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Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 34th EuroForth
finds us in Edinburgh for the first time. The two previous EuroForths were
held on Reichenau Island, Germany (2016) and in Bad Vöslau, Austria (2017).
Information on earlier conferences can be found at the EuroForth home page
(http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there were three submissions to the refereed track, and two were accepted (67%
acceptance rate). For more meaningful statistics, I include the numbers since
2006: 27 submissions, 19 accepts, 70% acceptance rate. Each paper was sent to
three program committee members for review, and they all produced reviews.
The reviews of all papers are anonymous to the authors: This year two sub-
missions were co-authored by program committee members, one of them by the
program chair; the papers were reviewed and the final decision taken without
involving the authors. Ulrich Hoffman served as secondary chair and organized
the reviewing and the final decision for the paper written by the program chair.
I thank the authors for their papers and the reviewers and program committee
for their service.

One paper was submitted to the non-refereed track in time to be included
in the printed proceedings.

These online proceedings (http://www.euroforth.org/ef14/papers/) also
contain papers and presentations that were too late to be included in the printed
proceedings. Also, some of the papers included in the printed proceedings were
updated for these online proceedings.

Workshops and social events complemented the program. This year’s Euro-
Forth was organized by Paul E. Bennett.
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A descriptor based approach to Forth strings

Ulrich Ho�mann (FH Wedel University of Applied Sciences), Andrew Read

August 2018

uh@fh-wedel.de, andrew81244@outlook.com

Abstract

We have developed a novel, descriptor based based approach to Forth strings based on the established

technique of array slices, most recently exempli�ed by the Go programming language. We have done this with

the goal of creating a strings package that is suitable be incorporated into the Forth kernel. We illustrate the

convenience and potential utility of our approach with a lightweight regular expression matcher. We argue

that the descriptor based approach provides much of the functionality that has been traditionally obtained

with string stacks, but more simply and closely integrated with Forth, and therefore more easilty adopted as a

foundational layer in the kernel. We see a potential role for our approach on any Forth system needing more

than the bare minimalism of c-addr u strings.

1 Introduction

Forth is more than 40 years old, yet strings remain a space for innovation. We are seeking to develop a strings
package that can be implemented as a foundational layer in the Forth kernel upon which the string processing
requirements of the Forth kernel can be based. Our descriptor-based approach has been informed by the technique
of array slices, as most recently exempli�ed in the Go programming language.

Our paper begins with brief examples of array slices drawn from other computer languages. Moving on to Forth,
we review Anton Ertl's main observations from his EuroFORTH 2013 paper �Standardize Strings Now!� [5]. We
consider some other contributions to Forth strings that have appeared over the years, before stating our goals and
evaluation criteria, describing our approach and illustrating it with a lightweight regular expression matcher that
we have developed from original code by Rob Pike and Brian Kernighan. We discuss the advantages and limitations
of our approach and make a brief comparative analysis with strings stacks. Finally we consider the suitability of
our descriptor based approach for di�erent Forth environments.

2 Array slices

The Go programming language has both arrays and slices. Arrays are conventional data-structures holding a
collection of elements of the same type. Go arrays are value types: assigning a Go array to a new variable creates
a copy of the array. Slices are reference-type wrappers for arrays. Slices refer segments of an array that may be
manipulated without copying or modifying the underlying data [1]. Multiple slices may reference the same array,
potentially to overlapping ranges within it. Go arrays themselves have a �xed size but slices vary in size. Slice
functions might create new slices, which reference a newly allocated array with larger capacity and copy over the
elements. The old array might later be garbage collected if not referenced by other slices.

Other examples include: Algol 68, which permitted slices as references to subsections of arrays speci�ed between
lower and upper bounds, Fortran 77, which o�ered array slices with sophicticated capabilities for slicing multi-
dimensional arrays in any direction, and Sinclair BASIC (ZX80/81 and ZX Spectrum), which o�ered simple but
convenient slicing of character strings [2, 3, 4].

1
5



3 Standardize Strings Now!

Anton Ertl began �Standardize Strings Now!� by arguing that the desirable properties for Forth strings are (i) ease
of use and (ii) integration with the rest of Forth.

The �rst part of Anton's article discussed these requirements as they relate to memory management of the character
bu�er. One barrier to e�cient string handling is the allocation and deallocation of character bu�ers as strings are
consumed by words on the stack. Anton illustrated the pitfalls of either ignoring the problem altogether (leading
to memory leaks or to the recruitment of the ever-unpopular garbage collector) or attempting to manage allocation
and deallocation concurrently with the manipulation of strings (leading to di�cult code and reliance on allocate,
a word that many small systems prefer not to support). Anton explained how region-based memory allocation can
assist by collecting related data into a single region that can easily be freed as a block.

The second part of Anton's article discussed the convenient representation of strings. Anton highlights some of the
current issues: the c-addr u format is �exible because it represents strings of arbitrary length and content and
allows sub-strings to be taken without copying the bu�er. A disadvantage of this approach is that it takes two
cells to represent each string and this becomes cumbersome with several strings. The counted string format needs
only one cell on the stack (a pointer to the count) but sub-strings cannot be taken without copying the bu�er, and
traditional implications of the counted cell format can only represent strings with up to 255 bytes.

A practical illustration of the stack depth di�culty with the c-addr u representation is illustrated by Anton's
example of a regular expression matching word

: search -regexp ( c-a1 u1 c-a2 u2 -- c-a1 u3 c-a4 u4 c-a5 u5 true | false )

\ Search for regexp c-a2 u2 in string c-a1 u1

\ if the regexp is found , c-a1 u3 is the substring before the first match ,

\ c-a4 u4 is the first match , and c-a5 u5 is the rest of the string , and

\ TOS is true , otherwise return false

A successful match returns 7 parameters on the stack (3 strings and a �ag). Anton suggested the possibility
of implicit parameters and context-wrappers among other techniques for reducing stack depth, and concluded in
general by favouring the c-addr u format over most alternatives.

4 Other contributions

Strings stacks with special features for handling strings have been around since the early-days of Forth. For example
Klaus Schliesiek's 1986 string stack implementation, later modernized and updated for Forth-94 and Forth-2012
compliant systems by Ulli Ho�mann [8]. One attraction of string stack is their capability for handling multiple
strings without cluttering the parameter stack. For example:

: "delimiter -join (" s1 s2 ... sn delim -- s ) ( n -- )

\ Concatenate the n strings sn, ... s2, s1 with

\ sn at the beginning of the resulting string s

\ intersperced with the delimiter string delim.

\ " ef" " cd" " ab" 3 " /" "delimiter -join results in ab/cd/ef.

: "delimiter -split (" s0 delim -- s1 ... sn ) ( -- n )

\ Split the text s0 on occurances of the delimiter string delim.

\ s1 to sn are the resulting parts. sn is the closest to the beginning of s0.

\ The delimiter is removed. n is the number of parts.

Brad Rodriguez developed PatternForth to provide SNOBOL4-like string processing and pattern matching func-
tions. PatternForth, in a di�erent context, incorporates the concept of string descriptors [13]. More recently
Carsten Strotmann has suggested that REXX Parse provides a worthwhile model that may be useful for inspiring
future work with Forth strings [6]. Ulli Ho�mann has also demonstrated a very light wordset for string handling
that represents strings entirely on the parameter stack as a count followed by characters one-cell-at-a-time. This
approach that has the advantage of minimal dependency on the rest of the Forth dictionary [7].

5 Goal and evaluation criteria

Our motivation in developing this strings package is connected with the our concept of a �New Synthesis� for Forth
[12]. We seek to develop an approach to strings that can be built into the Forth kernel and used to support the
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string handling requirements of the kernel, such as I/O operations, input stream processing and maintenance of the
Forth dictionary. The New Synthesis is a concept under development, nevertheless some criteria suggest themselves
based on these ambitions.

The strings package must be programmed before the kernel is completed, so it must be developed using an elemen-
tary Forth vocabulary. The string handling facilities of the kernel will be developed out of our package, so logically
we cannot rely on those facilities in developing the package itself. We do not want the strings package to commit
us to �xed decisions elsewhere in the kernel, such as choices about memory management. We would prefer the
compilation size of our package to be small (although not necessarily minimal, recognizing that all design decisions
in a Forth system are eventually tradeo� decisions). We must ensure adequate performance, and experience sug-
gests that we must therefore avoid any approach that relies on copying string data. Ideally there should be some
�killer application� for our package within the kernel itself, and for us this is the opportunity to parse the input
stream with regular expressions (see section 6). Finally, the strings package should be generally usable and useful
for applications running on our kernel that we cannot yet anticipate.

6 A descriptor based approach to strings

6.1 Outline

Our strings are single-cell references on the parameter stack. Each reference (our 'string') points to a small block
of string meta-data (our 'descriptor') located in memory. The descriptor, among other information, holds a �exible
onward reference to an ASCII character bu�er where the string data resides.

The descriptor based approach allows strings to be duplicated or sub-strings to be created without any copying of
character data. We have also established two classes of strings: 'permanent' strings and 'temporary' strings, which
function similarly, but which have di�erent consequences for memory management.

Before describing our approach in more detail we provide an illustration of usage. String operators in our wordset
are pre�xed with $ (e.g. $initialize, $make, $len, $s) while strings themselves are su�xed with $ (a$, pad$,
etc.).

\ reserve space for 10 string descriptors

10 $initialize

\ Establish an ASCII character buffer with 9 character of text

\ and 20 characters of extra capacity

S" Veni vidi01234567890123456789"

\ Create a permanent string and leave its descriptor on the stack

\ : $make ( c-addr len size flag -- s$)

\ permanent = -1

9 swap permanent $make

\ Create another string , this time a temporary string with no extra capacity

\ temporary = 0

S" vici" dup temporary $make

\ Concatenate the two strings (see the wordlist that follows)

\ : $+ ( s$ r$ -- s$)

$+

\ Enquire as to the length of the new string

\ : $len ( s$ -- s$ n)

$len CR .

14

\ Provide a legacy reference to the string , and type it out

\ : $s ( s$ -- c-addr u)

$s CR type

Veni vidi vici

6.2 Overview of the descriptor approach

Figure 1 illustrates the descriptor approach. Our descriptors are structures with four cell-width �elds: the address
�eld points to the start address of the character bu�er, the size �eld holds the total size of the character bu�er
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in bytes, the start �eld holds the position within the character bu�er of the �rst character of the string (counted
from zero for the �rst byte of the bu�er), the length �eld holds the count of characters in the string. A single �ag
bit1 speci�es whether the string is permanent or temporary (see the following section on Memory management).
Empty strings are represented by descriptors with a length �eld of zero.
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Figure 1: The descriptor approach illustrating a reference to the characters �FORTH� (underlined) held in a
character bu�er. In this example the permanent �ag of the descriptor has arbitrarily been set to TRUE. Memory
addresses and data are purely illustrative.

Strings are duplicated by creating a replica descriptor without copying any character data, as illustrated in �gure
2. Sub-strings are taken by modifying the start and length �elds. A string can be appended to by copying data into
the character bu�er and incrementing the length �eld, provided that the size of the character bu�er has su�cient
capacity. Traditional c-addr u references can be obtained by computing the address of the �rst character in the
string (address + start) and also providing the length. More complex manipulations, such as inserting and deleting
characters within a string, can be carried out by modifying the character bu�er, again subject to the constraint of
the size of the character bu�er.

6.3 Memory management

Memory management needs to address two separate issues: management of the character bu�ers and management
of the descriptors themselves.

6.3.1 Character bu�ers

In our implementation we explicitly do not memory manage the character bu�ers. To create a string descriptor
it is necessary that the proposed character bu�er already exist in memory. When a string descriptor is recycled
(see below), the character bu�er remains intact. In consequence, character bu�ers need to be memory managed
separately. We discuss the merits and limitations of this approach later.

1In our implementation the permanent/temporary bit is actually the MSB of the size �eld, so that strings are limited in size to 2^31
bytes on a 32 bit system. We require that the MSB of the length and start �elds must be zero. However di�erent structures would be
equally feasible.
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Figure 2: Two descriptors that point to di�erent substrings in the same character bu�er. The second descriptor
may have been created as a duplicate of the �rst and later modi�ed. Note that changes to the string bu�er would
a�ect both strings.

6.3.2 String descriptors

We reserve memory for a �xed number of string descriptors at initialization2 (a pool approach). We need to identify
those string descriptors within the pool that are unallocated and available for creating new strings. In our �rst
iteration, we opted to use a scheme with an additional stack stack set up in memory to hold the addresses of
unallocated descriptors. The ine�ciency of this approach was pointed out by the anonymous academic reviewers
who suggested a revised approach that we have now adopted. This is a linked list in which the address �eld each
unallocated descriptor points to the address of the next unallocated descriptor. A global variable within our strings
package holds the address of the �rst free descriptor and the list is terminated with a zero pointer. The descriptor
pool is illustrated in �gure 3.

6.3.3 Recycling descriptors

As noted above, our strings are represented by a single-cell reference on the stack. Applications may discard
these references as strings are no longer required. Without an appropriate mechanism to recycle the descriptors of
discarded strings the pool of available descriptors would eventually become depleted.

We di�erentiate between permanent and temporary strings, an assignment made when a string is created. Per-
manent strings are never recycled, temporary strings are subject to the recycling mechanisms described below.
Having both permanent and temporary strings allows �exibility for strings that have di�erent intended uses. Look-
ing ahead, we might create a permanent string to refer to a repeatedly-used regular expression, whilst we might
create a temporary string to refer to characters in some temporary bu�er.

The recycling word is $drop (s$ --). $drop take the string s$ from the top of the stack and recycles it. When
a string descriptor is recycled it is replaced in the pool of available descriptors. We also take the precaution of
�spoiling� a recycled string (i.e. setting its size, length and start position to zero), with the intention of making it
harder to inadvertently keep using a descriptor after recycling it. As noted already, when a string is recycled by
$drop the character bu�er to which it referred is left untouched. Also $drop detects permanent strings and does
not recycle them.

2In our implementation we use ALLOCATE to reserve the necessary storage for string descriptors, but as this is a once-only procedure
at initialization time it would be equally possible to reserve the necessary storage with ALLOT, or in some platform-dependent manner.
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Figure 3: Illustration of the descriptor pool and stack of available descriptors. In this example 10 descriptors have
been allocated out of 14 in the pool. References to the 4 unallocated descriptors are held in a linked list.

At this point it may be worth comparing the actions of $drop with drop. Both $drop and drop will, if there is a
string descriptor on the top of the stack, remove that string descriptor from the top of the stack. However $drop
will also recycle the descriptor (assuming that it was a temporary string). By contrast drop will not recycle the
descriptor, which will remain intact.

Words in our string wordset that consume strings as parameters will recycle their descriptors. For example

: $+ (s$ r$ -- s$)

\ Append the contents of string r$ to s$ and return s$.

\ The length of the string is always truncated to fit within the size of s

\ r$ is internally passed to $drop for recycling

In cases where we do not want to consume a string parameter, the convention is that we do not consume it. For
example

$len ( s$ -- s$ n)

\ Return the length of a string in count of characters

To summarize the convention that we have adopted: the recycling of a string descriptor can be forced with $drop,
otherwise string descriptors are recycled automatically when they are consumed by a word in our string wordset.
However those strings designated at the time of creation as permanent are not recycled in these cases.

6.3.4 Duplicating strings

With our approach it is possible to duplicate strings without copying the underlying character data. The duplication
word is $dup ( s$ -- s$ r$). $dup takes the string descriptor s$ and creates a new string descriptor r$. r$ has
the same size, length, and start position as s$, and it also refers to the same character data. However r$ and s$
refer to separate, distinct descriptors.

Compare the action of $dup with dup: both $dup and dup will, if there is a string descriptor on the top of the
stack, place a second string descriptor on the top of the stack. However $dup actually creates a new descriptor.
In this case if s$ is subsequently modi�ed by taking a sub-string with $sub, or by adding another string with $+,
or recycled with $drop, r$ will not be a�ected. Of course s$ and r$ still refer to the same underlying character
data and any operations that a�ect that character data directly (such as inserting or deleting characters) will a�ect
both s$ and r$.
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drop: remove the descriptor
from the stack but do not
recycle it

$drop: remove the descriptor
from the stack and recycle it (if
it is a temporary string)

dup: duplicate the reference to
the same descriptor

$dup: create a new descriptor
and provide a reference to it

Table 1: Comparison of drop and $drop, and dup and $dup

Table 1 compares the actions of drop and $drop, and dup and $dup.

6.4 Wordlist

To complete the description of our descriptor based approach to strings we now list the main words currently in
our wordlist.

: initialize ( N --)

\ Initialize the string descriptor system with space for N strings

: $make ( c-addr len size flag -- s$)

\ Make a new string descriptor referencing character data at c-addr

\ The character buffer contacts len bytes of valid data , starting at c-addr

\ and has total capacity of size bytes.

\ If size > len then the string has spare capacity to be extended

\ flag = TRUE for a permanent string; FALSE for a temporary string

: $drop ( s$ --)

\ Recycle a the descriptor s$, unless s$ is a permanent string

\ The character data itself is not deallocated

: $s ( s$ -- c-addr u)

\ provide a legacy reference to a string

: $len ( s$ -- s$ n)

\ return the length of a string in characters

: $size ( s$ -- s$ n)

\ return the size of the character buffer holding the string

: $dup ( s$ -- s$ r$)

\ Copy the string descriptor s$ to a new string descriptor r$

\ Both $s and $r reference the same character data in memory

\ but can take different cuts

: $sub ( s$ a n -- s$)

\ Modify s$ to reference the substring starting at position a

\ and running for n characters

\ a is calculated as an offset from the current start position ,

\ not the start of the buffer

\ a is permitted to be negative; n should be positive

: $app ( s$ c-addr u -- s$)

\ Append the text characters from c-addr u to s$ and return the augmented string

\ The length of the string is always truncated to fit within size

: $+ ( s$ r$ -- s$)

\ Append the contents of string r$ to s$ and return s$.

\ The length of the string is always truncated to fit within size

: $= ( s$ r$ -- s$ r$ flag)

\ Compare the character strings s$ and r$ and return true if they are equal

\ Note , this compares the characters in the buffer , not the descriptors

: $rem ( s$ a n -- s$)

\ Remove n characters from s$ starting at position a

\ Following characters within the character buffer are moved as necessary

: $ins ( c-addr u s$ a -- s$)

\ Copy the text characters from c-adder u into s$ at position a

7
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\ Following characters within the character buffer are moved as necessary

\ The length of the string is always truncated to fit within size

7 Illustrative application - a regular expression matcher

In section 2 we mentioned Anton Ertl's illustration of the cumbersome stack signature for a regular expression
matcher and suggested solutions. The descriptor based strings approach o�er an alternative and explains some of
our design decisions. Thanks to single cell string references, the regular expression matcher accepts 2 parameters
and returns no more than 4. Placing the length, start and size within the string descriptor allows us to partition
the original string according to the results of the regular expression search without any string copying.

The regular expression matcher is less that 250 lines long, including full comments. This code originated as a
direct port of a C program written in 1998 by Rob Pike and Brian Kernighan [11]. For the sake of brevity and
simplicity we do not attempt to support more complex regular expressions, but the code is straightforward enough
that extensions could be added by a user if needed. We have however extended the basic set of matches to include
speci�c regular expressions focused on parsing the Forth input stream, see table 2.

The wordlist is brie�y illustrated below. $regex calls match, which takes c-addr u strings as input parameters
and returns the character location of the match as the output. match can be used independently of the descriptor
based string library, but in that case the application must perform additional manipulation to extract the matched
and unmatched portions of the string.

: $regex ( s$ r$ -- a$ b$ s$ TRUE | FALSE)

\ Search for regex r$ in string s$ if the regexp is found , a$ is the

\ substring before the first match , b$ is the first match

\ s$ (modified) is the rest of the string and the TOS is true;

\ otherwise return false and preserve s$ unmodified

\ r$ is $drop 'ed (recycled unless defined to be a permanent string)

\ a$, b$ and s$ all reference portions of the same character data in memory

: match ( addrT uT addrR uR -- first len TRUE | FALSE )

\ search for regexp (addrR uR) anywhere in text (addrT uT)

\ return the position of the start of the match , the length of the match ,

\ and TRUE or FALSE if there is no match

8 Discussion

8.1 Some design considerations

8.1.1 Di�erent descriptors pointing to substrings in the same mutable string

Figure 2 illustrates two separate descriptors pointing to di�erent, but overlapping, substrings in the same mutable
string bu�er. This seems like a recipe for disaster. However there are advantages if used with care, and we have one
�use case� that we believe is compelling. Let the input stream be represented by a string descriptor, and proceed
to parse it with our regular expression matching word, $regex. A successful match returns three descriptors, all
of which point to non-overlapping sections of the original input stream bu�er. This is very e�ciently achieved
without any string copying. Furthermore, the string descriptor that represents the input stream is automatically
adjusted to the unmatched portion, also without any string copying. We anticipate there could be other instances
within the kernel where the ability to split and alter strings without copying may be an advantage.

8.1.2 Automatic recycling of consumed string descriptors

Our approach is to automatically recycle the relevant descriptors when strings are consumed by string manipulation
words. The alternative would have been to not do this and leave the user to recycle all strings at the end of their
lifetime with $drop. The potential advantage is reduced need for string duplication with $dup in cases where a
string will still be needed after a string manipulation word consumes it as a parameter.

We felt the over-riding consideration was to make management of the descriptors as trouble-free for the user as
possible and that this was best achieved by the approach we have taken. In addition, it is a simple matter to
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Regex Match

^ Beginning of string

! Beginning of string disregarding succeeding whitespaces

$ End of string

. Any character, including newline

\ Quote or special character

a* Zero or more a's

a+ One or more a's

a? Zero or one a's (i.e. optional a)

~a Not a (i.e. any character other than a)

\t Tab

\n Linefeed

\r Carriage return

\s Any whitespace

\S Any non-whitespace

\d Any decimal digit

\h Any hexadecimal digit (case insensitive)

Table 2: Regex's supported by our regular expression matcher

arrange for a string manipulation word not to consume its argument when it is anticipated that the string will be
needed again, and this is illustrated by the stack signatures of $len and $size.

We have provided for permanent strings that are totally immune to recycling. Our motivation for permanent strings
is the opportunity to assign certain components within the kernel to descriptor based strings, where it would be
convenient for system operations not to have them recycled. For example we anticipate building a kernel in which
the input stream and regular expressions for certain input types (such as decimal and hexadecimal numbers) are
represented by permanent strings.

8.2 Relationship to the string stack approach

Our approach can be compared to a non-copying string stack as illustrated in �gure 4. The similarity is that the
string is ultimately represented by an abstract datatype that holds more information than simply the length and
address of the string. In string-stack system these datatypes reside on the stack directly. In our system the abstract
datatypes have been placed in a pool of descriptors, while the references to those descriptors are placed on the
parameter stack.

It can be argued that the string descriptor approach is simpler and better integrated with Forth. Firstly, there is
no need for a separate string stack with its own suite of stack handling words. Secondly, both string and non-string
arguments can combined in the signatures of string-handling words. The �secret weapon� of the descriptor-based
approach that gives string-stack like functionality on the parameter stack is the subtle di�erences in operation
between $dup and dup, and $drop and drop.

Another relative convenience of the descriptor based approach as compared with a string stack is that it is possible
to convert c-addr n strings into descriptor strings, or vice-versa, with a lightweight function call that does not
modify or copy the string bu�er. Finally, the descriptor based approach leaves the allocation and deallocation of
string bu�ers to the application which is likely to be best placed to optimize resources based on its needs, rather
than allocating an entire block of memory for a string stack at initialization.

However string stacks do have the advantage of being able to conveniently hold and manipulate multiple separate
strings (for example to split or join). The descriptor approach could potentially assist in this case as noted below.
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Figure 4: Comparison of alternative string representations. The �c-addr u� format holds the size and address of
the string on the parameter stack. The descriptor approach holds the relevant string information in a descriptor
that is pointed to by a single cell reference on the parameter stack. A non-copying string stack sets up a new
stack to hold essentially the same information as is found in a string descriptor. In all of these three methods the
character data itself is located in a separate character bu�er that must be separately managed. Finally a copying
string stack holds the length and character data directly on a separate stack and is responsible for managing the
allocation and deallocation of that character data. Multiple string stack implementations exist and these examples
are illustrative only.

We imagine that our descriptor-based approach could be extended to other abstract datatypes that have tradi-
tionally often been implemented on separate stacks. The most obvious candidates might be arbitrary-size integers
or �oating point numbers. Willi Striker has demonstrated that an e�cient �oating point arithmetic wordset can
be obtained by holding �oating point numbers as references on the parameter stack [9], and espoused as similar
approach: �Everything on the stack is either an integer or a reference!� [10]. Another candidate datatype to bene�t
from a descriptor based approach might be collections, such as collections of strings themselves. This could assist
in managing string intensive applications.

8.3 Response to Standardize Strings Now!

8.3.1 Memory management of character bu�ers

We have not solved the �rst issue that Anton raised: how to manage memory manage the character bu�er. We
explicitly leave allocation and deallocation of character bu�er out of scope of our word-set. Our justi�cation for
this is that we want to implement our package in the Forth kernel at a foundational level and prefer to be adaptable
to whatever kind of kernel-level character bu�er any particular system adopts. These could vary widely.

We do provide an approach to the bu�er allocation problems around concatenating strings. By separating the
length of a string from the size of its bu�er we allow for strings to be created ready with spare capacity. Whilst this
approach still requires the programmer to anticipate the required capacity in advance, this appears to be a sensible
compromise position between having no spare capacity at all (traditional Forth strings) and a some fully-dynamic
but complicated approach. As pointed out in our introduction, this idea is not arbitrary but has the credential of
being a core feature of array handling in Go and several other languages before it [1].
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8.3.2 Convenient string representation

Our strings are conveniently held on the parameter stack as single cells, but do not su�er from any of the limitations
of counted strings. Do the descriptors themselves create an inconvenience or risk of memory leaks? We argue not.
Our system manages its own pool of descriptors and enforces automatic recycling when strings are consumed by
string manipulation words, so the user has minimal work to do in remembering to $drop (rather than drop) strings
that are no longer required. Errors in this regard can be minimized with stack comments and a brief code review.

8.4 Comparison with Go slices

A Go slice is a descriptor of an array segment. It consists of a pointer to the array, the length of the segment, and
its capacity (the maximum length of the segment). In this, our descriptors are similar to Go slices. However Go
slice functions may cause arrays to be reallocated, copied and otherwise memory managed. By contrast our words
cannot, by design, a�ect the character bu�ers referenced by the descriptors. This is signi�cantly less functionality,
but consistent with our approach of leaving memory management elsewhere in the kernel.

8.5 Limitations

Naturally we acknowledge limitations introduced with our approach. The most signi�cant limitation is the overhead
introduced. Although our package is lightweight and performance overhead is therefore unlikely to be an issue,
especially considering that I/O is the typical bottleneck in most string applications, extra memory is required and
this must be reserved in advance for both the pool of descriptors and the string handling words themselves. Many
small systems simply have no need for regular expressions or sophisticated string handling. It is enough to simply
process the input steam and display messages to the user. In such cases the c-addr u format is both e�ective and
e�cient.

Another limitation is the �xed size of the descriptor pool. However with our stack-based approach to organizing
free descriptors, the memory reserved for descriptors does not need to be contiguous and so it would not be too
di�cult to add further descriptors to the pool after initialization if to do so would be worthwhile.

9 Conclusion

We have presented a descriptor based approach to strings that draws on familiar ideas from other programming
languages, but which we are not aware has been tried in Forth before. Although we have positioned this paper
in part as a response to Anton Ertl's �Standardize Strings Now!�, we do not necessarily suggest our approach
as candidate for string standardization. Other approaches also have their merits, and the standard must weight
common usage more highly than special innovations. As we also note above, our approach would also likely be a
cost rather than a bene�t to small systems.

However on systems where the string problem is relevant, we believe our approach o�ers an elegant and useful
�middle-way� between the stark minimalism of c-addr u and the full-blown weight and complexity of string stacks
with dynamic bu�er management. Our intention is that our strings package be implemented at kernel level and used
to support kernel-level string operations. To demonstrate the combination of easy and utility that our approach
o�ers, we have developed a powerful yet lightweight descriptor-based regular expression matcher.

We acknowledge a debt to programming pioneer Rob Pike both for the exempli�cation of the slice mechanism in
the Go Programming language and for his remarkably simple C regular expression matcher upon which our own is
based. We wish to thank the anonymous academic reviewers for the helpful comments that greatly improved our
paper.
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Abstract
In Forth 200x, a quotation cannot access a local
defined outside it, and therefore cannot be param-
eterized in the definition that produces its execu-
tion token. We present Forth closures; they lift
this restriction with minimal implementation com-
plexity. They are based on passing parameters on
the stack when producing the execution token. The
programmer has to explicitly manage the memory
of the closure. We show a number of usage exam-
ples. We also present the current implementation,
which takes 109 source lines of code (including some
extra features). The programmer can mechanically
convert lexical scoping (accessing a local defined
outside) into code using our closures, by applying
assignment conversion and flat-closure conversion.
The result can do everything one expects from clo-
sures, including passing Knuth’s man-or-boy test
and living beyond the end of their enclosing defini-
tions.

1 Introduction
The addition of locals, quotations1 and postpone
to Forth leads to the question of how these features
work together. In particular, can a quotation ac-
cess the locals of outer definitions (i.e., is the quota-
tion a closure)? The Forth200x proposal for quota-
tions chose not to standardize this, because there is
too little existing practice in the Forth community;
however, it does encourage system implementors to
experiment with providing such support, and this
is what we did for the present paper.
In other programming languages, particularly

functional programming languages, access to outer
locals is a valuable feature that increases the ex-
pressive power2 of these languages.
Also, can a local be postponed, and if yes, what

does it mean? Forth-94 chose to not standardize
this.

∗anton@mips.complang.tuwien.ac.at
1Nameless colon definitions inside other colon definitions,

http://www.forth200x.org/quotations.txt
2The expressive power refers not just to what can be ex-

pressed (all interesting languages are Turing-complete and
can compute the same things, given enough resources), but
also to the ease and versatility of expression.

However, implementing these features in its most
powerful and convenient form requires garbage col-
lection, which is not really appropriate for Forth. So
we have to find a good compromise between expres-
sive power and convenience on one hand, and ease
of implementation on the other. The contribution
of this paper is to propose such a compromise.

In this paper, we first present the principles and
syntax of our new features (Section 2); next we give
usage examples for these features (Section 3), as
well as alternatives that do not use them; next we
give an overview of the implementation (Section 4);
then we discuss the relation between our flat-closure
feature and lexical scoping (Section 5); we also give
some microbenchmark results that give an idea of
the performance of our implementation (Section 6);
finally, we discuss related work (Section 7).

2 Closures: Principles and
Syntax

2.1 Overview and principles
Quotations have been accepted into the next ver-
sion of the Forth standard in 2017, but they do not
define what happens on access to locals of enclosing
definitions. Consider the following minimal exam-
ple:

: foo {: x -- xt :}
[: x ;] ;

: bar {: x -- xt1 xt2 :}
[: x ;]
[: to x ;] ;

5 foo 6 foo
execute . execute . \ prints 6 5

5 bar over execute . \ prints 5
6 swap execute
execute . \ prints 6

Some people may wonder what this means. It is
not necessary to know this to understand most of
this paper (we use a different syntax), but in case
you really want to know, the rest of this paragraph
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explains it. Following the example of Scheme3, ev-
ery invocation of foo (or bar) creates a new in-
stance of the local x, and an xt (two xts for bar) for
the quotation. Calling this xt (these xts) accesses
the instance of x that was created in the invocation
of foo that produced the xt. Yes, this means that
different invocations of foo produce different xts.
Terminology: In the programming language lit-

erature, a nested definition (or quotation) that ac-
cesses a local of an enclosing definition is called a
closure. This is also the name of a data structure
used for implementing this feature. We provide the
data structure, and call it closure, but leave closure
conversion (the process by which other program-
ming language compilers translate from source-code
closures to data-structure closures) to the program-
mer. In most of the rest of this paper, closure
refers to the data structure, and it’s Forth source
code representation.
We do not support the syntax shown above. In-

stead, in the minimal version of our syntax, these
words can be written as follows:

: foo {: x -- xt :}
x [{: x :}d x ;] ;

: bar ( x -- xt1 xt2 )
align here swap , {: xa :}
xa [{: xa :}d xa @ ;]
xa [{: xa :}d xa ! ;] ;

[{: starts a closure and a definition of passed-in
locals of the closure.
The decisive difference between a closure and a

quotation that starts with a locals definition is that
the locals of the closure are initialized from the val-
ues that are on the data (and FP) stack at the time
when the quotation’s xt is pushed on the data stack,
while a quotation with locals at the start would take
the locals from the stack when the xt is executed
(maybe much later). In this way, the closure gets
data from its enclosing definition that it can use
later.
The other difference is that the locals definitions

in these closures end with :}d, and that means that
the memory needed for the closure is stored in the
dictionary (alloted space).
These examples demonstrate the principles of our

approach:

Explicit memory management of closures:
Closures can live longer than the enclosing
definition. The programmer decides where the
memory for closure is allocated, and how it
is reclaimed. The memory can be allocated
and reclaimed like locals, allocated with

3The most popular of the early programming languages
that got this right.

allocate and reclaimed explicitly with free,
allocated in the dictionary, or allocated with
some user-defined allocator (such as the Forth
garbage collector4, or region-based memory
allocation [Ert14]).

Copying locals into closures: Locals in a clo-
sure are a separate copy of the outer local when
used in the way shown above. For read-only lo-
cals, this is no problem.
This approach of creating copies of values of
read-only locals is known as flat-closure con-
version. In other programming languages, the
compiler performs flat-closure conversion im-
plicitly (or uses a different implementation ap-
proach); in our Forth extension, the program-
mer performs it explicitly.

Explicit management of writable locals:
For writable locals, we usually do not want
separately modifyable copies, but want to
access one home location. In our approach,
home locations are allocated (and memory
managed) explicitly (with align here swap
, in the bar example). The addresses of these
home locations are read-only and copied into
the closures, like other read-only values. The
home locations are accessed with memory
words, such as @ and !, as shown in the bar
example. This approach is called assignment
conversion.

Our syntax is more verbose, but also more flexible
than simply allowing access to outer locals: The
locals in the closures can have a different name from
the corresponding locals in the enclosing definition,
and actually, there is no need to define a value as a
local in in the enclosing definition. E.g., we could
also define these words as follows, and achieve the
same effect:

: foo ( x -- xt )
[{: x :}d x ;] ;

: bar ( x -- xt1 xt2 )
align here swap ,
dup [{: xa :}d xa @ ;]
swap [{: xa :}d xa ! ;] ;

2.2 Closure words
These words are used for defining and memory-
managing closures (without conveniences for deal-
ing with read/write locals).

4http://www.complang.tuwien.ac.at/forth/
garbage-collection.zip; however, the current version
of the garbage collector does not recognize closures as live
by seeing their xt, because the xts do not point to the start
of the memory block.
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[{: ( C: -- closure-sys ) Compilation: Start a clo-
sure, and a locals definition sequence.

:}d ( C: closure-sys -- quotation-sys colon-sys )
Compilation: End a locals definition sequence.
Enclosing definition run-time: Take items from
the data and FP stack corresponding to the lo-
cals in the definition sequence, create a closure
in the dictionary. The ;] that finishes the clo-
sure pushes the xt of that closure.

:}h ( C: closure-sys -- quotation-sys colon-sys )
Like :}d, but the closure is allocated (the h
stands for heap).

:}l ( C: closure-sys -- quotation-sys colon-sys )
Like :}d, but the closure is created on the
locals stack5 in the enclosing scope. I.e., it
lives as long as a local defined in the same
place.

:}* ( C: closure-sys xt -- quotation-sys colon-sys )
A factor of :}d :}h :}l, usable for defining
similar words for other allocators. The passed
xt has the stack effect ( u -- addr ) and
allocates u address units (bytes) of memory.

:}xt ( C: closure-sys -- quotation-sys colon-sys )
Similar to :}*, but the xt is pushed at the en-
closing definition run-time, before [{:. Usage
example: [’] allocd [{: x :}xt x ;]

>addr ( xt -- addr ) Addr is the address of the
memory block of the closure identified by xt.
Typical use: ( xt ) >addr free throw.

2.3 Gforth features
This subsection describes some Gforth features that
make the closure words nicer to use, or that are used
in the examples in the rest of the paper.

Locals definers

Gforth cannot just define cell-sized locals, but also,
e.g., FP locals, by putting f: before the local. An
old [Ert94], but (up to now) little-used feature is
variable-flavoured locals where using a local pushes
the address of its location on the data stack, and ac-
cesses to the values are performed with words like @
!. Variable-flavoured locals are defined by putting
one of w^ f^ d^ c^ before the name of the local
(for a cell, a float, a double, or a char respectively).
Given that writable locals in closures are based on
passing the address of the home location of the lo-
cal around, this feature finally becomes interesting.
Example:

5Or on the return stack on systems that keep locals there.

{: f: r w^ x :}
r f. 1e to r
x @ . 1 x !

This code fragment first defines a value-flavoured
FP local r, and then a variable-flavoured local x,
then shows a read and a write access to r, then a
read and a write access to x.
VFX Forth supports defining local buffers, which

can also be used for defining home locations for
read/write locals that live until the definition is ex-
ited.

Gforth also has a defer-flavoured locals definer:
if you define a local x with the definer xt:, an ordi-
nary occurence of x executes the xt in x; you can
also use is and action-of on x. Example:

[’] . {: xt: y :}
5 y \ prints 5
[’] drop is y

Convenient postponeing

Instead of writing a long sequence of postpones,
e.g.,

postpone a postpone b postpone c

you can write

]] a b c [[

An implementation of this feature in stan-
dard Forth is available at http://theforth.net/
package/compat/current-view/macros.fs.

Modifying words

Set-does> ( xt -- ) is a modern variant of
does>. It changes the last defined word to first
push its body address, and then perform the xt.
E.g., instead of

: myconst ( n -- )
create ,

does> ( -- n )
@ ;

you can write

: myconst ( n -- )
create ,
[’] @ set-does> ;

Set-optimizer ( xt -- ) changes the last de-
fined word w such that it executes xt whenever
compile, is called with the xt of w as parameter.
You can use this to generate better code for w. E.g.,
you can have myconst generate better code:

: myconst ( n -- )
create ,
[’] @ set-does>
[: >body @ ]] literal [[ ;] set-optimizer ;
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2.4 Auxiliary closure words
The following are convenience features. One can
eliminate them from code without requiring deep
changes, but the code becomes longer and less read-
able.

Home location conveniences

We can use variable-flavoured locals to create home
locations that live until the end of the definition,
but for longer lifetimes, allocating home locations
of multiple locals is inconvenient: If they are allo-
cated separately, this may cost extra memory and
require extra effort on deallocation; if they are allo-
cated at once, we have to get individual home loca-
tion addresses with address computations or with
structure words.
Our current implementation reuses some of the

existing code to provide the following convenience
for creating home locations:

<{: w^ a f^ b :}h a b ;>

This creates a home location for cell a and float b
on the heap, and then (between :}h and ;> pushes
the addresses on the stack; finally, the ;> pushes
the address of this home location block so that it
can be freed at the end of the lifetime.
For implementation simplicity reasons, locals

from outside cannot be used inside <{:...;>, and the
locals defined inside cannot be used outside. That’s
why the addresses of the home locations are passed
on the data stack to the outside.
If we did not have <{:...;>, one would have to

write the following code to replace the code above:

0 cell+ faligned float+ allocate throw
dup cell+ faligned over

So, while <{:...;> is more cumbersome than one
would like, it is better than nothing; and it is very
simple to implement.

Postpone locals

Given a local x, postpone x is equivalent to x
postpone literal. This is especially convenient
in combination with ]]...[[ (see below).

However, the generated code compiles the value
that x had when the postpone runs, not the value
x has at run-time, so the following example will
produce results that some may not expect:

: foo
7 {: a :} postpone a 8 to a ; immediate

: bar foo ;
bar . \ prints 7

Therefore we recommend that one should not ap-
ply postpone and to to the same local. It would
be relatively easy to warn of this combination, but,
for now, our implementation does not.

Allocation

These are variants of existing memory allocation
words that fit the stack effect expected by :}* and
:}xt.

alloch ( size -- addr ) A variant of allocate with
a different stack effect.

allocd ( size -- addr ) A variant of allot with a
different stack effect.

3 Closure Usage and Alterna-
tives

This section gives some examples for uses of clo-
sures. We also show alternatives that do not use
these features (sometimes before, sometimes after
the usage examples), so you get a better impression
of whether closures provide benefits for the exam-
ple, and what they are.

In stack effect comments, we use ... to indi-
cate additional data and/or FP stack items. For
a stack effect comment ( ... x y -{}- ... z ),
the number of stack items represented by ... nor-
mally does not change.

3.1 Numerical integration
Higher-order words are words that take an xt and
call it an arbitrary number of times.

A classical use of words that take an xt (in other
languages, a function) as argument is numerical in-
tegration (also known as quadrature):

numint ( a b xt -- r )
\ with xt ( r1 -- r2 )

This approximates
∫ b

a
xt(x)dx.6 Now consider

the case that we want to compute
∫ b

a
1/xydx for

a given a, b, and y, and want to have a word for
this:

: integrate-1/x^y ( a b y -- r )
[{: f: y :}l ( r1 -- r2 ) y fnegate f** ;]
numint ;

So the stack element y is consumed (and stored
in the local y during closure construction, and then

6A practical word would have one or more additional pa-
rameters that influence the computational effort necessary
and how close the result is to the actual value of the inte-
gral.
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used during the repeated calls to the closure per-
formed by numint.
Another way in which we might express this com-

putation is:

: 1/x^y ( y -- xt )
[{: f: y :}h ( x -- r ) y fnegate f** ;] ;

( a b y ) 1/x^y dup numint >addr free throw

1/x^y takes y and produces an xt. The xt takes x
and produces the result. This technique of splitting
a function with multiple arguments into a sequence
of functions, each with one argument is called cur-
rying. It allows a more uniform treatment of func-
tions, which is useful in conjunction with higher-
order functions, and is therefore common in func-
tional programming.7
A difference between these variants is that in the

latter the local y lives after the definition returns in
which it was defined. Therefore, we used :}l in the
first variant, but :}h (and >addr and free) in the
second.
A Forth-specific alternative is to pass y on the

(FP) stack rather than through a local. In order
to do that, numint has to be modified to have the
following stack effect:

numint ( ... a b xt -- ... r )
\ with xt ( ... r1 -- ... r2 )

I.e., numint has to ensure that xt can access the
values on the stack represented by .... Now we can
write:

: integrate-1/x^y ( a b y -- r )
frot frot ( y a b )
[: ( y x -- y r2 )

fover fnegate f** ;]
numint fswap fdrop ;

The stack handling takes some getting-used-to.
For a single level of higher-order execution, as used
here, this is manageable.
If we want something like the currying variant,

this could look like this:

: 1/x^y ( y x -- y r )
fover fnegate f** ;

( a b y ) frot frot ’ 1/x^y numint
fswap fdrop

We don’t get a properly curried function here,
but instead a function that reads the the extra ar-
gument from the (FP) stack without consuming it,

7Interestingly, working with higher-order and curried
functions allows a programming style that avoids local vari-
ables; still, general locals are useful in implementing curried
functions. There are alternatives, however [Bel87].

the same as the quotation in the other pass-on-the-
stack variant.

If you need several functions with such extra ar-
guments in one computation (for both pass-on-the
stack variants), the functions have to be written
specifically for the concrete usage (e.g., one reads
the second and third stack item, while another reads
the fourth stack item, etc.), not quite in line with
the combinatorial nature of currying.

In any case, it is a good practice to design higher-
level words such that the called xts have access to
the stack below the parameters: Move the inter-
nal stuff of the higher-level word elsewhere (return
stack or locals) before executeing xts.

3.2 Sum-series
Franck Bensusan posted a number of use cases8,
among them one for writing a word that computes∑20

i=1 1/i2, as an example of computing specific el-
ements of a series.

This can be written as follows, factoring out
reusable components, and going all-in with locals:

: for ( ... u xt -- ... )
\ xt ( ... u1 -- ... )
{: xt: xt :} 1+ 1 ?do i xt loop ;

: sum-series ( ... u xt -- ... r )
\ xt ( ... u1 -- ... r1 )
0e {: f^ ra :}
ra [{: xt: xt ra :}l ( ... u1 -- ... )

xt ra f@ f+ ra f! ;] for ra f@ ;

20 [: ( u1 -- r )
dup * 1e s>f f/ ;] sum-series f.

In accumulating/reducing words like
sum-series, we need to update a value in
every iteration. In this variant, we update a local.
A variant without closures differs in the following
definition:

: sum-series ( ... u xt -- ... r )
\ xt ( ... u1 -- ... r1 )
0e swap [: ( ... xt r1 u1 -- ... xt r2 )

{: f: r :} swap dup >r execute r> r f+
;] for drop ;

This puts r in a local in the quotation in order
to get it out of the way. This is not needed for the
particular way we use the word, but it allows to use
sum-series in other contexts, too. It is the price
we pay for being able to use this as a higher-order
word without needing closures.

An in-between variant that is better than either
variant above is:

8news:<8ea09174-ddac-4d5b-b906-
df3bd4f07932@googlegroups.com>
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: sum-series ( ... u xt -- ... r )
\ xt ( ... u1 -- ... r1 )
0e [{: xt: xt :}l ( ... u1 r1 -- ... r2 )

{: f: r :} xt r f+ ;] for ;

This passes the xt through the closure mecha-
nism, and the intermediate result on the stack.

3.3 Man or boy?
Knuth’s man-or-boy test [Knu64] is an Algol 60
function that has no purpose other than to test
whether a compiler implements lexical scoping cor-
rectly. In Algol:

begin
real procedure A(k, x1, x2, x3, x4, x5);
value k; integer k;
real x1, x2, x3, x4, x5;
begin

real procedure B;
begin k := k - 1;

B := A := A(k, B, x1, x2, x3, x4)
end;
if k <= 0 then A := x4 + x5 else B

end;
outreal(A(10, 1, -1, -1, 1, 0))

end;

In Forth9:

: A {: w^ k x1 x2 x3 xt: x4 xt: x5 | w^ B :}
recursive
k @ 0<= IF x4 x5 f+ ELSE

B k x1 x2 x3 action-of x4
[{: B k x1 x2 x3 x4 :}L

-1 k +!
k @ B @ x1 x2 x3 x4 A ;] dup B !
execute THEN ;

10 [: 1e ;] [: -1e ;] 2dup swap [: 0e ;] A
f.

This example allocates all locals and all home
locations on the locals stack.
Given the purpose of this example, we did not try

to find an alternative without closures.

3.4 testr
McCarthy [McC81] presents the following Lisp func-
tion (in M-expression syntax) by James R. Slagle,
which revealed that the Lisp implementation of the
time did not implement lexical scoping:

testr[x,p,f,u] <-
if p[x] then f[x]
else if atom[x] then u[]
else testr[cdr[x],p,f,

lambda:testr[car[x],p,f,u]].
9Call Gforth with gforth -l128k

The object of the function is to find
a subexpression of x satisfying p[x] and
return f[x]. If the search is unsuccessful,
then the continuation function u[] of no ar-
guments is to be computed and its value
returned. ([McC81])

To implement this in Forth, we use the following
words for accessing S-Expressions:

atom ( s-expr -- f ) is the s-expression an atom
(true) or a pair (false)?

car ( s-expr -- s-expr ) the first half of a pair

cdr ( s-expr -- s-expr ) the second half of a pair

In Forth with closures, the equivalent is:

: testr {: x p f u -- s :} recursive
\ x is an s-expression
\ p is an xt ( s-expr -- f )
\ f is an xt ( s-expr1 -- s-expr2 )
\ u is an xt ( -- s-expr )
\ s is an s-expression
x p execute if x f execute exit then
x atom if u execute exit then
x cdr p f
x p f u [{: x p f u :}l

x car p f u testr ;] testr ;

This could also be written using xt:, but the
number of required action-ofs would exceed the
number of eliminated executes.

The reason for dealing with the unsuccessful
search by calling u is that f can return any S-
expression, so there is no way to indicate an unsuc-
cessful search through the return value. Of course,
in Forth, we have the option of returning such an
indication as additional return value, so we can im-
plement testr without closures:

: testr1 {: x p -- s1 f :} recursive
x p execute if x true exit then
x atom if nil false exit then
x cdr p testr1 dup if exit then
x car p testr1 ;

: testr {: x p xt: f xt: u -- s :}
x p testr1 if f exit then
drop u ;

3.5 Defining words
The create...does> feature of Forth has a number
of problems:

• It does not allow optimizing read-only accesses
to the data stored in the word.
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• When multiple cells (or other data) are stored
in the word, it becomes hard to follow across
the does> boundary what is what.

• First create produces a word with one behav-
ior, then does> changes the behaviour (and
this can theoretically happen several times).
This causes problems in implementations that
compile directly to flash memory.

In the following we focus on the first two prob-
lems.

+field

The first problem is exemplified by:

: +field ( u1 u "name" -- u2 )
create over , +

does> ( addr1 -- addr2 )
@ + ;

\ example use
1 cells 1 cells +field x ( addr1 -- addr2 )
: foo x @ ;

Using set-does>, +field is written as:

: +field ( u1 u "name" -- u2 )
\ name execution: ( addr1 -- addr2 )
create over , +
[: @ + ;] set-does> ;

With the built-in +field, VFX compiles foo into
MOV EBX, [EBX+04] (3 bytes). However, with the
user-defined definition of +field above, this is not
possible: the user could change the value in x later
(e.g., with 0 ’ x >body !), and the behaviour of
foo has to change accordingly. Therefore, VFX
produces a an 8-byte two-instruction sequence in-
stead.
With closures, we can write +field as follows:

: +field ( u1 u "name" -- u2 )
\ name execution: ( addr1 -- addr2 )
create over
[{: u1 :}d drop u1 + ;] set-does>
+ ;

The drop is there to get rid of the body ad-
dress of name, which the set-does> mechanism
(like does>) pushes automatically.
In this variant, u1 is transferred to name through

the closure mechanism; its value does not change
(there is no to u1), so the compiler can generate
efficient code for foo. Currently there is no com-
piler that does that, but a compiler that inlines the
closure when name is compiled and that is analyti-
cal about locals should not find it difficult.
A way to solve this problem without closures is

to define the defining word based on : instead of
create:

: +field ( u1 u "name" -- u2 )
\ name execution: ( addr1 -- addr2 )
over >r : r> ]] literal + ; [[ + ;

With this +field, VFX produces the same code
for foo as with the builtin +field. This can be
made slightly easier to read by using a local, and
postponeing it:

: +field ( u1 u "name" -- u2 )
\ name execution: ( addr1 -- addr2 )
{: u1 u :} : ]] u1 + ; [[ u1 u + ;

Another approach for dealing with the read-only
problem is to declare the memory as not-going-to-
change after initializing it (supported in iForth):

: +field ( u1 u "name" -- u2 )
create over , +
here cell- 1 cells const-data

does> ( addr1 -- addr2 )
@ + ;

Yet another approach is to change the intelligent
compile, to compile fields efficiently:

: +field ( u1 u "name" -- u2 )
\ name execution: ( addr1 -- addr2 )
create over , +
[: @ + ;] set-does>
[: >body @ ]] literal + [[ ;]
set-optimizer ;

This works in Gforth (development version), and,
with a different syntax, in VFX. Set-optimizer
changes the last defined word (i.e., the one defined
by +field1) so that compile,ing it calls the quo-
tation; that first fetches the field offset (at com-
pile time, not at run-time), compiles it as a literal
and then compiles the +. A disadvantage of this
approach is that the optimizer has to implement
nearly all of the does> part again; and such redun-
dancy can make errors hard to find (e.g., the word
works fine when interpreted, but acts up when com-
piled).

We can use closures instead of the body to pass
u1:

: +field ( u1 u "name" -- u2 )
create
over [{: u1 :}d drop u1 + ;] set-does>
over [{: u1 :}d drop ]] u1 + [[ ;]
set-optimizer
+ ;

This demonstrates the redundancy nicely. A dis-
advantage of this approach is that the redundancy
now also costs memory, because two closures are
stored in the dictionary.

Finally, there was a proposal for const-does>
[Ert00], but it did not generate much interest. The
code would look as follows:
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: +field ( u1 u "name" -- u2 )
over + swap ( u2 u1 )

1 0 const-does> ( addr1 -- addr2 )
( addr1 u1 ) + ;

The 1 0 tells const-does> to take one data stack
item and 0 FP stack items from these stacks when
const-does> is called, and push them on these
stacks when the defined word is performed. The
body address of the created word is not pushed,
addr1 is passed by the caller of name (typically the
base address of the structure containing the field),
u1 by const-does>.

Interface-method

The +field example is easy to understand, but the
following, larger example is better for demonstrat-
ing the effects. It also demonstrates the second
problem of passing several values across the does>
boundary.
The following is a simplified variant of the

word for defining interface method selectors in
objects.fs [Ert97]:

\ fields: object-map selector-offset
\ selector-interface
\ structure (constant): selector

: interface-method ( n-sel n-iface -- )
create here tuck selector allot
selector-interface ! selector-offset !

does> ( ... object -- ... )
2dup selector-interface @
swap object-map @ + @
swap selector-offset @ + @ execute ;

This example exhibits the read-only and the
multiple-cells problem. The latter problem is at-
tacked by organising these cells as a struct, stor-
ing into it in the create part, and reading from
it in the does> part, but compared to the follow-
ing closure-using variant, the code is still relatively
complicated.

: interface-method ( n-sel n-iface -- )
create [{: n-sel n-iface :}d

drop dup object-map @ n-iface + @
n-sel + @ execute ;] set-does> ;

This locals-using variant eliminates all the com-
plications of storing the parameters in the create
part. The does> part is also quite a bit simpler, as it
avoids having to juggle the address of the created
word.

The :-using definition looks as follows:

: interface-method {: n-sel n-iface -- :}
: ]] dup object-map @
[[ n-iface ]] literal + @
[[ n-sel ]] literal + @
execute ; [[ ;

The resulting code (produced by VFX 4.72) for a
call to a word defined with interface-method is:

does> version : version
MOV EDX, 0 [EBX] MOV EDX, 0 [EBX]
ADD EDX, [080C0BB4] MOV EDX, [EDX+04]
MOV ECX, [080C0BB0] CALL [EDX+04]
ADD ECX, 0 [EDX]
CALL 0 [ECX]

If we can postpone locals, or, in this case, use
them inside ]]...[[, this can be further shortened
into:

: interface-method {: n-sel n-iface -- :}
: ]] dup object-map @ n-iface + @

n-sel + @ execute ; [[ ;

The code between ]] and [[ is almost the same
as the code in the closure in the closure version.

4 Implementation
This section describes our implementation of the
features described in this paper.10 Other implemen-
tations are possible, but are not discussed here, with
one exception: Gforth uses a locals stack, and we
always mention the locals stack here; but adapting
the implementation for a system where the return
stack serves as locals stack is not difficult.

4.1 Closures and execution tokens
The execution token for a closure represents not just
the code, but also the passed locals. Yet it has to
fit into a single cell.

Our implementation deals with that by a vari-
ant of the trampolines used by gcc for the same
purpose: A block of memory is allocated; the start
of this block contains the header of an anonymous
word, and the rest contains the values of the locals
defined at the start of the closure. The closure is
represented by the xt of the anonymous word.

When the closure is performed, it copies the val-
ues of the locals to the locals stack. This means that
the closure locals can be treated like ordinary locals
in the rest of the definition. After this copying, the
user-defined code of the closure is performed.

10http://git.savannah.gnu.org/cgit/gforth.git/
tree/closures.fs
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: foo [{: a b :}d a . b . ;] ;

vt
cf

doescode
a
b

header

data

dodoes

2@ swap >L >L
a . b . lp+2 ;s

xt

Figure 1: A definition containing a closure, and the
memory representation of a closure created by in-
voking the definition; the part of the doescode be-
fore the bold part is generated by the compiler to
copy the data of the closure to the locals stack.

In finer detail, a closure is an anonymous
create...does> defined word (but it can reside not
just in the dictionary, but alternatively on the lo-
cals stack or on the heap), where the code after the
does> starts by copying the data from the body of
the word to the locals stack, followed by the user-
written code. Figure 1 shows an example.
The compile-time part of the closure implemen-

tation is deeply intertwined with the pre-existing
implementations of locals and quotations in Gforth,
and a detailed description will probably be of little
benefit to implementors of other systems, but we
still mention some interesting aspects: During clo-
sure construction, the locals stack pointer points to
the memory for the closure (i.e., not always in the
locals stack). The closure locals are arranged in the
closure memory just as normal locals are arranged
on the locals stack, they get the same offsets (using
the same code as during ordinary locals definition),
and after copying behave just as normal locals.
This part costs 78 source lines of code (SLOC,

blank, and comment-only lines not counted).

4.2 Home locations
The home location syntax <{:...;> is based on the
closure implementation: Creating a home location
block differs from creating a closure by not produc-
ing a word header, and by letting the locals stack
pointer point to the home location block until ;>.
This part costs 6 SLOC.

4.3 Postpone locals
Postponeing locals is implemented by special-
casing locals in postpone.

This part costs 25 SLOC. It is so large because
each of the nine locals definers needs a special case.

5 Lexical scoping and flat-
closure conversion

The closure syntax presented above was originally
designed for minimal implementation complexity,
even at the expense of programmer inconvenience.
However, looking at the examples, we now think
that it is very appropriate for stack-based languages
like Forth: For languages where the primary data
location is the stack(s) rather than locals, it is
appropriate to build closures from data on stacks
rather than by copying existing locals.

However, this means that when we want to con-
vert code from languages with lexical scoping to
Forth, we have to perform flat-closure conversion
manually. This section sketches how to do that, in a
mechanical way. Alternatively, we can find a way to
express the same purpose differently, as in the testr
example (Section 3.4), but there is no mechanical
way to do that, and no guarantee that there is such
a way.

This also demonstrates that our closure syntax is
as powerful as lexical scoping in Algol-family lan-
guages. There is no mechanical process for con-
verting the automatic memory reclamation of, e.g.,
Scheme to manual memory reclamation. If we stick
with mechanical conversion for that part, we either
have to live with leaking memory, or use some kind
of garbage collection for the closures.

We use the following contrived program with lex-
ical scoping as a running example.

: foo ... {: a b :} ...
[: ... {: c :} ... to a ... b ...

[: ... to b ... c ... ;] ... ;] ... ;

This program only contains definitions and uses
of locals, and quotations. Other operations can be
inserted in the places marked with ..., but do not
play a role in flat-closure conversion.

The first step is to perform assignment conver-
sion [Dyb87, Section 4.5]: For every local that is
accessed with to and also accessed in a quotation
where it is not defined, we convert it into a home
location and access it with @ and !:

: foo ... <{: w^ a w^ b :}d a b ;>
drop {: a b :} ...
[: ... {: c :} ... a ! ... b @ ...

[: ... b ! ... c ... ;] ... ;] ... ;

In this example, we allocated the home locations
in the dictionary, and then dropped the address
containing the home location block. Note that you
need to use w^ only when defining the home loca-
tion; in the rest of the code, the addresses are passed
around as values, so value-flavoured locals are fine
there.
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The next step is the actual flat-closure conver-
sion: You have to mention all locals accessed inside
the closure in the locals definition at the start of the
closure, and pass them to the closure on the stack:

: foo ... <{: w^ a w^ b :}d a b ;>
drop {: a b :} ...
a b [{: a b :}d ... {: c :}

... a ! ... b @ ...
b c [{: b c :}d ... b ! ... c ... ;]
... ;] ... ;

5.1 Alternative syntaxes and imple-
mentations

What if we tried to go for a syntax that supports
lexical scoping directly instead of through manual
flat-closure conversion? How much implementation
complexity would that cost, and would the bene-
fit be worth the cost? Are there intermediate ap-
proaches?
The first step towards lexical scoping is that clo-

sures get the values of the closure locals (those de-
fined at the start of the closure) from same-named
locals of the enclosing definition or closure, rather
than from the stacks. This is relatively easy to im-
plement, but it requires that the value is in a local.
As the examples show, this requirement would often
result in extra locals definitions, so implementing
that is not necessarily an advantage.
The next step would be to completely hide the

actual flat-closure conversion: The compiler would
have to look at the whole code of the definition,
and note which of the locals are used inside which
quotation, and then convert the quotations into clo-
sures by itself. While that is not particularly hard,
it requires looking at the whole definition at once,
which would require a major rewrite for most Forth
systems. The benefit would be that the code for foo
shown after the assignment conversion step would
work (with some adjustments for manual memory
reclamation of closures).
Similarly, the assignment conversion step can be

split into two steps:
In the first step, the programmer marks some lo-

cals on definition as requiring assignment conver-
sion (with special local definers, e.g., w!). The com-
piler would then allocate a home location for these
locals automatically, pass the address around, and
automatically convert read accesses to fetches from
the address, and to accesses to stores to the ad-
dress. A to access to a local that is not marked as
requiring assignment conversion produces an error
if the local occurs in a quotation where the local
was not originally defined. This step would require
some work, but no deep changes to the usual com-
pilers. The benefit would be that the programmer
would avoid nearly all of the assignment conversion

work, and only needs to mark some locals as requir-
ing assignment conversion.

In the second step, the compiler collects the infor-
mation about the locals requiring assignment con-
version by itself, relieving the programmer of that
duty. Again, it requires looking at the whole defi-
nition at once, but otherwise would not be a lot of
work.

6 Performance
This section presents performance results from mi-
crobenchmarks on the current implementation in
Gforth. Note that microbenchmarks have their pit-
falls and in application usage effects may dominate
that are not reflected in these microbenchmarks.
Moreover, the current implementation has seen only
minimal performance work (costing 4 source lines),
and some of these benchmarks might see substantial
speedups by investing more work in performance.

We have two kinds of microbenchmarks: Creat-
ing a closure (or an alternative to a closure), and
running a closure (or an alternative). The closure
we use is:

[{: x :}l x + ;]

Running a closure with one or two cells as above
profits from the little performance work we have
applied, so for the run closure benchmark we also
measure a three-cell variant that exercises the gen-
eral case:

[{: x y z :}l x + ;]

We use the following variants:

closure For creation, we measure the three dif-
ferent allocation methods (locals stack, dictio-
nary, heap), with the heap variant including
the free overhead.

does Create an anonymous created word with x
in its body, with [: @ + ;] set-does>.

:noname create an anonymous :noname word
which compiles x as literal in its body.

stack Use a quotation that uses x from the
stack (without consuming it): [: over + ;].
Benchmarking its creation just means bench-
marking pushing the xt.

We run the benchmark on a 4GHz Core i5-6600K
(Skylake). We use 50,000,000 iterations for each
microbenchmark, but report the cycles and instruc-
tions per iteration, subtracting the loop overhead.
The results are:
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cycles inst. per iteration
21.0 99.0 create closure local
62.9 183.5 create closure dictionary
113.6 459.0 create closure heap
735.1 2464.7 create does

5115.4 15159.5 create :noname
8.0 14.0 create stack
7.0 43.0 run closure 1 cell
21.3 85.0 run closure 3 cells
6.0 38.0 run does
6.2 27.0 run :noname
7.1 33.0 run stack

Note that results of 8 cycles or less in these mi-
crobenchmarks are usually dominated by depen-
dency chains through instruction or stack point-
ers, and the relative performance may be differ-
ent (maybe more like the relations of instructions
counts) in applications.11

Still, there are some conclusions we can make:
Creating a local closure is relatively cheap,

whereas creating heap and dictionary closures is
quite a bit more expensive. Dynamically creating
create...does> words instead is a lot more expen-
sive, and the same with :noname is even more ex-
pensive. Pushing the xt of a quotation is cheap, as
expected.
Running a closure with one cell is slightly more

expensive than the other variants; the general case
(3 cells) is quite a bit more expensive, but could be
optimized, too; there will be very few cases where
the number of runs/creation is so high that the does
and :noname variants break even. The stack variant
is cheap in both creation and run time.

7 Related work
Already Lisp [McC81] and Algol 60 allowed nested
functions and accessing outer locals, but with lim-
itations: Lisp initially used dynamic scoping; this
was considered a bug by McCarthy (Lisp’s creator)
[McC81] (see Section 3.4), but that bug had en-
trenched itself as a feature in the meantime, and
the Lisp family took a while to acquire lexical scop-
ing (prominently in Scheme and Common Lisp). A
reason for that is that Lisp allows returning func-
tions, which in combination with lexical scoping cre-
ates the upwards funarg problem: local variables no
longer always have lifetimes that allow to use a stack
for memory management.
Algol 60 avoided the upwards funarg problem by

not allowing to return functions. Still, lexical scop-
ing (in combination with call-by-name) proved a
challenge to implement, as can be seen by Knuth’s
man-or-boy test [Knu64] (see Section 3.3), which

11You may also wonder about the impossible apparent in-
structions per cycle (IPC) for some of the benchmarks, but
note that you have to add the loop overhead (12 instructions
in 6 cycles) to compute the actual IPC.

revealed that many Algol compilers failed to imple-
ment access to outer locals correctly.

The best-known ways to implement the access to
outer locals are static link chains and the display
[FL88]. They keep each local in only one place, and
have relatively complex and sometimes slow ways
to access them.

By contrast, in this paper we use the flat-closure
coversion approach [Dyb87, Section 4.4] in com-
bination with assignment conversion [Dyb87, Sec-
tion 4.5], which replicates locals (or their addresses)
in order to make the access cheap. Moreover, in
typical Forth style, we only provide flat closures
and home location support, and leave it to the
programmer to perform assignment and flat-closure
conversion manually. This makes the programmer
responsible for optimizations in the conversion pro-
cess [KHD12], and avoids the need to put values
into locals in order to get them into closures.

Concerning memory management, most lan-
guages have chosen one of two approaches: 1) re-
strict function-passing or outer-locals access such
that stack management is sufficient; or 2) don’t have
restrictions, and use garbage collection for the in-
volved data structures when necessary.

After decades of growth in the functional pro-
gramming community, using higher-order functions
and passing functions to them has recently made
the jump to mainstream languages like C++ (in
C++11), Java (in Java 8), and C#. This feature
is typically called lambda. The C++ variant12 is
extremely featureful, and, while too complex for
Forth, inspires ideas on how such features can be
implemented in close-to-the-metal languages.

Moving closer to Forth, Joy [vT01] is a stack-
based functional language. It uses the term “quota-
tion” for a nameless word that can be defined inside
other words. Joy has no locals, so quotations in it
cannot access outer locals.

Factor [PEG10] is a high-level general-purpose
language with roots in Forth and Joy; it has quota-
tions and locals, and allows access to outer locals.

Lynas and Stoddart [LS06] added lambda expres-
sions with read-only lexical scoping to RVM-Forth.
They implemented accesses to outer variables by
compiling them as literals with placeholder values;
when generating the xt, the code is copied, and the
actual values of the outer variables are plugged into
the code instead of the placeholder values. These
code copies are not freed in forward execution.

Gerry Jackson implemented quotations with full
lexical scoping and explicit deallocation of clo-
sures in Forth-94.13 He managed to implement

12https://en.cppreference.com/w/cpp/language/
lambda

13news:<6b5eead4-f809-4dd4-81c6-
16e1c2a9f613@q14g2000vbn.googlegroups.com>,
http://qlikz.org/forth/archive/lambda.zip
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all this functionality (but with some limitations)
and workarounds for the limitations of Forth-94 in
312 SLOC (including an object-oriented package).
In contrast to these works, the present work aban-

dons lexical scoping in favour of reducing the im-
plementation effort, putting the onus of assignment
and closure conversion on the programmer.
In 2017 the Forth200x committee has accepted a

proposal14 for quotations that does not standardize
the access to outer locals, leaving it up to systems
whether and how they implement accesses to outer
locals.
Of course, in classical Forth fashion, some users

explored the idea of what outer-locals accesses can
be performed with minimal effort. In particu-
lar, Usenet user “humptydumpty” introduced rquo-
tations15, a simple quotation-like implementation
that uses return-address manipulation. The Forth
system does not know about these rquotations and
therefore treats any locals accessed inside rquota-
tions as if they were accessed outside. In the case
of Gforth (as currently implemented) this works as
long as the locals stack is not changed in the mean-
time; e.g., the higher-order word that calls the rquo-
tation must not use locals.
There is no easy way to see whether this re-

striction has been met; this is also classical Forth
style, but definitely not user-friendly. Static analy-
sis could be used to find out in many cases whether
the restriction has been met, but that would prob-
ably require more effort than implementing the ap-
proach presented in this paper, while not providing
as much functionality.

8 Conclusion
Locals in standard Forth have a number of restric-
tions. In this paper we mainly looked at the re-
striction that, in a quotation, one can only access
locals that have been defined in that quotation. But
instead of adding the capability to access outer lo-
cals, we reduced it to the basic need to initialize lo-
cals of a quotation/closure from outside data, and
presented syntax and an implementation of stack-
initialized flat closures with explicit memory man-
agement. In addition, we present conveniences for
defining home locations for writable locals, and for
postponeing (read-only) locals.

We presented a number of examples where these
features allow additional, and sometimes shorter
and easier-to-read ways to express the functional-
ity. We also presented alternative code that does
not use these features.

14http://www.forth200x.org/quotations.txt
15news:<f71bfb01-4b8e-49d6-abd5-

12bda6dbfcd2@googlegroups.com>

In these examples, the features provide some ben-
efits. The implementation of flat closures alone
costs 78 source lines in Gforth, or 109 source lines
for all the features combined. Whether the benefits
are worth this implementation effort will have to be
seen.
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A Sudoku
This appendix shows another example. It demon-
strates the use of an xt-passing style in a larger
application. The shown code is complex, and we do
not expect you to understand it completely. But
you can try to follow the stack flow in Fig. 3 and 4
to get an impression of the benefits and drawbacks
of these two approaches, and also skim Fig. 5 to get
an impression of that alternative.
In 2006, I (Ertl) wrote a Sudoku program.16 In

Sudoku the same constraints apply to rows and
columns, and squares have a related constraint, so
I tried to find a good factoring.
At one point17 I factored out horizontal and ver-

tical walks (of the fields in a row/column, or of
the columns/rows of the whole Sudoku) into higher-
order words map-row and map-col (see Fig. 2). I
passed the extra parameters to the words called by
these words through the stack. You can see these
higher-order words in action in Fig. 3.
However, I found it hard to track the stack con-

tents, because the words are not called in the order
in which they appear in the code. Therefore I also
found it hard to write and maintain this code, even
though I used locals to make it a little less opaque.
Soon after I switched to a different approach.
But before we look into that approach, let’s con-

sider how things would look with closures: Fig. 4.
The code is shorter, but, what’s more, it is much
easier to see the data flow: Instead of following how
the data items flow through the higher-order words
to the executed xts, the xts (produced from clo-
sures) have simple stack effects such as ( var -- ).

16https://github.com/AntonErtl/sudoku
17https://github.com/AntonErtl/sudoku/blob/

da19285814c49a007dd8d954cf94a29f51fa51a1/sudoku3.fs

These xts do not use extra parameters;18 instead,
the data is passed through the closure mechanism.
Note that there are two levels of closures, and ac-
cesses to data that originally came from one or two
levels out.

The approach I actually switched to was quite
different, though: Following advice from Andrew
Haley, I created macros do-row loop-row do-col
loop-col for performing the walks, and wrote
gen-row-constraints gen-col-constraints
and other words using these macros (Fig. 5). The
result19 feels more Forth-like and has seven lines
less than the stack-using one (once we eliminate
two now-unused words), but increases the dic-
tionary size (including threaded code, excluding
native code) on 64-bit Gforth 0.7.9_20180830 from
9168/9248 bytes (for xt-passing/closures) to 11544
bytes (the macros generate quite a bit of code each
time they are used).

18The var in ( var -- ) is produced by the higher-order
words that call the xt.

19https://github.com/AntonErtl/sudoku/blob/
dc0f80bbbed8a7c488af7aecb5de0b7d5c5662ac/sudoku3.fs
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Ertl, Paysan Closures

\ gen-valconstraint ( var container xt -- )
\ check ( -- )
\ map-row ( ... row xt -- ... ) apply xt ( ... var -- ... ) to all variables of a row
\ map-col ( ... col xt -- ... ) apply xt ( ... var -- ... ) to all variables of a col
\ row-constraint ( var row -- )
\ col-constraint ( var col -- )

Figure 2: Helper words for Sudoku

: gen-valconstraint1 { xt container var -- xt container }
var container xt gen-valconstraint
xt container
check ;

: gen-contconstraint { xt-map xt-constraint container -- xt-map xt-constraint }
xt-map xt-constraint container dup [’] gen-valconstraint1 xt-map execute drop ;

: gen-row-constraints ( -- )
check [’] map-row [’] row-constraint grid @ [’] gen-contconstraint map-col 2drop ;

: gen-col-constraints ( -- )
check [’] map-col [’] col-constraint grid @ [’] gen-contconstraint map-row 2drop ;

Figure 3: Part of Sudoku program with higher-order words using the stack

: gen-contconstraint1 ( xt-map xt-constraint -- xt-contconstraint )
[{: xt: map xt-constraint :}d ( container -- )

xt-constraint over [{: xt-constraint container :}l ( var -- )
container xt-constraint gen-valconstraint check ;] map ;] ;

: gen-row-constraints ( -- )
check grid @ [’] map-row [’] row-constraint gen-contconstraint1 map-col ;

: gen-col-constraints ( -- )
check grid @ [’] map-col [’] col-constraint gen-contconstraint1 map-row ;

Figure 4: Part of Sudoku program with closures

\ replace MAP-ROW and MAP-COL with
\ do-row ( compilation: -- do-sys; run-time: row -- row-elem R: row-elem )
\ loop-row ( compilation: -- do-sys; run-time: R: row-elem -- )
\ do-col ( compilation: -- do-sys; run-time: col -- col-elem R: col-elem )
\ loop-col ( compilation: -- do-sys; run-time: R: col-elem -- )
: gen-row-constraints ( -- )

check grid @ do-col
dup do-row

over [’] row-constraint gen-valconstraint check loop-row
drop loop-col ;

: gen-col-constraints ( -- )
check grid @ do-row

dup do-col
over [’] col-constraint gen-valconstraint check loop-col

drop loop-row ;

Figure 5: Part of Sudoku program with macros

30



Method dispatch in Oforth

M. Franck Bensusan
http://www.oforth.com

Abstract

Oforth  is  a  Forth  dialect  that  implements  Object
Oriented  Programming  as  a  built-in  mechanism.  For
methods,  it  provides  a  full  dynamic  binding  :  two
classes that  are  unrelated (ie  Object  is  their  common
parent)  can  implement  methods  with  the  same  name
and  the  method  to  execute  is  resolved  at  runtime.
Furthermore,  classes  are  never  "closed"  and  it  is
possible  to  extend  a  class  with  new methods  at  any
moment. 
As  many  core  words  are  implemented  as  methods,
method dispatch must be as fast as possible, while, if
possible, limiting the memory used.
This  paper  discusses  the  implementation  of  method
dispatch  in  Oforth  :  classic  virtual  tables  are  used  to
cache  code  addresses  but  they  are  allocated  and
constructed  at  runtime,  while  methods  are  executed.
This  is  done  without  suffering  much  performance
penalties.

1 Introduction

Oforth is  a Forth dialect  that  implements a  full  OOP
model. Many core word, like #+, #-, ... are implemented
as  methods  so  method  dispatch  must  be  as  fast  as
possible.  There  are  two  more  constraints  to  be
addressed  :  dynamic  binding  and  non-closed  classes.
"Dynamic  binding"  means  that  all  classes  can
implement all methods, whatever their position in the
hierarchy and the selection of the method to run will
occur at runtime, according to the top of stack. "Non-
closed" classes means that  we can always add a new
methods  to  an  existing  class.  For  instance,  we  can
create the Integer class, then create the Float class, then
add the “>float” method to the Integer class.

With theses constraints, it  is not possible to create, at
compile  time,  a definitive virtual  table  for  each class
with a pointer to this VT stored in each object. We have
to adjust the virtual tables at runtime.

In this paper, we look at the syntax of messages, class
definition  and  method  definitions  (2),  the  dispatch
message  mechanism  implemented  (3),  optimizations
that occur at compile time (4), some discussion about
the  performances  and  memory  cost  (5),  and  some
discussions for future work (6).

There have been many works on method dispatch in the

general programming language literature ( [DUC11] for
instance)  and  some  work  in  the  Forth  community
([RP96], [ERT12]). This paper is not intended to expose
new ideas on this subject : its objective is to expose the
dispatch method used in Oforth and what choices have
led to this implementation.

2 Messages, classes and methods

Messages  are  represented  by  words  created  in  the
dictionary. They can be "ticked", executed, ...  as classic
words.  You  will  almost  never  create  a  new  message
without  its  first  method,  but,  if  necessary  (forward
definition for instance), you can do it using : 

message: foo

A class is also a word in the dictionary. It is created by
sending the #new: message to the Class class (a meta-
class) : 

Object Class new: A

This  creates  a  new  word,  A,  in  the  dictionary  with
Object  as  its  parent.  Oforth  only  supports  single-
inheritance.  Using A word will  push the class  on the
stack. 

Once a class is created, methods can be added :

A Class new: A1

A1 method: foo
   "Foo for A1 :" . self . ;

Object Class new: B

B method: foo
   "Foo for B :" . self . ;

A method: bar
   "Bar for A :" . self . ; 

A virtual: foo2
   "to be redefined" abort ;

A1 method: foo2
    "Redefined: " . self . ;

#bar .s 
[1] (Message) #bar

If  messages (here words foo,  bar and foo2) were not
created  yet,  they  are  created  when  the  first  method
corresponding to the message is created.
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All methods call (whether they are virtual or not) have
dynamic binding,  according to object on top of stack. 
Calling  a  method is  just  like calling  a  word,  but  the
object that will receive the message have to be pushed
on the stack first. One important rule is that this TOS is
removed from the stack when calling the method, and
stored on the return stack. In order to push this TOS
(called  the  method  receiver)  on  the  stack  in  the
method's body, the self word can be used. For instance,
this is how the previous words are called on objects : 

A1 new foo
Foo for A1 : aA1 ok

B new foo
Foo for A2 : aB ok

A new dup bar foo2
Bar for A : aA [console:1] #Exception : to
be redefined

A1 new dup bar foo2
Bar for A : aA1 Redefined:  aA1 ok

Methods can't be redefined into subclasses unless they
are  declared  as virtual  (here  foo2,  for  instance).  Non
virtual methods correspond to final methods in Java :
they  can't  be  redefined  in  subclasses.  Declaring  a
method  as  virtual  can  have  impact  on  optimizations
during compilation (see chapter 4).

Ticking a word is done using the # word and not ' (' is
dedicated to characters). No space is needed between #
and the name. So #bar will push the word bar (here a
message)  on  the  stack,  or  compile  a  literal  into  the
current definition when compiling.

There is no word such as "end-class". The #bar method
is added to A after A1 and B are declared. This allows
to extend a class whenever we want, but this also adds
constraints  on  the  dispatch  mechanism as  the  list  of
messages a particular class can respond to is never fixed
once for all.

Furthermore,  many  core  words  are  implemented  as
methods. The number of messages a class may respond
to can be very important and this also adds constraints
to the dispatch performances.

3 Dispatch mechanism

3.1 Object's tag field

Instead  of  associating  an  index  with  each  message,
Oforth uses an "orthogonal" mechanism : an index is
associated  with  each  class.  In  the  first  slot  of  each
object,  a tag is  stored,  which includes its  class  index
(attributes are stored after this field). On 32bits systems,
the class index is present in the 12 least-significant bits

of the tag field :

0xnnnnnIII

Here,  the  class  index  value  is  III.  By  the  way,  this
means that, on a 32bits Oforth systems, we can't declare
more than 4095 classes (the Object class index is 1).

Other information in  the tag field is  not used for  the
dispatch mechanism and is not discussed here. Figure 1
shows the tag field stored into each object.

class A
index = 8 A object

0xnnnnn008
attribute a
attribute b

____________________________________
Figure 1 : tag field

3.2 One virtual table by message : the MVT.

As  indexes  are  associated  with  each  class,  messages
hold  the  virtual  tables  :  the  Message  Virtual  Table
(MVT). Each slot of the MVT contains the address of
the  method's  code  to  execute  for  the  class
corresponding to the index slot. The first slot of a MVT
(index 0) holds its size.

When a message is created, it points to an empty virtual
table (a static slot with value 0).

Figure 2 shows a MVT for message foo. At index 8, we
find the code address of the method to be executed for
objects of class A.

MVT

MVT pointer

Message foo
Name = foo Size = 10

method code address for class 1
method code address for class 2
method code address for class 3
method code address for class 4
method code address for class 5
method code address for class 6
method code address for class 7
method code address for class 8 (A)
method code address for class 9
method code address for class 10

____________________________________
Figure 2 : a Message Virtual Table
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3.3 Sending a message

As it is not possible to populate the MVT when classes
are  declared,  everything  must  be handled  at  runtime,
when messages are sent.

Listing below is the assembler code (x86 32bits) that is
executed to send a message (in register r1). The method
to execute is retrieved according to the Top Of Stack
(TOS) class : 

func(runMessage)
   test $1, TOS (1)
   jne LcallMethodInteger (1)
   test TOS, TOS (1)
   je  LcallMethodNull (1)

   movl (TOS), r0 (2)
   andl 0x00000FFF, r0 (2)

   cmpl IDClass, r0 (3)
   je LcallMethodClass (3)

   movl virtualTable(r1), r2 (4)

   cmp r0, *r2 (5)
   jl reallocMVT (5)

   movl (r2, r0, 4), r3 (6)
   jmp *r3 (6)

Registers used are macros to map CPU registers.  For
x86 CPU, register allocation is : 

#define r0          %eax
#define TOS         %ebx
#define r1          %ebp
#define r2          %ecx
#define r3          %edx

virtualTable(r1) is the field offset of the
MVT pointer in the message objects.

Steps that occur during the runMessage function are : 

(1)  If  TOS is  a  primitive integer or  null,  TOS is  the
value itself (and not a pointer) and we can't retrieve the
tag field value from those objects. Class index (r0) is set
manually before going to (step 4)

(2) Otherwise, we retrieve the class index (in r0) from
TOS tag field.

(3) If  it  is the index of Class meta-class, we have to
search for a class method to execute and the dispatch is
done using another mechanism (see 3.6).

(4) The MVT associated with the message is retrieved
(in r2)

(5) The MVT size is checked. If the size is smaller than
the TOS class index, the MVT is reallocated (see 3.4).

(6)  An  indirect  jump  to  the  MVT  slot  value
corresponding to the class index is performed.

3.4 MVT dynamic setting and reallocation

When a message is created, it points to an empty static
MVT of size 0 (one  static  slot  with 0 value).  So no
memory  is  consumed  until  the  message  is  actually
performed.

When the  message  is  performed,  if  the  MVT size  is
smaller than TOS class index (this will always be the
case if the MVT is the static empty MVT), a new MVT
of greater size is allocated and all its slots are populated
with the address of  a function named "polymorphic",
then  we go  back  to  the  dispatch  mechanism.  At  this
point, the MVT is larger enough and we can retrieve the
value of the slot corresponding to the class index and
run  the  "polymorphic"  function.  The  purpose  of  this
function is to retrieve the code address to be executed
for class r0 and to adjust the slot value with thus value.
This is done only once and, the next time, the slot will
hold this calculated address code of the method to run
and will jump directly to this address.

Figure 3 shows the MVT for foo message just after its
first execution for class A. If it  is executed again for
class  A,  the  method  code  is  now performed.  If  it  is
performed for another class (index 5 for instance), the
"polymorphic" function will update the slot 5 with the
address of method code to run for class “5”.

The same code (step 6 in code 3.4) is used to adjust the
MVT slots values (when their value is "polymorphic")
and to run  the method code  (when their  value  is  the
method code address).

Also, as the MVT pointer is always accessed when a
polymorphic call is performed for a message (step 4),
we can extend classes by adding new methods without
needing to adjust objects already created.

10
MVT

Method foo MVT for foo message
name

polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
polymorphic
code for class index 8 (A)
polymorphic
polymorphic

____________________________________
Figure 3 : MVT after executing foo for class A
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3.5 The "polymorphic" function

The "polymorphic" function job is to retrieve the code
address to execute for the message and TOS, and store
its value in the message's MVT.

Each message in the dictionary has a linked list of all
the  methods  declared  and  each  method  has  two
attributes : the class and the code address. A message is
a word (with a name), but a method is not a word.

The "polymorphic" function starts with the TOS class
and tries to retrieve into the linked list a method for this
class.  If  not  found,  it  retrieves  the  superclass  of  this
class  and searches again until  it  finds a method or it
reaches null (null is the superclass of Object).
The algorithm is actually a little more complex, as it
takes into account Properties (at each level, the search
is done for the class and its properties).

If a method is found, the MVT slot is updated with  its
code  address.  Otherwise  (ie  the  superclass  null  is
reached),  the  virtual  #doesNotUnderstand  message  is
executed for TOS (default behavior, at Object level, is
to raise a "does not understand" exception, but it can be
redefined for a particular class). 

3.6 Dispatch for class methods

For class methods, the dispatch mechanism is different.
The correct implementation is also retrieved at runtime
but  without  MVT  :  each  time,  the  search  is  done
through  the  hierarchy  to  retrieve  the  correct  code  to
run : each class is searched one by one in the order of
the  inheritance  until  a  method  is  found.  This  (slow)
dispatch search has been chosen as it will not be used a
lot  because  of  optimizations  that  occur  during
compilation (see next chapter) : class methods call will
mostly  be  optimized.  This  will  save  memory,  as  no
MVT is allocated for class methods.

4 Optimizations during compilation

Those  optimizations  are  handled  by  the  #compile
method  implemented  for  messages  words.  If  an
optimization  is  possible,  the  polymorphic  call  is
reduced to a procedure call.

4.1 When TOS is self

When the last word compiled is self, the receiver will
be pushed on the stack. For instance : 

A method: foo 
   self bar ;

In this case, we know the type of the TOS object when
#bar is performed (here A or one of its subclasses). So,
at compile time, we search for a method to run. If we
find  a  non-virtual  method,  it  is  the  one  that  will  be
performed at runtime, so we can optimize by compiling
a direct call to this method's code.

If  the  method  found  is  virtual,  no  optimization  is
possible.

4.2 When TOS is a literal

When the last instruction is a push of a literal on the
stack (Integer, Float, String, Word, ...),  we also know
the type of TOS at compile time and we can optimize
by compiling a direct call.

A  literal  can  be  word,  including  a  class.  So  this
optimization will often apply when performing a class
method : 

: test
    120 Array newSize ;

Here the call to message #newSize will be optimized as
we know that TOS will be the Array class. That is why
there is no MVT allocated for class methods (see 3.6
dispatch for class methods).

4.3 When the message is declared for Object

If the message to compile is declared at the Object level
and is not virtual, a direct call is compiled. It is the case
for messages like #apply, #detect, #include?, ...

4.4 Otherwise...

If the type of TOS can't be detected at compile time and
no  optimization  is  possible,  a  polymorphic  call  is
generated by calling the runMessage described before.
Using the message word (its "name token"), the code
generated in the current definition is : 

   movl message, r1
   call runMessage

5 Performances and memory used

5.1 Performances considerations

When  a  polymorphic  call  is  performed,  4  memory
accesses and one indirect jump are executed : 
- Access to the tag field of TOS (step 2).
- Access to the message's MVT (step 4). 
- Access to the MVT's size (step 5).
- Access to the code to run and jump (step 6)
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Memory access for step 2 and 6 are  mandatory :  we
need  to  access  the  object  to  retrieve  an  information
about its type, and we need to retrieve the MVT slot
value. Furthermore, on modern processors, access to the
field tag probably cache the object's attributes that can
be accessed in the method.

Memory  access  for  steps  4  and  5  are  not  strictly
necessary but needed if we want to re-allocate the MVT
at  runtime  and  have  extendable  classes.  On  modern
processors, (5) may cache the access to method's code
address (6).

Two  other  mechanisms  are  used  to  optimize
performances : 

1) A static MVT of size 0 is associated with the newly
created message.  So there is  no need to  check if  the
MVT is  null  :  we directly  check if  the  MVT size is
greater than the index (step 5). 

2)  Polymorphism  is  calculated  by  a  function
("polymorphic")  whose  code  address  initializes  the
MVT slots. So the same jump to the slot address (step
6) allows to calculate the method to run (the first time)
and to directly run the method code (the next times).
There is no need to check if the slot value is empty or
not.

5.2 Memory used

Main  objective  for  the  dispatch  mechanism  is
performances,  but  it  allows  to  save  some  memory
compared to a "n classes x m messages" matrix : 

1) Newly created messages don't allocate virtual table.
A MVT is created only if the message is sent at runtime.
This is important as many core words are messages and
not all declared messages are used at runtime.

2)  MVT size  are  calculated  at  runtime and won't  be
greater than necessary (the max index of the class that
receives the message).

3) MVT are "by message" and not "by class", so there
are many “small” MVT instead of few big virtual tables
(one by class). 

4) There is no MVT for class methods so no memory is
allocated.

Nevertheless, there may still have lot of unused slots in
a  MVT.  It  could  be  interesting  to  implement  other
mechanisms  (hold  also  a  minimum  index  or  hash
MVT,  ...).  Those  mechanisms  have  not  been
implemented yet.

5.3 Benchmarks

The following (simplistic) benchmark tests the various
cases.  On  modern  processors,  everything  will  be  in
cache  (particularly  the  message  and  its  MVT)  and
branch prediction will apply.

Tests have been run on a core i7-4720 HQ 2,6Ghz on
Windows 10.

: f ( -- )  ;

Object virtual: m   ;
Float method: m ;

Object Class new: A
A method:      m   ;
A classMethod: m   ;

A Class new: B

: em | i | #[ loop: i [ ] ]     bench . ;

: fc | i | #[ loop: i [ f ] ]   bench . ;

: mf | i | #[ loop: i [ 5.0 m ] ] bench . ;

: mb | i b |
   B new ->b
   #[ loop: i [ b m ] ] bench . ;

: mi | i j |
   10 ->j
   #[ loop: i [ j m ] ] bench . ;

: ca | i | #[ loop: i [ A m ] ] bench . ;

: cm | i cl |
   A ->cl
   #[ loop: i [ cl m ] ] bench . ;

Results are : 

The first column is the total time in milliseconds. The
second column is the total time for calls (ie subtracting
the time spent for the empty loop). The third column is
the cost of a the polymorphic call compared to a direct
call.

#em is the benchmark for an empty loop.

#fc calls an empty function (f) n times. Of course, here,
a direct call is compiled.
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#mf  test  calls  a  message  that  is  optimized  during
compile  time  into  a  direct  call  (because  TOS  is  a
literal). It runs in the same time as #fc

#mb calls a message that will not be optimized during
compile  time.  It  uses  the  dispatch  code  described  in
(3.3).  This  test  shows  that  a  polymorphic  call  takes
twice the time compared to a direct call.

#mi calls a message that will not be optimized during
compile  time.  It  uses  the  dispatch  code  described  in
(3.3), but as the receiver is an integer, it uses the special
case  for  integers/null  (step  1).  In  this  case,   the
polymorphic call takes three times the time for  a direct
call. This is probably the result of explicit  jumps that
breaks CPU optimizations.

#ca  calls  a  class  method  on  class  A.  It  is  optimized
(because TOS is  a literal)  and runs in  the same time
than a direct call.

#cm  calls  a  message  on  class  A  that  will  not  be
optimized. The code to run is searched each time in the
hierarchy, without VTM. Those calls are 3 times slower
than MVT dispatch for methods and 6 times slower that
a direct function call.

6 Future work

The main purpose of this dispatch implementation is to
keep  high  performances  while  allowing  extended
classes. 

Nevertheless,  future  work  may  be  interesting  on
alternative mechanisms for MVT storage.

In a typical application :
-  Some  messages  will  be  implemented  only  for  one
class  and  a  big  MVT will  be  allocated  for  only  one
pertinent slot (this is the worst pattern). 
- Some messages will be implemented only at Object
level and the MVT will be very small.
- Some messages will be in-between (#read, #+, #size ,
#<<, #log, ...) and the MVT will be partially filled.

In order to handle the first pattern, a possibility would
be to have 2 sizes for each MVT : the minimum class
index  and  the  maximum  class  index.  This  would
complexify  a  little  the  rumMessage  function  with  a
performance  penalty,  but  save  a  lot  of  space  when a
message is implemented only for a few classes.

Other  mechanisms  have  also  been  discussed  in  the
literature  ([ERTL11])  and  could  be  implemented  and
benchmarked in a future work.

7 Conclusion

Oforth implements a full dynamic binding for method
dispatch  for  methods,  associated  with  extendable
classes.

During  compile  time,  some  optimizations  occur  to
reduce, when possible, messages call to direct call.

Virtual  tables  are  "by  message"  and  not  "by  class".
They are not defined at compile time but calculated and
reallocated at runtime, while messages are performed.
This  allows to  save  some memory (unused  messages
don't use MVT) and to extend classes.

This  is  done  without  suffering  much  performances
penalties as the same code is used to manage MVT and
to call methods : everything is done by calling to the
addresses stored in the MVT slots.
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A List Toolkit

Dr. Peter Knaggs

September 15, 2018

The ordered list is an essential construct in programming. Indeed it is fundamental to Forth in that the
dictionary is a list of word definitions, the search order, accessed via the ungainly words GET-CURRENT
and SET-CURRENT is a simple list of word lists. Many systems access this as a stack, providing words
such as +ORDER and -ORDER.

While it is probably easer to implement a list in Forth than in many other languages of its generation.
Many modern languages (e.g., Perl, PHP, JavaScript, Java, C#, etc.) include an ordered list as a
first-class variable type. Indeed the ordered list is fundamental to the functional language paradigm
(languages such as SML and Haskall). This paper is an attempt to provide a tool kit for manipulating
a list of generic elements.

Used correctly an ordered list is able to represent many different data structures:

Stack Add to the end of a list and remove from the end the list.

Queue Add to the end of a list and remove from the start of the list.

Array Index into a list

Sequence

Set Check for membership before adding element.

The philosophy of this tool kit is to provide a set of words to manipulate a list of nodes, each with a
single cell element. While this means the list is capable of holding basic data types (character, integer)
is is also able to hold a reference to another data structure such as a data node or object. This allows
the list to be generic. The word names used in the proposed tool kit have been chosen because they
do not exist in current systems.

1 Implementation

The words have been defined in a way that does not require any particular implementation, thus
allowing the developer to use the most appropriate implementation method for there system. For
example:

Array When a list is constructed a capacity parameter is given which provides the implementer
with a minimum list capacity. Thus it is possible to implement this word set with a
simple array. Although not so useful. A cyclic array would be a better fit, allowing
manipulation of both the start and and end of the list.
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Linked List A single (or doubly) linked list is the more traditional implementation technique used
by most Forth programmers. If the list constructor ignores the capacity parameter, a
linked list implementation is more than viable.

Array List An array of capacity elements held in user memory. When an element is added to the
list it will check if the list has space for the element. If not then it will allocate a new
array of capacity × ratio elements, moving the exiting array into the new array, and
returning the old array back into the user memory.

Bucket List A linked list of buckets (an array of capacity elements) held in user memory. When an
element is added to the list, it will check the list has space for the element. If not then it
will allocation another bucket which is linked to the exiting list.

2 Indexing

When indexing into the list an index parameter (n) is used. This allows indexing into the list from the
start of the list (when n is positive) or from the end of the list (when n is negative). Thus n =−1 will
provide access to the last element of the list, while n = 0 will provide access to the first element in the
list.

When the index is beyond the range of the list, an exception is thrown. For example, if a list has 10
elements, an index of 10 (or -11) will be beyond the range of the list. As the standard does not provide
an “out of memory”, “out of range” or “bad index” exception, the “result out of range” (-11) exception
has been abused to indicate the index is out of range.

3 Iterator

Those languages that provide for a list also provide a mechanism to iterate over a list of elements in
the general form:

for ( variable in list ) { body }
where the body of the loop is executed once for each element of the list and variable is given the
current element of the list on each iteration.

A Forth variant of this idea is proposed, where the word FOREACH takes a list and creates an imple-
mentation dependent data structure iter that is used to control the iteration loop. The word I (from the
iterator word set) places the current list element on the data stack, while the NEXT word (from iterator
word set) ends the iteration loop.

Therefore we could implement a loop to sum the contents of a list of n as:

: SUM ( list -- n )

0 SWAP FOREACH I + NEXT

;

If iter where to contain an xt of a word that determines the next element of the iteration, NEXT could
simply call that xt. Replacing the iteration constructor word (FOREACH) with a word more appropriate
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to the iteration type that builds the corresponding iter (complete with relevant xt). This would provide
the ability to iterate over any type of data structure, such as a word list, the characters in a string, the
lines in a file, rows in a database and so on.

4 List toolkit

CREATE-LIST ( n – – list ) TOOLS

Create a new list capable of holding a minimum of n single cell elements, returning a list
identifier list.

Comments:
This is a basic list constructor that builds a new anonymous list. n is the capacity parameter. It
also introduces the opaque type list. Depending on the implementation this could be an xt or a
variable pointing to the first element in this list.

Formally: list = 〈 〉

LIST: ( n “〈ccc〉” – – ) “list-colon” TOOLS

Crate a new list 〈ccc〉 capable of holding a minimum of n elements.

Implementation:
: LIST: ( n "<ccc>" -- ) CREATE-LIST CONSTANT ;

Comments:
This is the named list constructor.

Separating out the named list constructor and the anonymous list constructor allows the de-
veloper to combine the anonymous constructor with a system specific method of creating a
definition, thus allowing developers to build a list factory.

LIST+ ( x list – – ) “list plus” TOOLS

Add the element x to the end of the list.

If there is insufficient space in the list, the system may extend the list to allow the new element
or throw a -11 (out of range) exception.

Comments:
This is frequently known as push, add or append in other languages.

Formally: list ′ = list _ x
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LIST- ( list – – x ) “list minus” TOOLS

Remove the last element the list placing on the stack (x).

If there are no elements in the list a -11 (out of range) exception is thrown.

Comments:
This is frequently known as pop or remove in other languages.

Formally: list = list ′_ x

+LIST ( x list – – ) “plus list” TOOLS

Add the element x to the start of the list.

If there is insufficient space in the list, the system may extend the list to allow the new element
or throw a -11 (out of range) exception.

Comments:
This is frequently known as insert or unshift in other languages.

Formally: list ′ = x_ list

-LIST ( list – – x ) “minus list” TOOLS

Remove the first element of the list placing it on the stack (x).

If there are no elements in the list a -11 (out of range) exception is thrown.

Comments:
This is frequently known as shift or remove in other languages.

Formally: list = x_ list ′

CONCAT ( list1 list2 – – ) TOOLS

Append the content of list1 to list2 such that list2 contains all the elements in list2 followed by
all of the elements in list1.

If there is insufficient space in list2, the system may extend the list to allow for the new elements
or throw a -11 (out of range) exception.

Comments:
This is frequently known as concatenate, append or join in other languages.

Formally: list ′2 = list2 _ list1
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>LIST ( x n list – – ) “to-list” TOOLS

Insert the element x into the list at position n, relative to the start of the list. If n is negative, the
position is relative to the end of the list. If n is beyond the end of the list a -11 (out of range)
exception is thrown.

When n is 0, this is the same as +LIST. When n is -1, this is the same as LIST+.

Comments:
This is frequently known as insert or insertAt in other languages.

Formally: list ′ = list0..(n−1)
_ x_ listn..#list

LIST> ( n list – – x ) “list-from” TOOLS

Remove element n from the list returning the removed element (x). n is relative to the start of
the list. If n is negative, the position is relative to the end of the list. If n is beyond the end of
the list a -11 (out of range) exceptionis thrown.

When n is 0, this is the same as -LIST. When n is -1, this is the same as LIST-.

Comments:
This is frequently known as remove or removeAt in other languages.

Formally: list ′ = list0..(n−1)
_ x_ list(n+1)..#list

/LIST ( list – – u ) “slash list” TOOLS

Return the number of elements (u) in list.

Comments:
This is known as count or length or simply # in other languages.

Formally: u = #list

#LIST ( x list – – u ) “number list” TOOLS

Return the number of times (u) the element x appears in the list. If x does not appear in list, u
will be 0.

Comments:
This is known as count in other languages.

Formally: u = #{∀e ∈ list |e = x}
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?LIST ( x n list – – u | -1 ) “query list” TOOLS

Return the position (u) of the first occurrence of x in the list, starting the search at position n. n
is relative to the start of the list if positive and relative to the end of the list if negative. Return
-1 if x is not found or if the start position (n) is beyond the range of the list. The first element
in the list is at position 0 and the last element is at position -1. The result (u) is always given
relative to the start of the list.

Rationale:
One can check for membership of a list by comparing the result to -1.

: in ( x list -- flag )

0 SWAP ?LIST 0< 0=

;

Comments:
This is known as indexOf in other languages.

Formally: (listu = x ∧ x 6∈ listn..u−1)∨ (u =−1∧ x 6∈ list)

LIST@ ( n list – – x ) “list fetch” TOOLS

Return the element (x) at position n of list. n is relative to the start of the list if positive and
relative to the end of the list if negative. The first element in the list is at position 0 and the last
element is at position -1. If n is beyond the range of the list a -11 (out of range) exception is
thrown.

Comments:
Other languages use the index operator [] to index into a list.

Formally: x = listn

LIST! ( x n list – – ) “list store” TOOLS

Set the element at position n of list to be the value x. n is relative to the start of the list if positive
and relative to the end of the list if negative. The first element in the list is at position 0 and the
last element is at position -1. If n is beyond the range of the list a -11 (out of range) exception
is thrown.

Comments:
Other languages use the index operator [] to index into a list.

Formally: x = list ′n
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TRAVERSE-LIST ( list xt(x * i x – x * j) – – ) TOOLS

The xt is executed once for each element in the list, with each element being presented to the xt
on the top of the stack (x).

The xt may change the data stack during execution.

Rationale:
For example, it is possible to sum a list of n using the following:

: SUM ( list -- n )

0 SWAP [’] + TRAVERSE-LIST

;

Comments:
This is known as map or each in other languages.

Formally: ∀x ∈ list •xt(x)

FOREACH TOOLS

Interpretation:
The interpretation semantics are undefined.

Compilation: ( C: – – dest )
Put the next location for a transfer of control (dest) onto the control flow stack. Append the
run-time semantics given below to the current definition.

Run-time: ( list – – ) ( R: – – iter )
Initialise an iteration over the list, placing the iteration control (iter) onto the return stack.

Rationale:
For example, it is possible to sum a list of n using the following:

: SUM ( list -- n )

0 SWAP FOREACH I + NEXT

;

Comments:
The opaque type iter will vary depending on the implementation, but will probably contain at
least the list identifier and the current position within the list. This will alter the search order
such that the iteration version of the I and NEXT words are found before the Core versions.

I ( – – x )( R: iter – – iter ) TOOLS

Use the iteration control (iter) to return the current value (x) in the list iteration started by
FOREACH.

Comments:
iter is used to obtain the current value in the iteration, but is not altered.

43



NEXT TOOLS

Interpretation:
The interpretation semantics are undefined.

Compilation: ( C: dest – – )
Append the run-time semantics given below to the current definition, resolve the backward
reference dest.

Run-time: ( R: iter – – )
Use the iteration control (iter) to determine the next element in the iteration. If there is another
element in the iteration, update the iteration control and continute execution at the location
specified by dest. If there are no more entries in the list, remove the iteration control (iter) from
the return stack and continue execution with the next instruction.

Comments:
This should remove the iteration word list from the search order.
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RFC Ulrich Hoffmann / Andrew Read

EuroForth 2018

Forth: A New Synthesis - Progress Report

Growing Forth with seedForth

1 Introduction

The "new synthesis" of Forth is an ongoing effort in spirit of the Forth Modification

Laboratory workshops. Its aim is to identify the essentials of Forth and to combine

them in a new way to build systems that can scale-down as Forth always did and can

scale-up to large applications and development projects.

The new synthesis is guided by the two principles biological analogy and

disaggregation.

We scrutinise many aspects of traditional and modern Forth implementations trying to

separate techniques that are normally deeply intertwined. After isolating the

techniques we thrive to combine them in new ways.

Our findings so far can be summarized:

• high level inner interpreter (EuroForth 2016, [1])

We showed that a traditional Forth indirect threaded code virtual machine can

implemented in high level Forth bringing threaded code manipulation tricks to any

Forth implementations.

• stacks for structured data (Forth Tagung (convention) 2017, german. [2])

Stores and handles structured items (strings, queues, lists, stacks) on stack and

return stack. No memory required. Shows how terminal input and number output can

work without random accessible memory.

• handler based outer interpreter (EuroForth 2017, [3])

This demonstrates a very simple modular architecture for the Forth text

interpreter separating interpretation and compilation actions for parsed tokens by

handlers that possible consume and process a token text or pass it on unprocessed.

• preForth, simpleForth, Forth (Forth Tagung (convention) 2018, german, [4])

Presents preForth, a minimalistic non-interactive Forth kernel that can bootstrap

itself, simpleForth, still non-interactive, which adds memory and control

structures and Forth a simple interactive Forth bootstrapped from

preForth/simpleForth. See below for details.

• String Descriptors (EuroForth 2018, [5])

We revise different Forth string manipulation facilities and present string

descriptors, an intermediate string representation balancing utility and ease of

implementation.

• Regex (part of string descriptors paper, EuroForth 2018, [5])

Presents a simple implementation of regular expressions extended for Forth’s

demand to detect space separated tokens and intended to be used in the token

detection part of handler based outer interpreters.

We try to use Forth wherever possible in order to minimize semantic and formalism

mismatches. Everything should be readily available - no hidden secrets.

1
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Of course many of the subjects we are looking at have been used by others in the Forth

community and outside - we are dwarfs standing on the shoulders of giants - however we

believe our new synthesis to be original.

2 preForth (simpleForth and Forth)

preForth is a minimalistic non-interactive Forth kernel that can bootstrap itself and

can be used as an easy-to-port basis for a full Forth implementation.

preForth feels like Forth - it is mainly a sublanguage of ANS-Forth - but is

significantly reduced in its capabilities.

Features:

minimal control structures, no immediate words, strings on stack, few primitives

just

• stack
• return stack
• only ?EXIT and recursion as control structures
• colon definitions
• optional tail call optimization
• IO via KEY/EMIT
• signed single cell decimal numbers (0-9)+
• character constants via ’c’-notation
• output single cell decimal numbers

and

• no immediate words, i.e.
• no control structures IF ELSE THEN BEGIN WHILE REPEAT UNTIL
• no defining words
• no DOES>
• no memory @ ! CMOVE ALLOT ,
• no pictured numeric output
• no input stream
• no state
• no base
• no dictionary, no EXECUTE, not EVALUATE
• no CATCH and THROW
• no error handling

preForth is based on just 13 primitives: emit key dup swap drop 0< ?exit >r r> - nest

unnest lit which are defined in the host language. Implementations in i386 assembler

and ANSI-C exist. Executable code is generated by a host language translator

(compiler, assembler).

As an example the definition of the primitive >r in preForth (i386 resp. C) looks like:

\ i386

code >r ( x -- ) ( R -- x )

pop ebx

lea ebp,[ebp-4]

mov [ebp], ebx

next

;

\ C

code >r ( x -- ) ( R -- x )

*++rp=*sp--

;

Using the defined primitives as building blocks preForth allows for colon definitions

to define new words. As there are no control structures all definitions have to be

2
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(tail) recursive and use the primitive ?EXIT for conditional branches. In essence

?EXIT is a conditional branch to the end of a definition, recursion an unconditional

jump to the beginning of a word. Here is the definition of the word SHOW that displays

a string represented characterwise on the data stack (First character deepest, count on

top of stack):

\ preForth: display topmost string

: show ( S -- )

?dup 0= ?exit swap >r 1- show r> emit ;

Tail calls can be tagged with the TAIL prefix and preForth then converts the call to a

branch:

\ preForth: read and append non-control characters to the given string.

\ Return resulting string and the delimiting character.

: scan ( S1 -- S2 bl )

key dup bl > 0= ?exit swap 1+ tail scan ;

PreForth bootstraps itself. Using the i386 version:

$ cat preForth-i386-rts.pre preForth-rts.pre \

preForth-i386-backend.pre preForth.pre ./preForth >preForth.asm

$ assemble preForth.asm ./preForth

The initial bootstrap can be done with gforth or swiftForth.

preForth is modularized into platform specific and plattform independent parts that

concatenated build the complete preForth system. The overall source code (i386) is 820

LOCs:

$ wc preForth-i386*.pre preforth.pre preForth-rts.pre

166 760 3729 preForth-i386-backend.pre

175 403 2553 preForth-i386-rts.pre

328 1908 10045 preforth.pre

151 695 2981 preForth-rts.pre

820 3766 19308 total

2.1 simpleForth

simpleForth is an extension to preForth built using preForth. It is still

non-interactive but adds

• control structures IF ELSE THEN BEGIN WHILE REPEAT UNTIL

• definitions with and without headers in generated code

• memory: @ ! c@ c! allot c, ,

• variable, constants

• [’] execute

• immediate definitions

Enough convenient words to formulate an interactive Forth:

2.2 Forth

Forth is a simple interactive Forth system built using simpleForth. Forth is open ended

and still has an incomplete set of features. Work in progress. Here is a system

start:

3
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Forth 1.2.0

last * warm cold empty patch minor major banner quit restart REPEAT WHILE AGAIN

UNTIL BEGIN THEN ELSE IF ; : constant variable header cmove compile, , allot here

dp +! clearstack interpret parse-name \ .( ( parse (interpreters ?word (compilers ,word

immediate !flags @flags or and #immediate ] [ interpreters compilers handlers ,’x’ ?’x’

,# ?# scan skip source /string >in query #tib tib accept min words .name l>interp l>name

l>flags type count cell+ cells find-name .s prefix? compare 2dup 2drop rot off on ?dup +

space bl cr . u. negate > 1- nip = 0= pick 1+ < over depth execute c! ! c@ @ ?branch

branch lit exit unnest - r> >r ?exit 0< drop swap dup key emit bye

Inspect sources and generated files.

Have fun. May the Forth be with you.

>

3 seedForth

Defining and using preForth was (still is) quite satisfying but we were quite unhappy

with simpleForth and Forth as several of their aspects tend to be defined twice - such

as the structure of headers or defining words - in the overall setup.

This seems to be an issue from which also (all?) target and cross compilers suffer:

The cross compiler needs to define a structure of the target system in order to be able

to generate it. The generated running system might also generate the very same

structure and so needs a description of its own...

seedForth tries to eliminate this issue by further simplifying the system structure.

seedForth is a very small interactive Forth system that can be extended to a full Forth

implementation.

seedForth is really very small (460 LOC) but already has a dictionary and is extensible

by colon definitions. Currently an i386 and an AMD64 implementation exist.

In order to eliminate parsing, number conversion and string headers, seedForth accepts

source code in byte tokenized form that is generated by a very simple tokenizer written

in gforth that has roughly 100 lines only. It is assumed that also a capable text

editor could perform the transformation from text source to byte tokenized source code.

Instead of names, words just have consecutive indices to identify them.

3.1 seedForth virtual machine

The seedForth virtual machine is defined in preForth. It has the following components:

data stack
as usual for operands

return stack
as usual for return addresses and intermediate values

dictionary
addressable memory for code and colon definitions (not initially for headers)

a dictionary pointer dp register points to the next free location.
headers

an array that maps word indices to their starting address in the dictionary

a head pointer hp points to the next free header entry.

A dictionary lookup is a very simple indexed access to the headers array. When

defining a new word, the current address in the dictionary is recorded in the headers

array and the new definition builds up at the current dictionary location.

Here is a list of seedForth predefined words:

4
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$00 #FUN: bye $01 #FUN: emit $02 #FUN: key $03 #FUN: dup

$04 #FUN: swap $05 #FUN: drop $06 #FUN: 0< $07 #FUN: ?exit

$08 #FUN: >r $09 #FUN: r> $0A #FUN: - $0B #FUN: unnest

$0C #FUN: lit $0D #FUN: @ $0E #FUN: c@ $0F #FUN: !

$10 #FUN: c! $11 #FUN: execute $12 #FUN: branch $13 #FUN: ?branch

$14 #FUN: negate $15 #FUN: + $16 #FUN: 0= $17 #FUN: ?dup

$18 #FUN: cells $19 #FUN: +! $1A #FUN: h@ $1B #FUN: h,

$1C #FUN: here $1D #FUN: allot $1E #FUN: , $1F #FUN: c,

$20 #FUN: fun $21 #FUN: interpreter $22 #FUN: compiler $23 #FUN: create

$24 #FUN: does> $25 #FUN: cold $26 #FUN: depth $27 #FUN: compile,

$28 #FUN: new $29 #FUN: couple $2A #FUN: and $2B #FUN: or

$2C #FUN: catch $2D #FUN: throw $2E #FUN: sp@ $2F #FUN: sp!

$30 #FUN: rp@ $31 #FUN: rp! $32 #FUN: $lit

It has the usual suspects but also seedForth specific definitions. Most of them are

already defined in high level code.

h@ ( i -- addr )

does the indexed access to the headers array. Given a function index it returns

its start address in dictionary.

h, ( x -- )

makes a new headers entry that points to the address x.

here and , deal with the dictionary pointer.

key and emit communicate byte values.

fun starts a new colon definition (compiles entry code, assigns the next function index

and records the start address for this function index in the headers array, starts

compilation).

3.2 seedForth’s interpreter and compiler

INTERPRETER is accepting one token of byte tokenized source code after the other and

executes it.

: interpreter ( -- )

key execute tail interpreter ;

So - how to push operands on the seedForth stack (literals)? The tokenized source

contains the sequence key n where n is the number to push.

COMPILER is accepting tokenized source code and compiles it.

: compiler ( -- )

key ?dup 0= ?exit compile, tail compiler ;

The token 0 (bye) ends the compiler loop. To compile the literal n the sequence

lit 0 key n , compiler

is required. The tokenizer uses #, to do this.

COLD displays the boot message "seed", initializes the headers array for the predefined

words and starts the interpreter.
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3.3 seedForth example program

Here is a small seedForth human readable source program:

program demo.seed

’H’ # emit ’e’ # emit ’l’ # dup emit emit ’o’ # emit 10 # emit

’: 1+ ( x1 -- x2 ) 1 #, + ;’

’A’ # 1+ emit \ outputs B

end

The tokenizer transforms this to the byte tokenized source:

00000000 02 48 01 02 65 01 02 6c 03 01 01 02 6f 01 02 0a |.H..e..l....o...|

00000010 01 20 0c 00 02 01 1e 22 15 0b 00 02 41 33 01 00 |. ....."....A3..|

Running seedForth on this input gives:

cat demo.seed | bin/seedForth

seed

Hello

B

3.4 seedForth capabilities

As seedForth already has C@ @ and C! ! you have full access to the dictionary and can

define also not-yet-present structures, such as

• headers with dictionary search and NDCS support

• dynamic memory allocation with allocate, resize and free

• text interpreter and compiler that work on non tokenized source

• compiling words

• a Forth assembler for the target platform and additional primitives, defining

words including DOES> afterwards

• multitasking

• OOP

• file and operating system interface

• access to hardware

• the tokenizer and preForth can eventually also be expressed in seedForth and so it

will be self contained.

seedForth will bootstrap to a full Forth entirely by extension. We’ll never leave it.

No need to define structures twice.

Since its invention seedForth continues to evolve. It now supports defining words,

string literals, an integrated testing facility and dynamic memory management. Support

for regular expressions using string descriptors and a handler based outer interpreter

is in the works.
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4 Summary

We presented the status quo of our project "Forth - A new Synthesis".

We gave an overview of the topics that we already have addressed and we introduced

preForth and seedForth, two very small Forth systems that make use of our ideas, one

non-interactive that can bootstrap itself, one potentially interactive that can be

extended seamlessly.

By disaggregating Forth and recombining its isolated constituents in new ways, we can

construct very simple yet very flexible systems that have the potential to scale up

coherently to larger systems and applications. We did not achieve this yet.

We are on our way.

Forth: words, stacks, blocks
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Software Vector Chaining

M. Anton Ertl

TU Wien

Data Parallelism and SIMD instructions

• Data parallelism in programming problems

• Hardware provides SIMD instructions

Cray-1 vector instructions, Intel/AMD SSE/AVX, ARM Neon/SVE

vmulpd %ymm2, %ymm3, %ymm1

* * * *

ymm2 ymm3

ymm1

• Little programming language support

Programming language support: How?

• Manual Vectorization

• Application vector length

• Opaque, immutable vectors with value semantics

• Vector stack

: vcomp ( va vb -- vc )

vdup sf*v vswap vdup sf*v sf+v sfnegatev ;

Properties, benefits and drawbacks

• Vectors are immutable (value semantics)

− Explicit conversion from/to memory

+ gives control to programmer,

who can make conversions infrequent

+ Padding to SIMD granularity

+ Aligning to SIMD granularity

+ No aliasing problems

+ Results do not overlap input operands

+ only explicit dependences

+ vectors are a separate world

+ Compiler can arrange computations

scalars

arrays
vectors

adressing
indexing

control flow

array
vector

new FloatVect

mul

add

intoArray

...

vector
array

sum

scalar

scalar

vector

Implementation

simple sf+v

simple:

vmovaps (%rdi,%r10,1),%ymm0

vaddps (%rsi,%r10,1),%ymm0,%ymm0

vmovaps %ymm0,(%rdx,%r10,1)

add $0x20,%r10

cmp %r10,%rcx

ja simple

fused vcomp

fused:

vmovaps (%rdi,%r10,1),%ymm0

vmulps %ymm0,%ymm0,%ymm1

vmovaps (%rsi,%r10,1),%ymm2

vmulps %ymm2,%ymm2,%ymm3

vaddps %ymm1,%ymm3,%ymm1

vxorps %ymm1,%ymm4,%ymm1

vmovaps %ymm0,(%rdx,%r10,1)

add $0x20,%r10

cmp %r10,%r9

ja fused

... but how?

Who performs vector loop fusion?

Compiler

+ Low run-time overhead

− High implementation effort?

− Control-flow may limit fusion

− Aliasing plays a role

Run-time Library

− High run-time overhead

+ Low implementation effort

+ Fuses across control flow

+ Dependencies resolved

Software Vector Chaining

Implementing a vector operation

chaining

add to trace
make result vector stub

trace ends?
n

done

y

trace in cache?

y

n

generate code
cache code

allocate result vector memory
execute code

clear trace

done

simple

make result vector
perform operation loop

done

Generate code

vdup sf*v vswap vdup sf*v sf+v sfnegatev

$24147C0 refs= 0 bytes=16 $24147A0 :14

$2414B10 refs= 0 bytes=16 $2415150 :15

sftimesv_ 15 15 temporary :16

sftimesv_ 14 14 temporary :17

sfplusv_ 16 17 temporary :18

sfnegatev_ 18 0 $2415030 refs= 0 bytes=16 $2417300 :19

fused:

vmovaps (%rdi,%r10,1),%ymm0

vmulps %ymm0,%ymm0,%ymm1

vmovaps (%rsi,%r10,1),%ymm2

vmulps %ymm2,%ymm2,%ymm3

vaddps %ymm1,%ymm3,%ymm1

vxorps %ymm1,%ymm4,%ymm1

vmovaps %ymm0,(%rdx,%r10,1)

add $0x20,%r10

cmp %r10,%r9
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Evaluation

Multiply 50× 50 with 50× n Double matrix for varying n, 500 times

on Core i5 6600K (Skylake)

simple

compiler fused

fused unrolled
chaining

n

instructions

1 1000 3000 6000 9000 12000
0G

2G

5G

10G

20G

30G

40G

simple

compiler fused

fused unrolled

chaining

n

cycles

1 1000 3000 6000 9000 12000
0G

2G

5G

10G

20G

30G

Conclusion

• How to use SIMD instructions for data parallelism?

• Manual vectorization, application vector size, opaque vectors

gives freedom to the compiler/library writer

• Software vector chaining

Build trace at run-time

Compile if not cached

+ Can be implemented as library

315 source lines of code

+ For long vectors > 2× as fast as simple

− High per-operation overhead

Useful only for long vectors

Select between simple and chaining per operation

• github.com/AntonErtl/vectors

Paper at ManLang 2018

https://www.complang.tuwien.ac.at/papers/ertl18.pdf
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Programming In Forth on the 

Vectrex t Phillip Eaton 2018

What is a Vectrex? https://youtu.be/k8GiErP6Nfc

My Background

� Spent 90s programming Z80 SBCs with MPE Forth for SCADA 

applications

� Collected a lot of classic video arcade games: Space Invaders, 

Asteroids, Defender

� ^��v��îììì[��]v�>}v�}v��v���µ�]�Z�}v�(]v�v�]�o��Ç���u�

� 2 years ago, acquired a dead Vectrex and fixed it

What can I do with it?

� Vibrant home brew community, some amazing programs, hardware 

hacking

� Memory map and cartridge port simple and open

� I could put CamelForth onto the bare metal -

� �Z�oo�vP��W�v}����]�o��}��U��}v[��lv}Á�òôìõ�����u�o��U��}v[��lv}Á�

s�����Æ��/K^U��}v[��lv}Á�o}Á-level Forth

Define Goals

� Get Forth running on Vectrex with interactive terminal

� E}�s�����Æ�Z���Á����u}�](]���]}v��oo}Á���~��v[���Á���}µ���Z���/K^�

� Must provide Forth API to the BIOS

� Must be comparatively fast compared with assembler and C, not a toy

� Must be accessible to potential new developers

Step 1

� Configure CamelForth For Vectrex and cross compile

� No DOSBox t convert cross compiler from F83 to.... Gforth

� No block source files, need to tweak parser t took a lot of thinking 

about!

Setting up camel forth memory map

Step 2

� Debug in VIDE 

emulator

� Create label file 

for debugger

� Use Starting 

Forth to learn 
how code is 

compiled

� Will it clash with 

BIOS?

� Hack COLD to 
write to display 

via BIOS
https://youtu.be/t4lwoWBXPhA
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Vectrex IDE

Step 3

� No serial port. Time to get 
hands dirty now...enter 
VecFever 

� Rewrote EMIT, KEY?, KEY 
for soft UART

� Unhack COLD

� Try it out...
https://youtu.be/FhHfR9zPggg

Game main 
loop t not 

optimized 
or factored! 

Forth interface to Vectrex BIOS t no optimization!

Other little videos

� City Bomber ± the basics of a game

https://youtu.be/wbV4a56reNA

� Interactive test to discover what BIOS Wait_Recal function does

https://youtu.be/yWUVZyadA0w
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