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(A. A.8. )

Start of Lecture 5: DOMAIN ENTITIES
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B. Domain Entities

B.1. Entities

• The reason for our interest in ‘simple entities’

– is that assemblies and units of systems

– possess static and dynamic properties

– which become contexts and states of

– the processes into which we shall “transform” simple entities.
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(B. Domain Entities B.1. Entities )

B.1.1. Observable Phenomena

• We shall just consider ‘simple entities’.

– By a simple entity we shall here understand

∗ a phenomenon that we can designate, viz.

∗ see, touch, hear, smell or taste, or

∗ measure by some instrument (of physics, incl. chemistry).

– A simple entity thus has properties.

– A simple entity is

∗ either continuous

∗ or is discrete, and then it is

· either atomic

· or composite.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena )

B.1.1.1. Attributes: Types and Values

• By an attribute we mean a simple property of an entity.

– A simple entity has properties pi, pj, . . . , pk.

• Typically we express attributes by a pair of

– a type designator: the attribute is of type V , and

– a value: the attribute has value v (of type V , i.e., v : V ).

• A simple entity may have many simple properties.

– A continuous entity, like ‘oil’, may have the following attributes:

∗ type: petroleum,

∗ kind: Brent-crude,

∗ amount: 6 barrels,

∗ price: 45 US $/barrel.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values )

– An atomic entity, like a ‘person’, may have the following at-
tributes:

∗ gender: male,

∗ name: Dines Bjørner,

∗ birth date: 4. Oct. 1937,

∗ marital status: married.

– A composite entity, like a railway system, may have the following
attributes:

∗ country: Denmark,

∗ name: DSB,

∗ electrified: partly,

∗ owner: independent public
enterprise owned by Danish
Ministry of Transport.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values )

B.1.1.2. Continuous Simple Entities

• A simple entity is said to be continuous

– if, within limits, reasonably sizable amounts of the simple entity,
can be arbitrarily decomposed into smaller parts

– each of which still remain simple continuous entities

– of the same simple entity kind.

• Examples of continuous entities are:

– oil, i.e., any fluid,

– air, i.e., any gas,

– time period and

– a measure of fabric.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.2. Continuous Simple Entities )

B.1.1.3. Discrete Simple Entities

• A simple entity is said to be discrete if its immediate structure is not
continuous.

– A simple discrete entity may, however, contain continuous sub-
entities.

• Examples of discrete entities are:

– persons,

– rail units,

– oil pipes,

– a group of persons,

– a railway line and

– an oil pipeline.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.3. Discrete Simple Entities )

B.1.1.4. Atomic Simple Entities

• A simple entity is said to be atomic

– if it cannot be meaningfully decomposed into parts

– where these parts has a useful “value” in the context in which the
simple entity is viewed and

– while still remaining an instantiation of that entity.

• Thus a ‘physically able person’, which we consider atomic,

– can, from the point of physical ability,

– not be decomposed into meaningful parts: a leg, an arm, a head,
etc.

• Other atomic entities could be a rail unit, an oil pipe, or a hospital
bed.

• The only thing characterising an atomic entity are its attributes.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.4. Atomic Simple Entities )

B.1.1.5. Composite Simple Entities

• A simple entity, c, is said to be composite

– if it can be meaningfully decomposed

– into sub-entities that have separate

– meaning in the context in which c is viewed.

• We exemplify some composite entities.

– (1) A railway net can be decomposed into

∗ a set of one or more train lines and

∗ a set of two or more train stations.

– Lines and stations are themselves composite entities.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities )

– (2) An Oil industry whose decomposition include:

∗ one or more oil fields,

∗ one or more pipeline systems,

∗ one or more oil refineries and

∗ one or more one or more oil product distribution systems.

– Each of these sub-entities are also composite.

• Composite simple entities are thus characterisable by

– their attributes,

– their sub-entities, and

– the mereology of how these sub-entities are put together.
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(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities )

B.1.2. Discussion

• In Sect. 3.2 we interpreted the model of mereology in six examples.

• The units of Sect. 2

– which in that section were left uninterpreted

– now got individuality —

∗ in the form of

· aircraft,

· building rooms,

· rail units and

· oil pipes.

– Similarly for the assemblies of Sect. 2. They became

∗ pipeline systems,

∗ oil refineries,

∗ train stations,

∗ banks, etc.
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(B. Domain Entities B.1. Entities B.1.2. Discussion )

• In conventional modelling

– the mereology of an infrastructure component,

∗ of the kinds exemplified in Sect. 3.2,

– was modelled by modelling

∗ that infrastructure component’s special mereology

∗ together, “in line”, with the modelling

∗ of unit and assembly attributes.

• With the model of Sect. 2 now available

– we do not have to model the mereological aspects,

– but can, instead, instantiate the model of Sect. 2 appropriately.

– We leave that to be reported upon elsewhere.

• In many conventional infrastructure component models

– it was often difficult to separate

∗ what was mereology from

∗ what were attributes.
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(B. Domain Entities B.1. Entities B.1.2. Discussion )

B.2. Examples of Composite Structures

• Before a semantic treatment of the concept of mereology

– let us review what we have done and

– let us interpret our abstraction

∗ (i.e., relate it to actual societal infrastructure components).
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(B. Domain Entities B.2. Examples of Composite Structures )

B.2.1. What We have Done So Far ?

• We have

– presented a model that is claimed to abstract essential mereolog-
ical properties of

∗ machine assemblies,

∗ railway nets,

∗ the oil industry,

∗ oil pipelines,

∗ buildings with installations,

∗ hospitals,

∗ etcetera.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.1. What We have Done So Far ? )

B.2.2. Six Interpretations

• Let us substantiate the claims made in the previous paragraph.

– We will do so, albeit informally, in the next many paragraphs.

– Our substantiation is a form of diagrammatic reasoning.

– Subsets of diagrams will be claimed to represent parts, while

– Other subsets will be claimed to represent connectors.

• The reasoning is incomplete.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations )

B.2.2.1. Air Traffic
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Figure 2: An air traffic system. Black (rounded or edged) boxes and lines are units; red filled boxes are connections
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic )

• Figure 2 on the previous page shows nine (9) boxes and eighteen (18)
lines.

– Together they form an assembly.

– Individually boxes and lines represent units.

∗ The rounded corner boxes denote buildings.

∗ The sharp corner box denote an aircraft.

∗ Lines denote radio telecommunication.

– Only where lines touch boxes do we have connections.

∗ These are shown as red horisontal or vertical boxes at both ends
of the double-headed arrows,

∗ overlapping both the arrows and the boxes.

• The index ranges shown attached to, i.e., labelling each unit,

– shall indicate that there are a multiple of the “single” (thus rep-
resentative) unit shown.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic )

• Notice that

– the ‘box’ units are fixed installations and that

– the double-headed arrows designate the ether where radio waves
may propagate.

– We could, for example, assume that each such line is characterised
by

∗ a combination of location and

∗ (possibly encrypted) radio communication frequency.

– That would allow us to consider all line for not overlapping.

– And if they were overlapping, then that must have been a decision
of the air traffic system.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic )

B.2.2.2. Buildings
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Figure 3: A building plan with installation

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 332

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings )

• Figure 3 on the preceding page shows a building plan — as an as-
sembly

– of two neighbouring, common wall-sharing buildings, A and H,

– probably built at different times;

– with room sections B, C, D and E contained within A,

– and room sections I, J and K within H;

– with room sections L and M within K,

– and F and G within C.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings )

• Connector γ provides means of a connection between A and B.

• Connection κ provides “access” between B and F.

• Connectors ι and ω enable input, respectively output adaptors (re-
ceptor, resp. outlet) for electricity (or water, or oil),

• connection ǫ allow electricity (or water, or oil) to be conducted
through a wall.

• Etcetera.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings )

B.2.2.3. Financial Service Industry
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Figure 4: A financial service industry
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry )

• Figure 4 on the previous page shows seven (7) larger boxes [6 of
which are shown by dashed lines] and twelve (12) double-arrowed
lines.

– Where double-arrowed lines touch upon (dashed) boxes we have
connections (also to inner boxes).

– Six (6) of the boxes, the dashed line boxes, are assemblies, five (5)
of them consisting of a variable number of units;

– five (5) are here shown as having three units each with bullets
“between” them to designate “variability”.

• People,

– not shown, access the outermost (and hence the “innermost”
boxes, but the latter is not shown)

– through connectors, shown by bullets, •.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry )

B.2.2.4. Machine Assemblies
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Figure 5: An air pump, i.e., a physical mechanical system
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies )

• Figure 5 on the preceding page shows a machine assembly.

– Square boxes show assemblies or units.

– Bullets, •, show connectors.

– Strands of two or three bullets on a thin line, encircled by a rounded box, show
connections.

– The full, i.e., the level 0, assembly consists of

∗ four parts

∗ and three internal and three external connections.

– The Pump unit

∗ is an assembly

· of six (6) parts,

· five (5) internal connections

· and three (3) external connectors.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies )

• Etcetera.

• One connector and some connections afford “transmission” of elec-
trical power.

• Other connections convey torque.

• Two connectors convey input air, respectively output air.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies )

B.2.2.5. Oil Industry

B.2.2.5.1. • “The” Overall Assembly•
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Figure 6: A Schematic of an Oil Industry
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

• Figure 6 on the previous page shows

– an assembly consisting of fourteen (14) assemblies, left-to-right:

∗ one oil field,

∗ a crude oil pipeline system,

∗ two refineries and one, say, gasoline distribution network,

∗ two seaports,

∗ an ocean (with oil and ethanol tankers and their sea lanes),

∗ three (more) seaports,

∗ and three, say gasoline and ethanol distribution networks.

– Between all of the assembly units there are connections,

– and from some of the assembly units there are connectors (to an
external environment).

• The crude oil pipeline system assembly unit will be concretised next.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

B.2.2.5.2. • A Concretised Assembly Unit•
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Figure 7: A Pipeline System
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• Figure 7 on the preceding page shows a pipeline system.

• It consists of 32 units:

– fifteen (15) pipe units (shown as directed arrows and labelled p1–
p15),

– four (4) input node units (shown as small circles, ◦, and labelled
ini–inℓ),

– four (4) flow pump units (shown as small circles, ◦, and labelled
fpa–fpd),

– five (5) valve units (shown as small circles, ◦, and labelled vx–vw),
and

– four (4) output node units (shown as small circles, ◦, and labelled
onp–ons).
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• In this example the routes through the pipeline system

– start with node units and end with node units,

– alternates between node units and pipe units,

– and are connected as shown by fully filled-out red4 disc connec-
tions.

– Input and output nodes have input, respectively output connec-
tors, one each, and shown with green5

4This paper is most likely not published with colours, so red will be shown as darker colour.
5Shown as lighter coloured connections.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

B.2.2.6. Railway Nets

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Figure 8: Four example rail units
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets )

• Figure 8 on the previous page diagrams

– four rail units,

– each with their two, three or four connectors.

• Multiple instances of these rail units

– can be assembled

– as shown on Fig. 9 on the following page

– into proper rail nets.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets )

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Figure 9: A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 8 on page 344.
There are 66 connections and four “dangling” connectors
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(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets )

• Figure 9 on the previous page diagrams an example of a proper rail
net.

– It is assembled from the kind of units shown in Fig. 8.

– In Fig. 9 consider just the four dashed boxes:

∗ The dashed boxes are assembly units.

∗ Two designate stations, two designate lines (tracks) between
stations.

∗ We refer to to the caption four line text of Fig. 8 on page 344
for more “statistics”.

∗ We could have chosen to show, instead, for each of the four
“dangling’ connectors, a composition of a connection, a special
“end block” rail unit and a connector.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 348

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets )

B.2.3. Discussion

• It requires a somewhat more laborious effort,

– than just “flashing” and commenting on these diagrams,

– to show that the modelling of essential aspects of their structures

– can indeed be done by simple instantiation

– of the model given in the previous part of the talk.
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(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion )

• We can refer to a number of documents which give rather detailed
domain models of

– air traffic,

– container line industry,

– financial service industry,

– health-care,

– IT security,

– “the market”,

– “the” oil industry6,

– transportation nets7,

– railways, etcetera, etcetera.

• Seen in the perspective of the present paper

– we claim that much of the modelling work done in those references

– can now be considerably shortened and

– trust in these models correspondingly increased.

6http://www2.imm.dtu.dk/˜db/pipeline.pdf
7http://www2.imm.dtu.dk/˜db/transport.pdf
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(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion )

B.3. Attributes and Sub-entities of Sort Values

B.3.1. General

• Entities are defined in terms of

– either sorts, that is, abstract types for whose values we do not
define mathematical models,

– or concrete types whose values are sets, Cartesians, lists, maps,
functions or other.

• Entities are

– either atomic,8 in which case they are characterised solely in terms
of all their attributes (types and values),

– or are composite, in which case they are characterised in terms of
all their attributes (types and values) and all their sub-entities.

8As dealt with elsewhere (Appendix Sect. , Pages 315–324) in these lecture notes: attributes of atomic or composite entities are (type and value) properties
of entities (save those of being a composite entity and of such composite entities sub-entities). Atomic entities are atomic in that they have no sub-entities.
Sub-entities of composite entities are proper entities.
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General )

• For both atomic and composite sorts

– we introduce, as need be, observer functions,

– whether of attributes or (possibly, if composite) of sub-entities.9

• In this section we shall introduce and define an equality operator
that compares entities modulo some attribute:

– the name of the equality operator is ≃ωAattr
,

– and application of the equality operator to a pair of entities to
be compared and the attribute for which comparison is left is
expressed: ≃AattrA

(a′, a′′)(ωα).

• To explain this “modulo attribute” equality operator we first ιℓℓustrate10

the concepts of functions that observe attributes and sub-entities.
9Till now, in these lecture notes, we have used“the same kind” of observer functions (ωBi, ωCj) for observing attributes (Bi) of atomic or composite entities

and for observing sub-entities (Cj) of composite entities. In this section we shall distinguish between ωbserving αttributes (ωαB) and ωbserving sub-ǫntities
(ωǫC). Maybe we shall have an opportunity to do so in a next version of these lecture notes.

10In this section we distinguish between ιℓℓustrations (formally marked with ιℓℓs) and δǫφinitions (read: definitions, marked with δǫφs). ιℓℓustrations are like
schematic examples, but they are just that: rough-sketched generic examples. δǫφinitions are valid throughout these lecture notes.
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General )

B.3.2. Constant and Variable Valued Attributes

• There are two kinds of attributes to be considered.

– constant valued attributes, and

– variable valued attributes.

• Attributes with variable values are also called entity state compo-
nents.
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes )

• Let A be (the type name of) a set of entities,

• let B1, . . . , Bm be all the (distinct names of) types of constant valued
attributes of A and

• let Σ1, . . . , Σn be all the (distinct names of) types of variable valued
attributes of A.

• We ιℓℓustrate these:

type

[ ιℓℓ ] A, B1, ..., Bm, Σ1, ..., Σn, C1, ..., Ck
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes )

B.3.3. Sub-Entities

• Let C1, . . . , Ck be all the (distinct names of) types of sub-entities of
A.

• We ιℓℓustrate these:

type

[ ιℓℓ ] C1, ..., Ck
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.3. Sub-Entities )

B.3.4. Attribute and Sub-Entity Observers

• Let {ωαB1, . . . , ωαBm} be the corresponding set of all the constant
valued observers of A,

• Let {ωαΣ1, . . . , ωαΣn} be the corresponding set of all the variable
valued observers of A and

• let {ωǫC1, . . . , ωǫCk} be the corresponding set of all the sub-entity
observers of A.

• We ιℓℓustrate these:

value

[ ιℓℓ ] ωαB1: A → B1, ..., ωαBn: A → Bm

[ ιℓℓ ] ωαΣ1: A → Σ1, ..., ωαΣn: A → Σn,
[ ιℓℓ ] ωǫC1: A → C1, ..., ωǫCk: A → C2
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.4. Attribute and Sub-Entity Observers )

B.3.5. Attribute and Sub-entity Meta-Observers

• Let AttrA
name the general type of a attribute observer function for

sort A.

• Let EsubsA
name the general type of a sub-entity observer functions

for sort A.

• We ιℓℓustrate, with respect to the above ιℓℓustrations, these general
types:

type

[ ιℓℓ ] AttrA
= ωαB1 | ... | ωαBm | ωαΣ1 | ... | ωαΣn

[ ιℓℓ ] EsubsA
= ωǫC1 | ... | ωǫCk
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers )

• Let ωAattrA
denote the function which from a type (A) observes all

it attribute observer functions.

• Let ωEsubs denote the function which from a type observes all it
possible sub-entity observer functions.

• We δǫϕne these:

value

[ δǫφ ] ωAttrA
s: A → AttrA

-set

[ δǫφ ] ωEsubsA
s: A → EsubsA

-set
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers )

B.3.6. Meta-Observer Properties

• Let AttrA
ιℓℓustrate the set of all attribute observers for type A, and

• let EsubsA
ιℓℓustrate the set of all sub-entity observers for type A,

• then the two axioms ιℓℓattr and ιℓℓsubs holds for the ιℓℓustrated
type A and its observer functions:

value

[ ιℓℓattr ] AttrA
:AttrA

-set = {ωαB1,...,ωαBm,ωαΣ1,...,ωαΣn},
[ ιℓℓsubs ] EsubsA

:EsubsA
-set = {ωǫC1,. . . ,ωǫCk}

axiom

[ ιℓℓattr ] ∀ a:A • ωAttrA
s(a) = AttrA

∧
[ ιℓℓsubs ] ∀ a:A • ωEsubsA

s(a) = EsubsA
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.6. Meta-Observer Properties )

B.3.7. Sort Value Equality

• Now to register a possible change in but one attribute of A we meta-linguistically
δǫφine the following equality operator:

value

[ δǫφ ] ≃AattrA
: A×A → AttrA

→ Bool

[ δǫφ ] ≃AattrA
(a′,a′′)(ωα) ≡

[ δǫφ ] ∀ ωF :ωAttrA
s(a′)\{ωα}⇒ωF (a′)=ωF (a′′) ∧ ∀ ω′

ǫ:EsubsA
⇒ω′

ǫ(a
′)=ω′

ǫ(a
′′)

[ δǫφ ] pre ωAttrA
s(a′) = ωAttrA

s(a′′)

• The ≃ωAattr
‘equality’ operator

– applies to two values a′,a′′:A and an attribute observer function, ωBi (given as
ωα),

– and yields true if a′ and a′′

∗ have all but the same attribute values except for attribute Bi, and

∗ have all exactly the same and equal sub-entities.
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality )

Example 50 – Equality of Hubs Modulo Hub States:

• Please review Examples 2 on page 50 and 3 on page 53.

– In Example 3 on page 53 on Page 361, formula line item [17], a
comparison is made between two values of a sort:
ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ.

– We now redefine this comparion – which really does not capture all
the value aspects of the compared hubs!
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality )

value

p:Real, axiom 0<p≤1, typically p≃ 1 − 10−7

p:Real, axiom p=1−p

[ 12 ] set HΣ: H × HΣ → H
[ 13 ] set HΣ(h,hσ) as h′

[ 14 ] pre hσ ∈ ωHΩ(h)
[ 15 ] post ≃ωAattrH

(h,h′)(ωHΣ) ∧

[ 17 ] ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ

End of Example 50
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(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality )

B.4. Unique Entity Identifiers

• In many domain and requirements modelling situations we make use
of the concept of unique entitiy identifiers.

– For any type A for which we introduce unique identifiers of all a:A
values

– we consider such unique identifiers as of sort AI11.

– The AI attribute shall be considered a constant-valued attribute.

–

–

11We may, in some immediate future, decide to instead of using the sort name AI using, for example, the sort name ℑA or ℑA.
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(B. Domain Entities B.4. Unique Entity Identifiers )

End of Lecture 5: DOMAIN ENTITIES
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