
Event driven multitasking — a syntax

Jens Zander

SECTRA-Colon Systems AB

S-580 09 Linkoping
P.O. Box 9104

SWED&)

In many real-time progranming appl ications, programs are to be
initiated at the occurence of some internal or external event.
Examples of such events are the real-time clock reaching some
predetermined value, an I/O device needing s ervice o r som e
logical condition being fulfilled. The classical way of solv~
some of these problems is to use hardware interrupt signals. In
this paper, situations are investigated where for various reasons
interrupts cannot be used. An example is when the condition
tested is a very complex one. A FORTH-syntax for general event
handling is proposed, including the structures EVERY, AFTER and
WHENEVER PERFORM. An implementation for (time-shared) multi
tasking FORTH systems is sketched.

l. Introduction

The microcomputer has become an invaluable tool in a u tcxnatic
control and real-time data-aquisition systems. Many industrial
control applications of fair complexity are more or less 'one-of
a-kind ' sy s t ems demanding a considerable amount of d e d i cated
program development effort. For these applications FORTH systems
with added real-time tools constitute an excellent pr o g ranrning
and operating environment. Not only program development but also
the installation, tuning and continued operation benefits from an

Real-time control systems can basically be seen as event-dr iven
systems. By this we mean that the occurance of certain external
events trigger certain responses from the control system. This is
very much different from ordinary programming where the order of
all actions is determined by the program flow (1). As a f ew
examples of external events we have:

interactive environment.

a) The operator pushing the ' TEST'-but t o n

b) The temperature in some vessel has become to high

c) The real-tive clock passes midnigth

To these events the control system may respond by:

a) Initiating the system test-function

b) Displaying an alarm-message

c) Increasing the heater power (if the electric
power is cheaper after midnight)

In typical control applications, the control system has to be
capable to handle up to hundreds or thousands of such events.
These events may not occur very often, but nevertheless, for each
of them a specific action has to be defined. Further all these
events occur at unpredictable instants of time.

The classical approach to real-time progranming is to use
hardware interrupts to signal the occurence of an event. Each
event has its interrupt service routine. The advantage of this
method is the fast response; an event is handled within
microseconds. The main disadvantage is that all events that are
to be recognized by the system have to be defined when designing
the hardware of the system. Complex event definitions naturally
give rise to complex (and inflexible) hardware. Instead,
event conditions can be checked in software, thereby sacrifying
some of the short response time. Doing this using conventional
FORTH progranrning techniques gives a poor result with complex
definitions and hardly any possibilities to alter the program
flow interactively. In the following we describe one possible
event handling syntax that cures some of the drawbacks of the
software approach. Finally we sketch an implementation.

2. An event handling word set

AFTER (d - - - n)

Used in the form:

d AFTER name

Searches the context vocabulary after the word 'name'
and schedules it for execution after d t~ units.
Returns the unique ID n of this event.

(d -- - n)

Used in the form

d EVERY name

Searches the context vocabulary after the word 'name'
and schedules it for repeated execution every d time
units. Returns the unique ID n of this event.

I ,C(--) Compil ing
(d -- - n) Executing

Used in the form:

: xxx ... WHENEVER .. (condition)
PERFORM .. (action)

When xxx is executed the (condition) part is executed
every d time units. If the condition part results in a
true flag, execute (action) part of the definition. xxx
will also return the unique ID n of this event.

PERFORM I,CCompiling
Executing

Used in WHENEVER...PERFORM construct to mark start of
the action part. Cf WHENEVER.

Stop the repeated execution of an EVERY- or an WHENEVER
PERFORM event. Use in event definition only.

ESTOP (n -- -)

Remove event with ID n.

ESTAT

Display all pending events.

(n -- - d)SECONDS

Convert the time interval n into time units.

As can be seen from the word set, the real-time clock is the
basic event generating element in the event handling syntax.
Nevertheless, we handle both time-oriented (EVERY and AFTER)
and condition-oriented events (WHENEVER...PERFORM). The latter
type is implemented by using time-oriented events. This increases
the workload of the system (we have to check a lot of event
conditions) but gives us a way to define priorities among the
handlers of different events. The time-interval d determines the
rate by which the conditions are to be checked and thereby the
response time of the event service routine. To clarify these
concepts let have a look at a few simple examples:

a) 15 SECONDS ~ SW I TCH-ON
25 SECONDS AFTER SWITCH-OFF

We schedule the word 'SWITCH-ON' to be executed after
15 seconds and the word ' SWITCH-OFF' to be executed
after 25 seconds.

b) 3 SECONDS EVERY TOGGLE-LED

Executes the word 'TOGGLE-LED' every 3 seconds. May
be used to flash a LED on the control panel.

c) C HECK-TEMP (- — n)
10 SECONDS
WHENEVER

PERFORM
TEMPERATURE TEMP-LIMIT)

TEMP-ALARM

CHECK- TEMP DROP

We define the word 'CHECK-TEMP' that will start
to continously monitor the value returned by the
function 'TEMPERATURE'. As long as this value is
larger than the constant 'TEMP-LIMIT' the word
'TEMP-ALARM' is executed. The final 'DROP' discards
the event ID not used here.

By using the words AFTER, EVERY and the %%NEVER..PERFORM
construct, we may now interactively define (almost) any number of
events and the corresponding actions. The events are handled as
concurrent processes and may be monitored with the ESTAT cannand,
showing all current events. Events may also be removed using the
ESTOP command.

3. Implementation

In the following we outline one possible implementation. The
implementation is centered around the event queue. T h e event
queue is a list of all pending events, sorted in the order of
their time of appearance. The event that is to occur next is the
first one in this list. Each event is represented by a l i s t
element (2) as in fig 1. The event queue is handled by an event

ex.addr

Re- l
Period

t
ID

peat

Next
ID
T1IllE
Period
Repeat
Name
Ex.addr

Pointer to next list element.
id-number (integer)
Time of next occurance (double)
Period time of repeated event (double)
B oolean (t r u e =repeated event)
Pointer to NFA of word to be executed.
Execution address.

Fig 1. Event queue element

scheduler which executes as a concurrent process. T his may b e
acheived either by using 'genuine' (= time shared) concurrent
processes (3) checking the real-time clock or by a real-time
clock interrupt service routine. In the latter case we may use an
interrupt signal from a hardware timer. Each time an event i s
activated the asociated word is executed. If this is a single
non-repetitive event (~), the corresponding list element is
then discarded. In the case of a repetitve event, the a new time
of occurence is calculated and the event is rescheduled by
sorting the list element into the event queue. The reader i s
referred to (2) for the details of the list handling operations.

The AFAR and EVERY words create and sort list elements into the
event queue in an obvious manner. The ID-number is an unique
number for each event. The WHENEVER..PERFORM structure is
implemented as a repetitive (EVERY) event where the condition is
checked at each time of occurance. Should the result of the
condition part be a true value, the action part is also executed.

4. Applications

The syntax described in this paper has been successfully been
used in controlling heating systems. Typical installations use 2
10 heat pumps and several oil furnaces controlled by a s i ng l e
6809 FORTH based computer, provide central heating and hot water
for 20-50 appartments. The computer, designed specifically for
industrial control applications, in these heating systems
typically measures 10-20 temperatures and controls 10-30 relays
and 4-8 valves. The FORTH event handling software consists mainly
of roughly 20-50 events. Among these several PID-controllers are
run as EVERY events.

5. References

1. St a rl i n g ,M.K. , "Of Widgits and Clock Ticks",
Proc. 1984 Rochester FORTH Conference.

2 . Ol o f s son,B. , "FORTH List Handling",
FD Vol 6, No. 1 , MaylJune 1984

3 . Za n der , 3 . , "FORTH Semaphores",
FD Vol 6, No 4, November/December 1984

