
On a Triptych of Software Development 313

(A. A.8.)

Start of Lecture 5: DOMAIN ENTITIES

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 314

B. Domain Entities

B.1. Entities

• The reason for our interest in ‘simple entities’

– is that assemblies and units of systems

– possess static and dynamic properties

– which become contexts and states of

– the processes into which we shall “transform” simple entities.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 315

(B. Domain Entities B.1. Entities)

B.1.1. Observable Phenomena

• We shall just consider ‘simple entities’.

– By a simple entity we shall here understand

∗ a phenomenon that we can designate, viz.

∗ see, touch, hear, smell or taste, or

∗ measure by some instrument (of physics, incl. chemistry).

– A simple entity thus has properties.

– A simple entity is

∗ either continuous

∗ or is discrete, and then it is

· either atomic

· or composite.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 316

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena)

B.1.1.1. Attributes: Types and Values

• By an attribute we mean a simple property of an entity.

– A simple entity has properties pi, pj, . . . , pk.

• Typically we express attributes by a pair of

– a type designator: the attribute is of type V , and

– a value: the attribute has value v (of type V , i.e., v : V).

• A simple entity may have many simple properties.

– A continuous entity, like ‘oil’, may have the following attributes:

∗ type: petroleum,

∗ kind: Brent-crude,

∗ amount: 6 barrels,

∗ price: 45 US $/barrel.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 317

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values)

– An atomic entity, like a ‘person’, may have the following at-
tributes:

∗ gender: male,

∗ name: Dines Bjørner,

∗ birth date: 4. Oct. 1937,

∗ marital status: married.

– A composite entity, like a railway system, may have the following
attributes:

∗ country: Denmark,

∗ name: DSB,

∗ electrified: partly,

∗ owner: independent public
enterprise owned by Danish
Ministry of Transport.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 318

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.1. Attributes: Types and Values)

B.1.1.2. Continuous Simple Entities

• A simple entity is said to be continuous

– if, within limits, reasonably sizable amounts of the simple entity,
can be arbitrarily decomposed into smaller parts

– each of which still remain simple continuous entities

– of the same simple entity kind.

• Examples of continuous entities are:

– oil, i.e., any fluid,

– air, i.e., any gas,

– time period and

– a measure of fabric.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 319

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.2. Continuous Simple Entities)

B.1.1.3. Discrete Simple Entities

• A simple entity is said to be discrete if its immediate structure is not
continuous.

– A simple discrete entity may, however, contain continuous sub-
entities.

• Examples of discrete entities are:

– persons,

– rail units,

– oil pipes,

– a group of persons,

– a railway line and

– an oil pipeline.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 320

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.3. Discrete Simple Entities)

B.1.1.4. Atomic Simple Entities

• A simple entity is said to be atomic

– if it cannot be meaningfully decomposed into parts

– where these parts has a useful “value” in the context in which the
simple entity is viewed and

– while still remaining an instantiation of that entity.

• Thus a ‘physically able person’, which we consider atomic,

– can, from the point of physical ability,

– not be decomposed into meaningful parts: a leg, an arm, a head,
etc.

• Other atomic entities could be a rail unit, an oil pipe, or a hospital
bed.

• The only thing characterising an atomic entity are its attributes.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 321

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.4. Atomic Simple Entities)

B.1.1.5. Composite Simple Entities

• A simple entity, c, is said to be composite

– if it can be meaningfully decomposed

– into sub-entities that have separate

– meaning in the context in which c is viewed.

• We exemplify some composite entities.

– (1) A railway net can be decomposed into

∗ a set of one or more train lines and

∗ a set of two or more train stations.

– Lines and stations are themselves composite entities.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 322

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities)

– (2) An Oil industry whose decomposition include:

∗ one or more oil fields,

∗ one or more pipeline systems,

∗ one or more oil refineries and

∗ one or more one or more oil product distribution systems.

– Each of these sub-entities are also composite.

• Composite simple entities are thus characterisable by

– their attributes,

– their sub-entities, and

– the mereology of how these sub-entities are put together.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 323

(B. Domain Entities B.1. Entities B.1.1. Observable Phenomena B.1.1.5. Composite Simple Entities)

B.1.2. Discussion

• In Sect. 3.2 we interpreted the model of mereology in six examples.

• The units of Sect. 2

– which in that section were left uninterpreted

– now got individuality —

∗ in the form of

· aircraft,

· building rooms,

· rail units and

· oil pipes.

– Similarly for the assemblies of Sect. 2. They became

∗ pipeline systems,

∗ oil refineries,

∗ train stations,

∗ banks, etc.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 324

(B. Domain Entities B.1. Entities B.1.2. Discussion)

• In conventional modelling

– the mereology of an infrastructure component,

∗ of the kinds exemplified in Sect. 3.2,

– was modelled by modelling

∗ that infrastructure component’s special mereology

∗ together, “in line”, with the modelling

∗ of unit and assembly attributes.

• With the model of Sect. 2 now available

– we do not have to model the mereological aspects,

– but can, instead, instantiate the model of Sect. 2 appropriately.

– We leave that to be reported upon elsewhere.

• In many conventional infrastructure component models

– it was often difficult to separate

∗ what was mereology from

∗ what were attributes.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 325

(B. Domain Entities B.1. Entities B.1.2. Discussion)

B.2. Examples of Composite Structures

• Before a semantic treatment of the concept of mereology

– let us review what we have done and

– let us interpret our abstraction

∗ (i.e., relate it to actual societal infrastructure components).

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 326

(B. Domain Entities B.2. Examples of Composite Structures)

B.2.1. What We have Done So Far ?

• We have

– presented a model that is claimed to abstract essential mereolog-
ical properties of

∗ machine assemblies,

∗ railway nets,

∗ the oil industry,

∗ oil pipelines,

∗ buildings with installations,

∗ hospitals,

∗ etcetera.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 327

(B. Domain Entities B.2. Examples of Composite Structures B.2.1. What We have Done So Far ?)

B.2.2. Six Interpretations

• Let us substantiate the claims made in the previous paragraph.

– We will do so, albeit informally, in the next many paragraphs.

– Our substantiation is a form of diagrammatic reasoning.

– Subsets of diagrams will be claimed to represent parts, while

– Other subsets will be claimed to represent connectors.

• The reasoning is incomplete.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 328

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations)

B.2.2.1. Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Figure 2: An air traffic system. Black (rounded or edged) boxes and lines are units; red filled boxes are connections

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 329

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

• Figure 2 on the previous page shows nine (9) boxes and eighteen (18)
lines.

– Together they form an assembly.

– Individually boxes and lines represent units.

∗ The rounded corner boxes denote buildings.

∗ The sharp corner box denote an aircraft.

∗ Lines denote radio telecommunication.

– Only where lines touch boxes do we have connections.

∗ These are shown as red horisontal or vertical boxes at both ends
of the double-headed arrows,

∗ overlapping both the arrows and the boxes.

• The index ranges shown attached to, i.e., labelling each unit,

– shall indicate that there are a multiple of the “single” (thus rep-
resentative) unit shown.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 330

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

• Notice that

– the ‘box’ units are fixed installations and that

– the double-headed arrows designate the ether where radio waves
may propagate.

– We could, for example, assume that each such line is characterised
by

∗ a combination of location and

∗ (possibly encrypted) radio communication frequency.

– That would allow us to consider all line for not overlapping.

– And if they were overlapping, then that must have been a decision
of the air traffic system.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 331

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.1. Air Traffic)

B.2.2.2. Buildings

A

H

I

J

L M

K

C

F

G

E

B
D

Door Connector

Door Connection

Installation Connector

(1 Unit)
Installation

Room
(1 Unit)

Sub−room of Room
Sharing walls
(1 Unit)

Adjacent Rooms
Sharing (one) wall
(2 Units)

κ

γ

ε

ι

ω

Figure 3: A building plan with installation

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 332

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

• Figure 3 on the preceding page shows a building plan — as an as-
sembly

– of two neighbouring, common wall-sharing buildings, A and H,

– probably built at different times;

– with room sections B, C, D and E contained within A,

– and room sections I, J and K within H;

– with room sections L and M within K,

– and F and G within C.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 333

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

• Connector γ provides means of a connection between A and B.

• Connection κ provides “access” between B and F.

• Connectors ι and ω enable input, respectively output adaptors (re-
ceptor, resp. outlet) for electricity (or water, or oil),

• connection ǫ allow electricity (or water, or oil) to be conducted
through a wall.

• Etcetera.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 334

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.2. Buildings)

B.2.2.3. Financial Service Industry

Clients

C[c]

C[2]

C[1] T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

pb
/b

p[
1.

.p
,1

..b
]:P

B
|B

P

T
he

 F
in

an
ce

 In
du

st
ry

 "
W

at
ch

do
g"

wb/bw[1..b]:WB|BW

wt/tw[1..t]:WT|TW

wp/pw[1..p]:WP|PW

ws:WS

sw:SW

SE

Exchange
Stock

I[1]I[1] I[2] I[i]...

...

is/si[1..i]:IS|SI

B[1] B[2] B[b]...
Banks

P[1] P[2] P[p]...
Portfolio Managers

... Brokers
Traders

Figure 4: A financial service industry

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 335

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry)

• Figure 4 on the previous page shows seven (7) larger boxes [6 of
which are shown by dashed lines] and twelve (12) double-arrowed
lines.

– Where double-arrowed lines touch upon (dashed) boxes we have
connections (also to inner boxes).

– Six (6) of the boxes, the dashed line boxes, are assemblies, five (5)
of them consisting of a variable number of units;

– five (5) are here shown as having three units each with bullets
“between” them to designate “variability”.

• People,

– not shown, access the outermost (and hence the “innermost”
boxes, but the latter is not shown)

– through connectors, shown by bullets, •.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 336

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.3. Financial Service Industry)

B.2.2.4. Machine Assemblies

Connection

Connector, part of Connection

Connector, part of Connection

Connection

Part

Assembly, embedded Part

Adjacent Parts

Bellows

Coil/

Air Load
Reservoir

Valve1

with one Unit

with two
Assembly

System Assembly

Assembly

Valve2

Unit

Unit Unit Unit

Unit

Unit

Unit

Units

Magnet

PumpPower Supply

Air Supply

Lever
UnitUnit

2 Parts, one
Assembly with

is an Assembly

Figure 5: An air pump, i.e., a physical mechanical system

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 337

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

• Figure 5 on the preceding page shows a machine assembly.

– Square boxes show assemblies or units.

– Bullets, •, show connectors.

– Strands of two or three bullets on a thin line, encircled by a rounded box, show
connections.

– The full, i.e., the level 0, assembly consists of

∗ four parts

∗ and three internal and three external connections.

– The Pump unit

∗ is an assembly

· of six (6) parts,

· five (5) internal connections

· and three (3) external connectors.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 338

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

• Etcetera.

• One connector and some connections afford “transmission” of elec-
trical power.

• Other connections convey torque.

• Two connectors convey input air, respectively output air.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 339

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.4. Machine Assemblies)

B.2.2.5. Oil Industry

B.2.2.5.1. • “The” Overall Assembly•

Oil
Field

Pipeline
System

Refinery Port

Port Ocean

Port

Port

Port

Distrib.

Distrib.

Distrib.

Refinery

Distrib.

Assembly Connection (bound) Connection (free)

Figure 6: A Schematic of an Oil Industry

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 340

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

• Figure 6 on the previous page shows

– an assembly consisting of fourteen (14) assemblies, left-to-right:

∗ one oil field,

∗ a crude oil pipeline system,

∗ two refineries and one, say, gasoline distribution network,

∗ two seaports,

∗ an ocean (with oil and ethanol tankers and their sea lanes),

∗ three (more) seaports,

∗ and three, say gasoline and ethanol distribution networks.

– Between all of the assembly units there are connections,

– and from some of the assembly units there are connectors (to an
external environment).

• The crude oil pipeline system assembly unit will be concretised next.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 341

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.1. useboxA)

B.2.2.5.2. • A Concretised Assembly Unit•

fpb

vz
vx

fpa fpc

vwfpdvu

vy

p1

p2

p3

p4 p5

p7

p6

p10

p11

p12

p8

p9
p13

p14

p15

inj

inl

onr

ons

Connector

Node unit

Connection (between pipe units and node units)

Pipe unit

ini

ink

may connect to refinery
onp

onq
may be left "dangling"

may be left dangling

may connect to oil field

Figure 7: A Pipeline System

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 342

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• Figure 7 on the preceding page shows a pipeline system.

• It consists of 32 units:

– fifteen (15) pipe units (shown as directed arrows and labelled p1–
p15),

– four (4) input node units (shown as small circles, ◦, and labelled
ini–inℓ),

– four (4) flow pump units (shown as small circles, ◦, and labelled
fpa–fpd),

– five (5) valve units (shown as small circles, ◦, and labelled vx–vw),
and

– four (4) output node units (shown as small circles, ◦, and labelled
onp–ons).

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 343

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

• In this example the routes through the pipeline system

– start with node units and end with node units,

– alternates between node units and pipe units,

– and are connected as shown by fully filled-out red4 disc connec-
tions.

– Input and output nodes have input, respectively output connec-
tors, one each, and shown with green5

4This paper is most likely not published with colours, so red will be shown as darker colour.
5Shown as lighter coloured connections.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 344

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.5. Oil Industry B.2.2.5.2. useboxA)

B.2.2.6. Railway Nets

Turnout / PointTrack / Line / Segment
/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Figure 8: Four example rail units

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 345

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

• Figure 8 on the previous page diagrams

– four rail units,

– each with their two, three or four connectors.

• Multiple instances of these rail units

– can be assembled

– as shown on Fig. 9 on the following page

– into proper rail nets.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 346

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Figure 9: A “model” railway net. An Assembly of four Assemblies:
Two stations and two lines; Lines here consist of linear rail units;
stations of all the kinds of units shown in Fig. 8 on page 344.
There are 66 connections and four “dangling” connectors

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 347

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

• Figure 9 on the previous page diagrams an example of a proper rail
net.

– It is assembled from the kind of units shown in Fig. 8.

– In Fig. 9 consider just the four dashed boxes:

∗ The dashed boxes are assembly units.

∗ Two designate stations, two designate lines (tracks) between
stations.

∗ We refer to to the caption four line text of Fig. 8 on page 344
for more “statistics”.

∗ We could have chosen to show, instead, for each of the four
“dangling’ connectors, a composition of a connection, a special
“end block” rail unit and a connector.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 348

(B. Domain Entities B.2. Examples of Composite Structures B.2.2. Six Interpretations B.2.2.6. Railway Nets)

B.2.3. Discussion

• It requires a somewhat more laborious effort,

– than just “flashing” and commenting on these diagrams,

– to show that the modelling of essential aspects of their structures

– can indeed be done by simple instantiation

– of the model given in the previous part of the talk.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 349

(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion)

• We can refer to a number of documents which give rather detailed
domain models of

– air traffic,

– container line industry,

– financial service industry,

– health-care,

– IT security,

– “the market”,

– “the” oil industry6,

– transportation nets7,

– railways, etcetera, etcetera.

• Seen in the perspective of the present paper

– we claim that much of the modelling work done in those references

– can now be considerably shortened and

– trust in these models correspondingly increased.

6http://www2.imm.dtu.dk/˜db/pipeline.pdf
7http://www2.imm.dtu.dk/˜db/transport.pdf

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 350

(B. Domain Entities B.2. Examples of Composite Structures B.2.3. Discussion)

B.3. Attributes and Sub-entities of Sort Values

B.3.1. General

• Entities are defined in terms of

– either sorts, that is, abstract types for whose values we do not
define mathematical models,

– or concrete types whose values are sets, Cartesians, lists, maps,
functions or other.

• Entities are

– either atomic,8 in which case they are characterised solely in terms
of all their attributes (types and values),

– or are composite, in which case they are characterised in terms of
all their attributes (types and values) and all their sub-entities.

8As dealt with elsewhere (Appendix Sect. , Pages 315–324) in these lecture notes: attributes of atomic or composite entities are (type and value) properties
of entities (save those of being a composite entity and of such composite entities sub-entities). Atomic entities are atomic in that they have no sub-entities.
Sub-entities of composite entities are proper entities.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 351

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General)

• For both atomic and composite sorts

– we introduce, as need be, observer functions,

– whether of attributes or (possibly, if composite) of sub-entities.9

• In this section we shall introduce and define an equality operator
that compares entities modulo some attribute:

– the name of the equality operator is ≃ωAattr
,

– and application of the equality operator to a pair of entities to
be compared and the attribute for which comparison is left is
expressed: ≃AattrA

(a′, a′′)(ωα).

• To explain this “modulo attribute” equality operator we first ιℓℓustrate10

the concepts of functions that observe attributes and sub-entities.
9Till now, in these lecture notes, we have used“the same kind” of observer functions (ωBi, ωCj) for observing attributes (Bi) of atomic or composite entities

and for observing sub-entities (Cj) of composite entities. In this section we shall distinguish between ωbserving αttributes (ωαB) and ωbserving sub-ǫntities
(ωǫC). Maybe we shall have an opportunity to do so in a next version of these lecture notes.

10In this section we distinguish between ιℓℓustrations (formally marked with ιℓℓs) and δǫφinitions (read: definitions, marked with δǫφs). ιℓℓustrations are like
schematic examples, but they are just that: rough-sketched generic examples. δǫφinitions are valid throughout these lecture notes.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 352

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.1. General)

B.3.2. Constant and Variable Valued Attributes

• There are two kinds of attributes to be considered.

– constant valued attributes, and

– variable valued attributes.

• Attributes with variable values are also called entity state compo-
nents.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 353

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes)

• Let A be (the type name of) a set of entities,

• let B1, . . . , Bm be all the (distinct names of) types of constant valued
attributes of A and

• let Σ1, . . . , Σn be all the (distinct names of) types of variable valued
attributes of A.

• We ιℓℓustrate these:

type

[ιℓℓ] A, B1, ..., Bm, Σ1, ..., Σn, C1, ..., Ck

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 354

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.2. Constant and Variable Valued Attributes)

B.3.3. Sub-Entities

• Let C1, . . . , Ck be all the (distinct names of) types of sub-entities of
A.

• We ιℓℓustrate these:

type

[ιℓℓ] C1, ..., Ck

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 355

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.3. Sub-Entities)

B.3.4. Attribute and Sub-Entity Observers

• Let {ωαB1, . . . , ωαBm} be the corresponding set of all the constant
valued observers of A,

• Let {ωαΣ1, . . . , ωαΣn} be the corresponding set of all the variable
valued observers of A and

• let {ωǫC1, . . . , ωǫCk} be the corresponding set of all the sub-entity
observers of A.

• We ιℓℓustrate these:

value

[ιℓℓ] ωαB1: A → B1, ..., ωαBn: A → Bm

[ιℓℓ] ωαΣ1: A → Σ1, ..., ωαΣn: A → Σn,
[ιℓℓ] ωǫC1: A → C1, ..., ωǫCk: A → C2

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 356

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.4. Attribute and Sub-Entity Observers)

B.3.5. Attribute and Sub-entity Meta-Observers

• Let AttrA
name the general type of a attribute observer function for

sort A.

• Let EsubsA
name the general type of a sub-entity observer functions

for sort A.

• We ιℓℓustrate, with respect to the above ιℓℓustrations, these general
types:

type

[ιℓℓ] AttrA
= ωαB1 | ... | ωαBm | ωαΣ1 | ... | ωαΣn

[ιℓℓ] EsubsA
= ωǫC1 | ... | ωǫCk

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 357

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers)

• Let ωAattrA
denote the function which from a type (A) observes all

it attribute observer functions.

• Let ωEsubs denote the function which from a type observes all it
possible sub-entity observer functions.

• We δǫϕne these:

value

[δǫφ] ωAttrA
s: A → AttrA

-set

[δǫφ] ωEsubsA
s: A → EsubsA

-set

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 358

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.5. Attribute and Sub-entity Meta-Observers)

B.3.6. Meta-Observer Properties

• Let AttrA
ιℓℓustrate the set of all attribute observers for type A, and

• let EsubsA
ιℓℓustrate the set of all sub-entity observers for type A,

• then the two axioms ιℓℓattr and ιℓℓsubs holds for the ιℓℓustrated
type A and its observer functions:

value

[ιℓℓattr] AttrA
:AttrA

-set = {ωαB1,...,ωαBm,ωαΣ1,...,ωαΣn},
[ιℓℓsubs] EsubsA

:EsubsA
-set = {ωǫC1,. . . ,ωǫCk}

axiom

[ιℓℓattr] ∀ a:A • ωAttrA
s(a) = AttrA

∧
[ιℓℓsubs] ∀ a:A • ωEsubsA

s(a) = EsubsA

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 359

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.6. Meta-Observer Properties)

B.3.7. Sort Value Equality

• Now to register a possible change in but one attribute of A we meta-linguistically
δǫφine the following equality operator:

value

[δǫφ] ≃AattrA
: A×A → AttrA

→ Bool

[δǫφ] ≃AattrA
(a′,a′′)(ωα) ≡

[δǫφ] ∀ ωF :ωAttrA
s(a′)\{ωα}⇒ωF (a′)=ωF (a′′) ∧ ∀ ω′

ǫ:EsubsA
⇒ω′

ǫ(a
′)=ω′

ǫ(a
′′)

[δǫφ] pre ωAttrA
s(a′) = ωAttrA

s(a′′)

• The ≃ωAattr
‘equality’ operator

– applies to two values a′,a′′:A and an attribute observer function, ωBi (given as
ωα),

– and yields true if a′ and a′′

∗ have all but the same attribute values except for attribute Bi, and

∗ have all exactly the same and equal sub-entities.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 360

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

Example 50 – Equality of Hubs Modulo Hub States:

• Please review Examples 2 on page 50 and 3 on page 53.

– In Example 3 on page 53 on Page 361, formula line item [17], a
comparison is made between two values of a sort:
ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ.

– We now redefine this comparion – which really does not capture all
the value aspects of the compared hubs!

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 361

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

value

p:Real, axiom 0<p≤1, typically p≃ 1 − 10−7

p:Real, axiom p=1−p

[12] set HΣ: H × HΣ → H
[13] set HΣ(h,hσ) as h′

[14] pre hσ ∈ ωHΩ(h)
[15] post ≃ωAattrH

(h,h′)(ωHΣ) ∧

[17] ωHΣ(h′)=(⌈⌉{hσ′|hσ′:HΣ•hσ′∈ ωΩ(h)\{hσ}})p⌈⌉phσ

End of Example 50

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 362

(B. Domain Entities B.3. Attributes and Sub-entities of Sort Values B.3.7. Sort Value Equality)

B.4. Unique Entity Identifiers

• In many domain and requirements modelling situations we make use
of the concept of unique entitiy identifiers.

– For any type A for which we introduce unique identifiers of all a:A
values

– we consider such unique identifiers as of sort AI11.

– The AI attribute shall be considered a constant-valued attribute.

–

–

11We may, in some immediate future, decide to instead of using the sort name AI using, for example, the sort name ℑA or ℑA.

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

On a Triptych of Software Development 362

(B. Domain Entities B.4. Unique Entity Identifiers)

End of Lecture 5: DOMAIN ENTITIES

March 2, 2010, 16:43, Vienna Lectures, April 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark

