behaviours can be observed.

• For our purposes it suffice with having just identified the above.

• SIMPLE ENTITIES, ACTIONs and EVENTs can be described
without reference to time.

• BEHAVIOURs, in a sense, take place over time.16

16If it is important that ACTIONs take place over time, that is, are not instantaneous, then we can just consider ACTIONs as very simple
SEQUENTIAL BEHAVIOURs not involving EVENTs.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 512

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

– It will bring us into a rather long discourse

– if we are to present some predicates, observer functions and axioms
concerning behaviours — along the lines such predicates, observer
functions and axioms were present, above, for SIMPLE ENTITIES,
ACTIONs and EVENTs.

– We refer instead to Johan van Benthems seminal work on the The
Logic of Time.

– In addition, more generally, we refer to A.N. Prior’s and McTag-
gart’s works.

– The paper by Wayne D. Blizard proposes an axiom system for
time-space.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 513

(G. A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.15. Behaviours)

G.2.16. Mereology, Part V
G.2.16.1. Compositionality of Entities

• Simple entities — when composite — are said to exhibit a mereology.

• Thus composition of simple entities imply a mereology.

• We discussed mereologies of behaviours: simple sequential, simple
concurrent, communicating concurrent, etc.

• Above we did not treat actions and events as potentially being com-
posite.

• But we now relax that seeming constraint.

• There is, in principle, nothing that prevents actions and events from
exhibiting mereologies.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 514

A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.16. Mereology, Part V G.2.16.1. Compositionality of Entities

• An action, still instantaneous, can,

– for example, “fork” into a number of concurrent actions, all in-
stantaneous, on “disjoint” parts of a state;

– or an instantaneous action can “dribble” (not little-by-little, but
one-after-the-other. still instantaneously) into several actions as
if a simple sequential behaviour, but instantaneous.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 515

A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.16. Mereology, Part V G.2.16.1. Compositionality of Entities

• Two or more events

– can occur simultaneously:

∗ two or more (up to four, usually) people become grandparents

∗ when a daughter of theirs give birth to their first grandchild;

– or an event can — again a “dribble” (not little-by-little, but in-
stantaneously) — “rapidly” sequence through a number of instan-
taneous sub-events (with no intervening time intervals):

∗ A bankruptcy events

∗ immediately causes the bankruptcy of several enterprises

∗ which again causes the immediate bankruptcy of several em-
ployes,

∗ etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 516

A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.16. Mereology, Part V G.2.16.1. Compositionality of Entities

• The problems of compositionality of entities,

– whether simple, actions, events or behaviours,

– is was studied, initially, in [Bjørner and Eir. 2008]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 517

A Specification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.16. Mereology, Part V G.2.16.1. Compositionality of Entities

G.2.17. Impossibility of Definite Mereological Analysis of Seemingly Composite Entities

• It would be nice if there was a more-or-less obvious way of “deci-
phering” the mereology of an entity.

• In the many • (bulleted) items above (cf. Set, Cartesian, List, Map,
Graph) we may have left the impression with the listener that is a
more-or-less systematic way of uncovering the mereology of a com-
posite entity.

• That is not the case: there is no such obvious way.

• It is a matter of both discovery and choice between seemingly alter-
native mereologies, and it is also a matter of choice of abstraction.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 518

ecification Ontology G.2. Categories, Predicates and Observers for Describing Domains G.2.17. Impossibility of Definite Mereological Analysis of Seemingly Comp

G.3. What Exists and What Can Be Described ?

• In the previous section we have suggested

– a number of categories17 of entities,

17Some categories: ENTITY, SIMPLE ENTITY, ACTION, EVENT, BEHAVIOUR, ATOMIC, COMPOSITE, DISCRETE, CONTINUOUS, ATTRIBUTE, NAME, TYPE, VALUE,

SET, CARTESIAN, LIST, MAP, GRAPH, FUNCTION, STATE, ARGUMENT, STIMULUS, EVENT PREDICATE, BEFORE STATE, AFTER STATE, SEQUENTIAL BEHAVIOUR,

BEHAVIOUR INTERACTION LABEL, SIMPLE SEQUENTIAL BEHAVIOUR, SIMPLE CONCURRENT BEHAVIOUR, COMMUNICATING CONCURRENT BEHAVIOUR, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 519

(G. A Specification Ontology G.3. What Exists and What Can Be Described ?)

– a number of predicate18 and observer19 functions and

– a number of meta conditions (i.e., axioms).

• These concepts and their relations to one-another,

– suggest an ontology for describing domains.

• It is now very important that we understand these

– categories,

– predicates,

– observers and

– axioms

properly.

18Some predicates: is ENTITY, is SIMPLE ENTITY, is ACTION, is EVENT, is BEHAVIOUR, is ATOMIC, is COMPOSITE, is DISCRETE SIMPLE ENTITY,

is CONTINUOUS SIMPLE ENTITY, is SET, is CARTESIAN, is LIST, is MAP, is GRAPH, etc.
19Some observers: obs SIMPLE ENTITY, obs ACTION, obs EVENT, obs BEHAVIOUR, obs ATTRIBUTE, obs NAME, obs TYPE, obs VALUE, obs SET, obs CARTESIAN, obs ARITY,

obs LIST, obs LENGTH, obs DEFINITION SET, obs RANGE, obs IMAGE, obs GRAPH, obs PRECEDING SIMPLE ENTITIES, obs SUCCEEDING SIMPLE ENTITIES, obs MEREOLOGY,

obs INPUT STATE, obs ARGUMENT, obs RESULT STATE, obs STIMULUS, obs EVENT PREDICATE, obs BEFORE STATE, obs AFTER STATE, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 520

(G. A Specification Ontology G.3. What Exists and What Can Be Described ?)

G.3.1. Description Versus Specification Languages

• Footnotes 17–19 (Slide 518) summarised a number of main concepts
of an ontology for describing domains.

• The categories and predicate and observer function signatures are
not part of a formal language for descriptions.

• The identifiers used for these categories are intended to denote the
real thing, classes of entities of a domain.

• In a philosophical discourse about describability of domains one
refers to the real things.

• That alone prevents us from devising a formal specification language
for giving (syntax and) semantics to a specification, in that language,
of what these (Footnote 17–19) identifiers mean.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 521

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.1. Description Versus Specification Languages)

G.3.2. Formal Specification of Specific Domains

• Once we have decided to describe a specific domain

• then we can avail ourselves of using one or more of a set of formal
specification languages.

• But such a formal specification does not give meaning to identifiers
of the categories and predicate and observer functions;

• they give meaning to very specific subsets of such categories and
predicate and observer functions.

• And the domain specification now ascribes, not the real thing, but
usually some form of mathematical structures as models of the spec-
ified domain.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 522

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.2. Formal Specification of Specific Domains)

G.3.3. Formal Domain Specification Languages

• There are, today, 2009, a large number of formal specification lan-
guages.

– Some or textual, some are diagrammatic.

– The textual specification languages are like mathematical expres-
sions, that is: linear text, often couched in an abstract “program-
ming language” notation.

– The diagrammatic specification languages provide for the specifier
to draw two-dimensional figures composed from primitives.

• Both forms of specification languages have precise mathematical
meanings, but the linear textual ones additionally provide for proof
rules.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 523

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.3. Formal Domain Specification Languages)

• Examples of textual, formal specification languages are

– Alloy: model-oriented,

– B, Event-B: model-oriented,

– CafeOBJ: property-oriented (algebraic),

– CASL: property-oriented (algebraic),

– DC (Duration Calculus): temporal logic,

– RAISE, RSL: property and model-oriented,

– TLA+: temporal logic and sets,

– VDM, VDM-SL: model-oriented and

– Z: model-oriented.

• DC and TLA+ are often used in connection with either a model-
oriented specification languages or just plain old discrete mathemat-
ics notation !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 524

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.3. Formal Domain Specification Languages)

• But the model-oriented specification languages mentioned above do
not succinctly express concurrency.

• The diagrammatic, formal specification languages, listed below, all
do that:

– Petri Nets,

– Message Sequence Charts (MSC),

– Live Sequence Charts (LSC) and

– Statecharts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 525

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.3. Formal Domain Specification Languages)

G.3.4. Discussion: “Take-it-or-leave-it !”

• With the formal specification languages,

– not just those listed above,

– but with any conceivable formal specification language,

∗ the issue is:

· you can basically only describe using that language

· what it was originally intended to specify,

∗ and that, usually, was to specify software !

• If, in the real domain you find phenomena or concepts,

– which it is somewhat clumsy

– and certainly not very abstract

– or, for you, outright impossible,

• to describe, then, well, then you cannot formalise them !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 526

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.4. Discussion: “Take-it-or-leave-it !”)

G.3.4.1.

•

•

•

•

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 527

(G. A Specification Ontology G.3. What Exists and What Can Be Described ? G.3.4. Discussion: “Take-it-or-leave-it !” G.3.4.1.)

G.3.4.2.

•

•

•

•

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 527

(G. A Specification Ontology G.3. Categories, Predicates and Observers for Describing Domains G.3.4. Behaviours G.3.4.2.)

End of Lecture 16: A Specification Ontology

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 527

(G. A Specification Ontology G.3. Categories, Predicates and Observers for Describing Domains G.3.4. Behaviours G.3.4.2.)

Start of Lecture 17: Domain Intrinsics

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 528

H. Domain Intrinsics blank

H.1. Delineation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 529

(H. Domain Intrinsics blank H.1. Delineation)

H.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 530

(H. Domain Intrinsics blank H.2. Examples)

H.3. Research Challenges

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 530

(H. Domain Intrinsics blank H.3. Research Challenges)

End of Lecture 17: Domain Intrinsics

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 530

(H. Domain Intrinsics blank H.3. Research Challenges)

Start of Lecture 18: Domain Support Technologies

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 531

I. Domain Support Technologies
I.1. Definition

• By a support technology of a domain we shall understand

– either of a set of (one or more) alternative

– entities, functions, events and behaviours

– which “implement” an intrinsic phenomenon or concept.

• Thus for some intrinsic phenomenon or concept

– there might be a technology

– which supports that phenomenon or concept.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 532

(I. Domain Support Technologies I.1. Definition)

I.2. Examples

Example 56 – Railway Switches (I): We give a rough sketch de-
scription of possible rail unit switch technologies.

• In “ye olde” days, rail switches were “thrown” by manual labour, i.e.,
by railway staff assigned to and positioned at switches.

• With the advent of reasonably reliable mechanics, pulleys and levers20

and steel wires, switches were made to change state by means of
“throwing” levers in a cabin tower located centrally at the station (with
the lever then connected through wires etc., to the actual switch).

• This partial mechanical technology then emerged into electromechan-
ics, and cabin tower staff was “reduced” to pushing buttons.

• Today, groups of switches, either from a station arrival point to a
station track, or from a station track to a station departure point,
are set and reset by means also of electronics, by what is known as

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 533

interlocking (for example, so that two different routes cannot be open
in a station if they cross one another).

End of Example 56

20http://en.wikipedia.org/wiki/Lever

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 534

(I. Domain Support Technologies I.2. Examples)

• It must be stressed that Example 56 is just a rough sketch.

• In a proper narrative description the software (cum domain) engineer
must describe, in detail, the subsystem of electronics, electromechan-
ics and the human operator interface (buttons, lights, sounds, etc.).

• An aspect of supporting technology includes recording the state-
behaviour in response to external stimuli.

• We give an example.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 535

(I. Domain Support Technologies I.2. Examples)

Example 57 – Railway Switches (II): Figure 13 indicates a way
of formalising this aspect of a supporting technology.

• Figure 13 intends to model the probabilistic (erroneous and correct)
behaviour of a switch when subjected to settings (to switched (s)
state) and re-settings (to direct (d) state).

• A switch may go to the switched state from the direct state when
subjected to a switch setting s with probability psd.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 536

(I. Domain Support Technologies I.2. Examples)

Input stimuli:

Probabilities: 0 <= p.. <= 1

States:

sw/psd

di/1−pdd−edd

sw/pss

di/1−pds−eds

sw/esssw/esd
sw/1−psd−esd

di/pdd
di/edsdi/edd

sw/1−pss−ess

di/pds

e sd

sw: Switch to switched state
di: Revert to direct state

pss: Switching to switched state from switched state
psd: Switching to switched state from direct state
pds: Reverting to direct state from switched state
pds: Reverting to direct state from direct state
esd: Switching to error state from direct state
edd: Reverting to error state from direct state
ess: Switching to error state from switched state
eds: Reverting to error state from switched state

s: Switched state
d: Direct (reverted) state
e: Error state

Figure 13: Probabilistic state switching

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 537

(I. Domain Support Technologies I.2. Examples)

Another example shows another aspect of support technology:

• Namely that the technology must guarantee certain of its own be-
haviours,

• so that software designed to interface with this technology,

• together with the technology, meets dependability requirements.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 538

(I. Domain Support Technologies I.2. Examples)

Example 58 – Sampling Behaviour of Support Technologies:

• Let us consider intrinsic Air Traffic as a continuous function (→)

• from Time to Flight Locations:

type

T, F, L
iAT = T → (F →m L)

• But what is observed, by some support technology,

• is not a continuous function, but a discrete sampling (a map →m):

sAT = T →m (F →m L)

• There is a support technology, say in the form of radar

• which “observes” the intrinsic traffic and delivers the sampled traffic:

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 539

value

radar: iAT → sAT

• But even the radar technology is not perfect.

• Its positioning of flights follows some probabilistic or statistical pat-
tern:

type

P = {|r:Real • 0≤r≤1|}
ssAT = P →m sAT-infset

value

radar′: iAT
∼
→ ssAT

• The radar technology will, with some probability produce either of a
set of samplings,

• and with some other probability some other set of samplings, etc.

End of Example 58

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 540

(I. Domain Support Technologies I.2. Examples)

I.3. Support Technology Quality Control, a Sketch

• How can we express that a given technology delivers a reasonable
support ?

• One approach is to postulate

– intrinsic and technology states (or observed behaviours), Θi, Θs,

– a support technology τ

– and a “closeness” predicate:

type

Θ i, Θ s
value

τ : Θ i → P →m Θ s-infset

close: Θ i × Θ s → Bool

• and then require that an experiment can be performed
April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 541

• which validates the support technology.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 542

(I. Domain Support Technologies I.3. Support Technology Quality Control, a Sketch)

• The experiment is expressed by the following axiom:

value

p threshhold:P
axiom

∀ θ i:Θ i •

let pθ ss = τ (θ i) in

∀ p:P • p>p threshhold ⇒
θ s:Θ s • θ s ∈ pθ ss(p) ⇒ close(θ i,θ s) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 543

(I. Domain Support Technologies I.3. Support Technology Quality Control, a Sketch)

I.4. Research Challenges blank

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 543

(I. Domain Support Technologies I.4. Research Challenges blank)

End of Lecture 18: Domain Support Technologies

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 543

(I. Domain Support Technologies I.4. Research Challenges blank)

Start of Lecture 19: Domain Rules and Regulations

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 544

J. Domain Rules and Regulations
J.1. Definitions

• By a rule we understand

– a syntactic piece of text whose meaning

– apply in any pair of actual present and potential next states of
the enterprise,

– and then evaluates to either true or false:

– the rule has been obeyed, or the rule has been (or will be,
or might be) broken.

• By a regulation we understand

– a syntactic piece of text whose meaning, for example,

– apply in states of the enterprise where a rule has been broken,

– and when applied in such states will change the state,

– that is, “remedy” the “breaking of a rule”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 545

(J. Domain Rules and Regulations J.1. Definitions)

J.2. Abstraction of Rules and Regulations

• Stimuli are introduced in order to capture the possibility of rule-
breaking next states.

• Rules

• Regulations

• Θ

• To each of the three syntactic notions: Stimuli, Rules and Regulations
there is a meaning, i.e., a semantic function from syntax to seman-
tics.

• The meaning, STI, of Stimuli, are state transitions, that is, a stim-
ulus provokes a state change.

• The meaning, RUL, of a Rule, is a predicate over a before (stimulus)
state and an after (stimulus) state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 546

• The meaning, REG, of a Regulation, is another transition, intended
to replace stimula transitions whose Rule predicate does not hold,
that is, the regulation transition shall lead to an after state for which
the rule now holds.

type

Sti, Rul, Reg, Θ
RulReg = Rul × Reg
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

REG = Θ → Θ
value

meaning: Sti → STI
meaning: Rul → RUL
meaning: Reg → REG
valid: Sti × Rul → Θ → Bool

valid(sti,rul)θ ≡ (meaning(rul))(θ,meaning(sti)θ)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 547

axiom

∀ sti:Sti,(rul,reg):RulReg,θ:Θ • ∼valid(sti,rul)θ ⇒ meaning(rul)(θ,meaning(reg)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 548

(J. Domain Rules and Regulations J.2. Abstraction of Rules and Regulations)

J.2.1. Quality Control of Rules and Regulations

• The axiom above presents us with a guideline

– for checking the suitability of (pairs of) rules and regulations

– in the context of stimuli:

∗ for every proposed pair of rules and regulations

∗ and for every conceivable stimulus

∗ check whether the stimulus might cause a breaking of the rule

∗ and, if so, whether the regulation

∗ will restore the system to an acceptable state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 549

(J. Domain Rules and Regulations J.2. Abstraction of Rules and Regulations J.2.1. Quality Control of Rules and Regulations)

J.2.2. Research Challenges

• The above sketched a quality control procedure for ‘stimuli, rules
and regulations’.

• It left out the equally important ‘monitoring’ aspects.

• Here is a research challenge:

– Develop experimentally two or three distinct models of domains
involving distinct sets of rules and regulations.

– Then propose and study concrete implementations of procedures
for quality monitoring and control of ‘stimuli, rules and regula-
tions’.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 549

(J. Domain Rules and Regulations J.2. Abstraction of Rules and Regulations J.2.2. Research Challenges)

End of Lecture 19: Domain Rules and Regulations

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 549

(J. Domain Rules and Regulations J.2. Abstraction of Rules and Regulations J.2.2. Research Challenges)

Start of Lecture 20: Domain Scripts

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 550

K. Domain Scripts, Licenses and Contracts
K.1. Domain Scripts

By a domain script we shall understand

• a structured text

• which can be interpreted as a set of rules (“in disguise”).

Example 59 – Timetables

• We shall view timetables as scripts.

• In on the present and next slides (550–571) we shall

– first narrate and formalise the syntax, including the well-formedness
of timetable scripts,

– then we consider the pragmatics of timetable scripts,

∗ including the bus routes prescribed by these journey descriptions
and

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 551

∗ timetables marked with the status of its currently active routes,
and

– finally we consider the semantics of timetable, that is, the traffic
they denote.

• In Example. ?? on contracts for bus traffic, we shall assume the
timetable scripts of this part of the lecture on scripts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 552

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

Figure 14: Some bus timetables: Italy, India and Norway

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 553

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

⊕ The Syntax of Timetable Scripts ⊕

113. Time is a concept covered earlier. Bus lines and bus rides have unique names
(across any set of time tables). Hub and link identifiers, HI, LI, were treated from
the very beginning.

114. A TimeTable associates to Bus Line Identifiers a set of Journies.

115. Journies are designated by a pair of a BusRoute and a set of BusRides.

116. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more
intermediate Bus Stops and a destination Bus Stop.

117. A set of BusRides associates, to each of a number of Bus Identifiers a Bus Schedule.

118. A Bus Schedule a triple of the initial departure Time, a list of zero, one or more
intermediate bus stop Times and a destination arrival Time.

119. A Bus Stop (i.e., its position) is a Fraction of the distance along a link (identified
by a Link Identifier) from an identified hub to an identified hub.

120. A Fraction is a Real properly between 0 and 1.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 554

121. The Journies must be well formed in the context of some net.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 555

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

type

113. T, BLId, BId
114. TT = BLId →m Journies
115. Journies′ = BusRoute × BusRides
116. BusRoute = BusStop × BusStop∗ × BusStop
117. BusRides = BId →m BusSched
118. BusSched = T × T∗ × T
119. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
120. Frac = {|r:Real•0<r<1|}
121. Journies = {|j:Journies′

•∃ n:N • wf Journies(j)(n)|}

• The free n in ∃ n:N • wf Journies(j)(n) is the net given in the license.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 556

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

⊕ Well-formedness of Journies ⊕

122. A set of journies is well-formed

123. if the bus stops are all different,

124. if a defined notion of a bus line is embedded in some line of the net,
and

125. if all defined bus trips (see below) of a bus line are commensurable.

value

122. wf Journies: Journies → N → Bool

122. wf Journies((bs1,bsl,bsn),js)(hs,ls) ≡
123. diff bus stops(bs1,bsl,bsn) ∧
124. is net embedded bus line(〈bs1〉̂bsl̂〈bsn〉)(hs,ls) ∧
125. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 557

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

126. The bus stops of a journey are all different

127. if the number of elements in the list of these equals the length of the
list.

value

126. diff bus stops: BusStop × BusStop∗ × BusStop → Bool

126. diff bus stops(bs1,bsl,bsn) ≡
127. card elems 〈bs1〉̂bsl̂〈bsn〉 = len 〈bs1〉̂bsl̂〈bsn〉

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 558

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

• We shall refer to the (concatenated) list (〈bs1〉̂bsl̂〈bsn〉 = len

〈bs1〉̂bsl̂〈bsn〉) of all bus stops as the bus line.

128. To explain that a bus line is embedded in a line of the net

129. let us introduce the notion of all lines of the net, lns,

130. and the notion of projecting the bus line on link sector descriptors.

131. For a bus line to be embedded in a net then means that there exists
a line, ln, in the net, such that a compressed version of the projected
bus line is amongst the set of projections of that line on link sector
descriptors.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 559

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

value

128. is net embedded bus line: BusStop∗ → N → Bool

128. is net embedded bus line(bsl)(hs,ls)
129. let lns = lines(hs,ls),
130. cbln = compress(proj on links(bsl)(elems bsl)) in

131. ∃ ln:Line • ln ∈ lns ∧ cbln ∈ projs on links(ln) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 560

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

132. Projecting a list (∗) of BusStop descriptors (mkBS(hi,li,f,hi′)) onto a
list of Sector Descriptors ((hi,li,hi′))

133. we recursively unravel the list from the front:

134. if there is no front, that is, if the whole list is empty, then we get the
empty list of sector descriptors,

135. else we obtain a first sector descriptor followed by those of the re-
maining bus stop descriptors.

value

132. proj on links: BusStop∗ → SectDescr∗

132. proj on links(bsl) ≡
133. case bsl of

134. 〈〉 → 〈〉,
135. 〈mkBS(hi,li,f,hi′)〉̂bsl′ → 〈(hi,li,hi′)〉̂proj on links(bsl′)
135. end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 561

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

136. By compression of an argument sector descriptor list we mean a
result sector descriptor list with no duplicates.

137. The compress function, as a technicality, is expressed over a dimin-
ishing argument list and a diminishing argument set of sector de-
scriptors.

138. We express the function recursively.

139. If the argument sector descriptor list an empty result sector descrip-
tor list is yielded;

140. else

141. if the front argument sector descriptor has not yet been inserted in
the result sector descriptor list it is inserted else an empty list is
“inserted”

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 562

142. in front of the compression of the rest of the argument sector de-
scriptor list.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 563

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

136. compress: SectDescr∗ → SectDescr-set → SectDescr∗

137. compress(sdl)(sds) ≡
138. case sdl of

139. 〈〉 → 〈〉,
140. 〈sd〉̂sdl′ →
141. (if sd ∈ sds then 〈sd〉 else 〈〉 end)
142. ̂compress(sdl′)(sds\{sd}) end

• In the last recursion iteration (line 142.)

– the continuation argument sds\{sd}

– can be shown to be empty: {}.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 564

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

143. We recapitulate the definition of lines as sequences of sector descrip-
tions.

144. Projections of a line generate a set of lists of sector descriptors.

145. Each list in such a set is some arbitrary, but ordered selection of
sector descriptions.

type

143. Line′ = (HI×LI×HI)∗ axiom ... type Line = ...
value

144. projs on links: Line → Line′-set

144. projs on links(ln) ≡
145. {〈isl(i)|i:〈1..len isl〉〉|isx:Nat-set•isx⊆inds ln∧isl=sort(isx)}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 565

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

146. sorting a set of natural numbers into an ordered list, isl, of these is
expressed by a post-condition relation between the argument, isx,
and the result, isl.

147. The result list of (arbitrary) indices must contain all the members of
the argument set;

148. and “earlier”elements of the list must precede, in value, those of
“later” elements of the list.

value

146. sort: Nat-set → Nat∗

146. sort(isx) as isl
147. post card isx = lsn isl ∧ isx = elems isl ∧
148. ∀ i:Nat • {i,i+1}⊆inds isl ⇒ isl(i)<isl(i+1)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 566

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

149. The bus trips of a bus schedule are commensurable with the list of
bus stop descriptions if the following holds:

150. All the intermediate bus stop times must equal in number that of
the bus stop list.

151. We then express, by case distinction, the reality (i.e., existence) and
timeliness of the bus stop descriptors and their corresponding time
descriptors – and as follows.

152. If the list of intermediate bus stops is empty, then there is only the
bus stops of origin and destination, and they must be exist and must
fit time-wise.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 567

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

153. If the list of intermediate bus stops is just a singleton list, then the
bus stop of origin and the singleton intermediate bus stop must exist
and must fit time-wise. And likewise for the bus stop of destination
and the the singleton intermediate bus stop.

154. If the list is more than a singleton list, then the first bus stop of this
list must exist and must fit time-wise with the bus stop of origin.

155. As for Item 154 but now with respect to last, resp. destination bus
stop.

156. And, finally, for each pair of adjacent bus stops in the list of inter-
mediate bus stops

157. they must exist and fit time-wise.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 568

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

value

149. commensurable bus trips: Journies → N → Bool

149. commensurable bus trips((bs1,bsl,bsn),js)(hs,ls)
150. ∀ (t1,til,tn):BusSched•(t1,til,tn)∈ rng js∧len til=len bsl∧
151. case len til of

152. 0 → real and fit((t1,t2),(bs1,bs2))(hs,ls),
153. 1 → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧fit((til(1),t2),(bsl(1),bsn))(hs,l
154. → real and fit((t1,til(1)),(bs1,bsl(1)))(hs,ls)∧
155. real and fit((til(len til),t2),(bsl(len bsl),bsn))(hs,ls)∧
156. ∀ i:Nat•{i,i+1}⊆inds til ⇒
157. real and fit((til(i),til(i+1)),(bsl(i),bsl(i+1)))(hs,ls) end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 569

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

158. A pair of (adjacent) bus stops exists and a pair of times, that is the
time interval between them, fit with the bus stops if the following
conditions hold:

159. All the hub identifiers of bus stops must be those of net hubs (i.e.,
exists, are real).

160. There exists links, l, l′, for the identified bus stop links, li, li′,

161. such that these links connect the identified bus stop hubs.

162. Finally the time interval between the adjacent bus stops must approximate
fit the distance between the bus stops

163. The distance between two bus stops is a loose concept as there may
be many routes, short or long, between them.

164. So we leave it as an exercise to the student to change/augment the
description, in order to be able to ascertain a plausible measure of

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 570

distance.

165. The approximate fit between a time interval and a distance must
build on some notion of average bus velocity, etc., etc.

166. So we leave also this as an exercise to the student to complete.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 571

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

158. real and fit: (T×T)×(BusStop×BusStop) → N → Bool

158. real and fit((t,t′),(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′)))(hs,ls) ≡
159. {hi,hi′,hi′′,hi′′′}⊆his(hs)∧
160. ∃ l,l′:L•{l,l′}⊆ls∧(obs LI(l)=li∧obs(l′)=li′)∧
161. obs HIs(l)={hi,hi′}∧obs HIs(l′)={hi′′,hi′′′}∧
162. afit(t′−t)(distance(mkBS(hi,li,f,hi′),mkBS(hi′′,li′,f′,hi′′′))(hs,ls))

163. distance: BusStop × BusStop → N → Distance
164. distance(bs1,bs2)(n) ≡ ... [left as an exercise !] ...

165. afit: TI → Distance → Bool

166. [time interval fits distance between bus stops]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 572

(K. Domain Scripts, Licenses and Contracts K.1. Domain Scripts)

K.2. Domain Licenses and Contracts
By a domain license we shall understand

• a right or permission granted in accordance with law

• by a competent authority

– to engage in some business or occupation,

– to do some act,

– or to engage in some transaction

• which

– but for such license

• would be unlawful Merriam Webster On-line.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 573

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

By a domain contract we shall understand

• very much the same thing as a license:

• a binding agreement between two or more persons or parties —

• one which is legally enforceable.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 574

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• The concepts of licenses and licensing express relations between

– actors (licensors (the authority) and licensees),

– simple entities (artistic works, hospital patients, public adminis-
tration and citizen documents) and

– operations (on simple entities), and as performed by actors.

• By issuing a license to a licensee, a licensor wishes to express and
enforce certain permissions and obligations:

– which operations

– on which entities

– the licensee is allowed (is licensed, is permitted) to perform.

• As such a license denotes a possibly infinite set of allowable be-
haviours.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 575

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• We shall consider four kinds of entities:

– (i) digital recordings of artistic and intellectual nature:

∗ music, movies, readings (“audio books”), and the like,

– (ii) patients in a hospital:

∗ as represented also by their patient medical records,

– (iii) documents related to public government:

∗ citizen petitions, law drafts, laws, administrative forms, letters
between state and local government adminsitrators and between
these and citizens, court verdicts, etc., and

– (iv) bus timetables,

∗ as part of contracts for a company to provide bus servises.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 576

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• The permissions and obligations issues are:

– (i) for the owner (agent) of some intellectual property to be paid
(i.e., an obligation) by users when they perform permitted oper-
ations (rendering, copying, editing, sub-licensing) on their works;

– (ii) for the patient to be professionally treated — by medical staff
who are basically obliged to try to cure the patient;

– (iii) for public administrators and citizens to enjoy good gover-
nance: transparency in law making (national parliaments and lo-
cal prefectures and city councils), in law enforcement (i.e., the
daily administration of laws), and law interpretation (the judi-
ciary) — by agents who are basically obliged to produce certain
documents while being permitted to consult (i.e., read, perhaps
copy) other documents;

– (iv) for citizens to enjoy timely and reliable bus services and the

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 577

local government to secure adequate price-performance standards.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 578

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Example 60 – A Health Care License Language

• Citizens

– go to hospitals

– in order to be treated for some calamity (disease or other),

– and by doing so these citizens become patients.

• At hospitals patients, in a sense, issue a request to be treated with
the aim of full or partial restitution.

• This request is directed at medical staff, that is,

– the patient authorises medical staff to perform a set of actions upon
the patient.

– One could claim, as we shall, that the patient issues a license.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 579

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Patients and Patient Medical Records ⊕

• So patients and their attendant patient medical records (PMRs) are
the main entities, the “works” of this domain.

• We shall treat them synonymously: PMRs as surrogates for patients.

• Typical actions on patients — and hence on PMRs — involve

– admitting patients,

– interviewing patients,

– analysing patients,

– diagnosing patients,

– planning treatment for patients,

– actually treating patients, and,

– under normal circumstance, to finally release patients.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 580

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Medical Staff ⊕

• Medical staff may request (‘refer’ to)

– other medical staff to perform some of these actions.

– One can conceive of describing action sequences (and ‘referrals’)
in the form of hospitalisation (not treatment) plans.

– We shall call such scripts for licenses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 581

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Professional Health Care ⊕

• The issue is now,

– given that we record these licenses,

– their being issued and being honoured,

– whether the handling of patients at hospitals

∗ follow,

∗ or does not follow

properly issued licenses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 582

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ A Notion of License Execution State ⊕

• In the context of the Artistic License Language licensees could basi-
cally perform licensed actions in any sequence and as often as they
so desired.

– There were, of course, some obvious constraints.

∗ Operations on local works could not be done before these had
been created — say by copying.

∗ Editing could only be done on local works and hence required
a prior action of, for example, copying a licensed work.

• In the context of hospital health care most of the actions can only
be performed if the patient has reached a suitable state in the hos-
pitalisation.

• We refer to Fig. 15 on the following page for an idealised hospitali-
sation plan.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 583

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Admit

Interview

Plan

Analysis

Analyse

Diagnose

Treatment

Plan

Treat

Analyse

Release

YES

YES

YES

YES

YES

YES

More Analysis ?

Analysis fin
ished ?

More analysis needed ?

? More diagnosis

Analysis fo
llo

w−up ?

More tre
atm

ent ?
? Is patient OK

YES
YES

More analysis needed ?

9

8

7

6

5

4

3

2

1

Figure 15: An example hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 584

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• We therefore suggest

– to join to the licensed commands

– an indicator which prescribe the (set of) state(s) of the hospitali-
sation plan in which the command action may be performed.

• Two or more medical staff may now be licensed

– to perform different (or even same !) actions

– in same or different states.

– If licensed to perform same action(s) in same state(s) —

– well that may be “bad license programming” if and only if it is
bad medical practice !

• One cannot design a language and prevent it being misused!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 585

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ The License Language ⊕

• The syntax has two parts.

– One for licenses being issued by licensors.

– And one for the actions that licensees may wish to perform.

type

0. Ln, Mn, Pn
1. License = Ln × Lic
2. Lic == mkLic(staff1:Mn,mandate:ML,pat:Pn)
3. ML == mkML(staff2:Mn,to perform acts:CoL-set)
4 CoL = Cmd | ML | Alt
5. Cmd == mkCmd(σs:Σ-set,stmt:Stmt)
6 Alt == mkAlt(cmds:Cmd-set)
7. Stmt = admit | interview | plan-analysis | do-analysis

| diagnose | plan-treatment | treat | transfer | release

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 586

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• The above syntax is correct RSL.

• But it is decorated!

• The subtypes {|boldface keyword|} are inserted for readability.

• (0.) Licenses, medical staff and patients have names.

• (1.) Licenses further consist of license bodies (Lic).

• (2.) A license body names the licensee (Mn), the patient (Pn), and,

• (3.) through the “mandated” licence part (ML), it names the licensor
(Mn) and which set of commands (C) or (o) implicit licenses (L, for
CoL) the licensor is mandated to issue.

• (4.) An explicit command or licensing (CoL) is either a command
(Cmd), or a sub-license (ML) or an alternative.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 587

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (5.) A command (Cmd) is a state-labelled statement.

• (3.) A sub-license just states the command set that the sub-license
licenses.

– As for the Artistic License Language the licensee

– chooses an appropriate subset of commands.

– The context “inherits” the name of the patient.

– But the sub-licensee is explicitly mandated in the license!

• (6.) An alternative is also just a set of commands.

– The meaning is that

∗ either the licensee choose to perform the designated actions

∗ or, as for ML, but now freely choosing the sub-licensee,

∗ the licensee (now new licensor) chooses to confer actions to other
staff.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 588

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (7.) A statement is either

– an admit,

– an interview,

– a plan analysis,

– an analysis,

– a diagnose,

– a plan treatment,

– a treatment,

– a transfer, or

– a release

directive

• Information given in the patient medical report

– for the designated state

– inform medical staff as to the details

– of analysis, what to base a diagnosis on, of treatment, etc.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 589

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

8. Action = Ln × Act
9. Act = Stmt | SubLic
10. SubLic = mkSubLic(sublicensee:Ln,license:ML)

• (8.) Each action actually attempted by a medical staff refers to the
license, and hence the patient name.

• (9.) Actions are either of

– an admit,

– an interview,

– a plan analysis,

– an analysis,

– a diagnose,

– a plan treatment,

– a treatment,

– a transfer, or

– a release

actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 590

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• Each individual action is only allowed in a state σ

– if the action directive appears in the named license

– and the patient (medical record) designates state σ.

• (10.) Or an action can be a sub-licensing action.

– Either the sub-licensing action that the licensee is attempting is
explicitly mandated by the license (4. ML),

– or is an alternative one thus implicitly mandated (6.).

– The full sub-license, as defined in (1.–3.) is compiled from con-
textual information.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 591

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Example 61 – A Public Administration License Language
⊕ The Three Branches of Government ⊕

• By public government we shall,

– following Charles de Secondat, baron de Montesquieu (1689–1755),

– understand a composition of three powers:

∗ the law-making (legislative),

∗ the law-enforcing and

∗ the law-interpreting

parts of public government.

• Typically

– national parliament and local (province and city) councils are part
of law-making government,

– law-enforcing government is called the executive (the administra-
tion),

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 592

– and law-interpreting government is called the judiciary [system]
(including lawyers etc.).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 593

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Documents ⊕

• A crucial means of expressing public administration is through doc-
uments.

• We shall therefore provide a brief domain analysis of a concept of
documents.

• (This document domain description also applies

– to patient medical records and,

– by some “light” interpretation, also to artistic works —

insofar as they also are documents.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 594

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• Documents are

– created,

– edited and

– read;

• and documents can be

– copied,

– distributed,

– the subject of calculations (interpretations) and be

– shared and

– shredded

.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 595

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Document Attributes ⊕

• With documents one can associate, as attributes of documents, the
actors who

– created,

– edited,

– read,

– copied,

– distributed

∗ (to whom distributed),

– shared,

– performed calculations and

– shredded

documents.

• With these operations on documents,

• and hence as attributes of documents one can, again conceptually,

• associate the

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 596

– location and

– time

of these operations.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 597

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Actor Attributes and Licenses ⊕

• With actors (whether agents of public government or citizens)

– one can associate the authority (i.e., the rights)

– these actors have with respect to performing actions on docu-
ments.

• We now intend to express these authorisations as licenses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 598

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Document Tracing ⊕

• An issue of public government is

– whether citizens and agents of public government act in accor-
dance with the laws —

– with actions and laws reflected in documents

– such that the action documents enables a trace from the actions
to the laws “governing” these actions.

• We shall therefore assume that every document can be traced

– back to its law-origin

– as well as to all the documents any one document-creation or
-editing was based on.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 599

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ A Document License Language ⊕

• The syntax has two parts.

– One for licenses being issued by licensors.

– And one for the actions that licensees may wish to perform.

type

0. Ln, An, Cfn
1. L == Grant | Extend | Restrict | Withdraw
2. Grant == mkG(license:Ln,licensor:An,granted ops:Op-set,licensee:An)
3. Extend == mkE(licensor:An,licensee:An,license:Ln,with ops:Op-set)
4. Restrict == mkR(licensor:An,licensee:An,license:Ln,to ops:Op-set)
5. Withdraw == mkW(licensor:An,licensee:An,license:Ln)
6. Op == Crea|Edit|Read|Copy|Licn|Shar|Rvok|Rlea|Rtur|Calc|Shrd

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 600

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

7. Dn, DCn, UDI
8. Crea == mkCr(dn:Dn,doc class:DCn,based on:UDI-set)
9. Edit == mkEd(doc:UDI,based on:UDI-set)
10. Read == mkRd(doc:UDI)
11. Copy == mkCp(doc:UDI)
12a. Licn == mkLi(kind:LiTy)
12b. LiTy == grant | extend | restrict | withdraw
13. Shar == mkSh(doc:UDI,with:An-set)
14. Rvok == mkRv(doc:UDI,from:An-set)
15. Rlea == mkRl(dn:Dn)
16. Rtur == mkRt(dn:Dn)
17. Calc == mkCa(fcts:CFn-set,docs:UDI-set)
18. Shrd == mkSh(doc:UDI)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 601

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (0.) The are names of licenses (Ln), actors (An), documents (UDI),
document classes (DCn) and calculation functions (Cfn).

• (1.) There are four kinds of licenses: granting, extending, restricting
and withdrawing.

• (2.) Actors (licensors) grant licenses to other actors (licensees).

– An actor is constrained to always grant distinctly named licenses.

– No two actors grant identically named licenses.

– A set of operations on (named) documents are granted.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 602

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (3.–5.) Actors who have issued named licenses may extend, restrict
or withdraw the license rights (wrt. operations, or fully).

• (6.) There are nine kinds of operation authorisations. Some of the
next explications also explain parts of some of the corresponding
actions (see (16.–24.).

• (7.) There are names of documents (Dn), names of classes of docu-
ments (DCn), and there are unique document identifiers (UDI).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 603

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (8.) Creation results in an initially void document which is

– not necessarily uniquely named (dn:Dn) (but that name is uniquely
associated with the unique document identifier created when the
document is created)

– typed by a document class name (dcn:DCn) and possibly

– based on one or more identified documents (over which the licensee
(at least) has reading rights).

– We can presently omit consideration of the document class con-
cept.

– “based on” means that the initially void document contains ref-
erences to those (zero, one or more) documents.

– The “based on” documents are moved from licensor to licensee.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 604

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (9.) Editing a document

– may be based on “inspiration” from, that is, with reference to a
number of other documents (over which the licensee (at least) has
reading rights).

– What this “be based on” means is simply that the edited docu-
ment contains those references. (They can therefore be traced.)

– The “based on” documents are moved from licensor to licensee

∗ if not already so moved as the result of the specification of other
authorised actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 605

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (10.) Reading a document

– only changes its “having been read” status.

– The read document, if not the result of a copy, is moved from
licensor to licensee — if not already so moved as the result of the
specification of other authorised actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 606

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (11.) Copying a document

– increases the document population by exactly one document.

– All previously existing documents remain unchanged except that
the document which served as a master for the copy has been so
marked.

– The copied document is like the master document except that the
copied document is marked to be a copy.

– The master document, if not the result of a create or copy, is
moved from licensor to licensee

∗ if not already so moved as the result of the specification of other
authorised actions.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 607

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (12a.) A licensee can sub-license (sL) certain operations to be
performed by other actors.

• (12b.) The granting, extending, restricting or withdrawing permis-
sions,

– cannot name a license (the user has to do that),

– do not need to refer to the licensor (the licensee issuing the sub-
license),

– and leaves it open to the licensor to freely choose a licensee.

– The licensor (the licensee issuing the sub-license) must choose a
unique license name.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 608

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (13.) A document can be shared

– between two or more actors.

– One of these is the licensee, the others are implicitly given read
authorisations.

– (One could think of extending, instead the licensing actions with
a shared attribute.)

– The shared document, if not the result of a create and edit or
copy, is moved from licensor to licensee — if not already so moved
as the result of the specification of other authorised actions.

– Sharing a document does not move nor copy it.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 609

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (14.) Sharing documents can be revoked. That is, the reading
rights are removed.

• (15.) The release operation:

– if a licensor has authorised a licensee to create a document

– (and that document, when created got the unique document iden-
tifier udi:UDI)

– then that licensee can release the created, and possibly edited
document (by that identification)

– to the licensor, say, for comments.

– The licensor thus obtains the master copy.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 610

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (16.) The return operation:

– if a licensor has authorised a licensee to create a document

– (and that document, when created got the unique document iden-
tifier udi:UDI)

– then that licensee can return the created, and possibly edited
document (by that identification)

– to the licensor — “for good”!

– The licensee relinquishes all control over that document.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 611

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (17.) Two or more documents can be subjected to any one of a set
of permitted calculation functions.

– These documents, if not the result of a creates and edits or copies,
are moved from licensor to licensee —

– if not already so moved as the result of the specification of other
authorised actions.

– Observe that there can be many calculation permissions, over over-
lapping documents and functions.

• (18.) A document can be shredded.

– It seems pointless to shred a document if that was the only right
granted wrt. document.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 612

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

17. Action = Ln × Clause
18. Clause = Cre | Edt | Rea | Cop | Lic | Sha | Rvk | Rel | Ret | Cal | Shr
19. Cre == mkCre(dcn:DCn,based on docs:UID-set)
20. Edt == mkEdt(uid:UID,based on docs:UID-set)
21. Rea == mkRea(uid:UID)
22. Cop == mkCop(uid:UID)
23. Lic == mkLic(license:L)
24. Sha == mkSha(uid:UID,with:An-set)
25. Rvk == mkRvk(uid:UID,from:An-set)
25. Rev == mkRev(uid:UID,from:An-set)
26. Rel == mkRel(dn:Dn,uid:UID)
27. Ret == mkRet(dn:Dn,uid:UID)
28. Cal == mkCal(fct:Cfn,over docs:UID-set)
29. Shr == mkShr(uid:UID)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 613

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• A clause elaborates to a state change and usually some value.

• The value yielded by elaboration of the above

– create, copy, and calculation clauses

– are unique document identifiers.

– These are chosen by the “system”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 614

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (17.) Actions are tagged by the name of the license

– with respect to which their authorisation and document names
has to be checked.

– No action can be performed by a licensee

– unless it is so authorised by the named license,

– both as concerns the operation (create, edit, read, copy, license,
share, revoke, calculate and shred)

– and the documents actually named in the action.

– They must have been mentioned in the license,

– or, created or copies of downloaded (and possibly edited) docu-
ments or copies of these — in which cases operations are inherited.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 615

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (19.) A licensee may create documents if so licensed —

– and obtains all operation authorisations to this document.

• (20.) A licensee may edit “downloaded” (edited and/or copied) or
created documents.

• (21.) A licensee may read “downloaded” (edited and/or copied) or
created and edited documents.

• (22.) A licensee may (conditionally) copy “downloaded” (edited
and/or copied) or created and edited documents.

– The licensee decides which name to give the new document, i.e.,
the copy.

– All rights of the master are inherited to the copy.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 616

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (23.) A licensee may issue licenses

– of the kind permitted.

– The licensee decides whether to do so or not.

– The licensee decides

∗ to whom,

∗ over which, if any, documents,

∗ and for which operations.

– The licensee looks after a proper ordering of licensing commands:

∗ first grant,

∗ then sequences of zero, one or more either extensions or restric-
tions,

∗ and finally, perhaps, a withdrawal.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 617

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (24.) A “downloaded” (possibly edited or copied) document may
(conditionally) be shared with one or more other actors.

– Sharing, in a digital world, for example,

– means that any edits done after the opening of the sharing session,

– can be read by all so-granted other actors.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 618

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (25.) Sharing may (conditionally) be revoked, partially or fully,
that is, wrt. original “sharers”.

• (26.) A document may be released.

– It means that the licensor who originally requested

– a document (named dn:Dn) to be created

– now is being able to see the results —

– and is expected to comment on this document

– and eventually to re-license the licensee to further work.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 619

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (27.) A document may be returned.

– It means that the licensor who originally requested

– a document (named dn:Dn) to be created

– is now given back the full control over this document.

– The licensee will no longer operate on it.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 620

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• (28.) A license may (conditionally) apply any of a licensed set of
calculation functions

– to “downloaded” (edited, copied, etc.) documents,

– or can (unconditionally) apply any of a licensed set of calculation
functions

– to created (etc.) documents.

– The result of a calculation is a document.

– The licensee obtains all operation authorisations to this document
(— as for created documents).

• (29.) A license may (conditionally) shred a “downloaded” (etc.)
document.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 621

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Example 62 – A Bus Services Contract Language

• In a number of steps

– (‘A Synopsis’,

– ‘A Pragmatics and Semantics Analysis’, and

– ‘Contracted Operations, An Overview’)

• we arrive at a sound basis from which to formulate the narrative.

– We shall, however, forego such a detailed narrative.

– Instead we leave that detailed narrative to the student.

– (The detailed narrative can be “derived” from the formalisation.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 622

⊕ A Synopsis ⊕

• Contracts obligate transport companies to deliver bus traffic accord-
ing to a timetable.

• The timetable is part of the contract.

• A contractor may sub-contract (other) transport companies to de-
liver bus traffic according to timetables that are sub-parts of their
own timetable.

• Contractors are either public transport authorities or contracted
transport companies.

• Contracted transport companies may cancel a subset of bus rides
provided the total amount of cancellations per 24 hours for each bus
line does not exceed a contracted upper limit.

• The cancellation rights are spelled out in the contract.

• A sub-contractor cannot increase a contracted upper limit for can-

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 623

cellations above what the sub-contractor was told (in its contract)
by its contractor.

• Etcetera.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 624

⊕ A Pragmatics and Semantics Analysis ⊕

• The “works” of the bus transport contracts are two:

– the timetables and, implicitly,

– the designated (and obligated) bus traffic.

• A bus timetable appears to define one or more bus lines,

– with each bus line giving rise to one or more bus rides.

• Nothing is (otherwise) said about regularity of bus rides.

• It appears that bus ride cancellations must be reported back to the
contractor.

– And we assume that cancellations by a sub-contractor is further
reported back also to the sub-contractor’s contractor.

– Hence eventually that the public transport authority is notified.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 625

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• Nothing is said, in the contracts, such as we shall model them,

– about passenger fees for bus rides

– nor of percentages of profits (i.e., royalties) to be paid back from
a sub-contractor to the contractor.

• So we shall not bother, in this example, about transport costs nor
transport subsidies.

• The opposite of cancellations appears to be ‘insertion’ of extra bus
rides,

– that is, bus rides not listed in the time table,

– but, perhaps, mandated by special events

– We assume that such insertions must also be reported back to the
contractor.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 626

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• We assume concepts of acceptable and unacceptable bus ride delays.

– Details of delay acceptability may be given in contracts,

∗ but we ignore further descriptions of delay acceptability.

∗ but assume that unacceptable bus ride delays are also to be
(iteratively) reported back to contractors.

• We finally assume that sub-contractors cannot (otherwise) change
timetables.

– (A timetable change can only occur after, or at, the expiration of
a license.)

• Thus we find that contracts have definite period of validity.

– (Expired contracts may be replaced by new contracts, possibly
with new timetables.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 627

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Contracted Operations, An Overview ⊕

• So these are the operations that are allowed by a contractor according
to a contract:

– (i) start: to perform, i.e., to start, a bus ride (obligated);

– (ii) cancel: to cancel a bus ride (allowed, with restrictions);

– (iii) insert: to insert a bus ride; and

– (iv) subcontract: to sub-contract part or all of a contract.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 628

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Syntax ⊕

• We treat separately,

– the syntax of contracts (for a schematised example see Slide 628) and

– the syntax of the actions implied by contracts (for schematised examples

see Slide 632).

Contracts

• An example contract can be ‘schematised’:

cid: contractor cor contracts sub-contractor cee

to perform operations

{"start","cancel","insert","subcontract"}

with respect to timetable tt.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 629

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• We assume a context (a global state)

– in which all contract actions (including contracting) takes place

– and in which the implicit net is defined.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 630

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

167. contracts, contractors and sub-contractors have unique identifiers
CId, CNm, CNm.

168. A contract has a unique identification, names the contractor and the
sub-contractor (and we assume the contractor and sub-contractor
names to be distinct). A contract also specifies a contract body.

169. A contract body stipulates a timetable and the set of operations that
are mandated or allowed by the contractor.

170. An Operation is either a "start" (i.e., start a bus ride), a bus
ride "cancel"lation, a bus ride "insert", or a "subcontract"ing
operation.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 631

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

167. CId, CNm
168. Contract = CId × CNm × CNm × Body
169. Body = Op-set × TT
170. Op == ′′start′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

An abstract example contract:

(cid,cnmi,cnmj,({
′′start′′,′′cancel′′,′′insert′′,′′sublicense′′},tt))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 632

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Actions

• Concrete example actions can be schematised:

(a) cid: conduct bus ride (blid,bid) to start at time t

(b) cid: cancel bus ride (blid,bid) at time t

(c) cid: insert bus ride like (blid,bid) at time t

• The schematised license (Slide 84) shown earlier is almost like an
action; here is the action form:

(d) cid: sub-contractor cnm′ is granted a contract cid′

to perform operations {”conduct”,”cancel”,”insert”,sublicense”

with respect to timetable tt′.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 633

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

K.2.0.1. Actions

• All actions are being performed by a sub-contractor in a context
which defines

– that sub-contractor cnm,

– the relevant net, say n,

– the base contract, referred here to by cid (from which this is a
sublicense), and

– a timetable tt of which tt′ is a subset.

• contract name cnm′ is new and is to be unique.

• The subcontracting action can (thus) be simply transformed into a
contract as shown on Slide 84.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 634

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

Action = CNm × CId × (SubCon | SmpAct) × Time
SmpAct = Start | Cancel | Insert
Conduct == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)
Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(s cid:CId,s cnm:CNm,s body:(s ops:Op-set,s tt:TT))

examples:

(a) (cnm,cid,mkSta(blid,id),t)
(b) (cnm,cid,mkCan(blid,id),t)
(c) (cnm,cid,mkIns(blid,id),t)
(d) (cnm,cid,mkCon(cid′,({′′conduct′′,′′cancel′′,′′insert′′,′′sublicense′′},tt′),t))

where: cid′ = generate CId(cid,cnm,t) See Item/Line 173 on page 638

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 635

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• We observe that

– the essential information given in the start, cancel and insert action
prescriptions is the same;

– and that the RSL record-constructors (mkSta, mkCan, mkIns)
make them distinct.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 636

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Uniqueness and Traceability of Contract Identifications

171. There is a “root” contract name, rcid.

172. There is a “root” contractor name, rcnm.

value

171 rcid:CId
172 rcnm:CNm

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 637

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• All other contract names are derived from the root name.

• Any contractor can at most generate one contract name per time
unit.

• Any, but the root, sub-contractor obtains contracts from other sub-
contractors, i.e., the contractor. Eventually all sub-contractors, hence
contract identifications can be referred back to the root contractor.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 638

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

173. Such a contract name generator is a function which given a con-
tract identifier, a sub-contractor name and the time at which the
new contract identifier is generated, yields the unique new contract
identifier.

174. From any but the root contract identifier one can observe the contract
identifier, the sub-contractor name and the time that “went into” its
creation.

value

173 gen CId: CId × CNm × Time → CId

174 obs CId: CId
∼
→ CIdL [pre obs CId(cid):cid 6=rcid]

174 obs CNm: CId
∼
→ CNm [pre obs CNm(cid):cid 6=rcid]

174 obs Time: CId
∼
→ Time [pre obs Time(cid):cid 6=rcid]

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 639

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

175. All contract names are unique.

axiom

175 ∀ cid,cid′:CId•cid 6=cid′⇒
175 obs CId(cid)6=obs CId(cid′) ∨ obs CNm(cid)6=obs CNm(cid′)
175 ∨ obs LicNm(cid)=obs CId(cid′)∧obs CNm(cid)=obs CNm(cid′)
175 ⇒ obs Time(cid)6=obs Time(cid′)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 640

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

176. Thus a contract name defines a trace of license name, sub-contractor
name and time triple, “all the way back” to “creation”.

type

CIdCNmTTrace = TraceTriple∗

TraceTriple == mkTrTr(CId,CNm,s t:Time)
value

176 contract trace: CId → LCIdCNmTTrace
176 contract trace(cid) ≡
176 case cid of

176 rcid → 〈〉,
176 → contract trace(obs LicNm(cid))̂〈obs TraceTriple(cid)〉
176 end

176 obs TraceTriple: CId → TraceTriple
176 obs TraceTriple(cid) ≡

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 641

176 mkTrTr(obs CId(cid),obs CNm(cid),obs Time(cid))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 642

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• The trace is generated in the chronological order: most recent con-
tract name generation times last.

• Well, there is a theorem to be proven once we have outlined the full
formal model of this contract language:

• namely that time entries in contract name traces increase with in-
creasing indices.

theorem

∀ licn:LicNm •

∀ trace:LicNmLeeNmTimeTrace • trace ∈ license trace(licn) ⇒
∀ i:Nat • {i,i+1}⊆inds trace ⇒ s t(trace(i))<s t(trace(i+1))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 643

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Execution State ⊕

Local and Global States

• Each sub-contractor has an own local state and has access to a global
state.

• All sub-contractors access the same global state.

• The global state is the bus traffic on the net.

• There is, in addition, a notion of running-state. It is a meta-state
notion.

– The running state “is made up” from the fact that

– there are n sub-contractors, each communicating, as contractors,

– over channels with other sub-contractors.

• The global state is distinct from sub-contractor to sub-contractor –
no sharing of local states between sub-contractors.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 644

• We now examine, in some detail, what the states consist of.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 645

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Global State

• The net is part of the global state (and of bus traffics).

• We consider just the bus traffic.

177. Bus traffic is a modelled as a discrete function from densely posi-
tioned time points to a pair of the (possibly dynamically changing)
net and the position of busses. Bus positions map bus numbers
to the physical entity of busses and their position.

178. A bus is positioned either

179. at a hub (coming from some link heading for some link), or

180. on a link, some fraction of the distance from a hub towards a hub,
or

181. at a bus stop, some fraction of the distance from a hub towards a
hub.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 646

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

119. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

177. BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
178. BPos = atHub | onLnk | atBS
179. atHub == mkAtHub(s fl:LI,s hi:HI,s tl:LI)
180. onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
181. atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)

Frac = {|f:Real•0<f<1|}

• We shall consider BusTraffic (with its Net) to reflect the global state.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 647

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Local Sub-contractor Contract States: Semantic Types

• A sub-contractor state contains, as a state component, the zero, one
or more contracts

– that the sub-contractor has received and

– that the sub-contractor has sublicensed.

type

Body = Op-set × TT
LicΣ = RcvLicΣ×SubLicΣ×LorBusΣ
RcvLicΣ = LorNm →m (LicNm →m (Body×TT))
SubLicΣ = LeeNm →m (LicNm →m Body)
LorBusΣ ... [see ′′Local sub-contractor Bus States: Semantic Types

• (Recall that LorNm and LeeNm are the same.)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 648

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Local Sub-contractor Bus States: Semantic Types

• The sub-contractor state further contains a bus status state compo-
nent which records

– which buses are free, FreeBusΣ, that is, available for dispatch, and
where “garaged”,

– which are in active use, ActvBusΣ, and on which bus ride, and a
bus history for that bus ride,

– and histories of all past bus rides, BusHistΣ.

– A trace of a bus ride is a list of zero, one or more pairs of times
and bus stops.

– A bus history, BusHistory, associates a bus trace to a quadruple
of bus line identifiers, bus ride identifiers, contract names and
sub-contractor name.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 649

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×LicNm×LeeNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

LorBusΣ = LeeNm →m (LicNm →m ((BLId×BId) →m (BNo×BusTrace)))

• A bus is identified by its unique number (i.e., registration) plate
(BusNo).

• The two components are modified whenever a bus is commissioned
into action or returned from duty, that is, twice per bus ride.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 650

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Local Sub-contractor Bus States: Update Functions

value

update BusΣ: Bno×(T×BusStop) → ActBusΣ → ActBusΣ
update BusΣ(bno,(t,bs))(actσ) ≡
let (blid,bid,licn,leen,trace) = actσ(bno) in

actσ†[bno 7→(licn,leen,blid,bid,tracê〈(t,bs)〉)] end

pre bno ∈ dom actσ

update FreeΣ ActΣ:
BNo×BusStop→BusΣ→BusΣ

update FreeΣ ActΣ(bno,bs)(freeσ,actvσ) ≡
let (, , , ,trace) = actσ(b) in

let freeσ′ = freeσ†[bs 7→ (freeσ(bs))∪{b}] in

(freeσ′,actσ\{b}) end end

pre bno 6∈ freeσ(bs) ∧ bno ∈ dom actσ

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 651

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

update LorBusΣ:
LorNm×LicNm×lee:LeeNm×(BLId×BId)×(BNo×Trace)
→LorBusΣ→out {l to l[leen,lorn]|lorn:LorNm•lorn ∈ leenms\{leen}}

update LorBusΣ(lorn,licn,leen,(blid,bid),(bno,tr))(lbσ) ≡
l to l[leenm,lornm]!Licensor BusHistΣMsg(bno,blid,bid,libn,leen,tr) ;
lbσ†[leen 7→(lbσ(leen))†[licn 7→((lbσ(leen))(licn))†[(blid,bid)7→(bno,trace)]
pre leen ∈ dom lbσ ∧ licn ∈ dom (lbσ(leen))

update ActΣ FreeΣ:
LeeNm×LicNm×BusStop×(BLId×BId)→BusΣ→BusΣ×BNo

update ActΣ FreeΣ(leen,licn,bs,(blid,bid))(freeσ,actvσ) ≡
let bno:Bno • bno ∈ freeσ(bs) in

((freeσ\{bno},actvσ ∪ [bno 7→(blid,bid,licnm,leenm,〈〉)]),bno) end

pre bs ∈ dom freeσ ∧ bno ∈ freeσ(bs) ∧ bno 6∈ dom actvσ ∧ [bs exists

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 652

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Constant State Values

• There are a number of constant values, of various types, which char-
acterise the “business of contract holders”. We define some of these
now.

182. For simplicity we assume a constant net — constant, that is, only
with respect to the set of identifiers links and hubs. These links
and hubs obviously change state over time.

183. We also assume a constant set, leens, of sub-contractors. In re-
ality sub-contractors, that is, transport companies, come and go,
are established and go out of business. But assuming constancy
does not materially invalidate our model. Its emphasis is on con-
tracts and their implied actions — and these are unchanged wrt.
constancy or variability of contract holders.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 653

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

184. There is an initial bus traffic, tr.

185. There is an initial time, t0, which is equal to or larger than the
start of the bus traffic tr.

186. To maintain the bus traffic “spelled out”, in total, by timetable tt
one needs a number of buses.

187. The various bus companies (that is, sub-contractors) each have
a number of buses. Each bus, independent of ownership, has a
unique (car number plate) bus number (BusNo).

These buses have distinct bus (number [registration] plate) num-
bers.

188. We leave it to the student to define a function which ascertain the
minimum number of buses needed to implement traffic tr.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 654

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

182. net : N,
183. leens : LeeNm-set,
184. tr : BusTraffic, axiom wf Traffic(tr)(net)
185. t0 : T • t0 ≥ mindom tr,
186. min no of buses : Nat • necessary no of buses(itt),
187. busnos : BusNo-set • card busnos ≥ min no of buses
188. necessary no of buses: TT → Nat

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 655

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

189. To “bootstrap” the whole contract system we need a distinguished
contractor, named init leen, whose only license originates with a
“ghost” contractor, named root leen (o, for outside [the system]).

190. The initial, i.e., the distinguished, contract has a name, root licn.

191. The initial contract can only perform the "sublicense" opera-
tion.

192. The initial contract has a timetable, tt.

193. The initial contract can thus be made up from the above.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 656

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

189. root leen,init ln : LeeNm • root leen 6∈ leens ∧ initi leen ∈ leens,
190. root licn : LicNm
191. iops : Op-set = {′′sublicense′′},
192. itt : TT,
193. init lic:License = (root licn,root leen,(iops,itt),init leen)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 657

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Initial Sub-contractor Contract States

type

InitLicΣs = LeeNm →m LicΣ
value

ilσ:LicΣ=([init leen 7→ [root leen 7→ [iln 7→ init lic]]]
∪ [leen 7→ [] | leen:LeeNm • leen ∈ leenms\{init leen}],[],[])

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 658

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Initial Sub-contractor Bus States

194. Initially each sub-contractor possesses a number of buses.

195. No two sub-contractors share buses.

196. We assume an initial assignment of buses to bus stops of the free
buses state component and for respective contracts.

197. We do not prescribe a “satisfiable and practical” such initial assign-
ment (ibσs).

198. But we can constrain ibσs.

199. The sub-contractor names of initial assignments must match those
of initial bus assignments, allbuses.

200. Active bus states must be empty.

201. No two free bus states must share buses.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 659

202. All bus histories are void.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 660

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

194. AllBuses′ = LeeNm →m BusNo-set
195. AllBuses = {|ab:AllBuses′

•∀ {bs,bs′}⊆rng ab∧bns6=bns′⇒bns ∩ bns′={}|}
196. InitBusΣs = LeeNm →m BusΣ
value

195. allbuses:Allbuses • dom allbuses = leenms ∪ {root leen} ∧ ∪ rng allbuses

196. ibσs:InitBusΣs
197. wf InitBusΣs: InitBusΣs → Bool

198. wf InitBusΣs(iσs) ≡
199. dom iσs = leenms ∧
200. ∀ (,abσ,):BusΣ•(,abσ,) ∈ rng iσs ⇒ abσ=[] ∧
201. ∀ (fbiσ,abiσ),(fbjσ,abjσ):BusΣ •

201. {(fbiσ,abiσ),(fbjσ,abjσ)}⊆rng iσs
201. ⇒ (fbiσ,actiσ)6=(fbjσ,actjσ)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 661

201. ⇒ rng fbiσ ∩ rng fbjσ = {}
202. ∧ actiσ=[]=actjσ

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 662

⊕ Communication Channels ⊕

• The running state is a meta notion. It reflects the channels over
which

– contracts are issued;

– messages about committed, cancelled and inserted bus rides are
communicated, and

– fund transfers take place.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 663

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Sub-Contractor↔Sub-Contractor Channels

• Consider each sub-contractor (same as contractor) to be modelled as
a behaviour.

• Each sub-contractor (licensor) behaviour has a unique name, the
LeeNm.

• Each sub-contractor can potentially communicate with every other
sub-contractor.

• We model each such communication potential by a channel.

• For n sub-contractors there are thus n × (n − 1) channels.

channel { l to l[fi,ti] | fi:LeeNm,ti:LeeNm • {fi,ti}⊆leens ∧ fi6=ti } LLMSG
type LLMSG = ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 664

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Sub-Contractor↔Bus Channels

• Each sub-contractor has a set of buses. That set may vary.

• So we allow for any sub-contractor to potentially communicate with
any bus.

• In reality only the buses allocated and scheduled by a sub-contractor
can be “reached” by that sub-contractor.

channel { l to b[l,b] | l:LeeNm,b:BNo • l ∈ leens ∧ b ∈ busnos } LBMSG
type LBMSG = ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 665

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Sub-Contractor↔Time Channels

• Whenever a sub-contractor wishes to perform a contract operation

• that sub-contractor needs know the time.

• There is just one, the global time, modelled as one behaviour: time clock.

channel { l to t[l] | l:LeeNm • l ∈ leens } LTMSG
type LTMSG = ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 666

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Bus↔Traffic Channels

• Each bus is able, at any (known) time to ascertain where in the
traffic it is.

• We model bus behaviours as processes, one for each bus.

• And we model global bus traffic as a single, separate behaviour.

channel { b to tr[b] | b:BusNo • b ∈ busnos } LTrMSG
type BTrMSG == reqBusAndPos(s bno:BNo,s t:Time) | (Bus×BusPos)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 667

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Buses↔Time Channel

• Each bus needs to know what time it is.

channel { b to t[b] | b:BNo • b ∈ busnos } BTMSG
type BTMSG ...

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 668

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Run-time Environment ⊕

:

• So we shall be modelling the transport contract domain as follows:

– As for behaviours we have this to say.

∗ There will be n sub-contractors. One sub-contractor will be
initialised to one given license.

∗ Each sub-contractor is modelled, in RSL, as a CSP-like process.

∗ With each sub-contractor, li, there will be a number, bi, of
buses. That number may vary from sub-contractor to sub-
contractor.

∗ There will be bi channels of communication between a sub-
contractor and that sub-contractor’s buses, for each sub-contractor.

∗ There is one global process, the traffic. There is one channel of
communication between a sub-contractor and the traffic. Thus
there are n such channels.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 669

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

– As for operations, including behaviour interactions we assume the
following.

∗ All operations of all processes are to be thought of as instanta-
neous, that is, taking nil time !

∗ Most such operations are the result of channel communications

· either just one-way notifications,

· or inquiry requests.

∗ Both the former (the one-way notifications) and the latter (in-
quiry requests) must not be indefinitely barred from receipt,
otherwise holding up the notifier.

∗ The latter (inquiry requests) should lead to rather immediate
responses, thus must not lead to dead-locks.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 670

⊕ The System Behaviour ⊕

• The system behaviour starts by establishing a number of

– licenseholder – and – bus ride

behaviours and the single

– time clock – and – bus traffic

behaviours

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 671

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

system: Unit → Unit

system() ≡
licenseholder(init leen)(ilσ(init leen),ibσ(init leen))
‖ (‖ {licenseholder(leen)(ilσ(leen),ibσ(leen))

| leen:LeeNm•leen ∈ leens\{init leen}})
‖ (‖ {bus ride(b,leen)(root lorn,′′nil′′)

| leen:LeeNm,b:BusNo •leen ∈ dom allbuses ∧ b ∈ allbuses(leen)})
‖ time clock(t0) ‖ bus traffic(tr)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 672

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• The initial licenseholder behaviour states are individually initialised

– with basically empty license states and

– by means of the global state entity bus states.

• The initial bus behaviours need no initial state.

• Only a designated licenseholder behaviour is initialised

– to a single, received license.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 673

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Semantic Elaboration Functions ⊕

The Licenseholder Behaviour

203. The licenseholder behaviour is a sequential, but internally non-deterministic
behaviour.

204. It internally non-deterministically (⌈⌉) alternates between

(a) performing the licensed operations (on the net and with buses),

(b) receiving information about the whereabouts of these buses, and
informing contractors of its (and its subsub-contractors’) handling
of the contracts (i.e., the bus traffic), and

(c) negotiating new, or renewing old contracts.

203. licenseholder: LeeNm → (LicΣ×BusΣ) → Unit

204. licenseholder(leen)(licσ,busσ) ≡
204. licenseholder(leen)((lic ops⌈⌉bus mon⌈⌉neg licenses)(leen)(licσ,bus

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 674

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Bus Behaviour

205. Buses ply the network following a timed bus route description.

A timed bus route description is a list of timed bus stop visits.

206. A timed bus stop visit is a pair: a time and a bus stop.

207. Given a bus route and a bus schedule one can construct a timed bus
route description.

(a) The first result element is the first bus stop and origin departure
time.

(b) Intermediate result elements are pairs of respective intermediate
schedule elements and intermediate bus route elements.

(c) The last result element is the last bus stop and final destination
arrival time.

208. Bus behaviours start with a “nil” bus route description.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 675

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

type

205. TBR = TBSV∗

206. TBSV = Time × BusStop
value

207. conTBR: BusRoute × BusSched → TBR
207. conTBR((dt,til,at),(bs1,bsl,bsn)) ≡
207(a)) 〈(dt,bs1)〉
207(b)) ̂ 〈(til[i],bsl[i])|i:Nat•i:〈1..len til〉〉
207(c)) ̂ 〈(at,bsn)〉

pre: len til = len bsl
type

208. BRD == ′′nil′′ | TBR

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 676

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

209. The bus behaviour is here abstracted to only communicate with some
contract holder, time and traffic,

210. The bus repeatedly observes the time, t, and its position, po, in the
traffic.

211. There are now four case distinctions to be made.

212. If the bus is idle (and a a bus stop) then it waits for a next route,
brd′ on which to engage.

213. If the bus is at the destination of its journey then it so informs its
owner (i.e., the sub-contractor) and resumes being idle.

214. If the bus is ‘en route’, at a bus stop, then it so informs its owner
and continues the journey.

215. In all other cases the bus continues its journey

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 677

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

209. bus ride: leen:LeeNm × bno:Bno → (LicNm × BRD) →
209. in,out l to b[leen,bno], in,out b to tr[bno], in b to t[bno] Unit

209. bus ride(leen,bno)(licn,brd) ≡
210. let t = b to t[bno]? in

210. let (bus,pos) = (b to tr[bno]!reqBusAndPos(bno,t) ; b to tr[bno]?) in

211. case (brd,pos) of

212. (′′nil′′,mkAtBS(, , ,)) →
212. let (licn,brd′) = (l to b[leen,bno]!reqBusRid(pos);l to b[leen,bno]?) in

212. bus ride(leen,bno)(licn,brd′) end

213. (〈(at,pos)〉,mkAtBS(, , ,)) →
213s l to b[l,b]!BusΣMsg(t,pos);
213 l to b[l,b]!BusHistΣMsg(licn,bno);
213 l to b[l,b]!FreeΣ ActΣMsg(licn,bno) ;
213 bus ride(leen,bno)(ilicn,′′nil′′),
214. (〈(t,pos),(t′,bs′)〉̂brd′,mkAtBS(, , ,)) →
214s l to b[l,b]!BusΣMsg(t,pos) ;
214 bus ride(licn,bno)(〈(t′,bs′)〉̂brd′),

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 678

215. → bus ride(leen,bno)(licn,brd) end end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 679

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

• In formula line 210 of bus ride we obtained the bus.

• But we did not use “that” bus !

• We we may wish to record, somehow, number of passengers alighting
and boarding at bus stops, bus fees paid, one way or another, etc.

• The bus, which is a time-dependent entity, gives us that information.

• Thus we can revise formula lines 213s and 214s:

Simple: 213s l to b[l,b]!BusΣMsg(pos);
Revised: 213r l to b[l,b]!BusΣMsg(pos,bus info(bus));

Simple: 214s l to b[l,b]!BusΣMsg(pos);
Revised: 214r l to b[l,b]!BusΣMsg(pos,bus info(bus));

type

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 680

Bus Info = Passengers × Passengers × Cash × ...
value

bus info: Bus → Bus Info
bus info(bus) ≡ (obs alighted(bus),obs boarded(bus),obs till(bus),...)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 681

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Global Time Behaviour

216. The time clock is a never ending behaviour — started at some time
t0.

217. The time can be inquired at any moment by any of the licenseholder
behaviours and by any of the bus behaviours.

218. At any moment the time clock behaviour may not be inquired.

219. After a skip of the clock or an inquiry the time clock behaviour
continues, non-deterministically either maintaining the time or ad-
vancing the clock!

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 682

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

216. time clock: T →
216. in,out {l to t[leen] | leen:LeeNm • leen ∈ leenms}
216. in,out {b to t[bno] | bno:BusNo • bno ∈ busnos} Unit

216. time clock:(t) ≡
218. (skip ⌈⌉
217. (⌈⌉⌊⌋{l to t[leen]? ; l to t[leen]!t | leen:LeeNm•leen ∈ leens})
217. ⌈⌉ (⌈⌉⌊⌋{b to t[bno]? ; b to t[bno]!t | bno:BusNo•bno ∈ busnos})) ;
219. (time clock:(t) ⌈⌉ time clock(t+δt))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 683

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Bus Traffic Behaviour

220. There is a single bus traffic behaviour. It is, “mysteriously”, given a
constant argument, “the” traffic, tr.

221. At any moment it is ready to inform of the position, bps(b), of a bus,
b, assumed to be in the traffic at time t.

222. The request for a bus position comes from some bus.

223. The bus positions are part of the traffic at time t.

224. The bus traffic behaviour, after informing of a bus position reverts
to “itself”.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 684

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

220. bus traffic: TR → in,out {b to tr[bno]|bno:BusNo•bno ∈ busnos} Unit

220. bus traffic(tr) ≡
222. ⌈⌉⌊⌋ { let reqBusAndPos(bno,time) = b to tr[b]? in assert b=bno
221. if time 6∈ dom tr then chaos else

223. let (,bps) = tr(t) in

221. if bno 6∈ dom tr(t) then chaos else

221. b to tr[bno]!bps(bno) end end end end | b:BusNo•b ∈ busnos}
224. bus traffic(tr)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 685

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

License Operations

225. The lic ops function models the contract holder choosing between
and performing licensed operations.

226. To perform any licensed operation the sub-contractor needs to know
the time and

227. must choose amongst the four kinds of operations that are licensed.

• The choice function, which we do not define, makes a basically
non-deterministic choice among licensed alternatives.

• The choice yields the contract number of a received contract and,

• based on its set of licensed operations,

• it yields either a simple action or a sub-contracting action.

228. Thus there is a case distinction amongst four alternatives.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 686

229. This case distinction is expressed in the four lines identified by: 229.

230. All the auxiliary functions, besides the action arguments, require the
same state arguments.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 687

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

value

225. lic ops: LeeNm → (LicΣ×BusΣ) → (LicΣ×BusΣ)
225. lic ops(leen)(licσ,busσ) ≡
226. let t = (time channel(leen)!req Time;time channel(leen)?) in

227. let (licn,act) = choice(licσ)(busσ)(t) in

228. (case act of

229. mkCon(blid,bid) → cndct(licn,leenm,t,act),
229. mkCan(blid,bid) → cancl(licn,leenm,t,act),
229. mkIns(blid,bid) → insrt(licn,leenm,t,act),
229. mkLic(leenm′,bo) → sublic(licn,leenm,t,act) end)(licσ,busσ) end end

cndct,cancl,insert: SmpAct→(LicΣ×BusΣ)→(LicΣ×BusΣ)
sublic: SubLic→(LicΣ×BusΣ)→(LicΣ×BusΣ)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 688

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

Bus Monitoring

• Like for the bus ride behaviour we decompose the bus monitoring
behaviour into two behaviours.

– The local bus monitoring behaviour monitors the buses that are
commissioned by the sub-contractor.

– The licensor bus monitoring behaviour monitors the buses that
are commissioned by sub-contractors sub-contractd by the con-
tractor.

value

bus mon: l:LeeNm → (LicΣ×BusΣ)
→ in {l to b[l,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)

bus mon(l)(licσ,busσ) ≡
local bus mon(l)(licσ,busσ) ⌈⌉ licensor bus mon(l)(licσ,busσ)

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 689

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

231. The local bus monitoring function models all the interaction be-
tween a contract holder and its despatched buses.

232. We show only the communications from buses to contract holders.

233.

234.

235.

236.

237.

238.

239.

240.

241.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 690

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

231. local bus mon: leen:LeeNm → (LicΣ×BusΣ)
232. → in {l to b[leen,b]|b:BNo•b ∈ allbuses(l)} (LicΣ×BusΣ)
231. local bus mon(leen)(licσ:(rlσ,slσ,lbσ),busσ:(fbσ,abσ)) ≡
233. let (bno,msg) = ⌈⌉⌊⌋{(b,l to b[l,b]?)|b:BNo•b ∈ allbuses(leen)} in

237. let (blid,bid,licn,lorn,trace) = abσ(bno) in

234. case msg of

235. BusΣMsg(t,bs) →
239. let abσ′ = update BusΣ(bno)(licn,leen,blid,bid)(t,bs)(abσ) in

239. (licσ,(fbσ,abσ′,histσ)) end,
241. BusHistΣMsg(licn,bno) →
241. let lbσ′ =
241. update LorBusΣ(obs LorNm(licn),licn,leen,(blid,bid),(b,trace))(lb
241. l to l[leen,obs LorNm(licn)]!Licensor BusHistΣMsg(licn,leen,bno,blid,bi
241. ((rlσ,slσ,lbσ′),busσ) end

240. FreeΣ ActΣMsg(licn,bno) →

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 691

241. let (fbσ′,abσ′) = update FreeΣ ActΣ(bno,bs)(fbσ,abσ) in

241. (licσ,(fbσ′,abσ′)) end

241. end end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 692

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

242.

243.

244.

245.

246.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 693

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

242. licensor bus mon: lorn:LorNm → (LicΣ×BusΣ)
242. → in {l to l[lorn,leen]|leen:LeeNm•leen ∈ leenms\{lorn}} (LicΣ×
242. licensor bus mon(lorn)(licσ,busσ) ≡
242. let (rlσ,slσ,lbhσ) = licσ in

242. let (leen,Licensor BusHistΣMsg(licn,leen′′,bno,blid,bid,tr))
= ⌈⌉⌊⌋{(leen′,l to l[lorn,leen′]?)|leen′:LeeNm•leen′ ∈ leenms\{lorn

242. let lbhσ′ =
242. update BusHistΣ(obs LorNm(licn),licn,leen′′,(blid,bid),(bno,trace))(lbh
242. l to l[leenm,obs LorNm(licnm)]!Licensor BusHistΣMsg(b,blid,bid,lin,lee
242. ((rlσ,slσ,lbhσ′),busσ)
242. end end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 694

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

License Negotiation

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 695

257.

258.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 696

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 697

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Conduct Bus Ride Action

259. The conduct bus ride action prescribed by (ln,mkCon(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First it is checked that the timetable in the contract named ln
does indeed provide a journey, j, indexed by bli and (then) bi, and
that that journey starts (approximately) at time t′ which is the
same as or later than t.

(c) Being so the action results in the contractor, whose name is “em-
bedded” in ln, receiving notification of the bus ride commitment.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 698

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

(d) Then a bus, selected from a pool of available buses at the bust stop
of origin of journey j, is given j as its journey script, whereupon
that bus, as a behaviour separate from that of sub-contractor li,
commences its ride.

(e) The bus is to report back to sub-contractor li the times at which
it stops at en route bus stops as well as the number (and kind) of
passengers alighting and boarding the bus at these stops.

(f) Finally the bus reaches its destination, as prescribed in j, and this
is reported back to sub-contractor li.

(g) Finally sub-contractor li, upon receiving this ‘end-of-journey’ no-
tification, records the bus as no longer in actions but available at
the destination bus stop.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 699

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

259.
259(a))
259(b))
259(c))
259(d))
259(e))
259(f))
259(g))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 700

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Cancel Bus Ride Action

260. The cancel bus ride action prescribed by (ln,mkCan(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First a check like that prescribed in Item 259(b)) is performed.

(c) If the check is OK, then the action results in the contractor, whose
name is “embedded” in ln, receiving notification of the bus ride
cancellation.

That’s all !

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 701

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

260.
260(a))
260(b))
260(c))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 702

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Insert Bus Ride Action

261. The insert bus ride action prescribed by (ln,mkIns(bli,bi,t′) takes
place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First a check like that prescribed in Item 259(b)) is performed.

(c) If the check is OK, then the action results in the contractor, whose
name is “embedded” in ln, receiving notification of the new bus
ride commitment.

(d) The rest of the effect is like that prescribed in Items 259(d))–
259(g)).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 703

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

261.
261(a))
261(b))
261(c))
261(d))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 704

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

The Contracting Action

262. The subcontracting action prescribed by (ln,mkLic(li′,(pe′,ops′,tt′)))
takes place in a context and shall have the following effect:

(a) The action is performed by contractor li and at time t. This is
known from the context.

(b) First it is checked that timetable tt is a subset of the timetable
contained in, and that the operations ops are a subset of those
granted by, the contract named ln.

(c) Being so the action gives rise to a contract of the form (ln′,li,(pe′,ops′,tt′),li′

ln′ is a unique new contract name computed on the basis of ln,
li, and t. li′ is a sub-contractor name chosen by contractor li. tt′

is a timetable chosen by contractor li. ops′ is a set of operations
likewise chosen by contractor li.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 705

(d) This contract is communicated by contractor li to sub-contractor
li′.

(e) The receipt of that contract is recorded in the license state.

(f) The fact that the contractor has sublicensed part (or all) of its
obligation to conduct bus rides is recorded in the modified com-
ponent of its received contracts.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 706

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

262.
262(a))
262(b))
262(c))
262(d))
262(e))
262(f))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 707

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

⊕ Discussion ⊕

•

•

•

•

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 708

(K. Domain Scripts, Licenses and Contracts K.2. Domain Licenses and Contracts)

K.3. Principles blank

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 709

(K. Domain Scripts, Licenses and Contracts K.3. Principles blank)

K.4. Discussion blank

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 710

(K. Domain Scripts, Licenses and Contracts K.4. Discussion blank)

K.5. Research Challenges blank

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 710

(K. Domain Scripts, Licenses and Contracts K.5. Research Challenges blank)

End of Lecture 20: Domain Scripts

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 710

(K. Domain Scripts, Licenses and Contracts K.5. Research Challenges blank)

Start of Lecture 21: Domain Management and Organisation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 711

L. Domain Management and Organisation
L.1. Definition

• By the management of an enterprise we shall understand

– a (possibly stratified, see ‘organisation’ next) set of enterprise
staff (behaviours, processes)

– authorised to perform certain functions

– not allowed performed by other enterprise staff

– and where such functions involve monitoring and controlling other
enterprise staff.

• By organisation of an enterprise we shall understand

– the stratification (partitioning) of enterprise staff with

– each partition endowed with a set of authorised functions and
with

– communication interfaces defined between partitions, i.e., be-
tween behaviours (processes).

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 712

(L. Domain Management and Organisation L.1. Definition)

L.2. An Abstraction of Management Functions

type

E
value

stra mgt, tact mgt, oper mgt, wrkr, merge: E×E×E×E → E
p: E∗ → Bool

mgt: E → E
mgt(e) ≡
let e′ = stra mgt(e,e′′,e′′′,e′′′′),

e′′ = tact mgt(e,e′′,e′′′,e′′′′),
e′′′ = oper mgt(e,e′′,e′′′,e′′′′),
e′′′′ = wrkr(e,e′′,e′′′,e′′′′) in

if p(e,e′′,e′′′,e′′′′)
then skip

else mgt(merge(e,e′′,e′′′,e′′′′))

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 713

end end

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 714

(L. Domain Management and Organisation L.2. An Abstraction of Management Functions)

L.3. Research Challenges

• We made no explicit references to such “business school of adminis-
tration” “BA101” topics as ‘strategic’ and ‘tactical’ management.

• Contemplate the types of entities and signatures of functions related
to executive, strategic, tactical and operational management and
organisation matters given on Slide 92.

• Come up with better or other proposals, and/or attempt clear,

– but not necessarily computable predicates

– which (help) determine whether an operation

∗ (above they are alluded to as ‘stra’ and ‘tact’)

– is one of strategic or of tactical concern.

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 714

(L. Domain Management and Organisation L.3. Research Challenges)

End of Lecture 21: Domain Management and Organisation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 714

(L. Domain Management and Organisation L.3. Research Challenges)

Start of Lecture 22: Human Behaviour

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 715

M. Domain Human Behaviour blank

M.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 716

(M. Domain Human Behaviour blank M.1. Definitions)

M.2. A Formal Characterisation of Human Behaviour

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 717

(M. Domain Human Behaviour blank M.2. A Formal Characterisation of Human Behaviour)

M.3. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 718

(M. Domain Human Behaviour blank M.3. Examples)

M.4. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 718

(M. Domain Human Behaviour blank M.4. Research Challenge)

End of Lecture 22: Human Behaviour

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 718

(M. Domain Human Behaviour blank M.4. Research Challenge)

Start of Lecture 23: Domain Requirements Projection

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 719

N. Domain Requirements Projection blank

N.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 720

(N. Domain Requirements Projection blank N.1. Definitions)

N.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 721

(N. Domain Requirements Projection blank N.2. Examples)

N.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 721

(N. Domain Requirements Projection blank N.3. Research Challenge)

End of Lecture 23: Domain Requirements Projection

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 721

(N. Domain Requirements Projection blank N.3. Research Challenge)

Start of Lecture 24: Domain Requirements Instantiation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 722

O. Domain Requirements Instantiation blank

O.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 723

(O. Domain Requirements Instantiation blank O.1. Definitions)

O.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 724

(O. Domain Requirements Instantiation blank O.2. Examples)

O.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 724

(O. Domain Requirements Instantiation blank O.3. Research Challenge)

End of Lecture 24: Domain Requirements Instantiation

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 724

(O. Domain Requirements Instantiation blank O.3. Research Challenge)

Start of Lecture 25: Domain Requirements Determination

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 725

P. Domain Requirements Determination blank

P.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 726

(P. Domain Requirements Determination blank P.1. Definitions)

P.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 727

(P. Domain Requirements Determination blank P.2. Examples)

P.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 727

(P. Domain Requirements Determination blank P.3. Research Challenge)

End of Lecture 25: Domain Requirements Determination

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 727

(P. Domain Requirements Determination blank P.3. Research Challenge)

Start of Lecture 26: Domain Requirements Extension

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 728

Q. Domain Requirements Extension blank

Q.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 729

(Q. Domain Requirements Extension blank Q.1. Definitions)

Q.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 730

(Q. Domain Requirements Extension blank Q.2. Examples)

Q.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 730

(Q. Domain Requirements Extension blank Q.3. Research Challenge)

End of Lecture 26: Domain Requirements Extension

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 730

(Q. Domain Requirements Extension blank Q.3. Research Challenge)

Start of Lecture 27: Domain Requirements Fitting

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 731

R. Domain Requirements Fitting blank

R.1. Definitions

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 732

(R. Domain Requirements Fitting blank R.1. Definitions)

R.2. Examples

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 733

(R. Domain Requirements Fitting blank R.2. Examples)

R.3. Research Challenge

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 733

(R. Domain Requirements Fitting blank R.3. Research Challenge)

End of Lecture 27: Domain Requirements Fitting

April 22, 2010, 16:05, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

