
Seminar aus Programmiersprachen

185.307

Context Threading
Florian Fest

ff@generationfun.at
937/0125496

Based on:
Context Threading:A flexible and efficient dispatch technique for

virtual machine interpreters
Marc Berndl, Benjamin Vitae, Mathew Zaleski and Angela Demke Brown

Wien, WS 2006/07

1 Abstract

This paper examines the article ”Context Threading” by Berndl, Vitae, Zaleski
and Brown published in 2005. [1] It will present a short description of their pub-
lished work and will discuss it in context of other research done in this field. In
the remainder of this paper Berndl, Vitae, Zaleski and Brown will be referred as
the authors. Efficient interpreters are mostly implemented by means of Direct
Threading. They use indirect branches to dispatch opcodes. This leads to a large
number of indirect branches (according to Ertl [5] up to 13% of over all executed
instructions in interpreters). These branches are further more not biased like
branches in normal cpu workload thus causing a large number of miss predic-
tions on modern pipelined processors. The authors introduce an implementation
technique for interpreters similar to subroutine treading [2] [3] they call context
threading. Context Treading reduces the number of miss predictions compared
to direct threading by providing biased branches. Native subroutine calls are
used for dispatching thus allowing an efficient return address prediction. Some
other supplementing optimizations are introduced to handle branches not caused
by the dispatch. The performance improvement is evaluated by benchmarks and
can be compared to that of selective inlining.

2 Introduction

Several advantages make interpretation attractive for the implementation of
programming language systems. Interpreters are easy to implement, compact
and portable compared to native code compilers. They also allow the use of
interactive debugging concepts. The major down side of interpretation comes
with its poor performance behavior. Important systems, such as the virtual
machines provided by SUN and IBM, operate in mixed mode in order to use
the advantages of both techniques, interpretation and just in time compilation
to native code. So interpreter performance is relevant for the overall behavior
of such systems.
Direct threading has been known as a very efficient layout for interpreters but
recently Ertl and Gregg [5] showed that it’s performance is limited in practice
on modern architectures.
Todays microprocessors use a heavily pipelined architecture to achieve their
performance goals. Branch predictors are used to determine the branch target
in order to keep the pipelines full. Miss predictions, so called pipeline or branch
hazards, require flushing of the pipelines thus leading to a serious performance
losses. Branch predictors exploit the correlation between program counter (PC)
and branch target. With direct threaded interpreters, branches are correlated to
the virtual program counter(vPC) rather than to the hardware program counter.
This correlation is not exposed to the hardware thus leading to a high number
of miss predictions. Context threading is a technique for interpreters which
reduces the number of branch hazards by making the correlation between vPC
and target visible to hardware. This is achieved by aligning virtual and real
machine useing native call and return instructions.

1

3 The Context Problem

When a virtual program is executed, the interpreter dispatches its virtual
instruction in sequence. The vPC indicates the current instruction in a
sequence of virtual instructions. Virtual instructions consist of an opcode and
optional arguments. Their precise layout depends on the implementation of
the dispatch. Switch based interpreters use a for loop to fetch the opcode
from vPC and than execute a switch over it. The individual opcodes are
implemented in case blocks. The use of first class labels as provided in gcc
allow a more efficient implementation in form.
With direct threading opcodes represent the address of a label with the actual
implementation. The virtual program is a list of jump-target addresses and
dispatch is done by an indirect jump. Each opcode implementation increments
vPC and performs a dispatch to the next after its own work is finished. The
advantage over the switch based type is that only one jump per opcode has
to be executed and the range checks compilers usually create when translating
switch statements can be left out.

Figure 1: Direct Threaded Interpreter [1]

Figure 1 shows an direct thread interpreter executing a small program. The
virtual program is translated to a list of jump-addresses and parameters. This
structure will be called the Direct Threading Table (DTT). The jump at the
end of INST PUSH leads back to the start of INST PUSH when it is executed
the first time. The second INST PUSH performs a jump to INST MULL. The
observed behavior is typical for direct threading. The target of a jump is not
correlated to its location, resp. the PC. Although there is a correlation between
vPC and the target, the branch predictor is not able to exploit it, because it is
effectively hidden.
switch based interpreters perform even worse concerning branch hazards be-
cause all their dispatch operation take place in a single point, the indirect jump
generated from the switch statement.

2

The authors called this effect the context problem, because the missing context
of the indirect branch instruction makes prediction almost impossible. The
next section will describe their method of providing more context to hardware
predictors and thus enabling better prediction.

4 The Concept of Context Threading

The disadvantages of direct treading have already been discussed. Although it
has the major benefit to offer a good cache behavior.[9] One way of providing
context to branches and even eliminate some of those which are caused by the
dispatch, would be inlining of opcode bodies. This would also allow optimiza-
tions across the boundaries of individual opcodes.
Another option would be the use of super instructions, where common sequences
of opcodes are combined to a single super instruction. Determining this se-
quences can be done statically [6] or dynamically [4]. Normally the number of
super instructions is limited by the opcode encoding (often 1 byte).
The techniques described above have a common disadvantage, they achieve less
branch hazards but to do so they require more space in the instruction cache.
This might lead to cache misses thus resulting in an increase in runtime. Con-
text Threading achieves better branch prediction behavior with only a light
increase of code size.
The following sections describe the handling of the three sources of branches in
an interpreter and their treatment in context threading.

4.1 Opcode Dispatch

Since every opcode is dispatched at the beginning of its processing this is
the main source for branches. As already discussed, with direct threaded
interpreters this is done by an indirect branch thus leading to many miss
predictions. In context treading replaces the branch with a native subroutine
call. Native subroutines should not be confused with function calls in higher
programming languages which normally include saving and restoring registers.
Almost all modern microprocessors provide an efficient prediction mechanisms
for the return address of native subroutine calls in form of a return address
stack. The native call instruction pushes the return address, usually the next
instruction, onto the return instruction stack and performs the control transfer.
The native return performs a control transfer back to the last address on the
return address stack.
An opcode is dispatched by call to the native subroutine implementing its
body. Each body ends with a return. Opcodes manipulating the virtual
control flow are handled in a different way. Their processing will be discussed
in section 4.2 and 4.3.

3

Figure 2: Context Threading Interpreter [1]

The actual implementation shall be described with respect to Figure 2. A
new structure the Context Treading Table (CTT) is introduced. The CTT
represents a program as a sequence of call instructions, thus allowing easy
prediction of the return addresses. The authors use the term context treading
because the because the hardware address of each call instruction in the CTT
provides context to hardware so that an efficient prediction is possible. The
direct treading table is still necessary for storing of operants and resolving the
control flow of the virtual program. The entries in the DTT refer to the CTT
rather than pointing directly to opcode implementations.
Compared to direct treading context threading replaces on control transfer with
two transfers but due to the much better predictability of these two transfers
an over all performance gain is achieved.

4.2 Branching Opcodes

The simplest way to handle branching opcodes would be branching to an op-
code body which manipulates the vPC and then performs an appropriate branch.
When following this approach all branches share a single location, and no con-
text to the branch is provided as it can be seen at the INST GOTO statement
in Figure 2.
Additional context is provided to virtual branches by replicating them in the
CTT. A virtual branch can now be processed by call statement and end with a
return. The actual replication happens after the call is executed and is placed
directly after the call instruction in the CTT. The return transfers control back
to the replicated body. The authors refer to this technique as branch replica-
tion.Branch replication offers a simple way to provide context to each virtual
branch, but it also has some down sides. Three control transfers are necessary
to execute a single branch thus producing more overhead. Furthermore only
the dispatch part is replicated and indirect branches are not replaced by direct

4

branches although this is possible in may cases. The authors use branch repli-
cation only to handle virtual indirect branches and exceptions.
All other virtual branches are fully inlined into the CTT (the upper part of
Figure 3 shows a inlined virtual goto) Whenever possible indirect branches
are replaced by direct branches. This allows more efficient prediction through
conditional branch predictors instead of branch target buffers. This so called
branch inlining leads increases code size but this is acceptable since most branch
instructions are simple thus keeping the growth within limit.

Figure 3: Inlined Branch and Virtual Call [1]

4.3 Virtual Call and Return

The last source of branches that need to be taken into consideration are the
virtual call and return instructions. Especially the processing of an virtual
return can be complicated due to the fact that one return may go back to
multiple calls. Modern microprocessors already provide a hardware solution for
this problem, the return address stack which has been already exploited for the
opcode dispatch. The authors introduce a technique to use this hardware also
for virtual call and returns.
Basically the call is splited into two virtual instructions both using native calls
and returns. (as seen in Figure 3) The first subroutine call (1) manipulates
the vPC so that it points to the callee while the second call (2) pushes the
return address onto the stack and performs the actual control transfer. Then
the body can executed in the usual way (3). The last instruction of the body
is a special return instruction (4) performing the control flow transfer back (5).
An actual implementation of this method called apply/return inlining has to
deal with a number of practical obstacles such as dealing with the VM-Stack
or avoiding interference with other components using the return address stack.
For a detailed description the reader might refer to [1].

5

5 Evaluation

The authors applied context threading to Ocaml [7] an interpreter for Caml
and to SableVM a Java VM provided by the Sable group [10]. They have run
benchmarks of their implementations using Pentium IV and Power PC proces-
sors. On Pentium IV the use of context treading reduced the pipeline hazards
by 95% and leaded on Power PC to a reduce of stall cycles (comparable to
pipeline hazards) between 76% and 82%. Further more an overall performance
gain compared to direct threading of about 25% for Java on both architectures,
19% for Ocaml on Pentium IV and 37% for Ocaml on Power PC has been
detected.

6 Related Work

Context trading uses many concepts of subroutine threading. Subroutine
threading is a rather old scheme for interpreters. Descriptions can be found at
[2] [3] Once developed it has soon taken a back seat because native call and
return instructions have been quit expensive on old architectures. Modern
architectures however provide efficient call and return implementations
thus making subroutine threading attractive when branch hazzards shall be
reduced.
Another way to conquer the context problem are selective inlining as Piumarta
[8] describes it or the use of dynamic super instructions introduced by Ertl [4].
These interpreter concepts eliminates branches by replicating opcode bodies.
The results gained with selective inlining are comparable to those gained by
context threading and even slightly exceed them in some points. Context
threading uses some inlining techniques to cope with the virtual control flow.

7 Conclusion

In order to develop efficient interpreters for modern processors their pipelined
architecture has to be taken into concern, otherwise performance is reduced by
branch hazards. Berndl, Vitae, Zaleski and Brown present a technique which
provides context to hardware predictors thus reducing miss predictions and still
keeps most advantages of a simple interpreter layout, such as a small cache foot
print and the simple layout. As context threading shows, on today’s cpus good
behavior in means of branch prediction, may even overwhelm a more efficient
dispatch scheme.

6

References

[1] Marc Berndl, Benjamin Vitale, Mathew Zaleski, and Angela Demke Brown.
Context threading: A flexible and efficient dispatch technique for virtual
machine interpreters. In Proceedings of CGO-4, 2005.

[2] Charles Curley. Life in the fastforth lane. Forth Dimensions, 1993.

[3] Charles Curley. Optimizing fastforth: Optimizing in a bsr/jsr threaded
forth. Forth Dimensions, 1993.

[4] M. Ertl and D. Gregg. Optimizing indirect branch prediction accuracy in
virtual machine interpreters, 2003.

[5] M. Ertl and D. Gregg. The structure and performance of efficient inter-
preters. Journal of Instruction-Level Parallelism, 5:1–25, 2003.

[6] M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen
— a generator of efficient virtual machine interpreters. SoftwarePractice
and Experience, 32(3):265–294, 2002.

[7] The Caml Language. Caml-homepage. http://caml.inria.fr/.

[8] Ian Piumarta and Fabio Riccardi. Optimizing direct-threaded code by
selective inlining. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 291–300, 1998.

[9] Theodore H. Romer, Dennis Lee, Geffrey M. Voelker, Alec Wolman,
Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M. Levy.
The structure and performance of interpreters. In Proceedings of the 7th
International Conference on Architectural Support for Programming Lan-
guages and Operating System (ASPLOS), volume 31, pages 150–159, New
York, NY, 1996. ACM Press.

[10] Sable-Mcgill. Sable-homepage. http://www.sable.mcgill.ca/.

7

