
State-smartness | Why it is Evil and How to Exorcise itM. Anton ErtlInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wienanton@mips.complang.tuwien.ac.athttp://www.complang.tuwien.ac.at/anton/Tel.: (+43-1) 58801 4474Fax.: (+43-1) 505 78 38AbstractState-smart words provide a number of unpleas-ant surprises to their users. They are applied intwo contexts, and they fail in both: 1) for pro-viding an arbitrary combination of interpretationand compilation semantics; 2) for optimizing witha special implementation of the (default) compila-tion semantics. This paper discusses these issuesand shows programmers and system implementorshow to avoid state-smart words. It also reports ourexperiences in converting the state-smart words inGforth into a clean solution: little work and fewproblems.1 IntroductionGlobal variables have a bad reputation | and theydeserve it.1 In Forth the nastiest global variablesare those containing some system state: E.g., everyForth programmer can tell a horror story (or two)that involves base.Among the global system variables state is themost insidious. Problems resulting from its use turnup long after their cause, when you least expectthem. This apparently makes these problems sohard to grasp that a paper like this is necessary todiscuss them.State is mainly used in so-called state-smart(immediate) words. These words perform as ex-pected as long as you interpret or compile them di-rectly with the text interpreter; but when you tickor postpone them, the result is usually not whatyou want, but you normally don't notice this untilmuch later.1The reason given in structured programming and soft-ware engineering texts is that it enables interactions betweenevery part of the code and every other. A more convinc-ing (at least, to me) argument is that programmers usuallywant several instances of a global variable (at least if it isreally used globally), depending on context; with a globalvariable they have to manage the context switch themselves,and make errors. Stacks and objects are clean alternativesto global variables.

The problems of state-smart words have beenrecognized a long time ago, resulting in their elimi-nation in the Forth-83 standard. Shaw [Sha88] alsodiscusses this topic.A note on terminology: Unless otherwisenoted, in this paper the verb compile means appendsome semantics to the current de�nition (or, in tra-ditional implementation-oriented terms: to store aCFA with ,).Text interpreter is the ANS Forth term for theouter interpreter. The compiler is the text inter-preter in compile state; the interpreter is the textinterpreter in interpret state.A request for interpretation (RFI) is a questionto the ANS Forth committee about points in thestandard that the questioner �nds unclear. Some-times RFI also means the answer to the question.2 Example: OptimizationConsider the de�nition: 2dup (a b -- a b a b)over over ;This de�nition works, and we want any \improve-ments" to have the same behaviour as this de�ni-tion. Let us assume that this de�nition is too slowin your opinion. When 2dup is compiled, you wouldprefer the de�nition: 2dup (a b -- a b a b)postpone over postpone over ; immediateUnfortunately this de�nition does not work cor-rectly when the interpreter processes it. Some peo-ple have tried to achieve the desired behaviour bymaking 2dup a state-smart word:: 2dup (a b -- a b a b)state @ ifpostpone over postpone overelse
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
EuroForth ’98 Conference Proceedings

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 2over overthen ; immediateThis works in many cases, but in some cases it isincorrect; as Greg Bailey puts it [X3J96]:� It compiles2 correctly.� It interprets correctly.� (what it compiles2) executes correctly.� Its tick, when EXECUTEd is correct if in interpretstate at the time EXECUTE is invoked, but isincorrect if in compile state at the time.� A de�nition into which its tick is COMPILE,druns correctly if the de�nition runs in interpretstate but fails if it is run in compile state.� [COMPILE] does not work correctly with it.To this, let me add:� A de�nition that postpones it executes cor-rectly in compile state, but incorrectly in in-terpret state.Here are some examples for the incorrect cases.They may look contrived because they are short-ened to the essentials; keep in mind that in realapplications there is lots of code between the parts,so the bug reveals itself quite far from its cause, thestate-smart de�nition.2.1 ' ... execute: [execute] execute ; immediate1 2 ' 2dup] [execute] [With the original 2dup this results in having 1 21 2 on the stack. With the state-smart 2dup thistries to compile over over (which is non-standard,because there is no current de�nition).A typical real situation is having the executiontoken of 2dup assigned to a defered word that isused in an immediate word, e.g.:defer foo' 2dup is foo: [bar] ... foo ... ; immediate: fnord ... [bar] ... ;2.2 ' ... compile,: [compile,] compile, ; immediate: [2dup] [' 2dup] [compile,] ; immediate1 2] [2dup] [2Here compile means: being processed by the compiler.

The results are the same as above: With the origi-nal 2dup this results in having 1 2 1 2 on the stack.With the state-smart 2dup this tries to compileover over.A typical real situation would be a macro (or run-time code generator), to which the execution tokenof 2dup is passed as parameter, and that macro isused in another macro; e.g.:: [foo] { xt -- }... postpone do... xt compile, ...postpone loop ... ; immediate: [bar] ... [' 2dup] [foo] ... ; immediate: fnord ... [bar] ... ;2.3 [compile]: [2dup] [compile] 2dup ; immediate1 2] [2dup] [Again, the results are the same as above.2.4 postpone: compile-2dup postpone 2dup ;: another-2dup [compile-2dup] ;With the original 2dup (and the state-dumb im-mediate 2dup) the de�nition another-2dup doesthat same thing as 2dup.3 With the state-smart2dup, this tries to perform over over during thede�nition of another-2dup (which is non-standard,because the only thing on the stack at that time isa colon-sys, whose size is unknown).A typical real situation would be a macro or run-time code generator:: compile-dpower (n --)dup 1 ?do postpone 2dup loop1 ?do postpone d* loop ;: foo ... [3 compile-dpower] ... ;2.5 Transformation using immediateHere is one problem not mentioned in the list above:Forth programmers like to assume that: foo ... [bar] ... ;and: [bar] bar ; immediate: foo ... [bar] ... ;3This is how the standard currently de�nes it. The stan-dard committee discusses outlawing (making ambiguous)compiling in interpret state in response to RFI 9; then thisexample would cause an ambiguous condition.

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 3are equivalent. However, this is not guaranteed inthe presence of state-smart words.Some people have suggested avoiding the prob-lem shown in Section 2.4 by making compile-2dup(and compile-dpower) immediate, and surroundit's use with]...[[. They might also suggest avoid-ing the problem shown in Section 2.2 by surround-ing [2dup] with [...]. However, as discussed above,these changes may have more e�ects than just work-ing around the problem.Moreover, consider the cases where both casesshow up in the same word, e.g.:: [foo] { xt -- }... xt compile, ... ; immediate: [bar]... [' 2dup] [foo] ...postpone 2dup ... ; immediate: fnord1 ... [bar] ... ;: fnord2 ... [[bar]] ... ;In this case neither fnord1 nor fnord2 will be-have correctly with the state-smart 2dup. Fnord1su�ers from the ' ... compile, problem, fnord2su�ers from the postpone problem. There areworkarounds, but they are complex, and you have tonotice the problem �rst; the �rst attempt at �xingone problem will probably directly lead to exposingthe other problem.3 Example: Combined WordsThe example in this section involves not an opti-mization, but an arbitrary combination of interpre-tation and compilation semantics.A word like (�le wordset) s" is actually de�nedas the combination of two words: Its interpretationsemantics is something like: s"-int ("ccc<">" -- c-addr u)[char] " parse copy-to-buffer ;Its compilation semantics is something like: s"-comp ("ccc<">" --)(run-time: -- c-addr u)[char] " parsepostpone sliteral ; immediateIf the interpreter processes s", it should performs"-int; if the compiler processes s", it should per-form s"-comp. I call these words combined words,because they combine the interpretation semanticsof one word with the compilation semantics of a dif-ferent word. Shaw calls such words state-unsmart[Sha88].If ' or postpone ([compile] etc.) encounter s",the programmer usually either wants the semanticsrepresented by s"-int or the semantics represented

by s"-comp, not something else. The standard de-�nes that ' s" should give a result equivalent to' s"-int, and postpone s" should give a resultequivalent to postpone s"-comp.In traditional implementations every word hasonly one execution token and an immediate ag.When the interpreter processes a word, it executesthe execution token. When the compiler processes aword, it either compile,s (default compilation se-mantics) or executes (immediate compilation se-mantics) the execution token, depending on theword's immediate ag.It is impossible to implement a word like s" insuch an implementation; as an approximation, theseimplementations implement s" with a state-smartword:: s" (state false: "ccc<">" -- c-addr u)(state true: "ccc<">" --)(run-time: -- c-addr u)state @ ifs"-compelses"-intthen ; immediateThis de�nition behaves correctly as long as it isonly processed by the text interpreter, but it failswith ', postpone etc., as discussed in Section 2.44 ProgramsThis section discusses your options if you want towrite a standard program.Standard programs can only de�ne words withdefault or immediate compilation semantics. As aconsequence, it is impossible to implement wordslike s" in a standard program, and it is also im-possible to implement optimizations such as thosediscussed in Section 2. So what is the best way towork around this restriction?The general solution is to provide two words: onefor the interpretation semantics and one for thecompilation semantics. Examples: ' and ['], charand [char], and s"-int and s"-comp. This so-lution has the additional advantage of making itclearer for the user what it means when they ' orpostpone such a word. This solution was used inthe Forth-83 standard.4.1 Low-problem state-smart wordsMitch Bradley thinks that this solution is not user-friendly enough for novice users; he prefers thebugs induced by state-smart words to explaining4To allow implementation of s" on traditional Forth im-plementations, the ANS Forth committee will probably out-law ' s", and at least those uses of postpone s" that causeproblems with these implementations.

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 4to novice users, e.g., when to use ' and when to use[']. He also thinks that the problems with state-smart words are outweighed by the problems causedby mixing these two words up [Bra96].If you agree with him, and want to write a com-bined word in a standard program, here's a compro-mise: Provide the combined word as state-smartword, but also provide the two constituents, e.g.,s"-int and s"-comp. Advise the users to use thestate-smart word only directly in the text inter-preter. They should use only the constituents with', postpone, etc.4.2 Parsing wordsThis section takes a look at a common class ofwords:The most frequent reason for wanting a combinedword is parsing words : words that read the inputstream. You typically want them to read the in-put stream when they are processed by the textinterpreter. Later the read data is needed for someaction. The di�erence between the interpretationand compilation semantics is that the compilationsemantics needs to store the data between parsingtime and the action, and it has to compile the ac-tion into the run-time of the current de�nition. Thiscan be seen nicely by comparing the following de�-nitions:: .(("ccc<">" --)[char] " parsetype ;: ." ("ccc<">" -- ; run-time: --)[char] " parsepostpone sliteralpostpone type ; immediateIn these de�nitions, [char] " parse isthe parsing part, executed at parsing time;postpone sliteral takes care of storing, andtype is the action.In addition, there may be a conversion from theparsed string into some other format/type (e.g.,into an execution token); this typically happens atparse time.It is a good idea to factor these four components(parsing, conversion, storage, and action) into sep-arate words. This allows using the functionality ofthe word in more situations: e.g., when the stringis not in the input stream, or when the action hasto be postponed by more than one level (as is donein run-time code generators).Parsing words have another problem, apart fromseducing people to write state-smart words: Theytake an argument from the input stream5 and make5The input stream is another case of system state, withthe additional handicap, that you have only limited inuenceon it.

it very hard or impossible to pass an arbitrary stringas this argument. My advice is to write no parsingwords at all; instead, write words that take stringarguments (or suitably converted arguments), anduse them in combination with words like s" thatdo only parsing (and storage); in this way you alsoavoid the temptation to write state-smart words.5 SystemsThis section discusses your options as systems im-plementor.5.1 Combined WordsThis section describes how you can implementwords like s" without restricting the use of ',postpone etc.The basic requirement is: the decision betweeninterpretation semantics and compilation semanticsmust be made when the name is parsed and theexecution token is looked up, not later at run-time.A well-known implementation technique satisfy-ing this requirement is the use of an interpreta-tion and compilation wordlist, as in cmForth; theinterpretation wordlist contains the interpretationsemantics and is searched in interpret state; simi-laraly, the compilation wordlist contains the com-pilation semantics and is searched in compile state.One problem with this approach is that it is di�-cult to implement the search-order wordset on topof it.A very clean technique has been proposed byShaw [Sha88] and is used by DynOOF [Zs�o96]:Every named word has two execution tokens, onefor the interpretation semantics, the other for thecompilation semantics. This is the approach Iwould use for a new Forth system, and it may alsobe a good solution for an existing system; however,we implemented solutions that had fewer repercus-sions for the header structure of our system, Gforth[Gfo].First implementationIn addition to the immediate bit, Gforth also hasa compile-only bit in the header. If the interpreterencounters a compile-only word, it reports an error(-14 throw).The �rst implementation simply extended thismechanism: Instead of immediately reporting anerror for a word with this bit set, the interpreter�rst looks in a table for the interpretation seman-tics of the word. If there is an entry, the interpreterperforms this interpretation semantics; if there isno entry, the interpreter reports an error, as before.The key for the table lookup is the name �eldaddress (NFA) of the word; thus we need only one

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 5table for all words, irrespective of wordlists.In addition to the interpreter, ' should bechanged to give the execution token for the inter-pretation semantics of combined words.6 Also, ac-cording to the draft for RFI 8, find should givethe execution token for the interpretation seman-tics in interpret state, and the execution token forcompilation semantics in compile state.7Second implementationAfter two months, Bernd Paysan replaced the �rstimplementation with another one (for aesthetic rea-sons). In the following I will present the basic idea(the implementation in Gforth is slightly di�erent);this presentation is based on a posting by BerndPaysan [Pay98] and a followup by me:: interpret/compile: (xt-i xt-c "name" --)Create immediate swap , ,DOES> (interpretation: ... -- ...)(compilation: ... -- ...)state @ IF cell+ THEN @ execute ;This is used like:' s"-int ' s"-comp interpret/compile: s"Until now, this gives us only a state-smartword; it will work correctly when processedby the text interpreter, but incorrectly with ',postpone etc. So we change these words to treatinterpret/compile:-de�ned words specially.In order to do this, we have to recognize thesewords. We do this by comparing the code �elds. Wecannot do this in a standard way, but the followingworks on traditional implementations:' dup dup interpret/compile: i/c-prototype: is-i/c? (xt -- flag)[0 >body 1 chars /] literal['] i/c-prototype over compare 0= ;Now we can de�ne ', postpone etc.:: i/c>int (xt1 -- xt2)>body @ ;: i/c>comp (xt1 -- xt2)>body cell+ @ ;: ' ("name" -- xt)' dup is-i/c? IF i/c>int THEN ;6However, the current draft for RFI 8 makes ticking suchwords ambiguous, so this is probably not a requirement.7Yes, that makes find a state-smart word. However, ap-parently the only use that a standard program can make offind is writing a text interpreter, so this state-smartnessis acceptable; also find is not immediate, so its state-smartness is not as insidious as that of immediate state-smart words.

: ['] (compilation: "name" --)(run-time: -- xt)' postpone literal ; immediatepostpone is a little harder, because we have to�nd out the immediacy; in the following I use findin a way that should work on traditional systems:: comp' ("name" -- w xt)bl word find dup 0= -13 and throw (xt n)over is-i/c? ifswap i/c>comp swapthen0< if \ not immediate['] COMPILE,else['] EXECUTEthen ;: postpone, (w xt --)\ this can be optimizedswap POSTPONE literal compile, ;: postpone (compilation: "name" --)(run-time: ... -- ...)comp' postpone, ; immediate[compile] is easy now:: [compile] (compilation: "name" --)(run-time: ... -- ...)comp' drop compile, ; immediatefind should work correctly without changes (ifyou only use it for writing a text interpreter). Asfor search-wordlist, it is not clear what it is sup-posed to do.ExperiencesI coded the �rst implementation in an afternoon(except for the changes to ', because it was notclear to me at that time exactly what ' should do);I changed the state-smart words into words usingthis mechanism in another afternoon. The changesa�ected less than 50 lines in the kernel and addedless than 50 lines of code speci�cally for this fea-ture. This implementation was used by the Gforthdevelopment team for about two months. As far asI remember, we encountered no problems.The second implementation has been imple-mented in Gforth since July 1996 and was releasedto the general public8 in December 1996.The only problem we encountered and have heardabout is this were the errors reported for tickingcompile-only words. This feature is not directly re-lated to the introduction of combined words, but8I estimate that Gforth has more than 1000 users, basedon the number of bug reports, other email communicationand downloads.

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 6I implemented it when I rethought ticking in thiscontext; an alternative behaviour would be to pro-duce an execution token for the compilation seman-tics. Reporting an error is more cautious, but inhindsight the alternative would have been prefer-able (and I recommend it to implementors with alarge base of legacy code), because the reported er-rors uncovered no real problem. Anyway, these er-ror reports were easy to �x.If you are still sceptical about changing fromstate-smart implementations of s" etc. to a parse-time state-checking implementation, in particularits impact on legacy code running on your sys-tem: In general, state-smartness proponents havereacted to my examples that show problems withstate-smartness by telling me that I should not pro-gram like this (and that they hope that such pro-grams are non-standard). In other words, theirprograms work the same whether the system usesstate-smart words or combined words. So, theirprograms won't break when the system changes inthis respect.5.2 [COMPILE]We could try to implement an optimizing 2dup, asdiscussed in Section 2, using any of the techniquesin Section 5.1; e.g., with interpret/compile::noname (a b -- a b a b)over over ;:noname (run-time: a b -- a b a b)postpone over postpone over ;interpret/compile: 2dupHowever, with the implementation ofinterpret/compile: and [compile] shownabove this would not be correct in the followingcase:: my-2dup [compile] 2dup ;1 2 2dupThis should put 1 2 1 2 on the stack, but it triesto compile over over.The problem is that in the above de�nition 2duphas default compilation semantics (i.e., to compilethe interpretation semantics), but the system doesnot know that9. A problem with [compile] occursin any implementation of combined words wherethe user speci�es the compilation semantics with-out specifying whether this is the default compila-tion semantics or not. The following solutions areavailable:� Add a ag to each combined word that indi-cates whether the compilation semantics are9In general, the system cannot know by itself, whetherthe compilation semantics is equal to the default compilationsemantics, because the problem is undecidable.

default. The user would have to supply thevalue for that ag, and [compile] would usethis ag to decide what to do.� Do not implement [compile] in the system;[compile] belongs to the core ext wordset, andwords in this wordset are optional.� Advise the users not to use combined words inthis way (for optimization). Section 5.3 dis-cusses an alternative mechanism.5.3 OptimizationsThe example in Section 2 can be implemented withany technique for implementing combined words(provided you solve the [compile] problem dis-cussed above), but there is one more option:There is only one execution token for the word;it points to a record with two �elds: One de-scribes what to do when the execution token isexecuted (in our example: over over); the other�eld describes, what to do when the execution to-ken is compile,d (in our example: postpone overpostpone over. Execute and compile, accesstheir respective �elds and just perform the action.I call this technique intelligent compile, [EP96,Section 4.2]: in traditional systems execute doessomething di�erent for every execution token en-countered, whereas compile, stupidly always doesthe same: ,.The intelligent compile, has a slight advantageover combined words for optimization purposes: Itgenerates better code in the ' ... compile, case; italso avoids the [compile] problem.On the other hand, it can only be used for opti-mization: For combined words two execution tokensare necessary, and the decision between them has tobe made when they are looked up in the dictionary,not later at execute or compile, time.The di�erence between a word with an optimiz-ing compilation action and a general combined wordis this: the general combined word (e.g., s") hasa non-default (and non-immediate) compilation se-mantics, whereas a word like 2dup has default com-pilation semantics, and we just want to provide aspecial implementation of these semantics.The intelligent compile, is used in bigForth andin the current RAFTS prototype [EP97].5.4]] ... [[Several people have proposed the syntax]] foo bar boing [[as a more readable alternative topostpone foo postpone bar postpone boing

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 7One problem in implementing this syntax is howto deal with code that contains parsing words, like]] ." hello, world" [[Let us assume that we have extended ." to be acombined word whose interpretation semantics arethose of .(. In other words, ." reads the stringwhen it is processed by the text interpreter. Then,for consistent behaviour, ." also should read thestring as soon as it is parsed in]] ... [[. I.e., thecode above should be equivalent to[s" hello, world"]sliteral postpone sliteralpostpone typeOne approach would be to de�ne all the parsingwords as consisting of three parts, as discussed inSection 4.2: parse-time, storing, and run-time (ac-tion). The text interpreter knows about this, andexecutes, compiles, or postpones the parts depend-ing on whether it is in interpret, compile, or post-pone10 state.Given the execution tokens parse, store andrun, the text interpreter would do the following inthe three states:interpret stateparse executerun executecompile stateparse executestore executerun compile,postpone stateparse executestore executestore compile,run postpone literal postpone compile,I have not implemented this idea yet, and I amnot sure if I will. One of the problems is how tointegrate it with the existing interpret/compile:concept. Also, the bene�ts do not justify the com-plexity (at least if the programmers follow my ad-vice and avoid parsing words).10Postpone state is the state of the text interpreter be-tween]] and [[.

6 ConclusionState-smart words produce insidious bugs andshould be avoided.My advice to programmers is: Don't write pars-ing words; this will save you not only from the temp-tation to write state-smart words, but also fromother problems. If you write parsing words, pro-vide their factors. If you write state-smart words,provide their state-dumb constituents.My advice to systems implementors is: Don'twrite state-smart words (except maybe s" and to,and then provide state-dumb constituents). If youwant to provide convenient interpretation seman-tics for (normally) compile-only words, use one ofthe techniques for implementing combined words.We switched Gforth from state-smart words to com-bined words with little e�ort and few problems.AcknowledgementsJonah Thomas and the referees provided valuablecomments on earlier versions of this paper. Thispaper has also bene�ted from email and Usenet dis-cussions with Greg Bailey, Mitch Bradley, LoringCraymer, Bernd Paysan, Elizabeth Rather, JonahThomas and others.References[Bra96] Mitch Bradley. Re: Another so-lution for RFIs 8 and 9. Message9609231729.AA06128@FirmWorks.COMto the mailing list ansforth@minerva.com,September 1996.[EP96] M. Anton Ertl and Christian Pirker.RAFTS for basic blocks: A progress re-port on Forth native code compilation. InEuroForth '96 Conference Proceedings, St.Petersburg, Russia, 1996.[EP97] M. Anton Ertl and Christian Pirker. Thestructure of a Forth native code compiler.In EuroForth '97 Conference Proceedings,pages 107{116, Oxford, 1997.[Gfo] Gforth home page. http://www.complang.tuwien.ac.at/forth/gforth/.[Pay98] Bernd Paysan. Re: State-smart etc was: Re: Facelift-ing my forth. Usenet newsgroupcomp.lang.forth, message 351B70D4.F31@remove.muenchen.this.org.junk, March1998.[Sha88] George W. Shaw. Forth shifts gears.Computer Language, pages May: 67{75,June:61{65, 1988.

M. A. Ertl State-smartness | Why it is Evil and How to Exorcise it 8[X3J96] TC X3J14. Clarifying the distinc-tion between \immediacy" and \specialcompilation semantics". RFI responseX3J14/Q0007R, ANSI TC X3J14, 1996.[Zs�o96] Andr�as Zs�oter. Does late binding have tobe slow? Forth Dimensions, 18(1):31{35,1996.

