State-smartness — Why it is Evil and How to Exorcise it

M. Anton Ertl

Institut fiir Computersprachen
Technische Universitdt Wien
Argentinierstrale 8, A-1040 Wien
anton@mips.complang.tuwien.ac.at
http://wuw.complang.tuwien.ac.at/anton/
Tel.: (+43-1) 58801 4474
Fax.: (+43-1) 505 78 38

Abstract

State-smart words provide a number of unpleas-
ant surprises to their users. They are applied in
two contexts, and they fail in both: 1) for pro-
viding an arbitrary combination of interpretation
and compilation semantics; 2) for optimizing with
a special implementation of the (default) compila-
tion semantics. This paper discusses these issues
and shows programmers and system implementors
how to avoid state-smart words. It also reports our
experiences in converting the state-smart words in
Gforth into a clean solution: little work and few
problems.

1 Introduction

Global variables have a bad reputation — and they
deserve it.! In Forth the nastiest global variables
are those containing some system state: E.g., every
Forth programmer can tell a horror story (or two)
that involves base.

Among the global system variables state is the
most insidious. Problems resulting from its use turn
up long after their cause, when you least expect
them. This apparently makes these problems so
hard to grasp that a paper like this is necessary to
discuss them.

State is mainly used in so-called state-smart
(immediate) words. These words perform as ex-
pected as long as you interpret or compile them di-
rectly with the text interpreter; but when you tick
or postpone them, the result is usually not what
you want, but you normally don’t notice this until
much later.

IThe reason given in structured programming and soft-
ware engineering texts is that it enables interactions between
every part of the code and every other. A more convinc-
ing (at least, to me) argument is that programmers usually
want several instances of a global variable (at least if it is
really used globally), depending on context; with a global
variable they have to manage the context switch themselves,
and make errors. Stacks and objects are clean alternatives
to global variables.

The problems of state-smart words have been
recognized a long time ago, resulting in their elimi-
nation in the Forth-83 standard. Shaw [Sha88] also
discusses this topic.

A note on terminology: Unless otherwise
noted, in this paper the verb compile means append
some semantics to the current definition (or, in tra-
ditional implementation-oriented terms: to store a
CFA with ,).

Text interpreter is the ANS Forth term for the
outer interpreter. The compiler is the text inter-
preter in compile state; the interpreter is the text
interpreter in interpret state.

A request for interpretation (RFI) is a question
to the ANS Forth committee about points in the
standard that the questioner finds unclear. Some-
times RFI also means the answer to the question.

2 Example: Optimization
Consider the definition

:2dup (ab--abab)
over over ;

This definition works, and we want any “improve-
ments” to have the same behaviour as this defini-
tion. Let us assume that this definition is too slow
in your opinion. When 2dup is compiled, you would
prefer the definition

:2dup (ab--abab)

postpone over postpone over ; immediate

Unfortunately this definition does not work cor-
rectly when the interpreter processes it. Some peo-
ple have tried to achieve the desired behaviour by
making 2dup a state-smart word:

:2dup (ab--abab)
state @ if
postpone over postpone over
else

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
EuroForth '98 Conference Proceedings

M. A. Ertl

over over
then ; immediate

This works in many cases, but in some cases it is
incorrect; as Greg Bailey puts it [X3J96]:

o It compiles? correctly.
e It interprets correctly.
e (what it compiles?) executes correctly.

e Its tick, when EXECUTEd is correct if in interpret
state at the time EXECUTE is invoked, but is
incorrect if in compile state at the time.

e A definition into which its tick is COMPILE,d
runs correctly if the definition runs in interpret
state but fails if it is run in compile state.

[COMPILE] does not work correctly with it.
To this, let me add:

e A definition that postpones it executes cor-
rectly in compile state, but incorrectly in in-
terpret state.

Here are some examples for the incorrect cases.
They may look contrived because they are short-
ened to the essentials; keep in mind that in real
applications there is lots of code between the parts,
so the bug reveals itself quite far from its cause, the
state-smart definition.

2.1 ’ ... execute

[execute] execute ; immediate
1 2 7 2dup 1 [execute] [

With the original 2dup this results in having 1 2
1 2 on the stack. With the state-smart 2dup this
tries to compile over over (which is non-standard,
because there is no current definition).

A typical real situation is having the execution
token of 2dup assigned to a defered word that is
used in an immediate word, e.g.:

defer foo

> 2dup is foo

[bar] . foo ... ; immediate
: fnord ... [bar]l ... ;
2.2 7 ... compile,

[compile,] compile, ; immediate
[2dup] [> 2dup] [compile,] ; immediate
121 [2dup] [

2Here compile means: being processed by the compiler.

State-smartness — Why it is Evil and How to Exorcise it 2

The results are the same as above: With the origi-
nal 2dup this results in having 7 2 1 2 on the stack.
With the state-smart 2dup this tries to compile
over over.

A typical real situation would be a macro (or run-
time code generator), to which the execution token
of 2dup is passed as parameter, and that macro is
used in another macro; e.g.:

[fool { xt -- }
. postpone do
. xt compile,

postpone loop ... ; immediate

[bar] [> 2dup 1 [foo] ; immediate
: fnord ... [bar] ... ;
2.3 [compilel

[2dup] [compile] 2dup ; immediate
127 [2dup] [

Again, the results are the same as above.

2.4 postpone

: compile-2dup postpone 2dup ;
: another-2dup [compile-2dup] ;

With the original 2dup (and the state-dumb im-
mediate 2dup) the definition another-2dup does
that same thing as 2dup.® With the state-smart
2dup, this tries to perform over over during the
definition of another-2dup (which is non-standard,
because the only thing on the stack at that time is
a colon-sys, whose size is unknown).

A typical real situation would be a macro or run-
time code generator:

: compile-dpower (n --)
dup 1 ?do postpone 2dup loop
1 ?do postpone d* loop ;
: foo ... [3 compile-dpower] ... ;

2.5 Transformation using immediate

Here is one problem not mentioned in the list above:
Forth programmers like to assume that

: foo ... [bar 1 ... ;
and

[bar] bar ; immediate
: foo ... [bar]l ... ;

3This is how the standard currently defines it. The stan-
dard committee discusses outlawing (making ambiguous)
compiling in interpret state in response to RFI 9; then this
example would cause an ambiguous condition.

M. A. Ertl

are equivalent. However, this is not guaranteed in
the presence of state-smart words.

Some people have suggested avoiding the prob-
lem shown in Section 2.4 by making compile-2dup
(and compile-dpower) immediate, and surround
it’s use with J...[[. They might also suggest avoid-
ing the problem shown in Section 2.2 by surround-
ing [2dup] with [...]. However, as discussed above,
these changes may have more effects than just work-
ing around the problem.

Moreover, consider the cases where both cases
show up in the same word, e.g.:

[fool { xt —— }
. xt compile, ... ; immediate
[bar]
[> 2dup 1 [foo]
postpone 2dup ... ; immediate
: fnordil [bar] ... ;
: fnord2 ... [[bar] 1 ... ;

In this case neither fnordl nor fnord2 will be-
have correctly with the state-smart 2dup. Fnord1
suffers from the ’ compile, problem, fnord?2
suffers from the postpone problem. There are
workarounds, but they are complex, and you have to
notice the problem first; the first attempt at fixing
one problem will probably directly lead to exposing
the other problem.

3 Example: Combined Words

The example in this section involves not an opti-
mization, but an arbitrary combination of interpre-
tation and compilation semantics.

A word like (file wordset) s" is actually defined
as the combination of two words: Its interpretation
semantics is something like

s"-int ("ccc<">" -- c-addr u)
[char] " parse copy-to-buffer ;

Its compilation semantics is something like

s"-comp ("ccc<">" --)

(run-time: -- c-addr u)
[char] " parse
postpone sliteral ; immediate

If the interpreter processes s", it should perform
s"-int; if the compiler processes s", it should per-
form s"-comp. I call these words combined words,
because they combine the interpretation semantics
of one word with the compilation semantics of a dif-
ferent word. Shaw calls such words state-unsmart
[Sha88].

If * or postpone ([compile] etc.) encounter s",
the programmer usually either wants the semantics
represented by s"-int or the semantics represented

State-smartness — Why it is Evil and How to Exorcise it 3

by s"-comp, not something else. The standard de-
fines that ’> s" should give a result equivalent to
> g"-int, and postpone s'" should give a result
equivalent to postpone s"-comp.

In traditional implementations every word has
only one execution token and an immediate flag.
When the interpreter processes a word, it executes
the execution token. When the compiler processes a.
word, it either compile,s (default compilation se-
mantics) or executes (immediate compilation se-
mantics) the execution token, depending on the
word’s immediate flag.

It is impossible to implement a word like s" in
such an implementation; as an approximation, these
implementations implement s" with a state-smart
word:

s" (state false: '"ccc<">" -- c-addr u)
(state true: "ccc<">" --)
(run-time: -- c-addr u)
state @ if
s'"-comp
else
s"-int
then ; immediate

This definition behaves correctly as long as it is
only processed by the text interpreter, but it fails
with ’, postpone etc., as discussed in Section 2.*

4 Programs

This section discusses your options if you want to
write a standard program.

Standard programs can only define words with
default or immediate compilation semantics. As a
consequence, it is impossible to implement words
like s" in a standard program, and it is also im-
possible to implement optimizations such as those
discussed in Section 2. So what is the best way to
work around this restriction?

The general solution is to provide two words: one
for the interpretation semantics and one for the
compilation semantics. Examples: > and [’], char
and [char], and s"-int and s"-comp. This so-
lution has the additional advantage of making it
clearer for the user what it means when they > or
postpone such a word. This solution was used in
the Forth-83 standard.

4.1

Mitch Bradley thinks that this solution is not user-
friendly enough for novice users; he prefers the
bugs induced by state-smart words to explaining

Low-problem state-smart words

4To allow implementation of s" on traditional Forth im-
plementations, the ANS Forth committee will probably out-
law ’ s", and at least those uses of postpone s'" that cause
problems with these implementations.

M. A. Ertl

to novice users, e.g., when to use ’ and when to use
[’]. He also thinks that the problems with state-
smart words are outweighed by the problems caused
by mixing these two words up [Bra96].

If you agree with him, and want to write a com-
bined word in a standard program, here’s a compro-
mise: Provide the combined word as state-smart
word, but also provide the two constituents, e.g.,
s"-int and s"-comp. Advise the users to use the
state-smart word only directly in the text inter-
preter. They should use only the constituents with
’, postpone, etc.

4.2 Parsing words

This section takes a look at a common class of
words:

The most frequent reason for wanting a combined
word is parsing words: words that read the input
stream. You typically want them to read the in-
put stream when they are processed by the text
interpreter. Later the read data is needed for some
action. The difference between the interpretation
and compilation semantics is that the compilation
semantics needs to store the data between parsing
time and the action, and it has to compile the ac-
tion into the run-time of the current definition. This
can be seen nicely by comparing the following defi-
nitions:

((Nece<'>" ——)

[char] " parse

type ;
:." ("cce<">" -- ; run-time: ——)

[char] " parse

postpone sliteral

postpone type ; immediate

In these definitions, [char] " parse is
the parsing part, executed at parsing time;
postpone sliteral takes care of storing, and
type is the action.

In addition, there may be a conversion from the
parsed string into some other format/type (e.g.,
into an execution token); this typically happens at
parse time.

It is a good idea to factor these four components
(parsing, conversion, storage, and action) into sep-
arate words. This allows using the functionality of
the word in more situations: e.g., when the string
is not in the input stream, or when the action has
to be postponed by more than one level (as is done
in run-time code generators).

Parsing words have another problem, apart from
seducing people to write state-smart words: They
take an argument from the input stream® and make

5The input stream is another case of system state, with
the additional handicap, that you have only limited influence
on it.

State-smartness — Why it is Evil and How to Exorcise it 4

it very hard or impossible to pass an arbitrary string
as this argument. My advice is to write no parsing
words at all; instead, write words that take string
arguments (or suitably converted arguments), and
use them in combination with words like s" that
do only parsing (and storage); in this way you also
avoid the temptation to write state-smart words.

5 Systems

This section discusses your options as systems im-
plementor.

Combined Words

This section describes how you can implement
words like s" without restricting the use of ?,
postpone etc.

The basic requirement is: the decision between
interpretation semantics and compilation semantics
must be made when the name is parsed and the
execution token is looked up, not later at run-time.

A well-known implementation technique satisfy-
ing this requirement is the use of an interpreta-
tion and compilation wordlist, as in cmForth; the
interpretation wordlist contains the interpretation
semantics and is searched in interpret state; simi-
laraly, the compilation wordlist contains the com-
pilation semantics and is searched in compile state.
One problem with this approach is that it is diffi-
cult to implement the search-order wordset on top
of it.

A very clean technique has been proposed by
Shaw [Sha88] and is used by DynOOF [Zs696]:
Every named word has two execution tokens, one
for the interpretation semantics, the other for the
compilation semantics. This is the approach I
would use for a new Forth system, and it may also
be a good solution for an existing system; however,
we implemented solutions that had fewer repercus-
sions for the header structure of our system, Gforth

[Gfo].

5.1

First implementation

In addition to the immediate bit, Gforth also has
a compile-only bit in the header. If the interpreter
encounters a compile-only word, it reports an error
(-14 throw).

The first implementation simply extended this
mechanism: Instead of immediately reporting an
error for a word with this bit set, the interpreter
first looks in a table for the interpretation seman-
tics of the word. If there is an entry, the interpreter
performs this interpretation semantics; if there is
no entry, the interpreter reports an error, as before.

The key for the table lookup is the name field
address (NFA) of the word; thus we need only one

M. A. Ertl

table for all words, irrespective of wordlists.

In addition to the interpreter, ’ should be
changed to give the execution token for the inter-
pretation semantics of combined words.® Also, ac-
cording to the draft for RFI 8, find should give
the execution token for the interpretation seman-
tics in interpret state, and the execution token for
compilation semantics in compile state.”

Second implementation

After two months, Bernd Paysan replaced the first
implementation with another one (for aesthetic rea-
sons). In the following I will present the basic idea
(the implementation in Gforth is slightly different);
this presentation is based on a posting by Bernd
Paysan [Pay98] and a followup by me:

interpret/compile: (xt-i xt-c "name" --)
Create immediate swap , ,
DOES> (interpretation: L)
(compilation: - ...)
state @ IF cell+ THEN @ execute ;

This is used like:
> g"-int ’ s"-comp interpret/compile: s"

Until now, this gives us only a state-smart
word; it will work correctly when processed
by the text interpreter, but incorrectly with ?,
postpone etc. So we change these words to treat
interpret/compile:-defined words specially.

In order to do this, we have to recognize these
words. We do this by comparing the code fields. We
cannot do this in a standard way, but the following
works on traditional implementations:

> dup dup interpret/compile: i/c-prototype

is-i/c? (xt -- flag)
[0 >body 1 chars /] literal
[’] i/c-prototype over compare 0= ;

Now we can define ’, postpone etc.:

i/e>int (xtl -- xt2)
>body @ ;

i/c>comp (xtl -- xt2)
>body cell+ @ ;

) ("name" -- xt)

> dup is-i/c? IF i/c>int THEN ;

6However, the current draft for RFT 8 makes ticking such
words ambiguous, so this is probably not a requirement.

"Yes, that makes find a state-smart word. However, ap-
parently the only use that a standard program can make of
find is writing a text interpreter, so this state-smartness
is acceptable; also find is not immediate, so its state-
smartness is not as insidious as that of immediate state-
smart words.

State-smartness — Why it is Evil and How to Exorcise it

[’] (compilation: "name" --)
(run-time: -- xt)

> postpone literal ; immediate

postpone is a little harder, because we have to
find out the immediacy; in the following I use find
in a way that should work on traditional systems:

comp’ ("name" -- w xt)
bl word find dup 0= -13 and throw (xt n)
over is-i/c? if
swap i/c>comp swap
then
0< if \ not immediate
[’] COMPILE,
else
[’] EXECUTE
then ;

: postpone, (w xt --)
\ this can be optimized
swap POSTPONE literal compile, ;

: postpone (compilation: "name" --)
(run-time: L)
comp’ postpone, ; immediate
[compile] is easy now:
[compile] (compilation: "name" --)
(run-time: -— ...

comp’ drop compile, ; immediate

find should work correctly without changes (if
you only use it for writing a text interpreter). As
for search-wordlist, it is not clear what it is sup-
posed to do.

Experiences

I coded the first implementation in an afternoon
(except for the changes to ’, because it was not
clear to me at that time exactly what ’> should do);
I changed the state-smart words into words using
this mechanism in another afternoon. The changes
affected less than 50 lines in the kernel and added
less than 50 lines of code specifically for this fea-
ture. This implementation was used by the Gforth
development team for about two months. As far as
I remember, we encountered no problems.

The second implementation has been imple-
mented in Gforth since July 1996 and was released
to the general public® in December 1996.

The only problem we encountered and have heard
about is this were the errors reported for ticking
compile-only words. This feature is not directly re-
lated to the introduction of combined words, but

81 estimate that Gforth has more than 1000 users, based
on the number of bug reports, other email communication
and downloads.

M. A. Ertl

I implemented it when I rethought ticking in this
context; an alternative behaviour would be to pro-
duce an execution token for the compilation seman-
tics. Reporting an error is more cautious, but in
hindsight the alternative would have been prefer-
able (and I recommend it to implementors with a
large base of legacy code), because the reported er-
rors uncovered no real problem. Anyway, these er-
ror reports were easy to fix.

If you are still sceptical about changing from
state-smart implementations of s" etc. to a parse-
time state-checking implementation, in particular
its impact on legacy code running on your sys-
tem: In general, state-smartness proponents have
reacted to my examples that show problems with
state-smartness by telling me that I should not pro-
gram like this (and that they hope that such pro-
grams are non-standard). In other words, their
programs work the same whether the system uses
state-smart words or combined words. So, their
programs won’t break when the system changes in
this respect.

5.2 [COMPILE]

We could try to implement an optimizing 2dup, as
discussed in Section 2, using any of the techniques
in Section 5.1; e.g., with interpret/compile:

:noname (ab-—-abab)
over over ;
:noname (run-time: a b -— a b ab)

postpone over postpone over ;
interpret/compile: 2dup

However, with the implementation of
interpret/compile: and [compile] shown
above this would not be correct in the following
case:

: my-2dup [compile] 2dup ;
1 2 2dup

This should put 7 2 1 2 on the stack, but it tries
to compile over over.

The problem is that in the above definition 2dup
has default compilation semantics (i.e., to compile
the interpretation semantics), but the system does
not know that”. A problem with [compile] occurs
in any implementation of combined words where
the user specifies the compilation semantics with-
out specifying whether this is the default compila-
tion semantics or not. The following solutions are
available:

e Add a flag to each combined word that indi-
cates whether the compilation semantics are

9In general, the system cannot know by itself, whether
the compilation semantics is equal to the default compilation
semantics, because the problem is undecidable.

State-smartness — Why it is Evil and How to Exorcise it 6

default. The user would have to supply the
value for that flag, and [compile] would use
this flag to decide what to do.

e Do not implement [compile] in the system;
[compile] belongs to the core ext wordset, and
words in this wordset are optional.

e Advise the users not to use combined words in
this way (for optimization). Section 5.3 dis-
cusses an alternative mechanism.

5.3 Optimizations

The example in Section 2 can be implemented with
any technique for implementing combined words
(provided you solve the [compile] problem dis-
cussed above), but there is one more option:

There is only one execution token for the word;
it points to a record with two fields: One de-
scribes what to do when the execution token is
executed (in our example: over over); the other
field describes, what to do when the execution to-
ken is compile,d (in our example: postpone over
postpone over. Execute and compile, access
their respective fields and just perform the action.

I call this technique intelligent compile, [EP96,
Section 4.2]: in traditional systems execute does
something different for every execution token en-
countered, whereas compile, stupidly always does
the same: ,.

The intelligent compile, has a slight advantage
over combined words for optimization purposes: It
generates better code in the ’ ... compile, case; it
also avoids the [compile] problem.

On the other hand, it can only be used for opti-
mization: For combined words two execution tokens
are necessary, and the decision between them has to
be made when they are looked up in the dictionary,
not later at execute or compile, time.

The difference between a word with an optimiz-
ing compilation action and a general combined word
is this: the general combined word (e.g., s") has
a non-default (and non-immediate) compilation se-
mantics, whereas a word like 2dup has default com-
pilation semantics, and we just want to provide a
special implementation of these semantics.

The intelligent compile, is used in bigForth and
in the current RAFTS prototype [EP97].

54 11 .. [L
Several people have proposed the syntax
11 foo bar boing [[

as a more readable alternative to

postpone foo postpone bar postpone boing

M. A. Ertl

One problem in implementing this syntax is how
to deal with code that contains parsing words, like

1] ." hello, world" [[

Let us assume that we have extended ." to be a
combined word whose interpretation semantics are
those of . (. In other words, ." reads the string
when it is processed by the text interpreter. Then,
for consistent behaviour, ." also should read the
string as soon as it is parsed in]] ... [[. Le., the
code above should be equivalent to

[s" hello, world"]
sliteral postpone sliteral
postpone type

One approach would be to define all the parsing
words as consisting of three parts, as discussed in
Section 4.2: parse-time, storing, and run-time (ac-
tion). The text interpreter knows about this, and
executes, compiles, or postpones the parts depend-
ing on whether it is in interpret, compile, or post-
pone'? state.

Given the execution tokens parse, store and
run, the text interpreter would do the following in
the three states:

interpret state

parse execute
run execute

compile state

parse execute
store execute
run compile,

postpone state

parse execute
store execute
store compile,
run postpone literal postpone compile,

I have not implemented this idea yet, and I am
not sure if I will. One of the problems is how to
integrate it with the existing interpret/compile:
concept. Also, the benefits do not justify the com-
plexity (at least if the programmers follow my ad-
vice and avoid parsing words).

0Postpone state is the state of the text interpreter be-
tween 1] and [[.

State-smartness — Why it is Evil and How to Exorcise it 7

6 Conclusion

State-smart words produce insidious bugs and
should be avoided.

My advice to programmers is: Don’t write pars-
ing words; this will save you not only from the temp-
tation to write state-smart words, but also from
other problems. If you write parsing words, pro-
vide their factors. If you write state-smart words,
provide their state-dumb constituents.

My advice to systems implementors is: Don’t
write state-smart words (except maybe s" and to,
and then provide state-dumb constituents). If you
want to provide convenient interpretation seman-
tics for (normally) compile-only words, use one of
the techniques for implementing combined words.
We switched Gforth from state-smart words to com-
bined words with little effort and few problems.

Acknowledgements

Jonah Thomas and the referees provided valuable
comments on earlier versions of this paper. This
paper has also benefited from email and Usenet dis-
cussions with Greg Bailey, Mitch Bradley, Loring
Craymer, Bernd Paysan, Elizabeth Rather, Jonah
Thomas and others.

References

[Bra96] Mitch Bradley. Re: Another so-
lution for RFIs 8 and 9. Message
9609231729.AA06128@FirmWorks. COM
to the mailing list ansforth@minerva.com,
September 1996.

[EP96] M. Anton Ertl and Christian Pirker.
RAFTS for basic blocks: A progress re-
port on Forth native code compilation. In
EuroForth 96 Conference Proceedings, St.

Petersburg, Russia, 1996.

M. Anton Ertl and Christian Pirker. The
structure of a Forth native code compiler.
In EuroForth ’97 Conference Proceedings,
pages 107-116, Oxford, 1997.

[EP97]

[Gfo] Gforth home page. http://www.complang.

tuwien.ac.at/forth /gforth/.

Bernd Paysan. Re:
smart etc was: Re: Facelift-
ing my forth. Usenet newsgroup
comp.lang.forth, message 351B70D4.F31@
remove.muenchen.this.org.junk, March
1998.

George W. Shaw. Forth shifts gears.
Computer Language, pages May: 67-75,
June:61-65, 1988.

[Pay98] State-

[Sha88]

M. A. Ertl State-smartness — Why it is Evil and How to Exorcise it

[X3J96] TC X3J14. Clarifying the distinc-

[7:5696]

tion between “immediacy” and “special
compilation semantics”. RFI response
X3J14/QO0007R, ANSI TC X3J14, 1996.

Andrés Zsoéter. Does late binding have to
be slow? Forth Dimensions, 18(1):31-35,
1996.

