
 : word1 (--) ." word1 executed " ; <enter> OK

 ´ word1 prelude <enter> OK

 : word2 (--) ." word2 executed " ; <enter> OK

 word2 <enter> word1 executed word2 executed OK

 : word3 (--) word2 ; <enter> word1 executed OK

 word3 <enter> word2 executed OK

euroFORTH98 PRELUDE and FINALE , M. Mahlow page 1 of 6

P R E L U D E a n d F I N A L E
Implicit context switching based on pre- and post-executed words

Manfred Mahlow
Weißenburger Str. 31 , D-28211 Bremen , Germany
Phone: ++49 421 69458 65 and ++49 421 447395

email: c/o anwind@compuserve.com

Abstract

On the annual conference of the German Forth
Association in 1997, I presented the "Prelude-
Concept", a simple but powerfull approach to
early-bind methods to data. It´s simple enough
to be applied to small microcontroller systems
and powerfull enough to be useful for fat
systems too.

Since that time, the concept was used to
implement extensions for context-oriented or
object-oriented programming for several forth
systems and based on that experience a more
general concept of pre- and post-executed
words evolved, that will be presented in this
paper.

What are pre- and post-executed words ?

A pre- or post-executed word is a Forth word,
that is assigned to another Forth word, to
extend it´s compile-time and execute-time
semantics. A pre- or post-executed word is
hidden behind the word, it´s assigned to, while
the word, it´s assigned to, is visible to the
programmer like any other forth word. A pre-
or post-executed word is executed, when the
visible word is compiled or executed by the
outer interpreter.

Two words are needed, to handle pre- and post-
executed words, prelude and finale .

 ´ name prelude

assigns the word name as a pre-executed word
(prelude) to the next created word and

 ́ name finale

assigns the word name as a post-executed word
(finale) to the next created one.

Let´s have a look on Figure 1, to see how it

works :
 Figure 1

We create a first word, word1. Then we tell the
system that word1 shall become a prelude of
the next created word. Finally we create the
next word, word2.

Now, when executing word2, we get the
response "word1 executed word2 executed",

 \ Creating a methods context for the new data type ascii .

 vocabulary ascii ascii definitions decimal

 \ Creating methods to fetch, store and display an ascii character

 ´ forth finale ´ c@ alias @ (a -- b)

 ´ forth finale ´ c! alias ! (b a --)

 ´ forth finale : ? (a --) c@ emit ;

 \ Creating the defining word for the ascii data type

 ´ forth finale : variable (--) (ib: name)
 [´] ascii prelude create bl c, ;

 : word1 (--) ." word1 executed " ; <enter> OK

 ´ word1 finale <enter> OK

 : word2 (--) ." word2 executed " ; <enter> OK

 word2 <enter> word2 executed word1 executed OK

 : word3 (--) word2 ; <enter> word1 executed OK

 word3 <enter> word2 executed OK

euroFORTH98 PRELUDE and FINALE , M. Mahlow page 2 of 6

indicating that word1 was executed as a pre-
executed word (prelude) of word2.

We create one more word, word3, using word2.
While the definition for word3 is compiled, the
message "word1 executed" occures, because
word1 is executed as a prelude of word2 before
word2 is compiled.

Figure 2 shows the same example, using finale
instead of prelude.

 Figure 2

When word2 is executed, we now get the
response "word2 executed word1 executed",
because word1 is a finale now. While word3 is
compiled, we get the message word1 executed,
but now word1 is executed as a finale after
word2 was compiled.

What are pre- and post-executed words
good for ?

The concept of pre- and post-executed words
was found, when looking for a simple time-
and memory-efficient approach to implement
aspects of context-oriented and object-oriented
technics for small microcontroller systems. I
still didn´t have the time and the need to think
about other applications but I expect the
concept of pre- and post-executed words might
be usefull for other things too.

Now lets take a short look how pre- and post-
executed words can be used to early-bind
methods to data. See Figure 3 for that purpose.

The new data type ascii is introduced. First a

vocabulary ascii is created, to hold all the ascii-
related methods. Then methods to fetch, store
and display and create ascii data are defined.
 Figure 3

The new ascii method variable creates a byte
variable and assigns the vocabulary ascii as a
pre-executed word to it. So, an ascii variable
will invoke the context ascii, before it´s
executed or compiled, so that the vocabulary
ascii will be on top of the vocabulary search
order, before the outer interpreter of the Forth
system makes the next dictionary search
access.

An ascii variable reference will be normally
followed by an ascii method. The interpreter
will pick up the name and (hopefully) find it in
the ascii vocabulary that´s on top of the search
order.

If the word is not a member of the ascii vocabulary then
it might be found in another voacabulary deeper in the
serach order. That might be okay or it might be an error
condition. It´s only a restriction of this simple example
and can be solved better with little effort.

All ascii methods have got the vocabulary forth
as post-executed word. So all methods will
switch back from the ascii contect to the
context forth after beeing executed or
compiled.

Allways returning to forth is only a restriction of this
simple example. It can be handled in a more general
form.

 ascii words <enter>

 variable ? ! @ OK

 forth words <enter>

 ascii finale prelude ... many other names follow here ... OK

 forth definitions decimal

 ascii variable test <enter> OK

 test ? <enter> OK

 char A test ! <enter> OK

 test ? <enter> A OK

 test @ emit <enter> A OK

 forth definitions decimal

 variable ´prelude

 variable ´finale

 : header (--) (ib: name)
 align
 ´prelude @ ?dup if , then
 ´finale @ ?dup if , then
 header
 ´prelude @ if set-prelude-bit then
 ´finale @ if set-finale-bit then
 ´prelude off
 ´finale off ;

 : prelude (xt --) ´prelude ! 0 ´finale ! ;

 : finale (xt --) ´finale ! 0 ´prelude ! ;

 forth definitions decimal

 : ?compile, (xt --)
 dup prelude-bit-set? if prelude-xt-@ execute then
 dup compile,
 finale-bit-set? if finale-xt-@ execute then ;

 : ?execute (xt --)
 dup prelude-bit-set? if prelude-xt-@ execute then
 dup execute
 finale-bit-set? if finale-xt-@ execute then ;euroFORTH98 PRELUDE and FINALE , M. Mahlow page 3 of 6

Figure 4 showes a print out of the vocabularies
forth and ascii , after the source code from
Figure 3 was compiled and Figure 5 is a record

of a short session, using the new data type.

 Figure 4

 Figure 5

Well, that are the basics of implicit context
switching based on pre- and post-executed
words.

We could add some syntactic sugar, introduce a
more sofisticated context switching, add record
structures and inheritance and we would end up
with a more or less full featured extension for
context and object oriented programming. See
Appendix 1 for a syntax example.

How to implement pre- and post-executed
words ?

Implementing pre- and post-executed words is
not very complicated but it depends very much
on the inplementation details of a forth system
and it´s necessary to recompile the kernel or to
patch it.

The header creating word in the forth kernel
must be redefined and the outer interpreter has
to be modified.

Redefining the header creating word

A pre- or post-executed word can be assigned
to another Forth word by giving the header of
that Forth word an additional cell-sized code-
pointer. Furthermore two free bits are needed
in the header, to indicate, whether a word has a
prelude or a finale.

Figure 6 gives an example, how an
implementation could be done:

 Figure 6

Modifying the outer interpreter

It´s the outer interpreter´s job, to figure out,
whether a word, found in the dictionary, has a
prelude or a finale and to pre- or post-execute
it. Assuming, that the outer interpreter uses the
words compile, and execute , to compile or
execute a word, we have to replace this words
by the new words ?compile, and ?execute
shown in Figure 7:

euroFORTH98 PRELUDE and FINALE , M. Mahlow page 4 of 6

 Figure 7

So, implementing pre- and post-executed
words is a relatively simple task, but in many
existing forth systems you will not have two
bits available in the header structure.

In this case you can succeed by implementing
pre-executed words only or post-executed
words only. Then you´ll only need one bit and
halve the code for the implementation.

This might also be attractive for small systems
with limited memory.

Using pre- and post-executed words will make
the implementation of object oriented
extensions less complicated and more elegant,
but everything can be done using only pre- or
post-executed words.

I started with this reduced approach and still
use it, but I prefere to have pre- and post-
executed words supported, to have a higher
degree of freedom for the further evaluation of
the potential of the concept of pre- and post-
executed words.

References

[Bro84] L. Brodie. Thinking Forth. Prentise
Hall, 1984.

[Fors94] L. Forsley. Rhyme, Reason and the
Tao of Forth.
Proceedings euroFORTH94.

[Gas93] M.L. Gassanenko. Context-Oriented
Programming: Evolution of
Vocabularies.
Proceedings euroFORTH93.

[Mat89] J. Matthews. FORTH applications in
engineering and industry. Ellis
Horwood Limited, 1989.

[Vac90] G.-U. Vack. Programmieren mit
FORTH. VEB Verlag Technik, 1990

[Woe92] J. Woehr. Forth: The New Model. A
Programmer´s Handbook. Prentise
Hall, 1992.

[Mah97] M. Mahlow. Kontextorientierte
FORTH Systeme. FORTH-Tagung
1997

[Schl98] K. Schleisiek. Prelude - Objekte und
Methoden mit Fehlerprüfung.Vierte
Dimension 3/98, Forth-Gesellschaft
e.V.

euroFORTH98 PRELUDE and FINALE , M. Mahlow page 5 of 6

Appendix 1 : Syntax examples for object-oriented programming, based on implicit context
switching, based on pre- and post-executed words.

 forth definitions decimal

 class: .byte \ create the new class byte
 \ a class instance is created in the form : .byte object: name
 byte field \ a .byte instance has a one byte data field

 method ´ c@ alias @ (oa -- b) \ fetch a byte
 method ´ c! alias ! (b oa --) \ store a byte
 method : ? (oa --) c@ . ; \ display a byte

 forth definitions decimal

 class: .char \ createthe new class char
 \ a class instance is created in the form : .char object: name
 .byte inherited \ class .byte is inherited

 method : ? (oa --) c@ emit ; \ overwrite inherited method

 forth definitions decimal

 class: .short \ create the new class short
 \ a class instance is created in the form : .short object: name
 2 bytes field \ a .short instance has a two byte data field

 method ´w@ alias @ (oa -- w) \ fetch a short
 method ´ w! alias ! (w oa --) \ store a short
 method : ? (oa --) w@ . ; \ display a short

 forth definitions decimal

 class: .point \ create the new class point
\ a class instance is created in the form : .point object: name

 .point structure begin \ start of data definition
 .short field: x \ the x-coordinate of a point
 .short field: y \ the y-coordinate of a point
 .point structure end \ end of data definition

 method : @ (oa -- x y) dup .point x @ swap .point y @ ;\ fetch a points coordinates
 method : ! (x y oa --) dup >r .point y ! r> .point x ! ; \ store a points coordinates
 method : ? (oa --) .point @ ." x = " swap . ." y = " . ; \ display a points coordinates

euroFORTH98 PRELUDE and FINALE , M. Mahlow page 6 of 6

 forth definitions decimal

 class: .rectangle \ create the new class rectangle
\ a class instance is created in the form .rectangle object: name

 .rectangle structure begin
 .point field: ulc \ the upper left corner
 .point field: lrc \ the lower right corner
 .rectangle structure end

 method \ display rectangle coordinates
 : ? (oa --) dup ." ulc: " .rectangle ulc ? ." lrc: " .rectangle lrc ? ;

 forth definitions decimal

 class: .colored-rectangle\ create the new class colored-rectangle
\ create an instance in the form .colored-rectangle object: name

 .colored-rectangle structure begin
 .rectangle inherited\ the rectangle coordinates
 .short field: color \ the rectangle color
 .colored-rectangle structure end

 method \ display rectangle coordinates and color
 : ? (oa --) dup .colored-rectangle ? ." color: " .colored-rectangle color ? ;

 forth definitions

Classes are special vocabularies. A class can inherit once. Methods can be compiled at any time and
will be visible to all instances of that class and to all instances of the child classes of that class. The
data structure of a class, once created, can not be extended later. The class must be redefined or a
new class must be created to inherit and extend the older one.

On a 16 bit ANS Forth System it takes less then 200 bytes to implement pre- and post-executed
words. It takes less then 400 bytes more, to implement an extension for context-oriented
programming with a separate sealed search order for methods contexts (classes), that allready
supports inheritance and it takes less then 900 bytes to allow object-oriented programming like
shown in the syntax examples above.

You are invited to contact me in case of questions or if you are interested in implementation details,
but be warned, I´m a very busy guy.

