
Closures — the Forth way
M. Anton Ertl∗

TU Wien
Bernd Paysan

net2o

Abstract
In Forth 200x, a quotation cannot access a local
defined outside it, and therefore cannot be param-
eterized in the definition that produces its execu-
tion token. We present Forth closures; they lift
this restriction with minimal implementation com-
plexity. They are based on passing parameters on
the stack when producing the execution token. The
programmer has to explicitly manage the memory
of the closure. We show a number of usage exam-
ples. We also present the current implementation,
which takes 109 source lines of code (including some
extra features). The programmer can mechanically
convert lexical scoping (accessing a local defined
outside) into code using our closures, by applying
assignment conversion and flat-closure conversion.
The result can do everything one expects from clo-
sures, including passing Knuth’s man-or-boy test
and living beyond the end of their enclosing defini-
tions.

1 Introduction
The addition of locals, quotations1 and postpone
to Forth leads to the question of how these features
work together. In particular, can a quotation ac-
cess the locals of outer definitions (i.e., is the quota-
tion a closure)? The Forth200x proposal for quota-
tions chose not to standardize this, because there is
too little existing practice in the Forth community;
however, it does encourage system implementors to
experiment with providing such support, and this
is what we did for the present paper.
In other programming languages, particularly

functional programming languages, access to outer
locals is a valuable feature that increases the ex-
pressive power2 of these languages.
Also, can a local be postponed, and if yes, what

does it mean? Forth-94 chose to not standardize
this.

∗anton@mips.complang.tuwien.ac.at
1Nameless colon definitions inside other colon definitions,

http://www.forth200x.org/quotations.txt
2The expressive power refers not just to what can be ex-

pressed (all interesting languages are Turing-complete and
can compute the same things, given enough resources), but
also to the ease and versatility of expression.

However, implementing these features in its most
powerful and convenient form requires garbage col-
lection, which is not really appropriate for Forth. So
we have to find a good compromise between expres-
sive power and convenience on one hand, and ease
of implementation on the other. The contribution
of this paper is to propose such a compromise.

In this paper, we first present the principles and
syntax of our new features (Section 2); next we give
usage examples for these features (Section 3), as
well as alternatives that do not use them; next we
give an overview of the implementation (Section 4);
then we discuss the relation between our flat-closure
feature and lexical scoping (Section 5); we also give
some microbenchmark results that give an idea of
the performance of our implementation (Section 6);
finally, we discuss related work (Section 7).

2 Closures: Principles and
Syntax

2.1 Overview and principles
Quotations have been accepted into the next ver-
sion of the Forth standard in 2017, but they do not
define what happens on access to locals of enclosing
definitions. Consider the following minimal exam-
ple:

: foo {: x -- xt :}
[: x ;] ;

: bar {: x -- xt1 xt2 :}
[: x ;]
[: to x ;] ;

5 foo 6 foo
execute . execute . \ prints 6 5

5 bar over execute . \ prints 5
6 swap execute
execute . \ prints 6

Some people may wonder what this means. It is
not necessary to know this to understand most of
this paper (we use a different syntax), but in case
you really want to know, the rest of this paragraph

http://www.forth200x.org/quotations.txt

Ertl, Paysan Closures

explains it. Following the example of Scheme3, ev-
ery invocation of foo (or bar) creates a new in-
stance of the local x, and an xt (two xts for bar) for
the quotation. Calling this xt (these xts) accesses
the instance of x that was created in the invocation
of foo that produced the xt. Yes, this means that
different invocations of foo produce different xts.
Terminology: In the programming language lit-

erature, a nested definition (or quotation) that ac-
cesses a local of an enclosing definition is called a
closure. This is also the name of a data structure
used for implementing this feature. We provide the
data structure, and call it closure, but leave closure
conversion (the process by which other program-
ming language compilers translate from source-code
closures to data-structure closures) to the program-
mer. In most of the rest of this paper, closure
refers to the data structure, and it’s Forth source
code representation.
We do not support the syntax shown above. In-

stead, in the minimal version of our syntax, these
words can be written as follows:

: foo {: x -- xt :}
x [{: x :}d x ;] ;

: bar (x -- xt1 xt2)
align here swap , {: xa :}
xa [{: xa :}d xa @ ;]
xa [{: xa :}d xa ! ;] ;

[{: starts a closure and a definition of passed-in
locals of the closure.
The decisive difference between a closure and a

quotation that starts with a locals definition is that
the locals of the closure are initialized from the val-
ues that are on the data (and FP) stack at the time
when the quotation’s xt is pushed on the data stack,
while a quotation with locals at the start would take
the locals from the stack when the xt is executed
(maybe much later). In this way, the closure gets
data from its enclosing definition that it can use
later.
The other difference is that the locals definitions

in these closures end with :}d, and that means that
the memory needed for the closure is stored in the
dictionary (alloted space).
These examples demonstrate the principles of our

approach:

Explicit memory management of closures:
Closures can live longer than the enclosing
definition. The programmer decides where the
memory for closure is allocated, and how it
is reclaimed. The memory can be allocated
and reclaimed like locals, allocated with

3The most popular of the early programming languages
that got this right.

allocate and reclaimed explicitly with free,
allocated in the dictionary, or allocated with
some user-defined allocator (such as the Forth
garbage collector4, or region-based memory
allocation [Ert14]).

Copying locals into closures: Locals in a clo-
sure are a separate copy of the outer local when
used in the way shown above. For read-only lo-
cals, this is no problem.
This approach of creating copies of values of
read-only locals is known as flat-closure con-
version. In other programming languages, the
compiler performs flat-closure conversion im-
plicitly (or uses a different implementation ap-
proach); in our Forth extension, the program-
mer performs it explicitly.

Explicit management of writable locals:
For writable locals, we usually do not want
separately modifyable copies, but want to
access one home location. In our approach,
home locations are allocated (and memory
managed) explicitly (with align here swap
, in the bar example). The addresses of these
home locations are read-only and copied into
the closures, like other read-only values. The
home locations are accessed with memory
words, such as @ and !, as shown in the bar
example. This approach is called assignment
conversion.

Our syntax is more verbose, but also more flexible
than simply allowing access to outer locals: The
locals in the closures can have a different name from
the corresponding locals in the enclosing definition,
and actually, there is no need to define a value as a
local in in the enclosing definition. E.g., we could
also define these words as follows, and achieve the
same effect:

: foo (x -- xt)
[{: x :}d x ;] ;

: bar (x -- xt1 xt2)
align here swap ,
dup [{: xa :}d xa @ ;]
swap [{: xa :}d xa ! ;] ;

2.2 Closure words
These words are used for defining and memory-
managing closures (without conveniences for deal-
ing with read/write locals).

4http://www.complang.tuwien.ac.at/forth/
garbage-collection.zip; however, the current version
of the garbage collector does not recognize closures as live
by seeing their xt, because the xts do not point to the start
of the memory block.

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Ertl, Paysan Closures

[{: (C: -- closure-sys) Compilation: Start a clo-
sure, and a locals definition sequence.

:}d (C: closure-sys -- quotation-sys colon-sys)
Compilation: End a locals definition sequence.
Enclosing definition run-time: Take items from
the data and FP stack corresponding to the lo-
cals in the definition sequence, create a closure
in the dictionary. The ;] that finishes the clo-
sure pushes the xt of that closure.

:}h (C: closure-sys -- quotation-sys colon-sys)
Like :}d, but the closure is allocated (the h
stands for heap).

:}l (C: closure-sys -- quotation-sys colon-sys)
Like :}d, but the closure is created on the
locals stack5 in the enclosing scope. I.e., it
lives as long as a local defined in the same
place.

:}* (C: closure-sys xt -- quotation-sys colon-sys)
A factor of :}d :}h :}l, usable for defining
similar words for other allocators. The passed
xt has the stack effect (u -- addr) and
allocates u address units (bytes) of memory.

:}xt (C: closure-sys -- quotation-sys colon-sys)
Similar to :}*, but the xt is pushed at the en-
closing definition run-time, before [{:. Usage
example: [’] allocd [{: x :}xt x ;]

>addr (xt -- addr) Addr is the address of the
memory block of the closure identified by xt.
Typical use: (xt) >addr free throw.

2.3 Gforth features
This subsection describes some Gforth features that
make the closure words nicer to use, or that are used
in the examples in the rest of the paper.

Locals definers

Gforth cannot just define cell-sized locals, but also,
e.g., FP locals, by putting f: before the local. An
old [Ert94], but (up to now) little-used feature is
variable-flavoured locals where using a local pushes
the address of its location on the data stack, and ac-
cesses to the values are performed with words like @
!. Variable-flavoured locals are defined by putting
one of w^ f^ d^ c^ before the name of the local
(for a cell, a float, a double, or a char respectively).
Given that writable locals in closures are based on
passing the address of the home location of the lo-
cal around, this feature finally becomes interesting.
Example:

5Or on the return stack on systems that keep locals there.

{: f: r w^ x :}
r f. 1e to r
x @ . 1 x !

This code fragment first defines a value-flavoured
FP local r, and then a variable-flavoured local x,
then shows a read and a write access to r, then a
read and a write access to x.
VFX Forth supports defining local buffers, which

can also be used for defining home locations for
read/write locals that live until the definition is ex-
ited.

Gforth also has a defer-flavoured locals definer:
if you define a local x with the definer xt:, an ordi-
nary occurence of x executes the xt in x; you can
also use is and action-of on x. Example:

[’] . {: xt: y :}
5 y \ prints 5
[’] drop is y

Convenient postponeing

Instead of writing a long sequence of postpones,
e.g.,

postpone a postpone b postpone c

you can write

]] a b c [[

An implementation of this feature in stan-
dard Forth is available at http://theforth.net/
package/compat/current-view/macros.fs.

Modifying words

Set-does> (xt --) is a modern variant of
does>. It changes the last defined word to first
push its body address, and then perform the xt.
E.g., instead of

: myconst (n --)
create ,

does> (-- n)
@ ;

you can write

: myconst (n --)
create ,
[’] @ set-does> ;

Set-optimizer (xt --) changes the last de-
fined word w such that it executes xt whenever
compile, is called with the xt of w as parameter.
You can use this to generate better code for w. E.g.,
you can have myconst generate better code:

: myconst (n --)
create ,
[’] @ set-does>
[: >body @]] literal [[;] set-optimizer ;

http://theforth.net/package/compat/current-view/macros.fs
http://theforth.net/package/compat/current-view/macros.fs

Ertl, Paysan Closures

2.4 Auxiliary closure words
The following are convenience features. One can
eliminate them from code without requiring deep
changes, but the code becomes longer and less read-
able.

Home location conveniences

We can use variable-flavoured locals to create home
locations that live until the end of the definition,
but for longer lifetimes, allocating home locations
of multiple locals is inconvenient: If they are allo-
cated separately, this may cost extra memory and
require extra effort on deallocation; if they are allo-
cated at once, we have to get individual home loca-
tion addresses with address computations or with
structure words.
Our current implementation reuses some of the

existing code to provide the following convenience
for creating home locations:

<{: w^ a f^ b :}h a b ;>

This creates a home location for cell a and float b
on the heap, and then (between :}h and ;> pushes
the addresses on the stack; finally, the ;> pushes
the address of this home location block so that it
can be freed at the end of the lifetime.
For implementation simplicity reasons, locals

from outside cannot be used inside <{:...;>, and the
locals defined inside cannot be used outside. That’s
why the addresses of the home locations are passed
on the data stack to the outside.
If we did not have <{:...;>, one would have to

write the following code to replace the code above:

0 cell+ faligned float+ allocate throw
dup cell+ faligned over

So, while <{:...;> is more cumbersome than one
would like, it is better than nothing; and it is very
simple to implement.

Postpone locals

Given a local x, postpone x is equivalent to x
postpone literal. This is especially convenient
in combination with]]...[[(see below).

However, the generated code compiles the value
that x had when the postpone runs, not the value
x has at run-time, so the following example will
produce results that some may not expect:

: foo
7 {: a :} postpone a 8 to a ; immediate

: bar foo ;
bar . \ prints 7

Therefore we recommend that one should not ap-
ply postpone and to to the same local. It would
be relatively easy to warn of this combination, but,
for now, our implementation does not.

Allocation

These are variants of existing memory allocation
words that fit the stack effect expected by :}* and
:}xt.

alloch (size -- addr) A variant of allocate with
a different stack effect.

allocd (size -- addr) A variant of allot with a
different stack effect.

3 Closure Usage and Alterna-
tives

This section gives some examples for uses of clo-
sures. We also show alternatives that do not use
these features (sometimes before, sometimes after
the usage examples), so you get a better impression
of whether closures provide benefits for the exam-
ple, and what they are.

In stack effect comments, we use ... to indi-
cate additional data and/or FP stack items. For
a stack effect comment (... x y -{}- ... z),
the number of stack items represented by ... nor-
mally does not change.

3.1 Numerical integration
Higher-order words are words that take an xt and
call it an arbitrary number of times.

A classical use of words that take an xt (in other
languages, a function) as argument is numerical in-
tegration (also known as quadrature):

numint (a b xt -- r)
\ with xt (r1 -- r2)

This approximates
∫ b

a
xt(x)dx.6 Now consider

the case that we want to compute
∫ b

a
1/xydx for

a given a, b, and y, and want to have a word for
this:

: integrate-1/x^y (a b y -- r)
[{: f: y :}l (r1 -- r2) y fnegate f** ;]
numint ;

So the stack element y is consumed (and stored
in the local y during closure construction, and then

6A practical word would have one or more additional pa-
rameters that influence the computational effort necessary
and how close the result is to the actual value of the inte-
gral.

Ertl, Paysan Closures

used during the repeated calls to the closure per-
formed by numint.
Another way in which we might express this com-

putation is:

: 1/x^y (y -- xt)
[{: f: y :}h (x -- r) y fnegate f** ;] ;

(a b y) 1/x^y dup numint >addr free throw

1/x^y takes y and produces an xt. The xt takes x
and produces the result. This technique of splitting
a function with multiple arguments into a sequence
of functions, each with one argument is called cur-
rying. It allows a more uniform treatment of func-
tions, which is useful in conjunction with higher-
order functions, and is therefore common in func-
tional programming.7
A difference between these variants is that in the

latter the local y lives after the definition returns in
which it was defined. Therefore, we used :}l in the
first variant, but :}h (and >addr and free) in the
second.
A Forth-specific alternative is to pass y on the

(FP) stack rather than through a local. In order
to do that, numint has to be modified to have the
following stack effect:

numint (... a b xt -- ... r)
\ with xt (... r1 -- ... r2)

I.e., numint has to ensure that xt can access the
values on the stack represented by Now we can
write:

: integrate-1/x^y (a b y -- r)
frot frot (y a b)
[: (y x -- y r2)

fover fnegate f** ;]
numint fswap fdrop ;

The stack handling takes some getting-used-to.
For a single level of higher-order execution, as used
here, this is manageable.
If we want something like the currying variant,

this could look like this:

: 1/x^y (y x -- y r)
fover fnegate f** ;

(a b y) frot frot ’ 1/x^y numint
fswap fdrop

We don’t get a properly curried function here,
but instead a function that reads the the extra ar-
gument from the (FP) stack without consuming it,

7Interestingly, working with higher-order and curried
functions allows a programming style that avoids local vari-
ables; still, general locals are useful in implementing curried
functions. There are alternatives, however [Bel87].

the same as the quotation in the other pass-on-the-
stack variant.

If you need several functions with such extra ar-
guments in one computation (for both pass-on-the
stack variants), the functions have to be written
specifically for the concrete usage (e.g., one reads
the second and third stack item, while another reads
the fourth stack item, etc.), not quite in line with
the combinatorial nature of currying.

In any case, it is a good practice to design higher-
level words such that the called xts have access to
the stack below the parameters: Move the inter-
nal stuff of the higher-level word elsewhere (return
stack or locals) before executeing xts.

3.2 Sum-series

Franck Bensusan posted a number of use cases8,
among them one for writing a word that computes∑20

i=1 1/i2, as an example of computing specific el-
ements of a series.

This can be written as follows, factoring out
reusable components, and going all-in with locals:

: for (... u xt -- ...)
\ xt (... u1 -- ...)
{: xt: xt :} 1+ 1 ?do i xt loop ;

: sum-series (... u xt -- ... r)
\ xt (... u1 -- ... r1)
0e {: f^ ra :}
ra [{: xt: xt ra :}l (... u1 -- ...)

xt ra f@ f+ ra f! ;] for ra f@ ;

20 [: (u1 -- r)
dup * 1e s>f f/ ;] sum-series f.

In accumulating/reducing words like
sum-series, we need to update a value in
every iteration. In this variant, we update a local.
A variant without closures differs in the following
definition:

: sum-series (... u xt -- ... r)
\ xt (... u1 -- ... r1)
0e swap [: (... xt r1 u1 -- ... xt r2)

{: f: r :} swap dup >r execute r> r f+
;] for drop ;

This puts r in a local in the quotation in order
to get it out of the way. This is not needed for the
particular way we use the word, but it allows to use
sum-series in other contexts, too. It is the price
we pay for being able to use this as a higher-order
word without needing closures.

An in-between variant that is better than either
variant above is:

8news:<8ea09174-ddac-4d5b-b906-
df3bd4f07932@googlegroups.com>

http://al.howardknight.net/msgid.cgi?ID=153572170300
http://al.howardknight.net/msgid.cgi?ID=153572170300

Ertl, Paysan Closures

: sum-series (... u xt -- ... r)
\ xt (... u1 -- ... r1)
0e [{: xt: xt :}l (... u1 r1 -- ... r2)

{: f: r :} xt r f+ ;] for ;

This passes the xt through the closure mecha-
nism, and the intermediate result on the stack.

3.3 Man or boy?
Knuth’s man-or-boy test [Knu64] is an Algol 60
function that has no purpose other than to test
whether a compiler implements lexical scoping cor-
rectly. In Algol:

begin
real procedure A(k, x1, x2, x3, x4, x5);
value k; integer k;
real x1, x2, x3, x4, x5;
begin

real procedure B;
begin k := k - 1;

B := A := A(k, B, x1, x2, x3, x4)
end;
if k <= 0 then A := x4 + x5 else B

end;
outreal(A(10, 1, -1, -1, 1, 0))

end;

In Forth9:

: A {: w^ k x1 x2 x3 xt: x4 xt: x5 | w^ B :}
recursive
k @ 0<= IF x4 x5 f+ ELSE

B k x1 x2 x3 action-of x4
[{: B k x1 x2 x3 x4 :}L

-1 k +!
k @ B @ x1 x2 x3 x4 A ;] dup B !
execute THEN ;

10 [: 1e ;] [: -1e ;] 2dup swap [: 0e ;] A
f.

This example allocates all locals and all home
locations on the locals stack.
Given the purpose of this example, we did not try

to find an alternative without closures.

3.4 testr
McCarthy [McC81] presents the following Lisp func-
tion (in M-expression syntax) by James R. Slagle,
which revealed that the Lisp implementation of the
time did not implement lexical scoping:

testr[x,p,f,u] <-
if p[x] then f[x]
else if atom[x] then u[]
else testr[cdr[x],p,f,

lambda:testr[car[x],p,f,u]].
9Call Gforth with gforth -l128k

The object of the function is to find
a subexpression of x satisfying p[x] and
return f[x]. If the search is unsuccessful,
then the continuation function u[] of no ar-
guments is to be computed and its value
returned. ([McC81])

To implement this in Forth, we use the following
words for accessing S-Expressions:

atom (s-expr -- f) is the s-expression an atom
(true) or a pair (false)?

car (s-expr -- s-expr) the first half of a pair

cdr (s-expr -- s-expr) the second half of a pair

In Forth with closures, the equivalent is:

: testr {: x p f u -- s :} recursive
\ x is an s-expression
\ p is an xt (s-expr -- f)
\ f is an xt (s-expr1 -- s-expr2)
\ u is an xt (-- s-expr)
\ s is an s-expression
x p execute if x f execute exit then
x atom if u execute exit then
x cdr p f
x p f u [{: x p f u :}l

x car p f u testr ;] testr ;

This could also be written using xt:, but the
number of required action-ofs would exceed the
number of eliminated executes.

The reason for dealing with the unsuccessful
search by calling u is that f can return any S-
expression, so there is no way to indicate an unsuc-
cessful search through the return value. Of course,
in Forth, we have the option of returning such an
indication as additional return value, so we can im-
plement testr without closures:

: testr1 {: x p -- s1 f :} recursive
x p execute if x true exit then
x atom if nil false exit then
x cdr p testr1 dup if exit then
x car p testr1 ;

: testr {: x p xt: f xt: u -- s :}
x p testr1 if f exit then
drop u ;

3.5 Defining words
The create...does> feature of Forth has a number
of problems:

• It does not allow optimizing read-only accesses
to the data stored in the word.

Ertl, Paysan Closures

• When multiple cells (or other data) are stored
in the word, it becomes hard to follow across
the does> boundary what is what.

• First create produces a word with one behav-
ior, then does> changes the behaviour (and
this can theoretically happen several times).
This causes problems in implementations that
compile directly to flash memory.

In the following we focus on the first two prob-
lems.

+field

The first problem is exemplified by:

: +field (u1 u "name" -- u2)
create over , +

does> (addr1 -- addr2)
@ + ;

\ example use
1 cells 1 cells +field x (addr1 -- addr2)
: foo x @ ;

Using set-does>, +field is written as:

: +field (u1 u "name" -- u2)
\ name execution: (addr1 -- addr2)
create over , +
[: @ + ;] set-does> ;

With the built-in +field, VFX compiles foo into
MOV EBX, [EBX+04] (3 bytes). However, with the
user-defined definition of +field above, this is not
possible: the user could change the value in x later
(e.g., with 0 ’ x >body !), and the behaviour of
foo has to change accordingly. Therefore, VFX
produces a an 8-byte two-instruction sequence in-
stead.
With closures, we can write +field as follows:

: +field (u1 u "name" -- u2)
\ name execution: (addr1 -- addr2)
create over
[{: u1 :}d drop u1 + ;] set-does>
+ ;

The drop is there to get rid of the body ad-
dress of name, which the set-does> mechanism
(like does>) pushes automatically.
In this variant, u1 is transferred to name through

the closure mechanism; its value does not change
(there is no to u1), so the compiler can generate
efficient code for foo. Currently there is no com-
piler that does that, but a compiler that inlines the
closure when name is compiled and that is analyti-
cal about locals should not find it difficult.
A way to solve this problem without closures is

to define the defining word based on : instead of
create:

: +field (u1 u "name" -- u2)
\ name execution: (addr1 -- addr2)
over >r : r>]] literal + ; [[+ ;

With this +field, VFX produces the same code
for foo as with the builtin +field. This can be
made slightly easier to read by using a local, and
postponeing it:

: +field (u1 u "name" -- u2)
\ name execution: (addr1 -- addr2)
{: u1 u :} :]] u1 + ; [[u1 u + ;

Another approach for dealing with the read-only
problem is to declare the memory as not-going-to-
change after initializing it (supported in iForth):

: +field (u1 u "name" -- u2)
create over , +
here cell- 1 cells const-data

does> (addr1 -- addr2)
@ + ;

Yet another approach is to change the intelligent
compile, to compile fields efficiently:

: +field (u1 u "name" -- u2)
\ name execution: (addr1 -- addr2)
create over , +
[: @ + ;] set-does>
[: >body @]] literal + [[;]
set-optimizer ;

This works in Gforth (development version), and,
with a different syntax, in VFX. Set-optimizer
changes the last defined word (i.e., the one defined
by +field1) so that compile,ing it calls the quo-
tation; that first fetches the field offset (at com-
pile time, not at run-time), compiles it as a literal
and then compiles the +. A disadvantage of this
approach is that the optimizer has to implement
nearly all of the does> part again; and such redun-
dancy can make errors hard to find (e.g., the word
works fine when interpreted, but acts up when com-
piled).

We can use closures instead of the body to pass
u1:

: +field (u1 u "name" -- u2)
create
over [{: u1 :}d drop u1 + ;] set-does>
over [{: u1 :}d drop]] u1 + [[;]
set-optimizer
+ ;

This demonstrates the redundancy nicely. A dis-
advantage of this approach is that the redundancy
now also costs memory, because two closures are
stored in the dictionary.

Finally, there was a proposal for const-does>
[Ert00], but it did not generate much interest. The
code would look as follows:

Ertl, Paysan Closures

: +field (u1 u "name" -- u2)
over + swap (u2 u1)

1 0 const-does> (addr1 -- addr2)
(addr1 u1) + ;

The 1 0 tells const-does> to take one data stack
item and 0 FP stack items from these stacks when
const-does> is called, and push them on these
stacks when the defined word is performed. The
body address of the created word is not pushed,
addr1 is passed by the caller of name (typically the
base address of the structure containing the field),
u1 by const-does>.

Interface-method

The +field example is easy to understand, but the
following, larger example is better for demonstrat-
ing the effects. It also demonstrates the second
problem of passing several values across the does>
boundary.
The following is a simplified variant of the

word for defining interface method selectors in
objects.fs [Ert97]:

\ fields: object-map selector-offset
\ selector-interface
\ structure (constant): selector

: interface-method (n-sel n-iface --)
create here tuck selector allot
selector-interface ! selector-offset !

does> (... object -- ...)
2dup selector-interface @
swap object-map @ + @
swap selector-offset @ + @ execute ;

This example exhibits the read-only and the
multiple-cells problem. The latter problem is at-
tacked by organising these cells as a struct, stor-
ing into it in the create part, and reading from
it in the does> part, but compared to the follow-
ing closure-using variant, the code is still relatively
complicated.

: interface-method (n-sel n-iface --)
create [{: n-sel n-iface :}d

drop dup object-map @ n-iface + @
n-sel + @ execute ;] set-does> ;

This locals-using variant eliminates all the com-
plications of storing the parameters in the create
part. The does> part is also quite a bit simpler, as it
avoids having to juggle the address of the created
word.

The :-using definition looks as follows:

: interface-method {: n-sel n-iface -- :}
:]] dup object-map @
[[n-iface]] literal + @
[[n-sel]] literal + @
execute ; [[;

The resulting code (produced by VFX 4.72) for a
call to a word defined with interface-method is:

does> version : version
MOV EDX, 0 [EBX] MOV EDX, 0 [EBX]
ADD EDX, [080C0BB4] MOV EDX, [EDX+04]
MOV ECX, [080C0BB0] CALL [EDX+04]
ADD ECX, 0 [EDX]
CALL 0 [ECX]

If we can postpone locals, or, in this case, use
them inside]]...[[, this can be further shortened
into:

: interface-method {: n-sel n-iface -- :}
:]] dup object-map @ n-iface + @

n-sel + @ execute ; [[;

The code between]] and [[is almost the same
as the code in the closure in the closure version.

4 Implementation
This section describes our implementation of the
features described in this paper.10 Other implemen-
tations are possible, but are not discussed here, with
one exception: Gforth uses a locals stack, and we
always mention the locals stack here; but adapting
the implementation for a system where the return
stack serves as locals stack is not difficult.

4.1 Closures and execution tokens
The execution token for a closure represents not just
the code, but also the passed locals. Yet it has to
fit into a single cell.

Our implementation deals with that by a vari-
ant of the trampolines used by gcc for the same
purpose: A block of memory is allocated; the start
of this block contains the header of an anonymous
word, and the rest contains the values of the locals
defined at the start of the closure. The closure is
represented by the xt of the anonymous word.

When the closure is performed, it copies the val-
ues of the locals to the locals stack. This means that
the closure locals can be treated like ordinary locals
in the rest of the definition. After this copying, the
user-defined code of the closure is performed.

10http://git.savannah.gnu.org/cgit/gforth.git/
tree/closures.fs

http://git.savannah.gnu.org/cgit/gforth.git/tree/closures.fs
http://git.savannah.gnu.org/cgit/gforth.git/tree/closures.fs

Ertl, Paysan Closures

: foo [{: a b :}d a . b . ;] ;

vt
cf

doescode
a
b

header

data

dodoes

2@ swap >L >L
a . b . lp+2 ;s

xt

Figure 1: A definition containing a closure, and the
memory representation of a closure created by in-
voking the definition; the part of the doescode be-
fore the bold part is generated by the compiler to
copy the data of the closure to the locals stack.

In finer detail, a closure is an anonymous
create...does> defined word (but it can reside not
just in the dictionary, but alternatively on the lo-
cals stack or on the heap), where the code after the
does> starts by copying the data from the body of
the word to the locals stack, followed by the user-
written code. Figure 1 shows an example.
The compile-time part of the closure implemen-

tation is deeply intertwined with the pre-existing
implementations of locals and quotations in Gforth,
and a detailed description will probably be of little
benefit to implementors of other systems, but we
still mention some interesting aspects: During clo-
sure construction, the locals stack pointer points to
the memory for the closure (i.e., not always in the
locals stack). The closure locals are arranged in the
closure memory just as normal locals are arranged
on the locals stack, they get the same offsets (using
the same code as during ordinary locals definition),
and after copying behave just as normal locals.
This part costs 78 source lines of code (SLOC,

blank, and comment-only lines not counted).

4.2 Home locations

The home location syntax <{:...;> is based on the
closure implementation: Creating a home location
block differs from creating a closure by not produc-
ing a word header, and by letting the locals stack
pointer point to the home location block until ;>.
This part costs 6 SLOC.

4.3 Postpone locals

Postponeing locals is implemented by special-
casing locals in postpone.

This part costs 25 SLOC. It is so large because
each of the nine locals definers needs a special case.

5 Lexical scoping and flat-
closure conversion

The closure syntax presented above was originally
designed for minimal implementation complexity,
even at the expense of programmer inconvenience.
However, looking at the examples, we now think
that it is very appropriate for stack-based languages
like Forth: For languages where the primary data
location is the stack(s) rather than locals, it is
appropriate to build closures from data on stacks
rather than by copying existing locals.

However, this means that when we want to con-
vert code from languages with lexical scoping to
Forth, we have to perform flat-closure conversion
manually. This section sketches how to do that, in a
mechanical way. Alternatively, we can find a way to
express the same purpose differently, as in the testr
example (Section 3.4), but there is no mechanical
way to do that, and no guarantee that there is such
a way.

This also demonstrates that our closure syntax is
as powerful as lexical scoping in Algol-family lan-
guages. There is no mechanical process for con-
verting the automatic memory reclamation of, e.g.,
Scheme to manual memory reclamation. If we stick
with mechanical conversion for that part, we either
have to live with leaking memory, or use some kind
of garbage collection for the closures.

We use the following contrived program with lex-
ical scoping as a running example.

: foo ... {: a b :} ...
[: ... {: c :} ... to a ... b ...

[: ... to b ... c ... ;] ... ;] ... ;

This program only contains definitions and uses
of locals, and quotations. Other operations can be
inserted in the places marked with ..., but do not
play a role in flat-closure conversion.

The first step is to perform assignment conver-
sion [Dyb87, Section 4.5]: For every local that is
accessed with to and also accessed in a quotation
where it is not defined, we convert it into a home
location and access it with @ and !:

: foo ... <{: w^ a w^ b :}d a b ;>
drop {: a b :} ...
[: ... {: c :} ... a ! ... b @ ...

[: ... b ! ... c ... ;] ... ;] ... ;

In this example, we allocated the home locations
in the dictionary, and then dropped the address
containing the home location block. Note that you
need to use w^ only when defining the home loca-
tion; in the rest of the code, the addresses are passed
around as values, so value-flavoured locals are fine
there.

Ertl, Paysan Closures

The next step is the actual flat-closure conver-
sion: You have to mention all locals accessed inside
the closure in the locals definition at the start of the
closure, and pass them to the closure on the stack:

: foo ... <{: w^ a w^ b :}d a b ;>
drop {: a b :} ...
a b [{: a b :}d ... {: c :}

... a ! ... b @ ...
b c [{: b c :}d ... b ! ... c ... ;]
... ;] ... ;

5.1 Alternative syntaxes and imple-
mentations

What if we tried to go for a syntax that supports
lexical scoping directly instead of through manual
flat-closure conversion? How much implementation
complexity would that cost, and would the bene-
fit be worth the cost? Are there intermediate ap-
proaches?
The first step towards lexical scoping is that clo-

sures get the values of the closure locals (those de-
fined at the start of the closure) from same-named
locals of the enclosing definition or closure, rather
than from the stacks. This is relatively easy to im-
plement, but it requires that the value is in a local.
As the examples show, this requirement would often
result in extra locals definitions, so implementing
that is not necessarily an advantage.
The next step would be to completely hide the

actual flat-closure conversion: The compiler would
have to look at the whole code of the definition,
and note which of the locals are used inside which
quotation, and then convert the quotations into clo-
sures by itself. While that is not particularly hard,
it requires looking at the whole definition at once,
which would require a major rewrite for most Forth
systems. The benefit would be that the code for foo
shown after the assignment conversion step would
work (with some adjustments for manual memory
reclamation of closures).
Similarly, the assignment conversion step can be

split into two steps:
In the first step, the programmer marks some lo-

cals on definition as requiring assignment conver-
sion (with special local definers, e.g., w!). The com-
piler would then allocate a home location for these
locals automatically, pass the address around, and
automatically convert read accesses to fetches from
the address, and to accesses to stores to the ad-
dress. A to access to a local that is not marked as
requiring assignment conversion produces an error
if the local occurs in a quotation where the local
was not originally defined. This step would require
some work, but no deep changes to the usual com-
pilers. The benefit would be that the programmer
would avoid nearly all of the assignment conversion

work, and only needs to mark some locals as requir-
ing assignment conversion.

In the second step, the compiler collects the infor-
mation about the locals requiring assignment con-
version by itself, relieving the programmer of that
duty. Again, it requires looking at the whole defi-
nition at once, but otherwise would not be a lot of
work.

6 Performance
This section presents performance results from mi-
crobenchmarks on the current implementation in
Gforth. Note that microbenchmarks have their pit-
falls and in application usage effects may dominate
that are not reflected in these microbenchmarks.
Moreover, the current implementation has seen only
minimal performance work (costing 4 source lines),
and some of these benchmarks might see substantial
speedups by investing more work in performance.

We have two kinds of microbenchmarks: Creat-
ing a closure (or an alternative to a closure), and
running a closure (or an alternative). The closure
we use is:

[{: x :}l x + ;]

Running a closure with one or two cells as above
profits from the little performance work we have
applied, so for the run closure benchmark we also
measure a three-cell variant that exercises the gen-
eral case:

[{: x y z :}l x + ;]

We use the following variants:

closure For creation, we measure the three dif-
ferent allocation methods (locals stack, dictio-
nary, heap), with the heap variant including
the free overhead.

does Create an anonymous created word with x
in its body, with [: @ + ;] set-does>.

:noname create an anonymous :noname word
which compiles x as literal in its body.

stack Use a quotation that uses x from the
stack (without consuming it): [: over + ;].
Benchmarking its creation just means bench-
marking pushing the xt.

We run the benchmark on a 4GHz Core i5-6600K
(Skylake). We use 50,000,000 iterations for each
microbenchmark, but report the cycles and instruc-
tions per iteration, subtracting the loop overhead.
The results are:

Ertl, Paysan Closures

cycles inst. per iteration
21.0 99.0 create closure local
62.9 183.5 create closure dictionary
113.6 459.0 create closure heap
735.1 2464.7 create does

5115.4 15159.5 create :noname
8.0 14.0 create stack
7.0 43.0 run closure 1 cell
21.3 85.0 run closure 3 cells
6.0 38.0 run does
6.2 27.0 run :noname
7.1 33.0 run stack

Note that results of 8 cycles or less in these mi-
crobenchmarks are usually dominated by depen-
dency chains through instruction or stack point-
ers, and the relative performance may be differ-
ent (maybe more like the relations of instructions
counts) in applications.11

Still, there are some conclusions we can make:
Creating a local closure is relatively cheap,

whereas creating heap and dictionary closures is
quite a bit more expensive. Dynamically creating
create...does> words instead is a lot more expen-
sive, and the same with :noname is even more ex-
pensive. Pushing the xt of a quotation is cheap, as
expected.
Running a closure with one cell is slightly more

expensive than the other variants; the general case
(3 cells) is quite a bit more expensive, but could be
optimized, too; there will be very few cases where
the number of runs/creation is so high that the does
and :noname variants break even. The stack variant
is cheap in both creation and run time.

7 Related work
Already Lisp [McC81] and Algol 60 allowed nested
functions and accessing outer locals, but with lim-
itations: Lisp initially used dynamic scoping; this
was considered a bug by McCarthy (Lisp’s creator)
[McC81] (see Section 3.4), but that bug had en-
trenched itself as a feature in the meantime, and
the Lisp family took a while to acquire lexical scop-
ing (prominently in Scheme and Common Lisp). A
reason for that is that Lisp allows returning func-
tions, which in combination with lexical scoping cre-
ates the upwards funarg problem: local variables no
longer always have lifetimes that allow to use a stack
for memory management.
Algol 60 avoided the upwards funarg problem by

not allowing to return functions. Still, lexical scop-
ing (in combination with call-by-name) proved a
challenge to implement, as can be seen by Knuth’s
man-or-boy test [Knu64] (see Section 3.3), which

11You may also wonder about the impossible apparent in-
structions per cycle (IPC) for some of the benchmarks, but
note that you have to add the loop overhead (12 instructions
in 6 cycles) to compute the actual IPC.

revealed that many Algol compilers failed to imple-
ment access to outer locals correctly.

The best-known ways to implement the access to
outer locals are static link chains and the display
[FL88]. They keep each local in only one place, and
have relatively complex and sometimes slow ways
to access them.

By contrast, in this paper we use the flat-closure
coversion approach [Dyb87, Section 4.4] in com-
bination with assignment conversion [Dyb87, Sec-
tion 4.5], which replicates locals (or their addresses)
in order to make the access cheap. Moreover, in
typical Forth style, we only provide flat closures
and home location support, and leave it to the
programmer to perform assignment and flat-closure
conversion manually. This makes the programmer
responsible for optimizations in the conversion pro-
cess [KHD12], and avoids the need to put values
into locals in order to get them into closures.

Concerning memory management, most lan-
guages have chosen one of two approaches: 1) re-
strict function-passing or outer-locals access such
that stack management is sufficient; or 2) don’t have
restrictions, and use garbage collection for the in-
volved data structures when necessary.

After decades of growth in the functional pro-
gramming community, using higher-order functions
and passing functions to them has recently made
the jump to mainstream languages like C++ (in
C++11), Java (in Java 8), and C#. This feature
is typically called lambda. The C++ variant12 is
extremely featureful, and, while too complex for
Forth, inspires ideas on how such features can be
implemented in close-to-the-metal languages.

Moving closer to Forth, Joy [vT01] is a stack-
based functional language. It uses the term “quota-
tion” for a nameless word that can be defined inside
other words. Joy has no locals, so quotations in it
cannot access outer locals.

Factor [PEG10] is a high-level general-purpose
language with roots in Forth and Joy; it has quota-
tions and locals, and allows access to outer locals.

Lynas and Stoddart [LS06] added lambda expres-
sions with read-only lexical scoping to RVM-Forth.
They implemented accesses to outer variables by
compiling them as literals with placeholder values;
when generating the xt, the code is copied, and the
actual values of the outer variables are plugged into
the code instead of the placeholder values. These
code copies are not freed in forward execution.

Gerry Jackson implemented quotations with full
lexical scoping and explicit deallocation of clo-
sures in Forth-94.13 He managed to implement

12https://en.cppreference.com/w/cpp/language/
lambda

13news:<6b5eead4-f809-4dd4-81c6-
16e1c2a9f613@q14g2000vbn.googlegroups.com>,
http://qlikz.org/forth/archive/lambda.zip

https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda
http://al.howardknight.net/msgid.cgi?ID=153899086000
http://al.howardknight.net/msgid.cgi?ID=153899086000
http://qlikz.org/forth/archive/lambda.zip

Ertl, Paysan Closures

all this functionality (but with some limitations)
and workarounds for the limitations of Forth-94 in
312 SLOC (including an object-oriented package).
In contrast to these works, the present work aban-

dons lexical scoping in favour of reducing the im-
plementation effort, putting the onus of assignment
and closure conversion on the programmer.
In 2017 the Forth200x committee has accepted a

proposal14 for quotations that does not standardize
the access to outer locals, leaving it up to systems
whether and how they implement accesses to outer
locals.
Of course, in classical Forth fashion, some users

explored the idea of what outer-locals accesses can
be performed with minimal effort. In particu-
lar, Usenet user “humptydumpty” introduced rquo-
tations15, a simple quotation-like implementation
that uses return-address manipulation. The Forth
system does not know about these rquotations and
therefore treats any locals accessed inside rquota-
tions as if they were accessed outside. In the case
of Gforth (as currently implemented) this works as
long as the locals stack is not changed in the mean-
time; e.g., the higher-order word that calls the rquo-
tation must not use locals.
There is no easy way to see whether this re-

striction has been met; this is also classical Forth
style, but definitely not user-friendly. Static analy-
sis could be used to find out in many cases whether
the restriction has been met, but that would prob-
ably require more effort than implementing the ap-
proach presented in this paper, while not providing
as much functionality.

8 Conclusion
Locals in standard Forth have a number of restric-
tions. In this paper we mainly looked at the re-
striction that, in a quotation, one can only access
locals that have been defined in that quotation. But
instead of adding the capability to access outer lo-
cals, we reduced it to the basic need to initialize lo-
cals of a quotation/closure from outside data, and
presented syntax and an implementation of stack-
initialized flat closures with explicit memory man-
agement. In addition, we present conveniences for
defining home locations for writable locals, and for
postponeing (read-only) locals.

We presented a number of examples where these
features allow additional, and sometimes shorter
and easier-to-read ways to express the functional-
ity. We also presented alternative code that does
not use these features.

14http://www.forth200x.org/quotations.txt
15news:<f71bfb01-4b8e-49d6-abd5-

12bda6dbfcd2@googlegroups.com>

In these examples, the features provide some ben-
efits. The implementation of flat closures alone
costs 78 source lines in Gforth, or 109 source lines
for all the features combined. Whether the benefits
are worth this implementation effort will have to be
seen.

Acknowledgments
The anonymous referees, Marcel Hendrix, Gerry
Jackson, and Bill Stoddart provided valuable feed-
back on earlier versions of this paper.

References
[Bel87] Johan G.F. Belinfante. S/K/ID: Combi-

nators in Forth. Journal of Forth Appli-
cation and Research, 4(4):555–580, 1987.
7

[Dyb87] R. Kent Dybvig. Three Implementation
Models for Scheme. PhD thesis, Uni-
versity of North Carolina at Chapel Hill,
April 1987. 5, 7

[Ert94] M. Anton Ertl. Automatic scoping of
local variables. In EuroForth ’94 Con-
ference Proceedings, pages 31–37, Winch-
ester, UK, 1994. 2.3

[Ert97] M. Anton Ertl. Yet another Forth objects
package. Forth Dimensions, 19(2):37–43,
1997. 3.5

[Ert00] M. Anton Ertl. CONST-DOES>. In
EuroForth 2000 Conference Proceedings,
Prestbury, UK, 2000. 3.5

[Ert14] M. Anton Ertl. Region-based memory al-
location in Forth. In 30th EuroForth Con-
ference, pages 45–49, 2014. 2.1

[FL88] Charles N. Fischer and Richard J.
LeBlanc. Crafting a Compiler. Ben-
jamin/Cummings, Menlo Park, CA,
1988. 7

[KHD12] Andrew W. Keep, Alex Hearn, and
R. Kent Dybvig. Optimizing closures
in O(0) time. In Olivier Danvy, editor,
Proceedings of the 2012 Annual Work-
shop on Scheme and Functional Program-
ming, Scheme 2012, Copenhagen, Den-
mark, September 9-15, 2012, pages 30–
35. ACM, 2012. 7

[Knu64] Donald Knuth. Man or boy? Algol Bul-
letin, page 7, July 1964. 3.3, 7

http://www.forth200x.org/quotations.txt
http://al.howardknight.net/msgid.cgi?ID=153113903800
http://al.howardknight.net/msgid.cgi?ID=153113903800

Ertl, Paysan Closures

[LS06] Angel Robert Lynas and Bill Stoddart.
Adding Lambda expressions to Forth. In
22nd EuroForth Conference, pages 27–39,
2006. 7

[McC81] John McCarthy. History of LISP. In
Richard L. Wexelblatt, editor, History of
Programming Languages, pages 173–197.
Academic Press, 1981. 3.4, 7

[PEG10] Sviatoslav Pestov, Daniel Ehrenberg, and
Joe Groff. Factor: a dynamic stack-based
programming language. In William D.
Clinger, editor, Proceedings of the 6th
Symposium on Dynamic Languages, DLS
2010, October 18, 2010, Reno, Nevada,
USA, pages 43–58. ACM, 2010. 7

[vT01] Manfred von Thun. Joy: Forth’s func-
tional cousin. In EuroForth 2001 Confer-
ence Proceedings, 2001. 7

A Sudoku
This appendix shows another example. It demon-
strates the use of an xt-passing style in a larger
application. The shown code is complex, and we do
not expect you to understand it completely. But
you can try to follow the stack flow in Fig. 3 and 4
to get an impression of the benefits and drawbacks
of these two approaches, and also skim Fig. 5 to get
an impression of that alternative.
In 2006, I (Ertl) wrote a Sudoku program.16 In

Sudoku the same constraints apply to rows and
columns, and squares have a related constraint, so
I tried to find a good factoring.
At one point17 I factored out horizontal and ver-

tical walks (of the fields in a row/column, or of
the columns/rows of the whole Sudoku) into higher-
order words map-row and map-col (see Fig. 2). I
passed the extra parameters to the words called by
these words through the stack. You can see these
higher-order words in action in Fig. 3.
However, I found it hard to track the stack con-

tents, because the words are not called in the order
in which they appear in the code. Therefore I also
found it hard to write and maintain this code, even
though I used locals to make it a little less opaque.
Soon after I switched to a different approach.
But before we look into that approach, let’s con-

sider how things would look with closures: Fig. 4.
The code is shorter, but, what’s more, it is much
easier to see the data flow: Instead of following how
the data items flow through the higher-order words
to the executed xts, the xts (produced from clo-
sures) have simple stack effects such as (var --).

16https://github.com/AntonErtl/sudoku
17https://github.com/AntonErtl/sudoku/blob/

da19285814c49a007dd8d954cf94a29f51fa51a1/sudoku3.fs

These xts do not use extra parameters;18 instead,
the data is passed through the closure mechanism.
Note that there are two levels of closures, and ac-
cesses to data that originally came from one or two
levels out.

The approach I actually switched to was quite
different, though: Following advice from Andrew
Haley, I created macros do-row loop-row do-col
loop-col for performing the walks, and wrote
gen-row-constraints gen-col-constraints
and other words using these macros (Fig. 5). The
result19 feels more Forth-like and has seven lines
less than the stack-using one (once we eliminate
two now-unused words), but increases the dic-
tionary size (including threaded code, excluding
native code) on 64-bit Gforth 0.7.9_20180830 from
9168/9248 bytes (for xt-passing/closures) to 11544
bytes (the macros generate quite a bit of code each
time they are used).

18The var in (var --) is produced by the higher-order
words that call the xt.

19https://github.com/AntonErtl/sudoku/blob/
dc0f80bbbed8a7c488af7aecb5de0b7d5c5662ac/sudoku3.fs

https://github.com/AntonErtl/sudoku
https://github.com/AntonErtl/sudoku/blob/da19285814c49a007dd8d954cf94a29f51fa51a1/sudoku3.fs
https://github.com/AntonErtl/sudoku/blob/da19285814c49a007dd8d954cf94a29f51fa51a1/sudoku3.fs
https://github.com/AntonErtl/sudoku/blob/dc0f80bbbed8a7c488af7aecb5de0b7d5c5662ac/sudoku3.fs
https://github.com/AntonErtl/sudoku/blob/dc0f80bbbed8a7c488af7aecb5de0b7d5c5662ac/sudoku3.fs

Ertl, Paysan Closures

\ gen-valconstraint (var container xt --)
\ check (--)
\ map-row (... row xt -- ...) apply xt (... var -- ...) to all variables of a row
\ map-col (... col xt -- ...) apply xt (... var -- ...) to all variables of a col
\ row-constraint (var row --)
\ col-constraint (var col --)

Figure 2: Helper words for Sudoku

: gen-valconstraint1 { xt container var -- xt container }
var container xt gen-valconstraint
xt container
check ;

: gen-contconstraint { xt-map xt-constraint container -- xt-map xt-constraint }
xt-map xt-constraint container dup [’] gen-valconstraint1 xt-map execute drop ;

: gen-row-constraints (--)
check [’] map-row [’] row-constraint grid @ [’] gen-contconstraint map-col 2drop ;

: gen-col-constraints (--)
check [’] map-col [’] col-constraint grid @ [’] gen-contconstraint map-row 2drop ;

Figure 3: Part of Sudoku program with higher-order words using the stack

: gen-contconstraint1 (xt-map xt-constraint -- xt-contconstraint)
[{: xt: map xt-constraint :}d (container --)

xt-constraint over [{: xt-constraint container :}l (var --)
container xt-constraint gen-valconstraint check ;] map ;] ;

: gen-row-constraints (--)
check grid @ [’] map-row [’] row-constraint gen-contconstraint1 map-col ;

: gen-col-constraints (--)
check grid @ [’] map-col [’] col-constraint gen-contconstraint1 map-row ;

Figure 4: Part of Sudoku program with closures

\ replace MAP-ROW and MAP-COL with
\ do-row (compilation: -- do-sys; run-time: row -- row-elem R: row-elem)
\ loop-row (compilation: -- do-sys; run-time: R: row-elem --)
\ do-col (compilation: -- do-sys; run-time: col -- col-elem R: col-elem)
\ loop-col (compilation: -- do-sys; run-time: R: col-elem --)
: gen-row-constraints (--)

check grid @ do-col
dup do-row

over [’] row-constraint gen-valconstraint check loop-row
drop loop-col ;

: gen-col-constraints (--)
check grid @ do-row

dup do-col
over [’] col-constraint gen-valconstraint check loop-col

drop loop-row ;

Figure 5: Part of Sudoku program with macros

	Introduction
	Closures: Principles and Syntax
	Overview and principles
	Closure words
	Gforth features
	Locals definers
	Convenient postponeing
	Modifying words

	Auxiliary closure words
	Home location conveniences
	Postpone locals
	Allocation

	Closure Usage and Alternatives
	Numerical integration
	Sum-series
	Man or boy?
	testr
	Defining words
	+field
	Interface-method

	Implementation
	Closures and execution tokens
	Home locations
	Postpone locals

	Lexical scoping and flat-closure conversion
	Alternative syntaxes and implementations

	Performance
	Related work
	Conclusion
	Sudoku

